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A three-dimensional wavelet multi-resolution analysis of direct numerical simulations
of a turbulent premixed flame is performed in order to investigate the spatially
localized spectral transfer of kinetic energy across scales in the vicinity of the
flame front. A formulation is developed that addresses the compressible spectral
dynamics of the kinetic energy in wavelet space. The wavelet basis enables the
examination of local energy spectra, along with inter-scale and subfilter-scale (SFS)
cumulative energy fluxes across a scale cutoff, all quantities being available either
unconditioned or conditioned on the local instantaneous value of the progress variable
across the flame brush. The results include the quantification of mean spectral values
and associated spatial variabilities. The energy spectra undergo, in most locations
in the flame brush, a precipitous drop that starts at scales of the same order as
the characteristic flame scale and continues to smaller scales, even though the
corresponding decrease of the mean spectra is much more gradual. The mean
convective inter-scale flux indicates that convection increases the energy of small
scales, although it does so in a non-conservative manner due to the high aspect
ratio of the grid, which limits the maximum scale level that can be used in the
wavelet transform, and to the non-periodic boundary conditions, which exchange
energy through surface forces, as explicitly elucidated by the formulation. The mean
pressure-gradient inter-scale flux extracts energy from intermediate scales of the same
order as the characteristic flame scale, and injects energy in the smaller and larger
scales. The local SFS-cumulative contribution of the convective and pressure-gradient
mechanisms of energy transfer across a given cutoff scale imposed by a wavelet filter
is analysed. The local SFS-cumulative energy flux is such that the subfilter scales
upstream from the flame always receive energy on average. Conversely, within the
flame brush, energy is drained on average from the subfilter scales by convective
and pressure-gradient effects most intensely when the filter cutoff is larger than the
characteristic flame scale.
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1. Introduction
The overall structure and dynamics of premixed flames are strongly altered by

the presence of turbulence, particularly at high intensities, giving rise to a wealth of
complicated phenomena such as front corrugations, unsteady flame stretch, chaotic
pulsations, flame broadening and broken reaction layers. Characteristic regime
diagrams, for instance, are attempts to estimate these changes in terms of global
non-dimensional parameters such as the Reynolds, Karlovitz and Damköhler numbers
(Peters 2000), but such approaches provide only order-of-magnitude descriptions
of how turbulence and flames interact. In contrast, effects of premixed flames on
turbulence in the surrounding gas have traditionally received much less attention.

Thermal expansion from chemical reactions leads to hydrodynamic coupling with
the ambient turbulence in a complex manner that is difficult to quantify, partly
because of the challenge associated with conceptualizing turbulence physics far from
the homogeneous, isotropic and solenoidal conditions that dominate classic turbulence
theories (Batchelor 1959). In turbulent premixed combustion, depending on the
characteristic regime associated with the prevailing values of the non-dimensional
parameters of the configuration, the spatial scales at which the chemical heat is
released may range from the inertial subrange to thin layers embedded in Kolmogorov
eddies.

Theoretical analyses of multi-scale interactions in turbulent premixed flames become
rapidly intractable due to several factors, including complex chemical-kinetic and
transport effects, the associated challenges of performing Fourier spectral analyses
in such strongly inhomogeneous and anisotropic flows, and complications due
to order-unity density variations. One relevant theoretical analysis of this type
was made by Aldredge & Williams (1991) for single-step chemical kinetics in a
transverse-periodic configuration similar to the one treated computationally in this
study (i.e. see figure 1 and § 2 for details), but it was limited to weak turbulence
passing through a thin flame, as in the wrinkled-flamelet regime. In that limit, the
turbulence intensity is small and the eddy turnover time is much larger than the
flame-transit time. As a consequence, to first order, the problem admits a linearized
solution that describes the rapid straining of eddies as they pass across the thin flame,
with the nonlinear convective dynamics required for inter-scale energy transfer and
combustion-induced backscatter becoming higher-order effects that are not essential
to the interaction (O’Brien et al. 2017). More recently, Fourier-based computational
analyses of energy transfer in flames subjected to stronger turbulent intensities have
also rendered useful information about the scales participating in energy fluxes,
including backscatter (Kolla et al. 2014; Towery et al. 2016).

In most configurations, Fourier analyses of turbulent premixed flames require
transformation into spectral space of the flow variables along homogeneous planes
parallel to the mean flame front. However, because of the instantaneous corrugations
of the flame, both unburnt and burnt gases tend to simultaneously be captured in
the Fourier-transformed fields and therefore both participate in the overall spectral
dynamics across the front with individual contributions that cannot be easily separated.
Given the instantaneous spatial localization of the chemical heat release, perhaps a
more convenient approach is to analyse multi-scale interactions at specific locations
within the flame, as characterized, for instance, by the local instantaneous value of a
progress variable.

An increased degree of spatial localization of the spectral dynamics is enabled
by the wavelet transform (Grossmann & Morlet 1984; Mallat 1989, 2008), which
has been used previously as a diagnostic tool to characterize structural aspects of
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FIGURE 1. Instantaneous DNS snapshot of the flow field for the case parameters described
in table 1, including progress-variable C isosurfaces near the front along with contours of
the vorticity magnitude (ωiωi)

1/2. The streamwise length of the visualization domain shown
here is one quarter of the full computational domain. The symbols δL and ` correspond
to the laminar flame thickness and integral length respectively.

incompressible turbulent flows (Meneveau 1991; Farge 1992; Brasseur & Wang
1995; Dunn & Morrison 2003; Ruppert-Felsot, Farge & Petitjeans 2009; Schneider
& Vasilyev 2010; Bassenne et al. 2017; Urzay, Doostmohammadi & Yeomans 2017).
However, although concepts exist for using wavelets to numerically solve chemically
reacting flows by exploiting their automatic grid adaptation and compression
capabilities (Bockhorn, Froölich & Schneider 1999; Prosser & Cant 2011; Jones
& Lichtl 2015), they appear to have never been deployed for the fundamental task of
investigating multi-scale transfer of energy in turbulent flames, the latter representing
the central subject of this study.

In this investigation, a three-dimensional (3D) discrete wavelet multi-resolution
analysis of direct numerical simulations (DNS) of a turbulent premixed flame
is performed, with a focus on quantifying the transfer of kinetic energy across
scales. The computational set-up involves a premixed flame propagating in forced
homogeneous–isotropic turbulence along an unconfined domain with periodic
boundary conditions on the transverse directions, as shown in figure 1. A Cartesian
coordinate system {x1, x2, x3} is defined in which x3 is aligned with the streamwise
direction pointing towards the products. The discrete wavelet multi-resolution
algorithm by Mallat (1989) is employed to wavelet-transform the numerical results.
A spectral analysis is performed based on extending the wavelet-based energetics
formulation for incompressible flows in Meneveau (1991) to chemically reacting
compressible flows. Besides examining the energy spectra, an analysis of inter-scale
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Local multi-scale energy transfer in turbulent premixed flames 81

and subfilter-scale (SFS) cumulative energy fluxes is performed, including the
calculation of statistics of those quantities conditioned on the local instantaneous
progress variable. In particular, the inter-scale flux describes the rate at which energy
is injected or drained from a given scale at a given spatial location. Conversely,
the SFS-cumulative flux corresponds to the overall transfer of energy crossing a
given scale cutoff at a given region of space, with all smaller scales embedded in
that region being used for the computation of the transfer rate. In the results, the
focus is on energy fluxes related to the convection and pressure-gradient mechanisms
of momentum transport because of their relevance for subgrid-scale energetics in
turbulent premixed flames (O’Brien et al. 2017).

The remainder of this paper is organized as follows. The DNS computational
set-up is characterized in § 2. The wavelet multi-resolution framework is summarized
in § 3. A formulation to examine energy transfer in wavelet space for compressible
turbulent flows is provided in § 4. Unconditioned statistics for energy spectra and
inter-scale fluxes are described in § 5. A method for conditioning the statistics on
the local instantaneous progress variable is introduced in § 6. Using this method,
progress-variable-conditioned statistics are provided in § 7 for energy spectra and
inter-scale fluxes, and in § 8 for the SFS-cumulative fluxes. Lastly, conclusions are
provided in § 9. Four appendices are included which contain supplementary definitions
for the wavelet formulation (appendix A), describe the boundary conditions employed
in the wavelet transform (appendix B), provide a formulation of large-scale energy
fluxes (appendix C) and illustrate the collapse of the wavelet energetics formulation
on well-known energy balance equations for compressible turbulent flows in triply
periodic domains (appendix D).

The main emphasis of this study is on turbulent premixed combustion. However, it
is worth mentioning that the resulting formulation of the energetics in wavelet space is
also applicable for the analysis of multi-scale energy transfer in other variable-density
flows unrelated to combustion. These include, for instance, general compressible
turbulent flows, such as shock–turbulence interactions, or two-phase turbulent flows
where each phase is incompressible but they have different densities.

2. Computational set-up
The formulation of the problem solved here is described elsewhere (Towery et al.

2016; O’Brien et al. 2017). In short, the numerical code is the finite-volume one
described in Poludnenko & Oran (2010) and integrates the unsteady compressible
chemically reacting Navier–Stokes conservation equations for mass, momentum,
species and total energy for a mixture of perfect gases. The dynamic viscosity, thermal
conductivity and mass diffusivity follow temperature power laws with exponent 0.7.
The chemical-kinetic description consists of a single-step irreversible Arrhenius
reaction where the reactant mass fraction is denoted as Y . In the following, however,
use of the progress variable C= 1− Y is made, with C= 0 on the reactant side and
C= 1 on the product side.

The physical and computational parameters of the simulations are summarized in
table 1. In the notation, the turbulence intensity u`/SL, Karlovitz number Ka = tL/tk
and Taylor–Reynolds number Reλ = u`λ/νu, are based on the integral velocity u`,
the laminar flame speed SL, the Taylor scale λ and the flame-transit time tL = δL/SL,
where δL is the laminar flame thickness, and tk and νu are the Kolmogorov time and
kinematic viscosity on the reactant side respectively.

The computations are carried out on a uniform Cartesian grid of N ′t × N ′t × N ′l =
512 × 512 × 8192 elements in the x1, x2 and x3 directions respectively (see figure 1
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82 J. Kim and others

Parameter Description Value

u`/SL Turbulence intensity 7.8
Ma Mach number 0.1
Reλ Taylor–Reynolds number 147.1
Da Damköhler number 0.3
Ka Karlovitz number 71.9
Le Lewis number 1.0
τ Heat-release parameter 0.87
β Zel’dovich number 5.7

L1/δL Computational domain side length/flame thickness 8
L3/δL Computational domain streamwise length/flame thickness 128
L1/` Computational domain side length/integral length 3.4
L3/` Computational domain streamwise length/integral length 54
δL/∆ Number of cells per flame width 64
`k/∆ Number of cells per Kolmogorov length (unburnt gas) 1
`k/∆ Number of cells per Kolmogorov length (burnt gas) 13
N ′t ×N ′t ×N ′l Number of grid cells used for simulations 512× 512× 8192
Nt ×Nt ×Nl Number of grid cells used for wavelet analysis 512× 512× 2048

TABLE 1. Physical (top) and computational (bottom) parameters of the simulations.

for axis orientation). In this notation, N ′t and N ′l refer to the numbers of elements
of the simulation grids in the spanwise and streamwise directions respectively. For
the wavelet analysis described below, a portion of the simulation grid is used that is
smaller in the streamwise direction and contains Nt × Nt × Nl = 512 × 512 × 2048
elements, where the absence of primes in the notation distinguishes these numbers of
elements from those used in the simulations. The wavelet-analysis grids move with the
flame in such a way that they are centred around the streamwise location where the
instantaneous spanwise-averaged progress variable reaches C = 0.5. In addition, their
boundaries are always located at least 1000 grid points away from the true simulation
boundaries in the x3 direction. The number of grid points of these shortened grids
in the streamwise direction, Nl = 2048, ensures that the spanwise-averaged progress
variable ranges at least from C = 0.005 to 0.995 within the domain dedicated to the
wavelet analysis.

