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Direct numerical simulations of incompressible homogeneous-isotropic turbulence laden
with a dilute suspension of inertial point particles are performed in conjunction with
a wavelet multiresolution analysis of the results. The use of spatially localized wavelet
basis functions enables the simultaneous consideration of physical and scale spaces in
the spectral characterization of the flow field of the carrier phase and the concentration
field of the dispersed phase. The multiresolution analysis of the dispersed phase provides
statistical information about the spatial variabilities of a scale-dependent coarse-grained
number density field and the local energy spectra of its fluctuations, characterizing the
sensitivities of those quantities to variations in scale and Stokes number. In particular,
the spatial variabilities of the wavelet energy spectrum of the particle concentration
fluctuations are observed to be maximum in regimes where the particles preferentially
concentrate. The results highlight the scale-dependent inhomogeneities of the structures
in the concentration field generated by preferential concentration, and the existence of
characteristic scales of interaction between the dispersed and carrier phases. Additionally,
an interphase multiresolution analysis is performed that indicates the occurrence of a spatial
anticorrelation between the enstrophy and kinetic-energy spectra of the carrier phase and
the particle concentration at small scales in regimes where preferential concentration is
important. This anticorrelation vanishes as the scale is increased and is largely suppressed
when the preferential-concentration effect is negligible.
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I. INTRODUCTION

The wealth of flow structures and spatiotemporal scales present in high-Reynolds-number flows
have important consequences for the motion of suspended inertial particles. One relevant effect
is preferential concentration, whereby the particles tend to accumulate in clouds. The preferential
concentration of inertial particles is an important physical phenomenon in multiphase turbulent flows
of practical relevance [1-7]. In addition, the spatial inhomogeneities arising in the concentration of
particles as a result of the preferential-concentration effect are central to the relative dispersion and
interphase coupling with the turbulent environment [8—14].

The study of preferential concentration from a theoretical perspective is limited by the inherent
complexity of turbulent flows. Robinson [15] was the first to establish an analytical framework
for the accumulation of particles by noticing that the dispersed phase is compressible and that in
strained, irrotational incompressible flows the number density of particles increases monotonically
in the Lagrangian frame. These results have been employed in subsequent studies to improve the
understanding of aerodynamic focusing of aerosols [16] and the dispersion and vaporization of fuel
sprays [17,18].
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The occurrence of preferential concentration of small particles in homogeneous-isotropic turbulent
flows largely depends on the Stokes number

Sty = t,/t, (1

where 7, is the characteristic particle acceleration time and #; is the Kolmogorov timescale, which can
be related to the integral-scale turnover time ¢, through the Reynolds number Re, = (#;/ )2 > 1.
For instance, for large St; such that St;/ Reé/ > 1, the particles move ballistically with respect to
turbulent eddies and their trajectories are largely independent of the turbulence dynamics. Conversely,
for Sty <« 1, the particles become flow tracers and sample unbiasedly all flow structures during
their flight time. At intermediate values, St; ~ 1, a relevant regime emerges in which the particles
preferentially concentrate in small-scale clouds in homogeneous-isotropic turbulent flows [19,20].
In this regime, the particles trace the large and midsized eddies but slip on the small ones, thereby
leading to interphase relative motion with characteristic velocity of the same order as the fluctuating
velocity of the Kolmogorov eddies, u; ~ £ /1, where £, = (vt;)'/? is the Kolmogorov length. This
effect maximizes the variance of the particle number-density field and produces a high-wavenumber
peak in the spectral energy of the concentration fluctuations [21,22].

The phenomenon of preferential concentration in homogeneous-isotropic turbulence at St; ~ 1
is caused by the high levels of internal intermittency in the small scales of turbulence, which are
known to simultaneously bear the largest vorticity and strain rates, both distributed unevenly in spotty
regions in space [23]. Specifically, the particles, which display finite inertia with respect to the small
eddies, are centrifuged from the intense small vortices and concentrate preferentially in interstitial
zones where the strain rate is large, leading to high-wavenumber structures of particle concentration.
In inhomogeneous flows where large coherent structures develop, such as particle-laden turbulent
jets or mixing layers, preferential concentration of particles may also occur at large scales through
a mechanism unrelated to intermittency, when the particle acceleration time becomes of the same
order as the integral time, i.e., Sty /Reé/ * ~ 1. In those flows, the particles are clearly observed to
accumulate along large-scale saddle zones perpendicular to the braids in between coherent vortical
structures, giving rise to elongated particle clouds [1,24].

A number of computational investigations of preferential concentration have been performed
either in physical or Fourier spaces [8,20,21,25]. In contrast, the present work deploys wavelet
basis functions for the analysis. Wavelet methods have been used in the past to study the structure of
turbulent flows [26-31]. The particular choice of wavelets made here is best motivated by two different
aspects related to preferential concentration, which are illustrated by the particle concentration fields
shown in the simulation results in the first three rows of Fig. 1 corresponding to three different Stokes
numbers Sty = 0.1, 1, and 10 (details of the computational setup are provided later in the text in
Sec. II).

