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Locally self-similar formulation
for hypersonic laminar boundary layers

in thermochemical nonequilibrium

By C. Williams, M. Di Renzo†, P. Moin AND J. Urzay

1. Motivation and objectives

The consideration of finite-rate thermochemical effects induced by high temperatures,
including vibrational and chemical relaxation, complicates significantly the description
of flows around bodies moving hypersonically. The inviscid flow in the shock layer is
influenced by the shock-front curvature induced by the thermochemical relaxation in the
post-shock gas (Sharma & Shyam 1984; Anderson 2006). This shock-front curvature is
present in addition to that induced by finite leading-edge bluntness, as schematically
indicated in Figure 1(a). Its origin is related to the isobaric increase in density associ-
ated with thermochemical relaxation, as schematically shown in the cross-section profiles
in Figure 1(b). This increase in density induces a gradient of the normal component of
the post-shock velocity in the direction normal to the shock that can only be accommo-
dated if the shock front is curved. Since the transverse entropy gradient produced by the
shock-front curvature leads to vorticity in the post-shock gas, the boundary layer sees
boundary conditions away from the wall that are characterized by a vortical inviscid flow
in the shock layer that is subject to a favorable streamwise pressure gradient induced
by the thermochemical relaxation, as indicated in Figure 1(c). This is in contrast to the
supersonic flow of thermochemically frozen (i.e., calorically perfect) gases over sharp-nose
bodies, where a clear separation exists between the boundary and shock layers, such that
one can integrate the inner viscous problem using the overriding, uniform inviscid flow
as a well-defined boundary condition at infinity.

Complexities similar to those discussed above, albeit focused on the effect that entropy
layers induced by blunt edges have on post-shock laminar boundary layers, were identified
early by Ferri & Libby (1954). To facilitate the integration of the problem with rotational
inviscid-flow conditions outside the boundary layer, which are responsible for significant
variations in skin friction and wall heating relative to the irrotational case, subsequent
theories found it necessary to retain second-order terms in the perturbation expansion,
leading to modified laminar boundary-layer equations (Davis & Flügge-Lotz 1964; Van
Dyke 1969). Thermochemical-nonequilibrium aspects of the problem have been much less
explored, with a notable analysis being made by Seror et al. (1997) using an alternative,
defect-boundary-layer method.

Our first pass at this problem is much more modest than the approaches identified
above. Using a two-temperature description, this report focuses on extending the locally
self-similar formulation of Lees (1956) [see also Fay & Riddell (1958) and Liñán & Da Riva
(1962)] for compressible laminar boundary layers in order to include thermochemical-
nonequilibrium effects, namely vibrational and chemical relaxation, as well as the cou-
pling between these processes. These effects are incorporated both in the inner viscous
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Figure 1. Schematics of a hypersonic flow over a two-dimensional wedge highlighting vibra-
tional-nonequilibrium phenomena, including (a) large-scale and zoomed views of the shock layer,
(b) temperature and density profiles along the cross sections A1-A2, B1-B2, C1-C2, and D1-D2
indicated in the top panel, and (c) flow near the surface. Addition of chemical effects to these
schematics would require extra relaxation time scales and extra shock-front curvature.

region and in the outer inviscid flow. However, the latter is assumed to be irrotational.
As deduced from the considerations above, this formulation is of practical relevance
only when the gas in the inviscid shock layer is either (a) vibrationally frozen, (b) in
vibrational equilibrium but chemically frozen, or (c) in both vibrational and chemical
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equilibrium. In these three cases, the resulting shock-front curvature is zero, there is no
thermochemistry-driven entropy layer, and the inviscid flow in the shock layer overrid-
ing the boundary layer becomes irrotational, thereby rendering a well-defined boundary
condition at infinity that does not require consideration of higher-order boundary-layer
effects. However, thermochemical nonequilibrium can still arise within the boundary layer
due to the large temperature gradients caused by viscous aerodynamic heating.

