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ABSTRACT

Fourier neural operators (FNOs) are invariant with respect to the size of input images, and thus images with any size can be fed into FNO-
based frameworks without any modification of network architectures, in contrast to traditional convolutional neural networks. Leveraging the
advantage of FNOs, we propose a novel deep-learning framework for classifying images with varying sizes. Particularly, we simultaneously train
the proposed network on multi-sized images. As a practical application, we consider the problem of predicting the label (e.g., permeability) of
three-dimensional digital porous media. To construct the framework, an intuitive approach is to connect FNO layers to a classifier using adap-
tive max pooling. First, we show that this approach is only effective for porous media with fixed sizes, whereas it fails for porous media of vary-
ing sizes. To overcome this limitation, we introduce our approach: instead of using adaptive max pooling, we use static max pooling with the
size of channel width of FNO layers. Since the channel width of the FNO layers is independent of the input image size, the introduced frame-
work can handle multi-sized images during training. We show the effectiveness of the introduced framework and compare its performance with
the intuitive approach through the example of the classification of three-dimensional digital porous media of varying sizes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0203977

I. INTRODUCTION AND MOTIVATION

Since 2020, neural operators have gained extensive popularity,
specifically with two versions of graph neural operators (Li et al.,
2020b; 2020c) and Fourier neural operators (FNOs) (Li et al., 2020a;
Kovachki et al., 2024). In this article, our attention is on FNOs. From a
computer science perspective, regular FNOs fall in the category of
supervised deep learning framework, necessitating a large volume of
labeled data for training. FNOs have demonstrated their proficiency in
input–output mapping across various industrial and scientific applica-
tions such as incompressible flows (Li et al., 2022b; Bonev et al., 2023;
Peng et al., 2024; Choubineh et al., 2023; Lyu et al., 2023; Gupta and
Brandstetter, 2022; and Peng et al., 2023a), wave equations (Zhu et al.,
2023a; Zou et al., 2023; and Yang et al., 2023), thermal fields (Zhao
et al., 2024; Hao et al., 2023), carbon storages and sequestration (Wen
et al., 2022; Jiang et al., 2023b), and other areas (Peng et al., 2023b;
You et al., 2022; Kontolati et al., 2023; Zhu et al., 2023b; Hua and Lu,
2023; White et al., 2023a; Li et al., 2021; Pathak et al., 2022; Rahman
et al., 2022b; 2022a; Yang et al., 2022; Li et al., 2022a; Maust et al.,

2022; Zhao et al., 2022; Renn et al., 2023; Xiong et al., 2023; Chen
et al., 2023; Huang et al., 2023; Poels et al., 2023; White et al., 2023b;
Thodi et al., 2023; Zhao et al., 2023; Tran et al., 2023; Lee, 2022;
Brandstetter et al., 2023; Li et al., 2023; Majumdar et al., 2023; Jiang
et al., 2023a; Lehmann et al., 2024; Subramanian et al., 2024; Fanaskov
and Oseledets, 2024; Lanthaler, 2021; and Azzizadenesheli et al., 2023).
From a computer vision perspective, these are framed as segmentation
problems, where an input image, such as the geometry of an airfoil, is
mapped to another image, for instance, the velocity field around that
airfoil. An analogous area in computer vision is classification, where
an input image is mapped, for example, to a name or number. While
FNOs have potential in classification tasks, there exists only a limited
amount of research conducted in this application as per our knowledge
(Johnny et al., 2022; Xi et al., 2022; and Kabri et al., 2023).

Johnny et al. (2022) used the FNO architecture for classifying
images in the CIFAR-10 dataset, containing ten different classes; how-
ever, they trained the network only on images with a fixed size of
32� 32 pixels. Additionally, Kabri et al. (2023) examined the FNO
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architecture for image classification. Although they tested images of
various sizes (e.g., 28� 28 pixels, 112� 112 pixels, etc.), they trained
and then tested the network separately for each size, assessing its per-
formance on the corresponding size. Xi et al. (2022) utilized the FNO
architecture for the hyperspectral remote sensing image classification.
Their dataset comprised images of various sizes, including 512� 614
pixels, 610� 340 pixels, and 512� 217 pixels. However, they adjusted
all images to a fixed size by adding patches. Consequently, although
they employed the FNO architecture, in practice, they limited their
analysis to images of a uniform size. In the current study, we narrow
our focus on classification problems. More specifically, we consider the
problem of predicting the permeability of three-dimensional digital
porous media, which vary in size, as a benchmark test case.

FNOs are invariant with respect to the size of input images, and
this characteristic ensures that images of varying sizes can be processed
by FNO-based deep learning frameworks without requiring any archi-
tectural alterations. Note that regular convolutional neural networks
(CNNs) lack this feature (Goodfellow et al., 2016). Building on this
strength of FNOs, we introduce a deep learning framework for training
the network simultaneously on images with varying sizes for a classifi-
cation problem. To achieve this deep learning framework, FNO layers
must be connected to a classifier, which is commonly a multilayer per-
ceptron (MLP). An intuitive approach to set this would be to link
FNO layers to a classifier via adaptive max pooling. Considering the
application of permeability prediction of three-dimensional porous
media, our machine-learning experiments show that this intuitive
approach only works well for porous media with fixed sizes. Pivoting
from this, we propose our novel approach. Rather than using adaptive
max pooling, we implement static max pooling with the size of the
channel width of the FNO layers. Given that the size of the channel
width of FNO layers is independent of the size of input images, our

proposed framework can be efficiently trained on various image sizes
at once (see Figs. 1 and 2).