The width of the computational domain used for the simulations is L1/δL= L2/δL=

8, while its length is L3/δL = 128. This grid resolution provides 3.4 and 54 integral
lengths in the spanwise and streamwise directions respectively. The minimum grid
spacing ∆ is comparable to the Kolmogorov length on the reactant side, `k/∆ = 1.
In the burnt gases, the effective resolution increases as a result of the increase in
kinematic viscosity with temperature, which yields `k/∆= 13 there. Additionally, the
flame thickness is resolved with 64 grid points across.

The boundary conditions in the x1 and x2 directions are periodic. The boundaries
in the x3 direction are periodic prior to the establishment of the premixed flame.
Extrapolation boundary conditions are used thereafter, in which the variables in the
cell adjacent to the boundary are copied into the four ghost cells beyond the boundary.
In practice, this allows gases to flow into and out of the domain without causing a
build-up of pressure (Poludnenko 2015).

The simulations are initialized as follows. First, in the absence of combustion,
forced turbulence is allowed to develop everywhere in the computational domain for
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Local multi-scale energy transfer in turbulent premixed flames 83

a duration of 6t`, where t` = `/u` is the integral time. After the initial transient, a
planar laminar flame is inserted in the simulation domain and is allowed to develop
for another 6t`, during which transition to a fully turbulent reacting regime occurs,
with 15 three-dimensional solution snapshots recorded thereafter during a time interval
of approximately 3t`. All spectral statistics shown below are ensemble-averaged over
this sampling time interval, during which the solutions are relatively stationary. The
turbulence is sustained through a solenoidal isotropic forcing term in the momentum
equation that remains active for the remainder of the simulations. This term only acts
upon the largest scales and its details can be found elsewhere (Poludnenko & Oran
2010). It should be noted that the kinetic energy of unforced turbulence would have
otherwise decayed by a factor of order unity after approximately one flame-transit
time, as prescribed by the relatively low Damköhler number Da= t`/tL=0.3 employed
here.

In table 1, additional parameters participating in the simulations are the unity
Lewis number of the reactant Le = DT,u/DF,u based on the thermal DT,u and mass
DF,u diffusivities on the unburnt side, the Mach number Ma = SL/au based on the
speed of sound on the reactant side au, the heat-release parameter τ = (Tb − Tu)/Tb
based on the temperatures on the burnt Tb and unburnt Tu sides of the flame, and the
Zel’dovich number β = τTa/Tb based on the activation temperature Ta. The value of
the heat-release parameter τ indicates that the temperature increases by a factor of
approximately 7, which leads to a 28-fold increase in the kinematic viscosity on the
burnt side of the flame. In addition, the Mach number is necessarily a small parameter
in premixed flame propagation, as required by the many molecular collisions needed
to release chemical heat, while β is a moderately large parameter, as typically occurs
in combustion processes which tend to involve exothermic chemical reactions with
large energy barriers.

The numerical integrations based on the aforementioned computational set-up
yield the flow fields shown in figure 1 for the set of characteristic parameters given
in table 1. In the visualizations, it is important to notice that the flame thickness
δL = 0.42` is located at intermediate eddy scales that could be associated with
an inertial subrange. In principle, the resulting combustion regime corresponds to
the thin-reaction zones (Peters 2000), although the simulation results do not show
significant flame broadening.

The flow field upstream of the flame is characterized in figure 1 by the contours of
the vorticity magnitude, showing a wide range of eddy scales. As the flame propagates
into the upstream turbulence, it becomes highly corrugated across wavelengths that
span from the integral length ` to smaller lengths observed on the cold edge of
the preheat zone. The flame front ceases to be a well-defined one to become a
highly contorted structure that simultaneously extends up to long distances upstream
and downstream from its mean streamwise position, including long tongues of
reactant penetrating far downstream. Detailed analyses of turbulent-flame dynamics in
similar configurations are available elsewhere (Poludnenko & Oran 2010; Hamlington,
Poludnenko & Oran 2011).

In the context of the Fourier analyses discussed in § 1, the large departures from
a planar front found in these simulations lead to conceptual difficulties in deploying
Fourier transforms along spanwise planes to study energy-transfer dynamics, since
the front becomes highly delocalized in the streamwise coordinate. As a result, each
x3 slice tends to be well populated with both burnt and unburnt gases. Conversely,
wavelet methods circumvent this problem, with some limitations, by enabling the
localization of the spectral analysis along the contorted front, as shown below.
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3. Wavelet formulation
Consider a general 3D scalar field y (e.g. the progress variable C or one component

of the velocity ui or vorticity ωi), described in physical space by its pointwise values
at cell-centre locations

x0 = (i∆, j∆, k∆) (3.1)

of the primitive grid Nt×Nt×Nl used for the wavelet analysis, which corresponds to
a subset of the DNS grid that has the same resolution ∆ as described in § 2 and where
i= 1/2, 3/2, . . . ,Nt − 1/2, j= 1/2, 3/2, . . . ,Nt − 1/2 and k= 1/2, 3/2, . . . ,Nl − 1/2
are the spatial index positions. The dependence of y on time t will be omitted for
brevity. The expansion of y in a fully discrete 3D wavelet series is

y[x0] =

S∑
s=1

∑
xs

7∑
d=1

y∧(s,d)[xs]G(s,d)[x0 − xs] +
∑
xS

y
∧(S)
[xS]H(S)

[x0 − xS]. (3.2)

The discrete wavelet representation (3.2) is a particular choice for the notation that
is convenient here because of the numerical data emerging from the simulations.
Alternative representations, including formally equivalent semi-discrete wavelet
formulations, could have also been employed without any loss of generality by
performing minimal modifications of the notation. In this formulation, G(s,d)[x0 − xs]

and H(S)
[x0 − xS] are 3D multiplicative combinations of the one-dimensional (1D)

discrete orthonormal wavelet basis and scaling functions. The wavelets are collocated
at a given scale s in scale-dependent grids denoted by xs = 2s−1(i∆, j∆, k∆). These
are grids of size Ns = Nt/2s

× Nt/2s
× Nl/2s, with i = 1, 3, 5, . . . , Nt/2s−1

− 1,
j = 1, 3, 5, . . . , Nt/2s−1

− 1 and k = 1, 3, 5, . . . , Nl/2s−1
− 1. Additionally,

d = (1, 2, . . . , 7) is a wavelet-directionality index and s = (1, 2, . . . , S) are
scale exponents, with S = log2 Nt = 9 the maximum number of resolution levels
allowed by the grid in these simulations. In the present configuration, x1 is a grid
of 256 × 256 × 1024 ' 67 000 000 elements, while xS has 1 × 1 × 4 = 4 elements.
A simpler example of the wavelet-collocation grids xs resulting from the wavelet
multi-resolution framework is provided in figure 2 for a coarser grid that nonetheless
has the same aspect ratio as the one used in these simulations. For completeness,
basic relations between discrete wavelet representations and the more traditional
continuous ones, including definitions of G(s,d)[x0 − xs] and H(S)

[x0 − xS] along with
derivations of relevant orthonormality conditions, are provided in appendix A.

In (3.2), the symbol y∧(s,d) represents a set of (N3
t − 1)Nl/Nt ' 537 000 000 wavelet

coefficients, whose expression is obtained by multiplying (3.2) by G(s′,d′)[x0 − xs′],
summing over x0 and making use of the following orthonormality conditions in the
discrete wavelet representation:∑

x0

G(s,d)[x0 − xs]G(s
′,d′)
[x0 − xs′] = δs,s′δd,d′δxs,xs′

(3.3)

and ∑
x0

G(s,d)[x0 − xs]H(S)
[x0 − xS] = 0, (3.4)

which yield
y∧(s,d)[xs] =

∑
x0

y[x0]G(s,d)[x0 − xs], (3.5)
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A

A

B

B

fluctuation decomposed into wavelet modes
fluctuation absorbed into the large-scale velocity field

Primitive grid

Wavelet grids

¶ 1
 =

 2
Î

¶ 2
 =

 4
Î

¶ 3
 =

 8
Î

¶ 4
 =

 1
6Î

FIGURE 2. Lateral view of wavelet-collocation grids xs for each decomposition level
s in the wavelet multi-resolution framework, illustrated for a simpler primitive grid x0
of Nt × Nt × Nl = 16 × 16 × 64 elements in the x1, x2 and x3 directions respectively.
The maximum wavelet-decomposition level allowed by the grid in this example is S =
log2 16 = 4. Schematics of fluctuations A (of size smaller than or equal to `S and that
can be decomposed into wavelets) and B (of size larger than `S and that are absorbed
into the large-scale field) are sketched in the bottom panel.

where δij is the Kronecker delta. In this study, the orthonormal basis functions
G(s,d)[x0 − xs] are constructed based on integrals of products of 1D Daubechies-4
(db-4) wavelets and scaling functions (Daubechies 1992), as described in appendix A.
The wavelet coefficients are calculated using the recursive algorithm in the discrete
multi-resolution analysis framework described by Mallat (1989), in which y[x0] is
employed as the approximation coefficient at the zeroth (grid-resolution ∆) scale
(Meneveau 1990; Addison 2002). Further assessments of this approximation, which
is convenient when the exact continuous fields are unavailable, can be found in
reference textbooks (Strang & Nguyen 1996).

Because of the cuboidal shape of the wavelet-analysis grid in the streamwise
direction, the 3D wavelet decomposition is only made up to the spanwise length
of the grid L1 = L2 = N ′th = Nth in its present form (3.2). This maximum length
corresponds to the level s = S = 9. As a result, the second term on the right-hand
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side of (3.2), redefined as

y[x0] =
∑
xS

y
∧(S)
[xs]H(S)

[x0 − xs], (3.6)

refers to the physical-space representation of the leftover portion of the field y[x0]

obtained after the inverse transformation of the wavelet coefficients y∧[xs] up to the
spanwise domain length. It is written in terms of the approximation coefficients

y
∧(S)
[xS] =

∑
x0

y[x0]H(S)
[x0 − xS], (3.7)

which have been obtained by multiplying (3.2) by H(S)
[x0 − x′S], summing over x0

and making use of the orthogonality condition (3.3) along with the relation∑
x0

H(S)
[x0 − xS]H(S)

[x0 − x′S] = δxS ,x′S . (3.8)

In this study, y
∧(S)
[xs] is defined on a grid xS similar to the one in the bottom panel

of figure 2. In the present configuration, the second term on the right-hand side of
(3.2) translates into a 1D distribution y[x0] given by (3.6), whose variations occur
solely in the x3 direction, and which represents an average-like profile of y[x0] in the
following sense. For Haar wavelets, y[x0] has the shape of a staircase profile with
four steps, each step corresponding to the spatial average of y[x0] on each of the cells
in the bottom panel of figure 2 as a result of the box-filtering implied by the Haar
scaling functions. For the db-4 wavelets employed in this study, the profile of y[x0] is
smooth and can be interpreted as a large-scale filtered version of y[x0] with a different
3D filter kernel that corresponds to the db-4 scaling function (Daubechies 1992) and
whose width is of the same order as the spanwise length of the computational domain.

The characteristic size of the spatial support of the wavelet basis functions can be
ascribed to a representative wavenumber

κ = 2π2−s/∆, (3.9)

or, equivalently, to a length scale

`s = 2π/κ = 2s∆. (3.10)

Using these expressions, the wavenumber κ and the scale exponent s can be used
interchangeably in the formulation. Alternative expressions exist for κ that include
an order-unity prefactor corresponding to the normalized centroid wavenumber of the
particular wavelet family (Schneider & Vasilyev 2010; Bassenne et al. 2017), and
which is set to unity here for simplicity.

