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A B S T R A C T

We present Kolmogorov-Arnold PointNet (KA-PointNet) as a novel supervised deep learning
framework for the prediction of incompressible steady-state fluid flow fields in irregular domains,
where the predicted fields are a function of the geometry of the domains. In KA-PointNet, we
implement shared Kolmogorov-Arnold Networks (KANs) in the segmentation branch of the
PointNet architecture. We utilize Jacobi polynomials to construct shared KANs. As a benchmark
test case, we consider incompressible laminar steady-state flow over a cylinder, where the
geometry of its cross-section varies over the data set. We investigate the performance of Jacobi
polynomials with different degrees as well as special cases of Jacobi polynomials such as
Legendre polynomials, Chebyshev polynomials of the first and second kinds, and Gegenbauer
polynomials, in terms of the computational cost of training and accuracy of prediction of the
test set. Additionally, we compare the performance of PointNet with shared KANs (i.e., KA-
PointNet) and PointNet with shared Multilayer Perceptrons (MLPs). It is observed that when
the number of trainable parameters is approximately equal, PointNet with shared KANs (i.e.,
KA-PointNet) outperforms PointNet with shared MLPs.

1. Introduction and motivation
Kolmogorov-Arnold Networks (KANs) [1] were recently proposed as an alternative modeling approach to

Multilayer Perceptrons (MLPs) [2, 3, 4]. KANs are primarily based on the principles of the Kolmogorov-Arnold
representation theorem [5, 6, 7, 8, 9, 10, 11, 12]. The core idea of KANs is to propose a neural network where the
objective is to train activation functions rather than training weights and biases with fixed activation functions, as in
MLPs [1]. The efficiency and capability of KANs have been demonstrated in various areas and applications, such
as physics-informed machine learning [13, 14, 15, 16, 17, 18, 19], deep operator networks [20, 14], neural ordinary
differential equations [21], image classification [22, 23, 24, 25, 26, 27, 28, 29, 30, 31], image segmentation [32, 33],
image detection [34], audio classification [29], and many other scientific and industrial fields [35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Additionally, KANs have been integrated into Convolutional
Neural Networks (CNNs) [22, 55] and graph neural networks [56, 57, 58, 59]. In the current study, our focus is on the
field of computational physics and mechanics.

One of the most important applications of supervised deep learning in computational mechanics is to accelerate
the investigation of geometric parameters for device optimization. Supervised deep learning models are first trained on
labeled data obtained from numerical simulations or lab experiments, and then used to predict quantities of interest for
unseen geometries. For this specific application, geometric deep learning models such as CNNs and their extensions
(e.g., see Refs. [60, 61, 62, 63, 64, 65]), graph neural networks (e.g., see Refs. [66, 67, 68, 69, 70]), and point cloud-
based neural networks such as PointNet and its derived versions (e.g., see Refs. [71, 72, 73, 74, 75, 76, 77]) are
particularly useful. Focusing on this aspect, the goal of the current study is to investigate the capability of KANs,
embedded in a geometric deep learning framework, for rapid predictions of quantities of interest in computational
mechanics when the geometry of the domains varies across the data set. In these types of networks, the geometry of a
domain is learned in a latent space, making the network’s prediction a function of the geometry.

Graph neural networks [78] and PointNet [71] have advantages for handling complicated geometries, which are
common in industrial design. These benefits have been extensively discussed in the literature (e.g., see Ref. [74]), and
a summary is presented here. Using graph neural networks or PointNet, the geometry of the domain of interest or the
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object under investigation for shape optimization can be represented without pixelation, unlike CNN-based models.
This approach avoids artifacts in the representation of object or domain boundaries (e.g., see Fig. 1 in Ref. [73]).
Moreover, because the geometry of the target object is precisely illustrated in graph neural networks or PointNet, the
network’s predictions are highly responsive to small variations in the geometry from one labeled data to another, such
as minor adjustments in the angle of attack of an airfoil. Additionally, graph neural networks or PointNet allow for
adaptive variation in the spatial distribution of points from fine to coarse scales (e.g., see Figs. 7–10 in Ref. [73]),
a feature similar to unstructured grids. This optimizes the computational cost of training, rather than imposing high
computational costs due to uniform pixels across the entire domain, as in CNN-based models. Finally, the spatial
dimensions of the domain under study can vary from one labeled data to another, and are not constrained to a fixed
size, unlike in CNN-based networks (e.g., see Figs. 7–11 in Ref. [73]). Due to these advantages, we embed KANs
(instead of MLPs) into PointNet to create a new geometric deep learning framework. For the rest of the article, we will
refer to this framework as KA-PointNet.

PointNet [71] was initially introduced in 2017 for the classification and segmentation of three-dimensional objects
modeled as three-dimensional points. PointNet [71] and its advanced versions [72, 79] have received remarkable
attention in the areas of computer graphics and computer vision (e.g., see Refs. [80, 81, 82, 83]). Historically, Kashefi
et al. [73] were the first to use PointNet, with necessary adaptations and adjustments, in the area of computational
physics, specifically for steady-state incompressible flow in two dimensions. Subsequently, other researchers employed
PointNet and its advanced versions, such as PointNet++ [72], in other areas such as compressible flow [76], elasticity
[77], and others [84, 85, 86]. Kashefi et al. [74] also introduced physics-informed PointNet (PIPN) in 2022 to solve
forward and inverse problems involving incompressible flows [74], thermal fields [74], linear elasticity [75], and flow
transport in porous media [87]. In simple terms, PIPN combines PointNet with the concept of physics-informed deep
learning introduced by Raissi et al. [88], integrating the residual of governing equations associated with the physics of
a problem into the loss function of PIPN.

To build KA-PointNet, we fundamentally use the segmentation branch of PointNet [71]. We implement shared
KANs in all layers of PointNet instead of shared MLPs. Furthermore, we utilize Jacobi polynomials in shared KANs.
Jacobi polynomials have already been used for KAN implementations (e.g., see Refs. [14, 24, 41, 89, 90]). Moreover,
we investigate the capability of special cases of Jacobi polynomials, such as Legendre polynomials, Chebyshev
polynomials of the first and second kinds, and Gegenbauer polynomials. Additionally, we assess the performance
of KA-PointNet for different degrees of Jacobi polynomials. Flow past a cylinder with different cross-sectional shapes
is considered as a representative benchmark problem. To construct point cloud data readable for feeding into PointNet
[71], grid vertices of finite volume meshes of computational domains are viewed as points. A comparison between
the outcomes of PointNet with shared KANs (i.e., KA-PointNet) and PointNet with shared MLPs is made in terms of
prediction accuracy, training time, and the number of trainable parameters. The Adam optimizer [91], along with the
mean squared error loss function, is used to perform the gradient descent optimization. It is noteworthy that, to the
best of the author’s knowledge, this is the first time a geometric deep learning model combined with KANs is used to
predict solutions for computational fields over domains with distinct geometries. Although KANs have already been
integrated into CNNs and graph neural networks, they have been utilized for other applications in computer vision
[22, 55, 56, 57, 58, 59].

The rest of this article is organized as follows. Governing equations and data generation are explained in Sect. 2.
The architecture of KA-PointNet with shared KANs and its training on the desired data set are elaborated in Sect. 3.
Analysis of the performance of KA-PointNet and the effect of different parameters on the accuracy of its predictions are
given in Sect. 4. Additionally, a comparison between the performance of KA-PointNet and PointNet with shared MLPs
is provided in Sect. 4 as well. Finally, a summary of the research article and potential future directions are explained
in Sect. 5.

2. Problem formulation
In the current article, we propose a supervised version of KA-PointNet for predicting the velocity and pressure

fields of steady-state incompressible flow. To train the deep learning framework and perform error analysis on the
predictions of KA-PointNet for unseen data, we require labeled data. We use the classical problem of steady-state flow
past a cylinder as a benchmark test case. Accordingly, the input of KA-PointNet is the geometry of the domain, and
the output is the prediction of velocity and pressure fields. We describe the governing equations of the problem and
the procedure of data generation in the subsections of 2.1 and 2.2, respectively.
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(a) (b) (a) (b)

Figure 1: Finite volume meshes used for the numerical simulation of flow over a cylinder with a triangular cross section,
with 2775 vertices on the left panel, and an elliptical cross section, with 2672 vertices on the right panel.

