
Computer Physics Communications 255 (2020) 107262

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

HTR solver: An open-source exascale-oriented task-basedmulti-GPU
high-order code for hypersonic aerothermodynamics✩,✩✩

Mario Di Renzo ∗, Lin Fu, Javier Urzay
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA

a r t i c l e i n f o

Article history:
Received 30 September 2019
Received in revised form 19 February 2020
Accepted 28 February 2020
Available online 14 March 2020

Keywords:
Hypersonic aerothermodynamics
GPUs
High-order numerics

a b s t r a c t

In this study, the open-source Hypersonics Task-based Research (HTR) solver for hypersonic aerother-
modynamics is described. The physical formulation of the code includes thermochemical effects
induced by high temperatures (vibrational excitation and chemical dissociation). The HTR solver uses
high-order TENO-based spatial discretization on structured grids and efficient time integrators for stiff
systems, is highly scalable in GPU-based supercomputers as a result of its implementation in the
Regent/Legion stack, and is designed for direct numerical simulations of canonical hypersonic flows at
high Reynolds numbers. The performance of the HTR solver is tested with benchmark cases including
inviscid vortex advection, low- and high-speed laminar boundary layers, inviscid one-dimensional
compressible flows in shock tubes, supersonic turbulent channel flows, and hypersonic transitional
boundary layers of both calorically perfect gases and dissociating air.
Program summary
Program Title: Hypersonics Task-based Research solver
Program Files doi: http://dx.doi.org/10.17632/9zsxjtzfr7.1
Licensing provisions: BSD 2-clause
Programming language: Regent
Nature of problem: This code solves the Navier–Stokes equations at hypersonic Mach numbers including
finite-rate chemistry for air dissociation along with multicomponent transport. The solver is designed
for direct numerical simulations (DNS) of transitional and turbulent hypersonic turbulent flows at
high enthalpies, and accounts for thermochemical effects such as vibrational excitation and chemical
dissociation.
Solution method: This code uses a low-dissipation sixth-order targeted essentially non-oscillatory
(TENO) scheme for the spatial discretization of the conservation equations on Cartesian stretched
grids. The time advancement is performed either with an explicit method, when the chemistry is slow
and therefore does not introduce additional stiffness in the integration, or with an operator-splitting
method that integrates the chemical production rates with an implicit discretization.
Additional comments: The HTR solver builds on the runtime Legion [1] and is written in the pro-
gramming language Regent [2] developed at Stanford University. Instructions for the installation of
the components are provided in the README file enclosed with the HTR solver and in the Legion
repository [1].

References:
[1] Legion web page: https://legion.stanford.edu
[1] Regent web page: http://regent-lang.org

© 2020 Elsevier B.V. All rights reserved.

✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).

∗ Corresponding author.
E-mail address: mariodr@stanford.edu (M. Di Renzo).

1. Introduction

Numerical simulations of hypersonic flows are laborious and
require special considerations because of several effects induced
by the prevailing high Mach numbers. These complexities are
compounded by turbulence in cases of practical engineering in-
terest, which oftentimes involve high Reynolds numbers.

The overall aspect of the flow that the engineer or designer of
hypersonic flight systems has to typically deal with is one with

https://doi.org/10.1016/j.cpc.2020.107262
0010-4655/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2020.107262
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107262&domain=pdf
http://dx.doi.org/10.17632/9zsxjtzfr7.1
https://legion.stanford.edu
http://regent-lang.org
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:mariodr@stanford.edu
https://doi.org/10.1016/j.cpc.2020.107262

2 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

shock waves and turbulence, with transitional zones in compress-
ible boundary layers, and with large fluctuations of temperature,
velocity, and pressure [1–3]. High Mach numbers involve high
kinetic energies relative to the thermal energy of the flow. How-
ever, high kinetic energies also lead to the occurrence of high
temperatures in regions where the flow slows down, because of
the close coupling between the transfer of momentum and ther-
mal energy. The resulting high temperatures may activate ther-
mochemical processes such as vibrational excitation, dissociation,
and ionization [4–6].

The intense computational resources required to solve the
multiscale dynamics of hypersonic flows often forestall
simulation-based discovery and analysis of fundamental phe-
nomena. Common issues are the numerical stiffness induced by
the strong interplay between compressibility, turbulence, and
thermochemical effects, and the increasing similarities between
shock-like and eddy-like structures at high values of Mach and
Reynolds numbers, which curtail the effectiveness of numerical
schemes.

This study describes an open-source code, the Hypersonics
Task-based Research (HTR) solver, for direct numerical simula-
tions (DNS) of hypersonic turbulent flows subject to thermo-
chemical effects in structured grids. The HTR solver is suitable
for deployment in GPU-based high-performance supercomputing
facilities, and is furnished with novel capabilities in computa-
tional science and numerical methods, along with physical mod-
els to investigate phenomena induced by high temperatures in
hypersonic flows, as summarized below.

The architecture of today’s computing facilities is character-
ized by utilizing a variety of computing chips, including CPUs
and GPUs. Such heterogeneity entails endless memory hierarchies
that the programmer has to deal with in pursuit of making
full use of the supercomputer. In order to achieve this goal,
parallel CFD solvers based on traditional domain-decomposition
methods require complex adaptations to the particular architec-
ture of the machine in question. In contrast, the HTR solver is
based on the task-based environment provided by the versa-
tile library Legion recently developed at Stanford and thought
to bear potential for exploitation of future Exascale machines
[7–9]. The task-based structure enables efficient partition of the
work load at runtime in the available computing chips, while
the required memory-management operations are managed by
the Legion infrastructure. This makes possible the exploitation of
heterogeneous architectures without incurring costly and tailored
modifications of the CFD solver for one particular machine. The
HTR solver is written in the programming language Regent de-
signed to simplify the user interface with Legion runtime [10].
Using Regent, one can write parallel programs employing se-
quential semantics, which are automatically translated by the
framework into OpenMP and CUDA kernels that can be used by
the runtime.

In simulating fundamental multiscale processes in hypersonic
flows at high Reynolds numbers using DNS, the numerical dis-
cretization of the conservation equations in time should handle
the stiffness induced by vastly different time scales with effi-
ciency and stability, whereas the discretization in space should
minimize numerical dissipation in order to capture turbulent
fluctuations, albeit in a way that also allows for stable capture
of shocks, the latter becoming increasingly more indistinguish-
able from small-scale eddies as the turbulent Mach number in-
creases. The HTR solver employs two different time-advancement
schemes, namely a third-order Runge–Kutta method [11] when
the chemical reactions are slow, and an operator-splitting method
[12] when chemical reactions are fast and the numerical inte-
gration becomes correspondingly stiff. For spatial discretization,

the HTR solver uses a low-dissipation sixth-order targeted es-
sentially non-oscillatory (TENO) scheme as a compromise solu-
tion between low numerical dissipation and stable capture of
shocks [13].

The high temperatures prevailing in hypersonic flows require
consideration of non-calorically-perfect effects. The HTR solver
is based on a multicomponent transport formulation that in-
cludes variable specific heat capacities [14] and transport coef-
ficients [15–22], along with a chemical-kinetic description for
air dissociation [4]. This formulation enables the investigation
of phenomena induced by vibrational excitation of air molecules
and their dissociation in hypersonic flows at high Reynolds num-
bers. However, in configurations where the stagnation temper-
ature is sufficiently cold, or thermochemical effects are ignored,
the HTR solver also includes a simplified formulation for calori-
cally perfect gases.

This manuscript describes the first release of the HTR solver,
which incorporates the characteristics mentioned above and is
aimed at DNS of canonical hypersonic flows. It should however
be stressed that the flexibility afforded by the Legion/Regent stack
should make possible for the developer a number of extensions
of this work if an augmentation of the capabilities of the code
is sought. For instance, the numerical framework and the imple-
mentation of the code released are organized in such a way that
they are completely independent of the chemical mechanism, and
of the thermophysical and transport properties employed in the
simulations, thereby providing ample room for improvement in
physical models.

The remainder of this paper is structured as follows. Section 2
outlines the conservation equations, whereas Section 3 describes
the chemical mechanism and the thermophysical and transport
properties implemented in the solver. Section 4 focuses on the
numerical discretization of the conservation equations. The solver
is verified in Section 6 using inviscid vortex advection, low- and
high-speed laminar boundary layers, inviscid one-dimensional
compressible flows in shock tubes, supersonic turbulent channel
flows, and hypersonic transitional boundary layers. While most of
these benchmark cases pertain to low-enthalpy conditions, DNS
results of a hypersonic transitional boundary layer obtained using
the HTR solver at high enthalpies are highlighted in Section 7.
Additionally, an assessment of the parallel performance of code
in both GPU and CPU environments is performed in Section 8.
Lastly, conclusions are provided in Section 9. The first release of
the HTR solver, along with the setup files for the benchmark cases
analyzed in Section 6, and for the extra case in Section 7, are
included in the Supplementary Material.

2. Formulation of the conservation equations in the HTR
solver

The HTR solver integrates the dimensional compressible
Navier–Stokes conservation equations for a chemically reacting
mixture of ideal gases, which can be written in compact form as

∂C
∂t

+
∂[F(C) + Fν(C)]

∂x
+

∂[G(C) + Gν(C)]
∂y

+
∂[H(C) + Hν(C)]

∂z
= Ṡ

(1)

in time t and Cartesian coordinates {x, y, z}. In this formulation,
C is a vector of conserved variables defined as

C =
[
ρ1, . . . , ρNs , ρu, ρv, ρw, ρe0

]T
, (2)

where the components correspond to the following quantities:
(a) the partial densities ρi = ρYi of the Ns species in the mixture,
with ρ and Yi being the mixture density and mass fraction of

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 3

species i, respectively; (b) the three components of the momen-
tum per unit volume ρu, ρv, and ρw, where {u, v, w} are the
velocity components in the aforementioned Cartesian coordinate
system; and (c) the specific stagnation internal energy e0 = e +

|u|
2/2, with e being the specific internal energy of the mixture

defined as

e =

Ns∑
i=1

Yihi − P/ρ, (3)

where P is the thermodynamic pressure and hi is the partial
specific enthalpy of species i given by

hi = hi,ref +

∫ T

Tref

cp,i(T ′)dT ′. (4)

The symbol hi,ref denotes a reference value taken at the reference
temperature Tref. In Eq. (4), cp,i is the specific heat capacity of
species i at constant pressure. These equations are supplemented
with the equation of state

P/ρ =

Ns∑
i=1

YiR0T/Mi (5)

for an ideal multicomponent gas, where R0 is the universal gas
constant, and Mi is the molecular weight of species i. Note
that Eq. (5) can be generally expressed in functional form as
P = f (e, ρ1, . . . ρNs), with the partial derivatives Pρi = (∂P/

∂ρi)e,ρj|j=1,...,Ns(j̸=i) and Pe = (∂P/∂e)ρi|i=1,...,Ns
being equal to con-

stant values in the particular case of a calorically perfect gas. In
Eq. (1), F, G, and H are Euler fluxes given by

F(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1u
...