To explain, at a high level, the difference between using adaptive
max pooling (see Fig. 2) and static max pooling (see Fig. 1), let us con-
sider for example a three-dimensional image being fed as an input of
the deep learning framework. For both pooling methods, at the frame-
work’s outset, FNO layers lift the input image from its three-
dimensional space to a higher dimensional space, determined by the
size of the channel width of the FNO layers. In the case of adaptive
max pooling, after FNO layer operations, the outcome eventually is
dropped into the initial three-dimensional space with the same size as
the input image. This array then serves as the input of adaptive max
pooling. The output of the adaptive pooling is then the input of the
classifier. In the case of static max pooling, before FNO layers drop the
output, we implement static max pooling, which functions within
the high dimensional space and pools with the size of the channel
width of FNO layers. The resulting output from this pooling then
becomes the classifier’s input. A more detailed exploration of these
concepts is provided in Sec. II.

The study of physical and geometric features of porous media is
important in diverse scientific and industrial areas such as digital rock
physics (Andra et al., 2013a; 2013b), membrane systems (Liang and
Fletcher, 2023), geological carbon storages (Blunt et al., 2013), and
medicine (Kumeria, 2022; Das et al., 2018). Deep learning frameworks
have been widely used for predicting the permeability of porous media
(Meng et al., 2023; Xie et al., 2023; Kashefi and Mukerji, 2023; 2021;
Liu et al., 2023; Hong and Liu, 2020; Wu et al., 2018; Tembely et al.,
2020; Masroor et al., 2023; and Sun et al., 2023), but, to the best of our
knowledge, all these frameworks were trained on a fixed-size porous
media. Note that training the proposed network to predict the perme-
ability of porous media of varying sizes comes with an exclusive

FIG. 1. Schematic of the proposed FNO-based framework for multi-size image classification.
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challenge when compared to training the network on conventional
images for the purpose of classifying them by their names (like those of
cats and dogs). For conventional images, one possible solution to handle
images with different sizes is to equalize them by adding mini patches to
the smaller images. Nevertheless, this solution is inapplicable to the
porous media problem. Adding mini patches to porous media can alter
their physical properties such as permeability. For instance, adding mini
patches around a porous medium simulates sealing it with wall bound-
aries, which prohibits flow within its pore spaces, resulting in a perme-
ability of zero. Additionally, the inherently three-dimensional nature of
porous media introduces another layer of complexity compared to the
two-dimensional conventional images. We summarize the contributions
of our work in the following bullet points:

• We propose a novel deep learning framework for image
classification.

• The proposed framework leverages Fourier neural operators,
which are invariant to the size of input images.

• Specifically designed to train simultaneously on images of multi-
ple sizes, the framework can effectively classify images of varying
sizes.

• This is an important feature for applications where input images
naturally vary in size. We demonstrate its application specifically
for three-dimensional images.

The remainder of this article is organized as follows. We intro-
duce and discuss the concept of Fourier neural operators for image
classification in Sec. II, starting with the traditional strategy of adaptive
max pooling, followed by our novel approach of static max pooling in
the high dimension of the Fourier space channel. A brief review of the-
oretical aspects of FNOs is given in Sec. II C. Data generation and the
training methodologies are, respectively, presented in Secs. III and IV.
In Sec. V, we provide results and discussion, including a comparison
between traditional strategy and our novel approach. Moreover, we
present a sensitivity analysis, covering the number of Fourier modes,
the channel width of discrete Fourier space, the number of FNO units,

and the effect of activation functions and average pooling. The deep
learning model generalizability is discussed in this section as well.
Finally, we summarize the work and present insight into future direc-
tions in Sec. VI.

II. FOURIER NEURAL OPERATORS FOR IMAGE
CLASSIFICATION
A. Our novel approach: Static max pooling in channel
width of FNO layers

In this subsection, we introduce the architecture of our proposed
deep learning framework. Our explanation heavily uses matrix nota-
tion to ensure clarity and provide a deeper understanding. As illus-
trated in Fig. 1, the input of the deep learning framework is a cubic
binary porous medium represented as the matrix An�n�n. As a first
step, the matrix An�n�n is lifted to a higher dimensional space using a
fully connected network. The dimension of this space is termed the
channel width of an FNO layer, shown by “width” in our matrix nota-
tion. This lifting results in a four-dimensional matrix, denoted as
B0
width�n�n�n. The matrix B0

width�n�n�n becomes subsequently the
input of an FNO layer. Within the FNO layer, two operations are
applied to B0

width�n�n�n: the kernel integration operator, denoted by
K0

width�width, and the linear transformation operator, denoted by
W0

width�width. The network computes the matrix–matrix multiplication
of K0

width�widthB
0
width�n�n�n and W0

width�widthB
0
width�n�n�n and then

sums up the resulting matrices, as depicted in Fig. 1. The output
undergoes element-wise operations of the Rectified Linear Unit
(ReLU) activation function (Goodfellow et al., 2016) defined as

rðcÞ ¼ maxð0; cÞ: (1)

