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ABSTRACT

The interaction between a weakly turbulent free stream and a hypersonic shock wave is investigated theoretically by using linear interaction
analysis (LIA). The formulation is developed in the limit in which the thickness of the thermochemical nonequilibrium region downstream
of the shock, where relaxation toward vibrational and chemical equilibrium occurs, is assumed to be much smaller than the characteristic
size of the shock wrinkles caused by turbulence. Modified Rankine-Hugoniot jump conditions that account for dissociation and vibrational
excitation are derived and employed in a Fourier analysis of a shock interacting with three-dimensional isotropic vortical disturbances. This
provides the modal structure of the post-shock gas arising from the interaction, along with integral formulas for the amplification of enstro-
phy, concentration variance, turbulent kinetic energy (TKE), and turbulence intensity across the shock. In addition to confirming known
endothermic effects of dissociation and vibrational excitation in decreasing the mean post-shock temperature and velocity, these LIA results
indicate that the enstrophy, anisotropy, intensity, and TKE of the fluctuations are much more amplified through the shock than in the ther-
mochemically frozen case. In addition, the turbulent Reynolds number is amplified across the shock at hypersonic Mach numbers in the
presence of dissociation and vibrational excitation, as opposed to the attenuation observed in the thermochemically frozen case. These results
suggest that turbulence may persist and get augmented across hypersonic shock waves despite the high post-shock temperatures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059948

I. INTRODUCTION

Strong shock waves participate in a number of problems in phys-
ics, including the dynamics of high-energy interstellar medium,
the explosions of giant stars,” * the fusion of matter in inertial-
confinement devices,” ' and the ignition of combustible mixtures by
lasers.'>"” In addition to those, an important contemporary problem
of relevance for aeronautical and astronautical engineering is the aero-
thermodynamics of hypersonic flight."*'” In hypersonics, similarly to
the aforementioned problems, the intense compression of the gas
through the shock waves generated by the fuselage leads to high tem-
peratures that can activate complex thermochemical phenomena.'® In
particular, at high Mach numbers of up to approximately 25 in the ter-
restrial atmosphere, corresponding to sub-ionizing, sub-orbital stagna-
tion enthalpies of up to approximately 15-30 MJ/kg depending on
altitude, vibrational excitation, and air dissociation are the dominant
thermochemical phenomena typically observed in the gas downstream
of shock waves around hypersonic flight systems.

Turbulence can also play an important role at the high Mach
numbers mentioned above, particularly in low-altitude hypersonic

flight because of the correspondingly larger Reynolds numbers of the
airflow around the fuselage.”” '’ However, the way in which turbu-
lence influences the thermomechanical loads and the thermochemistry
around hypersonic flight systems remains largely unknown. To com-
pound this problem, experiments in the area of hypersonic turbulence
are curtailed by the exceedingly large flow powers required to move
gases at sufficiently high Mach and Reynolds numbers in order to
observe shock waves simultaneously with turbulence and thermo-
chemistry. In addition, the airflow in most ground facilities is poisoned
with weak free-stream turbulence that interacts with the shock waves
enveloping the test article. The fluctuations in the post-shock
gases induced by this interaction oftentimes lead to artificial transition
to turbulence in hypersonic boundary layers in wind tunnel
experiments.”’

Most early work on the interaction of shock waves with turbu-
lence has been limited to calorically perfect gases in boundary
layers”' " and isotropic free streams.”’ *” Large-scale numerical simu-
lations, including Direct Numerical Simulations (DNS),* Large
Eddy Simulations (LES),”'”’ and Reynolds-Averaged Navier-Stokes
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Simulations (RANS),”*”” have been the pacing item for those investi-
gations. Nonetheless, the rapid progress in large-scale numerical simu-
lations during the last decades has not abated the fundamental role
that theoretical analyses have played in understanding shock/turbu-
lence interactions by providing closed-form solutions. In problems
dealing with shock waves propagating in turbulent free streams, as in
the problem treated in the present study, the most successful theoreti-
cal approach has been the linear interaction analysis (LIA) pioneered
by Ribner.” >

Under the assumption that turbulence is comprised of small lin-
ear fluctuations that can be separated using Kovaznay’s decomposition
into vortical, entropic, and acoustic modes,”” LIA describes their two-
way coupled interaction with the shock by using linearized
Rankine-Hugoniot jump conditions coupled with the linearized Euler
equations in the post-shock gas. The resulting formalism describes the
wrinkles induced by turbulence on the shock and the corresponding
Kovaznay’s compressible turbulence modes radiated by the interaction
toward the downstream gas.

Despite its simplicity and limitations, LIA has not only provided a
valuable insight into the underlying physical processes of shock/turbu-
lence interactions, but has also worked sufficiently well for predicting
the amplification of the turbulent kinetic energy (TKE), that is, com-
monly used for bench-marking numerical simulations.”® *’ However,
there exist known discrepancies between LIA and numerical simulations
in the way that TKE is distributed among the diagonal components of
the Reynolds stress tensor. For instance, LIA yields a smaller (larger)
amplification of TKE associated with streamwise (transverse) velocity
fluctuations relative to that observed in numerical simulations. These
discrepancies are typically attributed to the fact that LIA treats the shock
as a discontinuity, in that DNS results are observed to converge to those
obtained by LIA when the ratio of the numerical shock thickness to the
Kolmogorov length scale becomes sufficiently small.*"****

In this study, an extension that incorporates thermochemical
effects of vibrational excitation and gas dissociation is made to the
standard LIA previously applied to calorically perfect gases.”* " As
in the standard LIA, the following conditions must be satisfied: (a) the
root mean square (rms) of the velocity fluctuations u, needs to be
much smaller than the speed of sound in both pre-shock and post-
shock gases; (b) the amplitude of the streamwise displacement of the
distorted shock from its mean position &; needs to be much smaller
than the upstream integral size of the turbulence 4; and (c) the eddy
turnover time £/u, needs to be much smaller than the molecular diffu-
sion time £ /v based on the kinematic viscosity v, or equivalently, the
turbulent Reynolds number Re; = u,¢/v needs to be large.

In addition to the conditions [(a)-(c)] stated above, the incorpo-
ration of thermochemical effects requires that the characteristic size of
the shock wrinkles, which is of the same order as ¢, needs to be much
larger than the thickness {7 of the thermochemical nonequilibrium
region behind the shock, as depicted in Fig. 1. For instance, the value
of ¢ behind a Mach-14 normal shock at a pressure equivalent to
45 km of altitude is approximately 1 cm (see page 503 in Ref. 61). In
this thermochemical nonequilibrium region, the gas relaxes toward
vibrational and chemical equilibrium in an intertwined manner, in
that the vibrational energy of the molecules and their dissociation
probability are coupled.'”*” The value of ¢ is approximately given by
the mean post-shock velocity multiplied by the sum of the characteris-
tic time scales of dissociation and vibrational relaxation. Since both of
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FIG. 1. Sketch of the model problem: a normal shock wave interacts with a hyper-
sonic free stream of weak isotropic turbulence (velocities are shown in the shock
reference frame).

these characteristic time scales depend inversely on pressure and expo-
nentially on the inverse of the temperature, the veracity of the approxi-
mation f7/¢ < 1 in practical hypersonic systems is expected to
improve as the flight Mach number increases and the altitude
decreases.

The LIA results provided in this study yield integral formulas for
the amplification of the enstrophy, composition variance, and TKE as
a function of the post-shock Mach number, the density ratio, and the
normalized inverse of the slope of the Hugoniot curve. The latter
undergoes a change in sign at high Mach numbers due to the thermo-
chemical effects. As a result, at Mach numbers larger than approxi-
mately 13 in the conditions tested here, a local decrement (increment)
in post-shock pressure—due, for instance, to shock wrinkling—
engenders an increment (decrement) in post-shock density. This pecu-
liar structure of the Hugoniot curve at hypersonic Mach numbers is
found to strongly amplify turbulence in the post-shock gas, where
most of the TKE is observed to be contained in transverse velocity
fluctuations of the vortical mode. For instance, the present LIA results
in a maximum TKE amplification factor of approximately 2.9, whereas
this value drops to 1.7 when the gas is assumed to be thermochemi-
cally frozen (i.e., diatomic calorically perfect).

