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A characteristic length scale for density gradients
in supercritical monocomponent flows

near pseudoboiling

By L. Jofre† AND J. Urzay

1. Motivation and objectives

At pressures P moderately larger than the critical value Pc, it is known that pure
substances behave differently depending on whether their temperature T is larger or
smaller than a characteristic value Tpb referred to as the pseudoboiling temperature,
which increases with pressure, as shown in Figure 1(a). The pseudoboiling temperature
is typically defined as the temperature at which the specific heat at constant pressure
cp reaches a finite local maximum, which is reminiscent of a phase transition of second
kind. In particular, at sub-pseudoboiling temperatures T < Tpb, pure substances be-
have as liquid-like supercritical fluids: (a) their density ρ is large; (b) their isothermal
compressibility βT = (1/ρ)(∂ρ/∂P )T is small; (c) their dynamic viscosity µ and ther-
mal conductivity λ decrease with temperature; and (d) their mass diffusivity D remains
mostly constant or increases slowly with temperature. In contrast, at super-pseudoboiling
temperatures T > Tpb, pure substances behave as gas-like supercritical fluids: (a) their ρ
is relatively smaller; (b) their βT is relatively larger; and (c) their µ, λ, and D increase
with temperature (Poling et al. 2001).
In many instances, the transition from liquid-like to gas-like supercritical states across

the pseudoboiling line has been referred to as transcritical in monocomponent systems. Of
particular interest in this transition are the resulting large density variations with respect
to temperature. For instance, in the density distributions shown in Figure 1(b) for N2,
the liquid-like to gas-like supercritical density ratio between the temperatures T1 = 0.5Tc

and T2 = 7Tc at P = 2Pc (Tc = 126 K, Pc = 34 bar) is approximately 34. These
density variations are maximum near pseudoboiling (Maxim et al. 2019). This is shown
in Figure 1(c) by the concurrent spike in volume expansivity βv = −(1/ρ)(∂ρ/∂T )P .
In this report, the characteristic length δρ associated with the density gradients across

the pseudoboiling line is estimated for laminar and turbulent monocomponent mixing
layers consisting of a supercritical stream injected at velocity U1 and temperature T1 <
Tpb into a supercritical environment at velocity U2 < U1 and temperature T2 > Tpb,
as sketched in Figure 2(a). It is shown below that δρ is an increasing fraction of the
mixing-layer thickness δM as the pressure increases.

2. The characteristic length scale δρ
The dimensionless density variations across the pseudoboiling temperature are of order

∆ρpb/ρpb ∼ βv,pb∆Tpb, (2.1)

with ρpb and βv,pb being the density and volume expansivity at pseudoboiling, respec-
tively. An approximate way of characterizing the temperature variations across the pseu-
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Figure 1. (a) Reduced pseudoboiling temperature Tpb/Tc as a function of the reduced pressure
P/Pc for N2, O2, H2, and CH4. (b) Density of N2 as a function of the reduced temperature T/Tc

at different pressures. (c) Volume expansivity βv of N2 as a function of reduced temperature
T/Tc at different pressures. (d) Prandtl number at pseudoboiling Prpb as a function of the
reduced pressure P/Pc for N2, O2, H2 and CH4. The reader is referred to Jofre & Urzay (2021)
for the formulation employed to calculate these quantities.

doboiling line, ∆Tpb, is by associating them with the characteristic width of the volume-
expansivity peak around pseudoboiling in temperature space as

∆Tpb =
1

βv,pb

∫ T2

T1

βvdT. (2.2)

With Eqs. (2.1) and (2.2) in mind, the estimation of δρ is described below for laminar
mixing layers followed by the more difficult case of turbulent mixing layers. The analysis
can be easily extended to other cases like turbulent wall-bounded flows of practical in-
terest for regenerative cooling of rocket engines. Such extensions are not attempted here
for the sake of maintaining a fast pace of exposition of the basic concepts.

