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ABSTRACT

Vision Mamba has recently received attention as an alternative to Vision Transformers (ViTs) for image classification. The network size of
Vision Mamba scales linearly with input image resolution, whereas ViTs scale quadratically, a feature that improves computational and
memory efficiency. Moreover, Vision Mamba requires a significantly smaller number of trainable parameters than traditional convolutional
neural networks (CNNs), and thus, they can be more memory efficient. Because of these features, we introduce a neural network that uses
Vision Mamba as its backbone for predicting the permeability of three-dimensional porous media. We compare the performance of Vision
Mamba with ViT and CNN models across multiple aspects of permeability prediction and perform an ablation study to assess the effects of
its components on accuracy. We demonstrate in practice the aforementioned advantages of Vision Mamba over ViTs and CNNs in the per-
meability prediction of three-dimensional porous media. We believe the proposed framework has the potential to be integrated into large

vision models in which Vision Mamba is used instead of ViTs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0307953

I. INTRODUCTION AND MOTIVATION

Porous media play a central role across diverse scientific and
industrial domains, including digital rock physics,' ~ membrane sys-
tems,”” geological carbon storage,”” and medicine.” '’ Conventional
investigations use numerical simulations and laboratory experiments
to analyze porous media and to obtain their physical and geometric
characteristics. Although both approaches are valuable, they are
resource-intensive, requiring substantial computation, specialized lab
instrumentation, and considerable wall-clock time. To reduce this bur-
den, deep learning within the broader machine-learning paradigm can
accelerate tasks such as segmentation of porous media'' '* and the
prediction of porous-medium properties, including permeability,” >’
porosity,” elasticity,”** and effective diffusivity.” Moreover, deep
learning configurations can predict pore-scale fields such as velocity
and pressure.”” *’ Additionally, generative deep learning models are
used for porous-media reconstruction.’’ ** In the present work, we
focus on predicting the permeability of porous media from digital rock
images using supervised deep-learning frameworks.

From a computer-science perspective, a variety of deep-learning
frameworks have long been applied to permeability prediction in
porous media, each with its own advantages and limitations. We
briefly review these approaches and then explain how our proposed

deep-learning framework addresses several of their challenges while
introducing new capabilities. Convolutional neural networks (CNNs)
and CNN-based variants such as ResNet’” have been widely used to
predict permeability from 2D and 3D representations of porous
media.'"*'”*® These models often achieve strong accuracy with rela-
tively simple architectures (compared with other models that will be
mentioned later in this paragraph). However, they typically require a
large number of learnable parameters, often more than the alternatives
we will discuss later. They also operate on fixed input resolutions; a
network trained on cubes of one size generally expects test data of the
same size. Point-cloud neural networks, such as PointNet”~® and
PointNet+-+,” are another family of deep-learning frameworks used
for permeability prediction.'” In this setup, the boundary between pore
and grain phases of the porous medium is represented as a point cloud.
The main advantage of this approach compared with CNNs is that it
dramatically reduces the dataset size, since the full volumetric cubes
are no longer needed.'” Additionally, although models are usually
trained with the same number of points per point cloud within a batch
(each batch can still contain point clouds with different numbers of
points), at test time, the number of points can vary. However, prepro-
cessing is required to convert volumetric images of porous media into
point-cloud data. Furthermore, if the number of boundary points
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varies drastically across the dataset, the training procedure may face
additional challenges, both in implementation and in loss-function
convergence. Fourier neural operators (FNOs) have also been used for
permeability prediction.”” FNOs are invariant to input image size;"’
leveraging this property, they can be trained on porous media of differ-
ent sizes simultaneously and have shown strong generalizability to
unseen sizes. However, FNOs can be prone to overfitting on the train-
ing data. Another limitation is their sensitivity to hyperparameters,
especially the number of Fourier modes, which introduces additional
challenges for training and fine-tuning.” Vision Transformers
(ViTs),"" as another deep-learning architecture, have been applied to
predicting the permeability of porous media.'”*>** In several settings,
ViTs achieve competitive or superior accuracy with comparable, or
sometimes fewer, trainable parameters than CNNs.'® Moreover, unlike
standard CNNss, vanilla ViTs with full self-attention can look across
the entire image from the very first layer, so they pickup long-range
patterns early; CNNs usually need many layers or operations like pool-
ing or dilated convolutions to see that much of the image.

Mamba** was introduced as an alternative to Transformers."’
Building on this line of work, Vision Mamba® was also introduced as
an alternative to Vision Transformers.”' One of the main advantages
of Vision Mamba over ViTs is that it scales linearly (rather than qua-
dratically) with the number of tokens. This motivates us to propose a
deep learning framework based on Vision Mamba for predicting the
permeability of porous media. Vision Mamba has been so far used for
several key applications in vision tasks'*"” such as image detection,"®
medical image classification,”’ remote sensing,”’ ocean engineering of
underwater vehicles,”’ medical image segmentation,5 2 and medical
video segmentation.” It is important to note that Mamba and its
vision counterpart are emerging as alternatives to Transformers and
ViTs and are increasingly used as building blocks in large language
and large vision models.”* *’ Demonstrating that Vision Mamba can
predict properties of three-dimensional porous media is therefore sig-
nificant, as it indicates a pathway to incorporating this task into future
large models that perform multiple functions, including permeability
estimation from volumetric data.