2.1. Governing equations of interest
The behavior of incompressible viscous Newtonian fluid flow is described by the conservation of mass and

conservation of momentum, along with the associated boundary conditions, as follows:

∇ ⋅ 𝒖 = 0 in 𝑉 , (1)

𝜌
(𝜕𝒖
𝜕𝑡

+ (𝒖 ⋅ ∇) 𝒖
)

− 𝜇Δ𝒖 + ∇𝑝 = 𝒇 in 𝑉 , (2)

𝒖 = 𝒖ΓD
on ΓD, (3)

−𝑝𝒏 + 𝜇∇𝒖 ⋅ 𝒏 = 𝒕ΓNe
on ΓNe, (4)

where 𝒖 and 𝑝 are the velocity vector and absolute pressure of the fluid in the domain 𝑉 , respectively. Fluid density
and dynamic viscosity are denoted by 𝜌 and 𝜇, respectively. The external body force is indicated by 𝒇 . The Dirichlet
and Neumann boundaries of domain 𝑉 are represented by ΓD and ΓNe, respectively, with no overlap between ΓD and
ΓNe. The stress vector acting on ΓNe is denoted by 𝒕ΓNe

, where 𝒏 indicates the outward unit normal vector to ΓNe. The
components of the velocity vector 𝒖 are demonstrated by 𝑢 and 𝑣 in the 𝑥 and 𝑦 directions, respectively.

We are interested in solving Eqs. (1)–(2) for flow over an infinite cylinder with different cross-sectional shapes. To
achieve this goal, we consider a rectangular domain 𝑉 = [0, 38 m] × [0, 32 m]. The cross-section of the cylinder is
represented by a two-dimensional object with its center of mass at the point (8 m, 16 m) in the domain 𝑉 . The cylinder
is rigid, and we impose no-slip conditions on its surfaces. The free stream velocity, with a magnitude of 𝑢∞ and parallel
to the 𝑥 axis, is applied at the inflow, bottom, and top boundaries of the domain 𝑉 . To satisfy far-field assumptions
[92, 93, 94, 95, 96], the outflow velocity is described by the Neumann stress-free conditions (i.e., 𝒕Γ𝑁𝑒 = 𝟎) as follows:

−𝑝𝒏 + 𝜇∇𝒖 ⋅ 𝒏 = 𝟎. (5)

Working in the International System of Units, the fluid density (𝜌), free stream velocity (𝑢∞), and dynamic viscosity
(𝜇) are set to 1.00, 1.00, and 0.05, respectively.
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Table 1
Details of the generated data

Shape Schematic
figure

Variation in
orientation

Variation in
length scale

Number
of data

Circle

a

- 𝑎 = 1 m 1

Equilateral hexagon

a

3◦, 6◦, . . . , 60◦ 𝑎 = 1 m 20

Equilateral pentagon

a

3◦, 6◦, . . . , 72◦ 𝑎 = 1 m 24

Square

a

3◦, 6◦, . . . , 90◦ 𝑎 = 1 m 30

Equilateral triangle

a

3◦, 6◦, . . . , 180◦ 𝑎 = 1 m 60

Rectangle

b

a

3◦, 6◦, . . . , 180◦ 𝑎 = 1 m; 𝑏∕𝑎 = 1.2, 1.4, . . . , 3.6 780

Ellipse

b

a

3◦, 6◦, . . . , 180◦ 𝑎 = 1 m; 𝑏∕𝑎 = 1.2, 1.4, . . . , 3.8 840

Triangle

�
ab

3◦, 6◦, . . . , 360◦ 𝑎 = 1 m; 𝑏∕𝑎 = 1.5, 1.75
𝛾 = 60◦, 80◦

480

2.2. Data generation
We employ Gmsh [97] to discretize the domain 𝑉 using unstructured finite volume meshes. Figure 1 exhibits two

examples of generated meshes for cylinders with triangular and elliptical cross sections. We utilize the OpenFOAM
solver [98] with the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [99] to numerically solve Eqs.
(1)–(2) under the conditions and assumptions described above. Numerical simulations are conducted until the𝐿2 norm
of residuals of the discretized Eqs. (1)–(2) reaches 10−3. A solution is considered a steady state once this criterion
is met. The solution of the velocity and pressure fields in Eqs. (1)–(2) is a function of the geometry of the cylinder’s
cross-section. Hence, to generate the labeled data, we consider seven different classical geometries for the cross-section,
with varying sizes and rotations, as depicted and described in Table 1. In our computational setting, the cross-sectional
geometry of the cylinder has a characteristic length 𝐿. Note that the Reynolds number can be expressed as

Re =
𝜌𝐿𝑢∞
𝜇

, (6)

and thus, it is a function of 𝐿. As illustrated in Table 1, the data set includes cross-sections with the shapes of circle
[93, 100, 101], square [102], triangle [103], rectangle [104], ellipse [105], pentagon [106], and hexagon [106], each
with different length scales and orientations. The range of the Reynolds number in the data set varies from 20.0 to
76.0. The total number of labeled data is 2235. A similar data set was generated and used by Kashefi et al. [73]. It is
noteworthy that the process of data generation, starting from defining the domain geometry, mesh generation, executing
the numerical solver, and storing the velocity and pressure fields, is fully automated using C++ codes, Python scripts,
journal files, and batch files.
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Figure 2: Examples of input and output of the generated dataset in the form of point clouds

In the next step, we introduce 𝑢∗, 𝑣∗, and 𝑝∗ as dimensionless variables associated respectively with 𝑢, 𝑣, and 𝑝.
They are defined as follows:

𝑢∗ = 𝑢
𝑢∞

, (7)
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𝑣∗ = 𝑣
𝑢∞

, (8)

𝑝∗ =
𝑝 − 𝑝0
𝜌𝑢2∞

, (9)

where the atmospheric pressure is indicated by 𝑝0. As the next stage, we scale the spatial coordinates as well as the
velocity and pressure fields of the training set to a range of [−1, 1] using the following formulation:

{

𝜙′} = 2
(

{𝜙} − min({𝜙})
max({𝜙}) − min({𝜙})

)

− 1, (10)

where the set {𝜙} includes {𝑥∗}, {𝑦∗}, {𝑢∗}, {𝑣∗}, and {𝑝∗}. According to Eq. (10), the scaled input and output data
are represented by

{

𝑥′
}

,
{

𝑦′
}

,
{

𝑢′
}

,
{

𝑣′
}

, and
{

𝑝′
}

. Note that scaling the input spatial coordinates to the range of
[−1, 1] is critical for KA-PointNet; otherwise, the training loss diverges. The prediction of KA-PointNet will be scaled
back to the physical domain using a similar process.

The input of KA-PointNet is a set of spatial points, and the output is the corresponding velocity and pressure values
at those points. To represent the generated data set as point clouds suitable for feeding into KA-PointNet, we select
the grid vertices of finite volume meshes as points. Note that a similar practice has been conducted by Kashefi et al.
[73]. Additionally, since we are more interested in the solution of the velocity and pressure fields around the cylinder
and in the wake region compared to the far field, we select the first 𝑁 closest grid vertices to the center of mass of
the cylinder to establish the point clouds. In this study, we set 𝑁 = 1024, so each point cloud contains 1024 points.
Because the distribution of grid vertices in the unstructured finite volume meshes is nonuniform, the range of spatial
coordinates of points in each point cloud varies. In the described data set, 𝑥min ∈ [0, 5.46 m], 𝑥max ∈ [10.55 m, 22.14
m], 𝑦min ∈ [0, 13.41 m], and 𝑦max ∈ [18.57 m, 32 m]. A few examples of input and output of the labeled data set are
shown in Fig. 2. Note that these types of flexibility in input domain definition are the advantage of point-cloud and
graph-based neural networks compared to traditional CNNs (e.g., see Ref [64]). We randomly split the data into three
categories of the training set (1772 data), validation set (241 data), and test set (222 data).

Figure 3: Architecture of the Kolmogorov-Arnold PointNet. Shared KANs with the labels (𝐴1, 𝐴2) and (𝐴1, 𝐴2, 𝐴3) are
explained in the text. 𝑛CFD denotes the number of CFD variables. 𝑁 is the number of points in the point clouds. 𝐵
represents the batch size. 𝑛𝑠 is the global scaling parameter used to control the network size.

