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Abstract— There are two theoretical methods by which a
two wheeled vehicle oriented in tandem can be stabilized:
dynamic stabilization and control moment gyroscope (CMG)
stabilization. Dynamic stabilization utilizes tactical steering
techniques to trigger a lean in the vehicle in the intended
direction for balancing, while CMG stabilization employs the
reactive precession torque of a high speed flywheel about
an axis that will act to balance the vehicle. Of these two,
CMG stabilization offers greater advantages for static vehicles.
This paper proposes a first order sliding mode controller
(SMC) design to control the CMG and stabilize a bicycle
at zero-forward velocity. This study also compares the SMC
method to a PID controller to validate the advantages of the
SMC controller for the highly non-linear system dynamics of
static stabilization. The result of two experimental setups are
presented and discussed. The first experimental platform is a
single degree of freedom (DOF) inverted pendulum and the
second is a three DOF bicycle.

I. INTRODUCTION

A. History of Autonomous Stabilization

Attempts at autonomous stabilization of inherently un-
stable vehicles have dated back to the early 20th century.
In 1905, Louis Brennan built a Gyroscopic Monorail that
utilized a CMG system controlled by passive actuation
of several mechanisms and mechanical sensors designed
to respond to the monorail’s tilt orientation. The monorail
successfully executed test runs carrying 50 passengers along
a circular path [1]; however, due to the limited accuracy
of sensors and robust controllers at that time it was more
practical to employ inherently stable two rail systems. In
1909 and 1911 similar projects where endeavored by Scherl
and Shilovsky [2]. Shilovsky’s gyrocar was a two wheeled
vehicle with the wheels oriented in tandem. The gyrocar was
capable of being manually stabilized via a clutch activated
CMG system, requiring the human passenger to actuate
the clutch appropriately to gimbal the CMG’s flywheel.
Lack of sensors for accurate angular position, velocity,
and acceleration feedback limited the autonomy of these
early attempts. Today, much progress has been made in
sensor technology, motor technology, control methods, and
autonomous controllers making the use of a CMG stabilized
2-wheeled vehicle more practical.

In the advent of computer aided programs and micro-
controllers, more research has been conducted on the self-
stabilization of bicycles. Bicycle dynamics and control have
been investigated in detail by Sharp [3]. The majority of
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these studies utilize dynamic stabilization where the bicycle
is actively steered to induce leans that oppose the bicycle’s
instabilities while moving forward at a constant velocity;
however, this attempt fails at stabilizing a static bicycle, a dif-
ficult task for human riders, because the passive gyroscopic
stabilizing effect produced by the angular momentum of the
bicycle’s wheels is absent. A few different approaches have
been pursued to achieve static stabilization, the most notable
of which include: adding a rotor mounted on the crossbar [4],
mounting a pendulum to balance the tilting force [5], and
using the precession effects of a gyroscopic actuator [6], [7].

B. Research Focus

In this paper, a high speed flywheel with a single DOF
gimbal is used to induce the torque that will counteract
the moment due to gravity applied on the bicycle when
it deviates or tilts from its semi-stable, vertical position.
By applying a gimbal torque to a spinning flywheel, a
simultaneous, amplified reactive torque is generated about
an axis orthogonal to both the flywheel’s gimbal axis and
spin axis. This controllable reactive torque can be oriented
to act about the axis that will balance an unstable bicycle.

This paper focuses on the control dynamics of a static
bicycle and presents the experimental test results for two
separate test platforms. The first experimental test platform
was a single DOF inverted pendulum frame. Its mobility was
constrained to rotation about just one axis with one revolute
joint at its base. The second experimental test platform was
a three DOF bicycle that can rotate about all three principle
axes; however, due to friction between the tires and the
ground, rotation of the bicycle will be predominantly about
the bicycle’s balancing axis. Rotation about the axis that
would generate a ’wheelie’ would never occur because the
maximum reactive torque of the flywheel used was not large
enough to lift the front or back wheel of the bicycle off
the ground. For these reasons, the three DOF bicycle can
be modeled using the same single DOF dynamic equations
of motion as the pendulum. Stabilizing the bicycle adds to
this study by testing a body whose geometric parameters are
more similar to that of a vehicle, where the bicycle is not
fully constrained to rotation about just one axis.

