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PHYSICS OF FLUIDS 28, 035114 (2016)

Constant-energetics physical-space forcing methods
for improved convergence to homogeneous-isotropic
turbulence with application to particle-laden flows

Maxime Bassenne, Javier Urzay,a) George I. Park, and Parviz Moin
Center for Turbulence Research, Stanford University, Stanford, California 94305-3024, USA

(Received 5 October 2015; accepted 9 March 2016; published online 30 March 2016)

This study investigates control-based forcing methods for incompressible
homogeneous-isotropic turbulence forced linearly in physical space which result
in constant turbulent kinetic energy, constant turbulent dissipation (also constant
enstrophy), or a combination of the two based on a least-squares error minimization.
The methods consist of proportional controllers embedded in the forcing coefficients.
During the transient, the controllers adjust the forcing coefficients such that the
controlled quantity achieves very early a minimal relative error with respect to its
target stationary value. Comparisons of these forcing methods are made with the
non-controlled approaches of Rosales and Meneveau [“Linear forcing in numerical
simulations of isotropic turbulence: Physical space implementations and convergence
properties,” Phys. Fluids 17, 095106 (2005)] and Carroll and Blanquart [“A proposed
modification to Lundgren’s physical space velocity forcing method for isotropic
turbulence,” Phys. Fluids 25, 105114 (2013)], using direct numerical simulations
(DNS) and large-eddy simulations (LES). The results indicate that the proposed
constant-energetics forcing methods shorten the transient period from a user-defined
artificial flow field to Navier-Stokes turbulence while maintaining steadier statis-
tics. Additionally, the proposed method of constant kinetic-energy forcing behaves
more robustly in coarse LES when initial conditions are employed that favor the
occurrence of subgrid-scale backscatter, whereas the other approaches fail to provide
physical turbulent flow fields. For illustration, the proposed forcing methods are
applied to dilute particle-laden homogeneous-isotropic turbulent flows; the results
serve to highlight the influences of the forcing strategies on the disperse-phase
statistics. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944629]

I. INTRODUCTION

Numerical simulation of homogeneous-isotropic turbulence in statistically stationary condi-
tions requires forcing the Navier-Stokes equations in order to avoid the necessary decay caused by
the dissipation of energy. In incompressible flows, one way of forcing consists of adding a linear
term to the momentum equation,1

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p
∂xi
+ ν

∂2ui

∂x j∂x j
+ Aui, (1)

where ui are velocity components, p is the hydrodynamic pressure, ν is the kinematic viscosity, ρ
is the density, and xi denote spatial coordinates in a triply periodic domain. The forcing coefficient,
A, is an unclosed quantity whose only modeling requirement is to enable and sustain statistically
stationary homogeneous-isotropic turbulence. Equation (1) is to be solved along with the continuity
equation
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∂ui

∂xi
= 0. (2)

Initial conditions used for integrating (1) and (2) typically involve a synthetic, solenoidal-isotropic
velocity field with a prescribed energy spectrum. Such a field can be generated, for instance, by
employing the kinetic-energy model spectrum2

E0(κ) = 32k0

3κ0


2
π

(
κ

κ0

)4

exp

−2

(
κ

κ0

)2
, (3)

and by subsequently calculating the corresponding initial velocity components ui from their Fourier
transforms subject to random phases and a divergence-free condition. In this formulation, κ is
the wavenumber, and κ0 is the corresponding value at which the energy maximum dE0/dκ = 0 is
initially prescribed. In addition, k0 =

 ∞
0 E0(κ)dκ is the initial turbulent kinetic energy. It should be

emphasized, however, that the long-time solution of the problem (1) and (2) is independent of the
parameters κ0 and k0.

As pointed out by Lundgren,1 linear forcing has beneficial characteristics. For instance, linear
forcing is congruent with the “2/3” Kolmogorov’s law for the radial dependence of the second-order
longitudinal structure function in the inertial subrange. However, linear forcing corresponds to in-
jecting energy in all wavenumbers. This is in contrast to forcing approaches in spectral space, in
which energy injection is limited to wavenumber bands.3 Although band-limited forcing generally
leads to different integral lengths, the differences between turbulent flows forced in spectral and
physical spaces are small, partly because the energy injected by the physical-space forcing method
at large wavenumbers is negligible compared with that injected at small wavenumbers (e.g., see
Fig. 12 in Ref. 4). In practice, linear forcing in physical space, as in Eq. (1), is an attractive
low-cost method for numerical codes that are not formulated spectrally. The challenge, however,
lies in providing a suitable definition of the forcing coefficient A that enables fast convergence to
statistically stationary homogeneous-isotropic turbulence.

Integration of Eqs. (1) and (2), subject to triply periodic boundary conditions and to the
initial spectrum (3), provides a homogeneous-isotropic turbulent flow whose statistics should be
steady after a transient period, during which the flow relaxes from the initial field to Navier-Stokes
turbulence. After the transient, the flow is expected to attain long-time, steady mean values of the
spatially averaged turbulent kinetic energy and turbulent dissipation that are denoted here by k∞ and
ϵ∞, respectively. Besides the form of the forcing coefficient A, the dimensional input parameters
to be specified are ρ, ν, and the computational domain side length L. That the solution depends
on L can be understood from the linear forcing term in Eq. (1), which injects energy in amounts
proportional to the energy content at each wavenumber, including that of the lowest non-zero
wavenumber κmin = 2π/L. The resulting integral length, ℓ∞ = u3

ℓ,∞/ϵ∞, with uℓ,∞ = (2k∞/3)1/2, the
turnover velocity of the large-scales, oscillates with amplitude 20%-30% around the value 0.19L
independent of all other input parameters (e.g., see Fig. 9 in Ref. 4).