The remainder of this paper is structured as follows. The
Rankine-Hugoniot jump conditions across the shock are derived in
Sec. I accounting for dissociation and vibrational excitation in the
post-shock gas. A linearized formulation of the problem is presented
in Sec. 11I for the interaction of a normal shock with monochromatic
vorticity disturbances. A Fourier analysis is carried out in Sec. IV to
address the interaction of a normal shock with weak isotropic turbu-
lence composed of multiple and linearly superposed vorticity modes.
Finally, conclusions are given in Sec. V.

Il. RANKINE-HUGONIOT JUMP CONDITIONS WITH
VIBRATIONAL EXCITATION AND GAS DISSOCIATION

We consider first the problem of an undisturbed, normal shock
wave in a cold, inviscid, irrotational, single-component gas consisting
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of symmetric diatomic molecules. The pre-shock density, pressure,
temperature, specific internal energy, and flow velocity in the reference
frame of the shock are denoted, respectively, as p;, Py, T, e;, and u;.
The corresponding flow variables in the post-shock gas are denoted as
02, Py, Ts, €5 and u,.

A. Conservation equations across the shock

In the reference frame attached to the shock front, the conserva-
tion equations of mass, momentum, and enthalpy across the shock are

P11 = Pz, (1a)
Py + pyut = Py + pyu3, (1b)
er+Pi/py+ul/2=e,+Ps/py +ud/2+ qa, (1c)

respectively. In this formulation, the symbol g, denotes a positive
quantity that represents the net change of specific chemical enthalpy
caused by the gas dissociation reaction

Ar=A+A )

with A, being a generic molecular species and A its dissociated atomic
counterpart. In particular, g, can be expressed as

qa = %Rg 4,04, (3)

where Ry 4, is the gas constant based on the molecular weight of A,,
and O, is the characteristic dissociation temperature. In addition, the
variable o is the degree of dissociation defined as the ratio of the mass
of dissociated A atoms to the total mass of the gas, or, equivalently, the
mass fraction of A atoms.

Equations (la)-(1c) are supplemented with the ideal-gas equa-
tions of state in the pre-shock gas

Pi/py =Rea, T 4
and in the post-shock gas
Pz/pz = (1 + OC)RgA’AZ T;. (5)

In addition, the specific internal energy in the pre-shock gas e; is given
by the translational and rotational components

er = (5/2)Rya, T1, (6)

whereas in the post-shock gas e, requires consideration of transla-
tional, rotational, and vibrational degrees of freedom along with mix-
ing between molecular and atomic species, which gives

5, 0,)/T
e =Ren, T {3cx+(1 ~ a) (5+ﬁ)} )

where @, is the characteristic vibrational temperature. The first term
inside the square brackets in (7), proportional to the dissociation
degree o, corresponds to the translational contribution of the mon-
atomic species. The second term, proportional to the factor 1 — o,
includes the translational, rotational, and vibrational contributions of
the molecular species, where it has been assumed that the rotational
degrees of freedom are fully activated and the molecules vibrate as har-
monic oscillators.

The formulation is closed with the chemical-equilibrium condi-
tion downstream of the shock, narnely,63
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®)

where 0, is the characteristic rotational temperature, m is the atomic
mass of A, kg is the Boltzmann’s constant, 7 is the reduced Planck’s
constant, and G = ( 2‘1)2 /Q4 is a ratio of electronic partition func-
tions of A atoms (Qf) and A, molecules (Q4). Upon neglecting the
variations of the specific internal energy with temperature due to elec-
tronic excitation, the electronic partition functions in G can be approx-
imated as the ground-state degeneracy factors. Typical values of ®,,
®,, ©4 G, and m are provided in Table I for a wide range of molecular

gases.

B. Dimensionless formulation

A dimensionless formulation of the problem can be written by
introducing the dimensionless parameters

5 GmO, T} (nka) o PIC TR TR
= 0, th ) d — Tl 3 v T1
along with the pressure, temperature, and density jumps
P:P2/P17 ’Z—:Tz/Tl7 R:pz/pl (10)

across the shock. In the expressions below, the solution for a vibration-
ally and chemically frozen gas (i.e., a calorically perfect diatomic gas) is
recovered by taking the limits f, — oo and ; — oo (or & — 0).
Using these definitions, the dimensionless Rayleigh line
7 1
=1+- 1—=], 11

P=1+zM; ( R) , (11)
which relates P and R, is obtained by combining the mass and
momentum conservation equations (1a) and (1b). In (11), the symbol
M denotes the pre-shock Mach number defined as

My =u /e, (12)

where ¢; = /(7/5)Rg,T1 is the speed of sound of the pre-shock
gas. Regardless of the value of M, the Rayleigh line always emanates

from the pre-shock state, P =1 and R = 1, as a straight line with
negative slope in the {R !, P} plane.
In contrast, since the post-shock gas is calorically imperfect, its
Mach number
w_Mia

MZ - (%) o R (%) (13)

requires a more elaborate calculation of the speed of sound

TABLE . Rotational (®,), vibrational (®,), and dissociation (®) characteristic tem-
peratures, along with the factor G and the atomic mass m of relevant molecular
gases.

H, 0, N, F, L Cl,
0, (K) 8753  2.08  2.87 127 0.0538 0.0346
0, (K) 6338 2270 3390 1320 308 805
0, (K) 51973 59500 113000 18633 17897 28770
G 2°/1 5%/3 4?%/1 421 41 41

m (kg) x10% 0.16735 2.6567 2.3259 3.1548 21.072 5.8871
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on, 0B Ofeta
p, OT oT: 0 P,
ng—i 2lp, Ol P2 Tz_'_& o (14)
p3 9(ex + qu) d(ex + qa) op I,
aTz P2 aTZ P2
Upon substituting (5) and (7) into (14), the expression
é_ﬂ 1+oa+og+ (1+o0+or)
q 7 ‘ !
" 2(1 4 o) — ar(1 — 2eyp +28,/7)
5+ a+42(1 —a)ed e /T +ap(1 — 2ew +2,4/T)
(15)
is obtained, where

€vib = ohIT _ 1

is the dimensionless component of the specific internal energy corre-
sponding to vibrational excitation in equilibrium. In addition, the coef-
ficients o and oy in (15) are given by

S 0u| a(l—a)
"= Ror|, =" 2=a a7)
B\ -
1— 1+—l€ﬁ"/7
_pOu| 1 B ( ﬁd)
=Tor, = Gt T e ) O

Equation (15), along with definitions (16)-(18), determines the post-
shock Mach number (13).

The equations of state (4) and (5) can be combined into a single
equation as

P=(1+2)RT. (19)

Upon substituting (4)-(7) into the conservation equations (la)-(1c)
and using the normalizations (9) and (10), the relation

_6-R —2ap,—2(1 - 2)B, /(T — 1)

T 2a+3) — R + )

(20)

is obtained between o, R, and 7. Finally, the problem is closed by
rewriting the chemical-equilibrium condition (8) in dimensionless
form using (9) and (10) as

? gt VT B/ T
— =Be = (1—e /7)), (21)
which provides an additional relation between «, R, and 7. In particu-
lar, given the dimensionless parameters f3,, 4 and B, the combination
of (19)~(21) provides the Hugoniot curve P = P(R "), which in the
present case is a laborious implicit function, that is, evaluated numeri-
cally and is shown in Fig. 2. As a result, given a pre-shock Mach num-
ber M, the post-shock state is completely determined by the
intersection of the Hugoniot curve and the Rayleigh line (11).
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FIG. 2. Hugoniot curves for different molecular gases at pre-shock temperature
Ty = 300K and pressure P; = 1 atm [gray lines: present formulation; symbols:
numerical results obtained with NASA's Chemical Equilibrium with Applications
(CEA) code® excluding ionization], along with the Hugoniot curve of a gas with
B =10, B, = 10, and 8, = 100 (line colored by the degree of dissociation). The
latter is compared in the inset with the Hugoniot curves of a calorically perfect mon-
atomic gas (gray line corresponding to » = 5/3) and a calorically perfect diatomic
gas (gray line corresponding to y = 7/5).

in the post-shock gas, since they are of some relevance for the shock/
turbulence interaction problem studied in Secs. 11l and IV.

The main panel in Fig. 2 shows Hugoniot curves in light colors
for H,, O,, N, and F, using the simple theory provided above particu-
larized for the parameters B, f3,, and f3; listed in Table II. As shown in
Fig. 2, the curves for O, and N, compare well with the more complex
numerical calculations obtained with NASA’s chemical equilibrium
with applications (CEA) code.”* The latter incorporates variations of
the specific heat with temperature due to both vibrational and elec-
tronic excitation through the NASA polynomials.””