As indicated in (3.10), the smallest and largest length scales of the structures
supported in wavelet space are `1 = 2∆ (i.e. `1 = 2`k) and `S = L1 = L2 = Nth
(i.e. `S = 512`k) respectively, which correspond to maximum and minimum
wavenumbers κ1 = 2π/`1 and κS = 2π/`S . In these simulations, the laminar flame
thickness δL is chosen such that δL = 26∆, as indicated in table 1. In this way, using
(3.10), δL corresponds to the scale index s= 6, whose representative wavenumber is
κ = 2π/δL.
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3.1. Effects of the uncertainty principle on the localization of spectral statistics in
the flame front

The discrete wavelet transformation of y[x0] given by (3.5) corresponds to a band-pass
filtering operation that ensures absence of redundancy when the inverse transform
(3.2) is employed to recover the original field from the filtered one. As described
above, the operation involves a multi-resolution algorithm described by Mallat (1989),
in which the wavelet coefficients y∧(s,d)(xs) are defined on wavelet-collocation grids
xs whose resolutions δxs = `s are increasingly coarser than that of the primitive grid
x0 as the wavenumber (3.9) decreases (see figure 2), with a proportionality rule that
ensures a constant product of spatial and spectral resolutions as follows. The discrete
wavenumber increment δκ at each scale is proportional to the wavenumber itself,
namely

δκ = κ ln 2=
2π ln 2
δxs

, (3.11)

as is easily observed by differentiating (3.9) and using (3.10). In this way, the larger
the wavenumber κ is, the smaller the length scale `s associated with it is and the wider
the effective wavenumber band δκ to which that scale belongs is, in a fashion that
is reminiscent of Lumley’s eddy concept (Tennekes & Lumley 1972), in that smaller
eddies tend to be increasingly more broadband.

A consequence of (3.11) is that, in the wavelet framework, large wavenumbers
are associated with low spectral resolution and high spatial localization. Conversely,
small wavenumbers involve high spectral resolution but little spatial localization. This
effect limits the computation of spatially localized spectral dynamics and is known as
the uncertainty principle from signal-processing theory (Mallat 2008). This principle
states that infinite spectral and spatial resolutions are not simultaneously attainable, but
rather their product must be equal to or larger than a constant. It should be noted that
this constraint affects localization in physical space, x0, as well as in progress-variable
space, since both are mapped according to C = C[x0] as resulting from the solution
of the conservation equations and the associated boundary conditions. It is worth
emphasizing that this constraint applies to all other known spectral approaches that
could have been undertaken, including Fourier-based spectral analyses (Towery et al.
2016) and alternative techniques for extracting scale information using physical-space
filters (O’Brien et al. 2014a,b, 2017).

Based on the considerations given above, it is clear that the answer to the question
addressed here, namely that of quantifying the spectral dynamics conditioned on the
spatial location or progress variable near the flame front, is fundamentally limited by
the impossibility of withdrawing high-resolution information simultaneously in both
spectral and physical spaces. In particular, the spectral characterization of narrow
spatial regions, such as flame fronts, is bound to become spectrally leaky at large
wavenumbers and spatially delocalized at small wavenumbers.

This limitation is consistent with the following physical observations. First, small
eddies are compact in space and, correspondingly, necessarily more difficult to
characterize spectrally. Second, the spatial region occupied by an eddy increases
with the eddy characteristic size, which, in this particular problem, translates into
an increasingly larger bandwidth of values of the progress variable spanned by the
eddy. As a result, the spectral dynamics of large eddies are necessarily associated
with large spatial regions and wide ranges of the progress variable (i.e. see § 6
for the progress-variable-conditioning methodology that directly emerges from this
discussion).
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The discrete db-4 wavelets are employed here as a compromise solution to
counterbalance the larger amount of spectral leakage that would otherwise be observed
at high wavenumbers had more spatially localized wavelet families such as Haar been
used. Nonetheless, the compromise solution is achieved at the cost of reducing
the spatial localization of the spectra at high wavenumbers, even though the db-4
wavelets still provide significantly higher spatial localization than the fully delocalized
high-spectral-resolution Fourier basis.

4. Compressible energy conservation equations in wavelet space

The construction of a suitable spectral kinetic energy in compressible turbulent
flows is not straightforward. For instance, in contrast to incompressible flows,
the Fourier-based spectral kinetic energy obtained by simply multiplying the
Fourier-transformed velocity by its conjugate renders a transport equation in which
the triadic flux originated from convection is no longer conservative, even in the
case of triply periodic flows. A similar problem is encountered in wavelet space, in
that the multiplication of the wavelet-transformed velocity by itself corresponds to
a spectral kinetic energy whose transport equation contains a convective flux that is
not conservative when compressibility is brought into effect. This detracts from the
usefulness of those definitions of the spectral kinetic energy, since the conservative
properties of the convective flux are central to the concept of energy transfer across
the turbulence cascade.

Elaborate spectral descriptions of compressible turbulent flows in Fourier space exist
under the framework of Craya–Herring, Helmholtz or Moyal’s decompositions of the
velocity field into solenoidal and irrotational components by convenient projections of
the velocity field onto parallel and perpendicular directions to the wavenumber vector
(Moyal 1952; Craya 1958; Sagaut & Cambon 2008; Pouransari et al. 2017). The
pursuit of these classic alternatives in spectral space, however, offers no advantage
with the types of wavelet bases regularly employed in turbulent flow analyses, in that
the solenoidal or irrotational conditions do not translate into any useful relationship
for the wavelet-transformed velocity field. More complex representations involving
bi-orthogonal wavelets are, however, available that enable a Craya decomposition
(Deriaz, Farge & Schneider 2010), although these are not amenable to multi-resolution
analyses of the type discussed in this study. Additionally, alternative methods for
Fourier space include recent redefinitions of the spectral energy tensor based on
a density-weighted two-point correlation tensor (Kolla et al. 2014), although such
exploitation of the fundamental Fourier-transformation-pair relation between both of
those modified quantities does not appear to be easily translatable into wavelet space.
It should therefore be emphasized that the present problem lends itself to various
ways of constructing a spectral kinetic energy, each leading to different definitions
of the energy spectra and energy-transfer fluxes, and correspondingly engendering
potentially different results.

The approach followed in this study is a simpler one inspired by that originally
developed for Fourier space by Kida & Orszag (1990), defining the spectral
kinetic energy as the product of the Fourier transform of ρ1/2ui by its conjugate.
This approach leads to a positive spectral energy, satisfies the conservation of
convective flux in triply periodic domains and has been followed in subsequent
Fourier spectral analyses of compressible turbulence (Livescu, Jaberi & Madnia 2002;
Wang et al. 2013). Nonetheless, it is not exempt from caveats, since it prolongs
the interaction range of the viscous energy-transfer terms across an extended interval
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Local multi-scale energy transfer in turbulent premixed flames 89

of wavenumbers due to multi-scale dynamics introduced by the premultiplying density
terms (Aluie 2013).

The present study employs a wavelet-based spectral kinetic energy equivalent to
that of Kida & Orszag (1990), which is also subject to a convective inter-scale
flux that becomes conservative in both constant- and variable-density triply periodic
turbulent flows, thereby enabling a consistent collapse of the wavelet-based spectral
kinetic-energy equation on a well-known physical-space counterpart, as shown below.
The resulting formulation is significantly more involved than the incompressible one
derived by Meneveau (1991), and also incorporates modifications required by the
non-unity grid aspect ratio employed in the present simulations.

Before introducing additional considerations about the kinetic energy, it is worth
mentioning that, because of the orthogonality conditions (3.3)–(3.4) and the relation
(3.8), the spatially averaged product of any two functions, for instance y[x0] and z[x0],
satisfies Plancherel’s formula

〈y[x0]z[x0]〉x0 =

S∑
s=1

2−3s

〈
7∑

d=1

y∧(s,d)[xs]z
∧(s,d)
[xs]

〉
xs

+ 2−3S
〈y
∧(S)
[xS]z

∧(S)
[xS]〉xS . (4.1)

In this formulation, the bracketed operator 〈〉x0 applied to an arbitrary function,
e.g. 〈y[x0]〉x0 =

∑
x0

y[x0]/(N2
t Nl), denotes the global volume average of that function

in the primitive DNS grid x0. Similarly, 〈y[xs]〉xs =
∑

xs
23sy[xs]/(N2

t Nl) indicates
spatial averaging of the function over all positions of the wavelet-collocation grid xs.

A volume-averaged kinetic energy K can be introduced by conveniently defining the
functions y and z in (4.1). Consider, for instance, y[x0] = z[x0] =Ui[x0], where

Ui[x0] = ρ
1/2
[x0]ui[x0] (4.2)

is proportional to the momentum divided by the square root of the density ρ. With
this definition, (4.1) becomes

K = 1
2 〈ρ[x0]ui[x0]ui[x0]〉x0 =

1
2 〈Ui[x0]Ui[x0]〉x0 = k+ k, (4.3)

with

k=
1
2

S∑
s=1

2−3s

〈
7∑

d=1

U
∧(s,d)

i [xs]U
∧(s,d)

i [xs]

〉
xs

(4.4)

as the volume-averaged kinetic energy of the turbulence fluctuations associated with
scales `6 `S , which are represented by the decomposition of Ui into wavelet modes,
and

k= 1
2 2−3S

〈U
∧(S)

i [xS]U
∧(S)

i [xS]〉xS (4.5)

as the volume-averaged kinetic energy associated with the large-scale motion ` > `S .
The two energy components, k and k, define the corresponding kinetic energies in
wavelet space, namely

e∧(s)[xs] =
1
2

7∑
d=1

U
∧(s,d)

i [xs]U
∧(s,d)

i [xs], (4.6)

representing the local spectral kinetic energy of the turbulent fluctuations at scales
`6 `S , and

e
∧(S)
[xS] =

1
2 U
∧(S)

i [xS]U
∧(S)

i [xS], (4.7)
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referring to the local kinetic energy of the motion at scales ` > `S in wavelet space,
with

k=
S∑

s=1

2−3s
〈e∧(s)[xs]〉xs (4.8)

and
k= 2−3S

〈e
∧(S)
[xS]〉xS (4.9)

being satisfied by construction.
The bottom panel of figure 2 shows schematically both types of physical

fluctuations mentioned above. They consist of (A) fluctuations with `6 `S that can be
decomposed into wavelet modes and therefore contribute to the spectral kinetic energy
e∧(s) and its corresponding physical-space representation k and (B) fluctuations that
cannot be decomposed under the present algorithm since they have ` > `S and fall
into the large-scale energy e

∧(S) and its corresponding physical-space representation k.
It is shown below that, in clear parallelism with large-eddy simulation formalisms, the
large-scale field can inject or drain energy from the wavelet-decomposed fluctuations
depending on the configuration, particularly in problems subject to non-periodic
boundary conditions or in cuboidal computational domains where there is energy
associated with the motion at scales larger than the domain width, with the present
computational set-up satisfying both conditions.