The conservation equation for the turbulent kinetic energy, k(t) = ⟨u′iu′i⟩/2, is

dk
dt
= −ϵ + 2Ak, (4)

where ϵ(t) = ⟨ν(∂u′i/∂x j)(∂u′i/∂x j)⟩ is the turbulent dissipation. In this formulation, the bracketed
operator “⟨ f ⟩” represents spatial averaging of f over the triply periodic domain, while the velocity
perturbations u′i are just taken to be the velocities ui since the spatially averaged velocity ⟨ui⟩
vanishes in this flow. As indicated by Eq. (4), the constant forcing coefficient

A = ϵ∞/(2k∞) (5)

is, in principle, required in order to sustain a turbulent flow with statistically stationary values
of turbulent kinetic energy and turbulent dissipation, k = k∞ and ϵ = ϵ∞. Equation (5), which is
equivalent to prescribing a constant integral time tℓ,∞ = ℓ∞/uℓ,∞ = 1/(3A), was used in numerical
simulations by Rosales and Meneveau.4

The utilization of the constant forcing coefficient (5) is convenient for its simplicity. However,
this approach has caveats. For instance, a long transient time of several integral times is typically
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FIG. 1. DNS comparisons of the proposed forcing methods, with G =H = 67, against methods in Refs. 4 and 6 (see legend
in panel (a) for line types). The upper panels include the time dependence of (a) turbulent kinetic energy and (b) turbulent
dissipation. Panel (c) shows the instantaneous spectra of kinetic-energy and dissipation (inset), evaluated at t = 5.7tℓ,∞ (using
(7)) and t = 7.1tℓ,∞ (using (10)), along with the envelope represented by the maximum and minimum values resulting from
employing (5) during long periods of time t = 43tℓ,∞−72tℓ,∞ (solid lines). Panel (d) shows the normalized amplitude of the
envelopes produced by the maximum and minimum values of the kinetic-energy spectra observed during the time interval
t = 43tℓ,∞−72tℓ,∞ for all four methods.

required for the flow to become independent of the initial spectrum (3) and achieve acceptable
values of the turbulent kinetic energy around the steady value, k∞. Additionally, after such a long
transient, the resulting values of k and ϵ oscillate in relative amounts of order 30%-40%, which in
practice prevents the turbulent flow from reaching a statistically steady state, in that the spatially
averaged statistics depend heavily on time (e.g., see Figs. 1 and 5-7 in Ref. 4 and Figs. 1(a) and
1(b) above). Note that increasing the spatial sampling size by increasing the computational domain
length L at constant Reynolds number does not palliate the oscillations since the ratio ℓ∞/L re-
mains approximately constant in physical-space forcing. As discussed previously, this represents
an intrinsic limitation of the approach for reaching stationarity. As a result, the turbulent flow
resulting from integration of Eqs. (1) and (2) subject to (3) and (5) is typically far from statistically
stationary conditions and is spatially homogeneous and isotropic only in the ensemble mean or
time average. Similar oscillations in k and ϵ also arise in turbulent flows forced in spectral space.
Relaxation approaches have been envisioned that overcome this problem in spectral-space forcing3

and physical-space anisotropic forcing.5 It is worth mentioning that the forcing methods proposed
here are formally different than those addressed recently in Ref. 5, but have not been extended to
anisotropic flows.

In a recent paper, Carroll and Blanquart6 partly addressed the disadvantages outlined above by
using a penalization of the forcing coefficient based on the instantaneous turbulent kinetic energy,

A(t) =
(
ϵ∞

2k∞

) 
k∞
k(t)


, (6)
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in such a way that forcing is deterred during upsurges of kinetic energy and vice-versa. An advan-
tage of the time-dependent forcing coefficient (6) is that the observed oscillation amplitudes of k
and ϵ decrease to 20%-30% with respect to the target values k∞ and ϵ∞, while the transient period
becomes shorter (e.g., see Figs. 1 and 2 in Ref. 6 and Figs. 1(a) and 1(b) above). Note that an
expression similar to Eq. (6) had been previously used for band-limited spectral forcing (see Eq. (4)
in Ref. 7). The forcing method (6) corresponds to constant production of kinetic energy.

The forcing methods (5) and (6) do not yield constant values of turbulent kinetic energy and
turbulent dissipation except during a hypothetical steady state which is not necessarily reached
according to the conservation equations resulting from using the corresponding forcing coefficients.
This can be easily understood by substituting Eq. (5) or (6) into Eq. (4) and observing that those
definitions of A do not impose any direct constraint on the time derivatives of k or ϵ . In this
study, forcing approaches are investigated that provide a prescribed constant kinetic energy k = k∞,
constant dissipation ϵ = ϵ∞, or a suitable combination of both, preventing upsurges or downturns of
large-scale turbulence energetics in order to reduce the time window required to extract stationary
statistics. In Section II, alternative, constant-energetics control-based forcing coefficients are pro-
vided that are extensions of the two methods outlined above. The proposed methods are illustrated
for direct numerical simulation (DNS) in Section III, where it is shown that they lead to improved
convergence to Navier-Stokes turbulence. Furthermore, DNS solutions extracted from the forced
flows are used as initial conditions for decaying turbulence, an approach that yields differences in
velocity-derivative skewness convergence with respect to computations initialized with synthetic
fields. The large-eddy simulation (LES) formulations of the proposed forcing coefficients, described
in Section IV, are shown to exhibit similar benefits as in DNS. Additionally, the proposed coef-
ficient for constant kinetic-energy forcing behaves more robustly in coarse LES, in that it yields
physical solutions when initial conditions favoring the occurrence of subgrid-scale backscatter are
employed. On the other hand, the other strategies fail to provide forced LES turbulence in this
scenario. Lastly, an application of the proposed methods to dilute particle-laden turbulent flows is
presented in Section V, which addresses the influence of the choice of the forcing approach on
the statistics of the disperse phase. Section VI contains concluding remarks and a formulation in
spectral space of the constant kinetic-energy forcing coefficient.

II. DNS FORMULATION OF CONSTANT-ENERGETICS CONTROL-BASED
FORCING COEFFICIENTS

In this section, expressions for the forcing coefficient A are provided which ensure constant
turbulent kinetic energy or constant turbulent dissipation, the latter also corresponding to constant
enstrophy in the incompressible limit. A third forcing method is presented in which a combination
of approximate constant values of dissipation and kinetic energy is achieved by a least-squares
minimization. The description is accompanied by the resulting conservation equations for the
spatially-averaged energetics.

A. Forcing at constant turbulent kinetic energy

Imposition of constant kinetic-energy forcing is made by the use of the forcing coefficient

A(t) = ϵ(t) − G[k(t) − k∞]/tℓ,∞
2k(t) , (7)

where G is a dimensionless constant that plays the role of a proportional gain. In particular,
substitution of the time-dependent forcing coefficient (7) into (4) leads to the equation

dk
dt
= −G(k − k∞)

tℓ,∞
, (8)

which, for a constant value of G, indicates that the turbulent kinetic energy k approaches expo-
nentially fast to the steady value k∞ with a time constant tℓ,∞/G. Specifically, k = k∞ is a stable
equilibrium being satisfied after times of order tℓ,∞/G. Exceptions are found at order-unity values
of G, for which offset errors prevent convergence to the target steady value of the kinetic energy if
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the dissipation is not discretized consistently with the conservation equations, as shown below. It
is worth emphasizing that the forcing coefficients (5)–(7) are exactly equivalent in the statistically
stationary conditions k = k∞ and ϵ = ϵ∞.