3. Kolmogorov-Arnold PointNet
3.1. Kolmogorov-Arnold network layers with Jacobi polynomials

In this subsection, we explain the concept of Kolmogorov-Arnold network layers. For simplicity, let us consider a
Kolmogorov-Arnold network with one hidden layer, where the input of the network is a vector 𝐫 of size 𝑑input and the
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output of the network is a vector 𝐬 of size 𝑑output. In this setup, the one-layer Kolmogorov-Arnold network relates the
input to the output as

𝐬𝑑output×1 = 𝚽𝑑output×𝑑input
𝐫𝑑input×1, (11)

where the matrix 𝚽𝑑output×𝑑input
is expressed as

𝚽𝑑output×𝑑input
=

⎡

⎢

⎢

⎢

⎢

⎣

𝜓1,1(⋅) 𝜓1,2(⋅) ⋯ 𝜓1,𝑑input
(⋅)

𝜓2,1(⋅) 𝜓2,2(⋅) ⋯ 𝜓2,𝑑input
(⋅)

⋮ ⋮ ⋱ ⋮
𝜓𝑑output,1(⋅) 𝜓𝑑output,2(⋅) ⋯ 𝜓𝑑output,𝑑input

(⋅)

⎤

⎥

⎥

⎥

⎥

⎦

, (12)

where 𝜓(𝑧) is defined as

𝜓(𝑧) =
𝑛
∑

𝑖=0
Λ𝑖𝑃

(𝛼,𝛽)
𝑖 (𝑧), (13)

where 𝑃 (𝛼,𝛽)
𝑖 (𝑧) is the Jacobi polynomial of order 𝑖, 𝑛 is the order of the polynomial 𝜓 , and Λ𝑖 are trainable parameters.

Hence, the number of trainable parameters (i.e., Λ𝑖) of this KAN layer is equal to (𝑛+1)×𝑑output×𝑑input. We implement
𝑃 (𝛼,𝛽)
𝑛 (𝑧) recursively, using the following relationship [107]

𝑃 (𝛼,𝛽)
𝑛 (𝑧) = (𝐴𝑛𝑧 + 𝐵𝑛)𝑃

(𝛼,𝛽)
𝑛−1 (𝑧) + 𝐶𝑛𝑃

(𝛼,𝛽)
𝑛−2 (𝑧), (14)

where 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 coefficients are defined as follow

𝐴𝑛 =
(2𝑛 + 𝛼 + 𝛽 − 1)(2𝑛 + 𝛼 + 𝛽)

2𝑛(𝑛 + 𝛼 + 𝛽)
, (15)

𝐵𝑛 =
(2𝑛 + 𝛼 + 𝛽 − 1)(𝛼2 − 𝛽2)

2𝑛(𝑛 + 𝛼 + 𝛽)(2𝑛 + 𝛼 + 𝛽 − 2)
, (16)

𝐶𝑛 =
−2(𝑛 + 𝛼 − 1)(𝑛 + 𝛽 − 1)(2𝑛 + 𝛼 + 𝛽)

2𝑛(𝑛 + 𝛼 + 𝛽)(2𝑛 + 𝛼 + 𝛽 − 2)
, (17)

along with the following two initial conditions:

𝑃 (𝛼,𝛽)
0 (𝑧) = 1, (18)

𝑃 (𝛼,𝛽)
1 (𝑧) = 1

2
(𝛼 + 𝛽 + 2)𝑧 + 1

2
(𝛼 − 𝛽). (19)

Since 𝑃 (𝛼,𝛽)
𝑛 (𝑧) is constructed recursively, 𝑃 (𝛼,𝛽)

𝑖 (𝑧), for (0 ≤ 𝑖 ≤ 𝑛), are constructed along the way as well. Moreover,
because the input of Jacobi polynomials must fall in the interval [−1, 1], the input vector 𝐫 should be scaled in this
interval before being fed into the KAN layer. To handle this situation, we use the hyperbolic tangent function defined
as follows
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tanh(𝑧) = 𝑒2𝑧 − 1
𝑒2𝑧 + 1

. (20)

Other researchers have also used this strategy (e.g., see Refs. [14, 90, 41]). Other reasonable strategies might be used
for this scaling. For example, one option is to use the following formula:

{𝑧} = 2
(

{𝑧} − min({𝑧})
max({𝑧}) − min({𝑧})

)

− 1. (21)

The motivation for this choice is that since we scale both input and output data using the formula given in Eq. (10), a
similar scaling scheme for the intermediate layers of KA-PointNet might be beneficial. However, our machine learning
experiments show that using the hyperbolic tangent function is more efficient in terms of prediction accuracy. Therefore,
we use it in this study.

Several sequential KAN layers establish a KAN component. Specifically, we implement shared KAN components
in PointNet. We denote a shared KAN component with two layers of sizes 𝐴1 and 𝐴2 as (𝐴1, 𝐴2). Similarly, we define
a shared KAN component with three layers as (𝐴1, 𝐴2, 𝐴3). After each KAN layer, we implement batch normalization
[108]. This implementation is mandatory; otherwise, the training loss will diverge.

At the end of this subsection, we note that with the choice of 𝛼 = 𝛽 = 0, the Legendre polynomial is obtained
[109, 107]. The Chebyshev polynomial of the first and second kinds are respectively covered with the choice of
𝛼 = 𝛽 = −0.5 and 𝛼 = 𝛽 = 0.5 [109, 107]. Additionally, the Gegenbauer polynomial (or ultraspherical polynomials)
is obtained if 𝛼 = 𝛽 [107].

3.2. Architecture
The fundamental concept of KA-PointNet is to use shared KANs instead of shared MLPs. To explain the

architecture of KA-PointNet, we first discuss the general aspects and then delve into the details and formulation of
shared KANs. More specifically, we will explain why it is essential to implement KANs as “shared” layers.

Figure 3 depicts the architecture of KA-PointNet. To explain the architecture, let us first denote the number of
labeled data in a desired set by 𝑚. The desired set can be the training set, validation set, or test set. In a data set with
𝑚 labeled data, each domain 𝑉𝑖 (1 ≤ 𝑖 ≤ 𝑚) in the set is represented by a point cloud 𝑖 with 𝑁 points, where
𝑖 =

{

𝒙𝑗 ∈ ℝ𝑑}𝑁
𝑗=1. The spatial dimension of 𝑉𝑖 and consequently 𝑖 is denoted by 𝑑. Because our focus is on

two-dimensional problems in this study, we set 𝑑 = 2. Accordingly, 𝒙𝑗 (1 ≤ 𝑗 ≤ 𝑁) is the vector representing the
spatial coordinates of each point in the point cloud 𝑖. We indicate the 𝑥 and 𝑦 components of each 𝒙𝑗 , respectively, by
𝑥′𝑗 and 𝑦′𝑗 . The task of KA-PointNet is to provide an end-to-end mapping from 𝑖 to 𝑖, where 𝑖 =

{

𝒚𝑗 ∈ ℝ𝑛CFD
}𝑁
𝑗=1.

We demonstrate the number of desired predicted fields by 𝑛CFD. In this study, we are particularly interested in the
prediction of the velocity vector (in two dimensions) and the pressure field. Hence, 𝑛CFD = 3. Based on the given
definition, 𝒚𝑗 is the vector corresponding to the predicted fields at the spatial point 𝒙𝑗 , and thus, has three components
of 𝑢′𝑗 , 𝑣

′
𝑗 , and 𝑝′𝑗 . This procedure can be mathematically formulated as:

(

𝑢′𝑗 , 𝑣
′
𝑗 , 𝑝

′
𝑗

)

= 𝑓
((

𝑥′𝑗 , 𝑦
′
𝑗

)

, 𝑔
(

𝑖
)

)

; ∀
(

𝑥′𝑗 , 𝑦
′
𝑗

)

∈ 𝑖 and ∀
(

𝑢′𝑗 , 𝑣
′
𝑗 , 𝑝

′
𝑗

)

∈ 𝑖 with 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑁,

(22)

where 𝑓 is the mapping function representing KA-PointNet. KA-PointNet is invariant to any of the 𝑁! permutations
of the input vector. In other words, if the input vector (𝑖) is randomly permuted, the geometry of the domain
remains unchanged, and thus the solution (𝑖) should also remain unchanged. KA-PointNet achieves this permutation
invariance through a symmetric function and the use of shared KANs. In this sense, 𝑔 is a symmetric function encoding
the geometric features of the point cloud 𝑖. Among the possible options for the symmetric function 𝑔, we follow the
original function introduced in Ref. [71], which is the maximum function, such that

𝑔
(

𝑖
)

= max
(

ℎ
(

𝑥′1, 𝑦
′
1
)

,… , ℎ
(

𝑥′𝑁 , 𝑦
′
𝑁
))

; ∀
(

𝑥′𝑗 , 𝑦
′
𝑗

)

∈ 𝑖 with 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑁, (23)
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where ℎ is a function representing two shared KAN layers in the first branch of KA-PointNet (see Fig. 3). From a
computer science perspective, 𝑔

(

𝑖
)

is regarded as the global feature in the KA-PointNet architecture, as shown in
Fig. 3. The key idea behind using KA-PointNet, as a geometric deep learning model, is that the predicted fields at
each spatial point depend on both the spatial coordinates of that specific point and the overall geometry of the domain
constructed by all the points, including the specific point. This fact can be seen in Eqs. (22)–(23).