Conservation equations for e∧(s)[xs] and e
∧(S)
[xS] can be derived in the following

manner. Consider the mass and momentum conservation equations

∂ρ

∂t
+

∂

∂xi
(ρui)= 0, (4.10)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
=−

∂P
∂xi
+
∂τij

∂xj
+ ρFi, (4.11)

where xi (i = 1, 2, 3) are continuous spatial coordinates, Fi is a forcing term and
P is the pressure. It should be noted that the numerical results presented below are
obtained with P being the thermodynamic pressure, as explained in § 2. However, this
formulation can be easily rewritten in terms of a hydrodynamic pressure in treatments
that exploit the low Mach numbers typically associated with premixed flames and
other low-speed variable-density flows. In (4.11), τij = 2µSij + (µv − 2µ/3)∆vδij is
the viscous stress tensor, with ∆v = Sii being the flow dilatation, Sij= (1/2)(∂ui/∂xj+

∂uj/∂xi) the strain-rate tensor, µ the dynamic viscosity and µv the bulk viscosity. In
these simulations, µv=µ is employed following approximately the values reported for
nitrogen at low to moderate temperatures in figure 2 in Cramer (2012). The continuity
equation (4.10) can be recast into the form

∂

∂t
(ρ1/2)+

uj

2
∂

∂xj
(ρ1/2)+

1
2
∂Uj

∂xj
= 0, (4.12)

with Uj given by (4.2). Similarly, the multiplication of (4.11) by 1/ρ1/2 and the
utilization of (4.12) in the resulting expression, leads to the modified momentum
equation

∂Ui

∂t
+ uj

∂Ui

∂xj
+

Ui

2
∂uj

∂xj
=−

1
ρ1/2

∂P
∂xi
+

1
ρ1/2

∂τij

∂xj
+ ρ1/2Fi. (4.13)
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Upon wavelet transforming (4.13), multiplying the resulting equation by Ui
∧(s,d)

[xs] and
summing over d, the conservation equation for the spectral kinetic energy

∂

∂t
e∧(s)[xs] = T

∧(s)
C [xs] + T

∧(s)
P [xs] + T

∧(s)
V [xs] + T

∧(s)
F [xs] (4.14)

is obtained, where

T
∧(s)

C [xs] =−

7∑
d=1

Ui
∧(s,d)

[xs]

{
uj
∂Ui

∂xj

}∧(s,d)

[xs] −
1
2

7∑
d=1

U
∧(s,d)

i [xs]

{
Ui
∂uj

∂xj

}∧(s,d)

[xs], (4.15)

T
∧(s)

P [xs] =−

7∑
d=1

Ui
∧(s,d)

[xs]

{
1
ρ1/2

∂P
∂xi

}∧(s,d)

[xs], (4.16)

T
∧(s)

V [xs] =

7∑
d=1

Ui
∧(s,d)

[xs]

{
1
ρ1/2

∂τij

∂xj

}∧(s,d)

[xs], (4.17)

T
∧(s)

F [xs] =

7∑
d=1

U
∧(s,d)

i [xs]ρ
1/2Fi

∧(s,d)
[xs] (4.18)

represent respectively the energy fluxes due to convection, pressure gradient, viscous
forces and external forcing. In (4.15)–(4.18), the terms between curly brackets are in
practice numerically evaluated at the discrete spatial positions x0 defined in (3.1), as
prescribed by the wavelet-transform operator (3.5).

Equations (4.15)–(4.18) quantify the transport of spectral kinetic energy across
scales and positions, and represent non-local wavelet-space multi-degree interactions
between positions xs, directions d and scales s. Specifically, the energy fluxes induced
by convection and pressure gradients can be rewritten in equivalent forms that reveal
interactions of third degree by using (3.2) and (3.5) to expand the wavelet transform
of the products in (4.15) and (4.16), which yields the expressions

T
∧(s)

C [xs] =−

7∑
d=1

U
∧(s,d)

i [xs]
∑

x0

S∑
s′=1

S∑
s′′=1

∑
x′s

∑
x′′s

7∑
d′=1

7∑
d′′=1

u∧(s
′,d′)

j [x′s]
{
∂Ui

∂xj

}∧(s′′,d′′)

[x′′s ]

+
1
2

U
∧(s′,d′)

i [x′s]
{
∂uj

∂xj

}∧(s′′,d′′)

(x′′s )

 G(s,d)[x0 − xs]G(s
′,d′)
[x0 − x′s]G(s

′′,d′′)
[x0 − x′′s ]

(4.19)

and

T
∧(s)

P [xs] =−

7∑
d=1

U
∧(s,d)

i [xs]
∑

x0

S∑
s′=1

S∑
s′′=1

∑
x′s

∑
x′′s

7∑
d′=1

7∑
d′′=1

ρ−1/2
∧(s′,d′)

[x′s]

×

{
∂P
∂xi

}∧(s′′,d′′)

[x′′s ]

 G(s,d)[x0 − xs]G(s
′,d′)
[x0 − x′s]G(s

′′,d′′)
[x0 − x′′s ]. (4.20)
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Further details about the structures of multi-scale interactions in wavelet space, albeit
for the simpler case of incompressible flows, can be found in Iima & Toh (1995),
including connections with triads in Fourier space.

In Fourier representations of incompressible turbulent flows, the velocity is
perpendicular to the wavenumber vector, as prescribed by the transformation of
the solenoidal velocity condition. As a result, the pressure gradient, along with the
convective acceleration parallel to the wavenumber vector, does not play any role in
the energy transfer across scales. Only the convective acceleration perpendicular
to the wavenumber vector is responsible for inter-scale transfer of energy in
Fourier space. Similar conclusions apply to the velocity component in the Craya
frame in compressible turbulent flows (Moyal 1952). It should be noted that such
simplifications cannot be made in the equivalent wavelet formulation given above,
even in the case of constant density. Correspondingly, the spectral kinetic-energy
fluxes due to convection and pressure gradient have to be considered in their separate
forms (4.15) and (4.16).

In the present DNS configuration, the convective inter-scale flux (4.15) does not
have to be necessarily conserved, or, equivalently, it does not have to lead to zero
net transfer when summation over all scales and positions is performed. This lack
of conservation has two different causes elucidated by the formulation, which can be
explained as follows.

The first cause of the lack of conservation of the convective inter-scale flux (4.15) is
the cuboidal shape of the computational grid x0, which limits the wavelet transform
to the level S corresponding to the domain width. This opens up a channel for
energy transfer between wavelet-decomposed fluctuations, represented by the first
term on the right-hand side of (3.2), corresponding to the energies k in physical
space and e∧(s)[xs] in wavelet space, and the large-scale motion, represented by
the second term on the right-hand side of (3.2), corresponding to the energies k
in physical space and e

∧(S)
[xS] in wavelet space. The energy fluxes for the latter,

namely T
∧(S)

C [xS], T
∧(S)

P [xS], T
∧(S)

V [xS] and T
∧(S)

F [xS] , are derived in appendix C and are
not the focus of the present study. Further details about the conservation properties
of the convective inter-scale flux in cuboidal domains are discussed in appendix D.

The second cause of the lack of conservation of the convective inter-scale flux (4.15)
is the non-periodicity of the flow in the streamwise direction due to thermal expansion,
which leads to boundary fluxes of energy being described by the non-zero left-hand
side of Plancherel’s formula (4.1). A necessary consequence of these considerations
is that none of the spectral kinetic-energy fluxes (4.15)–(4.18) are conservative,
in that none of them sum up to zero when all contributions from all scales and
positions are summed. In particular, the lack of conservation of the convective
inter-scale flux in general flow configurations is discussed in appendix D. However,
as also shown in appendix D, the convective flux (4.15) becomes conservative in
homogeneous–isotropic turbulent flows integrated in triply periodic cubic domains
with constant or variable density, leading to a collapse of the wavelet-based spectral
energy equation (4.14) on the well-known overall balance equation (D 1) for the
turbulent kinetic energy, and enabling physical interpretations based on the classic
turbulence cascade in those simplified flows.

5. Unconditioned spectrum and inter-scale energy transfer
Upon spatially averaging (4.14) per scale on the corresponding wavelet-collocation

grid xs, multiplying by 2−3s and dividing by δκ defined in (3.11), the conservation
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equation
∂E
∧

k(κ)

∂t
= T
∧

C(κ)+ T
∧

P(κ)+ T
∧

V(κ)+ T
∧

F(κ) (5.1)

is obtained for the spatially averaged kinetic-energy spectrum

E
∧

k(κ)=
2−3s

δκ
〈e∧(s)[xs]〉xs =

2−2s∆

4π ln 2

7∑
d=1

〈U
∧(s,d)

i [xs]U
∧(s,d)

i [xs]〉xs, (5.2)

where κ is given by (3.9) as a function of s. An important property of E
∧

k(κ) is that
its integral equals the mean kinetic energy per unit volume of the turbulence scales
smaller than or equal to `S , namely∑

κ

E
∧

k(κ)δκ = k, (5.3)

as shown by making use of (3.11) and (4.8). An exact correspondence formula
between the mean wavelet spectrum (5.2) and the Fourier spectrum is available in
Perrier, Philipovitch & Basdevant (1995) for incompressible homogeneous–isotropic
turbulence.

The terms on the right-hand side of (5.1) represent spatially averaged inter-scale
fluxes of spectral kinetic-energy density that are given by

T
∧

X(κ)=
2−2s∆

2π ln 2
〈T
∧(s)

X [xs]〉xs, (5.4)

with X=C, P, V or F depending on whether the transfer originates from convective,
pressure, viscous or forcing terms, as in (4.15)–(4.18). In particular, the inter-scale
fluxes (5.4) describe the rate at which the spatially averaged spectral kinetic-energy
density at a given scale, 2−3s

〈e∧(s)[xs]〉xs/δκ , is transferred to other scales in response
to the physical mechanisms described above. Positive and negative values, T

∧
X > 0 and

T
∧

X < 0, correspond respectively to energy gain or energy loss at the wavenumber κ .
The solid lines in figures 3(a), 4(a) and 5(a) show the mean spectrum E

∧
k(κ)

and inter-scale fluxes T
∧

C(κ) and T
∧

P(κ) computed from (5.2)–(5.4) for the DNS
case described in § 2. The mean spectrum undergoes the characteristic decay with
approximate −5/3 slope. The mean inter-scale flux by convection, T

∧
C, has the largest

variations at the large scales, and it flattens thereafter with a positive short-amplitude
long tail as the wavenumber increases in a way that resembles the spectral dynamics
observed in homogeneous turbulent flows, although in the present configuration T

∧
C

is not conservative, as explained in § 4. In particular, the scale s= 8 persistently loses
energy (T

∧
C < 0) while the smaller scales (s < 8) gain energy (T

∧
C > 0). The largest

scale, s= 9, gains energy by convection and pressure gradient in the volume sampled
by the wavelet transform, a pattern that is further investigated in §§ 7 and 8 using
conditioned statistics. The mean inter-scale flux of energy due to the pressure gradient,
T
∧

P, persistently extracts energy from scales s = 6–7 around the characteristic flame
scale and injects energy into all other scales. The latter corresponds to a mechanism
of kinetic-energy delivery by the negative pressure gradient across the flame, which
is fundamentally related to the flow acceleration across the front by the momentum
equation (O’Brien et al. 2017).
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FIGURE 3. Ensemble-averaged unconditioned probability density functions (PDFs) of
the energy spectrum including (a) their projections as solid contours in the spectral
plane (rescaled by their corresponding maximum at each scale) and the spectral flatness
coefficient (inset), along with (b) cross-sectional cuts at each scale.
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FIGURE 4. Ensemble-averaged unconditioned PDFs of the convective inter-scale flux
including (a) their projections as solid contours in the spectral plane (rescaled by their
corresponding maximum at each scale) and (b) cross-sectional cuts at each scale. (a) The
cyan- and red-coloured data points indicate respectively positive and negative values of the
mean flux, which correspondingly cause an increase and a decrease of kinetic energy on
average at the associated wavenumber. The arrow denotes that all mean absolute values
to the right of that abscissa are smaller than the indicated value.

The spectral results described above pertain to the whole turbulent flow field in the
mean. Departures from these mean results are significant when the spatial variabilities
enabled by the wavelet transform are examined. To see this, consider removing the
bracketed operators in (5.2) and (5.4), which leads to local values of the spectrum

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

37
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

ta
nf

or
d 

G
ra

du
at

e 
Sc

ho
ol

 o
f B

us
in

es
s,

 o
n 

05
 Ju

n 
20

18
 a

t 1
3:

03
:0

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.371
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Local multi-scale energy transfer in turbulent premixed flames 95

10010–1 101 50 1000–50–100–150

50

– 50

0

100

–100

–150

10–2

10–4

100

102

104

Source

Sink

Mean

Neutral transfer

to larger
scales

confidence intervals
Scale index s

1

2

3

4

5

6

p.
d.

f.

