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a b s t r a c t 

This work addresses the question of the validity of self-similar formulations in describing the structures 

of methane/air laminar counterflow diffusion flames subjected to incident sub-breakdown DC electric 

fields. The electric field is induced by two flat porous electrodes located on the oxidizer and fuel sides of 

the burner and arranged parallel to the mixing layer. Both experiments and numerical simulations of this 

configuration in recent work suggest the presence of a strong coupling effect between the aerothermo- 

chemical and electric fields whereby the velocity field is significantly modified by the momentum carried 

by a bi-directional ionic wind directed axially outwards from the diffusion flame. However, as shown in 

this study, such strong coupling is incompatible with standard self-similar formulations of the problem. 

An a-priori analysis of the steady axisymmetric numerical simulations results in Di Renzo et al. (2018) 

[1] , which employ multi-component transport and detailed chemical kinetics, is presented in this study in 

order to address the suitability of self-similar descriptions in the present configuration. It is shown that, 

while self-similarity is preserved in unelectrified conditions along radial distances similar to one orifice 

radius, it breaks down profusely in electrified conditions as the applied voltage increases and nears sat- 

uration conditions, where the electric force field becomes two-dimensional and non-conservative in the 

close vicinity of the burner axis. As a result, for the purposes of self-similarity, increasing electrification 

counteracts the slenderness of the counterflow burner and decreases its effective aspect ratio. Counter- 

flow burners should therefore be extra slender if preservation of self-similar conditions is sought under 

incident electric fields. 

© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Extinction, active control and variation of the lift-off height

f a diffusion flame are just few of the possible applications of

lectric-field effects on combustion [2–5] . In connection with the

nvestigation of fundamental physical mechanisms involved in

hese phenomena, recent experimental work [6] has shown that

 methane/air counterflow diffusion flame subject to a steady

oltage difference undergoes non-trivial changes and may become

nstable as a result of a strong coupling between the aerothermo-

hemical and electric fields (see Fig. 1 for the burner schematics).

ome of these effects involve: (a) a shift of the flame position

oward the fuel injector; (b) a variation of the flame curvature

ith the applied voltage; and (c) the existence of a non-monotonic

rend of the electric current density produced by the flame with
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espect to the applied voltage. These interactions can be explained

n terms of imbalances of the electric force exerted on the flow

y the positive and negative ions produced in the flame [1,6,7] .

n particular, as the applied voltage increases, the numerical

imulations in Ref. [1] indicate that a reduction of the local strain

ate occurs as a result of a flow-displacement effect im parted by

 bi-directional ionic wind directed towards both injectors, which

enders a faster chemistry and consequently smaller concentra-

ions of charged species, thereby leading to a decrease in the

lectric current at intermediate voltages upon electric saturation. 

Self-similar descriptions of reacting flows in counterflow burn-

rs are the basis of flamelet turbulent combustion models for un-

lectrified diffusion flames [8–12] . Self-similarity is expressed in

 variety of ways in counterflow burners. For instance, at high

eynolds numbers, the flow becomes self-similar in the vicinity

f the mixing layer that is formed near the stagnation plane be-

ween the two streams and which is much smaller than the sep-

ration distance L between the injectors, with the relevant strain

ate being the local one at the edges of the mixing layer [13–15] .
. 
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Fig. 1. Sketch of the burner geometry and computational setup (not to scale). The 

two circular porous electrodes are represented by the horizontal thick solid lines 

and their radii are equal to 8 R . The aspect ratio of the burner is 2 R/L = 1 . Plug-flow 

boundary conditions are utilized at the injectors. The axisymmetric coordinate sys- 

tem { r , x } is placed at mid distance between the two orifice exits (see Refs. [1] and 

[6] for details). 
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In porous burners at finite Reynolds numbers, self-similarity is ob-

served in most of the flow field between the injectors and up to

radial distances of order r ∼ L , provided that the burner is geo-

metrically slender, 2 R / L � 1, with R being the orifice radius [16] .

In all cases, self-similar descriptions are convenient from an oper-

ational standpoint, since they involve the integration of ordinary

differential equations as opposed to the large computational ex-

penses needed for integrating the full conservation equations in

partial differential form [17–20] . However, self-similar formulations

have been hardly explored within the context of electrified dif-

fusion flames. In combustion problems involving electric-field ef-

fects, the alternative of integrating the full conservation equations

is a costly one, since the spatiotemporal resolution requirements

are much more stringent because of the large disparities between

the scales associated with the bulk neutral gas and those associ-

ated with the charged species. Nonetheless, the results presented

below suggest that the aforementioned strong aerodynamic cou-

pling observed in Refs. [1] and [6] is incompatible with standard

self-similar formulations of counterflow diffusion flames. 

Based on these considerations, two fundamental questions

arise: (a) to what extent the numerical simulations [1] of the ex-

perimental setup utilized in Ref. [6] comply with the necessary

constraints for self-similarity of the flow field? (b) is the observed

strong aerodynamic coupling a manifestation of the fact that the

solution of this problem in this setup necessarily violates self-

similarity? Answers to these questions are provided below based

on a brief a-priori analysis of the steady axisymmetric numerical

simulations described in Ref. [1] , which employ multi-component

transport and detailed chemical kinetics for methane/air combus-

tion augmented with charged species. The reader is therefore re-

ferred to Ref. [1] , including its Supplementary Material, for fur-

ther details on the configuration, conservation equations, chemi-

cal kinetics, transport models, numerical methods, and associated

boundary conditions. 