2.1. Laminar flow

Consider the sketch in Figure 2(a). The temperature gradients across the mixing layer
can be estimated as ∂T/∂y ∼ (T2 − T1)/δT , with δT ∼ δM/

√
Prpb the thermal mixing-

layer thickness. In this notation, Prpb represents the Prandtl number evaluated at pseu-
doboiling, which is plotted in Figure 1(d) as a function of pressure. Since the temper-
ature gradient is continuous across the pseudoboiling line, it can also be estimated as
∂T/∂y ∼ ∆Tpb/δρ. As a result, the ratio of the characteristic length associated with the
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Figure 2. Schematics of (a) laminar and (b) turbulent mixing layers arising when a supercritical
stream is injected at sub-pseudoboiling temperature into a supercritical environment of the same
component at super-pseudoboiling temperature. Panels (c) and (d) represent two distinguished
turbulent cases analyzed in the text.

density gradients near pseudoboiling and the laminar mixing-layer thickness is of order

δρ
δM

∼ ∆Tpb

(T2 − T1)
√
Prpb

, (2.3)

with ∆Tpb being calculated using Eq. (2.2). As shown in Figure 3, δρ is a fraction of
δM smaller than 10% near the critical pressure at P/Pc ≈ 2. This fraction increases
monotonically with pressure, reaching values of order unity for P/Pc = O(103) in all
cases. Also implied by Eq. (2.3) is that the increase in δρ with downstream distance x
occurs approximately at the same rate as that of δM predicted by boundary-layer theory.
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Figure 3. (a) Eq. (2.3) and (b) Eq. (2.5) evaluated as a function of reduced pressure P/Pc for
for N2, O2, H2, and CH4 with injection temperatures T1 = 0.5Tpb and T2 = 10Tpb.

2.2. Turbulent flow

Consider the sketch in Figure 2(b). In turbulent flows, the Batchelor length ℓB rep-
resents the microscale for the temperature and is related to the Kolmogorov length
ℓk = (ν3pb/ǫ)

1/4 as ℓB ∼ ℓk/
√
Prpb, where νpb is the kinematic viscosity at pseudoboil-

ing and ǫ is an average turbulent dissipation rate in the mixing layer. Assuming an
invariance of the temperature scalar dissipation rate across the inertial subrange, the
characteristic fluctuation of the temperature at the Batchelor scale can be estimated

as ∆TB ∼ (T2 − T1)/Re
1/4
M , where ReM = (U1 − U2)δM/νpb is the Reynolds number of

the large-scale relative motion in the mixing layer. In performing this estimate, it has
been assumed that the integral scale is of order δM and is subjected to temperature and
velocity fluctuations of order T2 − T1 and U1 −U2, respectively. Two cases arise depend-
ing on the value of ∆TB relative to ∆Tpb, the latter being independently given by the
thermodynamic properties of the pure substance and computed using Eq. (2.2) at the
corresponding operating pressure.
In the first case, the temperature fluctuations across the Batchelor length are larger

than ∆Tpb, namely ∆TB/∆Tpb & 1, as sketched in Figure 2(c). In this case, the density
gradients are embedded in the smallest scales of turbulence. This requires moderately
high Reynolds numbers satisfying both ReM ≤ [(T2 − T1)/∆Tpb]

4 and ReM ≫ 1. The
corresponding temperature gradients across the pseudoboiling line can be estimated as
∂T/∂n̂ ∼ ∆TB/ℓB ∼ ∆Tpb/δρ because they are maximum at the Batchelor scale. As a
result, the ratio of the characteristic length associated with the density gradients near
pseudoboiling and the Kolmogorov length is

δρ
ℓk

∼ ∆Tpb

(T2 − T1)
√
Prpb

Re
1/4
M . (2.4)

In Eq. (2.4), the prefactor multiplying Re
1/4
M corresponds to the right-hand side of

Eq. (2.3) plotted in Figure 3, or equivalently, to the ratio between δρ and the mixing-layer

thickness δM in the laminar case. Since Re
1/4
M is most likely not a too large parameter in

practical applications in this regime, the results presented in Figure 3(a) could also be
interpreted approximately as the ratio δρ/ℓk in this case, thereby indicating that δρ is an
increasing fraction of the Kolmogorov length with increasing pressure above the critical

point. Instead, if Re
1/4
M is a large parameter in the desired operating conditions, then

Figure 3(a) provides Re
−1/4
M δρ/ℓk as a function of the reduced pressure.
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In the second case, the temperature fluctuations across the Batchelor scale are larger
than ∆Tpb, namely ∆TB/∆Tpb < 1, as sketched in Figure 2(d). This requires sufficiently
high Reynolds numbers satisfying both ReM > [(T2 − T1)/∆Tpb]

