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This fundamental study presents Navier-Stokes characteristic boundary conditions (NSCBCs) 
for high-enthalpy hypersonic flows in thermochemical non-equilibrium. In particular, the 
relevant locally one-dimensional inviscid (LODI) relations are derived within a two-temperature 
framework for high-enthalpy hypersonic flows undergoing finite-rate thermochemical processes, 
including air dissociation and vibrational relaxation. Using these LODI relations, a set of 
NSCBCs are proposed and later demonstrated in canonical test cases, including the interaction of 
homogeneous isotropic turbulence with a shock wave subject to high-enthalpy thermochemical 
non-equilibrium effects.

1. Introduction

The presence of strong shock waves, together with kinetic energy dissipation in boundary layers, activates a number of high-

enthalpy effects in hypersonic flows, including both chemical dissociation and vibrational excitation. As both chemical reactions 
and thermal relaxation proceed at finite rates, on time scales often comparable to that of advection, hypersonic flows are largely 
characterized as in a state of thermochemical non-equilibrium [1].

In hypersonic flows, thermochemical non-equilibrium is most significant in the vicinity of shock waves, across which preferential 
excitation of rotational and translational internal energy modes activates vibrational relaxation. Accurate characterization of internal 
energy modes is necessary not only for determining fluxes of internal energy, but also for predicting the rates of chemical processes, 
as the extent of vibrational excitation influences dissociation rates via vibration-dissociation coupling [2–6]. Owing to the significant 
dissociation energies of the different molecular constituents of air at high temperatures, finite-rate vibrational relaxation can strongly 
impact the thermal field via its coupling with reaction rates, inhibiting the exchange between sensible and chemical energy. Likewise, 
vibrational non-equilibrium also affects the hydrodynamic field in hypersonic flows via the coupling of pressure and temperature 
through the equation of state.

Fundamental problems in hypersonic aerothermodynamics often require spatio-temporal resolution of unsteady phenomena as-

sociated with shock waves and turbulent eddies [7–11]. For high-enthalpy flows, the interactions between compressible turbulence 
and thermochemical processes were originally characterized in the context of temporally evolving boundary layers by Duan & Martin 

✩ Distribution Statement A: Approved for Public Release – Distribution is Unlimited, PA # AFRL-2023-2837.

* Corresponding author.
Available online 24 April 2024
0021-9991/© 2024 Elsevier Inc. All rights reserved.

E-mail address: ctwilliams@stanford.edu (C. Williams).

https://doi.org/10.1016/j.jcp.2024.113040

Received 1 July 2023; Received in revised form 16 April 2024; Accepted 19 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:ctwilliams@stanford.edu
https://doi.org/10.1016/j.jcp.2024.113040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113040&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113040


Journal of Computational Physics 509 (2024) 113040C. Williams, M. Di Renzo, J. Urzay et al.

[12], with subsequent work by Di Renzo & Urzay [13] addressing the impact of chemical nonequilibrium on a spatially-evolving 
transitional/turbulent boundary layer of air in the stratosphere at Mach 10 over a cold wall. Most recently, Passiatore et al. [14] con-

sidered the coupling between turbulent motion and vibrational relaxation in a high-Mach turbulent boundary layer. Nevertheless, the 
mutual interactions between shock waves, turbulence, and nonequilibrium thermochemical processes remain poorly characterized 
overall, particularly in shock-dominated flows. As such, there remains a need for more general boundary conditions that can be used 
with confidence in Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) frameworks for high-enthalpy hypersonic 
flows.

The present study introduces appropriately modified characteristics-based boundary conditions that account for high-temperature 
gasdynamic phenomena. While Thompson [15,16] first introduced characteristics-based boundary conditions for hyperbolic partial 
differential equations, Poinsot and Lele [17] later extended characteristic boundary conditions for the compressible Navier-Stokes 
equations. Subsequent work by Lodato et al. [18] extended the analysis to three dimensions in order to account for the oblique 
propagation of waves relative to the outflow boundary. Effects of chemical reactions in compressible flows with high-pressure equa-

tions of state were considered by Baum et al. [19], Okong’o & Bellan [20], and Ju et al. [21], with these studies being limited to 
thermal-equilibrium conditions. In this study, the locally one-dimensional Navier-Stokes characteristic boundary conditions (NSCBCs) 
of Okong’o & Bellan are extended to account for thermochemical non-equilibrium processes arising in hypersonic flows at high en-

thalpies, including vibration-dissociation coupling and vibrational relaxation. Whereas fully three-dimensional boundary conditions 
have largely proven crucial for the computational analysis of combustion [22,23], the locally one-dimensional treatment developed 
herein for non-equilibrium hypersonic flows proves sufficient for the unsteady flows analyzed. Extensions to three-dimensional for-

mulations of the boundary conditions using methods similar to those in Ref. [18], which may be necessary for more complex flow 
configurations, are therefore deferred to future work.

The remainder of this manuscript is organized as follows. Section 2 presents the relevant set of conservation equations together 
with the corresponding thermodynamics, transport, and kinetics for two-temperature high-enthalpy hypersonic turbulent flows. 
Section 3 derives the corresponding locally one-dimensional inviscid (LODI) relations. Section 4 presents the set of NSCBCs associated 
with the LODI relations. Section 5 applies the characteristic boundary conditions derived in the present study to a set of canonical test 
cases subject to thermochemical non-equilibrium effects, which include the interaction of a shock wave with homogeneous isotropic 
turbulence. Lastly, Section 6 provides concluding remarks.

2. Formulation of the conservation equations

One approach for modeling the effect of finite-rate relaxation of internal energy modes in hypersonic flows is the multi-

temperature formulation of the conservation equations, for which each energy mode is characterized by a Boltzmann distribution 
with a distinct temperature [1,3,24]. Owing to the fast relaxation of rotational energy modes, most approaches for modeling and 
simulation of hypersonic flows utilize only two temperatures in the formulation. Specifically, the rotational and translational ener-

gies are both characterized by a common temperature 𝑇 , while the vibrational and electronic energies are likewise assumed to be in 
equilibrium at a separate temperature 𝑇𝑣𝑒 [25,26].

It should be emphasized that the NSCBCs provided in this study are independent of many aspects of the formulation of the 
conservation equations presented below. In particular, whereas this Section outlines Park’s standard two-temperature formulation 
[1], which is later integrated numerically in Section 5 for selected cases, the derivation of the LODI relations presented in Section 3

is general and independent of the thermophysical, transport, and chemical-kinetic models. For instance, the proposed NSCBCs can be 
used in conjunction with other descriptions for the coupling between vibrational excitation and dissociation, including the modified 
Marrone-Treanor model [5].

In the two-temperature formulation of multi-component hypersonic flows, the species partial density conservation equations can 
be expressed as

𝜕(𝜌𝑌𝑖)
𝜕𝑡

+∇⋅(𝜌𝑌𝑖u) = −∇⋅
(
𝜌𝑌𝑖𝑽 𝒊

)
+ 𝑤̇𝑖 𝑖 = 1, ...,𝑁𝑠, (1)

where 𝑌𝑖 is the mass fraction for species 𝑖, 𝜌 is the mixture density, u = [𝑢 𝑣 𝑤]𝑇 is the mass-averaged velocity of the mixture, 𝑽 𝒊 is 
the diffusion velocity for species 𝑖, and 𝑤̇𝑖 is the net rate of mass production of species 𝑖 per unit volume. The diffusion velocity for 
each species is computed as [27–29]

𝑽 𝒊 = −𝐷𝑖∇ln𝑋𝑖 +
𝑁𝑠∑
𝑗=1

𝑌𝑗𝐷𝑗∇ln𝑋𝑖, (2)

where 𝐷𝑖 and 𝑋𝑖 are taken to be, respectively, the mixture-averaged mass diffusivity and molar fraction of species 𝑖.
The chemical mechanism for air dissociation considered in this study is given by the reactions

N2 +M⇌ 2N+M, (R1)

O2 +M⇌ 2O+M, (R2)

NO+M⇌N+O+M, (R3)
2

N2 +O⇌NO+N, (R4)
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NO+O⇌O2 +N. (R5)

In this mechanism, (R1)-(R3) represent dissociation (forward) or recombination (backward) reactions for bimolecular species, 
whereas (R4) and (R5) are shuffle reactions responsible for the thermal production of nitric oxide. The symbol M represents any 
collider present in the mixture. As a result, the number of species in the expressions above is 𝑁𝑠 = 5, whereas the number of reactions 
is 𝑁𝑟 = 17 accounting for all colliders. In this notation, the chemical production term in Eq. (1) can be expressed as

𝑤̇𝑖 =𝑖

𝑅5∑
𝑗=𝑅1

(
𝜈′′
𝑖𝑗
− 𝜈′

𝑖𝑗

)[
𝑘𝑓,𝑗

𝑁𝑠∏
𝑘=1

(
𝜌𝑌𝑘

𝑘

)𝜈′
𝑘𝑗

− 𝑘𝑏,𝑗

𝑁𝑠∏
𝑘=1

(
𝜌𝑌𝑘

𝑘

)𝜈′′
𝑘𝑗

]
, (3)

where 𝑖 is the molecular weight of species 𝑖, and 𝜈′
𝑘𝑗

and 𝜈′′
𝑘𝑗

are the stoichiometric coefficients of species 𝑘 in reaction 𝑗 in the 
forward and reverse directions, respectively. The rate constants for the dissociation steps are given by [1]