Resulting in a four-dimensional matrix B1
width�n�n�n. Mathematically,

this procedure can be summarized as

B1
width�n�n�n ¼ r K0

width�widthB
0
width�n�n�n

�
þW0

width�widthB
0
width�n�n�n

�
: (2)

FIG. 2. Schematic of the intuitive FNO-based framework for multi-size image classification.
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In scenarios where multiple FNO layers exist in the framework, the
matrix B1

width�n�n�n serves as the input for the succeeding FNO layers,
and the same sequence of operations is applied. If we assume that there
are l number of FNO layers, the output from the final FNO layer is the
matrix Bl

width�n�n�n. In the next step, we implement static max pool-
ing on the first dimension of matrix Bl

width�n�n�n. Because width is
independent of the input image dimension (i.e., n), the static pooling
works for input images with any desired size (e.g., n¼ 40, n¼ 48, and
n¼ 56). Note that the width is a hyper parameter of FNO layers and
independent of n, as all the matrix–matrix multiplication operates on
the dimension with the size width, and not “n.” The static max pooling
produces a vector of length width, representing the global features of
the input images. The vector is then connected to a classifier. The clas-
sifier is a Multilayer Perceptron (MLP) composed of three layers of
sizes 128, 128, and 1. The ReLU activation function is used in the ini-
tial two layers along with a dropout with a rate of 0.3. Following the
third layer, a sigmoid activation function defined as

rðcÞ ¼ 1
1þ e�c

; (3)

is used to ensure output values are bounded between 0 and 1.

B. Intuitive approach: Adaptive max pooling in 3D
spatial space

In this subsection, we explain the intuitive approach (see Fig. 2).
Drawing parallels to our approach elaborated in Subsection IIA, we
begin by considering the input porous medium, which is a three-
dimensional matrix represented by An�n�n. All operations outlined in
Sec. IIA are applied to An�n�n until the network obtains the matrix
Bl
width�n�n�n at an intermediate step, as depicted in Fig. 2. As the next

step, we drop (as an inverse of the lifting operator explained in
Sec. II A) the matrix Bl

width�n�n�n from the high dimensional space to
the default space by means of a fully connected network. This transfor-
mation results in the matrix Zn�n�n. At this juncture, we use the adap-
tive three-dimensional max pooling, a functionality that is available in
deep learning platforms such as PyTorch (Paszke et al., 2019) or
TensorFlow (Abadi et al., 2015). To ensure a fair comparison between
the traditional approach and our novel approach, we keep the size of
the vector of the global feature consistent across both approaches. To
this end, the output of the adaptive max pooling is tailored to yield a
vector of size width. The resulting vector represents the global features
of the input images.

Note that because the size of matrix Zn�n�n depends on the size
of the input image (i.e., n), the pooling must be adaptive as we plan to
train the network simultaneously on input images with varying sizes
(e.g., A40�40�40; A48�48�48, and A56�56�56). Subsequent to the adaptive
max pooling, the global feature vector is connected to a classifier. This
classifier features and architecture are precisely the same as the one
elucidated in Sec. II A.

To close this subsection, it is noted that the main difference
between static max pooling and adaptive max pooling can be articu-
lated as follows. In static max pooling, the kernel size and stride are
constant, whereas in adaptive max pooling, they are not constant and
are computed based on the input size. For further details and formula-
tions, one may refer to the TensorFlow (Abadi et al., 2015) and
PyTorch (Paszke et al., 2019) handbooks.

C. A brief review of theoretical aspects of Fourier
neural operators

We focused on the technical aspects and computer implementa-
tion of FNO layers in Secs. II A and II B. Theoretical aspects of FNO
layers have already been vastly explained and discussed in the literature
(Li et al., 2020a). In this subsection, we briefly review the theory behind
FNO layers and highlight some important features.

As discussed in Sec. II A, an FNO layer comprises two main oper-
ators: the integral kernel operator and the linear transformation. We
overview the integral kernel operator. We consider the bounded
domain D such that D � Rd , where d indicates the physical dimen-
sionality of the problem and is equal to 3 (i.e., d¼ 3) for the current
problem since we deal with three-dimensional porous media. We fur-
ther show the input of the FNO layer by b(x) with x 2 D, where b is a
function representing all the operators applied to x when it arrives at
the gate of the FNO layer. Moreover, we define the periodic kernel
function s : R2ðdþdaÞ ! Rwidth�width, where da is the number of input
features and is equal to 1 (i.e., da¼ 1) in this study, because the input
of the deep learning framework is only a cubic binary array (represent-
ing a porous medium), and this array only provides one feature, which
is the geometry of the porous medium. Additionally, recall that width
is the channel width of the FNO layer, as illustrated in Secs. II A and
IIB. Following the formulation proposed by Li et al. (2020a), the oper-
ation of the integral kernel K on the function b(x) in the continuous
space is defined as