The analysis in this study is focused on one of the two cases

measured in Ref. [6] and simulated in Ref. [1] , which employs

methane and oxygen streams diluted with nitrogen in such a way

that the stoichiometric mixture fraction is Z st = 0 . 50 . This case

is characterized by a geometrically centered diffusion flame with

smaller curvature, and in principle provides the most favorable

conditions for self-similarity. Results are also provided in the ac-

companying Supplementary Material that addresses the additional
ase Z st = 0 . 07 corresponding to undiluted methane burning in air,

s studied in Refs. [1] and [6] . This supplementary case is much

ess favorable for self-similarity due to the resulting larger values

f the flame curvature that necessarily induce radial variations in

ll variables even close to the burner axis. 

The anticipated answers to the two questions outlined above

re that the resulting flow is, at most, only locally self-similar at

adial distances smaller than the orifice radius in the unelectri-

ed case. However, in electrified cases, where a voltage difference

cross the electrodes is applied, the region where the flow is lo-

ally self-similar rapidly becomes increasingly narrower around the

urner axis and vanishes altogether as the voltage increases. Even

 self-similar description localized exactly at the burner axis be-

omes untenable due – among other reasons described below –

o significant axial variations of the radial curvature of the pres-

ure profile there. In electrified conditions, the present setup is not

articularly amenable to being described by self-similar formula-

ions because of deleterious two-dimensional electrohydrodynamic

ffects initiated at the edges of the diffusion flame. The results sug-

est that, in practical applications, counterflow burners chosen for

tudying electrified diffusion flames should be extra slender if self-

imilar conditions are to be preserved. These aspects are discussed

elow. 

The remainder of this paper is divided into two sections. A self-

imilar description of the problem is provided in Section 2 along

ith an assessment of its validity using an a-priori analysis of the

teady axisymmetric numerical simulations of the case Z st = 0 . 50

eported in Ref. [1] . Concluding remarks are given in Section 3 .

astly, a Supplementary Material is appended to this manuscript

hat contains results of a similar analysis performed for the addi-

ional case Z st = 0 . 07 . 

. Results 

The analysis begins by considering what the formulation of the

roblem would be in a self-similar description. An assessment of

he hypotheses leading to that description is provided thereafter. 

.1. Formulation 

Standard assumptions required to derive self-similar descrip-

ions in counterflow combustion problems are: (a) linearly vary-

ng radial velocities with the radial coordinate, and as a conse-

uence from continuity, radially independent axial velocities; (b)

adially independent distributions of scalars including temperature,

ensity, and mass fractions; and (c) quadratically varying hydro-

ynamic pressures in the radial direction, with a proportionality

onstant that is independent of the axial direction [13,17–20] . In

he present study, these assumptions have to be necessarily aug-

ented with one that states radial uniformity of the electric po-

ential and charge density. 

Following these assumptions, consider the dimensionless veloc-

ty components in the axial and radial directions given, respec-

ively, by U(ξ ) = u x /U and A (ξ ) = 2 u r / (Ar) . In the notation, A =
/L is a characteristic strain rate based on the injection velocity

 , which is the same for both injectors, and on the gap distance L

etween the injectors. In addition, the symbol ξ = x/L represents

 normalized axial coordinate. Note that an axial similarity coor-

inate could be defined instead based on a Howarth–Dorodnitsyn

ype of transformation, and a stream function could be introduced

hat would make the continuity equation unnecessary, but here U ,

 and ξ are employed directly for simplicity. 

The velocity components U and A are determined by the solu-

ion to the transformed conservation equations of mass and radial
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omentum, namely 

d 

dξ
( RU ) + RA = 0 , (1)

U 

dA 

dξ
+ 

RA 

2 

2 

= J + 

1 

Re L 

d 

dξ

(
ˆ η

dA 

dξ

)
. (2) 

hese equations need to be integrated simultaneously with 

U 

dY i 
dξ

= − 1 

Re L P rLe i 

d 

dξ

(
RV ξ ,i Y i 

)
+ Da i R �i (i = 1 , . . . , N s ) , 

(3) 

RU 

d�

dξ
= 

1 

Re L P r 

d 

dξ

(
ˆ λ

d�

dξ

)
− R 

N s ∑ 

i =1 

Da i H i �i 

− R 

Re L P r 

N s ∑ 

i =1 

Y i c i V ξ ,i 

Le i 

(
d�

dξ

)

− �E 

Re L P r 

N s ∑ 

i =1 

R i,q V ξ ,i 

Le i 

(
dϕ 

dξ

)
, (4) 

nd 

d 2 ϕ 

dξ 2 
= −

N s ∑ 

i =1 

R i,q , (5) 

hich correspond, respectively, to the transformed conservation

quations of species and enthalpy, and the transformed Gauss

quation for the electrostatic potential. The above equations are

upplemented with the ideal-gas equation of state 

W� = 1 . (6) 