B. Forcing at constant turbulent dissipation (also constant enstrophy)

The philosophy employed in Eq. (7) for imposing constant kinetic energy in Eq. (4) could
be similarly utilized in order to demand constant dissipation. To see this, consider the turbulent
dissipation equation

dϵ
dt
= −2ν


∂u′i
∂xk

∂u′j
∂xk

∂u′i
∂x j


− 2ν2


∂

∂x j

(
∂u′i
∂xk

)
∂

∂x j

(
∂u′i
∂xk

)
+ 2Aϵ, (9)

which is readily obtained by differentiating (1) with respect to xk, multiplying the resulting equation
by 2ν∂u′i/∂xk, and performing the corresponding spatial averaging over the periodic domain. In
particular, the forcing coefficient

A(t) = −w(t) + H[ϵ(t) − ϵ∞]/tℓ,∞
2ϵ(t) , (10)

with w(t) being the sum of the first two terms on the right hand side of (9), transforms Eq. (9) into

dϵ
dt
= −H(ϵ − ϵ∞)

tℓ,∞
(11)

and yields constant dissipation ϵ = ϵ∞ after time scales of order tℓ,∞/H , where H is a constant
proportional gain. Similarly, offset errors may occur when order-unity values of H are employed,
which prevent convergence to the target steady value of the dissipation. In practice, the gains G and
H will be taken to be large numbers such that the forcing develops under effectively constant-k or
constant-ϵ conditions.

For the incompressible flows addressed here, the constant-ϵ forcing described by Eq. (10) is
equivalent to constant-Ω forcing, with Ω denoting the enstrophy. This can be easily understood by
substituting (10) with ϵ = ϵ∞ in the corresponding enstrophy conservation equation, which leads to
dΩ/dt = 0, or by noticing that the dissipation and enstrophy spectra are multiples of each other, so
that the areaΩ under the enstrophy spectrum must remain constant if ϵ is constant.

C. Approximate combination of constant-energy and constant-dissipation forcing

Since imposing (7) and (10) simultaneously is not possible, a hybrid forcing coefficient can be
sought in the form

A(t) = 4k2(t)
4k2(t) + 9t2

ℓ,∞ϵ
2(t)

(
ϵ(t) − G[k(t) − k∞]/tℓ,∞

2k(t)
)

−
9t2

ℓ,∞ϵ
2(t)

4k2(t) + 9t2
ℓ,∞ϵ

2(t)
(
w(t) + H[ϵ(t) − ϵ∞]/tℓ,∞

2ϵ(t)
)
, (12)

which is obtained by a least-squares minimization of the errors of Eqs. (4) and (9) with respect to
the steady state dk/dt = 0 and dϵ/dt = 0. As a consequence, utilization of the forcing coefficient
(12) does not yield constant values of k and ϵ , but the resulting dynamics are always intermediate
with respect to these two extrema.

III. DNS RESULTS AND COMPARISONS

DNS are employed here to compare turbulent flows forced with the proposed coefficients (7)
and (10) against those forced with (5) and (6). All simulations start from the same initial spectrum
(3) and are subject to the same input parameters (L = 2π, ν = 0.005, ρ = 1.2, k∞ = k0 = 17.1,
ϵ∞ = 32.3, and κ0 = 12.5, all quantities being expressed in arbitrary yet consistent units). The
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resulting Taylor-Reynolds number of the turbulence is Reλ = (15uℓ,∞ℓ∞/ν)1/2 = 110. The calcu-
lations are conducted on a staggered, uniform Cartesian grid of 3843 points, which translates
into a resolution κmaxℓk,∞ = 1.5, where κmax is the largest wavenumber resolved by the grid and
ℓk,∞ = (ν3/ϵ∞)1/4 = uk,∞tk,∞ is the Kolmogorov length, with uk,∞ = (ϵ∞ℓk,∞)1/3 and tk,∞ = ℓ2

k,∞/ν
being the Kolmogorov velocity and time scale, respectively. The Navier-Stokes equations (1) and
(2) are solved with a finite-difference energy-conserving discretization of second order central in
space and fourth-order Runge-Kutta in time.10,11

A. Convergence in physical and spectral spaces

Comparisons are made in Fig. 1 between DNS performed using the forcing coefficients outlined
above, showing that the proposed coefficients (7) and (10) generally lead to steadier statistics and
faster convergence in comparison to the methods (5) and (6) from Refs. 4 and 6. In particular, af-
ter a short transient 0 < t . 1.0tℓ,∞, during which the kinetic energy is not strictly constant, Eq. (7)
leads to a flat profile of k while (5) and (6) cause a delayed convergence and an ever-oscillating time
dependence, as shown in Fig. 1(a). Similar conclusions are obtained by using Eq. (10), in that the
constant dissipation is established rapidly in Fig. 1(b) leading to oscillations in the turbulent kinetic
energy which are nonetheless comparable to those obtained using (6) and much less accentuated than
those arising from (5). Additionally, after short transients the proposed coefficients (7) and (10) yield
physically meaningful values of higher-order statistics, such as the skewness of the velocity derivative
(not shown here for brevity), thereby indicating that utilization of constant-energetics forcing enables
prompt convergence to the target state of Navier-Stokes turbulence.

None of the three forcing approaches (5)–(7) have direct control over the turbulent dissipation.
As a result, the time dynamics of the turbulent dissipation are similar for all three methods, with
the longest transient for this variable being obtained using Eq. (5), as shown in Fig. 1(b). The
short transient 0 < t . 6.0tℓ,∞ for the dissipation obtained using Eq. (6) is nonetheless counteracted
by the delayed convergence of the turbulent kinetic energy. Conversely, the constant-k forcing (7)
results in an overall faster convergence of k and ϵ to values near their target ones after a transient
0 < t . 5tℓ,∞, in contrast to the longer transients 0 < t . 30tℓ,∞ (using Eq. (5)) and 0 < t . 10tℓ,∞
(using Eq. (6)). Utilization of the constant-ϵ forcing (10) leads to flat profiles of ϵ but longer
transients for the kinetic energy than those obtained for the dissipation using constant-k forcing.