The first aspect to note in Fig. 1 is the presence of small-scale, sparse filamentous structures in the
spatial distribution of particles, which are most discernible in the second row of Fig. 1 corresponding
to the case Sty = 1. The spatial localization of these structures makes them not ideally suited for
Fourier spectral analyses, which inevitably entail spatial delocalization of the transformed quantities
because of the infinite spatial support of the Fourier basis functions. On the other hand, the finite
spatial support of the wavelet basis functions enables the examination of the spatially localized
spectral characteristics of the concentration field.

The second aspect to note in Fig. 1 is related to the multiscale nature of preferential concentration
in the following sense. At large scales, corresponding to the left column of Fig. 1, the visualization
of the spatial distribution of particles at the three Stokes numbers treated here appear to contain
clouds where particles accumulate. This is clearly evidenced by comparing the first three panels
in the first column of Fig. 1 with the bottom one in the same column, which corresponds to a
spatial distribution of particles obtained from randomly dispersing approximately the same number
of particles in the computational domain. However, upon examining increasingly smaller scales,
which are represented by the enlarged panels in the second, third, and fourth columns in Fig. 1, the
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FIG. 1. Spatial distribution of particles (black dots) in a two-dimensional cross section of thickness equal
to one Kolmogorov length for three different Stokes numbers: St; = 0.1 (first row), Sty = 1 (second row),
and St; = 10 (third row) obtained from DNS of particle-laden homogeneous-isotropic turbulence (see Sec. 11
for further details on the computational setup). The fourth row corresponds to randomly distributed particles
with the same total number of particles as above. Second to fourth columns are x4 magnified view of the
solid-red-line contoured subregion in the nearest left column. The first column represents a full-scale cross
section of the entire computational domain.

qualitative conclusions that can be drawn change significantly with respect to the aforementioned
visualization at the large scales. For instance, the cases St; = 0.1 and St; = 10 display increasingly
less preferential concentration of particles as the figures are enlarged, leading to dispersed particle
fields at the small scales (i.e., see first and third panels in the last column of Fig. 1). In contrast,
the filamentous patterns observed at the large scales persist all the way down to the Kolmogorov
scale in the case St; = 1. Given this dependency of the observations on the spatial scales, it is of
some interest to use wavelet basis functions in order to study scale-dependent metrics of preferential
concentration associated with particular regions of the flow field.

In this study, a discrete wavelet multiresolution analysis is employed for investigating interphase
conditioned spectral statistics in particle-laden homogeneous-isotropic turbulence. The results
include wavelet-based localized spectra of kinetic energy, enstrophy, and particle concentra-
tion energy, along with the corresponding spatial fluctuations that enable the quantification of
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scale-dependent probability density functions (PDFs) and spatially cross-correlated spectral dy-
namics between carrier and dispersed phases.

The outline of this paper is as follows. The computational setup is described in Sec. II. Section III
is devoted to describing the results of the wavelet analysis for each separate phase along with the
analysis of interphase conditioned statistics. Lastly, concluding remarks are given in Sec. IV.

II. COMPUTATIONAL SETUP

The computational setup employed in this study is the same as the one in Ref. [32], and therefore the
details will be omitted here. In summary, the numerical code integrates the incompressible linearly
forced Navier-Stokes equations in a triply periodic cubic domain with N3 = 5123 grid points. A
total of N, = 670 million monodisperse particles are tracked using a Lagrangian approach that
integrates the equation of the trajectories along with a supplementary equation of motion for each
particle that incorporates the Stokes drag. The mass-loading ratio is sufficiently small such that the
influences of the particles on the gas are negligible. The turbulence is linearly forced according to
the constant-dissipation method outlined in Ref. [33]. The numerical method consists of an energy-
conserving finite-difference formulation with central second-order spatial discretizations and fourth-
order Runge-Kutta time integration [34].

The resulting flow is a homogeneous isotropic turbulent one at a Taylor-Reynolds number
Re;, = (15Re;)'/? = 81. The spatial resolution of the simulations is k€ = 7, Where k. = 7/A
is the largest wavenumber and A is the grid spacing. The ensemble-averaged Fourier spectra for
kinetic energy k = (u;u;)/2 and enstrophy Q2 = (w;w;), denoted, respectively, by E; and Eq, are
shown in Figs. 2(a) and 2(b). In this formulation, u#; and w; are the fluid velocity and vorticity
components, respectively. Similarly, for a general continuous field y(x), the bracket operator
(y) =1/(NA) J y(x)dx denotes the volumetric average.