4 and ReM ≫ 1. In this
case, the small eddies can penetrate and broaden the zone around the pseudoboiling line
where the density is rapidly varying. By assuming an invariance of both the temperature
scalar dissipation rate and turbulent dissipation rate in the inertial subrange, the tem-
perature fluctuations of the eddies of size similar to δρ are related to the temperature

fluctuations of the large eddies as ǫ1/3(∆Tpb)
2/δ

2/3
ρ ∼ ǫ1/3(T2 − T1)

2/δ
2/3
M . As a result,

the ratio of δρ to the turbulent mixing-layer thickness δM can be estimated as

δρ
δM

∼
(

∆Tpb

T2 − T1

)3

. (2.5)

Equivalently, Eq. (2.5) can be expressed as

δρ
ℓk

∼
(

∆Tpb

T2 − T1

)3

Re
3/4
M (2.6)

in terms of the Kolmogorov length ℓk. The ratio (2.5) is provided in Figure 3(b) as a
function of pressure. Because of the higher Reynolds numbers involved, a much smaller
ratio δρ/δM occurs in the turbulent case relative to the laminar one. Specifically, near the
critical point, P/Pc ≈ 2, Figure 3(b) indicates that δρ is a fraction of order 0.01%− 0.1%
of the turbulent mixing-layer thickness δM .

3. Concluding remarks

Simple estimates have been provided in this report for the characteristic length δρ asso-
ciated with density gradients across the pseudoboiling line in monocomponent supercriti-
cal mixing layers. Equation (2.3) is appropriate for laminar mixing layers. Equation (2.4)
is appropriate for turbulent mixing layers at moderately high Reynolds numbers such
that the temperature fluctuations across the Batchelor scale are larger than the temper-
ature variations across the pseudoboiling line. Equations (2.5) or (2.6) are appropriate
for turbulent mixing layers at high Reynolds numbers such that the temperature fluc-
tuations across the Batchelor scale are smaller than the temperature variations across
the pseudoboiling line. The results obtained here indicate that the characteristic length
δρ increases with pressure and becomes of the same order as the characteristic length of
the large-scale features of the flow only at elevated pressures of order 103Pc. However,
a number of approximations have been made in order to perform these estimates that
may be not be entirely justifiable in turbulent mixing layers. Amongst them, the reader
should be particularly cautious about the assumption of an isotropic forward cascade
unaffected by density variations.
In order to infer estimates of the density gradient ∆ρpb/δρ, a readout of δρ from Fig-

ure 3 should be accompanied by a readout of the corresponding nondimensional density
variations ∆ρpb/ρpb from Figure 4, with ρpb calculated from the equation of state us-
ing the pressure and pseudoboiling temperature in Figure 1(a). Since δρ increases with
pressure, and ∆ρpb decreases with pressure, the density gradients become increasingly
less dynamically relevant the farther the pressure is above the critical pressure. Specifi-
cally, as the pressure increases, the maximum of cp becomes increasingly less pronounced,
the pseudoboiling line fades away, and the pure substance increasingly resembles a fully
supercritical one of uniform thermodynamic response over the entire temperature range.
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Figure 4. Non-dimensional density variations ∆ρpb/ρpb across the pseudoboiling line estimated
using Eqs. (2.1)-(2.2) evaluated as a function of the reduced pressure P/Pc for N2, O2, H2, and
CH4 with injection temperatures T1 = 0.5Tpb and T2 = 10Tpb.

It is worth emphasizing that the density gradients analyzed here for supercritical
monocomponent flows near pseudoboiling are fundamentally different from the inter-
faces arising in subcritical monocomponent flows and in transcritical bicomponent flows.
In particular, supercritical monocomponent systems are thermodynamically stable, and
therefore cannot engender any interfaces. As a result, these density gradients do not bear
any surface tension, or equivalently, are not subjected to any local excess of potential
energy. Instead, their characteristic length δρ is always a fraction of the hydrodynamc
scale associated with the rate of heat conduction across the pseudoboiling isotherm. This
is in contrast to the interfaces that emerge as a result of thermodynamic instabilities in
subcritical monocomponent systems and transcritical bicomponent systems. In particu-
lar, those interfaces are endowed with surface tension, and their thicknesses are largely
independent of the surrounding hydrodynamic scales (Jofre & Urzay 2021).
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