These approximations limit the scope of the present study, but also hint at inter-
esting fundamental work that remains to be done to describe the coupling between
thermochemistry-driven entropy layers and hypersonic laminar boundary layers. Much
less is known about this interaction in transitional and turbulent boundary layers, but
this is a different question that will be left for future research.

The remainder of this report is organized as follows. The formulation of the prob-
lem is summarized in Section 2. A numerical solution is discussed in Section 3. Lastly,
conclusions are given in Section 4.

2. Formulation

This section begins by outlining the two-dimensional boundary-layer conservation
equations in a two-temperature framework, followed by their transformed versions af-
ter defining a self-similar pair of coordinates. Unless otherwise specified, all notation
and models employed in this report follow those provided in Di Renzo et al. (2020) and
Williams et al. (2021) in this volume, and therefore the details will be spared and the
mathematical symbols will not be redefined here.

2.1. Two-dimensional boundary-layer conservation equations

Consider the two-dimensional boundary-layer conservation equations of mass, momen-
tum, species, stagnation enthalpy, and vibrational-electronic internal energy, namely

∂
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is the wall-normal component of the diffusion velocity of species i, with i = 1, 2, . . . Ns. In
this approximation, the thermodynamic pressure is assumed to be constant through the
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boundary layer and equal to the edge pressure Pe, which is related to the local density,
species concentration, and translational-rotational temperature as

Pe = ρR0T/M. (2.7)

Equations (2.1-2.5) are subject to the edge values

ρ = ρe, u = Ue, Yi = Yi,e, T = Te, and Tve = Tve,e (2.8)

away from the wall in the inviscid shock layer at y →∞, and to

u = v = 0, ∂Yi/∂y = 0, and T = Tve = Tw (2.9)

at the wall y = 0, where Tw is the wall temperature. In this study, the edge values of
density, velocity, mass fractions, translational-rotational temperature, and vibrational-
electronic temperature in the boundary conditions (2.8) are assumed to be constant with
the streamwise distance x.

2.2. Locally self-similar boundary-layer conservation equations

Consider the similarity variables (Lees 1956)

ξ(x) = ρeµeUex and η(x, y) =
Ue√
2ξ

∫ y

0

ρdy, (2.10)

where µe is the edge dynamic viscosity. A streamfunction ψ = f(η)
√

2ξ can be defined
to automatically satisfy the continuity equation (2.1), in such a way that u = Uef

′ and
ρv = −ρeµeUef/

√
2ξ− ηxf ′

√
2ξ, where primes indicate differentiation with respect to η,

and ηx = ∂η/∂x is a metric coefficient. In these variables, the momentum conservation
equation (2.2) becomes

(Cf ′′)
′
+ ff ′′ = 0, (2.11)

where C = ρµ/ (ρeµe) is the Chapman-Rubesin parameter. Similarly, the species conser-
vation equation (2.3) becomesCiYi
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for i = 1, 2 . . . , Ns, where Ci = ρ2Di/
(
ρ2eDi,e

)
is a dimensionless group of variables simi-

lar to the Chapman-Rubesin parameter but for species transport, and Sci,e = µe/ (ρeDi,e)
is a Schmidt number based on the edge diffusion coefficient Di,e. In addition, Dac,i =
x/ (Uetc,i) is a chemical Damköhler number defined as the ratio of the residence time
x/Ue to the characteristic chemical time tc,i based on the edge translational-rotational
temperature Te, with tc,i being also used for normalization of the chemical production

rate as Ẇi = tch,iẇi/ρ.
The transformed version of the stagnation enthalpy conservation equation (2.4) is
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where θ = T/Te and θve = Tve/Tve,e are the dimensionless translational-rotational and
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vibrational-electronic temperatures, respectively. The quantities Ctr = ρλtr/ (ρeλtr,e)
and Cve = ρλve/ (ρeλve,e) are dimensionless groups of variables that give rise to the
translational-rotational and vibrational-electronic Prandtl numbers, Prtr,e = µec

tr
p,e/λtr,e

and Prve,e = µec
ve
p,e/λve,e, respectively, which are based on the corresponding edge values