The wavelet analysis shown below for the dispersed phase requires the estimation of an Eulerian
number-density field n(x) from the discrete Lagrangian particles. In this study, n is estimated by
simply projecting the Lagrangian particles onto the nearest-neighbor point of the same grid used to
solve the carrier-phase hydrodynamics. A snapshot of a resulting number-density field is shown in
Fig. 2(c) for St; = 1, which has a strong visual resemblance to the corresponding discrete particle
distributions provided in the panels of the second row in Fig. 1. The number of particles N, is chosen
such that the mean number-density is (n) = N,/(NA)* = 5/A°.

Figure 2(d) shows the Fourier energy spectra of the number-density fluctuations E s obtained
from an artificially imposed, random spatial distribution of particles that follows a Poisson
probability distribution function (PDF) with mean and variance equal to (n) and from distributions of
particles computed using the present computational setup. These Fourier spectra can be interpreted
as a decomposition of the total particle number-density field variance into single wavenumber
contributions and will be analyzed further below. Note that the Fourier energy spectra of the number-
density fluctuations increasingly resemble those of a random distribution at high wavenumbers when
the Stokes number departs from unity. This effect has two different causes, namely, the finite number
of particles used in the simulations, which engenders low-energy high-wavenumber noise, and the
fact that the high-wavenumber range of E, contains much less hydrodynamically induced energy
for St;, = 0.1 and St;, = 10 than for St; = 1 because of the absence of preferential concentration in
the two former cases, as illustrated in Fig. 2(d). Further analyses of the numerical noise resulting
from finite values of N, can be found in Ref. [32].

III. WAVELET MULTIRESOLUTION ANALYSIS

In this section, numerical results pertaining to the wavelet-based analysis of the carrier and
dispersed phase flow fields are described. A summary of the wavelet mathematical relations involved
in the analysis is also provided below for completeness. The reader is referred to the classic references
[26,29,31,35,36] for further details about the formulation.
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FIG. 2. Ensemble-averaged Fourier spectra for (a) turbulent kinetic energy and (b) enstrophy as a function
of the wavenumber «. Insets represent instantaneous midplane cross sections of the contours of (a) turbulent
kinetic energy and (b) vorticity magnitude. In panel (c), instantaneous midplane cross sections of the particle
number density are shown at different length scales for St;, = 1. Panel (d) shows the Fourier energy spectra of
the particle number-density fluctuations for St; = 0.1, 1, and 10 obtained with (n) = 5/A3. Also included is
the Fourier energy spectrum of the number-density fluctuations obtained from an artificially imposed, random
spatial distribution of particles.

A. Wavelet formulation

Consider a three-dimensional (3D) scalar field y (for instance, the number density field n)
discretely described in physical space by its pointwise values y[x] at cell-center locations

xo=2"'(A, jAkA) 2)
of the primitive computational grid employed in the numerical simulations described above, where
(i,j,k)=1,3,...,2N — 1. A continuous wavelet-based representation of y is obtained as

yx) =Y 5VLxolp@x — xo), 3)
xo

where the continuous physical space coordinate is denoted by x. In Eq. (3), ¢°(x — x¢) are scaling
functions that form an orthonormal basis of low-pass filters centered at the wavelet collocation grid
points x¢, with the filter width being equal to the grid spacing A. The scaling functions are chosen
to have unit energy (¢°(x — x¢)¢°(x — x¢)) = 1 instead of unit integral (¢°(x — x¢)) = 1. Using
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this constraint, the approximation coefficients

$OPxol = (y(x)p (x — x9)) 4

can be derived from Eq. (3). In practice, when employing the numerical simulation data described
above, Eq. (4) cannot be computed exactly, since y is only known at discrete points x. Instead, it
is numerically discretized and the approximation coefficients $©[x] are estimated as an algebraic
function of y[xg]. Assuming that ¢°(x — x¢) decays quickly away from x = x, the simplest estimate
of Eq. (4) yields [26,35,37]

$Qxol = ylxol/N"2. )

Equation (5) is the initialization stage of the recursive wavelet multiresolution algorithm (MRA) of
Mallat [36], which enables the computation of wavelet coefficients.