𝑘𝑓,𝑗 =𝐴𝑗

(
𝑇𝑇𝑣𝑒

)𝑚𝑗∕2 exp(−
𝐸𝑎,𝑗

R0
√
𝑇𝑇𝑣𝑒

)
, 𝑗 = R1,R2,R3, (4)

with R0 being the universal gas constant. In this formulation, 𝐴𝑗 , 𝑚𝑗 , and 𝐸𝑎,𝑗 are Arrhenius parameters that are listed in Table 1 of 
Ref. [30] for each reaction 𝑗 and collider M. In contrast, the forward rates for the shuffle reactions (R4) and (R5) remain unaffected 
by thermal non-equilibrium, and are therefore evaluated at the translational-rotational temperature as [1]

𝑘𝑓,𝑗 =𝐴𝑗 𝑇
𝑚𝑗 exp

(
−
𝐸𝑎,𝑗

R0𝑇

)
, 𝑗 = R4,R5, (5)

where 𝐴𝑗 , 𝑚𝑗 , and 𝐸𝑎,𝑗 are taken from Table 5 in Ref. [31]. The recombination (backward) rate constants are given by [1,26,32–34]

𝑘𝑏,𝑗 =
𝐴𝑗 𝑇

𝑚𝑗

𝐾𝑒𝑞,𝑗 (𝑇 )
exp

(
−
𝐸𝑎,𝑗

R0𝑇

)
, 𝑗 = R1, ...,R5, (6)

where 𝐾𝑒𝑞,𝑗 is the chemical equilibrium constant for each reaction calculated using the polynomial form

𝐾𝑒𝑞,𝑗 = exp
(1,𝑗

𝑍
+2,𝑗 +3,𝑗 log𝑍 +4,𝑗𝑍 +5,𝑗𝑍

2
)
, (7)

with 𝑍 = 104∕𝑇 . The numerical values of the coefficients 𝑖,𝑗 are provided in Ref. [1].

The momentum conservation equation is written as

𝜕(𝜌u)
𝜕𝑡

+∇⋅(𝜌uu) = −∇𝑃 +∇⋅𝝉 , (8)

where the pressure 𝑃 is computed using the ideal-gas equation of state

𝑃 = 𝜌R0𝑇 ∕. (9)

In this expression, 𝑇 is the translational-rotational temperature, and  =
[∑𝑁𝑠

𝑖=1 𝑌𝑖∕𝑖

]−1
is the average molecular weight of the 

mixture. In accordance with Stokes’ hypothesis, the viscous stress tensor is expressed as

𝝉 = 2𝜇𝑺 − 2𝜇
3

(∇ ⋅ u)𝑰 , (10)

where 𝑺 =
(
∇𝒖+∇𝒖𝑇

)
∕2 and 𝑰 are the strain-rate and identity tensors, respectively. The dynamic viscosity of the mixture, 𝜇, 

is computed using Wilke’s mixture rule [35], with the elementary viscosity of each component computed using the approach in 
Ref. [27].

The conservation equation for the specific stagnation internal energy 𝐸 (including chemical energy) is

𝜕(𝜌𝐸)
𝜕𝑡

+∇⋅(𝜌𝐸u) = ∇⋅

(
−u𝑃 + 𝝉u+ 𝜆𝑡𝑟∇𝑇 + 𝜆𝑣𝑒∇𝑇𝑣𝑒 − 𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖𝑽 𝒊ℎ𝑖

)
. (11)

In this formulation, 𝜆𝑡𝑟 is the sum of the thermal conductivity of the rotational and translational energy modes, and 𝜆𝑣𝑒 is the 
combined thermal conductivity of the vibrational and electronic energy modes. While the individual thermal conductivities of each 
species are calculated via Eucken’s relation [36], the mixture-weighted conductivities for each internal energy mode are obtained 
via Wilke’s rule. The specific internal energy 𝑒 accounts for the different energy modes as

𝑒 =
𝑁𝑠∑
𝑖=1

𝑌𝑖

(
𝑒𝑡𝑟,𝑖 + 𝑒𝑣,𝑖 + 𝑒𝑒,𝑖 + ℎ0

𝑖,𝑓

)
, (12)

with ℎ0
𝑖,𝑓

being the enthalpy of formation of species 𝑖 at zero absolute temperature. Correspondingly, ℎ𝑖 is the partial specific enthalpy 
3

of species 𝑖 defined as
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ℎ𝑖 =
𝑁𝑠∑
𝑖=1

𝑌𝑖

(
R0𝑇 ∕𝑖 + 𝑒𝑡𝑟,𝑖 + 𝑒𝑣,𝑖 + 𝑒𝑒,𝑖 + ℎ0

𝑖,𝑓

)
. (13)

In these expressions, 𝑒𝑣,𝑖, and 𝑒𝑒,𝑖 are the specific internal energies of vibration and electronic excitation of species 𝑖, respectively. 
Similarly, 𝑒𝑡𝑟,𝑖 represents the sum of translational and rotational internal energies of species 𝑖.

The rotational and translational modes are taken to be fully excited, with the molecular species being treated as rigid rotors, 
namely

𝑒𝑡𝑟,𝑖 = (3∕2)R0𝑇 ∕𝑖 + 𝑖R0𝑇 ∕𝑖. (14)

In this notation, the prefactor 𝑖 is equal to 0 and 1 for monoatomic and diatomic species, respectively. The computation of the 
vibrational energy is based on the treatment of molecules as quantum harmonic oscillators [36], where both the vibrational and 
electronic-excitation energy modes are characterized by the vibrational-electronic temperature, 𝑇𝑣𝑒 , as

𝑒𝑣,𝑖 =
𝑖Θ𝑣,𝑖R0∕𝑖

exp(Θ𝑣,𝑖∕𝑇𝑣𝑒) − 1
, (15)

𝑒𝑒,𝑖 =
R0𝑇 2

𝑣𝑒

𝑖

𝜕

𝜕𝑇𝑣𝑒

(
ln𝑄𝑒,𝑖

)
. (16)

In this formulation, Θ𝑣,𝑖 is the characteristic vibrational temperature of species 𝑖, while 𝑄𝑒,𝑖 =
∑

𝑗 𝑔𝑖,𝑗 exp(−Θ𝑒,𝑖,𝑗∕𝑇𝑣𝑒) is the canonical 
partition function for the electronic energy mode of species 𝑖, with Θ𝑒,𝑖,𝑗 , and 𝑔𝑖,𝑗 being, respectively, the characteristic tempera-

ture and degeneracy of the electronic energy level 𝑗. The first seven electronic energy levels are used for each species, with the 
characteristic temperature and degeneracy data taken from the NIST databases for atomic1 and diatomic species.2

In this two-temperature approach, the sum of the vibrational and electronic-excitation specific internal energies

𝑒𝑣𝑒 =
𝑁𝑠∑
𝑖=1

𝑌𝑖𝑒𝑣𝑒,𝑖 =
𝑁𝑠∑
𝑖=1

𝑌𝑖(𝑒𝑣,𝑖 + 𝑒𝑒,𝑖) (17)

is described by the conservation equation [26]

𝜕(𝜌𝑒𝑣𝑒)
𝜕𝑡

+∇⋅(𝜌𝑒𝑣𝑒u) = ∇⋅

(
𝜆𝑣𝑒∇𝑇𝑣𝑒 −

𝑁𝑠∑
𝑖=1

𝜌𝑌𝑖𝑽 𝒊𝑒𝑣𝑒,𝑖

)
+ 𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
+ 𝑤̇𝑣𝑒. (18)

In Eq. (18), the second term on the right-hand side corresponds to exchange between the vibrational and translational energy 
modes [37], where 𝑒⋆

𝑣,𝑖
is the equilibrium vibrational internal energy calculated using expression (15) evaluated at the translational-

rotational temperature 𝑇 . Similarly, 𝜏𝑖 is a vibrational-relaxation time of species 𝑖 given by [1]

𝜏𝑖 = 𝜏𝑃
𝑖
+

(
𝑁𝑠∑
𝑗=1

𝑋𝑗

𝜏𝑀𝑊
𝑖𝑗

)−1

. (19)

In this expression, 𝜏𝑀𝑊
𝑖𝑗

is the vibrational-relaxation time, measured in seconds, proposed by Millikan and White [38], namely

𝜏𝑀𝑊
𝑖𝑗

= 1.01394 × 10−3
𝑃

exp
[
𝛼𝑖𝑗

(
𝑇 −1∕3 − 𝛽𝑖𝑗

)]
, (20)

which corresponds to molecule 𝑖 colliding with species 𝑗, where 𝑃 is in atm, 𝑇 is in K, and the empirical constants 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are 
taken from [25]. Additionally, 𝜏𝑃

𝑖
represents the high-temperature correction given by [1]

𝜏𝑃
𝑖
=
[
𝑛𝜎𝑣

√
(8R0𝑇 ∕𝜋𝑖)