To narrow down the exposition, the main panel in Fig. 2 also
shows a Hugoniot curve colored by the degree of dissociation and
obtained using the representative values B = 10°, f, = 10, and
ps =100. This is a particular choice of values that nonetheless
approximately captures the order of magnitude of these parameters
observed among the different gases listed in Table II (with exception

TABLE II. Dimensionless parameters B, f3,, and /3, for relevant molecular gases at
pre-shock temperature Ty = 300K and pressure Py = 1 atm.

H, 0, N, F, I, cl,
C. The turning point in the Hugoniot curve at Bx 105 20668 6472 140452 9.818 7.1796 0.6818
hypersonic Mach numbers B.x 1071 21127 07567 113 044 01027 02683
It is worth discussing some peculiarities of the Hugoniot curve, By x 1072 17324 19833  3.7667 0.6211 0.5966 0.959
that is, obtained by including dissociation and vibrational excitation
Phys. Fluids 33, 086111 (2021); doi: 10.1063/5.0059948 33, 0861114
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of the much larger value of B observed for N,, which translates into
much higher dimensionless post-shock temperatures being required to
attain significant dissociation of N).

The inset in Fig. 2 shows that the Hugoniot curve starts departing
significantly from that of a calorically perfect diatomic gas [corre-
sponding to an adiabatic coefficient y = 7/5 and a maximum density
ratio R = (y+1)/(y — 1) = 6] at a rather modest degree of dissocia-
tion o ~ 1% attained at M; ~ 5. Despite the smallness of this cross-
over value of «, large changes in chemical enthalpy occur because of
the large bond-dissociation specific energy of most relevant species
(e.g., approximately 15M]/kg for O,). As a result, & ~ 1% renders
afy; = O(1) in (20), which represents a balance between the heat
absorbed by dissociation g, and the pre-shock internal energy e, in the
conservation equation (1¢). As « is further increased, g, becomes of
the same order as e,, and the departure from calorically perfect behav-
ior becomes increasingly more pronounced.

As o becomes increasingly closer to unity, which requires the
kinetic energy of the pre-shock gas to be increasingly larger than g, (or
equivalently, it requires the pre-shock Mach number M; to be
increasingly larger than /f,), the slope of the Hugoniot curve under-
goes a change in sign and turns inward toward larger specific volumes.
For the parameters investigated in Fig. 2, the turning point occurs at
o =~ 0.7, where 7 ~ 9 (corresponding to 2700 K when T; = 300 K),
M ~ 13, and R ~ 12, the latter being almost double (triple) the
density ratio of a calorically perfect diatomic (mono-atomic) gas.
There, the inverse of the slope of the Hugoniot curve normalized with
the slope of the Rayleigh line

_ (PP d(l/pz)_zﬁ(f?_P)l
= (1/p171/p2) dp, 5 R? \0R (22)

attains a zero value. The role of I' in the description of the shock/tur-
bulence interaction problem will be addressed in Secs. 11l and I'V.

As shown in Fig. 3, the value of I" becomes negative along the
upper branch of the Hugoniot curve beyond the turning point I =0.
Along that branch, an increment (decrement) in post-shock pressure
induces a decrement (increment) in post-shock density. For the
parameters tested here, the value I' in the upper branch of the
Hugoniot curve is always larger than the critical values for the onset of
(a) shock instabilities associated with multi-wave’®®” and multi-
valued®® solutions, and (b) D’yakov-Kontorovich pseudo-instabilities
associated with the spontaneous emission of sound.”*” Similar charac-
teristics of the Hugoniot curve have been observed elsewhere for

shocks subjected to endothermicity.” "

D. Limit behavior in the post-shock gas

Typical distributions of the density ratio R, the post-shock Mach
number M,, and the pre-shock Mach number M, are provided in
Fig. 4 as a function of the temperature ratio 7. The curves also show
the limit behavior for « — 0 and f§, — oo (corresponding to a calori-
cally perfect diatomic gas at low temperatures), and for o — 1 (corre-
sponding to a fully dissociated gas at high temperatures). Some insight
into these limits is provided below.

In Fig. 4(a), the low-temperature limit of the density ratio corre-
sponds to the standard Rankine-Hugoniot jump condition for a calo-
rically perfect diatomic gas

scitation.org/journal/phf
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FIG. 3. Normalized inverse of the slope of the Hugoniot curve T" as a function of
the temperature jump across the shock 7~ for B = 108, p, =10, and ; = 100
(line colored by the degree of dissociation). Dashed lines represent asymptotic
limits for a calorically perfect diatomic gas (f, — oo and « — 0), and for a highly
dissociated gas (o — 1).

1 T
Re3(1—=) |14 1+ ——], 23
( T) * +9(7—1)2 @)

which can be derived by taking the limits « — 0 and 5, — oo in (20).
In this low-temperature limit, the normalized slope of the Hugoniot
curve becomes I" ~ ./\/lfz, as indicated in Fig. 3.

In the opposite limit, when the post-shock gas is hot and almost
fully dissociated, & — 1, the density jump and the normalized slope of
the Hugoniot curve become

RNB"’+4T_3+\/(B"I+4T_3)Z+ZT

2T 24)

and

TMAR —4)°

" T 5RY(8p, — 23) (25)

respectively, with f§; > 23/8 in the conditions tested here. At very
high Mach numbers M, >> /B, when B;/T < 1, Eq. (24) simpli-
fies to R ~ 4 in the first approximation, whereas (25) yields very small
and negative values of I'. Remarkably, unlike R, M;, and M,, the
normalized inverse of the slope I' is not bounded by its asymptotic
limits at low and high Mach numbers. The relevance of this property
for the problem of shock/turbulence interaction will be discussed in
Secs. Il and I'V.

The results mentioned above for « — 1 indicate that the post-
shock gas increasingly resembles a monatomic calorically perfect gas
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FIG. 4. Distributions of (a) density jump R, (b) post-shock Mach number My, and (c)
pre-shock Mach number AM; as a function of the temperature jump 7~ for
B =10°, B, =10, and 8, = 100 (ines colored by the degree of dissociation; refer to
Fig. 3 for a colorbar). Dashed lines represent asymptotic limits for a calorically perfect
diatomic gas (8, — oo and o — 0), and for a highly dissociated gas (o« — 1).

(corresponding to an adiabatic coefficient y = 5/3) at infinite Mach
numbers, an effect that can also be visualized in Fig. 2 as the Hugoniot
curve asymptotes the abscissa R ! ~ 1/4. However, this limit is of lit-
tle practical relevance because it would require such exceedingly high
temperatures that additional effects like electronic excitation, radia-
tion, and ionization would have to be included in the formulation,
thereby invalidating these considerations.

lll. THE INTERACTION OF A HYPERSONIC SHOCK
WAVE WITH AN INCIDENT MONOCHROMATIC
VORTICITY WAVE

For small-amplitude velocity fluctuations and vanishing turbu-
lent Mach numbers, the free-stream turbulence in the pre-shock gas
can be represented as a linear superposition of Kovaznay’s three-
dimensional vorticity modes, which are solutions of the incompress-
ible Euler equations.”””* This section addresses the interaction of the
shock with a single one of those vorticity modes.

A. Laboratory, shock, and post-shock reference frames

Three reference frames are used in the analysis. Whereas the
spanwise and transverse axes of all the frames coincide, the streamwise
axis differs depending on whether the frames are attached to the labo-
ratory (x), the mean shock front (x,), or the mean absolute post-shock
gas motion (x.).

ARTICLE scitation.org/journal/phf

In the laboratory reference frame, the streamwise coordinate is
denoted by x and is attached to the bulk of the pre-shock gas, which is
at rest on average. In contrast, in the shock reference frame, which cor-
responds to the one visualized in Fig. 1, the streamwise coordinate x;
moves at the mean shock velocity (1) and is therefore defined by the
relation x; = x — (u1)t in terms of the time coordinate t. The integral
formulation of the conservation equations across the shock can be
readily written in the shock reference frame, as done in Sec. IL
Whereas the incident vorticity wave remains stationary in space in the
laboratory frame, it becomes a wave traveling at velocity (u;) toward
the shock in the shock reference frame.