0 0.2 0.4 0.6 0.8 1.0
PDF

(a) (b)

FIGURE 5. Ensemble-averaged unconditioned PDFs of the pressure-gradient inter-scale
flux including (a) their projections as solid contours in the spectral plane (rescaled by their
corresponding maximum at each scale) and (b) cross-sectional cuts at each scale. (a) The
cyan- and red-coloured data points indicate respectively positive and negative values of the
mean flux, which correspondingly cause an increase and a decrease of kinetic energy on
average at the associated wavenumber. The arrow denotes that all mean absolute values
to the right of that abscissa are smaller than the indicated value.

and the inter-scale fluxes that are given by

E
∧

k[κ, xs] =
2−2s∆

4π ln 2

7∑
d=1

U
∧(s,d)

i [xs]U
∧(s,d)

i [xs] (5.5)

and

T
∧

X[κ, xs] =
2−2s∆

2π ln 2
T
∧(s)

X [xs]. (5.6)

At a given wavenumber κ representative of the scale index s, the spatial variabilities
of E
∧

k and T
∧

X on the corresponding wavelet-collocation grid xs render PDFs whose
contours are shown in figures 3–5. In particular, the spatial variabilities of the
spectrum are characterized here by the 2.5th and 97.5th percentiles (i.e. approximately
four standard deviations of a Gaussian distribution), while the percentiles for the
variabilities of the inter-scale fluxes are the 16th and the 84th (i.e. approximately
two standard deviations of a Gaussian distribution), in such a way that both sets
delimit the interval of values that is observed with 95 % and 68 % frequency in the
flow field respectively. It should be noted that the number of samples employed
to build the PDFs at the smallest scale s = 1 (or, equivalently, κδL/2π = 32) is
67 000 000 wavelet-collocation points multiplied by 15 snapshots (i.e. ∼ 1000 000 000
samples), whereas the number of samples at the largest scale s= 9 (or, equivalently,
κδL/2π= 0.12) is given by four wavelet-collocation points multiplied by 15 snapshots
(i.e. 60 samples), in such a way that the large scales are always more difficult to
converge statistically. Nonetheless, convergence tests were performed that did not
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96 J. Kim and others

show significant variations of the first- and second-order statistics at s= 9 when the
number of snapshots was consecutively increased from 10 to 15.

Following the definition (5.5), figure 3(a) shows interpolated solid contours of the
local spectrum E

∧
k(κ, xs) PDFs normalized by their maxima at each scale. The results

indicate that the spatial variabilities of the spectrum with respect to the mean are
most pronounced at high wavenumbers, where most wavelet coefficients are small
except for a few that correspond to relatively energetic structures setting the mean
value far above the mode of the PDF. At least two causes are responsible for the
modes of the PDFs of E

∧
k(κ, xs) occurring far below the mean, along a ridge that

decreases with a slope of approximately −8. First, small scales are known to have
higher intermittency, which is quantitatively ratified by the scale-conditioned flatness
Fs of the spectrum PDF. Specifically, Fs increases from near-Gaussian values Fs ∼ 3
at the large scales to Fs ∼ 30–35 at the small scales, as observed in the inset of
figure 3(a). Correspondingly, the individual PDFs of the spectrum per scale shown in
figure 3(b) have increasingly longer tails as the characteristic length (or scale index)
decreases. Second, the intermittency of the small scales is also influenced here by
the fact that these statistics are obtained by sampling the entire flow field, including
the burnt and unburnt sides of the flame, where the turbulence has very different
characteristics. This is manifested by the slightly bi-modal character of the PDFs in
figure 3(b). It is shown in § 6 using statistics conditioned on the progress variable
that the low-energy population of wavelet coefficients along the −8-slope ridge mostly
belongs to the burnt side of the flame, where the energy of the small scales has
plummeted.

The interpolated PDF contours of T
∧

C(κ, xs) and T
∧

P(κ, xs), along with their slices
per scale, are shown in figures 4 and 5. The spatial variabilities are maximum at
s = 8 in both cases and rapidly decrease with increasing wavenumbers, thereby
suggesting that these energy fluxes are primarily active at intermediate-to-large scales,
as is expected from the diminishing importance of convection at small scales and the
absence of high-wavenumber pressure gradients in this configuration. Nevertheless, the
PDFs of T

∧
C(κ, xs) and T

∧
P(κ, xs), divided by the widths of their corresponding 68 %

confidence intervals per scale, have increasingly larger widths as the wavenumber
increases (not shown here for brevity), which, similarly to the discussion above
within the context of E

∧
k(κ, xs), highlights the larger relative intermittency present in

the small scales with regard to spectral energy-transfer dynamics. It should be noted
that the PDF contours of T

∧
C(κ, xs) and T

∧
P(κ, xs) in figures 4 and 5 are subject to

contributions from both burnt and unburnt gases. The following section introduces
a method for separating these contributions by conditioning the fluxes on the local
instantaneous progress variable.

6. Method for conditioning spectral statistics on the progress variable

The statistics depicted in figures 3–5 illustrate spatial variabilities of spectral
quantities in the entire domain and are unique to the spatial localization properties
of the wavelet transform. However, in turbulent premixed combustion, rather than
using spatial coordinates, it is more insightful to employ a scalar variable indicating
the relative position within the flame front to condition the statistics. In this section,
the formulation provided above is generalized to compute the spatial variabilities of
spectral quantities conditioned on the local instantaneous progress variable C, whose
isosurfaces are shown in figure 1.
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FIGURE 6. Instantaneous contours of the progress variable C superposed on streamwise
two-dimensional cross-sections of wavelet-collocation grids xs|(C = C0) employed to
generate the spectral statistics conditioned on C=C0, with C0 being indicated in the upper
left corner of each panel. The wavelet-collocation grids for scales s< 3 make the plot too
dense and are not shown in order to facilitate visualization of the underlying contours.
The streamwise length of the visualization domain shown here is approximately 60 % of
the full wavelet-analysis grid.

Since C is a function of the spatial coordinates, the conditioning on C is not
exempt from the constraints imposed by the uncertainty principle discussed in § 3.1.
In particular, the conditioning on a particular value C = C0 defined on the primitive
grid x0 is subject to an increasingly large spatial delocalization as the length scale
`s increases. Physically, eddies of characteristic length `s sweep across comparable
portions of the progress-variable field near the front in these simulations. As a result,
the elements of the wavelet-collocation grids xs are bound to include many values of
C per scale, with an increasingly larger number of them residing in each element of
xs as `s increases, and which may or may not include C0.

The considerations given above are summarized in figure 6, which illustrates
the way in which statistical conditioning is performed in this study. Specifically,
given an arbitrary value of the progress variable C0, the spectral data are read only
from wavelet-collocation grid elements xs|(C = C0) such that C0 lies within the
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98 J. Kim and others

local extrema values of C[x0] determined by the DNS points enveloped by those
wavelet-collocation grid elements. For instance, consider the elements xs|(C= 0.550)
used to condition statistics in figure 6(c). The small-scale grid elements activated by
the conditioning are well localized within the front region and sweep it from the
preheat to the post-flame zones as C is increased. On the other hand, the large-scale
elements activated by the conditioning are delocalized as prescribed by the uncertainty
principle, and in many instances are also activated when not too different values from
C are chosen for conditioning, as evidenced by comparing the similar elements of x8
and x9 simultaneously activated in panels (b) and (c) corresponding to C0= 0.250 and
0.550. Although several other ways may be envisioned to extract conditioned statistics,
visual inspections of the grid elements activated by the present method suggest that
it appropriately tracks the main features of the highly corrugated turbulent flame as
C is varied.

The spectral data read from the conditioned wavelet-collocation grid elements
xs|(C = C0) define the progress-variable-conditioned values of the kinetic-energy
spectrum and inter-scale fluxes, namely

E
∧

k[κ, xs|(C=C0)] =
2−2s∆

4π ln 2

7∑
d=1

U
∧(s,d)

i [xs|(C=C0)]U
∧(s,d)

i [xs|(C=C0)] (6.1)

and

T
∧

X[κ, xs|(C=C0)] =
2−2s∆

2π ln 2
T
∧(s)

X [xs|(C=C0)], (6.2)

with X=C, P, V or F depending on whether the transfer originates from convective,
pressure, viscous or forcing terms. Conditional means of (6.1) and (6.2) can be easily
derived by averaging them over the wavelet-collocation grids xs|(C=C0) in a manner
analogous to that introduced in § 5 (i.e. (5.2) and (5.4)).

7. Energy spectrum and inter-scale energy transfer conditioned on the progress
variable

Using (6.1) and the conditioning method introduced in the previous section, the
means, variabilities and contours of the PDFs of the progress-variable-conditioned
energy spectrum (6.1) are shown in figure 7. A precipitous drop of the mode of the
spectrum PDF occurs for values of C typical of the preheat zone. This drop starts at
intermediate scales s ∼ 5–7 (close to the characteristic flame scale s = 6), continues
to smaller scales and then propagates upward in scales up to s = 8 as C is further
increased towards the reacting regions. This is accompanied by an equally sudden
increase in the spectral flatness Fs of the intermediate scales (insets) as a result of the
intermittent broadening of the corresponding spectrum PDFs, whose mean values vary
much more gradually – in a manner similar to that predicted by the in-plane {x1, x2}

Fourier analyses by Towery et al. (2016) – and persist far above the mode despite the
large decrease of the latter. The sudden drop takes the mode of the spectrum PDFs
down to an approximately 8-slope ridge also visible in the unconditioned statistics
in figure 3(a), making any remnants of an inertial subrange disappear. In this way,
the final spectral state of the products is one where the energy decays rapidly from
scales s= 1–8 along the aforementioned ridge.
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FIGURE 7. Ensemble-averaged PDF contours conditioned on the progress variable C=C0
for the energy spectrum, including spectral flatness coefficients (insets).

The progress-variable-conditioned inter-scale energy fluxes due to convection
and pressure gradient are shown figures 8 and 9 respectively. In interpreting the
results, it is important to note that, although the small values of C are in principle
associated with the homogeneous–isotropic turbulent flow upstream of the flame,
the finite streamwise length of the wavelet-analysis grid makes the conditioned
wavelet-collocation grid elements at the largest scale s = 9 remain active near the
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FIGURE 8. Ensemble-averaged PDF contours conditioned on the progress variable C =
C0 for the convective inter-scale energy flux. The cyan- and red-coloured data points
indicate respectively positive and negative values of the conditional mean flux, which
correspondingly cause an increase and a decrease of kinetic energy on average at the
associated wavenumber. The arrows denote that all mean absolute values to the right of
that abscissa are smaller than the indicated value.

front even at small values of C as a result of the far-reaching long-wavelength
front corrugations (see figure 6). As a consequence, the largest scales of the flow
conditioned at small values of C contain thermal-expansion effects that cause them to
be net receptors of energy from both convection and pressure-gradient mechanisms.
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FIGURE 9. Ensemble-averaged PDF contours conditioned on the progress variable C=C0
for the pressure-gradient inter-scale energy flux. The cyan- and red-coloured data points
indicate respectively positive and negative values of the conditional mean flux, which
correspondingly cause an increase and a decrease of kinetic energy on average at the
associated wavenumber. The arrows denote that all mean absolute values to the right of
that abscissa are smaller than the indicated value.

