Course Description: This is an introductory course focused on theoretical aspects of Compressible Flows. A review of fundamental concepts of high-speed flows is performed in the first part. Topics include quasi-one dimensional flow in variable area ducts, normal and oblique shock waves and expansion fans, unsteady motion, two-dimensional supersonic flows and hypersonic flows.

Prerequisite: Introductory level fluid mechanics.

Instructor: Javier Urzay, Ph.D.
E-mail: jurzay@stanford.edu
Office: 206 CTR
Office Hours: Mondays 4:00 PM-6:00 PM.

Lectures: Tuesdays and Thursdays, 1:30 PM-2:50 PM at room 380-381T.

Reference Textbooks (not required):

Supplementary material shall be provided in class.

Homeworks: There will be 4 homework assignments. No late homeworks will be accepted.

Exams: Midterm Exam: Tuesday, May 10, in class.
Final Exam: TBA.

Both exams will consist of two parts: i) Short Questions (closed books, closed notes, no calculator), and ii) Problems (open book and open notes, calculator allowed).

Grading Scheme: 30% Homeworks + 30% Midterm Exam + 40% Final Exam.

Academic Integrity: The Stanford Honor Code will be followed:

Website: http://www.stanford.edu/~jurzay/ME_355
OUTLINE

1. Conservation Equations
2. Shocks and Expansion Waves
3. Compressible Flows in Ducts and Nozzles
4. Wave Motion in Compressible Flows
5. Two-Dimensional Theory of Compressible Flows
6. Hypersonic Aerodynamics