The instantaneous kinetic-energy spectra obtained at short times using the proposed coefficients
(7) and (10), evaluated at t = 5.7tℓ,∞ and t = 7.1tℓ,∞, respectively, lie within the envelope repre-
sented by the maximum and minimum values resulting from employing (5) during long periods of
time t = 43tℓ,∞ − 72tℓ,∞, as shown in Fig. 1(c). Similar observations are made with respect to the
dissipation spectra. At each wavenumber, the envelopes are defined as the extrema of the spectral
kinetic energy and dissipation collected during the time interval 43tℓ,∞ < t < 72tℓ,∞. In general, the
spectral envelope resulting from utilization of Eq. (5) is the thickest one, an effect being related
to the comparatively larger variations in k and ϵ observed in Figs. 1(a) and 1(b). The constant-k
forcing shows a superior spectral performance, with exceptions found in the much-less-energetic
viscous-dissipation range where (6) provides less variability, as shown in Fig. 1(d). Conversely, the
constant-ϵ forcing yields minimal spectral variations at high wavenumbers, but it underperforms at
large scales where the other methods display less fluctuations.

The utilization of the hybrid coefficient (12) leads to intermediate results with respect to those
described above, as shown in the DNS results in Fig. 2 where the same input parameters have
been used. Specifically, the resulting oscillations in ϵ and k are smaller than those obtained by
using (7) or (10) separately, while the relatively short transient period to Navier-Stokes turbulence is
preserved. Because of the intermediate character of the hybrid approach, no further tests of (12) will
be provided in this study.

B. Selection of the proportional gains

The effects of the proportional gains G in Eq. (7) and H in Eq. (10) are illustrated in Fig. 3,
which shows numerical results from the same DNS described above for four different values of
these parameters. In particular, large values of G and H favor faster convergence. On the other
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035114-7 Bassenne et al. Phys. Fluids 28, 035114 (2016)

FIG. 2. DNS comparisons of the time development of (a) turbulent kinetic energy and (b) turbulent dissipation for the three
proposed forcing methods (7), (10), and (12), with G =H = 67 (see legend in panel (a)).

hand, order-unity values of G and H lead to longer transient periods and offset errors in k and ϵ ,
respectively. Offset errors in k occur when the proximity of k to k∞ is sufficiently small such that
(k − k∞)/k∞ ∼ ∆ϵ/(Gϵ∞), where ∆ϵ is the numerical error emerging from the mismatch between
the discretization of the turbulent dissipation in Eqs. (4) and (7), the former being fixed by the
energy-preserving numerical scheme used to solve the momentum equation (1). When both dis-
cretizations are the same, the offset error vanishes. For illustration, different discretizations were
used in Figs. 3(a) and 3(b), which led to ∆ϵ/ϵ∞ ∼ 3% for G = 0.67, consistent with the 5% offset
error in k observed in Fig. 3(a). As a result, the upper bound of the offset error decreases rapidly

FIG. 3. DNS effects of varying the proportional gains G in Eq. (7) (upper panels) and H in Eq. (10) (lower panels). The
figure shows the resulting time dependence of (a,c) turbulent kinetic energy and (b,d) turbulent dissipation. Line types are
defined in panels (a) and (c).
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FIG. 4. DNS comparisons of decaying turbulence after deactivation of the corresponding forcing method for (a) velocity-
derivative skewness and (b) turbulent kinetic energy, with time origin being reset to the instant of deactivation.

with increasing G, as shown in Fig. 3(a). The offset error in ϵ shown in Fig. 3(d) is caused by an
equivalent effect in Eq. (10) that arises from differences between the discretizations of w and the
first two terms on the right-hand side of Eq. (9). In summary, large values of G and H are preferred
over order-unity values for faster convergence and for general non-energy-preserving schemes, pro-
vided that the corresponding time step in the numerical integrations is sufficiently small to resolve
the controller’s time constants tℓ,∞/G or tℓ,∞/H , both of which shall be chosen to be shorter than
the Kolmogorov timescale tk,∞ in order to avoid interference with energy-containing time scales of
the turbulence. It is worth mentioning that a similar impact of numerical errors was observed in
Ref. 8 in the context of forcing for scalars.

C. Initialization of decaying turbulence with forced flows

The analysis described above deals primarily with forced turbulent flows. A physically real-
izable scenario for studying Navier-Stokes turbulence is that of decaying turbulent flows, such as
those generated in air flowing through grids in wind tunnels. The purpose of this section is to inves-
tigate whether initial conditions obtained from the application of the forcing methods proposed here
introduce artificial transient behavior in the decaying dynamics of turbulence. The DNS flow fields
described in Section III were left to decay by deactivating the forcing at t = 43tℓ. Comparisons
were made among those and an additional decaying field synthetically obtained by reconstructing
an initial velocity field from the energy spectrum resulting from a calculation with the forcing
coefficient Eq. (7) supplemented with random phases and a divergence-free condition.

The corresponding results are shown in Fig. 4 along with Kolmogorov’s selfsimilar decay rate
t−10/7 (see Ref. 9). Although the five flows require approximately one integral time of decorrelation
for adjustment to self-similar decaying turbulence, the velocity-derivative skewness of the initially
synthetic flow reaches its expected value after a transient of order t ∼ 0.1tℓ,∞. Figure 4(a) shows
that the initially forced flows, on the other hand, provide steadier velocity-derivative skewness
throughout the decay implying that the energy-cascade process remains in equilibrium. After the
transient period, the turbulent flows initially forced with the coefficients (5) and (10) display energy
deficits caused by the initially faster decays, as shown in Fig. 4(b).