The key contributions of this study are as follows.

* We introduce a deep learning framework, based on the Vision
Mambea architecture, for predicting the permeability of voxelized
porous media.

* The proposed network leverages Vision Mamba to achieve linear
scaling with token size (or similarly patch size), whereas ViTs
scale quadratically.

* Leveraging Vision Mamba significantly reduces trainable param-
eters compared to CNNs, improving memory efficiency.

It is worthwhile to note that the focus of the current study, from a
computer science perspective, is a supervised deep learning framework
in which fully labeled data (i.e., pairs of cubes and permeabilities) are
available. Of course, the class of weakly supervised deep learning
frameworks, such as physics-informed machine learning (see, e.g.,
Refs. 30, 60, and 61) which is particularly useful when only sparse data
are available, represents another important research direction; how-
ever, it is not the focus of the present study. We now outline the struc-
ture of the remainder of this research paper. In Sec. II, we describe the
generation and collection of three-dimensional porous media and the
computation of their permeability by numerically solving the Stokes
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equations for the proposed supervised deep-learning framework. In
Sec. 111, we present the Vision Mamba architecture, adapted to predict
a volumetric property, here, the permeability of 3D porous media.
Training of Vision Mamba and the hyperparameter settings are
explained in Sec. IV. We then discuss the results in Sec. V, including
the performance of Vision Mamba, its comparison with CNNs and
ViTs, and the ablation studies. Finally, Sec. VI provides a summary
and potential directions for future research.

Il. DATA GENERATION

To test the deep-learning framework, we synthesize voxelized
porous media using the truncated-Gaussian construction.””** Each
sample occupies a cube of side length L discretized on an n x n x n
grid, with morphology characterized by a target porosity ¢ (i.e., pore-
volume fraction) and a spatial correlation length /.. To construct each
volumetric sample, we follow three stages. First, we generate a 64
X 64 X 64 (i.e., n = 64) scalar field of white noise by drawing samples
from a standard normal distribution at every voxel. Second, we impose
spatial correlation by convolving the field with a three-dimensional
Gaussian kernel with a standard deviation of 5.0 and a spatial correla-
tion length ¢, = 17 voxels. Third, we rescale the smoothed field to the
interval [0, 1] and apply a global threshold of 0.45 so that values less
than or equal to 0.45 are labeled as pore and values greater than 0.45
are labeled as grain, yielding a binary pore-grain medium. The selected
threshold constrains the porosity to ¢ € [0.125, 0.200]. In the present
study, the characteristic domain length [ is defined as | = n Ax, where
Ax denotes the physical length associated with each side of a single
pixel in the discretized porous medium. For all simulations, Ax is set
as 0.003 m, thereby setting the spatial resolution of the computational
grid. We generate 1692 samples and randomly partition them into
three disjoint subsets: 1353 for training, 169 for validation, and 170 for
testing. A few examples of these cubic porous media are shown in
Fig. 1.

Flow through each synthesized porous medium is driven by
imposing a uniform streamwise pressure gradient Ap/! in the x-direc-
tion. The two bounding y-z faces are assigned no-slip conditions.
Within the pore space, we compute the steady incompressible motion
using a lattice Boltzmann solver®" that resolves the Stokes system,

V- -u=0, (1)

Vp — uVu =0, )

where y is the dynamic viscosity and u and p denote the velocity and
pressure fields, respectively. The numerical simulation using the lattice
Boltzmann solver is carried out until the L? norms of the residuals for
both the continuity and momentum equations [i.e., Egs. (1) and (2)]

fall below 10~°. From the converged solution, the intrinsic permeabil-
ity (k) in the x-direction is obtained via Darcy’s law,””

k=120 3)

with U the superficial (volume-averaged) velocity evaluated over the
entire sample (assigning zero velocity in solid voxels). Across the data-
set, the resulting permeabilities lie within [20 mD, 200 mD].

lll. VISION MAMBA ARCHITECTURE

In this section, we describe the architecture of the proposed neu-
ral network, whose core is Vision Mamba, a selective state-space
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FIG. 1. Three representative examples of the synthetically generated three-dimensional digital porous media (with n = 64) used to train Vision Mamba are shown; phases are

color-coded with blue indicating the solid grain matrix and red indicating the pore space.

model, adapted to predict permeability from voxelized porous media.
Figure 2 illustrates the schematic of Vision Mamba, which serves as
the core of the proposed neural network, with the 3D porous medium
cube as the input. We split the cube into non-overlapping 3D patches,
and each patch is embedded into a token. A stack of Vision Mamba
blocks scans the embedded tokens along the depth, height, and width
axes. Each scan performs bidirectional state updates through forward
and backward recurrences. Finally, we take a global average over space
and use a linear layer to output a single permeability value.