In this formulation, R (ξ ) = ρ/ρ0 , W(ξ ) = W / W 0 , �(ξ ) = T /T 0 ,

ˆ (ξ ) = η/η0 , 
ˆ λ(ξ ) = λ/λ0 , and c(ξ ) = c p /c p0 are, respectively, the

ensity, mean molecular weight, temperature, dynamic viscosity,

hermal conductivity, and specific heat of the mixture normal-

zed with the corresponding oxidizer-stream value indicated by the

ubindex 0 . In addition, among the N s species in the mixture, vari-

bles related to the particular species i are the mass fraction Y i ( ξ )

nd the normalized values of the specific heat c i (ξ ) = c p,i /c p0 , the

artial specific enthalpy H i (ξ ) = h i / (c p0 T 0 ) , and the chemical pro-

uction rate �i (ξ ) = ˙ w i t ch,i , the latter being nondimensionalized

ith the inverse of a characteristic chemical time t ch , i . Similarly,

 ξ ,i = V x,i L/D i 0 represents a normalized axial diffusion velocity of

pecies i based on the corresponding mass diffusivity at oxidizer-

tream conditions D i 0 , and is given by 

 ξ ,i (ξ ) = −
ˆ D i 

X i 

(
dX i 

dξ

)
− �S,i S i ̂  μi 

dϕ 

dξ

+ 

N s ∑ 

j=1 

Y j α ji 0 

(
ˆ D j 

X j 

dX j 

dξ
+ �S, j S j ̂  μ j 

dϕ 

dξ

)
, (7) 

here X i ( ξ ) is the molar fraction, ˆ D i (ξ ) = D i /D i 0 and ˆ μi (ξ ) =
i /μi 0 are the normalized mass diffusivity and mobility, respec-

ively, and α ji 0 = D j0 /D i 0 are ratios of mass diffusivities at oxidizer-

tream conditions. Additionally, S i is the number of elementary

harges expressed as a multiple of the absolute value of the

lectron charge e . In the present configuration, and under the

hemical-kinetic modeling assumptions utilized in Ref. [1] , S i = +1

or the ions H 3 O 

+ and CHO 

+ , and S i = −1 for the electrons e − and

or the anions O 

−
2 
, O 

−, and OH 

−. 

The classic aerothermochemical coupling in the above equations

s quantified by the non-dimensional parameters P r = ν /D ,
0 T 0 
e i = D T 0 /D i 0 , Da i = (At ch,i ) 
−1 , and Re L = UL/ν0 , which represent,

espectively, the Prandtl, Lewis, Damköhler, and Reynolds number.

n the notation, ν0 and D T 0 correspond, respectively, to the kine-

atic viscosity and thermal diffusivity of the oxidizer stream. In

his configuration, the Reynolds number Re L is moderately large,

e L = 126 , in such a way that the flow remains laminar [6] (note

here is a factor of 2 discrepancy with respect to the Re L value

uoted in Ref. [1] due to a redefinition of the characteristic strain

ate A made here for convenience of the notation as one half of

hat defined previously there). Correspondingly, heat conduction,

ass transport, and viscous stresses are important within the mix-

ng layer that is formed near the stagnation plane. In non-reacting

onditions, the thickness of the mixing layer is smaller than L by

 factor of order Re −1 / 2 
L 

� 1 . It should however be noted that the

emperature increase resulting from the exothermic chemical re-

ctions involves an increase in the local kinematic viscosity near

he stagnation plane, which, in practice, leads to an increase in the

hickness of the mixing layer to amounts of order L /2 no longer

mall compared with L (i.e., see Figs. 5 and 6 in Ref. [1] ). 

In writing Eq. (2) , the hydrodynamic pressure has been as-

umed to have the customary functional form [13,17–20] 

p 

ρ0 U 

2 
= π(ξ ) − J 

4 

(
r 

L 

)2 

. (8) 

s described below, the function π ( ξ ) enters passively in the axial

omentum equation and does not play any role in the determi-

ation of the velocity field. In contrast, J = −(ρ0 A 

2 r/ 2) −1 (∂ p/∂ r)
s a positive constant independent of the spatial coordinates that

s proportional to the radial curvature of the pressure profile and

s required for the computation of the velocity components, as

n Eq. (2) . For instance, in a symmetric constant-density potential

ow, J = 1 / 2 as demanded by Eq. (2) since A = 1 everywhere. In

he present configuration, plug-flow boundary conditions for the

elocity are employed, which are motivated by the use of con-

oured nozzles and interposed perforated-plate electrodes in the

xperiments, and by the absence of quantitative experimental char-

cterizations of the velocity field near the nozzles in this burner

1,6,7] . As a result, J becomes an eigenvalue of the problem to

e determined as part of the solution of the third-order system

f equations (1) and (2) while imposing the four inflow-velocity

oundary conditions (i.e., U = −1 at ξ = +1 / 2 , U = 1 at ξ = −1 / 2 ,

nd A = 0 at ξ = ±1 / 2 ). At sufficiently high Reynolds numbers

e L � 1, the resulting eigenvalue is 

 = 2 

(
1 + 

√ 

ρF /ρ0 

)2 

, (9) 

ith ρF being the density of the fuel stream. This expression can

e analytically derived by integrating Eqs. (1) and (2) in the two

nviscid regions formed by the impinging jets away from the mix-

ng layer, which, in the limit Re L � 1, becomes a tangential dis-

ontinuity located at the stagnation plane. This procedure yields

iecewise velocity profiles on the oxidizer and fuel sides of the

tagnation plane with six constants of integration. These constants,

long with J , can be determined using the four aforementioned

inematic boundary conditions, the mechanical-equilibrium condi- 

ion that the radial pressure gradient is equal on both sides of the

tagnation plane, along with two non-penetration conditions at the

tagnation plane for the two piecewise distributions of the axial

elocity [18] . 

An important role in the above equations, which sets them

part from those typically used in unelectrified counterflow dif-

usion flames [13,18,21] , is played by the dimensionless elec-

rostatic potential ϕ(ξ ) = �/ | ��0 | and by the dimensionless

ersion of the electric charge density ρq,i = ρN A e S i Y i /W i , denoted

s R i,q (ξ ) = ρq,i L 
2 / (ε0 ��0 ) . In these expressions, ��0 is the volt-

ge difference imposed across the electrodes, N is the Avogadro
A 
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number, W i is the molecular weight of species i , and ε0 is the vac-

uum permittivity. 