The maximum variabilities observed in the PDFs of both energy fluxes are
associated with small values of C, where the flow field of the fresh gases has
the maximum separation of scales, as indicated by the energy spectrum. As C is
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increased, the largest scale s= 9 keeps on receiving energy from both convective and
pressure-gradient mechanisms. At values of C corresponding to the interior of the
flame brush, the convective transfer is found to drain energy primarily from s = 8
while providing energy to the smaller scales. Similarly, the pressure-gradient transfer
drains energy primarily from s= 7 and 6, the latter corresponding to the characteristic
flame scale, while injecting energy in all other scales. Although these observations
resemble similar ones made within the context of the unconditioned statistics in
figures 4 and 5, the conditioning reveals that some of the dynamics, such as the
energy drainage from intermediate scales by the pressure gradient, are amplified at
intermediate values of C. The conditioning of the inter-scale fluxes on near-unity
values of C leads to a generalized decrease in the mean values at small scales and
an attenuation in the spatial variations. Those values of C correspond to the burnt
gas left far downstream of the flame, which has significantly less separation of scales
and flows under mostly neutral dilatation.

The results described above provide quantitative information on the spectrum and
inter-scale fluxes conditioned on the progress variable. Since the inter-scale energy
fluxes by convection and pressure gradient are created respectively by the flow
inertia and thermal-expansion effects near the flame characteristic scale, both of them
necessarily decrease in magnitude at small scales. The latter are the scales that are
most spatially localized by this wavelet framework, and therefore represent the ones
that benefit the most from employing a spatially localized spectral analysis when
local multi-scale phenomena are investigated. The spatial localization of the small
scales enabled by the wavelet framework is fully exploited in the computation of the
cumulative energy transfer of SFS kinetic energy, as shown below.

8. Cumulative transfer of SFS kinetic energy conditioned on the progress variable
Whereas the previous section focuses on the energy spectrum and its rate of

variation at a given scale, a quantification of the cumulative transfer of energy into
subfilter scales is made below. A supplementary diagram is provided in figure 10
which facilitates the understanding of the computation of this quantity. Consider a
high-pass filter such that only the wavelet coefficients for scales s 6N are retained,
where N is a scale index representative of the filter spatial threshold `N = 2N∆,
with

κN = 2π/`N (8.1)

an associated cutoff wavenumber. In the corresponding wavelet-collocation grid xN ,
consider a cubic region MN of width `N centred at the particular position xp

N ,
through which the local cumulative transfer of energy from all scales smaller than or
equal to `N is to be computed as follows.

Since the total number of primitive grid points contained in MN is 23N , the
scale-dependent spatial average of y[xs] over wavelet-collocation grid points located
within MN is 〈y[xs]〉xs∈MN =

∑
xs∈MN

23(s−N )y[xs]. As a result, 2−3(s−N )
〈y[xs]〉xs∈MN

represents the sum of all of the values of y across all wavelet-collocation grid points
enclosed in MN . Upon substituting the arbitrary variable y[xs] by the spectral kinetic
energy e∧(s)[xs] and summing from s = 1 to the filter-threshold scale s = N , the
definition of the SFS kinetic energy

kSFS[κN , xp
N ] =

N∑
s=1

2−3(s−N )
〈e∧(s)[xs]〉xs∈MN (8.2)
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Cumulative energy flux through
the spatial region

across scale

¶1 = 2Î

FIGURE 10. Illustration of the computation of the local SFS-cumulative energy flux
through a square region MN of width `N = 2N∆ centred at a spatial position xp

N across
a filter scale cutoff N = 3. In this example, the grid contains 16 × 16 elements and
correspondingly has S = 4 wavelet-decomposition levels.

is obtained, which represents the total amount of kinetic energy accumulated in
subfilter scales `6 `N locally within the spatial region MN . Similarly, a conservation
equation for kSFS can be derived by summing (4.14) over the interval of scales
1 6 s 6 N and spatially averaging over wavelet-collocation grid points xs nested in
MN , which gives

∂

∂t
kSFS[κN , xp

N ] = αC[κN , xp
N ] + αP[κN , xp

N ] + αV[κN , xp
N ] + αF[κN , xp

N ]. (8.3)

In this formulation, the terms αX represent the local cumulative flux of SFS kinetic
energy

αX[κN , xp
N ] =

N∑
s=1

2−3(s−N )
〈T
∧(s)

X [xs]〉xs∈MN , (8.4)

with X = C, P, V or F depending on whether the transfer mechanism is related
to convective, pressure, viscous or forcing terms, as in (4.15)–(4.18). In the results
presented below, emphasis is placed on the sum αC[κN , xp

N ] + αP[κN , xp
N ], which

represents the combined action of convection and pressure gradient and is given by

αCP[κN , xp
N ] = αC[κN , xp

N ] + αP[κN , xp
N ]

=

N∑
s=1

2−3(s−N )
〈T
∧(s)

C [xs] + T
∧(s)

P [xs]〉xs∈MN . (8.5)
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FIGURE 11. Unconditioned ensemble-averaged PDF contours of the local cumulative
flux (8.5) of SFS kinetic energy due to convection and pressure-gradient mechanisms of
momentum transport as a function of the cutoff wavenumber κN . The cyan-coloured data
points indicate positive values of the mean flux, which correspondingly cause an increase
in SFS kinetic energy on average. The arrow denotes that all mean absolute values to the
right are smaller than the indicated value.

In these simulations, the convective and pressure-gradient terms participating in (8.5)
are observed to be of the same order of magnitude.

The physical interpretation of the local cumulative flux of SFS kinetic energy (8.5)
is as follows. Based on the SFS kinetic-energy conservation equation (8.3), positive
values αCP[κN , xp

N ]> 0 indicate net gain of SFS kinetic energy caused by convection
and pressure-gradient mechanisms through the spatial region MN , centred at xp

N , and
across a scale N corresponding to the representative wavenumber κN . In a similar
way, negative values αCP[κN , x

p
N ]< 0 correspond to a local loss of SFS kinetic energy

through the same spatial region, centred at the same location, and across the same
scale as before. In addition, a relevant property of (8.5) is that the sum of αCP over
all positions xN is equivalent to the integral of the corresponding mean inter-scale
flux from the smallest scale to the filter threshold N , namely

2−3N
〈αCP[κN , xp

N ]〉xN =

κN∑
κ

[T
∧

C(κ)+ T
∧

P(κ)]δκ, (8.6)

as observed by combining (3.10), (3.11), (5.4) and (8.5).
The contours of the unconditioned PDFs of αCP(κN , xN ) are shown in figure 11

for different filter wavenumber thresholds κN . The results resemble those reported
for incompressible homogeneous–isotropic turbulent flows in Meneveau (1991).
Notwithstanding the complex inter-scale energy-transfer dynamics that may be
observed in figures 4 and 5, the cumulative outcome is that energy is transferred
by convection and pressure-gradient mechanisms into subfilter scales on average
and independently of the filter threshold when the flow is analysed on the whole,
including both reactants and products, in a way that qualitatively resembles the direct
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Local multi-scale energy transfer in turbulent premixed flames 105

energy cascade. This trend, however, is subject to significant dispersion, as evidenced
by the large variabilities from the mean which include a large number of spatial
locations in the domain where αCP < 0, causing the SFS kinetic energy to decrease.
Further insight into the origin of these variabilities can be gained by conditioning
αCP on the local progress variable as follows.

The local cumulative flux of SFS kinetic energy conditioned on the progress
variable is defined as

αCP[κN , xs|(C=C0)] =

N∑
s=1

2−3(s−N )
〈T
∧(s)

C [xs|(C=C0)] + T
∧(s)

P [xs|(C=C0)]〉xs∈MN , (8.7)

which is obtained by evaluating (8.5) at the conditioned wavelet-collocation grid
points, as described in § 6. At small values of C, which correspond to the turbulent
flow upstream of the flame, the tendency of the conditional mean of the cumulative
flux is to replenish SFS kinetic energy, although the spatial variabilities there are
the largest, as evidenced by the wide contours of the PDF of αCP for C = 0.002 in
figure 12. However, in contrast to the strictly positive values of the unconditioned αCP,
the mean of its conditioned version (8.7) changes sign as C increases, and becomes
negative in some cases. This occurs most intensely for sufficiently large filter sizes
`N with N = 7–9, which correspond to scales similar to or larger than the flame
thickness, as shown by the red circles in figure 12 indicating local drainage of SFS
kinetic energy for the cases C > 0.250 in a conditional-average sense.

The results presented above suggest that, when N is larger than the flame
characteristic scale, convection and pressure-gradient mechanisms drain significant
amounts of SFS kinetic energy at a local mean rate approximately of order
10ρuS3

L/δL ∼ 10ρuεDa(SL/u`)2, where ε is the overall mean dissipation. However,
caution should be exercised in interpreting this reverse energy flux as a purely
energy-backscatter phenomenon understood as an energy transfer in the direction
from small to large scales. Specifically, αCP may not solely account for energy
transfer across the filter scale N , but it may also account for energy transfer from
adjacent positions at the same scale level. To see this, note that αCP relies on the
energy fluxes T

∧(s)
C [xs] and T

∧(s)
P [xs]. Despite the fact that these energy fluxes are

locally evaluated in space, they require information on ui, Ui, ρ and P from at least
three positions at the cutoff scale level N , as evidenced by (4.19) and (4.20). As a
consequence, if eddies were associated with fluctuations in those primitive variables,
energy transfer from other spatial locations into MN might occur that would also be
included in αCP, and that would not be necessarily related to energy transfer across
the cutoff scale N . In triply periodic turbulent flows, it is plausible that the spatially
averaged local cumulative energy flux, defined by

αCP(κN )=

N∑
s=1

2−3(s−N )
〈〈T
∧(s)

C [xs] + T
∧(s)

P [xs]〉xs∈MN 〉xN , (8.8)

represents a quantity that can isolate the cross-scale transfer (i.e. across the cutoff
scale N ) because the cross-spatial contributions at the scale index N are cancelled
upon averaging. In non-periodic flows such as the one investigated here, or in progress-
variable-conditioned zones of the flow, which correspond to regions of limited spatial
extent, the additional cross-spatial transfer may advise against strictly stating within
the context of the results presented in figure 12 that all of the kinetic energy drained
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FIGURE 12. Ensemble-averaged PDF contours conditioned on the progress variable C=C0
for the local cumulative flux (8.5) of SFS kinetic energy due to convection and pressure-
gradient mechanisms of momentum transport as a function of the cutoff wavenumber κN .
The cyan- and red-coloured data points indicate respectively positive and negative values
of the conditional mean flux, which correspondingly cause an increase and a decrease of
SFS kinetic energy on average. The arrows denote that all mean absolute values to the
right of that abscissa are smaller than the indicated value.

from the subfilter scales at a given location is transferred to the superfilter scales at
that same location across the scale of the filter. More refined descriptions that attempt
to suppress the cross-spatial transfer at the cutoff level are available for incompressible
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flows in the form of a dual bi-spectrum of transfer (Meneveau 1991). Nonetheless,
to the best of the authors’ knowledge, a unique way of defining a wavelet-based
dual bi-spectrum of transfer does not seem to exist in compressible turbulent flows,
and a clear physical-space energy-flux counterpart upon which to rely for a physical
interpretation of this quantity cannot be straightforwardly defined. Further investigation
into these advanced aspects is the subject of future work.

9. Conclusions

In this study, a 3D wavelet multi-resolution analysis is carried out to investigate
the spatially localized transfer of kinetic energy across scales in turbulent premixed
flames obtained from DNS at a turbulent intensity of 7.8 and a Karlovitz number of
72. Specifically, the DNS computational set-up involves a premixed flame propagating
in forced homogeneous–isotropic turbulence along a cuboidal unconfined domain with
periodic boundary conditions in the transverse directions.

The wavelet-space energetics formulation for incompressible turbulent flows
proposed by Meneveau (1991) is extended here to compressible chemically reacting
turbulent non-periodic flows conditioned on the progress variable and integrated in
cuboidal domains. In constant- and variable-density homogeneous–isotropic turbulent
flows integrated in triply periodic cubic domains, the resulting formalism leads to
conservation of the convective inter-scale fluxes and warrants the collapse of the
spectral energy equation on the well-known balance equation for the mean turbulent
kinetic energy in physical space.