IV. LES RESULTS AND COMPARISONS

The LES results shown below make use of the dynamic Smagorinsky subgrid-scale model12,13

subject to a box-type test filter. A grid with 323 elements is utilized, which is equivalent to a reso-
lution κmaxℓk,∞ = 0.13. The corresponding initial conditions are generated from the initial model
spectrum (3) as described in Section I, subject to the same input parameters outlined in Section III
except κ0, which is varied below in order to illustrate the effects of initial conditions in coarse
calculations.
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A. LES formulation of constant-energetics control-based forcing coefficients

Before describing the results, it is worth emphasizing that Eq. (4) ceases to be useful in LES
since part of the exact turbulent kinetic energy is unresolved. The relevant quantity in this part of the
study is the spatially averaged resolved kinetic energy, kr(t) = ⟨uiui⟩/2, where the overbar operator
denotes resolved velocities. In particular, multiplication of the filtered version of the momentum
conservation equation (1) by the resolved velocity, along with spatial averaging of the resulting
kinetic-energy transport equation, leads to

dkr
dt
= −ϵ r − ϵSGS + 2Akr . (13)

In this formulation, ϵ r = ⟨ν(∂ui/∂x j)(∂ui/∂x j)⟩ is the resolved molecular dissipation and ϵSGS =

⟨νSGS(∂ui/∂x j)(∂ui/∂x j)⟩ is the subgrid-scale dissipation, with νSGS being an eddy viscosity com-
puted as in Ref. 13. At sufficiently high Reynolds numbers, the ratio ϵ r/ϵSGS ∼ ν/νSGS is small and
scales as (κmaxℓk,∞)4/3 ≪ 1. In the present computations at moderately large Reynolds numbers,
however, both quantities are added to yield an overall dissipation ϵT = ϵ r + ϵSGS in defining the
forcing coefficient, although this extension is not required for the performance of the methods.

In the following, references are made to LES results obtained by using the previous forcing
coefficients (5) and (6). The LES versions of these coefficients employ the values k∞ and ϵ∞ corre-
sponding to the target values of kr and ϵT , respectively, with kr(t) being also used in (6) instead of
k(t). Similarly, the LES version of the proposed constant-k forcing coefficient (7) becomes

A(t) = ϵT − G[kr(t) − k∞]/tℓ,∞
2kr(t) , (14)

which transforms Eq. (13) into a form similar to Eq. (8) in terms of the resolved kinetic energy kr(t).
Constant-ϵ forcing in LES is achieved by applying a proportional controller to the conservation

equation

dϵT
dt
= −2


(ν + νSGS) ∂ui

∂xk

∂u j

∂xk

∂ui

∂x j


+ 2


(ν + νSGS) ∂ui

∂xk

∂

∂xk


∂

∂x j


(ν + νSGS)

(
∂ui

∂x j
+
∂u j

∂xi

)
−


νSGS

∂

∂x j

(
u j

∂ui

∂xk

∂ui

∂xk

)
+


∂νSGS

∂t
∂ui

∂xk

∂ui

∂xk


− 2


νSGS

∂

∂xi


∂ui

∂xk

∂

∂xk

(
p
ρ

)
+ 2AϵT ,

(15)

which is obtained by differentiating the LES version of (1) with respect to xk, multiplying the
resulting equation by 2(ν + νSGS)∂ui/∂xk, regrouping terms, and spatially averaging over the peri-
odic domain. Note that Eq. (15) is contingent on the eddy-viscosity assumption and becomes equal
to Eq. (9) in the limit νSGS → 0. Based on Eq. (15), the LES version of the constant-ϵ forcing
coefficient (10) becomes

A(t) = − f (t) + H[ϵT(t) − ϵ∞]/tℓ,∞
2ϵT(t) , (16)

where f (t) is the sum of the first four terms on the right hand side of (15).
A hybrid forcing coefficient can be easily formulated for LES based on (14) and (16) using

the same least-squares minimization procedure as in Section II C to maintain approximately the
constant-k and constant-ϵ conditions. The resulting expression,

A(t) = 4k2
r(t)

4k2
r(t) + 9t2

ℓ,∞ϵ
2
T(t)

(
ϵT − G[kr(t) − k∞]/tℓ,∞

2kr(t)
)

−
9t2

ℓ,∞ϵ
2
r(t)

4k2
r(t) + 9t2

ℓ,∞ϵ
2
T(t)

(
f (t) + H[ϵT(t) − ϵ∞]/tℓ,∞

2ϵT(t)
)
, (17)

yields intermediate results with respect to (14) and (16).
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B. Convergence in physical and spectral spaces

Comparisons are made in Fig. 5 between LES, subject to the initial model spectrum (3) with
κ0 = 6.25, using forcing coefficients (5), (6), (14), and (16). The results show that the constant-k
coefficient (14) leads to faster convergence and steadier statistics both in spectral and physical
spaces, with the three methods (5), (6), and (14) tending to under-predict the dissipation with
respect to its target statistically stationary value, as seen in Fig. 5(b). The constant-ϵ coefficient (16),
on the other hand, tends to over-predict the resolved kinetic energy, as shown in Fig. 5(a), which
leads to spectra lying outside of the envelopes predicted by using (5) (e.g., see Fig. 5(c)).

In terms of relative spectral variations in time, Fig. 5(d) shows that the constant-k method
yields the most satisfactory results, with method (5) yielding the largest fluctuations. In summary,
the conclusions from the LES comparisons are analogous to those drawn from the DNS results in
Section III.

C. Forcing-driven restoration of the direct energy cascade

Unlike DNS, for which it is known that the choice of the initial condition impacts weakly the
forced steady-state solution, the results presented here suggest that the choice of the initial condition
can have considerable influences on forced LES. For instance, in this study, it is observed that the
constant-k method (14) displays more robustness than the other methods in LES simulations under
initial conditions that favor the occurrence of subgrid-scale backscatter. In particular, LES simulations
were carried out for κ0 = 12.5 in (3), which displaced the maximum of the initial spectrum toward

FIG. 5. LES comparisons of the proposed forcing methods, with G =H = 67 and κ0= 6.25, against the forcing methods in
Refs. 4 and 6 (see legend in panel (a) for line types). The upper panels include the time dependence of (a) resolved kinetic
energy and (b) overall dissipation. The lower panels show the instantaneous spectra for (c) resolved kinetic energy and
resolved viscous dissipation (inset) at t = 5.7tℓ,∞ along with the envelope represented by the maximum and minimum values
resulting from employing (5) during long periods of time t = 43tℓ,∞−72tℓ,∞ (solid lines). Panel (d) shows the normalized
amplitude of the envelopes produced by the maximum and minimum values of the kinetic-energy spectra observed during
the time interval t = 43tℓ,∞−72tℓ,∞ for all four methods.
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FIG. 6. LES comparisons of the proposed forcing methods, with G =H = 67 and subject to the initial spectrum (3) with
κ0= 12.5, against previous ones, including the time dependence of (a) resolved kinetic energy, (b) overall dissipation,
(c) skewness of the resolved velocity derivative (see legend in panel (a)), and (d) instantaneous resolved kinetic-energy
spectra at t = 70tℓ,∞.