of the thermal conductivities λtr,e and λve,e, and on the specific heats of the edge gas at
constant pressure, ctrp,e and cvep,e. Additionally, gi = hi/hi,e is the specific partial enthalpy
normalized with the corresponding edge value hi,e. The symbol m = h0/h0,e denotes
the specific stagnation enthalpy divided by its edge value h0,e. In particular, using the

definition h0 = u2/2 +
∑Ns

i=1 Yihi, the expression
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is obtained that relates m, Yi, and f . Furthermore, the dimensionless partial specific
enthalpy gi can be related to θ and θve by conveniently normalizing Eq. (2.3) in Williams
et al. (2021) as
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∫ θ

θref

ctrp,i(θ)

ctrp,e
dθ +

(
eve,i,e
hi,e

)
Eve,i, (2.15)

where Eve,i = eve,i/eve,i,e is the dimensionless partial specific vibrational-electronic in-
ternal energy of species i. In particular, Eve,i is a non-linear function of θve obtained by
normalizing the sum of Eqs. (2.5) and (2.6) in Williams et al. (2021) as
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where βv,i = Θv,i/Tve and βel,i,j = Θel,i,j/Tve are characteristic dimensionless tempera-
tures of vibrational and electronic energy modes, and V is a prefactor equal to 0 and 1
for monoatomic and diatomic species, respectively.

To close the system of equations, the vibrational-electronic energy conservation equa-
tion (2.5) can be recast into
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where Eve = eve/eve,e is the dimensionless vibrational-electronic specific internal energy,
and Ev,i = ev,i/ev,i,e is the dimensionless partial specific vibrational internal energy cor-
responding to the first term on the right-hand side of Eq. (2.16), with E∗v,i being its
equilibrium value evaluated at the local translational-rotational temperature θ. Addi-
tionally, Ti = τi/tv,i is a dimensionless local vibrational-relaxation time based on the
characteristic value tv,i obtained by evaluating Eq. (2.9) in Williams et al. (2021) at
the edge translational-rotational temperature in the boundary layer. Premultiplying the
Landau-Teller relaxation term is the vibrational Damköhler number Dav,i = x/(Uetv,i),
which is defined as the ratio of the residence time to the edge vibrational-relaxation time.
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Lastly, Ẇve,i represents the chemical production rate of vibrational-electronic internal
energy of species i normalized with ρeve,i,e/tc,i.

Note that both Dav,i and Dac,i have been arbitrarily chosen above to be defined in
terms of edge conditions. This is obviously not the best scaling for these two parameters
when the wall is cold relative to the edge stagnation temperature, in that much larger
temperatures can develop in the boundary layer because of viscous aerodynamic heating.
As a result, the effective Damköhler numbers can be much larger than the values predicted
by using edge reference values, thereby rendering thermochemical nonequilibrium in the
boundary layer while the outer inviscid flow is thermochemically frozen. This situation
is reminiscent of that observed in non-premixed combustion, where a correct scaling
of the chemical time requires estimation of local conditions in the hot reacting zone.
The formulation above can therefore be modified to incorporate these considerations
by rescaling the vibrational and chemical relaxation times based on conditions near the
temperature peak in the boundary layer.

These equations need to be supplemented with the transformed version of the ideal-gas
equation of state (2.7), namely

RθMe/M = 1, (2.18)

where R = ρ/ρe is the dimensionless density, and Me is the molecular weight of the
mixture at the boundary-layer edge. The boundary conditions are

f ′ = 1, Yi = Yi,e, and θ = θve = 1 (2.19)

away from the wall in the inviscid shock layer at η →∞, along with

f = f ′ = 0, Y ′i = 0, θ = Tw/Te, and θve = Tw/Tve,e (2.20)

at the wall η = 0.
The formulation provided above represents a locally self-similar boundary-value prob-

lem, in that, for a given value of x, the problem can be integrated to yield a solution
that is only a function of the self-similar coordinate η. The incorporation of finite-rate
thermochemistry in the problem necessarily implies an evolution of the solution with x
in a manner that depends on externally imposed time scales of chemical and vibrational
relaxation, which rules out complete self-similarity (Liñán & Da Riva 1962).