A. Input and patchification

The input to the network is a batch of generated porous media,
ie, a batch of cubes, which mathematically can be shown by
X € REXIXDAHXW - \here B is the batch size and D, H, and W are
spatial dimensions. Next, we apply a patchification operator.
Patchification uses a single 3D convolution with kernel size and stride
equal to the patch size. In this setup, the patchification produces an
D' x H x W' grid of patch tokens, each with C channels.

Consequently, the output pf the patchification operator is the token
grid Ziok € RBXCXD xH'x W' .

B. Vision Mamba block

The token grid z,k (obtained from the previous step) serves as
the input to Vision Mamba. To elaborate on the process within Vision
Mamba, we describe it in three stages: token-wise parameter genera-
tion, selective scanning along each axis, and axis fusion with residual
connections.

1. Token-wise parameter generation

In the next step, a 1x1x1 convolution reads zik
€ REBXCDXHXWand produces  five  fields  of  size
B x Cx D x H x W' input gate (gin), output gate (gou), and two
state-space coefficients B and C, as well as positive step size A.
Moreover, we create a learnable vector A € RS and a skip vector
Dyip € IR®. In addition, we define u as

[ 4 4 4 4 ( o
oy FRNPR <
-~ &
10 B e el
S m =
34 4 4 4~ 4 § ° qu FIG. 2. Top panel: Schematic architecture
Zz-axis e IS Q? of the proposed network based on Vision
N ) ( ) Mamba for deep learning of the perme-
ability of three-dimensional porous media.
[ If the input is a 64 x 64 x 64 porous
Backward medium (i.e., n = 64) with a patch size of
. 32, there are eight subcubes, labeled 1-8.
Selective

Scan (SSM)
t

]

Norm | 3D Convolution

|

Forward

Selective
Scan (SSM)

1

By scanning along the y-axis, the sub-
cubes are arranged in the order 1, 5, 2, 6,
3, 7, 4, 8. Scanning along the x and z
directions is defined similarly. Bottom
panel: Internal structure of a Vision
Mamba block.
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U = gin © Ztok (4)
where © denotes elementwise product and thus u € RZ*CxDxH>W'
A is introduced and computed by applying the elementwise softplus

function to the vector A. The softplus function is defined as
a(2) =1In(1 + ¢*). 5)

Note that although A, € R, it is treated as A, € R"*©1*1x1 jp
practice from a software engineering perspective. Next, o is introduced
and computed as

o =exp(—AL O A), (6)

/o F s W
where o € RBXCXD xH'xW )

2. Selective scan per axis

For each spatial axis n € {D/,H’, W'}, the token grid zy is
viewed as a collection of length-L, sequences by treating that axis as an
ordered time dimension and flattening the remaining indices into
independent sequences. The forward selective state-space scan along
axis 7 updates a channelwise hidden state s and produces an output

4 via

st =0 ©s—1+ B ©uy, (7)
Y = C, © 5 + Dyip © u, (®)

fromt = 0 to t = L, — 1. Note that the subscript t added to the com-
ponents s, o, B, u, C, and nyd (i.e., ¢, o, By, uy, Cr, and yf‘”d) indicates
that these components are reshaped to Nyq X L x C, and therefore
{st7 o, By, uy, Ct,yfwd} € RN«*C The value of Nyeq depends on the
scanning axis. For example, when scanning along the D’ axis,
Nyeq = B x H' x W'. Similarly, Nq is computed when the other two
axes are scanned. Finally, a corresponding backward scan runs from

t = L, tot = 1, producing y™.

3. Axis fusion and residuals

The two directions are fused to remove directional bias,

L1 w
y =504, ©
and the result is then gated at the output

Vi = Gout © - (10)
The outputs along the three axes are subsequently averaged to obtain
the final output

. VYo +J}H/ +)’W’

Yok = 3 (11)

The Vision Mamba block employs a residual connection and a point-
wise MLP to mix channels after the selective scan, formulated as

2" = ziok + Yook, (12)
Zow = 27 + M(z"), (13)
where M denotes a pointwise MLP implemented using 1 x 1 x 1

convolutions with the Gaussian error linear unit (G) activation func-
tion, defined as

ARTICLE pubs.aip.org/aip/pof

G(2) = %(1 +erf(27°%2)). (14)

C. Global pooling and head

After the Vision Mamba block, a global average pooling across
spatial dimensions and a linear projection to a scalar is applied. If h
denotes the globally pooled representation, the predicted permeability
k is computed as

h = mean(zou), (15)
k=w'h+b, (16)

where w is the weight vector and b is a scalar bias.

Note that we described the architecture of a single Vision Mamba
block. Multiple blocks can be stacked sequentially to construct deeper
networks. For further details on the underlying methodology, we refer
readers to the original Mamba formulation® and its vision-oriented
adaptation in Vision Mamba."® Moreover, implementation-specific
details are documented in our openly available GitHub repository (see
the Data Availability part at the end of the article), which includes
extensive inline comments.

