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Abstract— This study proposes the use of deep learning algo-
rithms to detect the presence of skin cancer, specifically melanoma,
from images of skin lesions taken by a standard camera. Skin
cancer is the most prevalent form of cancer in the US where 3.3
million people get treated each year. The 5-year survival rate of
melanoma is 98% when detected and treated early yet over 10,000
people are lost each year due mostly to late-stage diagnoses [2].
Thus, there is a need to make melanoma screening and diagnoses
methods cheaper, quicker, simpler, and more accessible. This study
aims to produce an inexpensive and fast computer-vision based
machine learning tool that can be used by doctors and patients to
track and classify suspicious skin lesions as benign or malignant
with adequate accuracy using only a cell phone camera. The data
set was trained on 3 separate learning models with increasingly
improved classification accuracy. The 3 models included logistic
regression, a deep neural network, and a fine-tuned, pre-trained,
VGG-16 Convolutional Neural Network (CNN) [7]. Preliminary
results show the developed algorithm’s ability to segment moles
from images with 70% accuracy and classify skin lesions as
melanoma with 78% balanced accuracy using a fine-tuned VGG-16
CNN.

I. INTRODUCTION

Skin cancer is the most common form of cancer in the United
States. Of the several varieties of skin cancer (Melanoma, basal
cell carcinoma, and squamous cell carcinoma), Melanoma is
responsible for only 1% of diagnosed cases yet it accounts
for nearly 75% of skin-cancer induced deaths [1]. Each year
Melanoma claims 10,000 lives which amounts to one death every
52 minutes. Despite being such a malicious disease, Melanoma
is highly treatable, with a 98% 5-year survival rate when detected
and treated in its early stages. The survival rate drops to 63%
when the cancer spreads from local sites to regional, and survival
rates decrease further to just 17% in the later stages where
cancer has spread distally to other organs from the initial site [1].
Because Melanoma propagates dangerously, proper monitoring
and detection of skin lesions are vital to improve the survivability
of this disease.

To aid with proper detection and suspicious mole track-
ing dermatologists have developed the ABCDEs which is a
mnemonic that describes accepted visual features and cues of
malignant Melanoma moles. The ABCDE’s mnemonic stands
for Asymmetrical shape, Border irregularities, Color, Diameter,
and Evolution over time. Additionally, the morphology, location
on the body, and arrangement of lesions may also provide infor-
mation about the skin disease [2]. Yet due to the numerous fac-
tors at play simultaneously, visual diagnosis is complicated and
often leads to subjective and un-reproducible results. Although
features of malignant moles are well known, the variation and
diversity of skin across patients makes visual classification still
a very challenging problem. Preliminary studies have shown that
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Fig. 1. Computer-vision and machine learning diagnostic tool for doctors and
patients to screen suspicious skin lesions and moles.

a dermatologist and medical resident from Stanford University’s
hospital were able to successfully classify skin lesions 46 and
52% of the cases [4]. With classification rates as low as this by
medically trained human eyes, proper diagnosis cannot rely on
manual visual inspect therefore biopsies are required. Biopsies
take time and money in addition to pain and scarring suffered by
the patient which is not always necessary if the mole is found
to be benign.

Several previous machine learning based approaches have
attempted the Melanoma classification problem and skin disease
classification in general. Attempts include traditional models
such as support-vector machines (SVM) and artificial neural
networks (ANNs) while two more recent studies implemented
fine-tuned VGG-16 ConvNets which inspired the latter approach
of this study [4][5].

The two largest public data sets that exist for images of
Melanoma include the ISIC database with 1,280 and Dermnet’s
23,000 images. The ISIC database consists of 1031 benign
images and only 249 images of malignant Melanoma which
makes the unbalanced data set have roughly a 1:4 ratio for
malignant examples [9]. Dermnet’s database of 23,000 images
is made up of 500 to 2,500 images of 23 different classes of
skin disease. Thus roughly 1000 images exist for malignant
Melanoma from this data set. The remaining 22,000 images
from Dermnet could be used as the labeled images for benign
Melanoma although this would create a heavily unbalanced data
set with a 1:22 ratio of training examples for malignant (class
1) to benign (class 2). This study uses just the ISIC data set [9].