We introduce 𝑛𝑠 as a global scaling variable that controls the size of KA-PointNet. Furthermore, We denote the
batch size by 𝐵, referring to the number of point clouds (i.e., 𝑖 and 𝑖 pairs) fed into KA-PointNet at each epoch. As
can be seen from Fig. 3, the input of KA-PointNet is a three-dimensional tensor of size 𝐵 ×𝑁 ×2. Following this, two
sequential shared KANs are applied, with sizes (𝑛𝑠×64, 𝑛𝑠×64) and (𝑛𝑠×64, 𝑛𝑠×128, 𝑛𝑠×1024), as shown in Fig. 3.
The maximum function then generates the global feature with a size of 𝑛𝑠 × 1024. As illustrated in Fig. 3, this global
feature is concatenated with an intermediate feature tensor of size 𝐵 ×𝑁 × (𝑛𝑠 × 64), resulting in a new tensor with
dimension 𝐵 × 𝑁 × (𝑛𝑠 × 1088). Next, two additional sequential shared KANs are applied within the KA-PointNet
architecture, with sizes (𝑛𝑠 × 512, 𝑛𝑠 × 256, 𝑛𝑠 × 128) and (𝑛𝑠 × 128, 𝑛CFD), respectively. The result of the previous
step is a tensor with dimensions 𝐵 ×𝑁 × 𝑛CFD, as depicted in Fig. 3. It is important to note that suitable values for 𝑛𝑠
should lead to positive integers for the size of shared KANs.

3.3. Shared Kolmogorov-Arnold networks
The idea of shared KANs is distinct from regular fully connected layers. Here, we illustrate the concept of shared

KANs with a straightforward example. Consider the initial layer in the shared KAN given in the first branch of KA-
PointNet, which has a size of (𝑛𝑠 × 64, 𝑛𝑠 × 64), as shown in Fig. 3. Assume 𝑛𝑠 = 1 for simplicity. Particularly, we
focus on the first shared KAN layer with a size of 64. The transposed input vector 𝑖 can be expressed as

 tr
𝑖 =

⎡

⎢

⎢

⎣

𝑥′1 𝑥′2 ⋯ 𝑥′𝑁

𝑦′1 𝑦′2 ⋯ 𝑦′𝑁

⎤

⎥

⎥

⎦

. (24)

After processing 𝑖 through the first shared KAN layer, the result is a matrix of size 64 ×𝑁 and can be described as:

[

𝐬(1)64×1 𝐬(2)64×1 ⋯ 𝐬(𝑁)
64×1

]

, (25)

where 𝐬(1)64×1, 𝐬(2)64×1, ⋯, 𝐬(𝑁)
64×1 are vectors, computed as follows:

𝐬(1)64×1 = 𝚽64×2

⎡

⎢

⎢

⎣

𝑥′1

𝑦′1

⎤

⎥

⎥

⎦

,

𝐬(2)64×1 = 𝚽64×2

⎡

⎢

⎢

⎣

𝑥′2

𝑦′2

⎤

⎥

⎥

⎦

,

⋮

𝐬(𝑁)
64×1 = 𝚽64×2

⎡

⎢

⎢

⎣

𝑥′𝑁

𝑦′𝑁

⎤

⎥

⎥

⎦

,

(26)

where 𝚽64×2 is the shared KAN layer. As can be observed in Eq. (26), the same (shared) 𝚽64×2 used for each spatial
point in the domain, corresponding to the vector [𝑥′𝑗 𝑦

′
𝑗]

tr, where 1 ≤ 𝑗 ≤ 𝑁 . This is the reason it is called shared
KANs. This procedure is similarly applied to the remaining layers. With this strategy, it becomes evident that each
point is independently processed within the KA-PointNet framework. The only instance when the points interact is
when the global feature is determined (see Eq. (23)).
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3.4. Training
Mean squared error is used as the loss function, expressed as

 = 1
3 ×𝑁

( 𝑁
∑

𝑖=1

[

(𝑢′𝑖 − �̃�
′
𝑖)
2 + (𝑣′𝑖 − �̃�

′
𝑖)
2 + (𝑝′𝑖 − �̃�

′
𝑖)
2]
)

, (27)

where �̃�′, �̃�′, and �̃�′ are the predicted velocity and pressure fields, respectively. Note that for error analysis and
visualization, predicted variables are scaled back into the physical domain. The Adam optimizer [91] is used with
parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8. We refer the audience to Ref. [91] for the mathematical definitions of
𝛽1, 𝛽2, and 𝜖 in the Adam optimizer [91]. For a fair comparison between different setups for KA-PointNet, we perform
all the training procedures on an NVIDIA A100 Tensor Core GPU with 80 gigabytes of RAM. We use mini-batch
gradient descent with a batch size of 128 and a constant learning rate of 5 × 10−4. To avoid overfitting, the evolution
of the loss function for both the training and validation sets is monitored during the training procedure. We discuss
the number of trainable parameters, the history of the loss function, and the computational cost of training in detail in
Sect. 4.

Table 2
Computational cost and error analysis of the velocity and pressure fields predicted by Kolmogorov-Arnold
PointNet (i.e., KA-PointNet) for the test set containing 222 unseen geometries for different degrees of the
Jacobi polynomial. Here, 𝑛𝑠 = 1 is set. In the Jacobi polynomial, 𝛼 = 𝛽 = 1 is set. ||⋯ || indicates the 𝐿2 norm.

Polynomial degree 2 3 4 5 6

Average ||�̃� − 𝑢||∕||𝑢|| 1.43377E−2 1.73537E−2 1.67633E−2 1.17467E−2 1.07525E−2
Maximum ||�̃� − 𝑢||∕||𝑢|| 1.66709E−1 1.40088E−1 1.37067E−1 1.40614E−1 1.68387E−1
Minimum ||�̃� − 𝑢||∕||𝑢|| 5.40694E−3 7.22247E−3 6.70142E−3 5.01482E−3 4.82974E−3

Average ||�̃� − 𝑣||∕||𝑣|| 5.28306E−2 5.75906E−2 5.38728E−2 4.81333E−2 5.08094E−2
Maximum ||�̃� − 𝑣||∕||𝑣|| 5.25991E−1 4.42245E−1 4.48167E−1 4.61926E−1 5.44426E−1
Minimum ||�̃� − 𝑣||∕||𝑣|| 2.79826E−2 2.05299E−2 2.51025E−2 2.11034E−2 2.36179E−2

Average ||�̃� − 𝑝||∕||𝑝|| 3.49754E−2 4.75586E−2 4.67659E−2 3.30555E−2 3.47443E−2
Maximum ||�̃� − 𝑝||∕||𝑝|| 1.73144E−1 1.55694E−1 1.69091E−1 1.64282E−1 1.90192E−1
Minimum ||�̃� − 𝑝||∕||𝑝|| 1.71494E−2 1.75673E−2 1.93152E−2 1.50220E−2 1.44066E−2

Training time 3.71432 6.52910 10.12893 14.28542 19.26667
per epoch (s)

Number of trainable 2660480 3545728 4430976 5316224 6201472
parameters

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Relative error in L2 norm

0

20

40

60

80

100

Fr
eq

ue
nc

y

Prediction of velocity u

0.0 0.1 0.2 0.3 0.4
Relative error in L2 norm

0

20

40

60

80

100

Fr
eq

ue
nc

y

Prediction of velocity v

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Relative error in L2 norm

0

10

20

30

40

50

Fr
eq

ue
nc

y

Prediction of gauge pressure

Figure 4: Histograms of the relative pointwise error in 𝐿2 norm for the velocity and pressure fields predicted by Kolmogorov-
Arnold PointNet (i.e., KA-PointNet). The Jacobi polynomial used has a degree of 5, with 𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.
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Figure 5: A comparison between the ground truth and prediction of the Kolmogorov-Arnold PointNet for the velocity and
pressure fields after 10, 100, and 1000 epochs. The Jacobian polynomial used has a degree of 5, with 𝛼 = 𝛽 = 1. Here,
𝑛𝑠 = 1 is set.