3. Numerical solution

The system of ordinary differential equations (2.11), (2.12), (2.13), and (2.17), subject
to the boundary conditions (2.19) and (2.20), and supplemented with Eqs. (2.14), (2.15)
and (2.16), are solved numerically in this section using a second-order finite-difference
discretization and a Newton-Raphson solver with a line-search algorithm.

3.1. Particular aspects of the thermochemical models

The formulation presented in Section 2 is independent of particular closure models for
the chemical production rates of species, ẇi, and vibrational-electronic internal energy,
ẇve. In this section, use of the models of Marrone & Treanor (1963) [referred to as
CVDV model below] and Park (1990) is made to calculate ẇi and ẇve. Specifically, in
the approach of Park followed here, the dissociation rates are evaluated at the geometric
mean temperature

√
θθve, and the calculation of ẇve is made using either the preferential

dissociation model of Sharma et al. (1992) [referred to as Park-P model below], or the non-
preferential one of Candler & MacCormack (1991) [referred to as Park-NP model below].
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Figure 2. Schematics of the configuration.

The solutions obtained using Park’s and CVDV models are compared with those obtained
in the infinitely-fast vibrational-relaxation limit corresponding to a single-temperature
description [referred to as thermal-equilibrium (TE) solution below].

A standard five-step dissociation mechanism for high-temperature air is considered that
includes N2, O2, NO, N, and O (Park 1990). Thermophysical and transport properties
used in these calculations are discussed in Di Renzo et al. (2020) and Williams et al.
(2021). The reader is referred to the seminal treatise of Park (1990) for details on two-
temperature descriptions of hypersonic flows.

3.2. Results

The case analyzed here is represented in Figure 2 and corresponds to the same free-
stream conditions and geometry used in Di Renzo & Urzay (2021), in which an infinitely
sharp, planar wedge of semiangle 9◦ moves at Mach 23 in air at 25 km of altitude.
This case is particularly amenable to this formulation because of the following reasons.
The resulting post-shock temperature is relatively low, Te = 1039 K, which leaves air
mostly undissociated in the shock layer, with resulting edge mass fractions YN2,e = 0.767
and YO2,e = 0.233. At these conditions, the vibrational energy of the post-shock gas
represents approximately less than 6% of the internal energy. As a result, the vibrational
energy is in equilibrium near its ground level, ev,N2,e ' e∗v,N2,e

and ev,O2,e ' e∗v,O2,e
.

However, the characteristic vibrational-relaxation times tv,N2
and tv,O2

are exceedingly
large at this post-shock temperature. The post-shock gas is therefore undergoing a very
slow, low-temperature vibrational relaxation at vanishing vibrational energy. From the
viewpoint of the Landau-Teller relaxation term in Eq. (2.17), this combination of events
in the post-shock gas renders vanishing vibrational Damköhler numbers, Dav,i → 0,
and a vanishing vibrational-energy slip at the boundary-layer edge, Ev,N2,e ' E∗v,N2,e

and
Ev,O2,e ' E∗v,O2,e

. The resulting regime resembles the one discussed at the bottom of page
253 of Vincenti & Kruger (1965), which corresponds to an inviscid post-shock flow that is
at the same time both vibrationally frozen and in vibrational equilibrium. Consequently,
it does not make any significant difference for the dynamics to consider the gas in one
state versus the other. In both cases, the shock-front curvature vanishes and the inviscid
flow in the shock layer is irrotational.