According to the formulation above, the coupling between the

electric and aerothermochemical fields occurs through the last

term on the right-hand side of the enthalpy equation (4) , which

corresponds to an Ohmic dissipation, and through the second and

last components of the diffusion velocity (7) , which represent elec-

trodiffusion mechanisms of charged species. The latter participate

in the mass diffusion of species in Eq. (3) , as well as in the heat

transfer by species interdiffusion represented by the second term

on the right-hand side of Eq. (4) . These couplings for energy and

species transport are quantified, respectively, by the two dimen-

sionless parameters 

�E = 

(��0 ) 
2 ε0 

ρ0 c p0 T 0 L 2 
and �S,i = 

μi 0 | ��0 | 
D i 0 

. (10)

In the simulations performed in Ref. [1] , �E ∼ 10 −8 − 10 −7 � 1

is a very small parameter, thereby indicating that the effect of the

Ohmic dissipation on the temperature field is negligible. 

In contrast, �S,i ∼ 10 3 − 10 4 � 1 is a large parameter for all

tested voltages. Based on the Einstein relation employed in

Eq. (S1.18) in Ref. [1] for the direct proportionality between bi-

nary mobilities and binary mass diffusivities, and on the relations

in Eqs. (S1.14) and (S1.19) in Ref. [1] between binary and individual

values of the mobilities and mass diffusivities, the parameter �S , i 

can be rewritten as 

�S,i = �S = 

| ��0 | 
κB T 0 /e 

, (11)

which is independent of the species index i . The large value

of �S , i therefore indicates that the applied voltages | ��0 | =
O (1 kV ) are much larger than the characteristic thermal voltage

κB T 0 / e ∼ 25 mV, with κB being the Boltzmann constant. As a re-

sult, the charged species are highly susceptible to diffusion by elec-

tromigration, as described by the second and fourth terms that

comprise the diffusion velocity (7) . Note that the largeness of

�S , i in (7) is compensated by the smallness of Re −1 
L 

in Eq. (3) ,

thereby suggesting that electromigration is dominant within the

mixing layer, where the charged species are generated, and where

convection balances ordinary molecular diffusion. However, elec-

tromigration is not necessarily confined to the mixing layer, as

shown in the charged species distributions in Fig. 7 of Ref. [1] ,

where long tails in the concentration of H 3 O 

+ and O 

−
2 

are ob-

served, respectively, on the fuel and oxidizer sides of the stagna-

tion plane in the inviscid region in the form of a bi-directional

ionic wind. This can be understood in terms of dimensionless

parameters by noticing that, upon combining Eqs. (3) and (7) ,

the prefactor �S,i / (Re L P rLe i ) ∼ 10 –100 multiplying the electromi-

gration flux is generally much larger than unity, thereby en-

abling the motion of charges by electromigration across scales of

order L with corresponding velocities larger than U . Note that,

whereas the Lewis numbers of the heavy ions are not too different

from unity (i.e., Le CHO + = 1 . 65 , Le H 3 O + = 1 . 12 , Le O −
2 

= 1 . 24 , Le OH − =
0 . 80 , and Le O − = 0 . 79 ), the Lewis number of the electrons Le e − =
0 . 002 is small because of their high mobility, or equivalently,

their large diffusivity. Correspondingly, the dimensionless group

�S, e −/ (Re L P rLe e − ) is particularly large for electrons. Nonetheless,

electrons are rapidly consumed in electron-attachment chemical

reactions that involve conversion of O 2 , OH, and O into their ion-

ized counterparts, and therefore the electrons rarely survive away

from the mixing layer. 

Regarding their effects on the velocity components, it is how-

ever important to note that the couplings quantified by the dimen-

sionless parameters �E and �S , i lead, at most, to weak modifica-

tions of the density, temperature, and composition fields of major

species [1] . The rather mild character of this coupling rests upon
he following facts: (a) the gas is very weakly ionized under the

ncident sub-breakdown electric fields utilized here, with electron

umber densities being of order 10 11 cm 

−3 ; and (b) no electric

oupling terms appear explicitly in the mass and radial momen-

um equations (1) and (2) . In particular, no radial electric force is

nvolved in the momentum balance (2) , since the electric potential

must necessarily be assumed to be a sole function of the axial

oordinate ξ as a result of the radial uniformity of the mass frac-

ions Y i of charged species in the self-similar formulation. 

In contrast, the electric force, which is dimensionally defined

s f el = −∑ N s 
i =1 

ρq,i ∇�, is axially directed as prescribed by its pro-

ortionality to the gradient of the potential and only participates

assively in the conservation equation of axial momentum, namely

U 

dU 

dξ
= −dπ

dξ
+ 

1 

Re L 

{
ˆ η

dA 

dξ
+ 

4 

3 

d 

dξ

[
ˆ η

(
dU 

dξ
− A 

2 

)]}
+ F el ,ξ , 

(12)

here 

 el ,ξ (ξ ) = 

f el ,x 

ρ0 UA 

= −�M 

N s ∑ 

i =1 

R q,i 

dϕ 

dξ
(13)

s the dimensionless axial component of the electric force, and 

M 

= 

(��0 ) 
2 ε0 

ρ0 U 

2 L 2 
, (14)

s a dimensionless momentum-coupling parameter that measures

he ratio of the characteristic convective acceleration to the electric

orce per unit volume. 