In the reference frame moving with the post-shock gas, the
streamwise coordinate x, moves with the post-shock mean absolute
velocity (u;) — (up) and is therefore defined as x, =x — ((uy)
—(uy))t. In this frame, the vorticity and entropy fluctuations in the
post-shock gas are stationary in space, which facilitates the description
of the problem, as shown below.

B. Orientation and form of the incident vorticity wave

Anticipating that the pre-shock turbulence is isotropic, there is
no privileged direction of the wavenumber vector k, and therefore, the
amplitude of the vorticity modes depends exclusively on k = |k]|.
Similarly, because of this isotropy, there is no preferred wavenumber-
vector orientation relative to the shock surface. In principle, this would
require the formulation of a three-dimensional problem to describe
the interaction. However, a simple rotation of the reference frame can
transform the problem into a two-dimensional one, as described below
(see also Refs. 36, 60, and 75).

For an incident wavenumber vector arbitrary oriented in space at
latitude and longitude angles 0 and ¢, respectively, the reference
frames described in Sec. III A can be rotated counterclockwise around
x by an angle equal to the longitudinal inclination of the incident wave
V), as indicated in Fig. 5. In this way, the interaction problem becomes
two-dimensional, in that all variations with respect to z are zero.

Using the aforementioned rotation, the wavenumber-vector
components in the streamwise and transverse directions are

ke = kcos0, k, =ksin0, (26)

respectively, with k, =0 by construction. Similarly, in the laboratory
reference frame, the vorticity vector of the incident wave in the pre-
shock gas can be expressed as

!

€, €.

shock
surface

shock surface

x-y slice of the
vorticity wave

/
€x = €y

FIG. 5. Simplification of a three-dimensional problem of a shock interacting with an
arbitrary-oriented vorticity wave to a two-dimensional problem by rotating the refer-
ence frame around the streamwise axis.
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o = (do )ei(k*x+k)'y) (27)
with

owy) = —ek(cy)sinfcos @, dwy, = ek{cy) cos 0 cos @,

(28)

0w, = —¢ek(cy) sin @

being the vorticity amplitude in each direction. In this formulation,
(c2) denotes the mean speed of sound in the post-shock gas, and ¢ is a
dimensionless velocity fluctuation amplitude, which is small in the lin-
ear theory, &¢ < 1. The vorticity of the incident wave engenders a fluc-
tuation velocity field in the pre-shock gas given by

vi = (ovg )ei(k*”k”’) (29)

whose amplitude is

oup = ¢g(cy) sinOsin @,  dv; = —¢&{cy) cos O sin @,

(30)
owy = &(cy) cos @
in the x, y, and z directions, respectively. Specifically, the z-component
of the fluctuation velocity vector is uniform along z. This component
will not be carried any further in the analysis, since it is transmitted
unaltered through the shock because of the conservation of tangential
momentum. Note also that (27) and (29) are related by the definition
of the vorticity w; = k x v;. Furthermore, the velocity field (29)-(30)
is one that satisfies the incompressibility relation k - vi = 0. Finally,
implicit in the definitions given above is that the incident vorticity
wave is inviscid, or equivalently, that the pre-shock Reynolds number
of the fluctuation, 27|v, |/ (kv ), is infinitely large.

To illustrate the analysis, a particular form of the pre-shock vor-

ticity fluctuation corresponding to the inviscid Taylor-Green vortex

kz
z1(%,)) = eu(c2) <k> cos (kyx)sin (kyy) (31)
y

is employed in the numerical results highlighted below, with
wy,1 = @1 = 0. The corresponding streamwise and transverse com-

ponents of the velocity fluctuations in the pre-shock gas are given by

ui(x,y) = eu{cz) cos (kex)cos (kyy), (32a)
v1(%,Y) = eulc2) <%> sin (k,x)sin (ky ), (32b)
y

respectively. In this formulation, ¢, is the amplitude of the pre-shock
streamwise velocity fluctuations

&, = ¢sin0sin ¢ (33)
with €, < 1 in the linear theory.

C. Linearized formulation of the interaction problem

In this linear theory, the vorticity and the streamwise and trans-
verse velocity components in the post-shock gas reference frame are
expanded to first order in ¢, as

scitation.org/journal/phf

P=(P) +elp)e)p, p=(p)(1+0p) (39

with p and p being the dimensionless fluctuations of pressure and
density, respectively. The brackets indicate time-averaged quantities,
which are given by the solution obtained in Sec. I1. In this way, all fluc-
tuations are defined to have a zero time average.

Assuming that the Reynolds number of the post-shock fluctua-
tions is infinitely large, the expansions (34) and (35) can be employed
in writing the linearized Euler conservation equations of mass, stream-
wise momentum, transverse momentum, and energy as

O, on O _, (36a)

ot 0Ox. Oy
g—z + g}f = 0, (36b)
% +g—}; =0, (36¢)
% = %, (36d)

in the reference frame moving with the post-shock gas. In this nota-
tion, the space and time coordinates have been non-dimensionalized
as

Xe=kx, y=ky, 1t=k(a)t 37)

The linearized Euler equations (36) can be combined into a

single, two-dimensional periodically symmetric wave equation
25 25 925

or_92.%0 (9)

o ox2 0y?
for the post-shock pressure fluctuations. Equation (38) is integrated
for © > 0 within the spatiotemporal domain bounded by the leading
reflected sonic wave traveling upstream, x. = —71, and the shock front
moving downstream X, = M1, with M, = (u,) /(c2).

In the integration of (38), the boundary condition far down-
stream of the shock is provided by the isolated-shock assumption,
whereby the effect of the acoustic waves reaching the shock front from
behind is neglected. The boundary condition at the shock front is
obtained from the linearized Rankine-Hugoniot jump conditions
assuming that (a) the thickness of the thermochemical non-
equilibrium region /1 is much smaller than the inverse of the trans-
verse wavenumber k'; and (b) the displacement of the shock
&, = &(y, 1) from its mean, flat shape (see Fig. 1) is much smaller
than k; 1 In these limits, at any transverse coordinate y, the
Rayleigh-Hugoniot jump conditions can be applied at the mean shock
front location x. = M,t and can be linearized about the mean
thermochemical-equilibrium post-shock gas state P, R, 7, M,, and
o calculated in Sec. II, thereby yielding

9¢,  R(O-T)

o MR-l e

w = Euky<C§>(b7 u= 8u<62>ﬁ, U= 8u<62>l_]7 (34) ﬂs — %?S + ﬁla (39b)
2
respectively, with @, u, and ¥ being the corresponding dimensionless _
fluctuations. The post-shock pressure and density can be similarly B =By — My(R —1) ¢ (39¢)
expressed as s g oy’
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p.=—=pD.. 39d
pS M%ps ( )

In (39), & = ky&s /e, is the dimensionless shock displacement,
whereas p, py, U, and v; are, respectively, the dimensionless fluctua-
tions of pressure, density, streamwise velocity, and transverse velocity
immediately downstream of the shock front, where thermochemical
equilibrium is reached in the limit kyﬂT < 1. In these relations,
iy, = uy/(e,{(c2)) and v, = v1/(e,{c2)) are the normalized compo-
nents of the pre-shock velocity field (29) engendered by the incident
wave described in Sec. III B. Note that, at the turning point of the
Hugoniot curve (I'=0), the compression of the gas exerted by the
shock is isochoric in the near field and therefore leads to vanishing
density fluctuations immediately downstream of the shock, as pre-
scribed by the linearized jump condition (39d).

The flow is periodic in the transverse direction y. As a result, the
terms involving partial derivatives with respect to ¥ in (36a), (36¢),
(38), and (39¢) can be easily calculated from the transverse functional
form of the post-shock flow variables given the incident vorticity wave
(31). In particular, it can be shown that the fluctuations p, %, and £,
are proportional to cos (¥), whereas ¥ is proportional to sin (7). These
prefactors are henceforth omitted in the analysis, but should be
brought back when reconstructing the full solution from the dimen-
sionless fluctuations.

The initial conditions required to solve (38) assume that the
shock is initially flat, E =D, =0atT=0. Correspondingly, the initial
values of the fluctuations of pressure and streamwise velocity immedi-
ately downstream of the shock must satisfy the relation #; + p, = 0 at
7=0, as prescribed by the first acoustic wave traveling upstream
xc = —1. This gives a pressure fluctuation p, = —2M,/(1+T
+2M,) immediately downstream of the shock front at 7= 0.