The decomposition of the finest-scale low-pass filter ¢°(x — x¢) in terms of narrow-band wavelet
filters ¥4 (x — x) with increasingly large filter width and a coarsest-scale scaling function
¢ (x — x5) yields the full wavelet-series expansion of y (the reader is referred to Ref. [36] for
more details)

S 7
YE) =D DY eI D — x) + 901 (x — x), 6)
s=1 x5 d=l1
where
YDyl = (Y)Y D (x — x4)) (7)
and
$VNx sl = (y(x)p® (x — x)) (8)

are wavelet and approximation coefficients at scale s and S, respectively, obtained from the
orthonormality properties of the wavelet and scaling functions ¥ ¥ (x — x;) and ¢ (x — x).
In this formulation, d = (1, ..., 7) is a wavelet directionality index, and s = (1,2..., S) are scale
exponents, with S =log, N = 9 the number of resolution levels allowed by the grid. Similarly,
xs =2"1(iA, jA, kA) is a scale-dependent wavelet grid of (N/2)* elements where the basis
functions are centered, with i, j, k =1,3,5,..., N/2°~! — 1. The wavelet coefficients ¥ [x;]
represent the local fluctuations of y centered at x; at scale s, while the approximation coefficient
$8)[x 5] is proportional to the volumetric mean of y. The wavelet and approximation coefficients (7)
and (8) are computed using the MRA [36], with periodic boundary conditions being assumed for the
field y.
At each scale, the filter width of the wavelets is given by the length scale

O, =2°A, (€))

with £; = 2A = 2¢; and {9 = L = 512¢; corresponding to the smallest and largest length scales,
respectively, where L is the side length of the computational domain. The length scale £; can be
associated with the representative wavenumber

Kk =2m/l; =21n27° /A (10)

Using expression (10), the wavenumber «, and the scale exponent s can be interchanged in the
notation below.

In this study, the 3D orthonormal basis functions ¥ (x — x) are taken to be products of
one-dimensional (1D) Haar wavelets, as described in Ref. [26]. It should be noted that Haar wavelets
have a narrow spatial support that provides a high degree of spatial localization, which is beneficial for
capturing the small-scale zones where particles preferentially concentrate. However, Haar wavelets
display large spectral leakage at high wavenumbers since infinite spectral and spatial resolutions
cannot be simultaneously attained due to limitations imposed by the uncertainty principle [35].
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Computations were performed using different wavelets, particularly those of wider spatial support
such as Coifman wavelets with four vanishing moments, but less interesting dynamics were discerned
when analyzing spatially cross-correlated spectral statistics between the carrier and dispersed phases.
This is due to the fact that wavelets with wider spatial support do not have sufficient spatial resolution
to capture the narrow, slender particle clouds present in preferentially concentrated flow regimes.

The definition of 3D wavelets as multiplicative products of 1D wavelets is a particular choice that
follows the multiresolution analysis formulation described by Mallat [36]. In this framework, the
multivariate wavelets are characterized by an isotropic scale and therefore render limited information
about anisotropy in the flow [36]. A large number of alternative basis functions have been recently
proposed for replacing traditional wavelets when analyzing multidimensional data that exhibit
complex anisotropic structures such as filaments and sheets. These include, but are not limited to,
curvelets, contourlets, and shearlets (see Ref. [38] for an extensive review on this topic). Application
of these advanced multiscale geometric analysis tools to studying particle preferential concentration
certainly warrant further investigation.

B. Carrier-phase wavelet-based statistics

In this wavelet framework, the local energy spectrum of y evaluated at x is defined as

3s 7
r (s M
paD DA EN LA (1)

. 2
E[k,x;] = N3 ;
d=1

where « is given by (10) and r is a prefactor that takes the values » = 1/2 for velocity and r = 1 for
vorticity and scalars. The spatial average of the energy spectrum is given by

E() = (Elk, x])x,- (12)

The definition (12) satisfies the energy constraint Zle E (k)ok =r( y’(x)z), where y'(x) = y(x) —
(y(x)) is the fluctuation and 6x = 272°A~'In2 [26].

Following these definitions, Figs. 3(a) and 3(b) shows the ensemble-averaged wavelet spectra
E, and Eg for kinetic energy and enstrophy, respectively. At small wavenumbers, the mean
wavelet spectrum resembles that of Fourier [see Figs. 2(a) and 2(b)], but differences emerge at
high wavenumbers where spectral leakage occurs due to the narrow special support of the Haar
wavelets, as noted in previous studies [39]. The results shown in Figs. 3(a) and 3(b) indicate that the
spatial variabilities of the spectra are most pronounced at high wavenumbers, where most wavelet
coefficients are small except for a few that correspond to relatively energetic structures, setting the
mean value far above the mode of the distribution. The scale-conditioned PDFs of the spectra are
similar to log-normal distributions, as observed in Figs. 3(c) and 3(d).