ρNsu
ρuu + P

ρuv
ρuw
ρuh0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1v
...

ρNsv

ρvu
ρvv + P

ρvw

ρvh0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1w
...

ρNsw

ρwu
ρwv

ρww + P
ρwh0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6)

where h0 = e0 + P/ρ is the specific stagnation enthalpy of the
mixture. Similarly, Fν , Gν , and Hν are diffusive fluxes defined as

Fν(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1U1
...

ρNsUNs
−τ11
−τ21
−τ31

Ns∑
i=1

ρiUihi − λ
∂T
∂x

− τ11u − τ12v − τ13w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Gν(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1V1
...

ρNsVNs
−τ12
−τ22
−τ32

Ns∑
i=1

ρiVihi − λ
∂T
∂y

− τ21u − τ22v − τ23w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

Hν(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1W1
...

ρNsWNs
−τ13
−τ23
−τ33

Ns∑
i=1

ρiWihi − λ
∂T
∂z

− τ31u − τ32v − τ33w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

In these expressions, τij (i, j = 1, 2, 3) are the components of the
viscous stress tensor

τ = µ

[
∇u + ∇uT

− 2 (∇ · u) I/3
]
, (8)

where I is the identity tensor and µ is the dynamic viscosity of
the mixture. Additionally, {Ui, Vi,Wi} are the components of the
diffusion velocity vector

Vi = −Di∇ (ln Xi) +

Ns∑
j=1

YjDj∇
(
ln Xj

)
(9)

in the Cartesian coordinate system defined above. The right-hand
side of Eq. (9) for the diffusion velocity is composed of two terms.
The first one is a Fickian term, whereas the second one is a mass
corrector [23–25]. In the notation, Xi and Di are the molar fraction
and mass diffusivity of species i, respectively.

The chemical mechanism is formally given by the set of j =

1, 2, . . . ,M elementary steps
∑Ns

i=1 ν ′

ijRi ⇀↽
∑Ns

i=1 ν ′′

ijRi, with R

the chemical symbol of species i, ν ′

ij the stoichiometric coefficient
of the reactant i in the step j on the reactants side, and ν ′′

ij the
stoichiometric coefficient of the reactant i in the step j on the
products side. The source term in Eq. (1) is defined as Ṡ =[
ẇ1, . . . , ẇNs , 0, 0, 0, 0

]T in terms of the chemical rates of mass
production of species i per unit volume,

ẇi = Mi

M∑
j=1

(ν ′′

ij − ν ′

i)
Ns∑
i=1

Fij

(
ρYi

Mi

)

×

[
kf ,j

Ns∏
i=1

(
ρYi

Mi

)ν′
ij

− kb,j
Ns∏
i=1

(
ρYi

Mi

)ν′′
ij
]

, (10)

where Fij is the chaperon efficiency of species i participating as
collider in the reaction j, and kf ,j and kb,j are, respectively, the
forward and backward rate constants of the chemical step j.

3. Chemical kinetics and thermophysical and transport prop-
erties implemented in the HTR solver

A number of different sets of thermophysical, transport, and
kinetic properties can be supplied to the HTR solver depending
on the particular application because of the flexible modularity
of the Legion/Regent framework. However, in this study, the
analysis is narrowed down to two different sets of mixtures for
showing the performance of the implementation provided in the
open-source version of the HTR solver, as described below.

3.1. Calorically perfect gas

For calorically perfect gases, the specific heat capacity cp is
constant and is related to the adiabatic coefficient γ as cp =

γ Rg/(γ − 1), where Rg = R0/M is the gas constant. In addition,
since there is no chemical conversion and Ns = 1, the diffusion

4 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

velocities (9) and the chemical production rates (10) are identi-
cally zero. The dynamic viscosity of the gas is computed using the
power law µ = µref (T/Tref)σ with σ = 0.7, and where µref is a
reference value evaluated at the reference temperature Tref. Once
cp and µ are calculated, the thermal conductivity λ = Pr/(µcp)
is evaluated by assuming a constant value of the Prandtl number
Pr .

3.2. Non-equilibrium dissociating air

The dissociating air used in the simulations below is assumed
to be in thermodynamic equilibrium and is composed of N2, O2,
NO, O, and N, which react according to the reversible chemical
steps

O2 + M ⇋ 2O + M, (R1)

NO + M ⇋ N + O + M, (R2)

N2 + M ⇋ 2N + M, (R3)

N2 + O ⇋ NO + N, (R4)

NO + O ⇋ O2 + N, (R5)

where M represents a collider (i.e., each of the species listed
above). The rate constants of the steps (R1)–(R5) can be found
in Ref. [4]. The equilibrium constants are evaluated using the
traditional expression Kp,j = exp[−

∑Ns
i=1(ν

′′

ij − ν ′

ij)g i,ref/(R0T)],
where g i,ref are reference molar Gibbs free energies obtained from
chemical databases [14].

The constant-pressure specific heat capacities are computed
using the 9-coefficient NASA polynomials [14], whereas the dy-
namic viscosity of the mixture is evaluated using Wilke’s rule [16]

µ =

(
Ns∑
i=1

Yiµi

)/⎛⎝ Ns∑
j=1

Gij
Mi

Mj
Yj

⎞⎠ . (11)

In Eq. (11), the symbol Gij is given by

Gij =
1

√
8

(
1 +

Mi

Mj

)−
1
2
[
1 +

(
µi

µj

)−
1
2
(
Mj

Mi

) 1
4
]2

, (12)

where µi is the dynamic viscosity of species i [19],

µi =
5
16

√
πkBTMi/NA

πσ 2
i Ω

(2,2)
i

, (13)

with kB as the Boltzmann constant, NA as the Avogadro number,
and σi as the Lennard-Jones collision diameter of the species i.

The diffusivity of species i is computed as a function of the
mixture composition and temperature as [17]

Di = (1 − Yi)

/
Ns∑

j=1,j̸=i

Xj

Dij
, (14)

where the binary diffusivity Dij is given by [19]

Dij =
3
16

√
2πNAk3BT 3/Mij

Pπσ 2
ij Ω

(1,1)
ij

. (15)

In this expression, Mij = MiMj/(Mi + Mj) is the reduced
molecular weight and σij is the reduced collision diameter. The
symbols Ω

(1,1)
ij and Ω

(2,2)
i appearing in Eqs. (13) and (15) are

collision integrals computed as polynomial functions of the re-
duced temperatures T ∗

i = TkB/ξi [for Ω
(2,2)
i] and T ∗

ij = TkB/ξij
[for Ω

(1,1)
ij], where ξi is the depth of the potential well of species

i calculated using the Stockmayer potential [18]. The value of σij

and of ξij depends on whether the colliding molecules are polar
or nonpolar. If both molecules are either polar or non-polar, then
σij = (σi + σj)/2 and ξij =

√
ξiξj. If one of the colliding molecules

is polar and the other is non-polar, then σij =
(
σi + σj

)
/(2ξ

1
6)

and ξij = ξ 2
√

ξiξj, where ξ = 1+ (α∗
nµ

∗
p/4)

√
ξp/ξn, with α∗

n being
the reduced polarizability of the non-polar molecule and µ∗

p being
the reduced dipole moment of the polar molecule.

The thermal conductivity of the mixture λ is computed as [20]

λ =
1
2

⎡⎣ Ns∑
i=1

Xiλi +

(
Ns∑
i=1

Xi

λi

)−1
⎤⎦ , (16)

where the thermal conductivity of species i is defined as

λi =
15R0µ

4Mi
(17)

for monoatomic gases. In polyatomic gases, λi is expressed as [21]

λi =
µ

Mi

(
fi,transcv,i,trans + fi,rotcv,i,rot + fi,vibcv,i,vib

)
, (18)

where cv,i,trans = 3R0/2, cv,i,rot = R0, and cv,i,vib = cp,iMi −7R0/2
are constant-volume molar heat capacities for translational, ro-
tational, and vibrational degrees of freedom in linear molecules,
while cv,i,trans = cv,i,rot = 3R0/2 and cv,i,vib = cp,iMi − 4R0 are
the corresponding values for non-linear molecules. Similarly,

fi,trans =
5
2

(
1 −

2cv,i,rotAi

πcv,i,transBi

)
, fi,rot =

ρiDii

µi

(
1 −

2Ai

πBi

)
,

fi,vib =
ρiDii

µi
,

(19)

are contributions from different molecular degrees of freedom to
the thermal conductivity of species i, with Ai = 5/2 − fi,vib and
Bi = Zi,rot + (2/π)[5cvi,rot/(3R0) + fi,vib]. The rotational-relaxation
collision number Zi,rot is computed as [15]

Zi,rot(T) = Zi,rot(T = 298 K)fi(T = 298 K)/fi(T), (20)

where

fi(T) = 1+
π3/2

2

(
ξi

kBT

)1/2

+

(
π2

4
+ 2

)(
ξi

kBT

)
+π3/2

(
ξi

kBT

)3/2

.

(21)

In Eq. (20), the parameter Zi,rot(T = 298 K) is extracted for each
species from the existing database [22].

4. Numerical methods employed in the HTR solver

A brief summary of the spatiotemporal discretization algo-
rithms implemented in the HTR solver to numerically integrate
the conservation equations is presented in this section. The reader
is referred to the original sources in the relevant references cited
below for further details on the formulation.

4.1. Spatial discretization

Since the flows of interest addressed in this study are at
high Reynolds numbers, the diffusion fluxes (7) are evaluated
using a second-order central finite-difference scheme written in
conservative form, as in Ref. [26]. In this way, the complexity of
the implementation is reduced, and the efficient parallelization
properties of the solver are preserved.

The Euler fluxes (6) are computed on a collocated grid us-
ing a sixth-order finite difference method, whose reconstruction
procedure can be summarized in the following five steps:

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 5

1. The right eigenvectors of the Jacobian matrices ∂F/∂C,
∂G/∂C, and ∂H/∂C are estimated at the cell interfaces
by using the Roe average of the variables in the first
neighboring cell centers. For instance, the matrix of right
eigenvectors of ∂F/∂C can be written as

K F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 1 . . . 0 0 0 Y1
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

YN 0 . . . 1 0 0 YN
u − a u . . . u 0 0 u + a

v v . . . v 1 0 v

w w . . . w 0 1 w

h0 − ua e0 −
ρPρ1
Pe

. . . e0 −
ρPρN
Pe

v w h0 + ua

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(22)

where a is the frozen speed of sound. In calorically non-
perfect cases, Pρi and Pe computed using the Roe-averaged
conditions at cell interfaces are not compatible with the
pressure jump conditions. The correction procedure pro-
posed by [27] is applied here, which is based on project-
ing the point {Pρ1 , . . . , PρNs

, Pe}, obtained using the Roe
averages, onto the Ns + 1 dimensional hyperplane

∆P = P̂e∆e +

Ns∑
i=1

P̂ρi∆ρi, (23)

where the hat symbol is utilized here to identify the cor-
rected values of the derivatives.