Table 3
Error analysis of the velocity and pressure fields predicted by Kolmogorov-Arnold PointNet (i.e., KA-PointNet)
for the test set containing 222 unseen geometries for different values of 𝛼 and 𝛽 in Jacobi polynomials. The
degree of the Jacobi polynomials used is 3. Here, 𝑛𝑠 = 1 is set. ||⋯ || indicates the 𝐿2 norm.

𝛼 = 𝛽 = 0 𝛼 = 𝛽 = −0.5 𝛼 = 𝛽 = 0.5 𝛼 = 𝛽 = 1 2𝛼 = 𝛽 = 2 𝛼 = 2𝛽 = 2

Average ||�̃� − 𝑢||∕||𝑢|| 1.36404E−2 1.21807E−2 1.24601E−2 1.73537E−2 1.65403E−2 2.98503E−2
Maximum ||�̃� − 𝑢||∕||𝑢|| 1.37743E−1 1.43526E−1 1.42853E−1 1.40088E−1 1.51214E−1 1.54898E−1
Minimum ||�̃� − 𝑢||∕||𝑢|| 5.46195E−3 6.51784E−3 6.28078E−3 7.22247E−3 7.76342E−3 1.00267E−2

Average ||�̃� − 𝑣||∕||𝑣|| 6.38935E−2 4.70539E−2 4.32044E−2 5.75906E−2 5.26547E−2 9.47980E−2
Maximum ||�̃� − 𝑣||∕||𝑣|| 4.34468E−1 4.40415E−1 4.76479E−1 4.42245E−1 5.06639E−1 4.42623E−1
Minimum ||�̃� − 𝑣||∕||𝑣|| 2.76012E−2 1.94763E−2 1.92582E−2 2.05299E−2 2.09325E−2 3.83024E−2

Average ||�̃� − 𝑝||∕||𝑝|| 4.13612E−2 2.49465E−2 3.55946E−2 4.75586E−2 3.70187E−2 6.39906E−2
Maximum ||�̃� − 𝑝||∕||𝑝|| 1.56200E−1 1.66064E−1 1.62299E−1 1.55694E−1 1.68458E−1 1.61651E−1
Minimum ||�̃� − 𝑝||∕||𝑝|| 1.53982E−2 9.89027E−3 1.36161E−2 1.75673E−2 1.13910E−2 2.14740E−2

4. Results and discussion
4.1. General analysis

To analyze the performance of KA-PointNet, we first focus on a specific case where the degree of the Jacobi
polynomial (see Eqs. (13)–(14)) is set to 5, 𝛼 = 𝛽 = 1 (leading to the Gegenbauer polynomial), and 𝑛𝑠 = 1. All the
information provided in this paragraph and the next three paragraphs is associated with this setup for KA-PointNet.
Analysis of the relative pointwise error (𝐿2 norm) of the predicted velocity and pressure fields for 222 geometries of the
test set is tabulated in Table 2 (see the fifth column). Based on the information collected in Table 2, the average relative
error over all these 222 geometries for 𝑢, 𝑣, and 𝑝 variables are approximately 1.18%, 4.82%, and 3.31%, respectively,
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Table 4
Computational cost and error analysis of the velocity and pressure fields predicted by Kolmogorov-Arnold
PointNet (i.e., KA-PointNet) for the test set containing 222 unseen geometries for different choices of 𝑛𝑠. The
Jacobi polynomial used has a degree of 3, with 𝛼 = 𝛽 = 1. ||⋯ || indicates the 𝐿2 norm.

𝑛𝑠 0.5 0.75 1 1.25 1.5 2

Average ||�̃� − 𝑢||∕||𝑢|| 2.63597E−2 2.57360E−2 1.73537E−2 1.82822E−2 1.68094E−2 1.69208E−2
Maximum ||�̃� − 𝑢||∕||𝑢|| 1.30750E−1 1.56881E−1 1.40088E−1 1.49949E−1 1.47257E−1 1.50143E−1
Minimum ||�̃� − 𝑢||∕||𝑢|| 1.30994E−2 1.04247E−2 7.22247E−3 7.63074E−3 6.98780E−3 1.08372E−2

Average ||�̃� − 𝑣||∕||𝑣|| 1.00292E−1 8.05285E−2 5.75906E−2 5.34776E−2 5.66996E−2 5.48352E−2
Maximum ||�̃� − 𝑣||∕||𝑣|| 4.19706E−1 4.83207E−1 4.42245E−1 5.15754E−1 4.59807E−1 4.85161E−1
Minimum ||�̃� − 𝑣||∕||𝑣|| 5.58101E−2 3.13250E−2 2.05299E−2 1.95743E−2 2.54641E−2 2.49093E−2

Average ||�̃� − 𝑝||∕||𝑝|| 9.86696E−2 6.35050E−2 4.75586E−2 4.21600E−2 3.63245E−2 4.25412E−2
Maximum ||�̃� − 𝑝||∕||𝑝|| 2.88919E−1 1.82941E−1 1.55694E−1 1.60423E−1 1.76526E−1 1.63125E−1
Minimum ||�̃� − 𝑝||∕||𝑝|| 4.67306E−2 3.69896E−2 1.75673E−2 1.75982E−2 1.53689E−2 1.74415E−2

Training time 2.83741 4.53013 6.52910 8.85618 11.15280 16.69120
per epoch (s)

Number of trainable 888128 1995744 3545728 5538080 7972800 14169344
parameters
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Figure 6: The first set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.
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Figure 7: The second set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

showing a strong performance of KA-PointNet. The histogram of the distribution of the relative errors (𝐿2 norm) is
shown in Fig. 4. In general, we observed that the 𝑦 component of the velocity vector (𝑣) experiences a higher level of
errors compared to the 𝑥 component of the velocity vector (𝑢) and the pressure field (𝑝).

Figure 5 visually compares the ground truth and the predictions of velocity and pressure fields by KA-PointNet
(with the Jacobi polynomial of degree 5, 𝛼 = 𝛽 = 1, and 𝑛𝑠 = 1) after 10, 100, and 1000 epochs for one of the
geometries of the test set. As shown in Fig. 5, KA-PointNet accurately predicts the general structure of flow fields
after just 10 epochs. After 100 epochs, the prediction accuracy improves, particularly near the object surface, where
the no-slip velocity boundary condition is better satisfied. Additionally, the scale of predicted values becomes more
accurate. It is observed that after just 100 epochs, the prediction of the 𝑢 variable achieves a higher level of accuracy
compared to the predictions of the 𝑣 and 𝑝 variables. This observation can explain why, in general, the relative error
of the 𝑢 variable is lower than that of the 𝑣 and 𝑝 variables over the test set, as shown in the histogram in Fig. 4 as well
as the data in Table 2. Comparing the predictions at 1000 epochs with those at 100 epochs, the velocity vector in the
𝑦 direction (𝑣) and the pressure field (𝑝) experience further modifications and increased accuracy, while the velocity
vector in the 𝑥 direction (𝑢) remains approximately unchanged.

Figures 6–15 present a comparison between the ground truth and the KA-PointNet predictions, along with the
absolute pointwise error for the velocity and pressure fields, for ten cylinders with different cross-sectional geometries
from the test set. As observed in Figs. 6–15, there is excellent agreement between the ground truth and the predictions,
despite the non-uniform distributions of the point clouds and varying spatial coordinate ranges within the domains
of the test set. As seen in Fig. 11, KA-PointNet successfully predicts the flow separation (i.e., when the 𝑢 variable
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Figure 8: The third set of examples comparing the ground truth to predictions of the Kolmogorov-Arnold PointNet for
velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with 𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1
is set.

becomes negative). As a general observation in Figs. 6–15, the maximum absolute pointwise error typically occurs
at or near the surface of the cylinders, where there are the highest variations in the geometry of the cylinders across
different data in the test set.