IV. PARAMETER SETUP AND TRAINING

Since n = 64, the parameters D, W, and H are set to 64. We set a
patch size of 8 voxels in the patchification operator on 64° inputs, pro-
ducing an 8 x 8 x 8 grid of 512 tokens with embedding width
C = 64. Since the input dimensions are 64 and the patch size is 8, it
follows that D', W/, and H' are 8 (because 64/8 = 8). Moreover,
because n = 64 and the patch size equals 8, it is concluded that the
sequence length along each axis is L, = 8 (the number of pixels
divided by the patch size). Additionally, we set the block depth Nyjock
to 3. The block depth of 3 (Npok = 3) means that three Vision
Mamba blocks are stacked sequentially after the patch-embedding
stem, each applying axiswise bidirectional selective scans and residual
pointwise mixing to the output of the preceding block before the global
pooling and linear regression head. In Sec. V B, we report a series of
ablation studies that systematically examine how these hyperpara-
meters affect the predictive performance of the model.

Training uses mean-squared error on a min—-max normalized tar-
get. Let kpin and kpma be the minimum and maximum permeability
values computed on the training split. The normalized target is

k— kmin

k= PR (17)
The loss over a batch is
PN SIS (18)
B4

At evaluation time, predictions are mapped back to physical units by
the inverse of Eq. (17). This normalization stabilizes optimization
without imposing a hard output range; the regression head remains
unconstrained and learns to match the normalized scale.

Model training proceeds via stochastic, mini-batch gradient opti-
mization by adopting the Adam optimizer®” with a constant learning
rate of 0.001, and using mini-batches of 128 samples (ie., B = 128)
for each parameter update.”” To avoid overfitting, model performance
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is continuously monitored on a held-out validation set throughout
training. Convergence is typically achieved within approximately 300
epochs, at which point the final optimized model is selected. All
experiments are executed on a single NVIDIA A100 (SXM4) GPU
equipped with 80 GB of memory.

V. RESULTS AND DISCUSSION
A. General analysis

To assess predictive accuracy for permeability, we employ the
coefficient of determination, R?. For a test set comprising P samples
with ground-truth permeabilities k; and corresponding predictions k;,
and denoting by k = %Zle k; the empirical mean of the ground
truth, R? is defined as

P

> (k= k)
R=1-"F— (19)

> (ki—k)

i=1

—_

Note that negative values of R* imply performance inferior to the
trivial predictor k; = k. We also report the root mean square error
(RMSE), defined as

(20)

We further report the maximum relative error over the test set by

S NP
computing max{%} v The minimum relative error is similarly
[ S

defined.

The performance and error analysis of the Vision Mamba model
in predicting the permeability of the test set (170 porous media) are
summarized in Table I. As reported, the R? score is 0.9969, and the
root mean square error is 2.6939 mD. The maximum and minimum
relative errors are 0.2708 and 0.0003, respectively. The left panel of
Fig. 3 further illustrates the predicted vs ground-truth permeability for
all samples in the test set, highlighting the results for individual porous
media. These findings demonstrate the successful training and accurate
predictive capability of the proposed Vision Mamba-based neural net-
work for applications to three-dimensional porous media.

With the available GPU, the Vision Mamba framework evaluates
the permeability of the entire test set of 170 cubes in roughly 7s. By
contrast, computing the permeability of the same 170 samples with the

TABLE . R? score, root mean square error, and minimum/maximum relative errors
of the test set (170 samples) for the comparison between Vision Mamba and CNN
models. The batch size (5) for both models is set to 128. We set Nyjoex = 3 and as
well as the patch size of 8 in the Vision Mamba model.

Vision Mamba CNN
R? score 0.9969 0.9762
Root mean square error (mD) 2.6939 7.5054
Minimum relative error 0.0003 0.0004
Maximum relative error 0.2708 0.9312
Training time per epoch (s) 3.0 1.6
Number of trainable parameters 195841 2582369

ARTICLE pubs.aip.org/aip/pof

Lattice Boltzmann solver requires, on average, about 1530, which is
approximately 26 min, on a single Intel(R) Core CPU operating at
2.30 GHz. This corresponds to an average acceleration factor of about
218 relative to the numerical simulations. These values should be
viewed as indicative rather than absolute, since the realized speedup
depends strongly on the efficiency of the numerical solver implementa-
tion and on the specific GPU and CPU hardware employed.