2. The eigenvector matrices computed, for instance, at the
cell interface i + 1/2, are used to project the conserved
variables, along with the flux functions involved in the
reconstruction stencil, onto the characteristic space. Con-
tinuing with the example of the fluxes in the x-direction,
the variables in the characteristic space, which are denoted
by tilde symbols, are defined as

C̃ = K
−1

F C, F̃ = K
−1

F F. (24)

3. The local Lax–Friedrichs flux-splitting method is then used
to compute the positive and negative numerical flux func-
tions f̃ ±

= F̃ ± λ̃C, where λ is the vector of the maximum
eigenvalues of the problem taken across the entire recon-
struction stencil (i.e., λ = [|u − a|, |u|, . . . , |u|, |u + a|] for
the x-direction, where the multiplicity of the eigenvalue u
is Ns + 2).

4. A sixth-order TENO reconstruction scheme [13] is em-
ployed to compute the value of the numerical flux
functions at the location i + 1/2. The corresponding re-
construction stencil, for the f̃ + component of the fluxes,
is sketched in Fig. 1 and consists of four low-order candi-
date stencils that span six points symmetrically distributed
across the reconstruction location. In smooth regions, the
coefficients of the low-order stencils, which are deter-
mined depending on the local stretching of the grid, are
linearly combined in order to recover a sixth-order central
reconstruction. If a low-order stencil crosses a disconti-
nuity, it is excluded from the reconstruction stencil using
the procedure described in Section 3.2 of Ref. [28]. The
dynamic nonlinear procedure for control of dissipation en-
sures that sufficient numerical dissipation is generated for
capturing shocks while minimum dissipation is produced
for turbulence-like high-wavenumber fluctuations.

5. The local numerical flux at the cell interface,

f̃i+ 1
2

=

(̃
f +

i+ 1
2

+ f̃ −

i+ 1
2

)
/2, (25)

Fig. 1. Schematics of sixth-order TENO reconstruction stencils.

is re-projected onto physical space by using fi+ 1
2

= K F̃fi+ 1
2
.

The reconstruction procedure described above is not strictly
bound preserving [29–31]. Out-of-bounds behavior for critical
primitive variables is not admissible when strict limits are re-
quired by physical constraints. The HTR solver incorporates a flux
limiter similar to that proposed in Ref. [32] in order to ensure
stability when excessive departures from established bounds are
detected. In this method, a provisional state C∗ is computed using
the fluxes reconstructed with the procedure outlined above. If a
mass fraction computed with C∗ becomes negative, the fluxes of
the corresponding partial density for the cell interfaces adjacent
to where the bound is exceeded are recomputed using a first-
order upwind scheme. Similarly, if the temperature computed
with C∗ is not larger than a lower bound Tmin and smaller than
an upper bound Tmax, with [Tmax, Tmin] corresponding to the max-
imum temperature range in which the NASA polynomials [14]
are defined, the fluxes of all the transported variables are recom-
puted using the first-order upwind reconstruction. These fluxes
are then considered for updating the conserved variables in the
subsequent steps of the calculation. It is worth stressing that the
flux limiter was not required in any of the verification tests cases
analyzed in Section 6. A violation of admissible boundedness in
temperature was however observed in the extra case provided in
Section 7, where the flux limiter was necessary.

4.2. Time integration

Two different numerical schemes are used in the HTR solver
to perform the time advancement of the conservation equations
depending on the stiffness of the finite-rate chemistry consid-
ered in the calculation. When the characteristic time scales of
the chemical reactions are comparable or larger than those of
the flow field, the chemistry does not introduce any additional
stiffness to the problem, and therefore time advancement is per-
formed using the third-order strong-stability-preserving Runge–
Kutta (SSP-RK3) method in Ref. [11]. On the contrary, in cases
where the characteristic time scales of the chemical reactions are
much shorter than those of the flow field, the chemistry leads to
stiffness in the calculations and makes explicit time integration
unfeasible. In these cases, the HTR solver adopts the operator-
splitting approach in Ref. [12], which can be briefly summarized
in the following two steps:

1. The algorithm begins by advancing in time the system of
ordinary differential equations

dC
dt

= Ṡ − T(C0) (26)

from time t0 to t0 + ∆t , with C0 representing the initial
condition at time t0. In Eq. (26), the symbol T(C) is defined

6 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

Fig. 2. Schematics of reconstruction scheme for staggered boundary conditions.
The dashed line corresponds to the first off-wall reconstructed cell interface.

as

T(C) =
∂[F(C) + Fν(C)]

∂x
+

∂[G(C) + Gν(C)]
∂y

+
∂[H(C) + Hν(C)]

∂z
.

(27)

Since the vector of chemical sources Ṡ depends only on the
local value of the vector of conserved variables C, the inte-
gration of Eq. (26) is performed independently at each cell
of the computational grid by using an implicit algorithm.
In particular, the present formulation uses a fourth-order
Rosenbrock solver for this step [33].

2. A supplementary system of equations given by
dC
dt

= T(C) − T(C0) (28)

is integrated from time t0+∆t/2 to t0+∆t using Ĉ as initial
condition, where Ĉ is solution of Eq. (26) at time t0 + ∆t .
The system (28) does not involve chemical source terms
and can be therefore integrated using a standard explicit
integration scheme. In particular, the present formulation
uses the SSP-RK3 method in this step. In this way, the
solution of Eq. (28) at time t0+∆t converges to the solution
of the original system of Eq. (1) with an accuracy of order
(∆t)2.

The procedure described above is steady-state preserving and
reduces the computational cost of integrating the transport equa-
tions with stiff chemistry by allowing a larger time step ∆t
determined by the stability limits of the Runge–Kutta method
employed to integrate Eq. (28).

4.3. Boundary conditions

Wall boundary conditions, including non-slip for velocity, non-
catalytic for species, and isothermal or adiabatic for temperature,
are enforced by using a staggered approach with the stencil
depicted in Fig. 2. This method has the advantage of strictly
enforcing the mass flux imposed by the boundary conditions
at the boundary location [34]. This property, which is particu-
larly important for the correct prediction of wall-bounded flows,
circumvents the computation of fluxes on the boundary faces
by the reconstruction algorithm, thus enforcing correct values
directly from the boundary condition. For instance, the first node
of the grid, denoted by the index 0 in Fig. 2, is staggered at the
boundary face of the domain. The first cell interface, where the
fluxes need to be evaluated using the reconstruction algorithm,
is indicated by the index 1/2 in Fig. 2. There, the reconstruction-
order accuracy is decreased to match a fifth-order upwind biased
scheme, in which the coefficients of the low-order stencils are re-
computed considering local grid spacing and the staggered node.
The standard reconstruction scheme for the cell interface given
by the index 3/2 is used by recomputing the low-order stencil

Fig. 3. Schematics of reconstruction scheme for collocated boundary conditions.

coefficient such that it becomes compliant with the staggered
node.

Non-reflecting boundary conditions are instead implemented
using a collocated approach. A ghost cell is placed on the other
side of the boundary face of the domain. Similarly to the stag-
gered case, the order of accuracy of the reconstruction is
decreased to enable sufficient points to support the stencil. In
particular, the interface between the ghost cell and the first inter-
nal cell is reconstructed using first-order upwind discretization.
This choice is dictated by the need of preserving shock-capturing
capabilities at the boundaries of the domain and by the practical
requirement of avoiding multiple rows of ghost cells. Fourth-
order accuracy is instead obtained for the reconstruction of the
first cell interface away from the boundary using the stencil
depicted in Fig. 3.

5. Regent-based implementation of the HTR solver

An innovative aspect of the HTR solver is its implementa-
tion in the programming language Regent developed at Stan-
ford University [10,35]. Regent employs the library Legion [7]
to produce highly parallel applications addressed to distributed
heterogeneous architectures. Specifically, Legion enables a differ-
ent approach to parallelization compared to traditional Message-
Passing-Interface (MPI) implementations. In Legion, the parallel
application is organized in tasks, which are functions that sequen-
tially operate on one or more arguments in a collection of data.
While programs are represented as dependency graphs of tasks,
Legion’s runtime manages the placement of tasks in the machine
along with the data allocation to ensure that the dependencies
are enforced. The only responsibility of the application developer
is to define which data fields will be read or modified by the
corresponding task. In this way, Legion foresees the dependen-
cies between the different tasks that populate the application,
determines the concurrency of the tasks applied to the data,
designs the parallel execution of the tasks, evaluates whether the
optimization strategies demanded by the application developer
are feasible, and performs all memory-management operations,
including communications and memory allocations required to
perform instructions commanded by the task on the selected
machine architecture.

An example illustrating the ease of implementation of a task
in Regent is provided in the snippet shown in Fig. 4. The instruc-
tions reads (line 5) and writes (line 6) inform the compiler
about the fields of the region Fluid that have to be provided
and will be modified by the task UpdateUsingFluxX. Similarly,
the statement _ _demand (lines 1 and 8) is used to command
the compiler to optimize the task at compilation time with the
following options:

• Option _ _parallel [line 1] demands the compiler to use
the algorithm described in Lee et al. [36]. It designs the
way to run the task in parallel by assigning to each node
one partition of the domain Fluid while preserving the
correctness of the calculation. In the task presented in Fig. 4,

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 7

Fig. 4. Snippet of HTR solver showing a single task written in Regent that computes the divergence of the fluxes in the x direction.

this optimization consists of providing the node with the
additional points required to support the stencil for the
divergence operator.

• Option _ _cuda [line 1] forces the compiler to produce a
CUDA kernel for the task and run it on an available GPU.

• Option _ _leaf [line 1] informs the compiler that the task
does not call any other subtasks, which allows for exhaus-
tive optimization strategies.

• Option _ _openmp [line 8] commands the compiler to run
the loop in lines 9–16 with an OpenMP approach using CPUs
with shared memory access.