II. IMAGE PREPROCESSING

The raw image data set of 1280 images downloaded from the
ISIC Database was not captured or processed ideally and has
several inherent sources of noise. Some issues with the raw data
included:

1) Vignetting present in some images
2) Bright colored Band-Aids present in some images
3) Hair present in various densities
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Fig. 2. Example of the pre-processing, lesion segmentation, and formatting
from several raw images

4) Scale overlay on some images
5) Variation in ambient lighting
6) Variation in skin lighting
7) Variation in focal length (i.e. scale is unknown)
8) Variation in image aspect ratio and resolution (i.e. image

set taken with different cameras)
9) Variation between standard camera and dermoscopic im-

ages

For these reasons the raw images were cleaned, pre-processed
to segment the skin lesion, and formatted to all be the appropriate
shape and size for input into the neural network.

The data set was highly imbalanced having a ratio of 4:1 for
images containing benign lesions to images containing malignant
lesions. This imbalance is likely to produce bias in the learning
models so a balanced subset of the training and test data was
created for training and observation purposes. The maximum
balanced training data set contained a total of only 346 images
which is significantly lower than the original set making learning
much more difficult.

A. Lesion Segmentation

Several custom functions were written to automate the pre-
processing and lesion segmentation step. This step required quite
a bit of tuning and testing to determine which image-processing
techniques and filters would yield the best segmentation. After
tuning, the high-level methodology for the pre-processing step
remained fairly simple and all 1280 images were processed in
a matter of 2-3 minutes on a laptop CPU.

After each image is loaded a light Gaussian kernel blur is
applied to smoothen the edges and reduce the outline of any thin
and light colored hairs present in the image. Next, an algorithm
runs to determine whether or not vignetting is present in the
image. If vignetting is detected then a circle crop is applied
to crop out the corners of the image so that a contrast filter
can eventually be applied without increasing contrast in the
corners which would lead the model into thinking skin lesions
were present in the corners of the image. This crop was sized
appropriately for each picture based on the image size and the
strength of the vignette. For the most part, the images had the
mole/lesion centrally located so cropping out the corners had
a near negligible effect. Using built-in functions from Python’s
OpenCV library the image’s contrast was then increased and
afterwards the image was converted to gray scale. OpenCV’s
Canny edge detector was then applied to locate edges and find
contours from those connected edges. The contours with the
largest areas above a fine-tuned threshold were kept and the
rest were discarded. This helped localize the actual mole while
removing things like hair and freckles which are not considered
as an area of interest. The algorithm then generates a normalized
threshold based on the mean pixel value of each image and from
that threshold a binary mask is created. The binary mask or filter
is a matrix with the same size as the original image but only
contains values of 0 and 1 such that when applied (multiplied)
onto the original image yields an image that is the area of interest
(i.e. the skin lesion) and the surrounding skin and environment
is all black. The image then is formatted for input to the learning
models.

The accuracy of the lesion segmentation is calculated using
the manually labeled binary mask provided with the data set
for each image. The pixel area’s of the binary mask generated
in this pre-processing step and the labeled masks provided are
compared. If the difference is less than 20% of the image area
then the image is considered segmented correctly. If not, the
image is considered incorrectly segmented. The total error is
then calculated by

error =
# images segmented incorrectly

total # of images
(1)

where the resulting error was found to be 30%.

B. Image Formatting: Neural Network

Once the raw images were preprocessed and the mole or skin
lesion was segmented out using the method described above the
images then needed to be formatted for input into the learning
models. The raw images consisted of a variations in resolution
and aspect ratio whereas the learning algorithms required all the
input training and test images be of the same size. Therefore
each image was converted into a square image with a new side
length equal to the larger of the two sides of the original raw



image (most of which were rectangular). The added area in the
new image was set to be black to match the convention of the
processed images where a black area indicated a masked region
that is not of interest to the learning algorithms.

The images are then scaled from a rough average of 1100 x
1100 x 3 to 256 x 256 x 3 using OpenCV’s resizing function
with an interpolation that resamples using pixel area relation for
moire’-free results.

With the images now fully processed they must be parsed into
proper matrix form for input into the various learning algorithms.
For learning using logistic regression or a deep neural network
the training and test examples are formatted into an mxn matrix
X , where m is the number of training/test examples and n is the
size of the feature vector (or number of features). Therefore for
these two learning models the 3-dimensional image (256,256,3)
needed to be converted into a 1-dimensional vector which
represents a single row (one example) in the training/test matrix.
Several methods of converting from the 3D image to a 1D
training/test example are possible and several were tested to
determine impact on learning performance. The first option is
to convert the 3-channel RGB image into gray scale which then
becomes a single channel image. The single channel (256,256,1)
image can then be reshaped to a (256X256,1) = (65536,1)T

vector where each row is concatenated to the row above it.