B. Comparison between Vision Mamba and CNNs

The next step is to compare the performance of Vision Mamba
with that of a CNN. For completeness, we briefly outline the CNN
architecture used in this study. Specifically, we employ the same CNN
model that was adopted in our previous work published in 2021."” In
simple terms, the CNN model consists of an encoder and a decoder. In
the encoder, convolutional channels start at 16 and double at each
stage. Downsampling is done with stride-2 convolutions without pad-
ding. There are no pooling layers in the encoder. We use 2 x 2 x 2
kernels, except for the last layer of the encoder, whichusesa 1 x 1 x 1
kernel. This final layer produces a single global latent vector of length
1024. This latent vector is then passed to a decoder, implemented as a
multilayer perceptron (MLP) with three layers of sizes 512, 256, and 1,
respectively, which is used to predict the permeability. In both the
encoder and decoder, Rectified Linear Unit (ReLU) activation function
[see Eq. (7) in Ref. 17 for the mathematical expression of this function]
is applied as the activation function after each layer except the final
layer, which has no activation. Batch normalization®” is applied after
each layer. In the decoder, dropout™” with a probability of 0.7 is used.
Similar to the Vision Mamba model, the loss function is the mean
squared error [Eq. (18)]. For additional background and implementa-
tion details on CNNs for permeability prediction in porous media, see
Ref. 17.

The performance and error analysis of the predicted permeability
values of the test set using the CNN model are listed in Table I, with
the corresponding results illustrated in the right panel of Fig. 3 for the
R? score. In comparison with Vision Mamba, the CNN vyields a lower
R? score (09762 vs 0.9969), a higher root mean square error
(7.5054 mD vs 2.6939 mD), a higher minimum relative error (0.0004
vs 0.0003), and a higher maximum relative error (0.9312 vs 0.2708). It
is important to emphasize that our focus here is not solely on showing
that Vision Mamba consistently outperforms CNN in terms of predic-
tion accuracy of porous media permeability. In fact, we ensured that
the CNN model was optimized to achieve its best possible perfor-
mance. Nevertheless, as discussed earlier, CNN still achieves lower R*
scores compared to Vision Mamba. Instead, our comparison primarily
concerns the training time and the number of trainable parameters, as
summarized in Table 1. The training time (per epoch) of Vision
Mamba is approximately 1.875 times longer than that of CNN. This
can be attributed to the sequential nature of Vision Mamba, which
converts each three-dimensional porous medium into a sequence of
patches and processes them serially. In contrast, CNNs process three-
dimensional porous media through multiple channels in parallel,
where the number of channels typically increases and the kernel size
decreases at deeper layers, leading to faster training. However, this par-
allelization comes at the cost of requiring more trainable parameters
and higher GPU memory consumption. Based on Table I, the number
of trainable parameters in the CNN model is 2582369, whereas
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FIG. 3. Comparison of Vision Mamba and CNN performance using the R? score (left: Vision Mamba; right: CNN).

Vision Mamba requires only 195841 parameters, approximately a

13.2-fold reduction, which is a substantial difference. = VIT (data)
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10 ---- ViM fit: aN + b (a=0.0385, b=0.2385)

C. Comparison between Vision Mamba and ViT

This subsection compares the proposed model, based on Vision
Mamba, with ViT for permeability prediction of porous media. A brief
summary of the ViT architecture is provided at the end of this subsec-
tion; here, we focus on the results. In each machine learning experi-
ment, the number of trainable parameters between the two models is
matched as closely as possible. Once the initial ViT design is estab-
lished, the only variable across experiments is the patch size (i.e., token
size). The Vision Mamba configuration follows that described previ-
ously, except that the patch size is varied. For both models, the batch

101 4

100 4

GPU memory per epoch (GB)

size is fixed at 128 (B = 128). Other hyperparameters and training 100 10! 102

procedures are selected to achieve the best performance, and early Relative patch size, ( ﬁ )3

stopping is applied to mitigate overfitting. Table IT reports the results

for patch sizes 4, 8, 16, and 32. In both models, reducing the patch size FIG. 4. GPU memory (per epoch) scaling vs relative patch size (i.e., relative token
decreases the number of trainable parameters but increases GPU size) for Vision Mamba (ViM) and ViT on log-log axes. Least-squares fits reveal lin-
memory requirements. The character of this increase distinguishes ear scaling for Vision Mamba and quadratic scaling for ViT.

TABLE II. Performance comparison between Vision Mamba (ViM) and Vision Transformer (ViT). Reported metrics include the R? score, root mean square error (RMSE), mini-
mum relative error (MiRE), and maximum relative error (MaRE) on the test set (170 samples) for different patch sizes. See text for details of the setup for each architecture. The
symbol x indicates that the corresponding machine learning experiment could not be run due to GPU memory limitations.
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4 8 16 32