The unique features of the Regent programming language en-
able a number of advantages in the development and execution
of the HTR solver as follows. Since the sequential semantics
are preserved, the source HTR solver can be easily interpreted.
Similarly, since the parallel management of the tasks is under-
taken by Legion, bugs in parallelization-related developments in
the HTR solver are minimized. Additionally, improvements on
parallelization strategies can be effortlessly implemented in the
HTR solver with new releases of the Legion library. Since the
compiler and the runtime component of the Legion library are
capable of performing automatic adaptations of the algorithm to
the particular computational architecture where the application
is compiled, the portability of the HTR solver is enhanced and
does not represent an issue for deployment in heterogeneous
architectures. Lastly, since both the CPU procedure and the CUDA
kernel are generated from the single source code, traditional
challenges associated with maintaining different versions of the
same code (i.e. one version for CPU, and another version for GPU)
are eliminated.

6. Verification of the HTR solver

The HTR solver is verified in this section with a set of bench-
mark cases involving low-speed two-dimensional laminar flows,
one-dimensional inviscid compressible flows, supersonic turbu-
lent channel flows, and hypersonic transitional boundary layers.
In analyzing the results, the discussion focuses on the accuracy
of the predictions of the code rather than on detailed phys-
ical aspects of the configurations, which are available in the
corresponding references cited below for each benchmark case.

6.1. Inviscid vortex advection

This benchmark case aims at testing the numerical accuracy
of the spatial discretization by considering the inviscid advec-
tion of a 2D vortex across a periodic domain. The initial condi-
tion is constructed by perturbing a uniform velocity field u0 =

[1.0, 1.0, 0.0]T with a vortex centered in a square computational

domain of size 10 × 10 in arbitrary units. The velocity perturba-
tion expressed as a function of radial distance from the center of
the vortex r is

δu = r ×

[
0, 0, −

β

2π
e(1−r2)/2

]T
, (29)

where β = 5 is the intensity of the perturbation. Similarly,
the temperature field is initialized with a uniform background
temperature T0 = 1. The temperature perturbation is given by

δT = −
γ − 1

γ

β2

8π2 e
1−r2 , (30)

with γ = 1.4. The pressure field is computed as P = T 1/(γ−1) to
generate a constant entropy field. The flow is advanced for 0.2
units of time with a time-step corresponding to a CFL condition
of 10−2. These parameters, which are consistent with similar
tests employed in early work [37], have been chosen in order to
limit the contamination of the numerical error by the third-order
time-advancement scheme.

The instantaneous L2 norms of the errors with respect to the
reference solution are shown in the left panel in Fig. 5 as a func-
tion of the number of grid points Np. The solution is characterized
by two different convergence orders for the range of grid points
analyzed in the present work. The convergence rate for all errors
is third-order for Np < 64 and sixth-order for Np > 64. This
variation in the convergence rate can be understood by noticing
that the size of the vortex is comparable to the size of the grid
elements when the grid becomes coarse. As a result, the nonlinear
adaptation between the different candidate stencils is triggered
by the vortex, thereby decreasing the order of accuracy of the
numerical approach. Upon refining the grid, its elements become
much smaller than the size of the vortex, which exploits the full
capabilities of the reconstruction scheme in performing with the
linear sixth-order central stencil.

6.2. Viscous Taylor–Green vortex

The accuracy of the discretization of the viscous fluxes is
addressed using the benchmark test case of the two-dimensional
Taylor–Green vortex. The flow field is initialized in a computa-
tional domain of size 2π × 2π with a constant density ρ0, a
velocity field

u = U0 [sin x cos y, − cos x sin y, 0]T , (31)

and a pressure field

P = P0 −
ρ0U2

0

4
(cos 2x + cos 2y) . (32)

The reference values of U0, P0, ρ0 and dynamic viscosity µref
are chosen such that they lead to a Reynolds number Re0 =

8 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

Fig. 5. Error convergence of 2D inviscid vortex advection (left) and of 2D viscous Taylor–Green vortex (right) as a function of the number of grid elements. Colored
lines with symbols indicate errors with respect to the refenrence values of the velocity components (u and v), temperature (T), and pressure (P), whereas the dark
patterned lines indicate different rates of convergence.

Fig. 6. Streamwise (left) and wall-normal (right) velocity profiles in a Mach-0.03 laminar boundary layer as a function of the self-similar coordinate η obtained from
the self-similar theory (symbols) and numerical integrations using HTR solver (lines).

ρ0U0π/µref = π and a Mach number Ma0 = U0/
√

γ P0/ρ0 =

10−2/
√

γ , with γ = 1.4. The equations are time-advanced for 0.5
units of time with a time-step corresponding to a CFL condition
of 10−2. The right panel in Fig. 5 shows the instantaneous L2-
norms of the errors with respect to the reference solution as a
function of the number of grid points Np. As expected, the rate of
convergence to the exact solution is second-order as prescribed
by the numerical discretization of the viscous fluxes.

6.3. Laminar boundary layers

The correctness of the implementation of the viscous fluxes
and of the boundary conditions is tested below by using the
reference solutions for low- and high-speed laminar boundary
layers of calorically perfect gases over a flat plate under zero
pressure gradient.

The computational domain is rectangular in shape in both
incompressible and compressible cases. The boundary conditions
are (a) non-slip isothermal wall at temperature Tw equal to the
free-stream temperature T∞; (b) outflow non-reflecting at the top
and outlet boundaries [38,39]; and (c) inflow non-reflecting at
the inlet x = x0 in order to impose there a self-similar solution
computed from the transformed conservation equations [40]. The
local Reynolds number at the inflow, Rex=x0 = ρ∞U∞x0/µ∞,
is Rex=x0 = 500 for the low-speed case, and Rex=x0 = 105 for
the high-speed case. In this formulation, ρ∞, U∞, and µ∞ are,
respectively, the free-stream values of the density, velocity, and
dynamic viscosity. The Mach numbers based on the free-stream
values of the flow velocity and speed of sound are Ma∞ = 0.03
and Ma∞ = 6 for the low- and high-speed cases, respectively.

Comparisons between the self-similar solution and the numer-
ical solution obtained with the HTR solver are provided in Figs. 6
and 7 at streamwise locations corresponding to Rex = 1460 (low-
speed case) and Rex = 4.1·105 (high-speed case). Good agreement
with the self-similar solution is observed in both cases. Excep-
tions are the slight deviations of order 5% in the wall-normal
velocity occurring for η > 4 in the high-speed case because of
the finite wall-normal pressure gradient, which is neglected in
the self-similar approximation employed to construct the inflow
boundary condition, but is retained in the numerical integration
of the full conservation equations.

6.4. Inviscid one-dimensional compressible flows in shock tubes

The shock-capturing capabilities of the HTR solver are tested
below in inviscid one-dimensional compressible flows in shock
tubes. Three benchmark cases are considered, namely Lax’s, Sod’s,
Shu–Osher’s, and Grossmann–Cinnella’s configurations.

6.4.1. Sod’s shock tube
This benchmark case consists of a shock tube of length 1 in

arbitrary units, which is filled with a calorically perfect gas with
R0/M = 1 and γ = 1.4 [41]. Initially, the gas at x < 0.5 has
a pressure P = 1 and temperature T = 1, whereas the gas at
x ≥ 0.5 has a pressure P = 0.1 and a temperature T = 0.8,
both gases being initially at rest. A comparison between reference
and numerical solutions obtained at time 0.2 s is provided in
Fig. 8. The numerical solution is obtained by using a grid with
100 evenly spaced elements. Good agreement is observed be-
tween both solutions except in the prediction of the contact line,
where the density and internal-energy discontinuities are slightly
broadened by the flux splitting method.

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 9

Fig. 7. Streamwise velocity (left) and temperature (right) velocity profiles in a Mach-6 laminar boundary layer as a function of the self-similar coordinate η obtained
from the self-similar theory (symbols) and numerical integrations using HTR solver (lines).

Fig. 8. Normalized values of the pressure, density, velocity, and internal energy resulting from theoretical solutions (dark solid lines) and numerical integrations
using HTR solver (symbols) for Sod’s shock tube [41].

6.4.2. Lax’s shock tube
In Lax’s configuration [42], a shock tube of length 1 in arbi-

trary units is filled with a calorically perfect gas with the same
properties as in the Sod’s benchmark case. Initially, for x < 0.5,
the velocity, pressure, and temperature are, respectively, 0.698,
3.528, and 7.928. For x ≥ 0.5, the corresponding values are 0,
0.571, and 1.142. Fig. 9 shows comparisons between the refer-
ence and numerical solutions. The latter is obtained on a grid
using 100 evenly spaced elements. Good agreement is observed
between both solutions except for (a) slight overshoots of the
velocity and undershoots of the pressure, density, and internal
energy at x ≈ 0.3, and (b) small oscillations close to the contact
discontinuity at x ≈ 0.7. Note that similar errors have been
observed in the literature that are related to the rather mild
numerical diffusion introduced by the flux-splitting method used
in the present formulation [13].

6.4.3. Shu–Osher’s shock tube
Fig. 10 shows the results obtained for the benchmark case

taken from [43], where a shock wave interacts with a sinusoidal
density field in a calorically perfect gas. Initially, for x < 1
the velocity, pressure, and temperature are, respectively, 2.629,
10.333, and 2.679. For x ≥ 1, the corresponding values are 0,
1, and [1 + 0.2 sin(5x − 25)]−1. The profiles shown in Fig. 10
correspond to the time instant t = 1.8. The numerical solution
is obtained on a grid with 200 evenly spaced cells. The refer-
ence solution is obtained using a fifth-order WENO-JS scheme
on a grid composed of 2000 elements. Good agreement between
the reference solution and the present work is observed except
for small oscillations in the shock train, which are due to the
low numerical diffusivity of the flux-splitting method used in
the present formulation. Note however that the low dissipation
property of the present formulation is beneficial for obtaining a

10 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

Fig. 9. Normalized values of the pressure, density, velocity, and internal energy in the reference solutions (dark solid lines) and numerical integrations using HTR
solver (symbols) for Lax’s shock tube [42].

Fig. 10. Normalized values of the pressure, density, velocity, and internal energy in the reference solutions (dark solid lines) and numerical integrations using HTR
solver (symbols) for Shu–Osher’s shock tube [43].

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 11

Fig. 11. Pressure, density, and velocity profiles normalized, respectively, with the pressure (PR), density (ρR) and speed of sound (aR) of the gas initially located
at x < 0.5 m for Grossmann–Cinnella’s shock tube [44], including reference solutions (symbols) and numerical integrations using the HTR solver (solid lines). The
bottom right panel shows profiles of molar mass fractions of the species in the shock tube for the same case, including reference solutions (symbols) by Ref. [44]
and numerical integrations using the HTR solver.

good solution for the high-frequency oscillations of the density at
5.7m ≤ x ≥ 7.4m.