Results similar to those previously reported for incompressible turbulent flows are
observed when the flow is analysed on the whole, including both the unburnt and
burnt sides of the flame. In particular, the convective and pressure-gradient inter-scale
fluxes tend to drain or neutralize the energy of the large scales and increase the
energy of the small scales. However, richer dynamics are unveiled when examining
particular regions of space representative of the flame front at different scales, which
are discriminated using a method for conditioning on the local instantaneous progress
variable.

As the progress variable is varied across the flame brush, the conditioned energy
spectra are shown to undergo, in most spatial locations, a precipitous drop that begins
around the flame characteristic scale, is accompanied by an increase in the spectral
flatness and leads to a subsequent depletion of kinetic energy of increasingly larger
scales. However, the corresponding decrease in the spatially averaged value of the
spectra is much more gradual and resembles that observed in early studies based on
two-dimensional Fourier transforms along transverse planes parallel to the mean flame
brush.

Convection increases the kinetic energy of the small scales and mostly drains
it from the large scales across the flame. However, as elicited by the formulation
and observed from the results, the cuboidal shape of the grid and the non-periodic
boundary conditions necessarily cause the convective transfer to be non-conservative.
As a consequence, physical interpretations of energy-transfer phenomena based on
the classic turbulence cascade cannot be straightforwardly employed in the present
configuration. In addition, because of thermal expansion across the flame, the
pressure-gradient inter-scale flux extracts energy from intermediate scales similar
to the flame characteristic scale, and energizes the small and large scales.

The local cumulative transfer of SFS kinetic energy across a cutoff scale
imposed by a high-pass wavelet filter is quantified in order to study the conditions
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under which kinetic energy is injected or drained from the small scales by the
combined contribution of convective and pressure-gradient mechanisms of momentum
transport. Unconditioned results indicate that SFS kinetic energy is injected in the
subfilter scales on average, in a way that resembles the direct cascade observed in
incompressible homogeneous–isotropic turbulent flows. However, the local cumulative
flux conditioned on the progress variable is shown to drain SFS kinetic energy
on average from the small scales within the flame brush by convective and
pressure-gradient mechanisms of momentum transport. This occurs most intensely
when the cutoff scale, across which the transfer is computed, is larger than the flame
characteristic scale. The resulting reverse energy transfer, which is reminiscent of
the physical-space combustion-induced backscatter observed by O’Brien et al. (2017)
using physical-space filters, tends to be neutralized when the cutoff scale is increased
up to the maximum decomposition level corresponding to the spanwise domain length.

It is worth emphasizing that results obtained from spectral-space analyses typically
depend on the spectral basis. As a consequence, the conclusions presented in this study
are expected to be quantitatively sensitive to that choice. Nonetheless, some of the
findings outlined here, such as the variations of the kinetic-energy spectra across the
flame or the prevailing drainage of SFS kinetic energy by multi-scale energy-transfer
mechanisms related to the convective and pressure-gradient transfer terms, are
qualitatively ratified by earlier work on a similar configuration using physical-space
and Fourier filters (Towery et al. 2016; O’Brien et al. 2017), even though the exact
equivalences between these different approaches are not straightforward to quantify.
Aspects worthy of future work to clarify some of these open research questions may
include (a) the consideration of wider parameter ranges in the combustion-regime
diagram which may enable comparisons and elucidation of more general physical
trends in flame energetics, (b) the partition of the physical-space flow field into
solenoidal and irrotational components to wavelet-analyse each contribution and
isolate the role of thermal expansion in the energy transfer, (c) the incorporation
of complex chemical effects that are known to be important for the propagation of
realistic turbulent flames and (d) the utilization of different and perhaps more practical
flow configurations for turbulent combustion, including effects related to externally
applied pressure gradients (Veynante & Poinsot 1997), shear layers (Wang et al. 2017;
MacArt, Grenga & Mueller 2018) and high-speed compressibility phenomena (Urzay
2018).
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Appendix A. Wavelet formulation: supplementary definitions
For illustration, consider the simpler case of a 1D finite-energy continuous function

y(x) defined on the real axis x that has no significant contribution from scales smaller
than the grid spacing ∆ introduced in the main text. The wavelet series expansion of
y(x) in semi-discrete form can be written as

y(x)=
S∑

s=1

∑
xs

y∧(s)[xs]ψ
(s)(x− xs)+

∑
xS

y
∧(S)
[xS]φ(S)(x− xS), (A 1)
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where ψ (s)(x − xs) and φ(s)(x − xs) are orthonormal wavelet and scaling functions
respectively, which are defined in terms of their scale-independent counterparts ψ
(mother wavelet) and φ (father scaling function) as

ψ (s)(x− xs)= `
−1/2
s ψ

(
x− xs

`s

)
, φ(s)(x− xs)= `

−1/2
s φ

(
x− xs

`s

)
, (A 2a,b)

where `s = 2s∆ is the characteristic length of the wavelet at scale s (also defined
in (3.10) in the main text). In this study, ψ and φ are taken to be wavelet and scaling
functions of the Daubechies family (Daubechies 1992).

Upon multiplying both sides of the expansion (A 1) by the scaling function φ(0)

(x − x0) at the zeroth (grid-resolution ∆) scale, integrating along x and using the
standard approximation (Meneveau 1990; Addison 2002)

y
∧(0)
[x0] =

∫
+∞

−∞

y(x)φ(0)(x− x0) dx'∆1/2y[x0] (A 3)

to compute the first approximation coefficient y
∧(0)
[x0], a discrete analogue of the above

series expansion,

y[x0] =

S∑
s=1

∑
xs

y∧(s)[xs]g(s)[x0 − xs] +
∑

xS

y
∧(S)
[xS]h(S)[x0 − xS], (A 4)

is obtained that resembles the 1D version of (3.2), where the discrete wavelet and
scaling functions can be expressed as (Meneveau 1990, 1991)

g(s)[x0 − xs] =∆
−1/2

∫
∞

−∞

ψ (s)(x− xs)φ
(0)(x− x0) dx (A 5)

and

h(S)[x0 − xS] =∆−1/2
∫
∞

−∞

φ(S)(x− xS)φ(0)(x− x0) dx. (A 6)

It should be noted that the approximation (A 3) made above can be improved in
different ways (Strang & Nguyen 1996), including the utilization of Coiflet wavelets
(Daubechies 1993).

Based on the above expressions, and on the additional relation (Mallat 1989)

ψ (s)(x− xs)=
∑

x0

[∫
+∞

−∞

ψ (s)(x′ − xs)φ
(0)(x′ − x0) dx′

]
φ(0)(x− x0), (A 7)

the classic orthogonality conditions associated with the continuous wavelet and scaling
functions readily lead to corresponding orthogonality constraints for g(s)[x0 − xs] and
h(s)[x0 − xs], namely

∆
∑

x0

g(s)[x0 − xs]g(s
′)
[x0 − xs′] =

∫
+∞

−∞

ψ (s)(x− xs)ψ
(s′)(x− xs′) dx= δs,s′δxs,xs′

, (A 8)

∆
∑

x0

g(s)[x0 − xs]h(S)[x0 − xS] =
∫
+∞

−∞

ψ (s)(x− xs)φ
(S)(x− xS) dx= 0 (A 9)
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and

∆
∑

x0

h(S)[x0 − xS]h(S)[x0 − x′S] =
∫
+∞

−∞

φ(S)(x− xS)φ(S)(x− x′S) dx= δxS ,x′S . (A 10)

The discrete 3D wavelet and scaling functions G(s,d)[x0 − xs] and H(S)
[x0 − xS]

used in the discrete wavelet series expansion (3.2) can be constructed from the
multiplicative combinations of their 1D counterparts as

G(s,1)[x0 − xs] =∆
3/2g(s)[x0,(1) − xs,(1)]g(s)[x0,(2) − xs,(2)]g(s)[x0,(3) − xs,(3)],

G(s,2)[x0 − xs] =∆
3/2h(s)[x0,(1) − xs,(1)]g(s)[x0,(2) − xs,(2)]g(s)[x0,(3) − xs,(3)],

G(s,3)[x0 − xs] =∆
3/2g(s)[x0,(1) − xs,(1)]h(s)[x0,(2) − xs,(2)]g(s)[x0,(3) − xs,(3)],

G(s,4)[x0 − xs] =∆
3/2g(s)[x0,(1) − xs,(1)]g(s)[x0,(2) − xs,(2)]h(s)[x0,(3) − xs,(3)],

G(s,5)[x0 − xs] =∆
3/2h(s)[x0,(1) − xs,(1)]h(s)[x0,(2) − xs,(2)]g(s)[x0,(3) − xs,(3)],

G(s,6)[x0 − xs] =∆
3/2h(s)[x0,(1) − xs,(1)]g(s)[x0,(2) − xs,(2)]h(s)[x0,(3) − xs,(3)],

G(s,7)[x0 − xs] =∆
3/2g(s)[x0,(1) − xs,(1)]h(s)[x0,(2) − xs,(2)]h(s)[x0,(3) − xs,(3)],


(A 11)

along with

H(S)
[x0 − xS] =∆

3/2h(S)[x0,(1) − xS,(1)]h(S)[x0,(2) − xS,(2)]h(S)[x0,(3) − xS,(3)], (A 12)

where the bracketed subindexes refer to the spatial components of the 3D position
vector. The orthonormality conditions for G(s,d)[x0 − xs] and H(S)

[x0 − xS], namely
(3.3), (3.4) and (3.8) in the main text, follow directly upon substituting the definitions
(A 11)–(A 12) and making use of the relations (A 8)–(A 10).

Appendix B. Boundary conditions in the wavelet analysis
In this study, the streamwise non-periodicity of the computational grid requires

particular attention in handling the wavelet transform. Specifically, when triply
periodic boundary conditions are employed for wavelet transforming the DNS
data, spurious effects emerge near the streamwise boundaries since the flow is not
periodic in that direction. There are multiple ways of handling this issue, including
the utilization of boundary-adapted wavelets (Sakurai et al. 2017), but perhaps
a more straightforward one that does not require significant modifications in the
wavelet-transform algorithm consists of taking advantage of the fact that DNS data
are available in the portion of the computational grid outside the wavelet-analysis
domain (see § 2 and table 1). In this way, it is possible to artificially periodize
the streamwise boundaries in the wavelet transforms, which is carried out on a grid
augmented in size in the streamwise direction by a sufficient number of points Na with
respect to the wavelet-analysis grid, such that the wavelet coefficients sampled from
the latter are computed independently from those close to the artificially periodized
boundaries. As a result, even though the transform is performed in a longer domain,
Nt ×Nt × (Nl+Na), the wavelet analysis of the simulation results in this investigation
considers only a spatially truncated version of the entire set of coefficients. The spatial
truncation retains all coefficients within the wavelet-analysis domain Nt × Nt × Nl,
which are free of artificial periodization effects, with the rest outside being discarded.
However, the streamwise length of the augmented grid, and correspondingly the
number of grid points Na to be added, increases proportionally with the length of
the spatial support of the wavelet basis function, as intuitively expected from the
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8 9 10 11 12 13 14 15 Primitive grid

Wavelet grid

FIGURE 13. A simplified diagram for a multi-resolution dyadic grid configuration near
the left boundary i = 1 of a primitive grid x0. Crossed symbols represent db-4 wavelet-
collocation grid points whose corresponding wavelet coefficients are affected by artificial
periodization of the left boundary. The arrows are included to indicate that the wavelet-
collocation grid points at level s are located halfway between the two grid points above
at level s− 1.

increased delocalization. In this way, the choice of the wavelet basis plays a role
in determining Na. For illustration, Na is estimated below based on the upstream
boundary, while the treatment for the downstream one is analogous.