KbðxÞ ¼
ð
D
sðx; yÞbðyÞ dy; 8x 2 D: (4)

Following the original design of FNO layers by Li et al. (2020a), we
introduce the condition sðx; yÞ ¼ sðx � yÞ. By applying the convolu-
tion theorem as detailed in the literature (Li et al., 2020a), the following
expression for the integral kernel operator is obtained:

KbðxÞ ¼ F �1 F ðsÞ � F ðbðxÞÞð Þ; 8x 2 D; (5)

where the Fourier transform and its inverse are shown by F and F �1,
respectively. We introduce R as the learnable Fourier transform of s
such that

R ¼ F ðsÞ: (6)

Beyond the theory, we must implement these mathematical con-
cepts in a deep learning framework. In this way, we work with dis-
crete spaces and consequently discrete modes of the Fourier
transform. Hence, R is implemented as a neural network.
Additionally, each porous medium is represented by n3 discrete
points such that fx1; x2;…; xn3g � D. Moreover, Fourier series
expansions are truncated at a maximum number of modes mmax

computed as

mmax ¼
��� m 2 Zd : jmjj � mmax;j; for j ¼ 1;…; d
n o���; (7)

where mmax;j is the maximum number of modes taken in the dimen-
sion j, and is a hyper-parameter of the FNO layer. Note that since we
work on three-dimensional problems in the current study, d¼ 3, and
thus, there are onlymmax;1; mmax;2, andmmax;3. As a result, the compo-
nents of the R � F ðbðxÞÞ operation can be computed by the following
formulation:
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R � F ðbðxÞÞ½ �m;i ¼
Xwidth
j¼1

R½ �m;i;j F ðbðxÞÞ½ �m;j;

m ¼ 1;…;mmax; i ¼ 1;…;width; (8)

where ½R� 2 Cmmax�width�width is the matrix representation of R in
the discrete space. ½R � F ðbðxÞÞ� 2 Cmmax�width and ½F ðbðxÞÞ�
2 Cmmax�width are similarly defined. To increase computing efficiency
and enable parallel computing, the operator ½R�, for the current three-
dimensional problem, is better to be implemented as a five-
dimensional matrix expressed as

Rmmax;1�mmax;2�mmax;3�width�width: (9)

As can be seen from Eq. (9), the size of matrix R, and thus the count of
trainable parameters in the FNO layer, is a function of the number of
maximum Fourier modes at each dimension and the channel width of
the FNO layer. Recall that these parameters (i.e., mmax;1; mmax;2;
mmax;3, and width) are the hyperparameter of FNO layers and need to
be tuned by potential users.

III. DATA GENERATION

To generate synthetic data to examine the deep learning frame-
work under investigation in this study, we consider cubic porous
medium domains with length L along each side, spatial correlation
length of lc, and porosity of / (the ratio of pore spaces to the total vol-
ume of a porous medium). We use the truncated Gaussian algorithm
(Lantuejoul, 2002; Le Ravalec-Dupin et al., 2004) to generate synthetic
porous media. In practice, we create three-dimensional cubic arrays of
dimension n� n� n, populated with random numbers conforming
to a normal distribution with the characteristics of a mean value of 0.0
and a standard deviation of 1.0. Subsequently, we filter the arrays by a
three-dimensional Gaussian smoothing kernel with a standard devia-
tion of 5.0 and a filter size commensurate with a spatial correlation
length (lc) of 17. We then subject the arrays to a binarization process
via a thresholding number such that the porosity (/) of the resulting
arrays lies within the range of [0.125, 0.200]. We use the MATLAB
software to handle the above-described steps. We set L as n� dx,
where dx represents the length of each side of a pixel in porous media.
We set dx to 0.003m. We generate porous media with three different

sizes by considering three different values for n, such that
n1 ¼ 40; n2 ¼ 48, and n3 ¼ 56. In this way, each cubic porous
medium can be characterized by its size as n3 (e.g., 403, 483, and 563).
For each n, we generate 1250 data. We randomly split the generated
data corresponding to each size into three categories of training (80%,
i.e., 1000 data), validation (10%, i.e., 125 data), and test (10%, i.e., 125
data). Hence, there are 3750 data in total, 3000 data for the training
set, 375 data for the validation set, and 375 data for the test set.
Figure 3 exhibits a few examples of the generated synthetic data.

To stimulate the incompressible viscous Newtonian flow within
the generated porous media, we apply a constant pressure gradient in
the x direction (Dp=L). Zero velocity boundary condition is applied at
the top and bottom of the porous medium on the y–z planes. Given
the geometry and boundary conditions illustrated above, we use a
Lattice Boltzmann solver (Keehm et al., 2004) to solve the continuity
and steady-state Stokes equations, which are written as follows:

r � u ¼ 0; inV; (10)

�rpþ lDu ¼ 0; inV ; (11)

where l is the dynamic viscosity, u and p indicate, respectively, the
velocity vector and pressure fields in the pore space of the porous
medium, V. In the next step, we compute the permeability in the
x� direction (k) using Darcy’s law (Darcy, 1856)

k ¼ � l�U
Dp=L

; (12)

where �U shows the average velocity in the entire porous medium (i.e.,
including solid matrices). The computed permeabilities of our dataset
fall in the range [20 mD, 200 mD].