higher wavenumbers in contrast to the results presented in Fig. 5, which were obtained using a smaller
κ0. With the initial condition corresponding to κ0 = 12.5, the resulting dynamics, portrayed in Fig. 6,
lead initially to net subgrid-scale backscatter manifested in the dynamic model by negative eddy
viscosities (which are clipped in the computations). The results reveal that the forcing coefficients (5)
and (6), along with the constant-ϵ one (16), offer no useful alternative to the constant-k coefficient (14)
in restoring the direct energy cascade. Specifically, Figs. 6(a) and 6(b) show that the forcing coefficients
(5), (6), and (16) lead to unphysical dynamics, and the resulting skewness of the resolved velocity
derivative, defined as Sr = −⟨(∂u1/∂x1)3⟩/[⟨(∂u1/∂x1)2⟩]3/2, does not correspond to that of a turbulent
flow,14 as shown in Fig. 6(c). The vortical fields corresponding to the resulting non-turbulent flows
are shown in Fig. 7(a), which are primarily characterized by large-scale round blobs remnants from
the initial field that do not produce enough dissipation. Similarly, the corresponding kinetic-energy
spectra, obtained using either (5), (6), or (16) and evaluated at t = 70tℓ,∞, contain energy maxima
at high wavenumbers that suggest insufficient dissipation rates and are contrary to the Kolmogorov
inertial-subrange scaling, as observed in Fig. 6(d). The constant-ϵ method (16) is incapable of estab-
lishing the correct ϵSGS despite the action of the controller, in that the resolved molecular dissipation ϵ r
attains values close to the target overall dissipation ϵ∞, whereas the subgrid-scale dissipation remains
ϵSGS = 0 during the simulation because of clipping. This prevents the development of turbulence.
Unclipped simulations were found to be unstable and provided no meaningful results.

On the other hand, the LES subjected to the proposed constant-k forcing coefficient (14) attains
physical results for t & 50tℓ,∞ that resemble forced LES turbulence, as shown in Figs. 6(c) and 6(d).
During the period prior to the transition, t . 50tℓ,∞, an energy pile-up is observed in the spectrum
similar to those obtained by using the forcing coefficients (5), (6), and (16), with the vortical struc-
tures in the flow resembling those shown in Fig. 7(a). A transition to turbulence occurs at t ∼ 50tℓ,∞
that is related to the intermittency in ϵSGS and the sensitivity of the forcing coefficient (14) to
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FIG. 7. LES isosurfaces of the square root of the local enstrophy ω obtained using the proposed constant-k forcing
coefficient (14) with G = 67, (a) before transition (ωℓ∞/uℓ,∞= 6.25) and (b) after transition to forced LES turbulence
(ωℓ∞/uℓ,∞= 11.3). The initial spectrum (3) is imposed at the beginning of the simulations with κ0= 12.5.

ϵSGS. Specifically, ϵSGS reaches positive values at the transition time that overwhelm the viscous
dissipation and persist thereon aided by the fact that the constant-k coefficient (14) is proportional to
ϵSGS. After the transition point t ∼ 50tℓ,∞, the pile-up of energy disappears, indicating establishment
of a net forward cascade of energy. The resulting LES flow field displays vortical structures that
resemble physical worm-like patterns enabled by the three-dimensional vortex-stretching mecha-
nism,15 as shown in Fig. 7(b). The corresponding velocity-derivative skewness Sr attains values
similar to the reference ones,14 as observed in Fig. 6(c). Although the corresponding transient period
is about ten times longer than in DNS, the flow forced with the proposed constant-k coefficient
(14) reaches a state in which the spectrum and time series of resolved kinetic energy have minimal
oscillations, while 10%-20% fluctuation amplitudes are observed in skewness and dissipation.

Additional LES computations (not shown here for brevity) were performed using a converged
turbulent flow field forced with the constant-k coefficient as initial condition for separate simula-
tions forced with coefficients (5), (6), and (16), which, as shown in Fig. 6, do not provide physical
solutions. In the results, the turbulent flow remained converged, in that k and ϵ were close to the
target stationary values k∞ and ϵ∞, the value of the skewness of the resolved velocity derivative
was on the upper branch of Fig. 6(c), and the turbulent kinetic-energy spectrum was similar to
that shown in dashed-dotted lines in Fig. 6(d). These considerations highlight the effect of initial
conditions in forced LES, in that the forcing methods (5), (6), and (16), which failed to restore the
direct kinetic-energy cascade, sustained a converged LES turbulent flow when provided as initial
condition to the simulations.

V. INFLUENCES OF FORCING APPROACHES ON DILUTE PARTICLE-LADEN
HOMOGENEOUS-ISOTROPIC TURBULENCE

Linear forcing is widely used in numerical simulations of particle-laden homogeneous-isotropic
turbulent flows, the reason being that forcing turbulence enables collection and analysis of stationary
disperse-phase statistics of, for instance, relative dispersion, preferential concentration, and particle
acceleration. However, it is known that linear forcing interferes with the transfer of kinetic energy
from particles to the fluid in two-way coupled flows.16 As a result, the utilization of linearly forced
turbulence is typically precluded to one-way coupled flows, this being the case addressed here in
which the mass-loading ratio (defined below) remains small and the corresponding effects of particles
on the carrier phase become negligible. In this section, a brief analysis is reported that treats the
influences of forcing, along with the associated fluctuations in statistics observed in Section III,
on the disperse-phase statistics. In particular, the physical-space forcing treated above can lead to
fluctuations in quantities that define turbulence scales. Such scales are, in turn, fundamental for the
dynamics of particles in turbulent flows.17
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A. Formulation of the disperse phase