]−1
, (21)

where 𝑛 is the number density, and 𝜎𝑣 is the following effective cross section measured in m2 [25],

𝜎𝑣 = 3 × 10−21 (50,000∕𝑇 )2 . (22)

The dissociation/vibrational-excitation coupling term 𝑤̇𝑣𝑒 in Eq. (18) is modeled using the non-preferential dissociation model [39]

𝑤̇𝑣𝑒 =
𝑁𝑠∑
𝑖=1

𝑤̇𝑖𝑒𝑣,𝑖. (23)

1 Accessed 2021. https://physics .nist .gov /PhysRefData /ASD /levels _form .html.
4

2 Accessed 2021. https://webbook .nist .gov /chemistry/.

https://physics.nist.gov/PhysRefData/ASD/levels_form.html
https://webbook.nist.gov/chemistry/
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3. Locally one-dimensional inviscid relations for hypersonic flows

In this Section, the derivation of LODI relations performed by Okong’o & Bellan [20] is extended to account for thermal non-

equilibrium (𝑇 ≠ 𝑇𝑣𝑒). As in Refs. [17,19,20], the present derivation treats the flow through boundaries as locally one-dimensional 
and will not consider the effects of molecular transport, which are treated as higher-order corrections to these equations later in 
Section 4. Defining 𝑥 as the boundary-normal coordinate and 𝑢 as the corresponding velocity component, the one-dimensional 
inviscid equivalent of the conservation equations presented in Section 2 are expressed as

𝜕𝐔
𝜕𝑡

+
[(

𝜕𝐂
𝜕𝐔

)−1 𝜕𝐅
𝜕𝐔

]
𝜕𝐔
𝜕𝑥

=
(
𝜕𝐂
𝜕𝐔

)−1
 , (24)

where

𝑼 = [𝜌, 𝑌1, 𝑌2, ...𝑌𝑁𝑠
, 𝑢, 𝑣, 𝑤, 𝑃 , 𝑇𝑣𝑒]𝑇 , (25)

is taken to be the vector of primitive variables. The vectors of conserved variables 𝑪 , inviscid fluxes 𝑭 and reactive source terms 
are defined respectively as

𝑪 =
[
𝜌, 𝜌𝑌1, ... 𝜌𝑌𝑁𝑠

, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸, 𝜌𝑒𝑣𝑒

]𝑇
, (26)

𝑭 =
[
𝜌𝑢, 𝜌𝑢𝑌1, ... 𝜌𝑢𝑌𝑁𝑠

, 𝜌𝑢2 + 𝑃 , 𝜌𝑢𝑣, 𝜌𝑢𝑤, 𝜌𝑢𝐻, 𝜌𝑢𝑒𝑣𝑒

]𝑇
, (27)

 =

[
0, 𝑤̇1, 𝑤̇2, ...𝑤̇𝑁𝑠

, 0, 0, 0, 0,
𝑁𝑠∑
𝑖=1

𝜌𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
+ 𝑤̇𝑣𝑒

]𝑇
, (28)

where 𝐻=𝐸 + 𝑃∕𝜌 is the stagnation enthalpy. Note that the continuity equation, obtained by summing Eq (1) over all species and 
applying the constraints 

∑𝑁𝑠

𝑖=1 𝑌𝑖 = 1 and 
∑𝑁𝑠

𝑖=1 𝑤̇𝑖 = 0, is retained here to facilitate the derivation of the characteristic boundary 
conditions but is not directly solved in the test cases presented below.

Upon performing the eigendecomposition of the bracketed matrix in (24), 𝑨 = 𝐘𝐑𝚲𝐘𝐑
−1, and pre-multiplying by the matrix of 

right eigenvectors, the system of equations

𝜕𝐫
𝜕𝑡

+𝚲 𝜕𝐫
𝜕𝑥

= ̃ (29)

is obtained, where 𝐫 =𝐘𝐑
−1𝑼 is the vector of Riemann invariants and ̃ is an auxiliary vector defined as ̃ =𝐘𝐑

−1 (𝜕𝐂∕𝜕𝐔)−1 . 
Equivalently, the locally one-dimensional inviscid (LODI) relations for the primitive variables can be expressed compactly as

𝜕𝐔
𝜕𝑡

+𝐘𝐑 =𝐘𝐑̃ , (30)

where  =𝚲 (𝜕𝐫∕𝜕𝑥) = [1, ... 𝑁𝑠+6]
𝑇 is the vector of wave-amplitude variations, whose components are given by

1 = (𝑢− 𝑎)
(
𝜕𝑃

𝜕𝑥
− 𝜌𝑎

𝜕𝑢

𝜕𝑥

)
, (31)

2 = 𝑢

(
𝜕𝑃

𝜕𝑥
− 𝑎2

𝜕𝜌

𝜕𝑥

)
, (32)

3 = 𝑢
𝜕𝑣

𝜕𝑥
, (33)

4 = 𝑢
𝜕𝑤

𝜕𝑥
, (34)

5 = 𝑢
𝜕𝑇𝑣𝑒

𝜕𝑥
, (35)

𝑖+5 = 𝑢
𝜕𝑌𝑖

𝜕𝑥
, 𝑖 = 1, ...,𝑁𝑠, (36)

𝑁𝑠+6 = (𝑢+ 𝑎)
(
𝜕𝑃

𝜕𝑥
+ 𝜌𝑎

𝜕𝑢

𝜕𝑥

)
. (37)

In the above expressions, the symbol 𝑎 represents the thermochemically-frozen speed of sound, namely

𝑎 =

√√√√(
𝑐𝑝,𝑡𝑟

𝑐𝑣,𝑡𝑟

)(
𝑃

𝜌

)
, (38)

where 𝑐𝑝,𝑡𝑟 and 𝑐𝑣,𝑡𝑟 are the average translational-rotational components of the specific heats of the mixture at constant pressure and 
constant volume, respectively. Using the rigid-rotor model and assuming full excitation of both translational and rotational degrees 
5

of freedom, the translational-rotational specific heat at constant volume can be expressed as
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𝑐𝑣,𝑡𝑟 = (3∕2)R0𝑇 ∕+
𝑁𝑠∑
𝑖=1

𝑌𝑖𝑖R0𝑇 ∕𝑖. (39)

Similarly, 𝑐𝑝,𝑡𝑟 is given by Mayer’s relation as

𝑐𝑝,𝑡𝑟 = 𝑐𝑣,𝑡𝑟 +R0∕. (40)

In comparing the wave-amplitude variations (31)-(37) obtained in this Section to those of Okong’o & Bellan [20], the wave-

amplitude variation 5 given by Eq. (35) arises as new in the present study due to the consideration of thermal non-equilibrium. The 
associated Riemann invariant is the vibrational-electronic temperature, with a wave speed corresponding to the convective velocity 
normal to the boundary.

Expanding Eq. (30), the resulting set of equations can be expressed in terms of the wave-amplitude variations as

𝜕𝜌

𝜕𝑡
+ 1
𝑎2

(1 +𝑁𝑠+6

2
−2

)
= 0, (41)

𝜕𝑢

𝜕𝑡
+ 1

2𝜌𝑎

(
𝑁𝑠+6 −1

)
= 0, (42)

𝜕𝑣

𝜕𝑡
+3 = 0, (43)

𝜕𝑤

𝜕𝑡
+4 = 0, (44)

𝜕𝑃

𝜕𝑡
+ 1

2

(
𝑁𝑠+6 +1

)
=

(
1 −

𝑐𝑝,𝑡𝑟

𝑐𝑣,𝑡𝑟

)[
𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
+ 𝑤̇𝑣𝑒 +

𝑁𝑠∑
𝑖=1

𝑤̇𝑖

(
ℎ𝑖 − 𝑒𝑣𝑒,𝑖 − 𝑐𝑝,𝑡𝑟

𝑇
𝑖

)]
, (45)

𝜕𝑇𝑣𝑒

𝜕𝑡
+5 =

1
𝑐𝑣,𝑣𝑒

(
𝑁𝑠∑
𝑖=1

𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
−

𝑁𝑠∑
𝑖=1

𝑤̇𝑖𝑒𝑒,𝑖

𝜌

)
, (46)

𝜕𝑌𝑖

𝜕𝑡
+𝑖+5 =

𝑤̇𝑖

𝜌
, 𝑖 = 1, ...,𝑁𝑠, (47)

where 𝑐𝑣,𝑣𝑒 is the constant-volume average specific heat corresponding to the vibrational-electronic energy modes of the mixture, 
which is given by

𝑐𝑣,𝑣𝑒 =
𝑁𝑠∑
𝑖=1

𝑌𝑖
(
𝑐𝑣,𝑣,𝑖 + 𝑐𝑣,𝑒,𝑖

)
, (48)

where 𝑐𝑣,𝑣,𝑖 and 𝑐𝑣,𝑒,𝑖 are, respectively, the vibrational and electronic specific heats at constant volume for species 𝑖. The electronic 
specific heat for each species can be obtained from