IV. TRAINING

To accelerate the convergence of the training procedure, the out-
put training data (i.e., permeability) are scaled in the range of [0, 1]
using the maximum and minimum values of the training set. Note
that although we train a single neural network simultaneously on
porous media with three different sizes (corresponding to n1, n2, and
n3), we normalize the permeability of porous media of each size using

FIG. 3. A few examples of synthetically generated three-dimensional digital porous media for training the proposed neural network; (a) an image of size 403, (b) an image of
size 483, and (c) an image of size 563. Blue represents grain space, while red indicates pore space.
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the maximum and minimum values of the specific size.
Mathematically, it can be written as

fk̂truthgnj ¼
fkgnj �minfkgnj

maxfkgnj �minfkgnj
; j ¼ 1; 2; and 3; (13)

where k̂truth shows the ground truth scaled permeability. Moreover, for
instance, fkgn1 indicates the training data containing porous media
with the size of 403 (because n1 ¼ 40). Note that we eventually rescale
predicted permeability (k̂prediction) to the physical domain (kprediction)
for analyzing the neural network performances. Note that in the appli-
cation of predicting the permeability of porous media using deep
learning models, the presence of noisy data or outliers in the training
set indicates that at least one sample of porous media has a permeabil-
ity deviating significantly from the distribution observed in the rest of
the training set. This means that data normalization, using Eq. (13),
would result in the permeability values of the training set clustering
near 0 or 1. Such a scenario would seriously impair the training process
of any neural network, including the one proposed in this study.
Therefore, data cleaning is a crucial step before proceeding with data
normalization. Concerning the loss function, we use the mean squared
error function defined as

Loss ¼ 1
N

XN
i¼1

ðk̂prediction � k̂truthÞ2; (14)

where N is the number of data in the training set (i.e., N¼ 3000). Note
that using the relative mean squared error as the loss function does not
lead to a significant difference in the results based on our experiments.
We set the number of modes in each dimension to 2 (i.e., set
mmax;1 ¼ 2; mmax;2 ¼ 2, and mmax;3 ¼ 2). The channel width of the
discrete Fourier space is set to 64 (i.e., width ¼ 64). It is worth noting
that both the number of modes and the channel width play pivotal
roles in the network performance. Detailed discussions on their signifi-
cance and implications are provided in Secs. VB and VC, respectively.
Additionally, we implement three units of FNOs in the network. The
Adam optimizer (Kingma and Ba, 2014) is used. A constant learning
rate of 0.001 is selected. We use the stochastic gradient descent
(Goodfellow et al., 2016) with a mini-batch size of 50. As discussed in
Sec. II, the architecture of FNOs is designed to be independent of the
spatial resolution of input images. During the training process, how-
ever, all the input images within a mini-batch must be the same size.
In practice, each epoch of training is characterized by an inner loop
that iterates through mini-batches of differing porous medium sizes
(i.e., 403, 483, and 563). Within this loop, the training process starts
with a mini-batch of data of size 403, followed by one of size 483, and
then continues to 563, in sequence until all the data in the training set
are covered within the epoch. Note that the trainable parameters of the
network are updated only at the end of each epoch. Our deep learning
experiments show that the order in which these differently sized
porous media are fed within an epoch has no significant influence on
the result accuracy and convergence speed, whether starting with the
porous media of size 403, followed by 483 and 563, or any other permu-
tation. From a software perspective, we employ the NVIDIA A100
(SXM4) graphic card with 80 GB of RAM for training the networks.

In the last paragraph of this subsection, we address the metric
used for assessing the effectiveness of permeability prediction. We use

the coefficient of determination, also known as the R2 score, which can
be calculated using the following formula:

R2 ¼ 1�
XQ

i¼1
ðktruthi � kpredictioniÞ2XQ

i¼1
ðktruthi � �kÞ2

; (15)

where Q represents the number of the data in a set (e.g., training, test,
etc.) and �k is the average value of the set fktruthigQi¼1.