According to Eq. (12) , the uniform and purely axial electric force

13) can be absorbed – without any dynamical consequences what-

oever – into the gradient of a modified hydrodynamic pressure

p � / (ρ0 U 

2 ) = π� (ξ ) + (J/ 4)(r/L ) 2 , where π� ( ξ ) is given by 

� (ξ ) = π(ξ ) −
∫ ξ

0 

F el ,ξ (ξ ) dξ . (15)

Note that π ( ξ ) or π� ( ξ ) are both inconsequential for the so-

ution of the velocity field and can be directly computed by inte-

rating Eq. (12) supplemented with the known distributions U(ξ ) ,

 (ξ ) , �( ξ ), ϕ( ξ ), and Y i ( ξ ) obtained by solving Eqs. (1) –(5) . Such

ffortless absorption of the electric force into the hydrodynamic

ressure gradient is a manifestation of the principle of extended

alilean invariance, and can only be made possible if the electric

orce is conservative, as is necessarily the case for the uniform and

urely axial electric force (13) encompassed by the self-similar for-

ulation outlined above. As a result, according to Eqs. (1) –(13) , the

i-directional ionic wind of H 3 O 

+ and O 

−
2 

resulting from electromi-

ration fluxes directed away from the mixing layer should be pow-

rless in exerting any influence on the velocity field. Remarkably,

his should occur regardless of the value of the dimensionless cou-

ling parameter �M 

that is defined in (14) and premultiplies the

lectric force (13) , insofar as �M 

remains much smaller than the

quare of the inverse of the Mach number 

a = 

U √ 

(γ0 − 1) c p0 T 0 
= O (10 

−3 ) � 1 (16)

n order to preserve the uniformity of the thermodynamic pressure

n the present low-Mach approximation, where γ 0 is the adiabatic

oefficient in the oxidizer stream. 

In contrast, the numerical results presented in Figs. 8 and 9 in

ef. [1] , obtained by integrating the full conservation equations,

uggest the following: (a) the axial electric force (13) is compara-

le or larger than the characteristic convective force ρ0 UA ; and (b)

he associated momentum exchanged by the bi-directional ionic

ind and the bulk neutral gas causes significant modifications of
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Fig. 2. Radial profiles of the transformed radial velocity for the case Z st = 0 . 50 . 
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Fig. 3. Radial profiles of the transformed axial velocity for the case Z st = 0 . 50 . 

Fig. 4. Radial profiles of the transformed radial pressure gradient for the case Z st = 

0 . 50 . 
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l  
he axial velocity field across the burner by momentum transfer.

imilar flow modifications were observed in the experiments re-

orted in Ref. [6] , although there the strength of the interaction

ppears to be superior to that obtained from the numerical simu-

ations because of possible reasons discussed in Ref. [1] . In both ex-

eriments and simulations, the dimensionless coupling parameter

M 

in Eq. (14) is of order unity. However, as mentioned above, this

trong momentum coupling is incompatible with the self-similar

escription (1) –(13) , where the electric force is just passively ab-

orbed into the hydrodynamic pressure gradient. 

Based on the above considerations, there must exist notice-

ble discrepancies between the simulation results presented in

ef. [1] and the hypotheses that lead to Eqs. (1) –(13) . These are

nvestigated in what follows. 

.2. A-priori analysis of numerical simulations 

The analysis of the simulation results in Ref. [1] , where the full

untransformed) conservation equations are integrated in steady

xisymmetric form, indicates that the radial extent of the region

here self-similarity holds becomes increasingly narrower as the

oltage increases. This is illustrated in Figs. 2–5 , which show, re-

pectively, the profiles of A , U , J , and � as a function of the radial

oordinate normalized with the injector orifice radius R at differ-

nt axial positions ξ . In interpreting these results, it is convenient

o notice that the diffusion flame is approximately located within

he interval −0 . 1 � ξ � 0 . 05 in all cases. 

Necessary requirements for Eqs. (1) –(12) to hold are therefore

hat A , U , and � should be independent of r for every ξ , and that

 should be independent of both r and ξ . In equivalent form, u x 
nd T should be one-dimensional fields that only depend on x , and

 r and ∂ p / ∂ r should scale linearly with r , with the multiplicative

actor of the latter being independent of x . These requirements are

oticeably satisfied for r / R � 1 and all ξ in the unelectrified case

ith Z st = 0 . 50 , and they are violated in the same case radially

way from the burner axis where r / R � 1. 
In unelectrified conditions, the transformed radial pressure gra-

ient J near the axis is approximately uniform, but, as illustrated

n Fig. 6 , its value is nonetheless nearly twice that predicted by

q. (9) (i.e., J ≈ 7.35, since ρF = 0 . 84 ρ0 in these simulations). The

ause of this discrepancy lies in the insufficiently high value of

he Reynolds number used in this configuration, which renders

 relatively thick mixing layer in reacting conditions due to the

ocal increase of the kinematic viscosity in the vicinity of the
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Fig. 5. Radial profiles of the normalized temperature for the case Z st = 0 . 50 . 

Fig. 6. Axial distribution of the transformed radial pressure gradient J along the 

axis r = 0 for the case Z st = 0 . 50 . 
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diffusion flame (e.g., see axial temperature profiles in Fig. 5 in

Ref. [1] ). Instead, as shown in Fig. 6 , the theoretical value of J given

by Eq. (9) is best reproduced in non-reacting conditions. 

In the case under investigation, the diffusion flame, which re-

mains notably flat, has a diameter of approximately 4 R (i.e, see

Fig. 10(b) in Ref. [1] ) and therefore penetrates in the range of ra-

dial distances where the iso-velocity nitrogen curtain is injected.