Distributions of absolute pointwise errors are shown in Fig. 16 for geometries from the test set where the relative
pointwise error (𝐿2 norm) for the velocity vector components (𝑢 and 𝑣) and the pressure field (𝑝) becomes maximum
(displayed in the first row of Fig. 16) and minimum (displayed in the second row of Fig. 16). The numerical values of
these errors are listed in Table 2. From Fig. 16, it is observed that the maximum relative pointwise error (𝐿2 norm)
for the velocity and pressure fields occurs in a single domain with an elliptical cross-section for the cylinder, whereas
the minimum relative pointwise error (𝐿2 norm) for the velocity and pressure fields occurs in three different domains,
each with a distinct geometry for the cross-section of the cylinder. Comparing geometries with maximum and minimum
relative pointwise error (𝐿2 norm), it is recognized that the maximum error occurs when the spatial coordinates of the
domain (as a point cloud) reach their maximum possible value compared to other domains in the test set. Note that
from the histogram shown in Fig. 4, we see that the geometry with the maximum error is indeed a single outlier and
falls outside the relative errors (𝐿2 norm) distribution of the histogram.

Returning to Table 2, with 𝑛𝑠 = 1 and 𝛼 = 𝛽 = 1.0, we analyze the performance of KA-PointNet as a function of the
degree of the Jacobi polynomial. Based on the relative pointwise error (𝐿2 norm) tabulated in Table 2, the average error
across the test set (222 unseen data) varies approximately from 1.07% to 1.74% for the 𝑢 variable, 4.82% to 5.76% for
the 𝑣 variable, and 3.31% to 4.76% for the 𝑝 variable. Additionally, we observe that increasing the polynomial degree
does not necessarily improve prediction accuracy. For instance, when comparing the average relative errors from a
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Figure 9: The fourth set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

degree of 2 to a degree of 3, the prediction accuracy decreases by 0.30160%, 0.47600%, and 1.25832% for the 𝑢, 𝑣,
and 𝑝 variables, respectively. On the other hand, the Jacobi polynomials of degrees 5 and 6 yield the lowest errors, as
indicated in Table 2. Regarding the computational cost of training, higher degrees of Jacobi polynomials increase the
number of trainable parameters (see Eq. (13)), thus extending the training time. Comparing the computational cost of
using the higher-order Jacobi polynomials with the improvement in prediction accuracy, it appears that choosing even
the polynomial of degree 2 is an optimized decision.

Next, we investigate the effect of the choice of 𝛼 and 𝛽 in the Jacobi polynomial (see Eqs. (14)–(17)) on the
performance of KA-PointNet. To reach this goal, we set the degree of the Jacobi polynomial to 3 and 𝑛𝑠 = 1.
Specifically, we consider the following selections: 𝛼 = 𝛽 = 0 (leading to the Legendre polynomial), 𝛼 = 𝛽 = −0.5
(leading to the Chebyshev polynomial of the first kind), 𝛼 = 𝛽 = 0.5 (leading to the Chebyshev polynomial of the
second kind), 𝛼 = 𝛽 = 1 (leading to the Gegenbauer polynomial), 2𝛼 = 𝛽 = 2, and 𝛼 = 2𝛽 = 2. The outcomes of
this investigation are presented in Table 3. According to Table 3, the Chebyshev polynomials (i.e., 𝛼 = 𝛽 = −0.5 and
𝛼 = 𝛽 = 0.5) lead to the highest accuracy among the options, considering the average relative pointwise error (𝐿2

norm) as the judgment criterion. More specifically, the Chebyshev polynomial of the first kind leads to more accurate
predictions compared to the Chebyshev polynomial of the second kind. The lowest performance, in terms of prediction
accuracy, occurs when 𝛼 = 2𝛽 = 2. Although the choice of 𝛼 and 𝛽 affects the accuracy of predictions, we observe that
all the choices result in errors within an acceptable range. Considering all the choices, the average relative pointwise
error (𝐿2 norm) of the 𝑢, 𝑣, and 𝑝 variables over the test set containing 222 data with various geometries do not exceed
2.99%, 9.48%, and 6.40%, respectively.
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Figure 10: The fifth set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

To investigate the influence of the size of KA-PointNet, we tabulate the relative pointwise error (𝐿2 norm) of the
predicted velocity and pressure fields as a function of the defined global scaling parameter (𝑛𝑠) in Table 4. Using the
Jacobi polynomial of degree 3 and setting 𝛼 = 𝛽 = 1, we conduct machine learning experiments with different values of
𝑛𝑠. Based on the error analysis presented in Table 4, we observe that increasing 𝑛𝑠 and thereby enlarging KA-PointNet
enhances prediction accuracy as 𝑛𝑠 is increased from 0.5 to 0.75 and from 0.75 to 1. This scenario changes when
selecting 𝑛𝑠 values greater than 1 (i.e., 𝑛𝑠 = 1.25, 𝑛𝑠 = 1.5, and 𝑛𝑠 = 2). As shown in Table 4, there is no clear trend in
the relative error for a specific field. For example, increasing 𝑛𝑠 beyond 1 may lead to an increase in the error for the
velocity prediction while reducing the error for the pressure prediction. Nonetheless, all errors for all fields are lower
than those obtained with 𝑛𝑠 = 0.75 and 𝑛𝑠 = 0.5. Generally speaking, increasing the size of KA-PointNet while keeping
the number of training data fixed raises the potential for overfitting. This explains why we observe a slight decrease
in the accuracy for predicting some fields when 𝑛𝑠 is increased beyond a certain threshold (e.g., 𝑛𝑠 = 1 in the current
experiment). According to Table 4, it is noticeable that increasing 𝑛𝑠 leads to a rise in the number of trainable parameters
and, consequently, the training time. For instance, the average training time per epoch for 𝑛𝑠 = 2 is approximately 2.56
times greater than that for 𝑛𝑠 = 1. Therefore, the design of KA-PointNet and the setting of hyperparameters such as 𝑛𝑠
are critical considerations from both accuracy and computational cost perspectives. Additionally, the machine learning
experiments discussed here demonstrate that despite the complexity of the KA-PointNet architecture, a desirable level
of accuracy can be achieved by fine-tuning the single parameter, 𝑛𝑠.

Based on the design and architecture of KA-PointNet, the degree of Jacobi polynomials (𝑛) and the global scaling
parameter (𝑛𝑠) are two important factors for controlling the size of the network. Considering Table 2 and Table 4
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Figure 11: The sixth set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

simultaneously, for instance, the number of trainable parameters for KA-PointNet with the Jacobi polynomial degree
of 5, 𝛼 = 𝛽 = 1, and setting 𝑛𝑠 = 1, is 5316224, with an average training time of 14.28542 seconds per epoch. On
the other hand, consider KA-PointNet with the Jacobi polynomial degree of 3, 𝛼 = 𝛽 = 1, and setting 𝑛𝑠 = 1.25. This
network has 5538080 trainable parameters, leading to an average training time of 8.85618 seconds per epoch. These two
networks have approximately equal numbers of trainable parameters. Comparing the information in Table 4 and Table
2, the prediction accuracy for all the velocity and pressure fields is higher in the first configuration (i.e., higher-order
Jacobi polynomials but a smaller value of 𝑛𝑠). Although the number of trainable parameters is approximately equal
in both cases, the training time of the first configuration is approximately 1.614 times greater than that of the second
configuration. From a computer science perspective, this means that given limited RAM, if there is no restriction on
training time, the first configuration produces more accurate outcomes.

The last topic addressed in this subsection is the investigation of the performance of utilizing layer normalization in
the architecture of KA-PointNet. One may refer to Ref. [110] for details of layer normalization and its differences with
batch normalization from a computer science perspective. Note that all the results reported up to this point pertain
to the architecture of KA-PointNet with batch normalization. As a machine learning experiment, we replace batch
normalization with layer normalization in a KA-PointNet with a Jacobi polynomial of degree 3, setting 𝛼 = 𝛽 = 1 and
𝑛𝑠 = 1. The first consequence of using layer normalization is an increase in the number of trainable parameters from
3545728 to 8390656, requiring more RAM. Measuring the average relative pointwise error (𝐿2 norm) over the test set
(222 data points) for the 𝑢, 𝑣, and 𝑝 variables, they are respectively 1.32751E−2, 4.77946E−2, and 4.20826E−2. The
corresponding quantities for KA-PointNet with batch normalization are 1.73537E−2, 5.75906E−2, and 4.75586E−2.