Patch size

Model ViM ViT ViM ViT ViM ViT ViM ViT

GPU memory per epoch (GB) 19.967 X 2.732 7.318 0.477 0.344 0.322 0.305

Training time per epoch (s) 12.0 X 3.0 2.7 2.5 2.1 2.6 23

Trainable parameters 167169 187073 195841 215745 425217 445121 2260225 2280129

R? score 0.9934 X 0.9969 0.9838 0.9974 0.9957 0.9817 0.9491

RMSE (mD) 3.9571 X 2.6939 6.1794 2.4557 3.1903 6.5718 10.9623

MiRE 0.0001 X 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001

MaRE 0.4478 X 0.2708 0.6973 0.2105 0.3843 0.4586 0.7567
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Vision Mamba from ViT. Although the number of trainable parame-
ters remains nearly constant in both models as patch size decreases,
GPU memory usage grows at different rates. For ViT, the increase is
so pronounced that a model with patch size 4 cannot be executed on
an 80-GB NVIDIA A100 (SXM4) GPU, resulting in job failure, as
reported in Table II. Figure 4 shows the GPU memory usage per epoch
as a function of patch size. In this plot, the patch size is normalized by
the largest patch size (i.e,, 32 in the current case). As shown in Fig. 4,
the required GPU memory per epoch increases linearly with decreas-
ing patch size in Vision Mamba, whereas it increases quadratically
with decreasing patch size in ViT. Our experimental results on three-
dimensional porous media (i.e., a specific 3D image) confirm the theo-
retical design of Vision Mamba and ViT in terms of linear and qua-
dratic scaling with token size. As illustrated in Fig. 4, we apply a least
squares fit to derive linear and quadratic equations describing the
experimental GPU memory requirements. Based on these equations, it
is predicted that at a patch size of 4, the required GPU memory
per epoch for ViT would be approximately 451 GB, which explains
why this machine learning experiment could not be executed on our
80-GB GPU.

Figure 5 presents the permeability predictions vs the ground truth
for patch sizes 8, 16, and 32 using the Vision Mamba and ViT models.
Based on the results reported in Table II and the visualizations in
Fig. 5, it can be concluded that very large patch sizes reduce the accu-
racy of permeability prediction. This effect is more pronounced for

ViM, patch size = 8

ViM, patch size = 16
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ViT, which attains an R? score of 0.9491 at a patch size of 32, whereas
Vision Mamba maintains an R? score of 0.9817 at the same patch size.
Overall, Vision Mamba achieves higher accuracy and, owing to its
lower memory footprint, allows exploration of smaller patch sizes.
This advantage is expected to become more significant for larger
porous media (i.e., higher values of n) and for media with shorter spa-
tial correlation lengths. According to Table II, the ViT model generally
requires less time per epoch, although the difference from the Vision
Mamba model is not substantial.

At the end of this subsection, we provide a brief explanation of
the ViT architecture implemented in this study. The network parti-
tions each 64 x 64 x 64 porous medium into non-overlapping
patches (e.g., 8 X 8 x 8 patches when the patch size is 8) and maps
each patch to a token via a three-dimensional convolutional stem
whose kernel and stride are equal to the patch size, producing embed-
dings of dimension 64. A learned absolute three-dimensional posi-
tional embedding, defined on a base token grid (e.g., 8 x 8 x 8 grid
for a patch size of 8), is trilinearly interpolated to the current token
grid and added to the tokens. The encoder consists of three pre-
normalized Transformer blocks; in each block, tokens are normalized,
processed by multi-head self-attention with eight heads, and merged
back through a residual connection. This is followed by another nor-
malization, a two-layer MLP with Gaussian error unit activation and
dropout, and a second residual addition. After the block stack, tokens
are layer-normalized and aggregated by global average pooling, and a

ViM, patch size = 32
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FIG. 5. Comparison of Vision Mamba (ViM) and ViT performance based on the R* score. The first row corresponds to Vision Mamba (ViM), and the second row corresponds

to ViT.
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TABLE IIl. R? score, root mean square error, and minimum/maximum relative errors of the test set (170 samples) for different numbers of Vision Mamba blocks in the proposed
neural network. The patch size is fixed at 8.

Number of Vision Mamba blocks (Npjock) 1 2 3 4 5

R? score 0.9562 0.9803 0.9969 0.9590 0.9517
Root mean square error (mD) 10.1734 6.8171 2.6939 9.8449 10.6828
Minimum relative error 0.0030 0.0001 0.0003 0.0001 0.0001
Maximum relative error 1.4327 0.7685 0.2708 0.6538 0.6875
linear head maps the pooled representation to a single scalar perme- D. Ablation studies

ability prediction. Further details can be found in the original
Transformer’” and Vision Transformer'' articles, as well as in our
open-source code, the link to which is provided at the end of this