The linearized problem (38), along with its boundary and ini-
tial conditions provided above, describe the fluctuations in the post-
shock gas in the LIA framework. Remarkably, this problem can be
integrated using the mean post-shock flow obtained from the ana-
lytical formulation provided in Sec. II, as done in the remainder of
this paper, or by considering a mean post-shock flow obtained
numerically with more sophisticated thermochemistry. For instance,
instead of the formulation presented in Sec. II, a one-dimensional
chemical equilibrium code like CEA (see Fig. 2 and Sec. 11 C) could
be used to calculate numerically the mean post-shock conditions
incorporating (a) different models for the variations of the specific
heats such as the NASA polynomials,”3 which include both vibra-
tional and electronic excitation, and (b) additional chemical effects
such as ionization. This can be understood by noticing that (38),
along with its boundary and initial conditions, depend only on the
following dimensionless parameters: the mean density jump R, the
mean post-shock Mach number M, and the inverse of the slope of
the Hugoniot curve I, all of which can be computed numerically
solving a one-dimensional shock wave subject to arbitrary
thermochemistry.

scitation.org/journal/phf

if{<,

_J Hpcos (w1) + M sin (wr) (40)
s if (>1

I, cos (w1)

behind the shock. In this formulation, w = {4/1 — M% is the dimen-

sionless frequency, where { is a frequency parameter defined as

MR

ke
LU (41)
J1- M (ky>

with ky/k, = 1/|tan 0|. Cases with { < 1 correspond to sufficiently

small streamwise wavenumbers, k. <k, (\ /1 — M§> /(MyR),

whereas the opposite (sufficiently large streamwise wavenumbers)
holds for { < 1. The corresponding amplitudes of the pressure wave
(40) are

(=

-l 2 2
M, = - U= R@E o) (2 RM 30y,
FA =)+ (ol —00) 1—M;
-1 — 2
o= R IVIZE (2 RM: 0 )
CA =)+ (ol —00) 1—-M;
(1-R™1 ,  RM;
Hszf C - bl (42C)
WV dtal—a " 1-A
where g, and ¢, are auxiliary factors defined as
14T _ RM, (1-T
a;,f—zMz, GCIM%(_Z ) (43)

To describe the far-field post-shock gas, it is convenient to split the
fluctuations of velocity, pressure, and density into their acoustic (a),
vortical (r), and entropic (¢) components as

u(x:, 1) = ta(Xe, 1) + 0r(x0), (44a)
0(Xc,7) = 0a(%c,7) +0,(X0), (44b)

p(Xc, 1) =p,(%e, 7), (44c)
P(Xe; ) = DX, T) + Po(%c)- (44d)

The acoustic pressure wave emerging from (38) is of the form
Dar~ eTi(@at=KX—y) "where , and K, are the dimensionless acoustic
frequency and longltudmal wavenumber reduced with ¢k, and k,,
respectively, which are related as

wﬁ = Ki + 1. (45)

In the shock reference frame x = M1, the oscillation frequency at
shock front, w, is related to the post-shock Mach number as
= w, — M,k,. Upon substituting this relation into (45), the

expressions
Moo*/o* — 1+ M;

Kq = e ) (46a)
D. Far-field and long-time asymptotic analysis 1-M,
At long times ¢ > (ky(c,)) ", the solution to the wave equation Y [ 1 IVE
(38), subject to the boundary conditions described in Sec. 111 C, yields v, — O My fom =1+ M (46b)
the pressure fluctuations ¢ 1 - M:
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are obtained. In (46), the solution corresponding to the positive sign in
front of the square root must be excluded since it represents nonphysi-
cal acoustic waves whose amplitude increases exponentially with dis-
tance downstream of the shock when o < (1 — M%)l/ 2,

Different forms of the solution arise depending on the value of
the dimensionless frequency . At frequencies w < (1 — M%)l/ %, or
equivalently { < 1, the amplitude of the acoustic pressure decreases
exponentially with distance downstream of the shock. On the other
hand, for o > (1 — M%)l/ 2, or { > 1, the acoustic pressure becomes

a constant-amplitude wave
Pp(%e,7) = I cos (w,T — KaXc), (47)

which corresponds to a downstream-traveling sound wave for «, < 0
(or w < 1), and to an upstream-traveling sound wave for k, > 0
(o > 1), both cases being referenced to the post-shock gas reference
frame. In this case, the acoustic modes of the density, temperature,
and velocities are

Pa(Xe, 1) = T cos (0aT — KaXe), (48a)
To(%e, 1) = Oy co8 (0,T — KaX,), (48b)
Ug(Xe,T) = Uy cos (0T — KoXe), (48¢)
Ua(Xe, ) = Vg sin (0,7 — KaXe), (48d)

respectively, where T = (T — (T5))/(e,(T>)) is the dimensionless
post-shock temperature fluctuation.

The amplitudes of the acoustic modes of the streamwise and
transverse velocity fluctuations in (48) are proportional to the ampli-
tude of the acoustic pressure, U, /T1; = k,/w, and V,/II; = 1/,
as prescribed by second and third equations in (36). Similarly, the
amplitude of the acoustic mode of the post-shock temperature fluctua-
tions can be expressed relative to I, as

_ 2(14o) —or(1 — 28y +2,/7)
C5ta+2(1—a)ed e h/T +or(1—2ey+28,4/T)

©,/11; (49)

with o, o7, and ey, being defined in (17) and (18), and (16), respec-
tively. Note that (49) simplifies to ®,/I1; ~ y — 1 in both the calori-
cally perfect diatomic gas limit (x — 0 and f, — oo, for which
y — 7/5) and in the fully dissociated gas limit (o — 1, for which
y — 5/3).

The entropic mode of the density fluctuations is determined by
the linearized Rankine-Hugoniot jump condition (39d) after subtract-
ing the acoustic mode

r _ _ _
Pe(xe) = 5 P(T = Xe/ Ma) = pa(3e,T = X/ Ma) - (50)
M;
to give

Aj cos (KeX) + Apsin (1c,x,) if { <1,

pelre>1) = {Ascos(lcexc) if (>1 (1)

in the asymptotic far field. In (51), x, = Rk, /k, is a dimensionless
wavenumber, and A; = (TM;* — 1)IT; is a fluctuation amplitude
that depends on { through the pressure amplitudes IT;;, I}, and IT;
defined in (42). Since the pre-shock gas contains only vortical velocity
fluctuations, all entropic modes are generated at the shock. The entro-
pic density fluctuations p, are related to the entropic temperature
fluctuations

scitation.org/journal/phf

_ 1+oa+og
Te(xc > 1) = —ﬁpe(xc), (52)

and both p, and T, induce entropic fluctuations in the degree of
dissociation, as shown in (8). As a result, the thermochemical equi-
librium state in the post-shock gas fluctuates depending on the
local shock curvature. Specifically, there exist fluctuations of the
concentrations of the chemical species A and A, in the post-shock
gas that are in phase with the entropic modes of density and tem-
perature fluctuations. The normalized fluctuation of the degree of
dissociation is

o — (o _
w(x. > 1) = ) = P (%) +orT(%)

U
(or —ar)(1+a)
= / 7 . 53
TTatay P (53)
In a similar manner, the vorticity fluctuations & defined in (34)
can be expressed in terms of ( as

Q) cos (1%, + if (<1,
x> 1) =  eosteEe t) ifL< (54)
Q cos (KkrX) if (>1,
where, as found in the entropic perturbation field, the dimensionless
rotational wavenumber is simply given by the compressed upstream
wavenumber ratio k, = k., = RKk,/k,. The amplitudes are

(55a)
(55b)

Q = /(@ + Q1) + (01,7,
Qs = Ql + QZH57

where Q; = R(1 + k}/k;) quantifies the amplification of the pre-
shock vorticity as a direct result of the shock compression, and
Q, = (R —1)(1 -T)/(2M,) measures the vorticity production by
the discontinuity front rippling. The corresponding phase for { < 1 is
given by tan ¢, = QI /(Q; + QI1;1), which is different to that
associated with entropic fluctuations tan ¢, = I}, /T1;;.

Figure 6 shows the value of |Q|* as a function of the shock
strength M, for six arbitrary values of the frequency parameter (.