The velocity and vorticity fields become intermittent at the small scales, as shown in Figs. 3(a)
and 3(b) by the scale-conditioned flatness factors of the wavelet coefficients of velocity Fj; (k) =
(L?(ls)“)x /(12(15)2))2(' and vorticity Fy(k) = (J)gs)“)x /(d)?)z)j. In this notation, the absence of the
superinaex d imﬁlies that the wavelet coefficients are directié)nally averaged. Specifically, Figs. 3(a)
and 3(b) show that the flatness coefficients become increasingly larger than the Gaussian value 3 as
the wavenumber increases. Also shown in the insets in Figs. 3(a) and 3(b) are the scale-conditioned
flatness factors of the local spectra of kinetic energy

Fi, (¢) = ({Exlic, x51 = Ex(o)))x, /({Exle, x51 — Ex (oY), (13)
and enstrophy
Fi (c) = ({Ealk, x,]1 — Eq(o)})y, /({E(c, x) — Ea()});. . (14)

which display a similar trend of increasing intermittency as the wavenumber increases. These
large variabilities in the spectra of the carrier phase have important consequences for the spectral
characteristics of the particle concentration field, as shown below. It is worth mentioning that the
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FIG. 3. Scale-dependent PDF of the wavelet spectra for (a) kinetic energy and (b) enstrophy, with solid
lines indicating mean wavelet spectra, symbols denoting the discrete wavelet resolution levels s = 1,2,...,9

s/, =2°), and dashed lines corresponding to the 2.5th and 97.5th percentiles measuring the spatial
variabilities of the spectra PDF. Insets in panels (a) and (b) show scale-conditioned spectral flatness factors
of the energy spectra and wavelet coefficients of velocity and vorticity. Also shown in the figure are the
scale-conditioned PDFs of (c) kinetic energy spectra (for scale indexes in the range s = 1—8) and (d) enstrophy
spectra (for scale indexes in the range s = 1-5). Refer to panels (a) and (c) for legends of the panels (b) and
(d), respectively.

flatness of the logarithm of the kinetic energy and enstrophy spectra approach values close to 3
at small scales [i.e., Fj, 5 (s = 1) = 3.01 and Fy, z (s = 1) = 2.9], thereby confirming the nearly
Gaussian structure of the variations of those logarithmically transformed quantities.

C. Dispersed-phase wavelet-based statistics

The scale-dependent analysis of the dispersed phase includes the analysis of the statistics of
a coarse-grained particle number density n[x] and the wavelet spectra of the particle-number-
density fluctuations, Ej. The latter is related to the wavelet coefficients and is simply obtained
by substituting y = n in Eq. (11), while the former requires the introduction of approximation
coefficients at intermediate scales, as described below.
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FIG. 4. Ensemble-averaged scale-dependent PDFs of the coarse-grained particle number density n,[x] for
(a) €1 = 24y, (b) £y = 44y, (c) €3 = 84y, (d) £y = 164, (e) €5 = 32¢,, and (f) €¢ = 64¢;. The lines correspond
to St = 0.1 (dotted blue line), St; = 1 (solid red line), St, = 10 (dashed green line), and random distribution
(dash-dotted black line). Insets show the same data using a vertical logarithmic axis.

An alternative yet formally equivalent form of the wavelet-series expansion (6) in terms of the
number density n is given by

s 7
nx) =Y > Y i x gy —x)+ Y A 19 (x —x ), (15)
s=1 x5 d=1 X
where
A ] = () (x —x ) (16)

are approximation coefficients of y at an intermediate scale s’ (i.e., 1 < s’ < S). Equation (16) can be
obtained using the orthonormality properties of the wavelet and scaling functions ¥ ¥ (x — x;) and
¢ (x —x ) [36]. The expansion (16) corresponds to stopping the MRA algorithm at an intermediate
scale index s’ instead of using it all the way up to the coarsest scale S.

In Eq. (15), the number density n is decomposed into a sum of fluctuations with characteristic
length scales smaller than £ (corresponding to the first term) and a broadband large-scale field that
corresponds to a low-pass filtered n with cutoff length ¢, (corresponding to the second term). The
broadband large-scale field is defined in terms of approximation coefficients ﬁ“/)[xsr] that represent
a low-pass filtered version of n. Note that when Haar wavelets are used, the scaling functions
(N/ 25"/ 2cj)“l)(x — x ) are proportional to box filters with filter width £. As aresult, the coefficients
A®)[x,] become proportional to a discrete, local coarse-grained particle number density #[x] that
represents the mean value of n within the wavelet spatial support and is given by

— E 3/2A(S)
nled= (%) A%, (17)
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FIG. 5. Instantaneous mid-plane cross-sections of the particle number-density and associated local wavelet
spectra at three length scales (columns) for three Stokes number (rows). The colormap axes range is chosen to
represent the 95% confidence interval of the given quantity.

where the prime symbols have been omitted for convenience. In particular, the calculation of ny[x]
is equivalent to quantifying the number of particles in cubic boxes of side length ¢; centered at xy.
The condition (n;[xs]),, = (n) is satisfied by construction, where the subindexed bracket operator
denotes the discrete average over the wavelet collocation grid at the corresponding scale, namely
(ny)x, = /N Y, 5.