This range corresponds to 1 ≤ r / R ≤ 2. As a result, the formulation

(1) –(13) is generally not applicable for r/R = O (1) even in the un-

electrified case, particularly near the injectors, where the density
 and mass fractions Y i necessarily become a function of the ra-

ial coordinate. 

Most importantly, however, is that the constancy of u x and T

ith r , along with the linear scalings of u r and ∂ p / ∂ r with r , which

re observed in the unelectrified case in the region r / R � 1 for all

, are all rapidly degraded and increasingly more confined to the

icinity of the axis as the voltage increases. For instance, no clear

elf-similar region can be discerned in Figs. 2–5 in the cases −1 . 5

nd −2 . 0 kV. 

As the voltage increases, an evident mismatch of the hydrody-

amic pressure occurs with respect to the form assumed in Eq. (8) ,

s illustrated in Figs. 4 and 6 . In particular, as the voltage increases,

he transformed radial pressure gradient J near the axis ceases to

ave an approximately uniform value and becomes an increasingly

ore pronounced function of both ξ and r . Specifically, as shown

n Fig. 6 , a strong parabolic dependence of J on ξ in electrified con-

itions is observed along the burner axis r = 0 , where self-similar

escriptions often find the most and only suitable region to be de-

loyed. 

The undesirable presence of an axially varying curvature of the

adial pressure profile in this problem is reminiscent of a similar

henomenon found in Refs. [22] and [23] on unelectrified combus-

ion problems in counterflow burners with the same aspect ratio

 R/L = 1 than the present one. In those, the breakdown of self-

imilarity is typically attributed to the flow two-dimensionality in-

uced by the lack of geometrical slenderness of the burner [24] .

n contrast, in the present configuration, the unelectrified solution

omplies well with the self-similar description for r / R � 1 because

f the particular chemical composition of the injectants that favors

 nearly flat diffusion flame placed near the geometrical center of

he burner. However, a clear breakdown of self-similarity occurs

s the voltage increases which is caused by two-dimensional flow

ffects initiated by the electric field at the edges of the diffusion

ame, as described below. 

.2.1. Low voltages 

At low voltages below saturation | ��0 | � 1.0 kV, the radial pro-

les of the electric potential have two well-differentiated plateaus

or every ξ away from the electrodes, as shown in Fig. 7 . On one

and, the outer plateau corresponds to the axially linear distri-

ution of electric potential ϕ = ξ − 1 / 2 resulting from applying

he voltage difference across the electrodes while sandwiching the

on-ionized gas found radially far away from the diffusion flame.

n the other hand, the inner plateau constitutes a large distur-

ance of the outer linear distribution of electric potential and is in-

roduced by the shielding action of the charged species, and more

articularly, H 3 O 

+ and O 

−
2 

. These, in sub-saturated conditions, are

roduced at an abundant rate in comparison with the rate at

hich they are removed outwardly from the diffusion flame by

he electromigration flux. As a result, the distribution of the nor-

alized total electric-charge density R q = 

∑ N s 
i =1 

R q,i has sharp hor-

zontal ridges above and below the diffusion flame where charges

ccumulate axially in a shield-like manner, as shown in the two

pper left contour maps in Fig. 8 (see also the axial profiles of

harge density in Fig. 3 in Ref. [1] ). 

Each of the two plateaus in the electric potential leads to cor-

esponding regions of approximate uniformity in the axial electric

orce, as shown in Fig. 9 . In the outer plateau, F el ,ξ is small due

o the absence of charges. In the inner plateau, and away from the

ixing layer, F el ,ξ attains dimensional values comparable or larger

han the characteristic convective force ρ0 UA . In the self-similar

escription (1) –(13) , however, these large values of F el ,ξ are incon-

equential for the velocity distribution and do not lead to any aero-

ynamic coupling, since the effect of F el ,ξ is passively absorbed

nto the hydrodynamic pressure gradient without any dynamical

onsequences, as stressed above. 
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Fig. 7. Radial profiles of the normalized electric potential for the case Z st = 0 . 50 . 

Fig. 8. Solid contours of the normalized total electric-charge density (left panels) 

and normalized electric potential (right panels) for the case Z st = 0 . 50 . Also in- 

cluded are isolines of the heat-release rate (dark lines). 

Fig. 9. Radial profiles of the normalized axial electric force for the case Z st = 0 . 50 . 

Fig. 10. Radial profiles of the normalized radial electric force for the case Z st = 0 . 50 . 
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The two aforementioned plateaus in the electric potential are

ridged by an annular region where ϕ varies in the radial direc-

ion, which violates the necessary assumption for self-similarity

hat ϕ is a sole function of ξ . The two-dimensionality of the elec-

ric potential in the bridging region, which is clearly visible in the

wo upper right contour maps in Fig. 8 , gives rise to a positive ra-

ial component of the electric force f el, r , whose magnitude is also

omparable to the characteristic convective force ρ0 UA albeit much

maller than the axial component f el, x , as shown by comparing

igs. 9 and 10 . 
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Fig. 11. Solid contours of the normalized azimuthal component of the vorticity (left 

panels) and of the normalized curl of the electric force (right panels) for the case 

Z st = 0 . 50 . Positive (negative) values of ω θ correspond to anticlockwise (clockwise) 

vorticity. Solid and dashed isolines on the left panels indicate positive and negative 

isolines of vorticity, respectively. Solid lines on the right panels indicate isolines of 

the heat-release rate. 
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It is also in that bridging region where a strong two-

dimensional gradient of charge density develops in the form of a

curved lateral shield of electric charge, which, together with the

flat portions of the shield above and below the diffusion flame,

completely envelop the diffusion flame, as observed in the upper

left panel in Fig. 8 . Inside the resulting pancake-shaped Faraday

cage, the magnitude of the electric field and the associated com-

ponents of the electric force f el, x and f el, r are negligible. In contrast,

the electric force is large along the edge of the charge shield, and

more particularly, near its corners, where a strong misalignment

exists between the gradients of the potential and the charge den-

sity. 