6.4.4. Grossman–Cinnella’s shock tube
The Grossmann–Cinella benchmark case consists of a 1m

long shock-tube where the gas is subject to thermochemical
effects [44]. Initially, for x < 0.5m, the shock tube contains equi-
librium dissociated air at pressure P = 1.95bar and temperature
T = 9000K. For x ≥ 0.5m, the air in the shock tube is at pressure
P = 0.1bar and T = 300K. The system then evolves until the
shock wave reaches the position x = 0.61m. In this particular
case, the operator splitting method described in Section 4.2 has
been used in order to perform the chemistry integration more
efficiently. The results presented in Fig. 11 show that the present
formulation is able to accurately reproduce the shock, the contact
discontinuity, and the rarefaction wave. An additional panel is
provided in Fig. 11 that shows the performance of HTR solver in
correctly predicting the chemical composition of the gases in the
shock tube.

6.5. Transitional and turbulent compressible flows

The capabilities of the HTR solver for predicting wall-bounded
high-speed flows are tested in this section. The benchmark cases
include supersonic turbulent channel flows and transitional hy-
personic boundary layers, both for calorically perfect gases.

6.5.1. Supersonic turbulent channel flows
Bi-periodic channel flows have been a characteristic configu-

ration in early work on compressible wall bounded turbulence
at moderate Mach numbers [34,45–50]. The two homogeneous
directions greatly facilitate the analysis and interpretation of
results. In this study, the benchmark cases in Coleman et al. [45]

and Sciacovelli et al. [50] are considered. They consist of super-
sonic turbulent flows of calorically perfect gases in bi-periodic
channels driven by an imposed pressure gradient. The latter is
chosen such that it keeps the flow at a constant bulk Reynolds
number Reb = ṁ′′

bh/µw , where ṁ′′

b is the mass flow rate through
the channel per unit cross sectional area, h half of the channel
height, and µw is the dynamic viscosity at the walls of the
channel, which are kept at uniform temperature.

In both benchmark cases, the Prandtl number is Pr = 0.7
and the adiabatic coefficient is γ = 1.4. However, the two
cases differ in two parameters: (a) the bulk Reynolds number
Reb (i.e., Reb = 3000 for Coleman’s case, and Reb = 7000 for
Sciacovelli’s case); and (b) the bulk Mach number Mab = Ub/aw

based on the bulk velocity Ub = ṁ′′

b/ρb and on the speed of sound
at the wall aw , with ρb the bulk mean density (i.e., Mab = 1.5
for Coleman’s case, and Mab = 3.0 for Sciacovelli’s case). In both
cases, the calculation is initialized with constant pressure and
temperature, along with an axial velocity profile that is a function
of the fourth power of the wall-normal distance and guarantees
the expected mass flux ṁ′′

b . Counter-rotating vertices whose axis
is aligned with the stream-wise direction are superposed on this
initial condition. The flow evolves until the bulk temperature
and pressure in the domain reach a statistically steady state.
Time averages are then collected over a time interval of order
3000νw/u2

τ based on the friction velocity uτ and on the kinematic
viscosity at the wall νw .

For Coleman’s case, the dimensions of the computational do-
main are 4πh × 2h × 2πh in the streamwise, wall-normal, and
spanwise directions, respectively. The number of elements is
256 × 128 × 128. The grid cells are evenly distributed in the peri-
odic directions, whereas their distribution in the wall-normal di-
rection follows a hyperbolic-tangent stretching function in order
to achieve a wall-normal size of the first cell ∆y+

= 0.8. In the

12 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

Fig. 12. Normalized Reynolds-averaged values of velocity, temperature, and density (left), along with the diagonal components of the Reynolds-stress tensor (right),
including Coleman’s reference solution (symbols) [45] and the numerical solution computed with HTR solver (solid lines).

Fig. 13. Normalized Reynolds-averaged values of velocity, temperature, and density (left), along with the diagonal components of the Reynolds-stress tensor (right),
including Sciacovelli’s reference solution (symbols) [50] and the numerical solution computed with HTR solver (solid lines).

notation, the superscript + is used to express the normalization
with the viscous unit νw/uτ .

A larger grid relative to that used in Coleman’s case is neces-
sary in Sciacovelli’s case because of the additional space required
to warrant the decay of the two-point correlation functions,
whose tails become longer as the Mach number increases. As a re-
sult, for Sciacovelli’s case, the domain dimensions are 8πh×2h×

2πh, whereas the number of grid elements is 1024 × 512 × 762.
The elements in the wall-normal direction are distributed using
a hyperbolic tangent stretching function while enforcing ∆y+

=

0.8 for the first cell.
Comparisons between the reference solutions and the present

work are provided in Figs. 12–13, which show profiles of the nor-
malized time-averaged values of the velocity, temperature, den-
sity, along with the diagonal components of the Reynolds stress
tensor. Good agreement with the reference results is observed
except for small discrepancies in the mean temperature and
velocity in the channel core with respect to Sciacovelli’s reference
solution (e.g., see left panel in Fig. 13). This can be understood by
noticing that the present simulations lead to a 5% larger friction
Reynolds number than the value reported in Sciacovelli et al.
[50], and consequently, to higher turbulent intensities near the
wall, as shown by comparing the mean Reynolds stresses. As
a result, the heat flux in the present calculation is 4.6% larger
than that reported by [50], and therefore leads to comparatively
low temperatures in the channel core. Note that the simulations
in Sciacovelli et al. [50] are performed using an optimized fourth-
order finite-difference scheme on an eleven-point stencil, along
with an optimized selective sixth-order filter to avoid aliasing
errors. That numerical method has dissipation and dispersion

properties different from the ones emerging from the present
formulation, thereby leading inevitably to differences between
the two simulations.

6.5.2. Hypersonic transitional boundary layer of a calorically perfect
gas

High-speed boundary layers over flat plates have been an-
alyzed in early work over a wide interval of Mach numbers
ranging from supersonic [51–54] to hypersonic [55–60]. In this
study, the simulations in Franko and Lele [55], corresponding to
a transitional hypersonic boundary layer of a calorically perfect
gas over a flat plate under zero pressure gradient, are taken as
a benchmark case. In this configuration, an undisturbed Mach-
6 laminar boundary layer enters the domain and transitions to
turbulence by means of blowing and suction through a thin strip
on the wall. A three-dimensional snapshot of the DNS solution of
this case computed with the HTR solver is provided in Fig. 14.

The computational domain is a cuboid of dimensions 1000δ∗

0×

75δ∗

0 × 20πδ∗

0 in the streamwise (x), wall-normal (y), and span-
wise (z) directions, respectively, where δ∗

0 is the displacement
thickness of the boundary layer at the inflow boundary. The origin
of the streamwise coordinate x = 0 corresponds to the leading
edge of the plate, which is not considered in these calculations.
Instead, an inflow boundary condition located at x = x0 is
employed that consists of an undisturbed compressible laminar
boundary layer whose velocity and temperature profiles are ob-
tained by integrating the self-similar conservation equations [40].
The inflow Reynolds number is Reδ∗

0
= ρ∞U∞δ∗

0/µ∞ = 3000
based on the free-stream values of the velocity U∞, density ρ∞,

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 13

Fig. 14. Mach-6 hypersonic transitional boundary layer computed with the HTR solver. The figure shows solid contours of the normalized density gradient, along
with the isosurfaces of the Q invariant of the velocity-gradient tensor colored by the normalized density.

and viscosity µ∞. Periodic boundary conditions are used in the
spanwise direction, whereas characteristic boundary conditions
are used on the top and outflow boundaries. The wall is kept at a
constant cold temperature Tw = 6.5T∞, or equivalently, at 79.2%
of the stagnation temperature.

The non-slip boundary condition is imposed at the wall except
for a thin surface strip that occupies the entire width of the plate
and is located within the interval 15 ≤ (x − x0)/δ∗

0 ≤ 20, where
wall-normal suction and blowing velocities are imposed in order
to induce transition, as explained in Franko and Lele [55]. In
particular, a wall-normal velocity vwall = f (x)g(z)

∑2
i Ai sin(ωit −

βiz) is imposed on the aforementioned strip, where the function
f (x) = exp[−(x− xs)2/(2σ 2)] forces a Gaussian-like profile of the
disturbance in the streamwise direction, with xs = 17.5δ∗

0 and
σ = 0.75δ∗

0 . In addition, the function

g(z) = 1.0 + 0.1
{
e−[(z−zc−zw)/zw]2

+ e−[(z−zc+zw)/zw]2
}

, (33)

where zc = 10πδ∗

0 and zw = 2πδ∗

0 , is utilized to break the
symmetry in the boundary layer. The first oblique breakdown
mode is induced by using two opposite modes parametrized by
A = [0.05U∞, 0.05U∞]

T , ω = [0.9δ∗

0/a∞, 0.9δ∗

0/a∞]
T , and β =

[0.3/δ∗

0, −0.3/δ∗

0]
T , where a∞ is the speed of sound in the free

stream.
The computational domain is discretized using 4096 × 250 ×

288 cells in the streamwise, wall-normal, and spanwise direc-
tions, respectively. The grid is uniform in the streamwise and
spanwise directions, whereas a hyperbolic-tangent stretching is
used in the wall-normal direction in order to cluster cells near the
wall. The stretching parameter of the distribution is determined
by enforcing that the wall-normal size of the first grid element
close to the wall, normalized in viscous units measured at the
exit domain boundary, is ∆y+

= 0.3. The corresponding values

in the streamwise and spanwise directions are ∆x+
= 2.0 and

∆z+
= 1.8, respectively.

Time- and spanwise-averaged distributions of the skin-friction
coefficient Cf and Stanton number St , along the normalized
streamwise distance over the wall, are shown in Fig. 15. The
averaging in Cf and St is made in a Reynolds sense for 6 periods of
the forcing induced by the suction and blowing. Good qualitative
agreement between the present work and the results in Franko
and Lele [55] is observed, including the kink present along the
ramp in Cf and the double peak present in St in the region
500 < (x − x0)/δ∗

0 < 600. However, quantitative differences are
observed in the location of the ramp in both Cf and St , and in the
posterior evolution of these quantities in the turbulent zone. In
particular, the HTR solver predicts 10% earlier transition and 10%
smaller peak values of both Cf and St . In addition, both Cf and
St obtained with the HTR solver appear to comply more tightly
with van Driest’s turbulent correlation [61] at the exit domain
boundary.