The outline of this paper is as follows. In Section 2, the
reference coordinate system is introduced, the equations of
motion are derived and all the assumptions used are listed.
Section 3 provides a brief introduction to sliding mode con-
trollers, and elaborates on the stabilization controller design.
Section 4 presents the experimental results, and Section 5
offers concluding thoughts regarding the proposed controller.
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Fig. 1: Free body diagram of the bicycle model

II. BICYCLE DYNAMICS

A. Coordinates and Assumptions

The coordinates of the bicycle are defined as:

• θ - Roll angle
• α - Gimbal angle
• Φ - Flywheel spin direction

Fig. 1 shows a simplified sketch of the bicycle. The bicycle
is composed of three rigid bodies:

• The bicycle frame with the wheels
• The gyroscope without the flywheel
• The flywheel

Here, the flywheel and the gyro are considered two different
rigid bodies since the flywheel also spins along the y-axis
while the gyro does not. The full list of parameters used to
derive the equations are given in Table I.

In order to derive the equations of motion for the bicycle,
the following assumptions are considered

• Tires have zero width
• No slipping force applied to the bicycle’s tires
• All three rigid bodies are taken as point masses at their

center of gravity

B. Equations of Motion

The nonlinear dynamics of these three rigid bodies were
derived from conservation of energy by using Lagrange’s
method. Define L such that

L = T −U (1)

where T is the kinetic energy, and U is the potential energy of
the system. The kinetic and potential energy equations were
derived for the bicycle frame, the gyro, and the flywheel.

T = TBicycle +TGyro +TFly U = (mghg +mbhb +m f h f )gcosθ

(2)

where

TABLE I: Parameters for Static Bicycle

Parameter Symbol
Bicycle mass & height of c.m mb & hb
Gyro mass & height of c.m mg & hg
Flywheel mass & height of c.m m f & h f
Flywheel spin velocity Ω

Gravity constant g
Bicycle Inertia Ibx
Gyro Inertia [Igx , Igy , Igz ]
Flywheel Inertia [I fx , I fy , I fz ]

TBike =
1
2
(
Ibx +mbh2

b
)

θ̇
2 (3)

TGyro =
1
2
(
mgh2

gθ̇
2 + Igx θ̇

2cos2
α + Igy θ̇

2sin2
α + Igz α̇

2)
(4)

TFly =
1
2
(
m f h2

f θ̇
2 + I fx θ̇

2cos2
α + I fy

(
Ω+ θ̇

2sin2
α
)
+ I fz α̇

2)
(5)

Assuming a non-conservative disturbance force (d(t)) act-
ing on the horizontal x-y plane, the equation of motions were
derived from Euler-Lagrange equation

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= d(t)hb sinθ (6)

giving the acceleration of the tilt angle as

θ̈ =
K1gsinθ +2I1θ̇ α̇sinαcosα− I fyΩcosαα̇−d(t)hb sinθ

Ibx +K2 +
(
Igx + I fx

)
cos2α +

(
Igy + I fy

)
sin2α

(7)
where

K1 = mbhb +mghg +m f h f (8)

K2 = mbh2
b +mgh2

g +m f h2
f (9)

I1 = Igx + I fx − Igy − I fy (10)

From (7), it can be seen that the precession effect created
by the motion of the flywheel has a significant role in
the upright stabilization of the bicycle. Furthermore, it can
be concluded that as Ω increases the flywheel will be
more resistant to a change in orientation and thus will be
able to generate a larger reactive torque. This means that
stabilization can be achieved at a greater initial tilt angle, or
in the presence of larger disturbances.

III. CONTROLLER DESIGN

A. Brief Introduction to Sliding Mode Control

Variable structure systems (VSS) have been an attrac-
tive research topic for more than half a century. The first
approach of discontinuous control was in the form of a
bang-bang controller [8]. After [9], the VSS and sliding
mode control theory gained significant interest from both
researchers and engineers. Utkin and Young designed a
sliding manifold to ensure optimality by using the pole



placement technique [10]. Su, Drakunov, and Ozguner [11]
studied the problem of constructing discontinuity surfaces
from a Lyapunov point of view which is also applicable on
nonlinear systems.