1200 (- |

(=2

100
80
2|2 60
40

20

FIG. 6. Square of the vorticity amplitude |Q|2 as a function of the pre-shock Mach
number M, for B = 106, p, =10, B4 =100 and six different values of the
frequency parameter: { = 0.6, 0.7, 0.8, 1.1, 1.5, and 2.
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Three of them pertain to the long-wavelength regime { < 1 (Q = €)
and the other three to the short-wavelength regime { > 1 (Q = Q). It
is found that the shape of the curve qualitatively changes depending
on the wavelength regime. For instance, when compared to interac-
tions with frequency { < 1, cases for { > 1 render curves with wider
peaks and whose location corresponds to lower Mach numbers.

The streamwise and transverse components of the vortical mode
of the velocity read

iy (Xc > 1) = U, cos (% + P,),
0, (X > 1) = Vysin (k% + ¢,),

(56a)
(56b)

where the phase angle is ¢, = 0 for { > 1. The amplitudes are propor-
tional to the vorticity fluctuations as

1 M;
= Q= 2 Q, 57
1re2 M+ (1-M)C 57)

2
—_— (IMyy/1— M 5

— Q= ,
1+i2 M+ (1-M3)C

Uy

(57b)

where Q depends on frequency, as shown in (55) and Fig. 6.

IV. THE INTERACTION OF A HYPERSONIC SHOCK
WAVE WITH WEAK ISOTROPIC TURBULENCE

The weak isotropic turbulence in the pre-shock gas can be repre-
sented by a linear superposition of incident vorticity waves whose
amplitudes ¢ vary with the wavenumber in accord with an isotropic
energy spectrum E(k) = &2(k). The root mean square (rms) of the
velocity and vorticity fluctuations in the pre-shock gas can be calcu-
lated by invoking the isotropy assumption, which states that the prob-
ability the incident wave has of having orientation angles ranging from
0 to 0 4 d0, and from ¢ to ¢ + d¢, is proportional to the solid angle
sin 0d0d¢/(47). This assumption provides the expressions

WhH 1) 1 W) 1
2{c)’ 3 {a)? 6 {g) 2
for the pre-shock rms velocity fluctuations, and
2 2 2
©F) 1 R 1 fef) 1

2ke) 3 2k{e) 6 2k) 2

for the pre-shock vorticity fluctuations. In this section, a linear analysis
is performed to calculate the variations of the rms of the velocity and
vorticity fluctuations across the shock.

A. Amplifications of turbulent kinetic energy,
turbulence intensity, and turbulent Reynolds
number across the shock

The analysis begins by expressing pre-shock components of the
velocity fluctuation modulus as

|uh| = crélii, + 11| sin O sin @, (60a)
|th| = 26|, + T, | sin Osin ¢, (60b)
wh| = wil, (60¢)

scitation.org/journal/phf

where the acoustic and vortical modes of the dimensionless velocity fluc-
tuations in the far field are given in (48) and (56). The relations between
the modes of the streamwise and transverse velocity fluctuations are pro-
vided by the irrotationality condition v, = K, i, for the acoustic mode,
and by the solenoidal condition k, v, = Rk, for the vortical mode.
The TKE amplification factor across the shock wave is defined as

)+ ) D ) 1
KT+~ e@ 2

_é[

where the use of (58) has been made. Furthermore, K can also be
decomposed linearly into acoustic and vortical modes as
K = K* 4+ K', with

/2
J (@ + 9%) sin®0d0 + 1|, (61)

0

k=] @+ vra =3[ meac
1 1 (©)

11>
K':—+—J U2 +V?)P()dL.
2 3),

The entropic mode does not contain any kinetic energy, since entropy
fluctuations are decoupled from velocity fluctuations in the inviscid
linear limit.

In Eq. (62), P({) is a probability-density distribution given by

MR 1 — M; )
[MER? + (1= M)

which satisfies the normalization [;* P({)d{ = 1. In addition, the
velocity amplitudes U,, U,, V,, and V), are obtained using the long-
time far-field asymptotic expressions (48) and (57). The lower integra-
tion limit of K* is { =1 since the acoustic mode decays exponentially
with distance downstream of the shock in the long-wave regime { < 1.
However, the integral 1/3 fol (T3, + T03)P(£)d{ needs to be added to
K when evaluating the solution in the near field x; — X, < 1.

Figure 7 shows the TKE amplification factor K, given by the sum
of the acoustic and vortical contributions in (62), as a function of the
pre-shock Mach number M. Similarly to the results observed in
Sec. 11, the onset of vibrational excitation at M; ~ 3 begins to produce
small departures of K from the thermochemically frozen result corre-
sponding to a diatomic calorically perfect gas. These departures are
exacerbated as the degree of dissociation increases and become signifi-
cant even at small values of « of order 1% at M; ~ 5, where K signifi-
cantly departs from the curve predicted in the thermochemically frozen
limit corresponding to a diatomic calorically perfect gas. The latter was
shown to plateau at K = 1.78 for M; > 1 in early work,”*’ whereas
the present study indicates that such plateau does not exist when ther-
mochemical effects at hypersonic Mach numbers are accounted for.

The resulting curve of K in Fig. 7 is non-monotonic and contains
two peaks in the hypersonic range of Mach numbers. This behavior
cannot be guessed by a simple inspection of the post-shock density
and Mach number shown in Fig. 4. Instead, the non-monotonicity of
K is related to the strong dependence of the enstrophy amplification
on the wavenumber. Specifically, the vortical mode of the velocity fluc-
tuation, which is shown below to be the most energetic, is proportional
to the post-shock vorticity amplitude Q given in (55), which peaks at

PO =3
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FIG. 7. TKE amplification factor K as a function of the pre-shock Mach number
My for B = 10°, S, =10, and 3, = 100 (line colored by the degree of dissocia-
tion). Dashed lines correspond to limit behavior of K calculated using the asymptotic
expressions (23) and (24) for small and high Mach numbers, respectively.

different pre-shock Mach numbers depending on the frequency
parameter (, as shown in Fig. 6.

The first peak of K reaches a value of 2.1 and occurs at M; ~ 6,
where o ~ 5%. In contrast, the second peak at K ~ 2.9 nearly doubles
the value predicted in the thermochemically frozen limit, and occurs at

ARTICLE scitation.org/journal/phf

The contribution of the acoustic mode to K;, and Ky yields negligible
TKE over the entire range of Mach numbers, as shown in Fig. 8(a). In
contrast, the contribution of the vortical mode is significant. Whereas
the longitudinal TKE of the vortical mode K] dominates over the
transverse one K7 at supersonic Mach numbers, it plunges below K7, at
hypersonic Mach numbers around the turning point of the Hugoniot
curve. The value of K} peaks at M; ~ 19 with K} ~ 3.8, as observed
in Fig. 8(b). This peak is responsible for the peak in K observed Fig. 7
at the same Mach number, thereby indicating that most the TKE there
is stored in vortical gas motion in the transverse direction.

The mechanism whereby high-temperature thermochemistry
augments the TKE across the shock in this LIA framework is
explained by the linearized Rankine-Hugoniot jump condition (39¢)
and is schematically shown in Fig. 9. In particular, the conservation of
the tangential velocity across the wrinkled shock requires

v = {uy) cos ) + v sin ¥
= (uy) cos ¥ + v}y sin (66)

where ¢ = 7/2 + arctan(9¢&,/dy) is a local shock incidence angle
whose departures from /2 are of order ¢, since k,&; = O(e,) in this
linear theory. The streamwise velocity fluctuations u; and u}, have
been neglected in writing (66), since their multiplication by cos f is
smaller by a factor of order ¢, relative to the other terms. Equation
(66) yields the transverse post-shock velocity fluctuation

o= o= () = ) 5. (©)
which represents the dimensional counterpart of the linearized
Rankine-Hugoniot jump condition (39¢). In Eq. (67), 9&/dy < 0
in both configurations sketched in Fig. 9. Note that (67) holds