Xi = [p1 p2 p3 ... p65536]

The second option is to choose a single color channel which
the algorithm designer may determine to be of more use than
the other two color channels. The third option is to combine all
three color channels into a single vector representing example
image i which now takes the form

Xi = [p1r p1g p1b p2r p2g p2b ... p65536r p65536g p65536b ]

where pjr denotes the red channel of pixel j where j ∈
[1, 65536]. The performance of these different structured train-
ing/test matrices are presented later in Section VI.

Using a 2-class softmax loss requires that the labels y take
the form of an mx2 matrix where m is the number of train/test
examples. In this problem we define yi = [1, 0] to be the label
of image i if it is benign and yi = [0, 1] if it is malignant.

C. Image Formatting: Keras ConvNet (CNN)

The implemented convolution neural network was not imple-
mented from scratch like the NN, but rather was built using
Python’s Keras deep learning library with a back-end using
Google’s TensorFlow architecture [8]. The images and labels did
not need significant parsing for the Keras CNN models. Instead
the training and test images (.jpg files) needed to be structured
in a directory that had labeled folders for both training and test
sets such that the training/testing labels of class 0 and class 1
were located in their respective directories.

../data/processed/train/label0/

../data/processed/train/label1/

../data/processed/test/label0/

../data/processed/test/label1/

III. LOGISTIC REGRESSION

For comparison purposes a simple logistic regression model
was constructed using a 2-class softmax loss (i.e. logistic loss)
and a stochastic gradient descent optimizer with update rule

θj ← θj − α(y(i) − hθ(x(i)))x(i)j ∀j ∈ [1, k] (2)

The learning rate was set to be constant over 10 epochs at
α = .01. Results are presented in Section VI but they were not
promising and thus more complex models were investigated in
an attempt to pick up more complex features given the size of
the feature vectors and the non-linearity of the learning task.

IV. NEURAL NETWORK (NN)
After verifying that a simple logistic regression technique was

not capable of robustly classifying Melanoma based on images
alone, a deep neural network (i.e. multi-layer perceptron) was
built.

A. NN Architecture

A simple deep neural network is constructed to classify skin
lesions as benign or malignant.

The NN implemented a 2-class softmax loss (l) and a loss
gradient (∇l) defined as

l(y, hθ(x)) = l(y, ŷ) = log
( k∑
j=1

eŷj
)
− ŷT y (3)

∇l(y, ŷ) = eŷ∑k
j=1 e

ŷj
− y (4)

Before the optimization occurs a non-linear function fuj is
applied to the linear hypothesis function hθ(x). Therefore, the
hypothesis function now takes the form

hθ(x) = fuj+1

(
Wj+1fuj(Wjx+ bj) + bj+1

)
(5)

Here, fu is a non-linear activation function where common non-
linear functions used are the sigmoid, hyperbolic tangent, and
the rectified linear unit (ReLU). In this study we found that
the ReLU activation function produced the best experimental
results for all layers except the last layer which was set to be
a linear activation function so that the confidence could take
on both positive and negative values. The ReLU function was
also chosen because it does not suffer from gradient vanishing
(like sigmoid). ReLU is applied element-wise, and defined by
fu(x)ReLU = max{0, x}, where the function returns zero for
values where x is negative and x for values of x that are positive.

The total number of layers varied from 5 (3 hidden) to 7 (5
hidden). Each layer size was exponentially spaced from layer 1
(L1) having a size of the input data (Rk), the 2nd layer having
size of (Rk/2), the third layer having size (Rk/4) and so on
until the last layer (Ls) having a size of (R2) because the last
layers should yield the predicted confidence value of for each
of the 2 classes (benign and malignant).

The weights matrix W and bias vector b are initialized
randomly and then fed into a stochastic gradient descent op-
timization algorithm which was trained by searching for the
parameters θ = [W b] which minimized the logistic/softmax loss
function. An L-1 regularization term was added to the update
on the weight matrix to ensure weights stayed reasonably small.



B. Tuning Model Parameters

The neural network was build robustly and with modularity in
structure such that nearly every parameter of the model could be
tuned easily and modulated from test to test to determine which
parameters yielded the best results. The tunable parameters
include: 1) the number of hidden network layers (s), 2) the
learning rate, 3) number of optimization epochs, and 4) the
lambda (λ) parameter for the L-1 regularization

C. Tuning Model Inputs

In addition to the model parameters several attempts at
manipulating the input data were also tested for performance
enhancement. These included 1) the image input resolution/size,
2) the number of training examples by artificial data augmenta-
tion, and 3) using pre-processed and segmented images vs non-
processed (raw), only formatted, images.