V. RESULTS AND DISCUSSION
A. General analysis

As illustrated in Fig. 4, the success of our approach is evident in
the R2 score, 0.968 09, obtained for the test set (e.g., 375 data).
Additionally, Fig. 5 specifically showcases the R2 scores for the test set
but individualized for each cubic size (i.e., 403, 483, and 563). As can be
seen in Fig. 5, the R2 scores obtained are equal to 0.968 30, 0.969 78,
and 0.96607, respectively, for the cubic digital porous media of sizes
403, 483, and 563. The range of R2 scores for the three different sizes
remains at an excellent level, demonstrating that our FNO-based
framework is robust and not overfitted to any specific size. Regarding
the speedup achieved using the proposed deep learning framework, it
predicts the permeability of the test set approximately in 18 s using our
graphics processing unit (GPU) machine. In contrast, computing the
permeability of the same data with our in-house Lattice Boltzmann
Method code, developed in Cþþ programing language, needs approx-
imately 27min on a single Intel(R) Core processor with a clock rate of
2.30GHz. As a result, the average speedup factor we have accom-
plished is approximately 90 times faster compared to our conventional
numerical solver. It is important to mention that the reported speedup
factor is highly dependent on the efficiency of the numerical solver
and the computing power. For instance, our numerical solver is a cus-
tom that operates on a single central processing unit. Modern and
commercial applications (e.g., COMSOL and GeoDict) are signifi-
cantly faster compared to our Cþþ code.

FIG. 4. R2 plots for the test set (375 data) using the proposed approach for classifi-
cation of multi-sized images.
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B. Number of Fourier modes in each dimension

Our deep learning experiments demonstrate that there is a critical
interplay between the number of modes (i.e., mmax;1; mmax;2, and
mmax;3) set in the proposed FNO framework and the tendency for
overfitting during the training procedure. Accordingly, setting the
number of modes beyond 2 leads to a severe divergence between the
training and validation loss. This fact can be observed in Fig. 6 when
we set mmax;1 ¼ 7; mmax;2 ¼ 7, and mmax;3 ¼ 7 or mmax;1 ¼ 10;
mmax;2 ¼ 10, and mmax;3 ¼ 10. The reported results indicate that the
number of modes plays a critical role in the FNOmodel generalization.
A further survey of the influence of the number of modes in the FNO
configuration is performed by varying the number of modes in all
three principal directions, from 2 to 10, and the obtained R2 scores are
tabulated in Table I. Accordingly, the optimal mode configuration for
avoiding overfitting is 2, as the divergence between the validation and
training loss is minimized. Consequently, a careful selection of the
number of modes in the FNO units is necessary to make the deep
learning framework robust and reliable for the image classification
application. The consequence of this scenario is observable in Fig. 7,
where we plot the R2 score for the test sets, for example, for the choice

of mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 4; mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 7,
andmmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 10. In all of these cases, the R2 scores
obtained for the prediction of the permeability of the porous media in
the test set are less than 0.4.

We perform two other experiments. In the first one, we set only
one mode (e.g., mmax;3) to 10 (mmax;3 ¼ 10) and the other two modes
to 2 (i.e., mmax;1 ¼ 2 and mmax;2 ¼ 2). In the second one, we set only
two modes (e.g., mmax;2 and mmax;3) to 10 and the reminder mode to
2 (i.e., mmax;1 ¼ 2). The outputs of these two experiments are illus-
trated in Fig. 8. As can be seen in Fig. 8, the resulting R2 scores of the
test set are equal to 0.222 98 and 0.347 28, respectively, for the first
and second experiments. Accordingly, we conclude that even
increasing one mode beyond 2 drastically negatively affects the per-
formance of the proposed FNO framework for the current applica-
tion. Hence, the main challenge of working with the proposed
network is its high sensitivity to the number of modes. As discussed
in this subsection, changing even the number of modes in one
dimension leads to overfitting of the network on the training data
and a lack of efficiency in predicting the test data, consequently
resulting in a lack of generalizability.

FIG. 5. R2 plots for the test set (375 data) using the proposed approach for the classification of multi-sized images. The results are individually shown for (a) images of size 403

(125 data), (b) images of size 483 (125 data), and (c) images of size 563 (125 data).

FIG. 6. Evolution of the loss function for the validation and training sets for the choice of (a) mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 2, (b) mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 7, and
(c) mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 10.
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C. Channel width of FNOs

We further analyze the impact of different channel widths on the
performance of the introduced deep learning framework. Based on our
machine learning experiments, R2 scores obtained for the channel
width of 8, 27, 64, and 125 are 0.49904, 0.816 18, 0.968 15, and
0.944 57, respectively. When the channel width decreases from 64 to
27 or to 8, a significant drop in the R2 score is observed. Notably,
increasing the channel width beyond 64 to 125 also leads to a slight
decrease in the precision of permeability predictions.

As discussed in Sec. II C, the choice of channel width is directly
related to the number of trainable parameters, which are 30 897,

163 783, 828 673, and 3 096531 for each respective channel width.
Moreover, the channel width also determines the size of the max pool-
ing, representing the size of the global feature vector. Hence, optimiz-
ing channel width is critical. Small channel width leads to poor
performance, whereas large channel width imposes high computa-
tional costs and memory allocation without necessarily a significant
performance improvement.

D. Number of FNO units

We investigate the effect of varying the number of FNO units
(see Fig. 1). Deep learning experiments are conducted using one, two,

TABLE I. R2 score of the test set for different mode numbers of the proposed FNO-based framework.