While the numerical method in Franko and Lele [55] is of
comparable order but uses a high-wavenumber filter to control
numerical instabilities, the present simulations utilize a numeri-
cal method with similar nominal accuracy but without any filter.
In addition, for this benchmark case, the present simulations did
not require the flux limiter introduced above in Section 4.1. As a
result, the present simulations must necessarily employ a higher
resolution across the boundary layer than that used in Franko and
Lele [55] in order to avoid numerical instabilities. Specifically, in
comparison with the grid used in Franko and Lele [55] the grid
used in the present simulations has a larger number of elements
by factors of 2 × 5/4 × 3/2 in the streamwise, wall-normal,
and spanwise directions, respectively. The finer grid resolution
used in the present simulations, along with the comparatively

14 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

Fig. 15. Time- and spanwise-averaged skin-friction coefficient (left) and Stanton number (right) as function of the dimensionless streamwise coordinate, including
Franko and Lele’s reference solution (symbols) [55], the numerical solution computed with HTR solver (solid lines), and the laminar and turbulent correlations of
van Driest [61].

lower numerical dissipation attained here by ruling out the uti-
lization of filters for controlling numerical instabilities, may play
an important role in the differences observed in Fig. 15. Note
however that boundary-layer transition is a challenging case for
code verification, in that it is known to be a strongly non-linear
process sensitive to the computational setup, grid resolution, and
numerical methods employed.

7. Simulation of a hypersonic transitional boundary layer with
thermochemical effects using the HTR solver

The hypersonic boundary layers analyzed above in Sections 6.3
and 6.5.2 correspond to conditions where the stagnation tem-
perature is assumed to be sufficiently small to render negligible
thermochemical effects, and therefore the gas can be treated as
calorically perfect using the model described in Section 3.1. Vibra-
tional excitation and dissociation in hypersonic laminar bound-
ary layers were incorporated in early work by Lees [62], and
by Fay and Riddell [63]. More recently, numerical simulations
have addressed these effects on temporally-developing turbulent
boundary layers [59]. Counterpart studies in spatially-developing
hypersonic boundary layers have been mostly focused on lin-
ear stability theory [64,65], parabolized stability equations [66,
67], and numerical simulations precluded to the initial stages of
transition [68–71].

This section illustrates the capabilities of the HTR solver in
simulating a spatially-developing Mach-6 hypersonic transitional
boundary layer subject to the thermochemical effects of vibra-
tional excitation and air dissociation over a non-catalytic wall,
including late nonlinear stages and the onset of turbulence. No
verification of the results is attempted by comparing with existing
literature because of the limited range of early work, as explained
above. The results in this section should therefore be interpreted
as a glance at the potentiality of the HTR solver after having built
confidence on the code based on the benchmark cases addressed
in Section 6. Elaborated physical analyses of the results are the
subject of future work.

The computational setup, including ∆y+, number of grid cells,
domain size, blowing and suction parameters, and boundary
conditions, are the same as those described in Section 6.5.2 with
exception of the following aspects. The non-equilibrium
dissociating-air model outlined in Section 3.2 is employed here
in place of the calorically perfect gas model used in Section 6.5.2.
Specifically, air in chemical equilibrium at temperature T∞ =

450 K and pressure P∞ = 1 atm flows over the flat plate.
The chemical equilibrium in the free stream is largely displaced
toward the reactants and leads to a negligible dissociation degree

Fig. 16. Time and spanwise-averaged skin-friction coefficient and normalized
heat-flux at the wall as function of the streamwise coordinate.

there. However, higher temperatures attained within the bound-
ary layer, which are induced by both aerodynamic heating and
the relatively high wall temperature Tw = 6.5T∞, increase the
dissociation degree to approximately 0.01% based on the molar
fraction of atomic oxygen XO, whereas the remaining dissocia-
tion products are much smaller. Zero wall-normal gradients are
imposed for all species mass fractions at the wall. The inflow
boundary conditions are obtained by solving the laminar, locally
self-similar boundary-layer equations including species transport
and chemical reactions [62,63,72]. The higher value of Reδ∗

0
uti-

lized here translates into minimum streamwise and spanwise
sizes of the grid elements on the wall in viscous units measured
at the exit domain boundary ∆x+

= 2.7 and ∆z+
= 2.5, which

are comparatively larger than those in Section 6.5.2.
In addition, the inflow Reynolds number Reδ∗

0
= 4000 is used

in place of the lower value set in Section 6.5.2 in order to avoid
an excessive delay of transition as a result of the energy drain
caused mainly by vibrational excitation, with dissociation playing
a secondary role in the dynamics.

The time- and spanwise-averaged distribution of the skin-
friction coefficient Cf along the normalized streamwise distance
over the wall is shown in Fig. 16. The qualitative aspect of the
curve resembles that of the calorically perfect gas reported in
Fig. 15, including a laminar decay, a ramp-up caused by transition,
and a subsequent slower decay under impending turbulence.
However, the magnitude of Cf is generally smaller here despite
the higher Reynolds number employed.

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 15

Fig. 17. Mach-6 hypersonic transitional boundary layer of dissociating air computed with the HTR solver. The figure shows solid contours of the normalized density
gradient, along with the isosurfaces of the Q invariant of the velocity-gradient tensor colored by the molar fraction of atomic oxygen XO .

It is worth mentioning that the standard definition of the
Stanton number proves cumbersome in the presence of thermo-
chemical effects since the recovery factor for the adiabatic wall
enthalpy is unknown, and the wall enthalpy is not necessarily
uniform as a result of variations of composition along the wall.
Instead, the time- and spanwise-averaged wall heat flux qw (with
qw > 0 indicating heat entering the wall) is normalized here with
the free-stream flux of kinetic energy ρ∞U3

∞
. The corresponding

distribution is shown in Fig. 16 and bears a resemblance to the
curve of Cf . Comparisons between these simulation results and
the turbulent correlation of van Driest [61] are not attempted
here, since the latter assumes calorically perfect behavior across
the boundary layer.

Three-dimensional isosurfaces of the second invariant of the
velocity-gradient tensor colored by XO, along with the dimension-
less modulus of the gradient of density, are provided in Fig. 17.
Although the Reynolds number of this case is larger compared
to the one employed in Section 6.5.2, the growth of the dis-
turbances in the boundary layer is much slower. These findings
are in qualitative agreement with linear stability analysis [64].
In particular, six streaky structures are generated early along the
width of the plate that interact non-linearly downstream until a
breakdown begins at (x− x0)/δ∗

0 ≈ 800. The flow loses symmetry
thereafter while the skin-friction coefficient and the wall-heat
transfer increase rapidly with distance downstream. Broadband
distributions of all flow variables, including the concentration
of atomic oxygen, are observed near the domain exit. Those, in
conjunction with the slow decay of the wall shear stress and wall
heat flux with distance downstream, are characteristic signatures
of the onset of wall-bounded turbulence.

8. Parallel performance of the HTR solver in GPU and CPU
environments

The parallel performance of the HTR solver is assessed here
by weak scaling tests of the simulation case involving the super-
sonic turbulent channel flow described in Section 6.5.1. The weak
scaling tests were performed on the supercomputing facilities
Lassen and Quartz at the Lawrence Livermore National Laboratory
(LLNL). In particular, each node of Lassen consists of two IBM
POWER9 CPUs and four NVIDIA V100 GPUs, with approximately
4% of the computational power being provided by the CPUs while
the remaining 96% rests on the GPUs. On the other hand, Quartz
is a CPU-based machine where each node is equipped with two
Intel Xeon 18-core E5-2695 v4 CPUs.

Exactly the same HTR solver with the same source files is
compiled and run on both Lassen and Quartz. Each calculation
on Quartz is setup such that each node is assigned with approx-
imately 786 × 103 grid cells, whereas each node on Lassen is
assigned with 19 × 106 grid cells, or equivalently, 4.7 × 106 grid
cells per GPU. With these setups, the wall-clock time required
to advance one time step in the numerical integration is 2.0 s in
Quartz and 0.6 s in Lassen. The averaged throughput generated
by the HTR solver is approximately 32 × 106 points per second
per node on Lassen and 391 × 103 points per second per node on
Quartz.

The efficiency of the HTR solver in the weak scaling tests is
shown in Fig. 18. The code scales satisfactory up to 128 nodes
(i.e., 512 GPUs) with an efficiency of 96.6% on Lassen. This case
involved 2.4 × 109 grid cells with five degrees of freedom per
cell and a total number of unknowns equal to 12 × 109. Generally

16 M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262

Fig. 18. Parallel efficiency of the solver for weak scaling tests on LLNL supercomputers Lassen (left) and Quartz (right). The configuration consists of the supersonic
turbulent channel flow analyzed in Section 6.5.1.

lower efficiencies are observed on Quartz, although it should be
stressed that these runs were performed without any tuning of
the runtime in order to exploit more efficiently the computational
resources of the machine.

Note that the scalability of the HTR solver reported here is
likely to be superseded by improvements in subsequent releases
of the Legion library without requiring any major modifications
of the solver algorithm, since both are largely decoupled, as
described in Section 5. For instance, it is known that the present
releases of both the solver and Legion do not perform optimally
in strong-scaling tests. Upcoming releases of the solver will lead
to improved strong scalability by including the ‘‘tracing’’ feature
of the Legion runtime, which optimizes the execution of the
dependency analysis of the runtime for repeating tasks and is still
under development [73].

9. Conclusions

An open-source DNS code for hypersonic aerothermodynam-
ics, the Hypersonics Task-based Research (HTR) solver, is de-
scribed in this work. The solver includes thermochemical
effects (vibrational excitation and chemical dissociation), is writ-
ten based on an innovative task-based parallelization technique
for easier and more efficient deployment in heterogeneous su-
percomputing facilities, and operates with high-order numeri-
cal methods. The solver is highly portable between CPU- and
GPU-based supercomputers and has been tested using a number
of benchmark cases involving laminar boundary layers, one-
dimensional sock-tubes, inviscid vortex advection, supersonic
turbulent channel flows, and hypersonic transitional boundary
layers.

Technical aspects worth developing in the code in future work
involve: (a) reformulating the reconstruction procedure for curvi-
linear coordinates in order to enable the simulation of hypersonic
flows over cones, spheres, wedges, or other non-planar geome-
tries of interest for engineering applications; (b) the incorporation
of thermodynamic non-equilibrium effects using either multi-
temperature [4] or state-to-state models [74,75]; and (c) the
coupling of the aerothermochemical flow field with wall-surface
processes including conjugate heat transfer, catalysis, erosion,
and ablation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This investigation is funded by the U.S. Air Force Office of
Scientific Research (AFOSR), grant # 1194592-1-TAAHO, and by
the Advanced Simulation and Computing (ASC) program of the
U.S. Department of Energy’s National Nuclear Security Adminis-
tration (NNSA) via the PSAAP-II Center at Stanford, grant # DE-
NA0002373. The authors are grateful to Dr. Luca Sciacovelli for
useful discussions, and to the Stanford Legion team (Dr. Michael
Bauer, Dr. Sean Treichler, Dr. Wonchan Lee, and Mr. Manolis
Papadakis) for their support with the implementation of the
solver.