V. FINE-TUNING THE VGG-16 DEEP CNN

For the final approach transfer learning is used on a Convolu-
tional Neural Network (CNN). Transfer learning has been shown
to be a time and computationally efficient method of training
a deep CNN [5]. In transfer learning, rather than training the
weights of the network from scratch at a random initializing,
the weights of a pre-trained network can be imported to an
instantiated convolutional base (for VGG-16 in this case) then re-
trained on a new data set using very small weight updates. The
process of ”fine-tuning” works well because the output layers
and weights of a well-trained network contain generic, low-
level, features like edge and blob detectors which are useful
for classifying many types of images. Therefore, for the skin
lesion data set these new learned features can be directly applied
while fine-tuning the final layers of the network for proper
classification for this problem.

The VGG-16 model is chosen for its relative ease of im-
plementation and its success in the ILSVRC-2014 competition
where it placed first in the in task 2a challenge. The VGG-16 is
a very deep, 16-convolutional-layer network that is originally
trained on the ImageNet database consisting of millions of
labeled images in 1000 classes.

The model was developed in Keras, a high-level neural
networks library, written in Python and capable of running on
top of either TensorFlow or Theano. The algorithm for fine-
tuning the VGG-16 model was based off an example from [8]
which was originally adapted from [7].

The fine-tuning is achieved by first instantiating the convo-
lutional base of VGG16 and loading its pre-trained ImageNet
weights. The VGG-16 model consists of 5 convolutional blocks
with corresponding output filter sizes [54, 128, 256, 512, 512]
and then a fully-connected classifier. With everything up to
the fully-connected classifier instantiated in the model we run
the model on the training and test data sets once. The last
activation maps before the fully-connected layers are then saved
in 2 Numpy arrays which will be used to train a small full-
connected model on top off these stored features [8]. This small,
fully-connected model becomes our top-layer model. Now, this
trained top-layer model is added to the the VGG16 model and its
weights (along with the VGG-16 ImageNet weights) are loaded.
We then freeze the layers of the VGG-16 model up to the last
convolutional block which prevents the weights of these layers

Fig. 3. Performance of NN on unbalanced test for various image resolutions.

Fig. 4. Performance of NN on unbalanced test for various learning rates α.

from being changed. We allow the final convolutional block and
our added fully-connected top-layer classifier to be fine-tuned
using a stochastic gradient descent (SGD) optimizer with a slow
learning rate. A small learning rate is used to prevent wrecking
the previously learned feature weights [8].

VI. RESULTS AND DISCUSSION

All three of the tested models were tuned to some degree in an
attempt to optimize the performance of the learning model. The
majority of this study was focused on the neural network and the
VGG-16 CNN. The largest source of modeling frustration was
derived from the fact that the data set was heavily imbalanced
with 4 times more data for benign skin lesions than for malignant
ones. Therefore, when training and testing on the full data set the
average error hoovered around 20% which seems good at first
glance but upon further inspection this 20% error is a direct
result of the model learning to predict benign for all cases since
the data set is skewed towards benign moles. To combat this a
balanced subset of the data was created with an equal number
of malignant and benign training and test examples. Training on
this subset of the data, however, significantly reduces the number
of examples which is already relatively small to begin with for
deep neural network learners. This seemed to be the bottleneck
for the test error reaching no lower than 44% (56% accuracy)
for the neural network with the parameters listed in Table I.

The logistic regression model using an SGD optimizer
hoovered around 48-50% error which is no more useful than
flipping a coin. With these results being less than promising a
third, more established model for image recognition, was built.
The VGG-16 model was loaded with pre-trained weights from



Fig. 5. Performance of NN on unbalanced test for numbers of color channels.

Fig. 6. Performance of NN on unbalanced test for varying number of layers.

ImageNet and then the last 3 layers were fine-tuned over the
Melanoma training examples. This algorithm was significantly
more effective with a minimum error of 22% in the balanced
test set.

All the models were tested on the pre-processed and raw
(only formatted) image sets to determine if the pre-processing
helped filter out noise in the images for the learning model. The
neural network is observed in Fig. 8 to have a lower maximum
minimum error by nearly 4% indicating that the pre-processing
does in fact help the model train and extract the more important
features in the skin lesions.

The number of hidden layers was shown in Fig. 6 to have a
very small effect on the performance of the neural network. This
may be because there is not enough data from the ISIC data set
to train and extract features from for very deep networks.

The learning rate was found in Fig. 4 to yield the best
results in a dynamic configuration where the rate was slowly
and linearly decreased from 0.01 to 0.001 over the epochs of
the stochastic gradient descent.