The computations outlined in this section employ the same numerical code and DNS input
parameters described in Section III. The disperse-phase formulation is based on a Lagrangian
description for small particles, including the trajectory equation

dxp, i

dt
= up, i (18)

and the equation of motion

4
3
πρpa3 dup, i

dt
= 6πρνa(ui − up, i), (19)

where xp, i and up, i denote, respectively, the position and velocity of the particles. Additionally,
ρp and a refer to the particle density and radius, respectively. Small particle Reynolds numbers,
Rep = [(up, i − ui)(up, i − ui)]1/2a/ν ≪ 1, have been assumed in writing (19). In particular, Eq. (19)
describes a characteristic relaxation of the particle velocity to the local velocity of the fluid in an
acceleration time scale of order ta ∼ (2/9)(ρp/ρ)(a2/ν), with the Stokes number Stk = ta/tk,∞ =
0.1, 1, and 30 measuring the ratio of ta to the steady Kolmogorov turnover time tk,∞. Additionally,
a small mass-loading ratio α = (4/3)(ρp/ρ)πNp(a/L)3 = 3 × 10−6 is employed, with Np = 96 000
particles being seeded initially in the carrier phase. At the beginning of the computations, the
particles are positioned in space according to a uniform random distribution under kinematic equi-
librium with the carrier phase. The resulting transient time measured from the initialization of the
spatial distribution of particles is of order ta and therefore has negligible impact on the results pre-
sented here. In the simulations, Eqs. (1) and (2), along with the Lagrangian particle equations (18)
and (19), are integrated subjected to an initial velocity field of homogeneous-isotropic turbulence
extracted at t = 43tℓ,∞ from the DNS performed in Section III for each one of the four forcing
approaches (5), (6), (7), and (10). A mid-plane cross section of the simulations is presented in
Fig. 8(a) that shows the contours of the square root of the local enstrophy.

B. Numerical results and comparisons

For Stk = 0.1, the flow regime resembles one in which the particles are mostly tracers, in that
their motion becomes sensitive to the large-scale kinetic energy of the carrier phase as well as to the
associated velocity fluctuations arising from the forcing approach. This is illustrated in the top panel
in Fig. 8(b), which shows the time development of the particle kinetic energy kp = ⟨up, iup, i⟩Np

/2,
where the operator “⟨ f ⟩Np

” denotes the average of the Lagrangian variable f over all the particles.
It is observed that the proposed constant-k forcing coefficient (7) leads to minimal fluctuations in
the particle kinetic energy in accord with the carrier-phase dynamics observed in Fig. 1(a), thereby
enabling stationarity in the statistics for the disperse-phase energetics. On the contrary, utilization
of the forcing coefficients (5), (6), and (10) causes considerable oscillations in the particle kinetic
energy of order 20%-40%. Increasing the Stokes number, however, diminishes the advantage of
using the constant-k forcing (7). For instance, for Stk = 1, the particles are tracers for the large-scale
eddies but slip on the Kolmogorov ones, and for Stk = 30, the particles become ballistic with
respect to most eddies except for the large ones with which they interact since the corresponding
integral-scale Stokes number Stℓ = (ℓk,∞/ℓ∞)2/3Stk becomes an order-unity parameter. As a result,
the kinetic energy of the particles increasingly deviates from that of the fluid for increasing Stokes
numbers, which leads to oscillatory behavior in kp that cannot be suppressed by any of the forcing
methods, as shown in the lower panel in Fig. 8(b).

Statistics of the particle acceleration ap = ⟨[(dup, i/dt)(dup, i/dt)]1/2⟩Np
normalized with the

target Kolmogorov acceleration ak,∞ = uk,∞/tk,∞ are shown in Fig. 8(c). While the constant-k forc-
ing renders stationary statistics for the kinetic energy of sufficiently light particles, the constant-ϵ
forcing yields steadier probability density functions (PDFs) of the particle acceleration insofar as
the Kolmogorov-based Stokes number Stk is not too large, as implied by the corresponding PDF
envelopes. In particular, for moderate values of Stk, the characteristic acceleration of the particles
is comparable to the Kolmogorov acceleration, since the relative motion with respect to the large
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FIG. 8. (a) Mid-plane cross section of the isosurfaces of the square root of the local enstrophy (solid contours) along with the
spatial distribution of particles (green dots) contained in a x3 slice of thickness 0.06ℓ∞. (b) Time series of the average particle
kinetic energy with time origin being reset to the instant of particle deployment. (c) Particle acceleration PDF and (d) radial
distribution function long-time envelopes of the four different methods produced by the maximum and minimum values of
the corresponding quantity observed during the time interval t = 5tℓ,∞−25tℓ,∞. (e) Time series of integral and Kolmogorov
characteristic acceleration and time scales. The values G =H = 67 are used here for evaluating (7) and (10).

scales is negligible. The reason for the steadier behavior of the PDF of ap therefore lies in the
constancy of the Kolmogorov scales resulting from the constant dissipation obtained by using the
forcing approach (10). This is shown in Fig. 8(e), which additionally reveals that the integral scales,
including the integral acceleration aℓ, fluctuate in time independently of the forcing approach em-
ployed. As a result, strong fluctuations are obtained in all metrics when the characteristic dynamics
of the particles are influenced by scales above the Kolmogorov range.

The choice of forcing does not have any noticeable influence on the time dynamics of the
preferential concentration. The preferential-concentration phenomenon, which is known to become
most intense near Stk = 1, is quantified by the radial distribution function (RDF) shown in Fig. 8(d),
which refers to the likelihood of any pair of particles being separated by a given distance (see,
for instance, Section 1 in Ref. 18 for a mathematical definition of the RDF). Convergence studies
were carried out increasing the number of particles that ruled out statistical variabilities caused by
under-sampling of the particle ensemble. No clear variation patterns are observed for the fluctua-
tions in the RDF when the different forcing methods are employed. In particular, the constancy of
the Kolmogorov scales achieved with the constant-ϵ forcing method does not appear to be relevant
for decreasing the fluctuations in the RDF. In practice, this results in large time windows (larger
than 20tℓ,∞) required for the collection of converged preferential-concentration statistics whichever
one of the four forcing methods is employed.
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The different forcing approaches lead to small variations of order 10%–20% in the temporal
averages of the statistics analyzed here, as easily inferred from Fig. 8. There is no fundamental
cause by which the temporal averages should be different after long times, since the turbulence state
targeted by the different forcing methods is the same. In practice, however, exceedingly long time
windows would be required in the carrier phase to obtain matched time-averaged statistics of the
disperse phase. This can be understood, for instance, by examining Figs. 1(a) and 1(b) or 8(e) and
noticing that convergence of time-averaged statistics in the carrier phase is hardly achieved after
several integral times.