The chattering phenomena, the major drawback of the
sliding mode control method, was also studied by many
researchers and several different approaches have been taken
to reduce the chattering. In [12], the switching function is
replaced with a continuous approximation in the vicinity
of sliding manifold; however, the robustness of the sliding
mode remained an issue. Young and Ozguner [13] proposed
two design methods, one was based on pole placement, and
the other was based on frequency-shaped quadratic optimal
control formulation. This proved to reduce the chattering
while preserving the insensitivity of the sliding mode against
the uncertainties.

The major advantages of sliding mode control are [14]
• An exact model is not required to apply control to

the system since sliding mode control is insensitive to
unmodeled dynamics and disturbances

• The complexity of the feedback design is reduced
• It is a nonlinear control method
• It can be applied to a wide range of problems in

robotics, electric drives, and vehicle and motion control

B. Design of Sliding Mode Controller

In order to design a controller to achieve the upright
stabilization of the bicycle, a nonlinear state space model
of the system was needed. From the equation of motion in
(7), varying the gimbal angle (α) the precession torque is
induced, which stabilizes the bicycle. However, assigning the
gimbal angle as the control input causes the relative degree
of the system become greater than one [15]. Hence, the rate
of the gimbal angle (u = α̇) is chosen as the control input
of the system dynamics, and it is integrated over time before
the actual control is applied to the motor.

The following nonlinear state space model summarizes the
system dynamics from a control point of view:

θ̈ = f (θ , θ̇ ,α)+g(u, θ̇) (11)
y = [θ ,α] (12)

where

f =
K1gsinθ + fdhb sinθ

Ibx +K2 +
(
Igx + I fx

)
cos2α +

(
Igy + I fy

)
sin2α

(13)

g =
2I1θ̇ sinα cosα− I fyΩcosα

Ibx +K2 +
(
Igx + I fx

)
cos2α +

(
Igy + I fy

)
sin2α

u (14)

Here, fd represents the disturbance and unmodeled system
dynamics.

To find the sliding mode controller gains, the following
surface equation is considered:

s = c1θ + θ̇ (15)

The derivative of the surface equation is taken.

ṡ = c1θ̇ + θ̈ (16)

h(α)ṡ = h(α)c1θ̇ +(K1g+ fdhb)sinθ

+
(
2I1θ̇ sinα cosα− I fyΩcosα

)
u

(17)

where h(α) represents the denominator of θ̈ . Then, by
selecting the control in the form of

u =−|k1θ + k2θ̇ |sign(s) (18)

the relation between s and ṡ is obtained as

h(α)ṡ = h(α)c1θ̇ +(K1g+ fdhb)sinθ (19)

+
(
2I1θ̇ sinα cosα− I fyΩcosα

)
|k1θ + k2θ̇ |sign(s)

(20)

After linearizing sinθ = θ which remains valid for |θ |<
30 degree, and taking the upper bounds of the nonlinear
terms and the uncertainties in (20), the equation becomes

Hṡ = Hc1θ̇ +(K1g+ f0hb)θ (21)

+
(
2I1θ̇ − I fy Ω

)
|k1θ + k2θ̇ |sign(s) (22)

where H is the constant value of h(α) at the upper bound
of the nonlinear terms. Global asymptotic stability will be
ensured when the reachability condition (23) is satisfied.

ṡ < 0 ← sign(s)> 0
ṡ > 0 ← sign(s)< 0

(23)

Hence, selecting the control gains as the following will
satisfy the reachability condition and guarantee stability.
[14] gives further information about the asymptotic stability
of sliding mode controllers.

k1 >

∣∣∣∣∣ K1g+ f0hb

2I1θ̇0− I fyΩ

∣∣∣∣∣ and k2 >

∣∣∣∣∣ Hc1

2I1θ̇0− I fy Ω

∣∣∣∣∣ (24)

where, θ̇0 represents the upper bound of the rate of the tilt
angle.