Number of modes in each dimension 2 3 4 5 6 7 8 9 10

R2 score 0.968 09 0.154 16 0.267 57 0.263 61 0.233 25 0.387 89 0.404 33 0.317 73 0.288 39

FIG. 7. R2 plots for the test set (375 data) using the proposed approach for the classification of multi-sized images for the choice of (a) mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 4,
(b) mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 7, and (c) mmax;1 ¼ mmax;2 ¼ mmax;3 ¼ 10.

FIG. 8. R2 plots for the test set (375 data) using the proposed approach for the classification of multi-sized images for the choice of (a) mmax;1 ¼ mmax;2 ¼ 2 and mmax;3 ¼ 10,
and the choice of (b) mmax;1 ¼ 2 and mmax;2 ¼ mmax;3 ¼ 10.
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three, four, and five units to assess the impact on the introduced FNO
performance. By computing the R2 score across the test set, we realize
that there is no significant improvement in the prediction accuracy. R2

score for the FNO configuration with one, two, three, four, and five
units are, respectively, 0.827 67, 0.91703, 0.968 13, 0.96759, and
0.978 18. Hence, adding more units (beyond 3) and making the network
deeper does not have a remarkable effect on the prediction accuracy.
However, the number of trainable parameters and consequently, the
computational cost and required GPU memory (e.g., RAM) escalated
by adding FNO units. For example, 820 353, 824 513, 828 673, 832 833,
and 836993 are, respectively, the number of trainable parameters of the
model with one, two, three, four, and five layers of FNOs.

E. Activation functions

We give particular attention to the effect of choosing an activa-
tion function on the prediction ability of our FNO model. In the pri-
mary setup, we configure all layers to employ the ReLU activation
function, except the last layer of the classifier, where we utilize a sig-
moid function. We implement two alternative setups. In the first one,
we alter the activation function of the last layer to ReLU, this configu-
ration results in a drastic reduction in the R2 score of the test set,
regardless of if the output permeability is normalized between 0 and 1.
In the second setup, we replace the activation function in all layers
with sigmoid. As a consequence of this setup, a slight decrease in per-
formance is indicated, as R2 score of 0.91478 is obtained for the test
set. Note that the training procedure becomes slower in this setup, as
the derivative of the sigmoid function results in a more complicated
computation graph compared to that one output by the derivation of
the ReLU function.

F. Static max pooling vs static average pooling

Within the context of capturing global features in the proposed
FNO-based framework, we explore the efficacy of implementing static
average pooling as an alternative to static max pooling. Our machine
learning experiment yields a R2 score of 0.944 78 in this case, demon-
strating a marginal diminishment in the network performance com-
pared to the presence of static max pooling. As supported by the
literature (Qi et al., 2017a; 2017b; Kashefi et al., 2021; Kashefi and
Mukerji, 2022; and Kashefi et al., 2023), max pooling is a preferred
technique for classification tasks compared to average pooling. Our
finding shows a similar pattern for the introduced FNO-based
framework.

G. Generalizability

In this subsection, we assess the generalizability ability of the pro-
posed FNO-based framework. Note that the concept of generalizability
in the context of the present work extends to the network’s perfor-
mance to predict the permeability of cubic porous media with unseen
sizes. As discussed in Sec. IV, the network was initially trained using
porous media with cubic geometries of sizes 403, 483, and 563. To
examine the network capacity to generalize, we predict the permeabil-
ity of porous media with sizes 363, 443, 523, and 603 with 375 cubes for
each of these sizes using our pretrained FNO-based framework. Figure
9 shows a few examples of these synthetic data, generated for the pur-
pose of examining the network generalizability. As shown in Fig. 10, a
slight decline is observed in the accuracy of permeability predictions
for porous media with unseen sizes. However, the obtained R2 scores
remain in an excellent range. These scores are 0.93185, 0.91124,
0.91500, and 0.908 44 for the porous media sizes of 363, 443, 523, and
603, respectively. As another observation, the performance of our
approach is marginally higher in predicting the permeability of unseen
porous media with smaller cubic sizes. As highlighted in Fig. 10, R2

scores of porous media with sizes of 363 are greater than ones with a
size of 443. A similar scenario occurs when we compare porous media
of sizes 523 and 603. This can be attributed to the fact that, for smaller
sizes, the fixed-size vector of the global feature encodes the features of
smaller cubes more effectively. Moreover, note that the vector size is
the same as the width channel. As a last comment in this subsection,
to enhance the network’s generalizability, a potential strategy could
involve expanding the training dataset to include more than the initial
three sets of geometry sizes.

H. Comparison with intuitive approach

1. Classification of fixed-sized image

For the comparison between the proposed approach (see Fig. 1)
and the intuitive approach (see Fig. 2), we consider the problem of pre-
dicting the permeability of porous media with fixed cubic sizes.
Specifically, we consider a size of 483. Similar outputs are observed for
other sizes. To ensure a fair comparison, both methodologies are inves-
tigated under similar conditions. Specifically, both methods are set to
have an approximately equal number of trainable parameters (i.e.,
828 738 for the intuitive strategy and 828 673 for our approach).
Accordingly, the size of the vector representing the global feature is 64
in both methods. All other parameters such as the number of modes
in each direction, the number of FNO units, the classifier architecture,

FIG. 9. A few examples of synthetically generated three-dimensional digital porous media for examining the generalizability of the proposed neural network; (a) an image of
size 363, (b) an image of size 443, (c) an image of size 523, and (d) an image of size 603. Blue represents grain space, while red indicates pore space.
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and size, are the same in both methods and are set as those listed in
Sec. IV (i.e., the training section).