Page 17 of 28



Kolmogorov-Arnold PointNet

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)
Prediction of velocity u (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Ground truth of velocity u (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Absolute error of velocity u (m/s)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Prediction of velocity v (m/s)

0.6

0.4

0.2

0.0

0.2

0.4

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Ground truth of velocity v (m/s)

0.6

0.4

0.2

0.0

0.2

0.4

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Absolute error of velocity v (m/s)

0.02

0.04

0.06

0.08

0.10

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Prediction of gauge pressure (Pa)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Ground truth of gauge pressure (Pa)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

6 8 10
x (m)

13

14

15

16

17

18

19

y 
(m

)

Absolute error of gauge pressure (Pa)

0.01

0.02

0.03

0.04

0.05

Figure 12: The seventh set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet
(i.e., KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5,
with 𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

Accordingly, we observe an improvement in the prediction accuracy, albeit with a relatively high cost for RAM usage.
Depending on the user’s criteria and available computational resources, the decision to use layer normalization may
vary.

4.2. Comparison of PointNet with shared KANs and PointNet with shared MLPs
4.2.1. A brief overview of PointNet with shared MLPs

Before performing a comparison between PointNet with shared KANs (i.e., KA-PointNet) and PointNet with shared
MLPs, we briefly review the structure of the latter, shown in Fig. 17. The goal is to make the differences clear so that
the performance comparison becomes meaningful. As can be seen in Fig. 17, similar to the notation used for shared
KANs, we use (𝐴1, 𝐴2) and (𝐴1, 𝐴2, 𝐴3) for shared MLPs with two and three layers, respectively. The connection
between the input vector 𝐫 of size 𝑑input and the output vector 𝐬 of size 𝑑output for one layer in an MLP can be formulated
as follows:

𝐬𝑑output×1
= 𝜎

(

W𝑑output×𝑑input
𝐫𝑑input×1

+ b𝑑output×1

)

, (28)

where W is the weight matrix and b is the bias vector, containing trainable parameters. The nonlinear activation
function is shown by 𝜎, which operates elementwise. The number of trainable parameters in this layer is equal to
𝑑input ×𝑑input +𝑑output. One may observe the difference in the structure of MLPs and KANs by comparing Eq. (11) and
Eq. (28). The concept of shared MLPs is explained as follows. Let us apply the same example as we discussed in Sect.
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Figure 13: The eighth set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

3.3 for shared KANs. Taking 𝑛𝑠 = 1 and focusing on the first layer of the first MLP in the first branch of PointNet (see
Fig. 17), the resulting output vectors are:

𝐬(1)64×1 = 𝜎
⎛

⎜

⎜

⎝

𝐖64×2

⎡

⎢

⎢

⎣

𝑥′1

𝑦′1

⎤

⎥

⎥

⎦

+ 𝐛64×1
⎞

⎟

⎟

⎠

,

𝐬(2)64×1 = 𝜎
⎛

⎜

⎜

⎝

𝐖64×2

⎡

⎢

⎢

⎣

𝑥′2

𝑦′2

⎤

⎥

⎥

⎦

+ 𝐛64×1
⎞

⎟

⎟

⎠

,

⋮

𝐬(𝑁)
64×1 = 𝜎

⎛

⎜

⎜

⎝

𝐖64×2

⎡

⎢

⎢

⎣

𝑥′𝑁

𝑦′𝑁

⎤

⎥

⎥

⎦

+ 𝐛64×1
⎞

⎟

⎟

⎠

,

(29)

where 𝐖 and 𝐛 are respectively the shared weight matrix and shared bias vector applied to all [𝑥𝑗 𝑦𝑗]tr for 1 ≤ 𝑗 ≤ 𝑁 .
One may compare Eqs. (26) and Eqs. (29). Further details about the implementation of shared MLP can be found in
Ref. [111]. In the case of using PointNet with shared MLPs, our machine learning experiments demonstrate that the
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Figure 14: The ninth set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

accuracy of predictions is higher if we normalize the output of the network (i.e., 𝑢∗, 𝑣∗, and 𝑝∗) between [0, 1], instead
of [−1, 1], using the following scaling formula:

{

𝜙′} =
{𝜙} − min({𝜙})

max({𝜙}) − min({𝜙})
. (30)

Note that we still scale the spatial coordinates (i.e., 𝑥′ and 𝑦′) to the range of [−1, 1] using Eq. (10). The activation
function of the Rectified Linear Unit (ReLU), defined as follows:

𝜎(𝛾) = max(0, 𝛾), (31)

is implemented after all the layers except the last layer. Similar to KA-PointNet, each layer is followed by a batch
normalization [108], except the last layer. The activation function in the last layer is the sigmoid function defined as
follows:

𝜎(𝛾) = 1
1 + 𝑒−𝛾

, (32)

which covers the range of [0, 1]. The loss function, batch size, learning rate, and the optimizer model with its associated
hyperparameters are all set the same as those for KA-PointNet (see Sect. 3.4).
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Figure 15: The tenth set of examples comparing the ground truth to the predictions of Kolmogorov-Arnold PointNet (i.e.,
KA-PointNet) for the velocity and pressure fields from the test set. The Jacobi polynomial used has a degree of 5, with
𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

4.2.2. Performance analysis
To ensure a fair comparison between PointNet with shared KANs (KA-PointNet) and PointNet with shared MLPs,

we select hyperparameters for each network to achieve an approximately equal number of trainable parameters. Table
5 summarizes the results of this comparison, examining training time and error analysis. We conduct the comparison
using three different setups. For PointNet with shared KANs, we set the degree of the Jacobi polynomial to 3 with
𝛼 = 𝛽 = 1. Next, we choose 𝑛𝑠 for each of these two networks. For instance, the second and third columns of Table 5
present the results for PointNet with shared KANs with 𝑛𝑠 = 0.5 and 888128 trainable parameters, and PointNet with
shared MLPs with 𝑛𝑠 = 1 and 892355 trainable parameters, respectively. A similar scenario applies to the pairs in the
fourth and fifth columns, as well as the pairs in the sixth and seventh columns of Table 5. In all three comparisons,
we observe that the average relative pointwise error (𝐿2 norm) of the predicted velocity and pressure fields, over
the test set, obtained by PointNet with shared KANs (i.e., KA-PointNet) is lower than those predicted by PointNet
with shared MLPs. The pattern of errors is similar, with the 𝑣 variable experiencing the highest level of errors and
the 𝑢 variable experiencing the lowest. This superior performance of PointNet with shared KANs (i.e., KA-PointNet)
is particularly significant for the prediction of the 𝑣 variable. For instance, the average relative pointwise error (𝐿2

norm) over 222 unseen geometries in the test set for PointNet with shared KANs with 𝑛𝑠 = 1 (see the fourth column
of Table 5) is approximately 5.76%, compared to 13.9% for PointNet with shared MLPs with 𝑛𝑠 = 2 (see the fifth
column of Table 5). A notable difference in performance is also observed for the 𝑝 variable with this setup (4.76%
vs. 10.6%). Interestingly, increasing the size of the PointNet with shared MLPs (i.e., choosing greater 𝑛𝑠) does not
necessarily improve performance, while PointNet with shared KANs shows improvement. For example, comparing
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Figure 16: Distribution of absolute pointwise error for the prediction of the velocity and pressure fields by Kolmogorov-
Arnold PointNet (i.e., KA-PointNet) for the velocity and pressure fields for the geometries from the test set when the
relative pointwise error (𝐿2 norm) becomes maximum (first row) and minimum (second row). The Jacobi polynomial used
has a degree of 5, with 𝛼 = 𝛽 = 1. Here, 𝑛𝑠 = 1 is set.

Figure 17: Architecture of PointNet with shared Multilayer Perceptron (MLP). Shared MLPs with the labels (𝐴1, 𝐴2) and
(𝐴1, 𝐴2, 𝐴3) are explained in the text. 𝑛CFD denotes the number of CFD variables. 𝑁 is the number of points in the point
clouds. 𝐵 represents the batch size. 𝑛𝑠 is the global scaling parameter used to control the network size.

the error of the 𝑣 variable listed in the fifth column (𝑛𝑠 = 2) and the seventh column (𝑛𝑠 = 4), the relative error of
the 𝑣 variable increases from 13.9% to 14.8%. In contrast, a similar comparison for PointNet with shared KANs shows
that the relative error of the 𝑣 variable decreases from 5.75% to 4.48% by increasing 𝑛𝑠 from 1 to 2. Additionally,
the average training time per epoch of KA-PointNet with shared KANs is approximately 6.7 times greater than that
of PointNet with shared MLPs, as can be computed from the given training time in Table 5. The main reason for
this is the recursive implementation of the Jacobi polynomial in PointNet with shared KANs. An improvement in this
implementation from a software engineering perspective could potentially reduce the computational cost of shared
KANs, making them more efficient compared to shared MLPs.