𝑐𝑣,𝑒,𝑖 =
R0𝑇𝑣𝑒
𝑖

[
2 𝜕

𝜕𝑇𝑣𝑒

(
ln𝑄𝑒,𝑖

)
+ 𝑇𝑣𝑒

𝜕2

𝜕𝑇 2
𝑣𝑒

(
ln𝑄𝑒,𝑖

)]
. (49)

By making use of the harmonic-oscillator approximation, the vibrational specific heat can be expressed as

𝑐𝑣,𝑣,𝑖 =
𝑖R0

𝑖

(Θ𝑣,𝑖

𝑇𝑣𝑒

)2 exp(Θ𝑣,𝑖∕𝑇𝑣𝑒)[
exp(Θ𝑣,𝑖∕𝑇𝑣𝑒) − 1

]2 . (50)

Additionally, upon substituting the equation of state (9) into Eq. (45) and making use of Eqs. (41) and (47), the transport equation 
for the translational-rotational temperature

𝜕𝑇

𝜕𝑡
+ 1

2𝜌𝑐𝑝,𝑡𝑟

(
𝑁𝑠+6 +1

)
+2∕(𝜌𝑎2∕𝑇 ) − 𝑇

𝑁𝑠∑
𝑖=1

𝑖+5∕𝑖 =
−1
𝑐𝑣,𝑡𝑟

[
𝑁𝑠∑
𝑖=1

𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
+
𝑤̇𝑣𝑒

𝜌
+

𝑁𝑠∑
𝑖=1

𝑤̇𝑖

𝜌

(
𝑒𝑖 − 𝑒𝑣𝑒,𝑖

)]
(51)

is obtained. Equations (41)-(47) can be rewritten in conservation form as

𝜕𝜌

𝜕𝑡
+ 𝑑1 = 0, (52)

𝜕𝜌𝑢

𝜕𝑡
+ 𝜌𝑑2 + 𝑢𝑑1 = 0, (53)

𝜕𝜌𝑣

𝜕𝑡
+ 𝜌𝑑3 + 𝑣𝑑1 = 0, (54)

𝜕𝜌𝑤
6

𝜕𝑡
+ 𝜌𝑑4 +𝑤𝑑1 = 0, (55)
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𝜕𝜌𝐸

𝜕𝑡
+𝐻𝑑1 + 𝜌

(
𝑢𝑑2 + 𝑣𝑑3 +𝑤𝑑4

)
+ 𝜌𝑐𝑣,𝑣𝑒𝑑5 + 𝜌

𝑁𝑠∑
𝑖=1

(
ℎ𝑖 − 𝑐𝑝,𝑡𝑟

𝑇
𝑖

)
𝑑𝑖+5 + (𝑐𝑝,𝑡𝑟𝑇 )𝑑𝑁𝑠+6 = 0, (56)

𝜕𝜌𝑒𝑣𝑒

𝜕𝑡
+ 𝑒𝑣𝑒𝑑1 + 𝜌𝑐𝑣,𝑣𝑒𝑑5 + 𝜌

𝑁𝑠∑
𝑖=1

𝑒𝑣𝑒,𝑖𝑑𝑖+5 = 𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
+ 𝑤̇𝑣𝑒, (57)

𝜕𝜌𝑌𝑖

𝜕𝑡
+ 𝜌𝑑𝑖+5 + 𝑌𝑖𝑑1 = 𝑤̇𝑖, 𝑖 = 1, ...,𝑁𝑠, (58)

where the symbols 𝑑𝑘 are auxiliary variables defined as

𝑑1 =
1
𝑎2

(1 +𝑁𝑠+6

2
−2

)
, (59)

𝑑2 =
1

2𝜌𝑎

(
𝑁𝑠+6 −1

)
, (60)

𝑑3 =3, (61)

𝑑4 =4, (62)

𝑑5 =5, (63)

𝑑𝑖+5 = 𝑖+5, 𝑖 = 1, ...,𝑁𝑠, (64)

𝑑𝑁𝑠+6 =2∕𝑎2. (65)

Equations (51)-(58), along with the supplementary variables (59)-(65), represent the LODI relations for high-enthalpy hypersonic 
flows in thermochemical non-equilibrium. The quantities 𝑑𝑘 defined in Eqs. (59)-(65) are largely consistent with analogous expres-

sions presented in Ref. [20]. In addition to the different speed of sound (38) arising in this study compared to that in Ref. [20], the 
element 𝑑5 defined in Eq. (63) emerges here as new due to the presence of thermal non-equilibrium. Specifically, 𝑑5 corresponds 
exactly to the convective term in the vibrational-electronic temperature equation (46). Furthermore, since the vibrational-electronic 
temperature is itself a Riemann invariant, 𝑑5 is equal to the wave-amplitude variation 5.

4. Navier-Stokes characteristic boundary conditions for hypersonic flows

In this section, the LODI relations (52)-(58) are employed to provide a set of NSCBCs. In this discussion, as well as in the 
benchmark test cases presented in Section 5, the diffusion fluxes are incorporated in the description following similar approximations 
and methodologies to those described in Poinsot & Lele [17] and Okong’o & Bellan [20].

The description begins by assuming that the normal derivatives of the shear stresses tangential to the boundary are negligible,

𝜕𝜏𝑥𝑦

𝜕𝑥
=
𝜕𝜏𝑥𝑧

𝜕𝑥
= 0, (66)

where 𝜏𝑥𝑦 = 𝒆̂𝑻𝟏 𝝉𝒆̂𝟐 and 𝜏𝑥𝑧 = 𝒆̂𝑻𝟏 𝝉𝒆̂𝟑 can be defined in compact form as a function of the unit vectors 𝒆̂𝟏, 𝒆̂𝟐, and 𝒆̂𝟑 in the 𝑥, 𝑦, and 
𝑧 directions, respectively. In addition, the normal derivative of the normal component of the mass diffusion flux is also taken to be 
negligible,

𝜕
(
𝜌𝑌𝑖𝑉𝑖,𝑥

)
𝜕𝑥

= 0, 𝑖 = 1, ...,𝑁𝑠. (67)

Lastly, consistent with the prescription of zero normal derivative of the normal heat flux made by Poinsot & Lele [17], in this 
two-temperature description an analogous condition at the boundary can be expressed as

𝜕

𝜕𝑥

(
𝜆𝑟𝑡

𝜕𝑇

𝜕𝑥

)
= 𝜕

𝜕𝑥

(
𝜆𝑣𝑒

𝜕𝑇𝑣𝑒

𝜕𝑥

)
= 0. (68)

Therefore, the relevant NSCBCs for high-enthalpy hypersonic flows can be expressed as

𝜕𝜌𝑢

𝜕𝑡
+ 𝜌𝑑2 + 𝑢𝑑1 =

𝜕𝜏𝑥𝑥

𝜕𝑥
−∇𝑡⋅

(
𝜌𝑢𝒖𝒕

)
, (69)

𝜕𝜌𝑣

𝜕𝑡
+ 𝜌𝑑3 + 𝑣𝑑1 = − 𝜕𝑃

𝜕𝑦
+∇𝑡⋅

(
𝝉𝒚𝒕

)
−∇𝑡⋅

(
𝜌𝑣𝒖𝒕

)
, (70)

𝜕𝜌𝑤

𝜕𝑡
+ 𝜌𝑑4 +𝑤𝑑1 = − 𝜕𝑃

𝜕𝑧
+∇𝑡⋅

(
𝝉𝒛𝒕

)
−∇𝑡⋅

(
𝜌𝑤𝒖𝒕

)
, (71)

𝜕𝜌𝐸

𝜕𝑡
+𝐻𝑑1 + 𝜌

(
𝑢𝑑2 + 𝑣𝑑3 +𝑤𝑑4

)
+ 𝜌𝑐𝑣,𝑣𝑒𝑑5 + 𝜌

𝑁𝑠∑
𝑖=1

(
ℎ𝑖 − 𝑐𝑝,𝑡𝑟

𝑇
𝑖

)
𝑑𝑖+5 + (𝑐𝑝,𝑡𝑟𝑇 )𝑑𝑁𝑠+6

𝜕
(
𝑢𝜏𝑥𝑥

)
𝜕𝑣 𝜕𝑤

𝑁𝑠∑ 𝜕ℎ𝑖

(
𝑁𝑠∑ ) (72)
7

=
𝜕𝑥

+ 𝜏𝑥𝑦
𝜕𝑥

+ 𝜏𝑥𝑧
𝜕𝑥

− 𝜌

𝑖=1
𝑌𝑖𝑉𝑖,𝑥

𝜕𝑥
+∇𝑡⋅ 𝝉𝒕𝒖𝒕 + 𝜆𝑡𝑟∇𝑡𝑇 + 𝜆𝑣𝑒∇𝑡𝑇𝑣𝑒 − 𝜌

𝑖=1
𝑌𝑖𝑽 𝒊,𝒕ℎ𝑖 − 𝜌𝐻𝒖𝒕 ,
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𝜕𝜌𝑒𝑣𝑒