The resulting electric-force map is a two-dimensional one in

which the axial and radial forces are directed mostly outwards

from the diffusion flame. The non-conservative character of the

electric force emerging from the bridging region is clearly illus-

trated by the normalized contours of the azimuthal component of

its curl ( ∇ × f el ) θ /( ρ0 A 

2 ) in the cases ��0 = −0 . 5 kV and −1 . 0 kV

shown in Fig. 11 . Note that, if the gradient of the electric charge

were aligned with the gradient of the potential everywhere, the

electric force would be conservative and therefore irrotational ev-

erywhere, (∇ × f el ) θ = 0 , which would make possible its absorp-

tion into the hydrodynamic pressure gradient as in Eq. (15) . The

sign of the vorticity source term ( ∇ × f el ) θ observed in the results
s such that it tends to abate the unelectrified distribution of vor-

icity that was originally present in the central region of the burner

nd was dominated by velocity gradients generated by thermal

xpansion and flow-entrance effects from the plug-flow boundary

onditions (see left panels in Fig. 11 ). Similar characterizations of

he effects of the electric force on the vorticity field under different

njection-velocity boundary conditions represents an aspect worthy

f future research. 

In conclusion, at low voltages below saturation | ��0 | � 1.0 kV,

he bridging region in the electric potential is located relatively far

rom the axis burner. Correspondingly, the electric force is mostly

xial and radially uniform near the axis for r / R � 1, as observed in

he two upper panels in Figs. 9 and 10 . As a consequence, the elec-

ric force is mostly conservative there, as shown in the right pan-

ls corresponding to ��0 = −0 . 5 kV and −1 . 0 kV in Fig. 11 , and

herefore does not lead to any significant momentum coupling. The

ow is still adequately described by self-similarity, with the only

aveat of the incipient non-uniformities in the axial distribution of

he transformed pressure gradient, as shown in Figs. 3 and 6 for

he cases ��0 = −0 . 5 and −1.0 kV. 

.2.2. High voltages 

To understand the breakdown of self-similarity in electrified

onditions, it is illustrative to describe the transition undergone by

he aerothermochemical field as the voltage increases from sub-

aturated to saturated conditions, which, in this burner, is also as-

ociated with the onset of a markedly two-dimensional character

f the solution near the axis. In particular, as the saturation volt-

ge is approached (e.g., see the ��0 = −1 . 0 kV case in Figs. 6–9 ),

he bridging region in the electric potential moves radially inwards.

onsequently, the radial extension of the charge shield decreases

s a result of an increased evacuation of charges by the electromi-

ration flux, thereby leaving outer portions of the diffusion flame

ierced by a nearly undisturbed electric field. The resulting radial

rofiles of f el, r are also shifted radially inwards, in such a way that

he radial transfer of momentum becomes increasingly important

n the vicinity of the axis. 

At higher voltages into the saturated regime (e.g., see the

�0 = −1 . 5 and −2 . 0 kV cases in Figs. 6–9 ), the prevailing elec-

romigration flux has washed away the charge shield in all direc-

ions by steering the excess of charges toward the electrodes. The

esulting electrostatic field is one in which the bridging region is

roader and intercepts the burner axis, and across which the po-

ential variation is small, thereby moderating the value of the ra-

ial electric force. The potential, which is slightly disturbed from

ts outer linear distribution by the diffusion flame because of the

nite rate of charge electromigration, arrives with non-zero curva-

ure at the burner axis. As a consequence, the radial component

f the electric force rapidly transitions from zero value at the axis

o a quantity of order ρ0 UA at r / R ∼ 1, as shown in the lower right

anel in Fig. 10 . Similarly, the axial component of the electric force

eases to be uniform near the axis and varies parabolically in the

adial direction, as observed in the lower right panel in Fig. 9 . In

his way, the electric force becomes non-conservative in the close

icinity of the axis (see panels corresponding to ��0 = −1 . 5 kV

nd −2 . 0 kV in Fig. 11 ). It is the profuse two-dimensionality of the

lectric force near the burner axis in these high-voltage conditions

hat induces a significant non-linear scaling of the radial pressure

radient, axial variations of J , along with radial variations on the

elocity components U and A , and consequently, on �A, and Y i ,

hereby breaking down the self-similarity. At these high voltages,

he electric force cannot be passively absorbed into the hydrody-

amic pressure gradient and has a dynamical effect on the velocity

eld that leads to significant momentum coupling. 