The PDFs of ny normalized by the volume average (n) are shown in Fig. 4. A zero value for n;
indicates the presence of a void of size £ centered at x;, whereas a large value n; > (n) denotes a
spatial region of size ¢, centered at x; representative of clustering. At small scales, the PDF of n;
for St; = 1 differs significantly from those corresponding to St; = 0.1 and Sty = 10. The former
has a higher content of extreme values representing many voids and intensely concentrated clusters.
In contrast, the PDFs of n; for St; = 0.1 and St; = 10 have a shape relatively more similar to the
Poisson PDF. As ¢; increases, both voids and clusters disappear in all PDFs. For instance, for s > 4
the voids have disappeared in the cases St; = 0.1 and 10, but they persist until s = 5 for St; = 1.
As the scale is further increased, all PDFs increasingly resemble a Dirac delta function centered at
(n). As shown in Fig. 4(f), this similarity is more pronounced for the case St; = 0.1, which does not
display any significant preferential concentration phenomenon at large scales and is followed by the
cases St; = 1 and St; = 10, the latter containing preferential concentration of particles at the large
scales, as suggested by the broad patches of particles visualized in the third row of the first column
in Fig. 1.

In addition to the considerations given above, Fig. 4 also illustrates the scale dependency of
the preferential concentration effect. Particles at St; = 1 tend to preferentially concentrate at small
scales, and therefore the range and shape of the PDF of n; for that case in Fig. 4, along with the
corresponding spatial contours of n; in Fig. 5, vary largely as the scale is increased. On the other
hand, particles at St; = 10 do not preferentially concentrate significantly at small scales, but they
do so at large scales since St;, ~ Sty /Reé/ S 0.5, thereby forming broad clouds of particles. This
leads to relatively more resilient contours and shapes of the PDF of n; as the scale is increased.

In interpreting these results, it is worth returning briefly to the results shown in Fig. 2(d) for the
Fourier spectrum of the full concentration field n and noticing that the spectral energies become
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maximum at the large scales (for St; = 10) and at small scales (for Sty = 0.1 and 1), where the
enstrophy spectrum peaks (see also Ref. [21] for similar results). The magnitude of the peak in
spectral energy becomes largest for St; = 10, followed by St; = 1 and St; = 0.1. However, note
that the total energy of the fluctuations of the concentration field (or equivalently its variance) is
the largest for St; = 1 among the three cases and is mostly concentrated in the high-wavenumber
portion of the spectrum. This implies, for instance, that the broad clouds observed for St; = 10 are
necessarily less intensely concentrated than the thin clusters obtained for St; = 1, as observed in
Fig. 4(f) by the resulting narrower PDF of n; for St; = 10 in comparison with the broader PDF for
St = 1 at small scales in Fig. 4(a).

The aforementioned Fourier spectra, however, do not account for the spatial localization of the
number-density structures observed in regimes where preferential concentration is important. This
limitation can be circumvented by examining the wavelet-based spectra E s of the concentration
fluctuations, as shown in Figs. 5 and 6. Note that the value of the energy spectrum E - at scale s is
related to the fluctuations of the coarse-grained particle number density field n,_; [x;—;] at scale s — 1
in the following way. As indicated in Eq. (11), E, is computed based on the wavelet coefficients
14 [x,] at the same scale. However, in the MRA algorithm, the wavelet coefficients 1D [x,] are
computed recursively based on the approximation coefficients 2~ [x_;] at the previous scale (see
Ref. [36] for more details on the algorithm). Physically, the determination of a fluctuation of n and its
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FIG. 7. Scale-dependent flatness factor of wavelet spectra.

energy at scale s requires information of the spatial variations of the coarse-grained number density
field n,_; at the previous scale.

Based on the above considerations, Fig. 5 provides E, at three scales with the corresponding
coarse-grained field n,_; side by side. The wavelet spectrum E - becomes locally zero in regions
void of particles since 71® = 0 there. In contrast, E is large in regions where the fluctuations of
n are large, such as those encountered around and within particle clusters, since #*? is maximum
there. A recent study [32] has exploited these properties of wavelets for discerning structures of the
particle concentration field, and for subsequently formulating algorithms for automatic adaption of
grids around particle clusters using wavelet filters.