𝜕𝑡
+ 𝑒𝑣𝑒𝑑1 + 𝜌𝑐𝑣,𝑣𝑒𝑑5 + 𝜌

𝑁𝑠∑
𝑖=1

𝑒𝑣𝑒,𝑖𝑑𝑖+5 = 𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖

𝑒∗
𝑣,𝑖

− 𝑒𝑣,𝑖

𝜏𝑖
+ 𝑤̇𝑣𝑒 − 𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖𝑉𝑖,𝑥

𝜕𝑒𝑣𝑒,𝑖

𝜕𝑥

+∇𝑡⋅

(
𝜆𝑣𝑒∇𝑡𝑇𝑣𝑒 − 𝜌

𝑁𝑠∑
𝑖=1

𝑌𝑖𝑽 𝒊,𝒕𝑒𝑣𝑒,𝑖 − 𝜌𝑒𝑣𝑒𝒖𝒕

)
,

(73)

𝜕𝜌𝑌𝑖

𝜕𝑡
+ 𝜌𝑑𝑖+5 + 𝑌𝑖𝑑1 = 𝑤̇𝑖 −∇𝑡⋅

[
𝜌𝑌𝑖

(
𝑽 𝒊,𝒕 + 𝒖𝒕

)]
, 𝑖 = 1, ...,𝑁𝑠, (74)

where ∇𝑡 =
[
𝜕∕𝜕𝑦, 𝜕∕𝜕𝑧

]𝑇
is the transverse nabla operator, 𝒖𝒕 = [𝑣, 𝑤]𝑇 is the transverse velocity vector, 𝜏𝑥𝑥 = 𝒆̂𝑻𝟏 𝝉𝒆̂𝟏 is the normal 

viscous stress, and 𝑽 𝒊,𝒕 = [𝒆̂𝟐, 𝒆̂𝟑]𝑇 𝑽 𝒊 is the transverse diffusion-velocity vector, and 𝝉𝒕 is the transverse viscous stress tensor defined 
as

𝝉𝒕 =

[
𝝉𝑻
𝒚𝒕

𝝉𝑻
𝒛𝒕

]
=
[
𝒆̂𝟐, 𝒆̂𝟑

]𝑇
𝝉
[
𝒆̂𝟐, 𝒆̂𝟑

]
. (75)

The NSCBCs (69)-(74) are employed in simulating the test cases studied below in Section 5. They are only applicable to the definition 
of the diffusion velocity (2), which neglects the effects of thermal diffusion and barodiffusion. Inclusion of these effects would require 
not only a modification of Eq. (2), but also the incorporation of the reciprocal Dufour effect in Eqs. (11) and (18), which would lead 
to extended versions of Eqs. (72)-(73).

The right-hand sides of Eqs. (69)-(74) are comprised of both inviscid and diffusive fluxes, as well as source terms, and can be 
evaluated directly at the boundaries with a suitable discretization. In contrast, further evaluation of left-hand-side terms depends on 
both the local wave speeds and on the type of boundary condition imposed. To clarify those dependencies, summarized procedures 
for imposing these NSCBCs at inflow and outflows are provided below:

(a) For subsonic outflow boundary conditions, the wave-amplitude variations 2 through 𝑁𝑠+5 are computed at the outflow 
boundaries using Eqs. (31)-(36) with an upwind-biased stencil. The wave-amplitude variation 1 is associated with an incoming 
wave for outflow boundaries with 𝑢 > 0. Consequently, 1 must either be (a) set to zero to yield a completely non-reflecting 
boundary, or (b) set to weakly impose a far-field pressure with

1 = 𝜅
(
𝑃 − 𝑃∞

)
, (76)

where 𝜅 is an adjustable coefficient and 𝑃∞ is a reference pressure [17]. Likewise, 𝑁𝑠+6 is computed with Eq. (37). As proposed 
by Poinsot & Lele [17], the reflectivity coefficient for a strictly subsonic outflow is computed as

𝜅 = 𝛼𝑎
(
1 −𝑀𝑎2

𝑚𝑎𝑥

)
∕𝑙, (77)

where 𝛼 = 0.25 is a constant, 𝑀𝑎𝑚𝑎𝑥 is the maximum Mach number along the outflow boundary, 𝑎 is the local speed of sound 
given by Eq. (38), and 𝑙 is a reference length scale. For outflow boundaries with 𝑀𝑎𝑚𝑎𝑥 = 1, the reflectivity coefficient is instead 
computed as

𝜅 = 𝛼
(
𝑎− 𝑢2∕𝑎

)
∕𝑙. (78)

The sensitivity of the numerical solutions to the choice of the reference length scale 𝑙 proves to be relatively small, as discussed 
below in Section 5.2. For outflow boundaries with 𝑢 < 0, 1 is computed with Eq. (31) whereas the outflow pressure is weakly 
imposed with 𝑁𝑠+6 = 𝜅

(
𝑃 − 𝑃∞

)
. In both cases, 𝑑1 through 𝑑𝑁𝑠+6 are computed from the wave-amplitude variations using 

Eqs. (59)-(65), thereby enabling time-advancement of the conserved variables at the outflow boundaries using Eqs. (69)-(74).

(b) For supersonic outflow boundary conditions, all wave-amplitude variations are computed using Eqs. (31)-(37) with an upwind-

biased stencil. As in the case of subsonic outflows, 𝑑1 through 𝑑𝑁𝑠+6 are calculated with Eqs. (59)-(65), and the conserved 
variables at the boundaries are subsequently advanced using Eqs. (69)-(74).

(c) For subsonic inflow boundary conditions, the viscous fluxes are neglected and the time-varying velocity components, 
translational-rotational temperature, vibrational-electronic temperature, and chemical composition are imposed explicitly. For 
inflow boundaries with 𝑢 > 0, 1 corresponds to an outgoing wave and therefore is computed using Eq. (31) with a downwind 
scheme. 𝑁𝑠+6 is evaluated with Eq. (37) for subsonic inflows with 𝑢 < 0. Whichever wave-amplitude variation among 1 and 
𝑁𝑠+6 is not computed internally using downwind scheme is evaluated using Eq. (42) while making use of the discrete temporal 
derivative for the imposed 𝑥 component of the velocity. Additionally, 2 is determined from Eq. (51), whereas 𝑑1 is evaluated 
in terms of the aforementioned wave-amplitude variations using Eq. (59), with the density at the inflow being updated from 
Eq. (52). Lastly, the pressure at the inflow is determined via the equation of state (9).

(d) For supersonic inflow boundary conditions, the time-dependent velocity components, translational-rotational temperature, 
vibrational-electronic temperature, pressure, and chemical composition can be imposed explicitly with Dirichlet boundary con-
8

ditions.
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5. Canonical test cases

In order to evaluate the performance of the NSCBCs derived in the previous section, three benchmark cases are considered 
in which the boundary conditions are tested in high-enthalpy flows in thermochemical non-equilibrium representative of high-

temperature post-shock conditions arising from incoming hypersonic freestream velocities. The first test case is a high-temperature 
vortex advected in supersonic flow in thermochemical non-equilibrium. The second test case consists of an interaction of a planar 
shock with a two-dimensional entropy wave in a high-temperature gas subject to thermochemical non-equilibrium effects. Lastly, 
the third test case is a three-dimensional shock/turbulence interaction problem subject to thermochemical non-equilibrium in the 
post-shock subsonic gas. The freestream operating conditions considered in all of these test cases correspond to continuum flows.

The NSCBCs are implemented in the Hypersonics Task-based Research (HTR) solver augmented with thermal non-equilibrium 
effects [40,41,13,42,43]. Whereas the diffusion fluxes are treated using a second-order central scheme, the Euler fluxes are discretized 
using a hybrid scheme that consists of a sixth-order skew-symmetric formulation hybridized with a sixth-order TENO scheme for 
shock-capturing [40,44,45]. In particular, the skew-symmetric scheme is deployed in the smooth regions of the flow and the TENO 
reconstruction is utilized for stencils that cross shock waves, which are detected using a modified Ducros sensor coupled with a 
TENO sensor based on the TENO-A stencil selection process. Further details on an assessment of the TENO flux reconstruction and 
hybridization procedure with application to high-speed two-temperature flows are provided in Refs. [42,43].

5.1. Non-equilibrium supersonic vortex advection

In this test case, a planar vortex is superposed with a uniform supersonic flow. This case resembles the vortex advection test 
considered in Okong’o & Bellan [20], but the configuration here is augmented with thermal non-equilibrium. In this case, the 
vortex does not simply advect, as there is also an evolution of the aerothermochemical field in the reference frame moving with the 
vortex because of acoustic expansion and finite rates of molecular transport and thermochemical relaxation, as shown in the results 
presented below.

The flow variables are normalized as follows. Both 𝑇 and 𝑇𝑣𝑒 are normalized with the reference temperature 𝑇𝑟𝑒𝑓 = 7000 K, 
whereas 𝑃 is normalized with the reference pressure 𝑃𝑟𝑒𝑓 = 1.5 kPa. The density is normalized with 𝜌𝑟𝑒𝑓 = 𝑃𝑟𝑒𝑓𝑟𝑒𝑓∕(R0 𝑇𝑟𝑒𝑓 )
where 𝑟𝑒𝑓 is the molecular weight of the undissociated air. The velocity components are normalized with 𝑢𝑟𝑒𝑓 =

√
𝑃𝑟𝑒𝑓∕𝜌𝑟𝑒𝑓 . The 

reference length scale for the spatial coordinates is the vortex diameter 2𝑅 = 10 cm. The time 𝑡 is normalized with 𝑡𝑟𝑒𝑓 = 2𝑅∕𝑢𝑟𝑒𝑓 .