a much higher Mach number M, ~ 19 where dissociation is almost 0.05F N (a)
complete. At very large Mach numbers M; > 40, in the fully dissoci- 0.04F \
ated regime, K asymptotes to the value K ~ 1.69 predicted for mon- o ; \t\\ \a =1
atomic calorically perfect gases. However, as discussed in Sec. 11D, this e 0.03¢ N\
limit has to be interpreted with caution because additional thermochem- N AN
ical effects not included here, such as jonization and electronic excita- B s I=—
tion, play an important role at those extreme Mach numbers. 0.01f K3t B
Most of the TKE produced across the shock belongs to transverse ot ) o
velocity fluctuations of the vortical mode. To see this, we consider the 20 40
decomposition of the TKE amplification factor into longitudinal (Kp)
and transverse (K1) components as ar ' (b)
3.5 \
1 I ™ * \
KZg(KL+2KT) (64) L 3_‘ ﬁv — 00 KT \
= 250 | a—0 ) \,
& _——— ~
with Mq 2f j l: e e
00 e 00 ) 15»’//: - T —— —— \\ ’_—Oﬁ_ _____
K = L RO+ L WRQA . (659) ¥ K} e
- - - N ” n 1 PR | L n Il n
K¢ Kl 0.51 5 10 20 40
kinetic energy of the kinetic energy of the M 1
longitudinal acoustic mode longitudinal vortical mode
1[® 31 (™ FIG. 8. (a) Acoustic and (b) vortical modes of the streamwise (K ) and transverse
Kr = —J VIP(O)AL +=>+ —J V2P({)d¢ . (65b) (Kr) components of the TKE amplification factor as a function of the pre-shock
20 4 2) Mach number A for B = 10°, 8, = 10, and f3, = 100 (lines colored by the

degree of dissociation; refer to Fig. 7 for a colorbar). Dashed lines correspond to
limit behavior of K| and Kt calculated using the asymptotic expressions (23) and
(24) for small and high Mach numbers, respectively.

4 v
Ky Ky
kinetic energy of the kinetic energy of the
transverse acoustic mode transverse vortical mode
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wrinkled shock (a)

vibrationally and chemically vibrationally and chemically

frozen gas frozen gas

wrinkled shock (b)

(p2) 11

dissociated gas . . .
vibrationally and chemically

in vibrational and chemical
frozen gas

equilibrium

FIG. 9. Schematics of the mechanism of TKE amplification for (a) thermochemically
frozen (i.e., diatomic calorically perfect) post-shock gas, and (b) thermochemically
equilibrated post-shock gas, both panels simulating the same pre-shock conditions.
The flow is from right to left. The magnitude of the shock displacement and velocity
perturbations has been exaggerated for illustration purposes.

independently of whether the gas is thermochemically frozen or equili-
brated. However, the thermochemistry influences (67) by flattening
the shock front (i.e., by decreasing O&/dy) while strongly decreasing
the mean post-shock velocity (1) = (u;)/R, with the latter effect
prevailing over the former. As a result, v, and its associated kinetic
energy Kr are larger relative to those observed in a diatomic calorically
perfect gas.

The TKE amplification, along with the aforementioned decrease
in the mean post-shock velocity (u,) caused by the thermochemical
effects, also leads to a strong amplification of the turbulence intensity
across the shock. Specifically, the ratio of post- to pre-shock turbulence
intensities

2 _ UWep / <M2>

=82 g2 68
7, u/,1/<ul> (68)
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is found to peak at the turning point of the Hugoniot curve
(0~0.7, 7 ~9, M; ~ 13, and R ~ 12) with a value Z,/Z, ~ 19,
as shown in Fig. 10(a). This is in contrast to the maximum value
T,/T, ~ 8 predicted by the theory of calorically perfect gases.
Although the theory presented above is formulated in the inviscid
limit, the ratio of post- to pre-shock turbulent Reynolds numbers

Rey  upply/v,  KY?2 2R* 41
A= | A-a— (69)
Regy  ugrlyi/vn T 3

is a finite quantity that can be calculated. In the last term of (69), the
use has been made of the fact that the only wavenumber, that is, dis-
torted through the shock is the longitudinal one, which changes from
k, in the pre-shock fluctuations to k,R in the post-shock ones. In
addition, the molecular viscosity is assumed to vary with temperature
raised to the power of 0.7.

Remarkably, the vortical post-shock fluctuations downstream of
the hypersonic shock are not only much more intense than those
upstream, but they also have a higher turbulent Reynolds number
Rey, > Reyy, as shown in Fig. 10(b). Similarly to the turbulence inten-
sities, the maximum ratio of turbulent Reynolds numbers across the
shock is reached at the turning point of the Hugoniot curve
(0~07,7 ~9, M; ~13, and R ~12) with a value of
Rey,/Repy =~ 5. In contrast, the theory of calorically perfect gases pre-
dicts an attenuation of the turbulent Reynolds number at those condi-
tions. When thermochemical effects are accounted for, the
amplification of the turbulent Reynolds number lasts until M, ~ 20,
beyond which the increase in post-shock temperature and the decrease
in post-shock density make Re;, /Rey; to plummet below unity.

In summary, the increase in transverse velocity fluctuations of the
vortical mode across the shock is responsible for the TKE amplification

20F  Dissociation () . (a)
150 1%
¢+ 99%
Lok
A N
£ i
T By = 00,00
——, L 1 L L
Ol 5 10 20 40
M,y
10¢ (b)
_________ * .
Rey ' o ~~_
Reg By — 00, = 0 \\~\\
0.1g ML
1
n n n L 1 1 L
001 5 10 20 40
M

FIG. 10. Amplification of (a) turbulence intensity and (b) turbulent Reynolds number
across the shock as a function of the pre-shock Mach number My for
B = 10°, f, =10, and B4 = 100 (lines colored by the degree of dissociation;
refer to Fig. 7 for a colorbar). The dashed lines correspond to the values of Z, /Z4
and Rey»/Rey 1 calculated assuming that the post-shock gas is thermochemically
frozen (i.e., diatomic calorically perfect).
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in this linear theory. In addition, the results indicate that the TKE is
more amplified when dissociation and vibrational excitation are
accounted for at high Mach numbers. In the conditions tested here, the
post-shock fluctuations resulting at hypersonic Mach numbers can be—
at most—19 times more intense and can have—at most—a five times
larger turbulent Reynolds number than the pre-shock fluctuations.

B. Amplifications of anisotropy, enstrophy, and

variances of density and degree of dissociation across
the shock

The weak isotropic turbulence in the pre-shock gas becomes
anisotropic as it traverses the shock wave. An anisotropy factor that
quantifies this change can be defined as®’

(@?) + (w?) —2(u?) _ 2Ky
ST @) Ktk 70)

with —1 <W < 1. The cases ¥ = —1 and 1 represent anisotropic
turbulent flows dominated by longitudinal and transverse velocity
fluctuations, respectively. In contrast, ¥ = 0 corresponds to an isotro-
pic turbulent flow, Ky = K = K. Figure 11 shows that dissociation
and vibrational excitation dissociation lead to larger anisotropy factors
in the post-shock gas compared to the thermochemically frozen
(diatomic calorically perfect) case in the relevant range of hypersonic
Mach numbers up to the fully dissociated gas limit.

The vortical motion downstream of the shock is quantified by
the enstrophy amplification factor

(W) + (o) +{02) 1 2
W=7 7 2N 3 + 3 Wi,
<0‘)x,1> + <UJ},‘1> + <wz,l>

(71)

1r
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0.75F ! Va—1
0.6 \
« \
=04 0\\
0.5r \
0.2 \
o \
-0 ﬁv — 00 \\
0.25- e = N
r e S
‘4 ~ -
,/ transversal fluctuations
/ dominate
O
N\ S streamwise fluctuations
dominate
_ . . L . L | L
0'251 5 10 20 40

My

FIG. 11. Anisotropy factor ¥ as a function of the pre-shock Mach number M for
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where the use of (59) and of the invariance of the normal vorticity
across the shock has been made. In (71), W is the enstrophy amplifi-
cation factor in the transverse direction

1 2(of) +H{ek)  R+3W,
e R Yre N N R 72
with
<w/22> ‘~oo 5 RZMZ P(C)
W,=—2=1| Q 2 d 73
2 v rey Ve A

being the amplification factor of the rms of the z—component of the
vorticity. Equation (73) includes the asymptotic amplitudes defined in

(55) and the relation
MERS /1 — M

3
2 [M%Rz + CZ(I o Mz)}7/2'

2

sin?0(0)P(() = (74)

The enstrophy amplification factor W is provided in Fig. 12 as a
function of the pre-shock Mach number. Similarly to Fig. 7 for K, the
curve of W displays two maxima, but the differences with respect to
the thermochemically frozen case are much larger for W. The first
peak of W is dominated by the increase in short-wavelength vorticity,
as shown in Fig. 6, and it represents an amplification of nearly four
times the enstrophy predicted by the theory of calorically perfect gases.