For a more in-depth comparison, let us focus on the last two columns of Table 5, where we have PointNet with
shared KANs (using a Jacobi polynomial of degree 3, 𝛼 = 𝛽 = 1, and 𝑛𝑠 = 2), with PointNet with shared MLPs
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Table 5
Comparison between the performance of PointNet with shared Kolmogorov-Arnold Networks (KANs), i.e.
KA-PointNet, and PointNet with shared Multilayer Perceptrons (MLPs) for prediction of the velocity and
pressure fields for the test set containing 222 unseen geometries. In the Jacobi polynomial of KA-PointNet,
we set 𝛼 = 𝛽 = 1. ||⋯ || indicates the 𝐿2 norm.

KANs MLPs KANs MLPs KANs MLPs

𝑛𝑠 0.5 1 1 2 2 4

Polynomial degree 3 - 3 - 3 -

Number of trainable 888128 892355 3545728 3554179 14169344 14186243
parameters

Training time 2.83741 0.42597 6.52910 0.97970 16.69120 2.47669
per epoch (s)

Average ||�̃� − 𝑢||∕||𝑢|| 2.63597E−2 5.01625E−2 1.73537E−2 3.83902E−2 1.69209E−2 3.80471E−2
Maximum ||�̃� − 𝑢||∕||𝑢|| 1.30750E−1 1.57523E−1 1.40088E−1 1.51597E−1 1.50143E−1 1.47946E−1
Minimum ||�̃� − 𝑢||∕||𝑢|| 1.30994E−2 2.03904E−2 7.22247E−3 1.24053E−2 1.08372E−2 1.40001E−2

Average ||�̃� − 𝑣||∕||𝑣|| 1.00292E−1 1.61943E−1 5.75906E−2 1.39018E−1 4.48352E−2 1.47633E−1
Maximum ||�̃� − 𝑣||∕||𝑣|| 4.19706E−1 5.07943E−1 4.42245E−1 4.85987E−1 4.85161E−1 4.87821E−1
Minimum ||�̃� − 𝑣||∕||𝑣|| 5.58101E−2 6.56595E−2 2.05299E−2 5.60436E−2 2.49093E−2 5.42824E−2

Average ||�̃� − 𝑝||∕||𝑝|| 9.86696E−2 1.54159E−1 4.75586E−2 1.05939E−1 4.25412E−2 7.22403E−2
Maximum ||�̃� − 𝑝||∕||𝑝|| 2.88919E−1 4.03240E−1 1.55694E−1 2.36421E−1 1.63125E−1 1.70085E−1
Minimum ||�̃� − 𝑝||∕||𝑝|| 4.67306E−2 4.04501E−2 1.75673E−2 3.77024E−2 1.74415E−2 2.84674E−2
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Figure 18: Comparison of the loss evolution for the training and validation sets between PointNet with shared KANs, i.e.,
KA-PointNet, (𝑛𝑠 = 2, Jacobi polynomial of degree 3, 𝛼 = 𝛽 = 1, and 14169344 trainable parameters) and PointNet with
shared MLPs (𝑛𝑠 = 4 and 14186243 trainable parameters)

(𝑛𝑠 = 4). The loss evolution for the training set (1772 data) and the validation set (241 data) of these two networks is
illustrated in Fig. 18. For a few epochs, we observe a tendency for divergence in KA-PointNet; however, it eventually
stabilizes during the training process, a tendency not present in PointNet with shared MLPs. Furthermore, PointNet
with shared MLPs exhibits a higher degree of bias (i.e., a greater difference between the training loss and the validation
loss) compared to PointNet with shared KANs. This suggests a tendency for PointNet with shared MLPs to overfit
the training data, as evidenced by tracking the training loss values in Fig. 18. Considering this case for comparison,
the distribution and frequency of relative pointwise error (𝐿2 norm) of the velocity and pressure fields predicted by
PointNet with shared KANs (i.e., KA-PointNet) and PointNet with shared MLPs are plotted in Fig. 19. We observe
that the frequency of predictions with lower errors is significantly higher for PointNet with shared KANs compared
to PointNet with shared MLPs. In both architectures, there are a few predictions that appear as outliers, experiencing
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Figure 19: Comparison of histograms of the relative error in 𝐿2 norm for the velocity and pressure fields predicted by
PointNet with shared Kolmogorov-Arnold Networks (KANs), i.e., KA-PointNet, (𝑛𝑠 = 2, Jacobi polynomial of degree 3,
𝛼 = 𝛽 = 1, and 14169344 trainable parameters) and PointNet with shared Multilayer Perceptrons (MLPs) (𝑛𝑠 = 4 and
14186243 trainable parameters).

extremely high errors. Overall, PointNet with shared KANs (i.e., KA-PointNet) provides more accurate results with
higher computational expenses for training compared to PointNet with shared MLPs, despite having approximately the
same number of trainable parameters.

5. Summary and future studies
In this work, we presented Kolmogorov-Arnold PointNet (KA-PointNet), a novel supervised deep learning frame-

work for predicting fluid flow fields in irregular geometries. Instead of using regular shared Multilayer Perceptrons
(MLPs), this framework incorporated shared Kolmogorov-Arnold Networks (KANs) within the segmentation branch
of PointNet [71]. Jacobi polynomials were utilized to construct the shared KANs, and batch normalization [108]
was applied after each shared KAN layer. A two-dimensional steady-state incompressible flow over a cylinder, with
varying cross-sectional geometries, was considered as a test case. The Adam optimizer [91] was efficiently used to
train KA-PointNet on the training set. Quantitative and visual error analyses were conducted to examine the capability
of KA-PointNet. Specifically, the effects of the degree of Jacobi polynomials, specific types of Jacobi polynomials
(e.g., Legendre polynomials, Chebyshev polynomials of the first and second kinds, and Gegenbauer polynomials),
and the global size of KA-PointNet on the accuracy of the predicted velocity and pressure fields of the test set were
assessed. According to one of our machine learning experiments, the average relative pointwise error (𝐿2 norm)
of the 𝑥 component of the velocity vector, the 𝑦 component of the velocity vector, and the pressure field of the
test set predicted by KA-PointNet were approximately 1.2%, 4.9%, and 3.4%, respectively, demonstrating the strong
performance of KA-PointNet. Jacobi polynomials of degree 5 and degree 6 generally led to more accurate results
but required higher computational training time compared to lower-order Jacobi polynomials. Among the specific
cases of Jacobi polynomials, KA-PointNet with Chebyshev polynomials of the first and second kinds showed the
lowest error in predicting the velocity and pressure fields of the test set. The single global scaling parameter defined
in this study to control the size of KA-PointNet was shown to be an effective parameter for fine-tuning KA-PointNet,
despite its complex architecture. A comparison between KA-PointNet with batch normalization and layer normalization
demonstrated that, although the prediction accuracy with layer normalization is higher, it requires a significant increase
in RAM, which may or may not be available depending on the user’s resources. A comprehensive comparison was
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conducted between PointNet with shared KANs (i.e., KA-PointNet) and PointNet with shared MLPs. PointNet with
shared KANs (i.e., KA-PointNet) provided more accurate results than PointNet with shared MLPs, despite having
approximately the same number of trainable parameters. However, this increased accuracy came at the expense of
higher computational costs for training.

Because KANs are a relatively new deep learning paradigm, there are still many unexplored areas that can be
investigated. A few possible directions include extending KA-PointNet to three-dimensional computational mechanics
problems, investigating the capacity of KA-PointNet in solid mechanics, such as the prediction of stress and
displacement fields in nonlinear elasticity and plasticity problems, and developing physics-informed KA-PointNet
for solving inverse problems in scientific computing. Another direction is combining KANs with advanced versions of
PointNet [71], such as PointNet++ [72] and KPConv [79], to improve the accuracy of predictions. Integrating KANs
into Fourier neural operators [112, 113, 114, 115, 116] and large language models [117, 118, 119, 120, 121] could be
potentially beneficial to the fields of computational physics and computational mathematics.
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