Appendix A. Supplementary data

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.cpc.2020.107262. The source files
of the computer program are available at http://dx.doi.org/10.
17632/9zsxjtzfr7.1 and at https://github.com/stanfordhpccenter/
HTR-solver.

References

[1] J.J. Bertin, R.M. Cummings, Annu. Rev. Fluid Mech. 38 (1) (2006) 129–157,
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092041.

[2] I.A. Leyva, Phys. Today 70 (11) (2017) 30–36, http://dx.doi.org/10.1063/PT.
3.3762.

[3] J. Urzay, Annu. Rev. Fluid Mech. 50 (1) (2018) 593–627, http://dx.doi.org/
10.1146/annurev-fluid-122316-045217.

[4] C. Park, Nonequilibrium Hypersonic Aerothermodynamics, Wiley, 1989.
[5] J.D.J. Anderson, Hypersonic and High-Temperature Gas Dynamics, Second

Edition, second ed., American Institute of Aeronautics and Astronautics,
2006.

[6] G.V. Candler, Annu. Rev. Fluid Mech. 51 (1) (2019) 379–402, http://dx.doi.
org/10.1146/annurev-fluid-010518-040258.

[7] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, International Conference for
High Performance Computing, Networking, Storage and Analysis, SC, IEEE,
2012, pp. 1–11.

[8] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, SC ’14: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
Vol. 2015-Janua 2015-Janua, IEEE, New Orleans, 2014, pp. 845–856.

[9] S. Treichler, M. Bauer, A. Bhagatwala, G. Borghesi, R. Sankaran, H. Kolla,
P.S. McCormick, E. Slaughter, W. Lee, A. Aiken, J. Chen, Exascale Scientific
Applications, Chapman and Hall/CRC, 2017, pp. 257–278.

[10] E. Slaughter, W. Lee, S. Treichler, M. Bauer, A. Aiken, Regent: A high-
productivity programming language for HPC with logical regions, in: SC
’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12, http://dx.
doi.org/10.1145/2807591.2807629.

[11] S. Gottlieb, C.-W. Shu, E. Tadmor, SIAM Rev. 43 (1) (2001) 89–112.
[12] H. Wu, P.C. Ma, M. Ihme, Comput. Phys. Comm. 243 (2019) 81–96, http:

//dx.doi.org/10.1016/j.cpc.2019.04.016.
[13] L. Fu, X.Y. Hu, N.A. Adams, J. Comput. Phys. 305 (2016) 333–359, http:

//dx.doi.org/10.1016/j.jcp.2015.10.037.

https://doi.org/10.1016/j.cpc.2020.107262
http://dx.doi.org/10.17632/9zsxjtzfr7.1
http://dx.doi.org/10.17632/9zsxjtzfr7.1
http://dx.doi.org/10.17632/9zsxjtzfr7.1
https://github.com/stanfordhpccenter/HTR-solver
https://github.com/stanfordhpccenter/HTR-solver
https://github.com/stanfordhpccenter/HTR-solver
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092041
http://dx.doi.org/10.1063/PT.3.3762
http://dx.doi.org/10.1063/PT.3.3762
http://dx.doi.org/10.1063/PT.3.3762
http://dx.doi.org/10.1146/annurev-fluid-122316-045217
http://dx.doi.org/10.1146/annurev-fluid-122316-045217
http://dx.doi.org/10.1146/annurev-fluid-122316-045217
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb4
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb5
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb5
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb5
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb5
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb5
http://dx.doi.org/10.1146/annurev-fluid-010518-040258
http://dx.doi.org/10.1146/annurev-fluid-010518-040258
http://dx.doi.org/10.1146/annurev-fluid-010518-040258
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb7
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb7
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb7
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb7
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb7
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb8
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb8
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb8
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb8
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb8
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb9
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb9
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb9
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb9
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb9
http://dx.doi.org/10.1145/2807591.2807629
http://dx.doi.org/10.1145/2807591.2807629
http://dx.doi.org/10.1145/2807591.2807629
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb11
http://dx.doi.org/10.1016/j.cpc.2019.04.016
http://dx.doi.org/10.1016/j.cpc.2019.04.016
http://dx.doi.org/10.1016/j.cpc.2019.04.016
http://dx.doi.org/10.1016/j.jcp.2015.10.037
http://dx.doi.org/10.1016/j.jcp.2015.10.037
http://dx.doi.org/10.1016/j.jcp.2015.10.037

M. Di Renzo, L. Fu and J. Urzay / Computer Physics Communications 255 (2020) 107262 17

[14] B.J. McBride, M.J. Zehe, S. Gordon, NASA Glenn Coefficients for Calcu-
lating Thermodynamic Properties of Individual Species, Technical Report
NASA/TP-2002-211556, NASA, 2002.

[15] J.G. Parker, Phys. Fluids 2 (4) (1959) 449, http://dx.doi.org/10.1063/1.
1724417.

[16] C.R. Wilke, J. Chem. Phys. 18 (4) (1950) 517–519, http://dx.doi.org/10.1063/
1.1747673.

[17] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, John Wiley
& Sons, Inc., New York, 1960, p. 780.

[18] L. Monchick, E.A. Mason, J. Chem. Phys. 35 (5) (1961) 1676–1697, http:
//dx.doi.org/10.1063/1.1732130.

[19] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and
Liquids, John Wiley & Sons, 1964.

[20] S. Mathur, P. Tondon, S. Saxena, Mol. Phys. 12 (6) (1967) 569–579, http:
//dx.doi.org/10.1080/00268976700100731.

[21] N. Peters, J. Warnatz, Numerical Methods in Laminar Flame Propagation :
A GAMM-Workshop, Vieweg, 1982, p. 202.

[22] R.J. Kee, G. Dixon-Lewis, J. Warnatz, M. Coltrin, J.A. Miller, Sandia Rep.
SAND86-824 (December) (1986) 3–39.

[23] C.F. Curtiss, J.O. Hirschfelder, J. Chem. Phys. 17 (6) (1949) 550–555, http:
//dx.doi.org/10.1063/1.1747319.

[24] T.P. Coffee, J.M. Heimerl, Combust. Flame 43 (C) (1981) 273–289, http:
//dx.doi.org/10.1016/0010-2180(81)90027-4.

[25] A. Ern, V. Giovangigli, Multicomponent Transport Algorithms, Lecture
Notes in Physics Monographs, vol. 24, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1994,

[26] G.A. Gerolymos, D. Sénéchal, I. Vallet, Internat. J. Numer. Methods Fluids
64 (2010) 769–810, http://dx.doi.org/10.1002/fld.2096.

[27] J.S. Shuen, M.S. Liou, B. van Leer, J. Comput. Phys. 90 (2) (1990) 371–395,
http://dx.doi.org/10.1016/0021-9991(90)90172-W.

[28] L. Fu, X.Y. Hu, N.A. Adams, Commun. Comput. Phys. 26 (2019) 311–345,
http://dx.doi.org/10.4208/cicp.OA-2018-0145.

[29] X. Zhang, C.W. Shu, J. Comput. Phys. 229 (9) (2010) 3091–3120, http:
//dx.doi.org/10.1016/j.jcp.2009.12.030.

[30] X. Zhang, C.-W. Shu, J. Comput. Phys. 231 (5) (2012) 2245–2258, http:
//dx.doi.org/10.1016/j.jcp.2011.11.020.

[31] L. Fu, Comput. Phys. Comm. 244 (2019) 117–131, http://dx.doi.org/10.1016/
j.cpc.2019.06.013.

[32] M. Herrmann, G. Blanquart, V. Raman, AIAA J. 44 (12) (2006) 2879–2886,
http://dx.doi.org/10.2514/1.18235.

[33] W.T. Vetterling, W.H. Press, S.A. Teukolsky, B.P. Flannery, Numerical
Recipes Example Book (C++): The Art of Scientific Computing, Cambridge
University Press, New York, 2002.

[34] D. Modesti, S. Pirozzoli, Int. J. Heat Fluid Flow 59 (2016) 33–49, http:
//dx.doi.org/10.1016/j.ijheatfluidflow.2016.01.007.

[35] Regent web page, 2019, URL http://regent-lang.org.
[36] W. Lee, E. Slaughter, M. Papadakis, A. Aiken, The International Conference

for High Performance Computing, Networking, Storage, and Analysis (SC
’19), ACM, Denver, 2019.

[37] R. Zhang, M. Zhang, C.W. Shu, Commun. Comput. Phys. 9 (3) (2011)
807–827, http://dx.doi.org/10.4208/cicp.291109.080410s.

[38] T.J. Poinsot, S.K. Lele, J. Comput. Phys. 101 (1) (1992) 104–129, http:
//dx.doi.org/10.1016/0021-9991(92)90046-2.

[39] N. Okong’o, J. Bellan, J. Comput. Phys. 176 (2) (2002) 330–344, http:
//dx.doi.org/10.1006/jcph.2002.6990.

[40] F.M. White, Viscous Fluid Flow, second ed., McGraw-HiII, Inc., 1992.
[41] G.A. Sod, A Survey of Several Finite Difference Methods for Systems of

Nonlinear Hyperbolic Conservation Laws, 1978.
[42] P.D. Lax, Comm. Pure Appl. Math. 7 (1) (1954) 159–193, http://dx.doi.org/

10.1002/cpa.3160070112.
[43] C.-W. Shu, S. Osher, J. Comput. Phys. 83 (1) (1989) 32–78, http://dx.doi.

org/10.1016/0021-9991(89)90222-2.
[44] B. Grossman, P. Cinnella, J. Comput. Phys. 88 (1) (1990) 131–168, http:

//dx.doi.org/10.1016/0021-9991(90)90245-V.

[45] G.N. Coleman, J. Kim, R.D. Moser, J. Fluid Mech. 305 (1995) 159–183.
[46] P.G. Huang, G.N. Coleman, P. Bradshaw, J. Fluid Mech. 305 (1995) 185–218,

http://dx.doi.org/10.1017/S0022112095004599.
[47] Y. Morinishi, S. Tamano, K. Nakabayashi, J. Fluid Mech. 502 (2004)

273–308, http://dx.doi.org/10.1017/S0022112003007705.
[48] A. Trettel, J. Larsson, Phys. Fluids 28 (2) (2016) 026102, http://dx.doi.org/

10.1063/1.4942022.
[49] W. Li, Y. Fan, D. Modesti, C. Cheng, J. Fluid Mech. 875 (2019) 101–123,

http://dx.doi.org/10.1017/jfm.2019.499.
[50] L. Sciacovelli, P. Cinnella, X. Gloerfelt, J. Fluid Mech. 821 (2017) 153–199,

http://dx.doi.org/10.1017/jfm.2017.237.
[51] S.E. Guarini, R.D. Moser, K. Shariff, A. Wray, J. Fluid Mech. 414 (2000) 1–33,

http://dx.doi.org/10.1088/0256-307x/23/6/045.
[52] T.B. Gatski, G. Erlebacher, Numerical Evolving Boundary Simula-

tion Supersonic Layer of a Spatially Turbulent, Technical Report
NASA/TM-2002-211934, NASA, 2002.