Whereas the pre-shock density is uniform because of the vortical
character of the incident modes, the density in the post-shock gas fluc-
tuates due to both acoustic and entropic modes generated by the shock

wrinkles. To investigate these fluctuations, we consider the normalized
density variance

e
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FIG. 12. Enstrophy W as a function of the pre-shock Mach number M for
B =10°%, B, =10, and 8, = 100 (line colored by the degree of dissociation).
Dashed lines correspond to limit behavior of W calculated using the asymptotic
expressions (23) and (24) for small and high Mach numbers, respectively.

B =10°% B, =10, and B, = 100 (line colored by the degree of dissociation).
Dashed lines correspond to limit behavior of W calculated using the asymptotic
expressions (23) and (24) for small and high Mach numbers, respectively.
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jo.0)

{pz) E(k)k*dk, 75)

(h3)
which depends on the integral of the energy spectrum E over the entire
wavenumber space. The prefactors G* and G° represent density-
variance components induced by acoustic and entropic modes, respec-
tively, and are given by

— (G + 6 JO

G" =K*, (76a)
1
6= (TM;2 = 1) | (I + TR)p(0)ac
0
+(IM? 1)’ r MEP()dC, (76b)
1

where the use of (51) has been made. Figure 13(a) shows that, while
the vortical fluctuations across the shock are increased by dissociation,
the density variance induced by the entropic mode is small for
M =10 but increases sharply thereafter up to M; ~ 19, where it
achieves a maximum value. As observed by comparing Figs. 8(b) and
13(a), the acoustic prefactor G” is found to be negligible compared to
the entropic one G°.

Whereas the Rankine-Hugoniot jump condition (39d) evalu-
ated at the turning point of the Hugoniot curve I' = 0 indicates that
the density fluctuations immediately downstream of the shock are
zero, the entropic prefactor in Fig. 13(a) at M ~ 13 (where I" van-
ishes) leads to a non-zero density variance. The two results can be
reconciled by noticing that the formulation in (76) and the approxi-
mation G° > G“ are applicable only to the far-field downstream of
the shock. In contrast, the acoustic mode needs to be retained near
the shock. Specifically, the post-shock density fluctuations in the
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of C1% \
sk © 99% AV
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FIG. 13. Entropic prefactors of (a) the post-shock density variance and (b) the post-
shock degree of dissociation as a function of the pre-shock Mach number A4 for
B = 10°, f, =10, and f; =100 (lines colored by the degree of dissociation;
refer to Fig. 12 for a colorbar). Dashed lines correspond to limit behavior of G°
calculated using the asymptotic expressions (23) and (24) for small and high Mach
numbers, respectively.
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near field vanish as I' — 0 because of a destructive interference
between the acoustic and entropic modes. In contrast, the entropic
mode dominates in the far field and leads to non-zero post-shock
density fluctuations.
The entropic component of the density variance engenders a var-
iance of the degree of dissociation given by
o0

(%) = AEJ E(k)K*dk, (77)

0

where

(o — )2 (1 + )
A = —G* (78)
(I4+o+ar)
is the corresponding prefactor. Figure 13(b) shows that A® attains a
maximum value at M, ~ 15, and becomes negligible both in the
absence of dissociation and when dissociation is complete.

V. CONCLUSIONS

The interaction between a hypersonic shock wave and weak iso-
tropic turbulence has been addressed in this work using LIA. Contrary
to previous studies of shock/turbulence interactions focused on calori-
cally perfect gases, the results provided here account for endothermic
thermochemical effects of vibrational excitation and gas dissociation
enabled by the high post-shock temperatures. Important approxima-
tions used in this theory are that the thickness of the thermochemical
non-equilibrium region trailing the shock front is small compared to
the characteristic size of the shock wrinkles, and that all fluctuations in
the flow are small relative to the mean.

The results presented here indicate that the thermochemical
effects act markedly on the solution in a number of important ways
with respect to the results predicted by the theory of calorically perfect
gases:

(a) Significant departures from calorically perfect-gas behavior
can be observed in the solution even at modest degrees of dis-
sociation of 1%, corresponding to Mach 5 and therefore to
the beginning of the hypersonic range. This is because the
associated bond-dissociation energies of typical molecules are
large. As a result, the chemical enthalpy invested in dissocia-
tion in the post-shock gas can easily surpass the pre-shock
thermal energy and become of the same order as the pre-
shock kinetic energy.

(b) A turning point in the Hugoniot curve is observed at approxi-
mately Mach 13 and 70% degree of dissociation that leads to
a significant increase of the mean post-shock density of
approximately 12 times its pre-shock value, which represents
nearly twice the maximum density jump predicted by the the-
ory of calorically perfect gases.

() The aerothermodynamic behavior of the post-shock gas
changes fundamentally around the turning point in the
Hugoniot curve. As the Mach number increases above 13,
positive fluctuations of streamwise velocity engender positive
pressure fluctuations in the post-shock gas that are accompa-
nied by negative density fluctuations. In this way, the local
post-shock density and pressure are anticorrelated, although
the shock remains stable to corrugations in all operating con-
ditions tested here.
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(d) The amplification of TKE is larger than that observed in calo-
rically perfect gases. Whereas the streamwise velocity fluctua-
tions across the shock are decreased, the transverse ones are
greatly increased (i.e, much more than in a diatomic calori-
cally perfect gas). This phenomenon can be explained in the
linear theory by using the conservation of tangential momen-
tum, which elicits larger transverse velocity fluctuations as a
result of the increase in post-shock density that occurs due to
dissociation and vibrational excitation. This effect also leads
to a much more significant increase of anisotropy and enstro-
phy across the shock than that observed in a diatomic calori-
cally perfect gas.

(e) Most of the amplified content of TKE is stored in vortical
velocity fluctuation modes in the post-shock gas. The trend of
the TKE amplification factor with the pre-shock Mach num-
ber is non-monotonic and involves two maximum values,
one equal to 2.1 at Mach 6 (corresponding to a degree of dis-
sociation of 5%), and a second one equal to 2.9 at Mach 19
(corresponding to a degree of dissociation larger than 99%).

(f) The turbulence intensity and turbulent Reynolds number
increase across the shock and reach maximum amplification
factors of 19 and 5, respectively, both occurring at the turning
point of the Hugoniot curve (Mach 13 and degree of dissocia-
tion of 70%). The maximum amplification factor of the tur-
bulence intensity is more than twice the one attainable in a
diatomic calorically perfect gas. The amplification of the tur-
bulent Reynolds number observed here is in contrast with the
attenuation predicted by the theory of calorically perfect gases
at hypersonic Mach numbers.

(g) The density variance in the post-shock gas is almost exclu-
sively generated by entropic modes radiated by the shock
wrinkles and nearly doubles the value predicted for calorically
perfect gases. Similarly, the shock front generates entropic
fluctuations of the concentration of atomic species that might
be relevant for applications in supersonic combustion if the
post-shock gas is going to be employed to oxidize the fuel."*”

The LIA predictions for the overall TKE amplification factor in
calorically perfect gases have been previously found to be in fair agree-
ment with numerical simulations’****" and experiments.
However, the way LIA predicts the amplified TKE to be partitioned in
the streamwise and transverse directions has not been as successful. In
particular, computational and experimental studies at supersonic
Mach numbers have often reported Reynolds stress tensors with domi-
nant streamwise contributions, this being an effect typically attributed
to convective non-linearities and molecular transport.”” Whether these
discrepancies subside or persist at hypersonic Mach numbers is an
open question of research.

The theoretical results provided here indicate amplified levels of
post-shock fluctuation energies that could perhaps be unexpected at
first, because of the high post-shock temperatures prevailing at hyper-
sonic Mach numbers. These findings would greatly benefit from com-
parisons with simulations and experiments in future studies.

This theory could be extended to include additional phenomena
such as: (a) non-equilibrium vibrational relaxation and finite-rate dis-
sociation;'®”” 7 (b) multi-component gas mixtures (particularly O,
and N, for shock/turbulence interactions in air); (c) compressibility
and anisotropy in the pre-shock turbulence; (d) the effects of walls
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downstream of the shock to address modal resonance in high-
temperature inviscid shock layers around hypersonic projectiles; and
(e) electronic excitation, radiation, and ionization in the post-shock
gas for hypersonic flows at orbital stagnation enthalpies.
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