In this section, our objective is to examine the influence of several
key hyperparameters of the neural network on its performance in pre-
dicting the permeability of porous media. While designing a neural
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achieve the best possible performance, which is referred to as ablation
studies. Interpreting the obtained results provides valuable insights
into the behavior of the network for the current specific application in
this article. For illustration, we focus on three important parameters.
The first parameter is the number of Vision Mamba blocks (Npjock). As
explained in Sec. IV, each block can be connected to the subsequent
one, thereby progressively deepening the network. The results of this
investigation are summarized in Table III and Fig. 6, where the num-
ber of Vision Mamba blocks (N, ) was varied from 1 to 5. For each
configuration, we report the coefficient of determination (i.e., R?
score), the root mean square error, as well as the maximum and mini-
mum relative errors. As observed from Table ITI, the best performance
is obtained with a network consisting of three blocks (i.e., Nyjock = 3),
based on maximizing the R? score and minimizing the root mean
square error on the test set (170 data). When the number of blocks is
reduced, the network becomes shallower and the number of trainable
parameters decreases, which leads to a decline in performance.
However, this reduction is not particularly severe. For example, when
the number of Vision Mamba blocks is reduced from 3 to 2, the R?
score decreases only slightly from 0.9969 to 0.9803. Even with just a
single Vision Mamba block (i.e., Nijoak = 1), the R? score remains at
0.9562, indicating that the network maintains reasonable performance.
Conversely, increasing the number of blocks from 3 to 4 and 5 leads to
R? scores of 0.9590 and 0.9517, respectively. Thus, no performance
improvement is observed beyond 3 Vision Mamba blocks; instead, a
slight reduction in the R? score occurs. This decline may be attributed
to a slight overfitting on the training data set, as the number of train-
able parameters increases.

The next hyperparameter we investigate is the patch size, the con-
cept of which was explained in Sec. I1I. The outcomes of this investiga-
tion are listed in Table IV. Accordingly, we consider five different
patch sizes: 4, 8, 16, 32, and 64. Similar to the previous case, we take
the R? score and the root mean square error as benchmarks.
Consequently, the best performance is obtained with a patch size of 16.
However, the difference in R? scores across the different patch sizes is
relatively small, with the highest being 0.9974 for the patch size of 16
and the lowest 0.9805 for the patch size of 64.

As shown in Table TV, the overall performance of the network
decreases slightly as the patch size increases beyond 16. This trend can
be explained as follows. The patch size determines how each three-
dimensional input is divided into smaller cubes and transformed into
a sequence of patches, allowing the network to learn both their features
and their relationships with neighboring patches. As discussed in Sec.
111, these sequences are constructed by scanning the input along three
spatial directions. In this sense, when the patch size is 64 and the

TABLE IV. R? score, root mean square error, and minimum/maximum relative errors
of the test set (170 samples) for different patch sizes in the Vision Mamba model.
The number of Vision Mamba blocks is fixed at three (Npjock = 3).

ARTICLE pubs.aip.org/aip/pof

porous media samples are also of size 64 x 64 x 64 (i.e, n = 64), no
subdivision occurs; the entire cube is treated as a single patch, and
fine-scale details are lost. In contrast, with a patch size of 8, a 64 X
64 x 64 cube (i.e., n = 64) is divided into 512 smaller patches, which
are then sequentially processed in three spatial directions (e.g., length,
width, and height). Hence, this representation enables the network to
better capture local features, leading to more accurate permeability
predictions in porous media. Additionally, we observe from Table TV
that using the patch size of 8 does not improve performance and yields
results nearly identical to those with a patch size of 16. It is conjectured
that this behavior is related to the spatial correlation length of the data-
set, which is 17 voxels (i.e., £, = 17). This may suggest that the optimal
patch size should be close to the spatial correlation length (if known),
since it encapsulates the dominant information embedded at that
scale.

As described in Sec. 111, the proposed Vision Mamba-based net-
work processes 3D porous-media cubes along the three spatial axes (x,
y, and z) and aggregates the resulting features by averaging, as in Eq.
(11). The network’s output is the permeability in the x-direction [see
Sec. IT and Eq. (3)]. To test whether scanning along the other two axes
helps predict x— direction permeability, we conduct an ablation in
which, instead of scanning along all three axes and averaging, we scan
exclusively along a single axis (x only, y only, or z only). The results in
Table V show that, while x-only scanning is more accurate than y-only
or z-only (as expected, given that the target is x-permeability), aggre-
gating features from all three axes yields the best performance, with
higher R? and lower root mean squared error. This outcome is consis-
tent with the underlying physics, which indicates that the average
velocity in Eq. (3) and the permeability in the x-direction depend on
the full three-dimensional pore geometry. Therefore, solving the
Stokes equations [see Egs. (1) and (2)] in three dimensions is required
even when estimating a directional permeability.

To evaluate the stability of the proposed Vision Mamba frame-
work with respect to random initialization, we repeat the Vision
Mamba training procedure five times using different random seeds.
The resulting R? score is expressed as 0.9943+0.0036, where 0.9943 is
the mean and 0.0036 is the standard deviation across the five runs.
The small variance observed in these repeated machine learning
experiments indicates that the performance of the proposed Vision
Mamba model for permeability prediction is robust to initialization.

The final hyperparameter examined is the batch size () during
training. As shown in Table VI, a batch size of 128 (53 = 128) yields
the highest R? score and the lowest root mean square error when the
patch size is fixed at 8 and the number of Vision Mamba blocks is set
to 3. Larger batch sizes, such as 256, accelerate training but reduce

TABLE V. Comparison of the R? score, root mean square error, and minimum/maxi-
mum relative errors on the test set (170 samples) for different scan directions in
Vision Mamba [see Eq. (11)]. We set Nyjock = 3 and the patch size to 8.