Adding color channels and artificially augmenting the original
inputs to simulate the effects of a larger training set was
beneficial to a point and exceeding that point led to over fitting.
Therefore using 2 image rotations was found in Fig. 7 to yield
the best generalization error. Two image rotations are used to
double the effective training set where the augmented set is now
constructed by each of the original images and their correspond-
ing 90-degree-rotated-clockwise image. All three colors channels
were used in some instances but gray-scale also seemed to work
better in other tests. Fig. 5 shows all parameters held constant

Fig. 7. Performance of NN on unbalanced test for various number of training
examples from data augmentation by image rotations.

Fig. 8. Performance of NN on unbalanced test for a processed input data set
and a raw input data set without lesion segmentation.

except for the number of color channels used per training image.
The model using only 1 channel in gray scale classifies with
lower error by a few percent than that of the model using 3 color
channels. It is important to note over-fitting for the 3-channel
model where the training error is seen to drop significantly while
the test error remains fairly high.

For both the neural network and the VGG-16 fine tuning mod-
els when the image resolution is increased the variance increases
and the model starts to over-fit. This is evident from Fig. 3 by
the training error decreasing while the test error remains stagnant
or increases. Because the model would not generalize well with
high resolution training images the resolution was kept to 50x50
or lower.

Another attempt at reducing over-fitting was to add a regu-
larization term. By adding this term to keep the weights low
the model increased in bias drastically and even for very small
regularization coefficients the model would learn to always
predict class 0 (i.e. benign) on the unbalanced data sets because
it’s the easiest model to learn that can maintain low weights and
low error. The 20% error achieved on the imbalanced set is not
a good indicator of true error however because all 20% of those
classified incorrectly were malignant skin lesions where a false
negative in cancer diagnoses is obviously a dangerous outcome.
Therefore other performance metrics need to be investigated on
these models.

Instead of accuracy — the ratio of correctly classified exam-
ples to total examples, precision — a measure of a classifier’s
exactness, recall — a measure of a classifier’s completeness, or



TABLE I
NEURAL NETWORK PARAMETERS

Parameter Description Value
Learning rate (α) .05-.001
Number of epochs 30
Processed vs Unprocessed input data processed
Number of color channels used 3
Color Channels merged or separate example merged
Input image resolution (20,20,3)
Data augmentation: number of image rotations 2
Number of hidden network layers 2
Balanced vs unbalanced data set balanced
Regularization term constant (λ) 0.00
Activation functions ReLU

Fig. 9. Performance comparison of test and training error for the 3 major
models tested all on a balanced training/test set.

F1 Score — a weighted average of precision and recall could
be used to provide a more honest and useful evaluation of the
learning model on a highly unbalanced data set. The use of a
confusion matrix can also be insightful for analyzing the results
of the model.

Precision =
# true pos.

# true pos. + # false pos.
(6)

Recall =
# true pos.

# true pos. + # false neg.
(7)

f1 = 2 ∗ precision ∗ recall
precision+ recall

(8)

The classification error of this study does not exceed the
current state-of-art which has been achieved in [4] and [5].
Reasons for only reaching 78% accuracy in comparison to [4]’s
90.0% and [5]’s 91.0% may be due to the fine-tuning process and
the data sets used. In both [4] and [5] the much larger DermNet
database was used which had roughly 22,000 more images to
train on. Additionally, these learning models use an average
of VGG-16 and VGG-19 predictions as the final classifier
which combines 2 powerful visual classifiers both pretrained
on ImageNet. Although these images were not all malignant the
larger training set can help the learning model learn features
and weights more accurately for benign skin lesions which
simultaneously will help classification of malignant lesions.

VII. FUTURE WORK

The VGG-16 network will be further tuned and the ISIC data
set will be augmented with the DermNet data set such that model
training can occur on a more comprehensive and diverse set
of mole images. This will ideally expose the learning model
to more variations in skin lesions and allow it to extract true
patterns in the malignant lesions. Other pretrained models such
as the VGG-19 or Inception v3 may be fine-tuned and tested.

It would also be interesting to implement a loss function which
penalized false negatives more than false positive. This could be
helpful in using the full imbalanced data set which currently has
a bias toward learning the ’always choose benign’ model when
accuracy is the performance metric. The performance metric in
the future will also be the F1-score — a weighted average of
the precision and recall — to avoid the seemingly good results
obtained when achieving 80% accuracy on a data set with a 4:1
ratio of benign to malignant images.
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