Based on the reference values given above, the dimensionless streamwise velocity is prescribed initially as

𝑢 =𝑈∞ − 2𝑦 exp
[
−2

(
𝑥2 + 𝑦2

)]
, (79)

where 𝑈∞ = 5.0 is the dimensionless free-stream velocity, which yields a free-stream Mach number of 4.2 and a Reynolds number 
𝜌𝑟𝑒𝑓𝑈∞𝑢𝑟𝑒𝑓𝐿𝑟𝑒𝑓∕𝜇𝑟𝑒𝑓 = 3500, where 𝜇𝑟𝑒𝑓 is the reference dynamic viscosity based on the initial temperature and composition. The 
initial dimensionless velocity in the 𝑦 direction is given by

𝑣 = 2𝑥 exp
[
−2

(
𝑥2 + 𝑦2

)]
. (80)

The initial dimensionless temperatures are uniform and equal 𝑇 = 1 and 𝑇𝑣𝑒 = 0.05, whereas the initial dimensionless pressure is

𝑃 = 1 +
√(

𝑢−𝑈∞
)2 + 𝑣2, (81)

whose maximum value is 𝑃 = 1.6. The initial composition corresponds to undissociated air, namely 𝑋𝑁2
= 0.79 and 𝑋𝑂2

= 0.21.

Two distinct computational domains, small and large, are considered in this study to verify that the numerical solution is insen-

sitive to the position of the boundaries. The small computational domain extends a length of 18𝑅 and 12𝑅 in the 𝑥 and 𝑦 directions, 
respectively, such that 𝑥 ∈ [−6, 3] is discretized with 1440 grid points and 𝑦 ∈ [−3, 3] is discretized with 960 points. This resolu-

tion was chosen to provide a grid-converged numerical solution. Uniform spacing of grid points is utilized in each direction. The 
large computational domain is characterized by equal side lengths of 24𝑅, such that {𝑥, 𝑦} ∈ [−6, 6] with a total of 1920 points in 
each direction to maintain the same grid spacing as the small domain. NSCBCs are applied at the left and right boundaries of the 
computational domain, whereas periodicity is imposed at the top and bottom boundaries. Specifically, the left boundary serves as a 
supersonic inflow whereas the right behaves as a supersonic outflow.

The performance of the proposed NSCBCs under thermochemical non-equilibrium effects is shown in Figs. 1–6. Specifically, 
Figs. 1–3 demonstrate a correct preservation of the contours of pressure, density, and vibrational-electronic temperature as they 
cross the right boundary. In addition to the advection of the vortex itself, mean thermochemical relaxation proceeds from the inflow 
along the streamwise direction, which leads to the straight, transversal isocontours observed in the figures. Domain-size independence 
is proven by the consistency of all isocontours in the small and large domains.

Figs. 4–6 characterize the thermochemical state along the streamwise centerline of the computational domain. The results show 
the independence of the solution with respect to the streamwise length of the computational domain. As observed in Fig. 5, an 
appreciable slip between the two temperatures exists in this particular problem. Additionally, Fig. 6 indicates changes in chemical 
composition due to the evolution of the pressure and temperature fields in the vicinity of the vortex. The latter is able to advect 
successfully through the outflow boundary without any significant reflection of pressure disturbances from the outflow boundary, as 
9

shown in Figs. 1 and 4. Following the passage of the vortex, the vibrational-electronic temperature exhibits the expected monotonic 
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Fig. 1. Pressure contours at (a) 𝑡 = 0, (b) 0.30, (c) 0.60, (d) 0.90, (e) 1.20, and (f) 1.50, (g) 1.80 and (h) 2.10 for non-equilibrium supersonic vortex advection. The 
twenty contour levels are equally spaced between 𝑃 = 0.65 and 𝑃 = 1.65. Solid and dashed lines correspond to small and large computational domains, respectively.

relaxation behavior towards the translational-rotational temperature, accelerating the dissociation reactions for the molecular species. 
This coupled thermochemical relaxation remains unaffected by the presence of the characteristic outflow boundary, as shown in 
Figs. 5 and 6.

In order to further characterize the performance of the characteristic boundary conditions, the error

𝜖(𝜓) =

√
∫Ω(𝜓 − 𝜓̃)2 𝑑𝑥𝑑𝑦

∫Ω 𝜓̃
2 𝑑𝑥𝑑𝑦

(82)

is defined, where 𝜓 and 𝜓̃ represent any flow variable computed on the short and long domains, respectively. The integrals in both 
numerator and denominator of Eq. (82) are calculated in the short domain, which is denoted by Ω. Using a trapezoidal rule to 
approximate the error 𝜖(𝜓), the corresponding results are presented in Fig. 7 for five flow variables. In all cases, 𝜖 remains smaller 
than 10−5, which demonstrates that the application of NSCBCs supports domain-independent solutions at supersonic convective 
velocities at thermochemical non-equilibrium conditions.

5.2. Non-equilibrium two-dimensional Shu-Osher shock tube

In this test case, a shock wave interacts with a two-dimensional entropy wave in a manner that resembles a two-dimensional 
analogue to the classic Shu-Osher problem [46], where additional consideration is given here to thermochemical non-equilibrium 
effects. The normalization approach employed for this test case is the same as that presented in Section 5.1, with 𝑃𝑅𝑒𝑓 = 500 Pa, 
𝑇𝑅𝑒𝑓 = 1000 K, and 𝐿𝑅𝑒𝑓 = 1.0 m. A shock wave located at 𝑥 = 0.5 separates a high-pressure, high-temperature post-shock air on 
the left at Mach 1.3 in the laboratory reference frame, from its lower-pressure, lower-temperature pre-shock counterpart on the right. 
Isobaric variations in the initial density field are imposed in the pre-shock air that subsequently displace and corrugate the shock 
front.

The initial conditions for the problem in terms of dimensionless variables are

𝑇𝑣𝑒 = 𝑇 =
{

5, 𝑥 < 0.5
1 + 0.25 [cos(16𝜋𝑥) + cos(16𝜋𝑦)] , 𝑥 ≥ 0.5

}
, (83)

𝑃 =
{

15, 𝑥 < 0.5
1, 𝑥 ≥ 0.5

}
, (84){

[4,0]𝑇 , 𝑥 < 0.5
}

10

𝐮 = [0.30,0]𝑇 , 𝑥 ≥ 0.5 . (85)
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Fig. 2. Density contours at (a) 𝑡 = 0, (b) 0.30, (c) 0.60, (d) 0.90, (e) 1.20, and (f) 1.50, (g) 1.80 and (h) 2.10 for non-equilibrium supersonic vortex advection. The 
twenty contour levels are equally spaced between 𝜌 = 0.85 and 𝜌 = 1.65. Solid and dashed lines correspond to small and large computational domains, respectively.

The composition field is initialized with chemical-equilibrium molar fractions in the post-shock air based on the local temperature 
and pressure. In contrast, in the pre-shock air, the composition field is initialized as thermochemically frozen, corresponding to 
𝑋𝑁2

= 0.79 and 𝑋𝑂2
= 0.21.

Consistent with the analysis in Section 5.1, two distinct computational domains, short and long, are considered. The short domain 
is a square with side length of 𝐿𝑥 = 𝐿𝑦 = 1, such that {𝑥, 𝑦} ∈ [0, 1], and is discretized using 1280 uniformly-spaced grid points 
in each direction. This resolution was chosen to provide a grid-converged numerical solution. The long domain is a rectangle with 
𝐿𝑥 = 2 and 𝐿𝑦 = 1, such that 𝑦 ∈ [0, 1] and 𝑥 ∈ [0, 2]. The number of grid points is distributed uniformly and corresponds to 2560 
and 1280 in the 𝑥 and 𝑦 directions, respectively, in such a way that the grid spacing in the x direction is the same for both domains. 
Characteristic boundary conditions are imposed in the streamwise direction, with the left boundary being a supersonic inflow and the 
right boundary being a subsonic outflow. The top and bottom boundary conditions enforce periodicity in the transversal direction.

The performance of the NSCBCs is demonstrated in Figs. 8–13. In particular, Fig. 8 provides the development of the density 
field throughout the interaction, which introduces not only vortical structures along the corrugated shock but also acoustic waves. 
The flow features are observed to exit the domain through the right boundary without causing any numerical artifact related to 
abnormal reflections. This satisfactory performance is achieved in the presence of the temperature slip introduced immediately 
behind the shock wave corresponding to the preferential excitation of translational-rotational energy, as observed by comparing 
the contours in Figs. 9 and 10, and more quantitatively by the one-dimensional profiles in Fig. 11. The thermal non-equilibrium is 
most apparent in Fig. 11(a) because of the continuity of the vibrational temperature across the shock. The post-shock gas is therefore 
characterized by thermal relaxation of the vibrational-electronic mode, along with chemical dissociation due to the high temperature. 
Furthermore, the comparisons made between the numerical solutions corresponding to the short and long computational domains 
in Fig. 11 for the temperature, Fig. 12 for the pressure, and Fig. 13 for the molar fractions, also indicate domain-size insensitivity 
despite the presence of subsonic convective velocities at the outflow and significant variations in thermodynamic quantities across 
the propagating discontinuity.