Our results demonstrate that both methods perform proficiently,
with the R2 score of 0.993 48 and 0.973 60 over the test set for the intui-
tive approach (see Fig. 2) and the proposed approach (see Fig. 1),
respectively. The evolution of the loss function for the training and val-
idation sets indicates a convergence after approximately 3000 epochs.
This deep learning experiment confirms an approximately equivalent
computational cost between the two approaches. Hence, when the
image size of training data are fixed, both strategies are effective for the
defined image classification task and there is no significant advantage
for one method over the other, according to our analysis. As a last
point in this subsection, we note that one may also use static max pool-
ing in the architecture of the traditional approach since the size of
porous media is fixed in this experiment. Based on our results, the per-
formance does not change.

2. Classification of multi-sized images

In this subsection, we compare the performance of the proposed
approach (see Fig. 1) with the intuitive approach (see Fig. 2) in predict-
ing the permeability of porous media with varying sizes. For a fair
comparison between the intuitive approach and the proposed
approach, we use the same training, validation, and test set described
in Sec. III. The evolution of both training and validation losses is
depicted in Fig. 11. Figure 11 indicates a divergence between the train-
ing and validation losses for the network used in the intuitive
approach, which suffers from overfitting, whereas this is not the case
for the proposed approach. The superiority of the proposed approach
is also evident by the R2 score obtained for the test set. Accordingly,
the R2 scores of the proposed approach and the intuitive approach are,
respectively, 0.968 09 and�0.426 32. The negative value of the R2 score
for the intuitive approach demonstrates that its model makes worse
predictions than a model that simply predicts all outputs as the mean

FIG. 10. R2 plots demonstrating the generalizability of the proposed approach in classifying multi-sized images. The network, trained on images of sizes 403, 483, and 563, is
used to predict images of sizes (a) 363 (375 data), (b) 443 (375 data), (c) 523 (375 data), and (d) 603 (375 data).
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value of the dataset. Note that changing hyper-parameters, such as the
number of modes, channel width, and number of FNO layers, does
not improve the model of the intuitive approach.

This flaw stems from two reasons. First, using the intuitive
approach, the network captures the global feature after lifting cubes
into the original space, while the trainable parameters of the network
are mainly defined in the Fourier space. Second, the adaptive max
pooling’s size is altered depending on the size of the input cubic porous
medium. These two together lead to a misrepresentation of the global
feature of cubes with different sizes, when the network tends to predict
the permeability of the validation and test sets. Note that in Sec. VH1,
we showed that the intuitive approach worked well when it was trained
over porous media with fixed sizes. However, the result of our machine
learning experiments illustrates that the global features of cubes with
different sizes are amalgamated. In contrast, our approach uses static
max pooling consistent with the channel width of Fourier neural oper-
ators before transitioning back to the original space. This approach
enables the capture of global features prior to changing spaces.

VI. SUMMARY AND FUTURE OUTLOOKS

In this research study, we introduced a novel deep learning
framework based on Fourier neural operators for classifying images
with different sizes (see Fig. 1). Because Fourier neural operators are
resolution invariant, they have the potential to be used for the task of
multi-sized image classification. To reach this goal, Fourier neural
operators must be connected to a classifier, ideally using a pooling
operator. To this end, we proposed the novel idea of implementing a
static max pooling operator, which functions in a high dimensional
space with the size of Fourier channel width. We showed the efficiency
and robustness of this framework by predicting the permeability of
three-dimensional digital porous media with three different sizes of
403, 483, and 563. We explored the effect of key parameters such as
the number of Fourier modes in each dimension, the channel width of
the discrete Fourier space, activation functions in different layers, and
the number of Fourier units. Additionally, we showed that while the
network was only trained on the porous media with the sizes of 403, 483,

and 563, it could successfully predict the permeability of the porous
media with the sizes of 363, 443, 523, and 603, indicating its generalizabil-
ity. Moreover, we demonstrated that the idea of implementing an adap-
tive max pooling (see Fig. 2), as an intuitive approach for connecting the
FNO layers to the classifier, showed a lack of performance when predict-
ing the permeability of porous media of varying sizes. Note that the
adaptive max pooling operated in spatial spaces and that pooling had to
be adaptive to handle input images with varying sizes.

As a future research direction, we aim to adapt the current archi-
tecture and extend its capabilities to image classification. In contrast to
the problem of permeability prediction, this approach reduces the
problem’s dimensionality to two. Additionally, given that the standard
dataset for image classification is usually large, we anticipate improved
generalizability of the proposed framework. As another research direc-
tion, we would like to examine our deep learning framework using real
data rather than synthetic data. We aim to expand our work to a vari-
ety of porous media, including biological tissues and fuel cells.
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