It is worth mentioning that the radial electric force f el, r follows

 linear scaling with r near r = 0 , as shown in the transformed
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Fig. 12. Radial profiles of the transformed radial electric force for the case Z st = 

0 . 50 . 
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Fig. 13. Axial distribution of the dimensionless radial curvature of the electric po- 

tential at the axis r = 0 for the case Z st = 0 . 50 . 
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d  
rofiles in Fig. 12 . Therefore, in order to palliate some of the short-

omings of the formulation (1) –(13) , it would be tempting to in-

lude a transformed radial electric force F el ,r (ξ ) = 2f el ,r L/ (ρ0 UAr)

n the right-hand side of the transformed radial momentum equa-

ion (2) while limiting the self-similar description to very small ra-

ial distances r → 0, with f el, r / r being finite in that limit. In princi-

le, at high voltages, this addition would create a positive source

f momentum in the radial direction in Eq. (2) that would con-

equently increase the axial velocity toward the stagnation plane

y mass conservation. Note that these dynamics would be oppo-

ite to those observed in the experiments [6] and simulations [1] ,

n which the axial flow toward the stagnation plane is decelerated

n electrified conditions. The discrepancy would be partially palli-

ted by employing the precomputed parabolic-like distribution of

he pressure gradient J ( ξ ) (see Fig. 6 ) in solving Eq. (2) , but that

ould be of limited practical interest. In addition, the transformed

adial electric force 

 el ,r (ξ ) = 

2 L f el,r 

ρ0 UAr 
= −�M 

N s ∑ 

i =1 

PR q,i (ξ ) (17)

ould necessarily involve the non-zero radial curvature P of the

lectric potential defined by its quadratic expansion near the axis,

 = φ(ξ ) + 

P 

4 

(
r 

L 

)2 

. (18)

As observed in Fig. 13 , the curvature of the potential is an os-

illatory function of ξ that becomes zero near the flame axial loca-

ion and at the boundaries ξ = ±1 / 2 , where the quadratic expan-

ion (18) must satisfy the Dirichlet boundary conditions for ϕ at

he electrodes (i.e., ϕ = 0 at ξ = 1 / 2 , and ϕ = −1 at ξ = −1 / 2 ). It

an be shown that the utilization of (18) in deriving a revised self-

imilar formulation would lead to additional terms involving P(ξ )

hat would appear in the transformed versions of the species and

nergy conservation equations, as well as in the Gauss equation.

owever, similarly to J ( ξ ), the function P(ξ ) would need to be pre-

omputed numerically from a full numerical simulation of the type
eported in Ref. [1] . Note that, even if the exact J ( ξ ) and P(ξ ) were

o be substituted into the self-similar formulation augmented with

he terms mentioned above, the solution to the resulting system of

quations along the axis might differ from the solution provided by

he full numerical simulations. This can be understood by noticing

hat the velocity components A and U also develop an increased

wo-dimensional character with increasing voltages, and that near

he axis they are better described by series expansions in even

owers of r . The second-order coefficients of those expansions, or

quivalently, the radial curvatures of A and U , would readily ap-

ear in the viscous terms of the transformed momentum equations

n the radial and axial directions, thereby complicating the analysis

n a multi-fold manner and leading to the inconvenience of having

o precompute additional unclosed functions using full numerical

imulations. 

. Conclusions 

Based on the above considerations, it is concluded that self-

imilar descriptions are appropriate in this counterflow configu-

ation under zero incident electric fields. However, in electrified

onditions, the self-similar description breaks down because

f two-dimensional electrohydrodynamic effects associated with 

ransition from sub-saturated to saturated conditions. These effects

ead to a transition between a mostly axial and conservative elec-

ric force field, which has a small magnitude and is directed away

rom the diffusion flame, to a biaxial and non-conservative electric

orce field of larger magnitude at higher voltages. In the latter

onditions, a radial component of the electric force pervasively

nfluences the vicinity of the axis in conjunction with a large

utwards axial electric force that corresponds to a bi-directional

onic wind. The resulting two-dimensional and non-conservative

haracter of the electric force prevents from passively absorbing

t into the gradient of the hydrodynamic pressure. It also induces

ignificant non-linear scaling of the radial pressure gradient, large

xial variations of the radial pressure gradient, along with radial

ariations on the axial velocity, temperature and mass fractions,

hereby breaking down the self-similarity. 

The breakdown described above occurs more profusely un-

er undiluted injection conditions corresponding to pure methane
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burning in air (i.e., Z st = 0 . 07 ). In this case, the diffusion flame is

located closer to the oxidizer injector and acquires a significant

concave curvature in unelectrified conditions (e.g., see Fig. 10(b)

in Ref. [1] ), which induces large radial variations in all variables.

As shown in the figures provided in the Supplementary Material

accompanying this paper, the numerical results indicate that the

configuration with Z st = 0 . 07 cannot be described by self-similar

formulations in any of the cases analyzed here, including the one

where there is no incident electric field. 

In unelectrified conditions, it is known that self-similarity in

counterflow diffusion flames can be preserved by using sufficiently

slender burners with large aspect ratios 2 R / L � 1. The present

study suggests that, all other characteristics of the configuration

being the same, the aspect ratio required to preserve self-similarity

in electrified conditions is larger than the aspect ratio required to

satisfy that condition in the absence of electric fields. This differ-

ence is caused by two-dimensional electrohydrodynamic flow dis-

tortions generated at the edges of the diffusion flame, which creep

radially toward the axis in a noticeable manner due to the ellip-

tic character of the electrostatic field. In principle, extra-large as-

pect ratios are expected to maintain radial uniformity in the elec-

tric and aerothermochemical fields for as much radial distance as

possible, thereby leading to an axial and conservative electric force

that could be passively absorbed into the hydrodynamic pressure

gradient without any dynamical consequences. As a result, in that

slender limit, the ionic wind would be mostly axial and radially

uniform, the strong momentum coupling observed in experiments

[6] and simulations [1,7] would disappear, the intensity across the

burner would vary monotonically with the voltage, and the self-

similar description (1) –(13) , including its counterpart in flamelet

model form [25] , would perhaps be useful in describing the flow

field. Further research would be worthwhile for an improved un-

derstanding of these aspects, possibly in configurations animated

by higher Reynolds numbers for enhanced separation of scales. 
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