The contours of the PDFs of the wavelet spectra are shown in Fig. 6, which includes spatial
averages and spatial variabilities. Note that the spatial averages of the spectra resemble those shown
in Fig. 2 based on Fourier analyses, as highlighted in earlier work focused on single-phase turbulence
[26,31]. Below a Stokes-number-dependent characteristic scale, the 2.5th percentile of the PDF is
zero, corresponding to regions void of particles. In contrast, the spectra reach large values well above
the spatial mean in regions where the particles accumulate. For instance, at St; = 1, it is observed
that at the scale corresponding to the maximum of the spatial mean, the local values of the spectra
can be one order of magnitude larger than the mean. These disparities are not observed in the case of
randomly distributed particles, and they are also largely attenuated for St; = 0.1 and St; = 10. The
large variations of the concentration spectra mentioned above, particularly for St; = 1, are quantified
in Fig. 7 by the spectral flatness factor

Fi (k) = ({Exlc, x5 — Ex () )x, /{EnTe, x5]1 — Ex()}?);.. (18)

As the scale decreases, the results indicate that Fjz =~ deviates from the spectral flatness of the
spectra of the randomly distributed particles, most rapldly for Sty = 1, where the intermittency
of the concentration field is the largest. At St; = 1, the PDF of E transitions from log-normal-like
(at large scales), where no voids are observed, to an exponential-like distribution (at small scales),
where voids are observed. The transition occurs at s = 4 corresponding to the length scale £, = 16¢,
which represents the largest size of the voids observed in the simulations. Note, however, that these
results are contingent on the density-estimation method utilized here (see Sec. II) and that other
different methods such as Voronoi tessellation may render small but nonzero number-density values
even in the core of strong vortices [3].

The results described above are in accord with early work on the scale dependency of preferential
concentration that made use of methods different from wavelets. These include, for instance, studies
highlighting the dependence of a global preferential-concentration index on the grid resolution used
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for estimating the coarse-grained particle number density and on the Stokes number [2,40], which
suggested that (a) the grid resolution that maximizes the global preferential-concentration index
increases with Stokes number and (b) for Stokes numbers less than or equal to 1, the scales at
which the global preferential-concentration index peak are of order 10 to 20 Kolmogorov lengths,
corresponding to wavelet scale indexes s ~ 3—4 in the present study.

D. Interphase wavelet-based statistics

In Sec. III B, the analysis highlighted the spatial variability associated with the local turbulence
dynamics, as illustrated, for instance, by the sparsity observed in the log-normal-like PDFs of the
carrier-phase spectrain Fig. 3, with few wavelet modes capturing most of the energy [29]. In Sec. III C,
the preferential concentration of particles is observed to lead to highly inhomogeneous particle
number-density fields, as illustrated, for instance, by the PDFs of n, in Fig. 4 and by the energy
spectra of n in Fig. 6, which strongly differ from those obtained when the particles are randomly
distributed. The spatial localization properties of the wavelet basis also enables the cross-correlated
analysis of spectral characteristics between the two different phases. A number of different metrics
may be formulated to this end, but perhaps the simplest ones relate to conditional statistics and joint
PDFs, as described below.

A question that can be naturally addressed using wavelets is the characteristics of the carrier-phase
spectrum in zones where the particle density is large or small. For this purpose, it is expedient to
correlate the carrier-phase spectra with the number density field. For consistency with the spatial
support of the spectra at each scale, the correlations are performed by employing the scale-dependent
coarse-grained number density n, defined in Sec. III C.

Based on these considerations, Figs. 8 and 9 show the spatial mean of n; (with s = 1-4)
conditioned on the fluctuations of the logarithm of the local wavelet spectra of kinetic energy
and enstrophy, (In Ex) = In Ex — (In Ex)x, and (In Eq) = In Eq — (In Egq),,, normalized with the
corresponding standard deviations oy, z, and oy, 3. For given values of St; and s, this leads to
curves centered at zero value in the abscissa with a mostly similar and symmetric range resulting
from the near Gaussianity of the logarithm of the wavelet spectra of the carrier phase, in a way
that allows comparisons with curves subject to different values of those two parameters. Physically,
the conditional means provide a measure of how much clustered the particles are depending on the
fluctuations of the spectra with respect to (In Ep) x, and (In Eg) x,- Note, however, that, because of
the logarithmic transformation, these two mean values are shifted below the logarithm of the mean
values of the spectra [represented by the solid lines in Figs. 3(a) and 3(b)] by ali £ /2 and ali e /2,

respectively. It is worth emphasizing that the resulting trends remain similar to those observed when
the conditioning is made with respect to E; and E, instead, but the curves are considerably less
visually convenient because of the wide range of values attained by the spectra.

The results in Figs. 8 and 9 indicate that anticorrelations develop between the energy spectra and
ng at small scales in regimes where preferential concentration is important, thereby suggesting that
particles preferentially sample flow regions where the enstrophy and kinetic-energy spectra are much
smaller than their corresponding spatial averages. For instance, for St; = 1 and at the smallest scale
s = 1, the conditional mean indicates that two times fewer particles are found on average in regions
where the spectrum is largest, with up to two times more being found on average in quieter regions
of the flow. Note that such anticorrelation vanishes rapidly away from preferentially concentrated
regimes St; = 1, with particles showing much less preference for the local spectral dynamics of the
carrier phase in the cases Sty = 0.1 and St; = 10, which resemble more the uncorrelation found
in the case where the particles are randomly located in the flow. In particular, the particles in the
case St; = 0.1 tend to avoid regions of space with high positive fluctuations of the spectra more
prominently that the particles in the case St; = 10, and tend to sample flow regions where the spectra
is close to or smaller than the spatial mean. Similarly, the anticorrelation vanishes as the length scale
is increased in both spectra in accordance with the decreasingly smaller values of the associated
flatness coefficients.
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FIG. 8. Spatial mean of the coarse-grained particle-number density conditioned on the fluctuation of
the logarithm of the carrier-phase kinetic-energy spectrum for (a) £, = 2¢;, (b) £, = 44, (c) €3 = 8¢, and
(d) ¢4 = 16¢4;.