The error 𝜖(𝜓) defined in Eq. (82) is shown in Fig. 14 for simulations of this test case using two different values of the length scale 
𝑙 = 0.1 and 𝑙 = 1.0 to calculate the outflow reflectivity coefficient (78). Comparison of the errors confirms that the performance of the 
proposed NSCBCs is largely insensitive to the choice of the length scale in computing the reflectivity coefficient, even in the presence 
of thermochemical non-equilibrium. In particular, the error remains small and of order 1% even when the outflow boundary is fully 
or partially subsonic, and therefore partially reflective due to the weak imposition of the far-field pressure. After the discontinuity 
exits the right boundary and the latter becomes a fully supersonic outflow, the error further decreases to levels comparable to those 
11

obtained in the test case for supersonic vortex advection.
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Fig. 3. Vibrational-electronic temperature contours at (a) 𝑡 = 0, (b) 0.30, (c) 0.60, (d) 0.90, (e) 1.20, and (f) 1.50, (g) 1.80 and (h) 2.10 for non-equilibrium supersonic 
vortex advection. The twenty contour levels are equally spaced between 𝑇𝑣𝑒 = 0.05 and 𝑇𝑣𝑒 = 0.65. Solid and dashed lines correspond to small and large computational 
domains, respectively.

Fig. 4. Pressure profile along 𝒚 = 0 at (a) 𝒕 = 0.45, (b) 0.90, (c) 1.35, and (d) 3.00 for non-equilibrium supersonic vortex advection. Solid and dashed lines correspond 
to small and large computational domains, respectively, with 𝑥 = 0 being the initial position of the vortex center.

5.3. Interaction of a shock wave with homogeneous isotropic turbulence including thermochemical non-equilibrium effects

In this closing test case, direct numerical simulations (DNS) of shock/turbulence interactions in thermochemical non-equilibrium 
are performed using the present computational framework, including the NSCBCs proposed in Section 4. Specifically, the non-

reflective character of the proposed NSCBCs is evaluated in perhaps one of the most challenging cases that can be encountered, 
in which the outflow is subsonic, far from thermal equilibrium, and must support the treatment of acoustic waves induced by the 
shock/turbulence interaction. Since most previous simulations of this configuration have been performed at thermochemically frozen 
conditions (i.e., using the approximation of calorically perfect gases), it is worth providing here a short reference to early work. In 
particular, Lee et al. [7] performed a foundational simulation of shock/turbulence interactions quantifying the amplification of 
12

turbulent kinetic energy and transverse vorticity components across the shock in a calorically perfect gas. Subsequently, Refs. [47]
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Fig. 5. Translational-rotational and vibrational-electronic temperature profiles along 𝑦 = 0 at (a) 𝒕 = 0.45, (b) 0.90, (c) 1.35, and (d) 3.00 for non-equilibrium 
supersonic vortex advection. Solid and dashed lines correspond to small and large computational domains, respectively, with 𝑥 = 0 being the initial position of the 
vortex center.

Fig. 6. Molar fraction profiles along 𝑦 = 3 at (a) 𝒕 = 0.45, (b) 0.90, (c) 1.35, and (d) 3.00 for non-equilibrium supersonic vortex advection. Solid and dashed lines 
correspond to small and large computational domains, respectively, with 𝑥 = 0 being the initial position of the vortex center.

Fig. 7. Time history of the error (82) for non-equilibrium supersonic vortex advection.

and [48] characterized the impact of the Mach number and upstream entropy fluctuations on shock/turbulence interactions. An 
updated characterization of post-shock anisotropy in vorticity variances and Reynolds stresses was provided in Ref. [49], which also 
identified parameter ranges for which the incoming turbulence can annihilate the shock front. Equilibrium thermochemical effects 
13

were first introduced by Huete et al. [50] using linear interaction analysis (LIA). Enabled by the NSCBCs introduced in the present 
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Fig. 8. Density contours at (a) 𝒕 = 0.05, (b) 0.08, (c) 0.11, (d) 0.14, (e) 0.17, and (f) 1.00 for the two-dimensional Shu-Osher shock tube in the short computational 
domain.

manuscript, the DNS results reported here build on the linear analysis of Ref. [50] by characterizing shock/turbulence interactions 
with finite-rate chemistry, vibrational relaxation, and nonlinear dynamics. The analysis is not exhaustive, but nonetheless serves to 
exemplify the utilization of the proposed NSCBCs in a relevant case for engineering applications [51].

5.3.1. Computational setup

The overall computational setup for this final test case is comprised of two separate computational domains: the first domain, 
depicted in Fig. 15, contains the shock-turbulence interaction itself; the second domain (not shown here) is utilized for concurrently 
generating the homogeneous-isotropic-turbulence to be injected as inflow to the primary computational domain. The auxiliary ho-

mogeneous isotropic turbulence calculation is initialized with a divergence-free velocity field consistent with the exponential power 
spectrum of Passot & Poquet [52]

𝐸(𝑘) = 16
√

2
𝜋

(
𝑢2
𝑟𝑚𝑠

𝜅0

)(
𝜅4

𝜅40

)
exp

(
−2𝜅2

𝜅20

)
, (86)

where 𝜅 is the dimensionless wavenumber, 𝑢𝑟𝑚𝑠 is the initial root mean square velocity, and 𝜅0 = 2 is the wavenumber with maximum 
energy density at initialization. For all cases presented below, the homogeneous isotropic turbulence is then linearly forced to 
preserve kinetic energy. The forcing follows the control-based method proposed in Ref. [53] by inserting a source term on the 
right-hand side of the momentum equation given by

 𝜌𝒖 = 𝜌𝔸 (𝒖− ⟨𝒖⟩) , (87)

where ⟨⋅⟩ denotes volume averaging and the coefficient 𝔸 is computed to maintain constant kinetic energy as

𝔸 = −
Π+Φ+ (−∞)∕

2
. (88)

In this formulation, Π is the volume-averaged pressure dilatation, Φ is the volume-averaged dissipation,  = (⟨𝒖 ⋅ 𝒖⟩ − ⟨𝒖⟩ ⋅ ⟨𝒖⟩)∕2 is 
the turbulent kinetic energy, and ∞ is the target-state kinetic energy, and  = 4𝜋∕ 

(
𝜅0𝑢𝑟𝑚𝑠

)
is the chosen time-scale parameter for 

the physical-space forcing. The power input corresponding to the momentum forcing is then added to the right-hand side of the total 
energy equation as  𝜌𝐸 =  𝜌𝒖 ⋅ 𝒖 − ⟨ 𝜌𝒖 ⋅ 𝒖⟩ in order to preserve the total energy of the system. Sequential slices of the concurrent 
14

auxiliary simulation of homogeneous isotropic turbulence in a triply-periodic cubic domain are then imposed along with a uniform 
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Fig. 9. Translational-rotational temperature contours at (a) 𝒕 = 0.05, (b) 0.08, (c) 0.11, (d) 0.14, (e) 0.17, and (f) 1.00 for the two-dimensional Shu-Osher shock tube 
in the short computational domain.

supersonic stream in the +𝑥 direction at the inflow 𝑥 = 0 of the computational domain for the shock/turbulence interaction problem. 
The Taylor-Reynolds number and turbulent Mach number of the inflow turbulence are nominally 40 and 0.2, respectively. The mean 
values of the pressure and temperature in the inflow supersonic stream are 8.4 kPa and 700 K, respectively, thereby resulting in a 
pre-shock Mach number of 3 based on the mean values of the inflow velocity and speed of sound. The inflow chemical composition 
is that of thermochemically frozen air, namely 𝑋𝑁2

= 0.79 and 𝑋𝑂2
= 0.21. The inflow mean values of the flow variables are used 

for normalizing the results presented below.

The width of the computational domain is approximately 4𝜋 times the Taylor length, which is used for normalizing the spatial 
coordinates. Periodicity is imposed in the transverse directions 𝑦 and 𝑧. An inviscid planar shock is initialized and let to freely evolve 
in time while becoming corrugated by the incident turbulence. The calculations are run for approximately 6 integral times before 
collecting statistics in order to flush away the transient. Statistics are collected over a period of 6 additional integral times while 
sampling the results at each time step. Favre-based planar averaging is performed across the transverse homogeneous directions.

As in the preceding test cases, the simulations are exercised in two computational domains of unequal streamwise length in 
order to analyze sensitivities to the placement of the outflow boundary. In particular, the short domain has a size (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) =
(12𝜋, 4𝜋, 4𝜋) with a corresponding number of grid points of 1536 × 240 × 240. This resolution was chosen to satisfy the DNS grid-

resolution requirements described in Ref. [49]. The long domain enables further post-shock gas relaxation with an increased extent 
of (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) = (24𝜋, 4𝜋, 4𝜋) with 3072 × 240 × 240 grid points, in such a way that the grid resolution is the same for both cases.