The sketch shown in figure 13 illustrates a primitive (DNS) grid x0 along with
the wavelet-collocation grids xs at the first two scales s = 1 and s = 2, with the
spatial indices of the grid points given by i = 1, 2, 3, . . . , where i = 1 in the grid
x0 corresponds to a boundary that has been artificially periodized in the application
of the wavelet transform. Depending on the wavelet basis, a critical spatial index
i?(s) exists per scale s such that the computation of the wavelet coefficient at that
position and scale s becomes independent of the wavelet coefficients at scale s−1 that
are contaminated by periodizing the boundary. For instance, for a db-4 wavelet, the
multi-resolution algorithm of Mallat (1989) requires the computation of the wavelet
coefficient at position i = 3 and scale s = 1 to be obtained from the convolution of
the DNS field with a wavelet basis function of eight points across, and therefore relies
on the values of the DNS field at the spatial locations i= 2, 3, 4, . . . , 9 on the grid
x0. As a result, the wavelet coefficient at position i = 3 and scale s = 1 is obtained
independently from the boundary treatment. Conversely, it is straightforward to see
that the wavelet coefficient at position i= 2 and scale s= 1 requires information on
the DNS field outside the boundary, and is therefore contaminated by the artificial
periodization. Specifically, i?(1)= 3 and i?(2)= 4 for db-4 wavelets, as schematically
shown in figure 13. More generally, for a wavelet coefficient at position i and scale
s to be free from border effects, its corresponding stencil points at scale s− 1 used
for convolution should be free from border effects as well. As a result, to the left
of i?(s) there must be at least M grid points at scale s − 1 not influenced by the
artificial periodization, where M is the number of vanishing moments of the wavelet
basis (e.g. M = 4 for db-4 wavelets). In Daubechies wavelets, this requires i?(s) and
i?(s− 1) to be related by the expression i?(s)= ceiling[M+ i?(s− 1)]/2 (it should be
noted that ceiling has to be replaced by floor at the right boundary). In this way, i?(s)
can be computed recursively, with 2s

[i?(s)− 1] corresponding to the number of points
on the primitive grid x0 lying on the left of the critical spatial index i?(s), outside the
interval of primitive points spanned by the length `s of the wavelet-collocation grid
cell where i?(s) is centred.

In this study, db-4 wavelets are chosen such that the border effects are fully
suppressed in the wavelet-analysis grid up to s = 8, with i?(8) = 4. Full suppression
of border effects at the coarsest wavelet-collocation grid level requires an excessively
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large size augmentation of the wavelet-analysis grid which creates a significant burden
of computational memory and exacerbates the biasing towards products or reactants
in the unconditioned statistics, since the augmented grid for transformation is more
likely to approach the simulation boundaries.

Based on the above considerations, the minimum number of points by which the
wavelet-analysis grid needs to be augmented in this study is 3× 28

= 768 on the left
of the upstream boundary. If, for maintaining dyadic grid proportions, this number is
increased to 1024 points on the right and left sides of the downstream and upstream
boundaries respectively, the wavelet transform on the augmented grid Nt ×Nt × (Nl+

2048) warrants that none of the coefficients up to scale s = 8 within the wavelet-
analysis grid Nt × Nt × Nl are affected by the artificial periodization. At scale s =
S = 9, however, only the leftmost (i = 1) and rightmost (i = 4) wavelet coefficients
are influenced by the border effects, while the centre ones (i= 2 and i= 3) are not.

The non-periodic boundary treatment described in this appendix has been enabled
by the spatial localization properties of the wavelet basis function. By way of contrast,
the Fourier basis function has infinite spatial support and therefore leads to spurious
border effects in all Fourier coefficients when artificial periodization is used.

Appendix C. Wavelet-based formulation of the energetics of the large-scale
motion

The conservation equation for e
∧(S)
[xS] is obtained by applying the large-scale

filtering operator defined in (3.6) to the momentum equation (4.13) and multiplying
the resulting equation by U

∧(S)
i [xS], thereby yielding

∂

∂t
e
∧(S)
[xS] = T

∧(S)
C [xS] + T

∧(S)
P [xS] + T

∧(S)
V [xS] + T

∧(S)
F [xS], (C 1)

where

T
∧(S)

C [xS] =−Ui

∧(S)
[xS]

{
uj
∂Ui

∂xj

}∧(S)

[xS] −
1
2

U
∧(S)

i [xs]

{
Ui
∂uj

∂xj

}∧(S)

[xS], (C 2)

T
∧(S)

P [xS] =−Ui

∧(S)
[xS]

{
1
ρ1/2

∂P
∂xi

}∧(S)

[xS], (C 3)

T
∧(S)

V [xs] =Ui

∧(S)
[xS]

{
1
ρ1/2

∂τij

∂xj

}∧(S)

[xS], (C 4)

T
∧(S)

F [xS] =U
∧(S)

i [xS]ρ
1/2Fi

∧(S)
[xS]. (C 5)

These correspond to large-scale energy fluxes analogous to (4.15)–(4.18). However,
while an objective of (4.14) is to describe the cascade of energy across scales `6 `S ,
(C 1) describes the dynamics of the kinetic energy accumulated in all turbulence
scales larger than `S , which cannot be decomposed in wavelet fluctuations since they
correspond to lengths larger than the width of the computational domain (i.e. see
bottom panel in figure 2 and discussion in § 3). For instance, e

∧(S)
[xS] includes,

in the present problem, the kinetic energy of the mean streamwise velocity and
its corresponding variation through the turbulent flame due to thermal expansion.
More generally, e

∧(S)
[xS] represents a reservoir of energy that is accumulated or
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drained by the large-scale fluxes (C 2)–(C 5), which are balanced through Plancherel’s
formula (4.1) with surface energy fluxes across the domain boundaries and with the
spectral energy fluxes (4.15)–(4.18) of the wavelet-decomposed fluctuating motion, as
explained in more detail in appendix D.

Appendix D. Physical-space conversion of the wavelet-based spectral energy
conservation equation

In order to interpret the physical meaning of the energy formulation in wavelet
space described in § 4, it is expedient to translate (4.14) into its full-scale physical-
space counterpart. For illustration, the translation is made here for the simplest case
of compressible homogeneous–isotropic turbulence in triply periodic cubic domains. In
this case, upon summing the spectral kinetic-energy equation (4.14) over all scales s
and positions xs and using (4.8), the physical-space kinetic-energy balance equation

dk
dt
= 〈P∆v〉x0 − 〈ε〉x0 + 〈ρuiFi〉x0 (D 1)

is obtained. In this formulation, k = 〈ρuiui〉x0/2 is the volume-averaged turbulent
kinetic energy per unit volume, whose expression can be derived from (4.3) by taking
into account that the kinetic energy of the mean, k = 〈ρ1/2ui〉x0〈ρ

1/2ui〉x0/2, vanishes
statistically to machine precision in forced compressible homogeneous–isotropic
turbulence (Petersen & Livescu 2010). The turbulent kinetic energy k can be
expressed in a more familiar form as k = ρũ′′i u′′i /2, where the overline operator
refers to regular (Reynolds) volume averaging, ρ = 〈ρ〉x0 , while the tilde operator
refers to density-weighted (Favre) volume averaging, ũ′′i u′′i = 〈ρu′′i u′′i 〉x0/ρ, with double
primes indicating Favre fluctuations.

Equation (D 1) represents the building block classically employed to study the
dynamics of forced compressible homogeneous–isotropic turbulence (e.g. see (4.4)
in Kida & Orszag (1990) or (6) in Petersen & Livescu (2010)). Its right-hand side
comprises source terms corresponding to pressure-dilatation work 〈P∆v〉x0 , viscous
dissipation 〈ε〉x0 = 〈2µSijSij + (µv − 2µ/3)∆2

v〉x0 and energy injection 〈w〉x0 = 〈ρuiFi〉x0

due to forcing of the momentum equation. In contrast, the convective transport
of kinetic energy plays no role in the volume-averaged energetics. The energy
conservation properties of the present wavelet-based spectral formulation readily yield
the right-hand side of (D 1) by noticing that, in triply periodic flows, the summation
over all scales s and positions xs of the inter-scale fluxes (4.15)–(4.18) gives

S∑
s=1

2−3s
〈T
∧(s)

C [xs]〉xs =−

〈
Uiuj

∂Ui

∂xj
+

1
2

UiUi
∂uj

∂xj

〉
x0

'−

〈
∂

∂xj

(
ρuj

uiui

2

)〉
x0

' 0,

(D 2)
S∑

s=1

2−3s
〈T
∧(s)

P [xs]〉xs =−

〈
ui
∂P
∂xi

〉
x0

' 〈P∆v〉x0, (D 3)

S∑
s=1

2−3s
〈T
∧(s)

V [xs]〉xs =

〈
ui
∂τij

∂xj

〉
x0

'−〈ε〉x0, (D 4)

S∑
s=1

2−3s
〈T
∧(s)

F [xs]〉xs = 〈ρuiFi〉x0 . (D 5)
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Equations (D 2)–(D 5) can be derived by using Plancherel’s formula (4.1), the
definition (4.2) for Ui, the definitions (4.15)–(4.18) for the energy fluxes, the chain
rule and the divergence theorem. In writing (D 2)–(D 4), approximately equal signs
have been employed to highlight the fact that the chain rule and the divergence
theorem are discretely satisfied up to small numerical errors that generally vanish
as the grid spacing becomes increasingly small. It should be emphasized that the
numerical results presented above in figures 3–12 are not influenced by any of these
approximations, since the corresponding quantities are computed directly from their
definitions without the manipulations involved in deriving any conservation properties
other than those related to the exact construction of the modified conservation
equations (4.12)–(4.13).

The considerations above pertain to compressible homogeneous–isotropic flows in
cubic triply periodic computational domains. In these flows, the convective inter-scale
flux becomes conservative by construction and the wavelet formulation simplifies to
the energy balance equation (D 1), which is amenable to conceptual interpretations
based on the turbulence cascade (Aluie, Li & Li 2012). In contrast, the analysis
becomes much less straightforward in more general configurations, such as the
turbulent reacting flow treated in the present study. For instance, the cuboidal shape
of the grid limits the wavelet decomposition to the domain width. As a result, velocity
fluctuations of structures larger than the domain width, including the fast acceleration
of the mean flow through the flame, cannot be decomposed into wavelet fluctuations
and are accounted for in the large-scale wavelet energy equation (C 1) in a cumulative
manner. In this general case, the convective inter-scale flux (4.15) is not conserved
as in expression (D 2), but Plancherel’s formula (4.1) yields

S∑
s=1

2−3s
〈T
∧(s)

C [xs]〉xs + 2−3S
〈T
∧(S)

C (xS)〉xs

=−

〈
Uiuj

∂Ui

∂xj
+

1
2

UiUi
∂uj

∂xj

〉
x0

'−

〈
∂

∂xj

(
ρuj

uiui

2

)〉
x0

, (D 6)

with T
∧(S)

C given by (C 2). In triply periodic flows, where the last term in (D 6) is zero,
the conservation character of the convective energy transfer across scales only holds
for the combined exchange between the wavelet-decomposed eddies (`6 `S) and the
large-scale motion (` > `S). However, due to the non-periodicity of the streamwise
boundaries caused by thermal expansion in the present configuration, the last term in
(D 6) becomes equal to the non-zero difference between the surface fluxes of kinetic
energy through the upstream and downstream boundaries of the wavelet-analysis
domain, thereby preventing the combined convective transfer of kinetic energy from
being conserved across scales. In this general case, (D 1) needs to be rewritten to
account for surface fluxes of kinetic energy as well as surface work by pressure
and viscous forces. In addition, the turbulent kinetic energy k appearing in (D 1) has
to be substituted by the volume average of the total amount of kinetic energy K
contained in the computational domain, which is defined in (4.3) and includes the
energy associated with wavelet-decomposed eddies (`6 `S) as well as the large scales
(` > `S), the latter incorporating also the energy of the mean motion. As a result,
the corresponding version of (D 1) augmented with these additional terms, required
to describe the present turbulent reacting flow, is significantly more involved and in
principle does not lend itself to straightforward physical interpretations in scale space.
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