[53] S. Pirozzoli, F. Grasso, T.B. Gatski, Phys. Fluids 16 (3) (2004) 530–545,
http://dx.doi.org/10.1063/1.1637604.

[54] S. Pirozzoli, F. Grasso, Phys. Fluids 18 (6) (2006) http://dx.doi.org/10.1063/
1.2216989.

[55] K.J. Franko, S.K. Lele, J. Fluid Mech. 730 (2013) 491–532, http://dx.doi.org/
10.1017/jfm.2013.350.

[56] C. Zhang, L. Duan, M.M. Choudhari, AIAA J. 56 (11) (2018) 4297–4311,
http://dx.doi.org/10.2514/1.J057296.

[57] M.P. Martin, J. Fluid Mech. 570 (2007) 347–364, http://dx.doi.org/10.1017/
S0022112006003107.

[58] L. Duan, I. Beekman, M.P. Martin, J. Fluid Mech. 655 (2010) 419–445,
http://dx.doi.org/10.1017/S0022112010000959.

[59] L. Duan, M.P. Martin, J. Fluid Mech. 684 (2011) 25–59, http://dx.doi.org/
10.1017/jfm.2011.252.

[60] L. Duan, I. Beekman, M.P. Martin, J. Fluid Mech. 672 (2011) 245–267,
http://dx.doi.org/10.1017/S0022112010005902.

[61] E. van Driest, Aeronaut. Eng. Rev. 15 (1956) 26–41.
[62] L. Lees, J. Jet Propuls. 26 (4) (1956) 259–269, http://dx.doi.org/10.2514/8.

6977.
[63] J.A. Fay, F.R. Riddell, J. Aerosp. Sci. 25 (2) (1958) 73–85, http://dx.doi.org/

10.2514/8.7517.
[64] M.R. Malik, E.C. Anderson, Phys. Fluids A 3 (5) (1991) 803–821, http:

//dx.doi.org/10.1063/1.858012.
[65] K.J. Franko, R. MacCormack, S.K. Lele, 40th Fluid Dynamics Conference and

Exhibit, 2010, p. 4601.
[66] C.-L. Chang, H. Vinh, M. Malik, 28th Fluid Dynamics Conference, 1997.
[67] H. Johnson, G.V. Candler, 35th AIAA Fluid Dynamics Conference and

Exhibit, American Institute of Aeronautics and Astronautics, Toronto, 2005.
[68] C.P. Knisely, X. Zhong, AIAA SciTech Forum, 2019.
[69] O. Marxen, T.E. Magin, G. Iaccarino, E.S.G. Shaqfeh, Phys. Fluids 23 (8)

(2011) http://dx.doi.org/10.1063/1.3614526.
[70] O. Marxen, T.E. Magin, E.S.G. Shaqfeh, G. Iaccarino, J. Comput. Phys. 255

(2013) 572–589, http://dx.doi.org/10.1016/j.jcp.2013.07.029.
[71] O. Marxen, G. Iaccarino, T.E. Magin, J. Fluid Mech. 755 (2014) 35–49,

http://dx.doi.org/10.1017/jfm.2014.344.
[72] A. Liñán, I. Da Riva, Chemical nonequilibrium effects in hypersonic

aerodynamics, Technical Report DTIC Report AD0294638, DTIC, 1962.
[73] W. Lee, E. Slaughter, M. Bauer, S. Treichler, T. Warszawski, M. Garland,

A. Aiken, Dynamic tracing: Memoization of task graphs for dynamic
task-based runtimes, in: Proceedings - International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 2018, 2019,
pp. 441–453, http://dx.doi.org/10.1109/SC.2018.00037.

[74] G. Colonna, M. Tuttafesta, M. Capitelli, D. Giordano, J. Thermophys. Heat
Transfer 13 (3) (1999) 372–375, http://dx.doi.org/10.2514/2.6448.

[75] G. Colonna, F. Bonelli, G. Pascazio, Phys. Rev. Fluids 4 (3) (2019) 1–19,
http://dx.doi.org/10.1103/PhysRevFluids.4.033404.

http://refhub.elsevier.com/S0010-4655(20)30083-7/sb14
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb14
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb14
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb14
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb14
http://dx.doi.org/10.1063/1.1724417
http://dx.doi.org/10.1063/1.1724417
http://dx.doi.org/10.1063/1.1724417
http://dx.doi.org/10.1063/1.1747673
http://dx.doi.org/10.1063/1.1747673
http://dx.doi.org/10.1063/1.1747673
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb17
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb17
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb17
http://dx.doi.org/10.1063/1.1732130
http://dx.doi.org/10.1063/1.1732130
http://dx.doi.org/10.1063/1.1732130
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb19
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb19
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb19
http://dx.doi.org/10.1080/00268976700100731
http://dx.doi.org/10.1080/00268976700100731
http://dx.doi.org/10.1080/00268976700100731
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb21
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb21
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb21
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb22
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb22
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb22
http://dx.doi.org/10.1063/1.1747319
http://dx.doi.org/10.1063/1.1747319
http://dx.doi.org/10.1063/1.1747319
http://dx.doi.org/10.1016/0010-2180(81)90027-4
http://dx.doi.org/10.1016/0010-2180(81)90027-4
http://dx.doi.org/10.1016/0010-2180(81)90027-4
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb25
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb25
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb25
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb25
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb25
http://dx.doi.org/10.1002/fld.2096
http://dx.doi.org/10.1016/0021-9991(90)90172-W
http://dx.doi.org/10.4208/cicp.OA-2018-0145
http://dx.doi.org/10.1016/j.jcp.2009.12.030
http://dx.doi.org/10.1016/j.jcp.2009.12.030
http://dx.doi.org/10.1016/j.jcp.2009.12.030
http://dx.doi.org/10.1016/j.jcp.2011.11.020
http://dx.doi.org/10.1016/j.jcp.2011.11.020
http://dx.doi.org/10.1016/j.jcp.2011.11.020
http://dx.doi.org/10.1016/j.cpc.2019.06.013
http://dx.doi.org/10.1016/j.cpc.2019.06.013
http://dx.doi.org/10.1016/j.cpc.2019.06.013
http://dx.doi.org/10.2514/1.18235
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb33
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb33
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb33
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb33
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb33
http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.01.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.01.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.01.007
http://regent-lang.org
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb36
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb36
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb36
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb36
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb36
http://dx.doi.org/10.4208/cicp.291109.080410s
http://dx.doi.org/10.1016/0021-9991(92)90046-2
http://dx.doi.org/10.1016/0021-9991(92)90046-2
http://dx.doi.org/10.1016/0021-9991(92)90046-2
http://dx.doi.org/10.1006/jcph.2002.6990
http://dx.doi.org/10.1006/jcph.2002.6990
http://dx.doi.org/10.1006/jcph.2002.6990
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb40
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb41
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb41
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb41
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1016/0021-9991(90)90245-V
http://dx.doi.org/10.1016/0021-9991(90)90245-V
http://dx.doi.org/10.1016/0021-9991(90)90245-V
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb45
http://dx.doi.org/10.1017/S0022112095004599
http://dx.doi.org/10.1017/S0022112003007705
http://dx.doi.org/10.1063/1.4942022
http://dx.doi.org/10.1063/1.4942022
http://dx.doi.org/10.1063/1.4942022
http://dx.doi.org/10.1017/jfm.2019.499
http://dx.doi.org/10.1017/jfm.2017.237
http://dx.doi.org/10.1088/0256-307x/23/6/045
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb52
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb52
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb52
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb52
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb52
http://dx.doi.org/10.1063/1.1637604
http://dx.doi.org/10.1063/1.2216989
http://dx.doi.org/10.1063/1.2216989
http://dx.doi.org/10.1063/1.2216989
http://dx.doi.org/10.1017/jfm.2013.350
http://dx.doi.org/10.1017/jfm.2013.350
http://dx.doi.org/10.1017/jfm.2013.350
http://dx.doi.org/10.2514/1.J057296
http://dx.doi.org/10.1017/S0022112006003107
http://dx.doi.org/10.1017/S0022112006003107
http://dx.doi.org/10.1017/S0022112006003107
http://dx.doi.org/10.1017/S0022112010000959
http://dx.doi.org/10.1017/jfm.2011.252
http://dx.doi.org/10.1017/jfm.2011.252
http://dx.doi.org/10.1017/jfm.2011.252
http://dx.doi.org/10.1017/S0022112010005902
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb61
http://dx.doi.org/10.2514/8.6977
http://dx.doi.org/10.2514/8.6977
http://dx.doi.org/10.2514/8.6977
http://dx.doi.org/10.2514/8.7517
http://dx.doi.org/10.2514/8.7517
http://dx.doi.org/10.2514/8.7517
http://dx.doi.org/10.1063/1.858012
http://dx.doi.org/10.1063/1.858012
http://dx.doi.org/10.1063/1.858012
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb65
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb65
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb65
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb66
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb67
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb67
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb67
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb68
http://dx.doi.org/10.1063/1.3614526
http://dx.doi.org/10.1016/j.jcp.2013.07.029
http://dx.doi.org/10.1017/jfm.2014.344
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb72
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb72
http://refhub.elsevier.com/S0010-4655(20)30083-7/sb72
http://dx.doi.org/10.1109/SC.2018.00037
http://dx.doi.org/10.2514/2.6448
http://dx.doi.org/10.1103/PhysRevFluids.4.033404

	HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics
	Introduction
	Formulation of the conservation equations in the HTRsolver
	Chemical kinetics and thermophysical and transport properties implemented in the HTR solver
	Calorically perfect gas
	Non-equilibrium dissociating air

	Numerical methods employed in the HTR solver
	Spatial discretization
	Time integration
	Boundary conditions

	Regent-based implementation of the HTR solver
	Verification of the HTR solver
	Inviscid vortex advection
	Viscous Taylor–Green vortex
	Laminar boundary layers
	Inviscid one-dimensional compressible flows in shock tubes
	Sod's shock tube
	Lax's shock tube
	Shu–Osher's shock tube
	Grossman–Cinnella's shock tube

	Transitional and turbulent compressible flows
	Supersonic turbulent channel flows
	Hypersonic transitional boundary layer of a calorically perfect gas

	Simulation of a hypersonic transitional boundary layer with thermochemical effects using the HTR solver
	Parallel performance of the HTR solver in GPU and CPU environments
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