Based on the considerations above, the simplest approach of taking the two temper-
atures equal at the edge of the boundary layer, T = Tve = Te, is followed here. The
remaining edge conditions are provided in Figure 2. The wall is assumed to be isother-
mal at temperature Tw = 1700 K corresponding to approximately 10% of the edge
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Figure 3. Temperature profiles at two streamwise stages along the wedge surface: (a)
xo = 8.9 mm (corresponding to Dav,O2 = 0.007 and Rex = 250, 000) and (b) x1 = 23.0 mm
(corresponding to Dav,O2 = 0.018 and Rex = 650, 000). The Park-P and Park-NP models yield
indistinguishable results in panel (a).

stagnation temperature, which warrants the presence of a temperature maximum within
the boundary layer and a heat flux directed toward the surface, as shown in Figure 3.

The higher temperatures engendered in the boundary layer by viscous aerodynamic
heating result in order-unity values of the local vibrational Damköhler number for O2,
thereby leading to significant vibrational nonequilibrium there. As expected from the
correspondingly larger residence time, the extent of vibrational nonequilibrium decays
with increasing streamwise distance (or equivalently, with increasing vibrational and
chemical Damköhler numbers, and with increasing Reynolds number Rex = ρeUex/µe).

Whereas the non-preferential Park model predicts the most rapid equilibration of
the vibrational-electronic temperature, the CVDV model yields a comparatively lower
vibrational-electronic temperature, consistent with its assumption that the vibrationally-
excited molecules dissociate preferentially. However, the solutions obtained using the
preferential Park model and the CVDV model are quite similar.

Figure 3 shows that the single-temperature profile obtained using vibrational equilib-
rium is everywhere intermediate to the translational-rotational and vibrational-electronic
temperatures. However, the geometric mean temperature

√
TTve is everywhere smaller

than the single temperature obtained using vibrational equilibrium. As shown in Figure 4,
this leads to smaller concentrations of air dissociation products when thermochemical
nonequilibrium is incorporated via the approach of Park, since its dissociation rate con-
stants are evaluated at the geometric mean temperature. Owing to its faster effective
relaxation, the non-preferential Park model predicts slightly larger concentration of air
dissociation products than its preferential counterpart. The concentration of air disso-
ciation products decreases further with respect to the vibrational-equilibrium solution
when the CVDV model is used.

It is worth mentioning that integral quantities such as the displacement thickness δ?

(and consequently the displacement Reynolds number Reδ? = ρeUeδ
?/µe) are modified
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Figure 4. Molar-fraction profiles at x1 = 23.0 mm for (a) O2, (b) N2, (c) NO and (d) O
(corresponding to Rex = 650, 000 and Dav,O2 = 0.018).

by the incorporation of vibrational nonequilibrium. For instance, at x = xo = 8.9 mm,
the vibrational-equilibrium solution gives δ?o = 0.176 mm and Reδ?o = 4968, whereas the
CVDV model gives δ?o = 0.192 mm and Reδ?o = 5436. Similarly, at x = x1 = 23.0 mm,
the vibrational-equilibrium solution yields δ?1 = 0.281 mm and Reδ?1 = 7928, whereas the
CVDV model renders δ?1 = 0.293 mm and Reδ?1 = 8285. These results suggests that, at
equal distances from the wedge vertex, the boundary layer is thicker and has a higher
Reynolds number when vibrational non-equilibrium is included because of comparatively
smaller densities caused by the higher translational-rotational temperatures.

4. Conclusions

In this report, a locally self-similar formulation for hypersonic laminar boundary layers
has been derived that incorporates thermochemical effects, namely vibrational and chem-
ical relaxation, as well as their coupling. The formulation is integrated for the boundary
layer around a 9-degree wedge moving at Mach 23 in air at 25 km of altitude. For this
case, there are no significant differences in the temperature profiles obtained from three
standard dissociation/vibrational-relaxation coupling models. A chief effect of vibrational
nonequilibrium is to inhibit dissociation chemistry in the boundary layer, with the impact
being most significant for molecular oxygen. The model of Marrone & Treanor (1963)
predicts consistently lower concentrations of air dissociation products compared to ap-
proaches based on Park (1990). This formulation may be of some interest for imposing
inflow boundary conditions in direct numerical simulations of hypersonic boundary layers
(Franko & Lele 2013; Di Renzo & Urzay 2021).
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