IV. EXPERIMENTAL RESULTS

Experimental results were obtained on two different test
platforms, an inverted pendulum and a bicycle shown in
Fig. 2 and Fig. 3, respectively. Fig. 2 also shows a close
up view of the gyro and flywheel.

On the inverted pendulum setup, an encoder was used to
measure the tilt angle to obtain precise tilt angle measure-
ments. On the bicycle setup, an Inertial Measurement Unit
(IMU) was utilized in lieu of an encoder. This results in
oscillatory balancing of the bicycle.
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Fig. 2: Inverted Pendulum setup a) View of inverted pendu-
lum. b) Close-up view of gyro and flywheel.

A. Experimental Results Obtained on Inverted Pendulum
Setup

The control input (18) for the inverted pendulum was
found by picking coefficients (24) based on parameter values
shown in II. The coefficients of the sliding surface (15) were
selected proportional to the importance of their associated
values. The final control input was given as:

u = |9θ +2θ̇ |sign(6θ + θ̇) (25)

From (25), it is seen that the gimbal angle is not a
controlled variable. However, due to the fact that the utilized
servo motor has a turn range of (±126 ◦), it is advised
to bring the gimbal angle back to its equilibrium point.
Otherwise, in cases where the gimbal angle reaches its
boundary, and a disturbance is applied to the pendulum, the
motor will turn no more and consequently no more torque
will be generated, which causes the pendulum to fall over.
To overcome such issues, after stabilization is achieved by
applying the control input in (25), the gimbal angle is taken
back to zero without disturbing the pendulum’s stability by
applying the following control input:

u =−cα

sign(α)

|cosα|
(26)

Here, cα is a coefficient which determines the speed of the
gimbal angle’s convergence to zero at the risk of disturbing
the pendulum’s stability. Experimentally, it is found that the
controller performs better at taking the gimbal angle back to
zero when cα = 0.01. During this process, if the stability of
the pendulum was disturbed by an external force or by the
torque generated during the process, the control in (25) was
again applied until stability was reached.

Fig. 5 shows the experimental results obtained on the
inverted pendulum setup, with the initial tilt angle set to
θ(0) =−18[deg]. The results show that the proposed control

TABLE II: Parameter Values for Experimental Setups

Parameter IP Setup Value Bicycle Setup Value Unit
[mb,mg,m f ] [6.2,2.23,2.88] [14,2.23,2.88] [kg]
[hb,hg,h f ] [18,12.6,8.3] [23,14,9.7] [cm]
Ω 1000 1500 [rad/sec]
Ibx 2129 10200 [kg cm2]
[Igx , Igy ] [39, 60] [39, 60] [kg cm2]
[I fx , I fy ] [28.5, 30.2] [28.5 30.2] [kg cm2]

Fig. 3: Bicycle setup

method successfully stabilizes the pendulum at its equilib-
rium point, and brings the gimbal angle back to zero without
affecting the stability of the system. The latter process takes
place between t = 5sec and t = 27sec. The results also show
that there was a stability region of ±0.3 degree due to the
friction between the revolute joint of the pendulum and the
base.

In order to test the robustness of the controller, a horizontal
force of 6.1kg m/s2 was applied to the system along the y-
axis for 2.5 seconds. This was equivalent to an impulse of
15.26 kg m/s. Fig 6 shows the that while the pendulum is
vertically stable, a disturbance is applied at t = 10 seconds.
The gimbal angle was rotated to the opposite side to coun-
teract the disturbance, which returns the pendulum back to
zero.

The performance of the proposed controller design also
needed to be verified. In order to test this, a simple PID
controller was also applied to the system. The PID controller
was constructed as

u = KPe(t)+KD
d
dt

e(t)+KI

∫
e(τ)dτ (27)

where KP, KD, and KI are proportional, derivative, and inte-
grator gains, and e(t) is the difference between the current
tilt angle and the desired angle (θdes = 0). After various trials,
the best results are obtained for the following gain values:

KP = 6 KD = 2 KI = 2 (28)

These two controller methods are compared by setting the
same initial tilt angles and flywheel rotational velocity, and
observing the performance of the controllers for multiple,
consecutive tests.