VI. CONCLUDING REMARKS

Constant-energetics, control-based linear forcing approaches for incompressible homogeneous
isotropic turbulence have been presented in Eqs. (7) and (10) for DNS and in Eqs. (14) and (16)
for LES. The methods consist of proportional controllers embedded in the forcing coefficients. In
particular, the forcing coefficients (7) and (14) submit the kinetic energy to its statistically steady
target value after short transients of the same order as the integral time of the turbulence divided
by a large constant gain. The forcing coefficients (10) and (16) provide constant dissipation close to
its statistically steady value in a similar way. Approximate combined forcing at constant energy and
constant dissipation is achieved through the coefficients (12) in DNS and (17) in LES, which make
use of least-squares minimization. Compared to the approaches in Refs. 4 and 6 and starting from
the same initial flow field, the methods proposed in this investigation provide forced turbulent flows
in shorter times, resulting in steadier statistics of kinetic energy and dissipation in both physical and
spectral spaces. Additionally, the proposed constant kinetic-energy forcing method (14) behaves
more robustly under an initial condition that imposes a reverse cascade in the coarse LES computa-
tions analyzed here, in that it operates to establish a direct energy cascade yielding turbulent flows,
while the other approaches provide unphysical fields. When applied to DNS of dilute particle-laden
homogeneous-isotropic turbulent flows, the proposed constant kinetic-energy forcing approach (7)
leads to stationary statistics for the disperse-phase kinetic energy at small Stokes numbers, while
the alternative methods yield large-amplitude oscillations. Similarly, the constant-dissipation forc-
ing method (10) provides steadier statistics for the acceleration of light particles. However, all the
forcing methods yield similar fluctuations in preferential-concentration metrics.

In principle, there is no obstacle for employing the proposed constant-k coefficient (7) for
band-limited forcing in spectral space, provided that it is reformulated as

A(κ, t) =



ϵ(t) − G[k f (t) − k∞]/tℓ
2k f (t) , if 0 < κ < κ f

0, otherwise
, (20)

where k∞ is the target value of k f , with k f =
 κ f

0 E(κ)dκ being the kinetic energy of the wavenum-
ber band 0 < κ < κ f . In this formulation, κ f is a cutoff wavenumber in the inertial subrange that
bounds the forced spectral band, with κ f → ∞ representing the case equivalent to physical-space
linear forcing described in Secs. I–V. The resulting conservation equation for the turbulent kinetic
energy k f (t) has a form similar to Eq. (4).

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with Ohi Dibua on this topic. This investigation
was funded by the Advanced Simulation and Computing (ASC) program of the US Department of
Energy’s National Nuclear Security Administration via the PSAAP-II Center at Stanford.

1 T. S. Lundgren, “Linearly forced isotropic turbulence,” in Annual Research Briefs (Center for Turbulence Research, 2003),
pp. 461-473.

2 T. Passot and A. Pouquet, “Numerical simulation of compressible homogeneous flows in the turbulent regime,” J. Fluid
Mech. 181, 441-466 (1987).

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  171.67.216.22

On: Wed, 30 Mar 2016 15:30:10

http://dx.doi.org/10.1017/S0022112087002167
http://dx.doi.org/10.1017/S0022112087002167


035114-16 Bassenne et al. Phys. Fluids 28, 035114 (2016)

3 M. R. Overholt and S. B. Pope, “A deterministic forcing scheme for direct numerical simulations of turbulence,” Comput.
Fluids 27, 11-28 (1998).

4 C. Rosales and C. Meneveau, “Linear forcing in numerical simulations of isotropic turbulence: Physical space implemen-
tations and convergence properties,” Phys. Fluids 17, 095106 (2005).

5 B. de Laage de Meux, B. Audebert, R. Manceau, and R. Perrin, “Anisotropic linear forcing for synthetic turbulence gener-
ation in large eddy simulation and hybrid RANS/LES modeling,” Phys. Fluids 27, 035115 (2015).

6 P. L. Carroll and G. Blanquart, “A proposed modification to Lundgren’s physical space velocity forcing method for isotropic
turbulence,” Phys. Fluids 25, 105114 (2013).

7 L. Machiels, “Predictability of small-scale motion in isotropic fluid turbulence,” Phys. Rev. Lett. 79, 3411-3414 (1997).
8 P. L. Carroll, S. Verma, and G. Blanquart, “A novel forcing technique to simulate turbulent mixing in a decaying scalar

field,” Phys. Fluids 25, 095102 (2013).
9 A. N. Kolmogorov, “On degeneration of isotropic turbulence in an incompressible viscous liquid,” C. R. Akad. Sci. SSSR

(Dokl.) 31, 538-540 (1941).
10 H. Pouransari, H. Kolla, J. Chen, and A. Mani, “Spectral analysis of energy transfer in variable density, radiatively heated

particle-laden flows,” in Proceedings of the Summer Program 2014 (Center for Turbulence Research, Stanford University,
2014), pp. 27-36.

11 H. Pouransari, M. Mortazavi, and A. Mani, “Parallel variable-density particle-laden turbulence simulation,” in Annual
Research Briefs 2015 (Center for Turbulence Research, Stanford University, 2015), pp. 43-54.

12 M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids 3,
1760-1765 (1991).

13 D. K. Lilly, “A proposed modification of the Germano subgrid scale closure method,” Phys. Fluids 4, 633-634 (1992).
14 S. Tavoularis, J. C. Bennett, and S. Corrsin, “Velocity derivative skewness in small Reynolds number, nearly isotropic

turbulence,” J. Fluid Mech. 88, 63-69 (1978).
15 J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J.

Fluid Mech. 255, 65–90 (1993).
16 G. Mallouppas, W. K. George, and B. G. M. van Wachem, “New forcing scheme to sustain particle-laden homogeneous and

isotropic turbulence,” Phys. Fluids 25, 083304 (2013).
17 J. Urzay, M. Bassenne, G. I. Park, and P. Moin, “Characteristic regimes of subgrid-scale coupling in LES of particle-laden

turbulent flows,” in Annual Research Briefs (Center for Turbulence Research, Stanford University, 2014), pp. 3–13.
18 B. Ray and L. R. Collins, “Preferential concentration and relative velocity statistics of inertial particles in Navier-Stokes

turbulence with and without filtering,” J. Fluid Mech. 680, 488–510 (2011).

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  171.67.216.22

On: Wed, 30 Mar 2016 15:30:10

http://dx.doi.org/10.1016/S0045-7930(97)00019-4
http://dx.doi.org/10.1016/S0045-7930(97)00019-4
http://dx.doi.org/10.1063/1.2047568
http://dx.doi.org/10.1063/1.4916019
http://dx.doi.org/10.1063/1.4826315
http://dx.doi.org/10.1103/PhysRevLett.79.3411
http://dx.doi.org/10.1063/1.4819782
http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1063/1.858280
http://dx.doi.org/10.1017/S0022112078001986
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1063/1.4818553
http://dx.doi.org/10.1017/jfm.2011.174