A compact representation of the aforementioned results is shown in Fig. 10 in the form of contours
of the joint PDF between the fluctuations of the logarithm of the spectra and the scale-dependent
coarse-grained number density. The results there are particularized at scale index s = 4 (i.e., {4 =
16¢;) where the mean number-density spectrum in the case St; = 1 reaches maximum values. The
stretching and tilting generated in the joint PDF between the enstrophy spectrum and the number
density by the preferential concentration effect become evident for the case St; = 1 in comparison
with the mostly circularly symmetric joint PDF observed in the case of randomly distributed particles.

IV. CONCLUSIONS

In this study, DNS of incompressible homogeneous-isotropic turbulence laden with a dilute
suspension of point particles are performed in conjunction with a wavelet multiresolution analysis of
the results aimed at investigating the local spectral characteristics of the preferential concentration of
small inertial particles in turbulence. The spatial localization of the wavelet-basis functions facilitate
the simultaneous study of physical and scale spaces in the spectral characterization of the flow field
of the carrier phase and the concentration field of the dispersed phase.

The wavelet analysis of the dispersed phase provides statistical information about the spatial
variabilities of the scale-dependent coarse-grained number density field n; and the energy spectra
of its fluctuations. In the preferentially concentrated regime St; = 1, the PDF of n; varies rapidly
as the scale is varied, while cases where the particles are ballistic do not show such high sensitivity
to scale. Similarly, a limiting length scale of order 32¢;, which is representative of the wavenumber
where the spatially averaged enstrophy spectrum is maximum, is observed at St; = 1 above which
no voids are discerned in the particle-concentration field. Also at St; = 1 the spatial variabilities of
the wavelet energy spectrum of the particle concentration fluctuations are observed to be maximum.
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FIG. 10. Marginal PDFs (blue and red lines), joint PDFs (solid contours and white isolines normalized with
the PDF maximum), and conditional means (green lines) of the scale-dependent coarse-grained particle number
density and carrier-phase enstrophy spectrum at s = 4 (i.e., £, = 16¢;) for (a) randomly distributed particles
and (b) St; = 1 particles.
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An interphase wavelet-based analysis is performed that reports cross correlations between
the particle-concentration field and the local spectrum of the carrier phase. In preferentially
concentrated regimes, a spatial anticorrelation is found between those quantities by which the
particles preferentially sample flow regions where the enstrophy and kinetic-energy spectra are much
smaller than their corresponding spatial averages. The anticorrelation vanishes as the length scale
of the wavelet collocation grid is increased and is largely suppressed in regimes where preferential
concentration is not important.

To the best of the authors’ knowledge, the present study is one of the first reporting spatial cross
correlations between carrier-phase energy spectra and dispersed-phase field variables in turbulence
laden with inertial particles. Application of the present results to subgrid-scale (SGS) modeling for
large-eddy simulations (LES) of particle-laden turbulence [22,41-50] represents a worthwhile topic
for future work. In particular, in SGS models of kinematic-simulation type [48—50], the regeneration
of the missing scales of turbulence is made by incorporating high-wavenumber Fourier modes in
the velocity field using spectral extrapolation. In order to impose that the energy spectrum of the
SGS velocity matches a prescribed one obtained either from DNS or theory, the SGS flow field is
typically obtained by randomly sampling wavevectors in spectral space [50]. However, this procedure
limits the generation of small-scale coherent structures responsible for particle clustering, since
the second-order statistics alone do not contain information about the localization of the turbulent
structures, the latter being lost in the phase of all coefficients in Fourier space. The present study
suggests that in SGS modeling for particle-laden turbulence based on spectral enrichment, matching
the second-order statistics of the velocity field is desirable but probably not sufficient. This is because
the spatial distribution of spectral energy, computed here using localized wavelet spectra, is closely
related to the spatial distribution of particles. As a consequence, spatial PDFs quantifying variabilities
of SGS turbulence spectral dynamics may represent relevant metrics to be matched by predictive
SGS models for particle-laden turbulence. To this end, wavelet-based models would appear to be
more advantageous than Fourier-based models because they could encode local spectral information.
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