Fig. 7 shows that the rising and settling times of sliding
mode controller are approximately 0.5 seconds and 10 sec-
onds shorter than those of this PID controller. In addition,



while 4-7 degrees of overshoot was observed using the
PID controller, the SMC applied experiments had almost
no overshoot. Hence, it can be concluded that sliding mode
controller performs better compared to this PID controller.

B. Experimental Results Obtained on Bicycle Setup

The major challenge of the controller implementation of
the bicycle setup compared to the inverted pendulum was
that an IMU was used to measure the tilt angle. This sensor
introduced time delayed measurements that were susceptible
to the vibration and magnetic field generated by the spinning
ferrous flywheel and motors. These inaccuracies coupled
with the round shape of the tires caused oscillations in the
tilt angle during stabilization.

Due to different system parameters, a different control
input was found:

u = |14θ +3θ̇ |sign(6θ + θ̇) (29)

Fig 4 shows the results obtained on the bicycle setup.
Due to the increased weight of the bicycle, a smaller initial

tilt angle of 5 degrees was used. In addition, a greater angle
of 30 degrees for the gimballing servo motor was used to
provide a longer time for applying usable torque. The results
display that the bicycle keeps oscillating between ±1 degree
due to the above limitations.

V. CONCLUSIONS

In this attempt to validate the robust capabilities of con-
trol moment gyroscope (CMG) stabilization, a first order
sliding mode controller was developed and implemented
on two physical test beds. A second, PID controller, was
also designed and tested on the inverted pendulum platform
as a means to evaluate the performance characteristics of
the SMC. Of these two controllers, the SMC proved to be
advantageous for stabilization by offering reduced overshoot
and shorter rising and settling times. The first experimental
setup was a single DOF mechanism that was free to rotate
about a fixed revolute joint. This platform could be accu-
rately modeled as an inverted pendulum constrained from
translation about three axes and rotation about two axes. The
second setup, a three DOF bicycle, more closely resembles
the geometry of a vehicle but can be modeled as a single
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Fig. 4: Experimental results showing the bicycle is stabilized.

DOF system for static stabilization tests. The experimental
test results obtained on both test beds validate that CMG
stabilization of a single-axis gimbal flywheel can be used
to actively control and stabilize inherently unstable bodies
(e.g. inverted pendulums, bicycles, motorcycles, etc.). This
study validates the feasibility and robust capabilities of CMG
stabilization for these systems. Future vehicles using CMG
stabilization can be designed to offer unparalled stability and
manueverability across rugged off-road terrains as well as
on streets for transportation purposes. A two wheeled street
vehicle can weigh less than a four wheeled vehicle and can
therefore advantageously reduce energy consumption of the
vehicle.
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[13] K. David Young and Ü. Özgüner, “Frequency shaping compensator
design for sliding mode,” International Journal of Control, vol. 57,
no. 5, pp. 1005–1019, 1993.

[14] V. I. Utkin, “Sliding mode control,” Variable structure systems: from
principles to implementation, vol. 66, p. 1, 2004.

[15] H. K. Khalil, Nonlinear systems. Prentice hall Upper Saddle River,
2002, vol. 3.



0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

time [sec]

θ
[d
eg
]

 

 

Encoder data
Stability region

(a)

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

time [sec]

α
[d
eg
]

(b)

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

time [sec]

α̇
[r
ad

/s
ec
]

(c)

Fig. 5: Experimental results showing the pendulum is stabilized. (a) - Tilt angle measured with encoder (b) - Gimbal angle
(c) - Control input
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Fig. 6: Experimental results for first measured disturbance. (a) - Tilt angle measured with encoder (b) - Gimbal angle (c) -
Control input
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Fig. 7: Comparison of SMC and PID for the same initial tilt angles. (a) - Initial tilt angle is −16 degrees (b) - Initial tilt
angle is −21 degrees (c) - Initial tilt angle is −26 degrees