Furthermore, two types of outflow boundary conditions traditionally used in this configuration are also employed for comparisons. 
The first one (denoted as “NSCBC-only”) is a NSCBC subsonic outflow in which the pressure is weakly imposed, as explained in 
Section 4. This approach suppresses drifting of the shock wave and facilitates collection of flow statistics. The second type (denoted 
as “sponge+NSCBC”) is a classic, slab-shaped sponge whose width occupies the last 2𝜋 of the domain, corresponding to a total of 256 
points in the 𝑥 direction. A subsonic outflow NSCBC is applied on the leeward side of the sponge. Within the sponge region itself, a 
forcing vector  𝑠 given by

 𝑠 =
(𝑥− 𝑥𝐵)2

4𝜋2
(𝑪𝑻 −𝑪) (89)

is added to the right-hand side of the conservation equations, consistent with the approach of Ref. [54]. In this formulation, 𝑥𝐵 is 
the streamwise location of the windward side of the sponge, 𝑪 is the vector of conserved variables defined in Eq. (26), and 𝑪𝑻
15

is its corresponding target-state vector equivalent to the post-shock steady mean value. The latter must be informed by a coarser 
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Fig. 10. Contours of thermal slip between the vibrational-electronic and translational-rotational temperatures at (a) 𝒕 = 0.08, (b) 0.10, (c) 0.11, (d) 0.12, (e) 0.13, and 
(f) 1.00 for the two-dimensional Shu-Osher shock tube in the short computational domain.

Fig. 11. Translational-rotational and vibrational-electronic temperature profiles along 𝒚 = 0.5 at (a) 𝒕 = 0.10, (b) 0.12, (c) 0.15, and (d) 0.70 for the two-dimensional 
Shu-Osher shock tube. Solid and dashed lines correspond to short and long computational domains, respectively.

simulation subjected to a NSCBC outflow boundary condition only (i.e., NSCBC-only), because the exit mean thermochemical state 
is unknown beforehand.

5.3.2. Results

Instantaneous cross-sectional contours of the thermal field computed with NSCBC-only conditions in the short domain are shown 
in Fig. 15. Specifically, Fig. 15(a,b) illustrates corrugations of the shock induced by the incident turbulent flow along with the 
16

amplification of fluctuations of both translational-rotational and vibrational-electronic temperatures across the shock. The resulting 
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Fig. 12. Pressure profile along 𝒚 = 0.5 at (a) 𝒕 = 0.10, (b) 0.12, (c) 0.15, and (d) 0.70 for the two-dimensional Shu-Osher shock tube. Solid and dashed lines correspond 
to short and long computational domains, respectively.

Fig. 13. Molar fraction profiles along 𝒚 = 0.5 at (a) 𝒕 = 0.10, (b) 0.12, (c) 0.15, and (d) 0.70 for the two-dimensional Shu-Osher shock tube. Solid and dashed lines 
correspond to short and long computational domains, respectively.

Fig. 14. Time history of the error (82) for the two-dimensional Shu-Osher shock tube. Solid lines designate the 𝑙 = 1.0 case whereas the dashed lines with symbols 
17

denote the 𝑙 = 0.1 case (largely indistinguishable from the solid lines).
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Fig. 15. Dimensionless instantaneous cross-sectional contours of (a) translational-rotational temperature, (b) vibrational-electronic temperature, and (c) temperature 
slip in shock-turbulence interaction with thermochemical non-equilibrium simulated with NSCBC-only conditions in the short computational domain.

maximum values of the temperature slip engendered by thermal non-equilibrium are found immediately downstream of the shock, 
as observed in Fig. 15(c). No numerical artifacts are detected in Fig. 15 near the outflow boundary.

Favre-based planar statistics are presented in Figs. 16–18 for the short and long domains in conjunction with NSCBC-only and 
sponge+NSCBC outflow conditions, with the origin of the 𝑥 axis being shifted to the mean shock location 𝑥 = 𝑥𝑆 . As depicted in 
Fig. 16(a,b), significant vibrational-electronic non-equilibrium is induced by the presence of the normal shock, with vibrational 
relaxation proceeding through the outflow boundary of both short and long domains. This is accompanied by gradual variations in 
mean post-shock variables, including a streamwise deceleration in Fig. 17(a) along with slow increments in density and pressure in 
Fig. 18(a,b).

The location of the outflow boundary of the short domain is easily identifiable in the sponge+NSCBC case in Fig. 16(b,c), 
Fig. 17(b,c), and Fig. 18(c,d) because of the artificial suppression of all fluctuations near the boundary, as the target state 𝐶𝑇 for 
the sponge is steady and uniform by definition. Equivalently, the volumetric forcing within the sponge region results in all variances 
tending to zero there. As a result, the solution computed with sponge+NSCBC outflow in the short domain departs significantly from 
its counterpart for the long domain near the interface between the two. It should however be stressed that the solution computed 
with sponge+NSCBC outflow performs satisfactorily throughout the rest of the domain and therefore remains a viable option.

In contrast, the solution computed with NSCBC-only conditions in the short domain follows much closely its counterpart in the 
long domain. Noticeable exceptions are the small overshoots in the variances of the translational-rotational temperature, streamwise 
velocity, density, and pressure observed near the outflow of the short domain in Figs. 16(c), 17(b), and 18(c,d). These discrepancies 
are engendered in the short domain by the partial reflectivity arising from weakly imposing the far-field pressure in order to maintain 
the shock stationary in the domain [47,49]. The impact of this partial reflectivity is most apparent in the density and pressure rms 
in the vicinity of the outflow boundary. The sponge+NSCBC simulation artificially suppresses these oscillations near the outflow 
by construction of the sponge. This artificial built-in suppression of fluctuations is absent in the NSCBC-only simulation. For these 
reasons, a domain-size independence study is always required for simulations using either one of the techniques (NSCBCs and 
sponges) or their combination.

In summary, these results suggest that the proposed NSCBC formulation performs adequately in preserving the main physical 
18

aspects of the problem and can be used by itself or in combination with a sponge, but the latter approach requires a coarser NSCBC-



Journal of Computational Physics 509 (2024) 113040C. Williams, M. Di Renzo, J. Urzay et al.

Fig. 16. Favre averages and root mean squares of (a,c) translational-rotational temperature and (b,d) vibrational-electronic temperature for shock-turbulence interac-

tion with thermochemical non-equilibrium. Solid lines and lines with symbols indicate solutions computed in the short and long domains, respectively.

only simulation to provide an estimate for the sponge target state. Utilization of NSCBC-only conditions renders less sensitivity to the 
computational domain size and yields a maximum error between solutions computed in short and long domains of approximately 
1% in the most relevant portion of the post-shock region.

6. Conclusions

In this study, NSCBCs for high-enthalpy hypersonic flows in thermochemical non-equilibrium have been proposed. The basis for 
the formulation consisted of relevant LODI relations derived for two-temperature conservation equations incorporating vibrational 
and chemical relaxation. The proposed NSCBCs were applied to three canonical test cases in thermochemical non-equilibrium, 
including a supersonic vortex advection, a two-dimensional Shu-Osher shock tube, and a shock/turbulence interaction problem. In 
all test cases, the proposed NSCBCs performed effectively in treating acoustic waves and flow structures crossing the boundaries 
without artificial reflections, while yielding solutions that were largely insensitive to the size of the computational domain. In 
the shock/turbulence interaction test case, utilization of the proposed NSCBCs without sponges enabled accurate enforcement of 
the outflow static pressure, thereby maintaining the planar shock stationary in the domain without introducing any significant 
numerical artifacts in the turbulence statistics near the shock. Naturally, the weak imposition of the outflow pressure necessarily 
renders the outflow boundary as partially reflective, although the ensuing numerical oscillations in density and pressure rms are 
largely confined to the immediate vicinity of the boundary in short domains, yielding a maximum error of approximately 1% in the 
most relevant portion of the shock/turbulence interaction. Using the proposed NSCBCs in conjunction with a sponge also rendered 
satisfactory results, rectifying in part the numerical oscillations present near the outflow boundary, though the resulting cost of the 
simulations using a sponge was higher since a suitable prediction of the sponge target thermochemical state required first an NSCBC-
19

only simulation. The locally one-dimensional formulation of NSCBCs provided here is sufficient for simulating these canonical test 
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Fig. 17. (a) Favre-mean streamwise velocity along with Favre root mean squares (rms) of (b) streamwise and (c) spanwise velocity for shock-turbulence interaction 
with thermochemical non-equilibrium. Solid lines and lines with symbols indicate solutions computed in the short and long domains, respectively. The subindex 𝑢
refers to the square of the fluctuation rms evaluated at the inflow plane.

cases. However, future worthwhile extensions of this work for more complex hypersonic flows in thermochemical non-equilibrium 
may involve incorporating three-dimensional effects in the formulation of the NSCBCs.
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Fig. 18. Favre averages and root mean squares (rms) of (a,c) density and (b,d) pressure for shock-turbulence interaction with thermochemical non-equilibrium. Solid 
lines and lines with symbols indicate solutions computed in the short and long domains, respectively. The subindex 𝑢 refers to the square of the fluctuation rms 
evaluated at the inflow plane.
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