Patch size 4 8 16 32 64 Scan direction All three axes x— axis y— axis z— axis
R? score 0.9934 0.9969 0.9974 0.9817 0.9805 R? score 0.9969 0.9945 0.9829 0.9704
Root mean square 3.9571 2.6939 2.4557 6.5718 6.7914 Root mean square 2.6939 3.5980 6.3660 8.3650
error (mD) error (mD)

Minimum relative error  0.0001 0.0003 0.0001 0.0001 0.0001
Maximum relative error 0.4478 0.2708 0.2105 0.4586 0.8878

Minimum relative error 0.0003 0.0001  0.0001 0.0001
Maximum relative error 0.2708 0.3503 0.4187 0.9440
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TABLE VI. R? score, root mean square error, and minimum/maximum relative errors
of the test set (170 samples) for different Batch sizes in the Vision Mamba model.
The number of Vision Mamba blocks is fixed at three (Nyox = 3). The patch size is
setto 8.

Batch size (B) 4 16 32 128 256
R? score 0.9750 0.9895 0.9911 0.9969 0.9700
Root mean square 7.6883 4.9847 4.5980 2.6939 8.4248
error (mD)

Minimum relative error  0.0004 0.0008 0.0001 0.0003 0.0001
Maximum relative error 0.5114 0.6885 0.3712 0.2708 0.5845

performance, with the R? score dropping from 0.9969 to 0.9700, indi-
cating decreased accuracy in predicting porous media permeability.

E. Permeability prediction of natural porous media

In this part of the article, we investigate the capability of the pro-
posed Vision Mamba architecture to be trained on natural porous
media and, consequently, to predict the permeability of these rocks.
For this purpose, we consider Berea sandstone samples, specifically, a
dataset containing 1186 cubes of size 64 x 64 x 64 (i.e, n = 64), with
permeabilities ranging approximately from 10 mD to 200 mD. We split
this dataset into 90% for training, 5% for validation, and 5% for testing.
An example of one such sample is shown in the left panel of Fig. 7.
The porosity ranges from about 0.08 to 0.19, which differs from
the porosity range considered for the synthetic dataset discussed in
Secs. V. A=V D, and the spatial correlation lengths vary from 5 to 12
voxels. To compute the spatial correlation length, we used the Fast
Fourier Transform-based two-point correlation method described in
Ref. 71. Unlike the synthetic data generation process, the spatial corre-
lation length in this dataset is not fixed. The outcome of this investiga-
tion is presented in the right panel of Fig. 7, where we observe an R?
score of 0.9833. The root mean squared error is 6.7418 mD. Hence,
this experiment demonstrates that the Vision Mamba framework can
be effectively applied to natural porous media for real digital rocks and

Prediction (mD)
(>
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realistic applications, where the dataset is complex and exhibits a range
of spatial correlation lengths and porosities.

VI. SUMMARY AND FUTURE RESEARCH PROJECTS

In this article, we presented a neural network based on Vision
Mamba for predicting the permeability of three-dimensional porous
media. We demonstrated the effectiveness of the proposed model
using evaluation criteria such as the coefficient of determination, mean
square error, and maximum and minimum relative errors. We dis-
cussed the advantages of Vision Mamba compared to CNNs and ViT's
for permeability prediction. In particular, we showed that, relative to
CNNgs, Vision Mamba requires far fewer trainable parameters while
achieving superior performance. Furthermore, we demonstrated that
GPU memory usage in Vision Mamba scales linearly with patch size,
whereas in ViTs it scales quadratically. As a result, under limited GPU
memory, Vision Mamba was able to successfully execute the machine
learning experiments with small patch sizes, whereas ViTs could not
be trained due to insufficient memory when using the same small
batch sizes. Finally, we explored the impact of key hyperparameters,
including the number of Vision Mamba blocks, patch size within each
block, and batch size, to highlight their influence on model
performance.

In the current article, we focus on predicting the permeability in
the x-direction, denoted by k, which corresponds to the k,, component
of the anisotropic permeability tensor. Extending Vision Mamba to
predict the full anisotropic permeability tensor is conceptually straight-
forward. The primary requirement is the availability of training labels
for all tensor components, which can be generated by solving the con-
tinuity and Stokes equations [see Eqs. (1) and (2)] under three inde-
pendent pressure-gradient directions (e.g., x, y, and z). The proposed
Vision Mamba model can then be adapted by employing a single
multi-output regression head that predicts all tensor entries simulta-
neously. The Vision Mamba backbone remains unchanged and only
the output layer and the loss function become multi-dimensional.
From a data-generation perspective, computing accurate off diagonal
components and ensuring sufficiently diverse training samples to cap-
ture a broad range of anisotropy are required.
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FIG. 7. A Berea sandstone sample as a natural porous medium (left), and the performance of Vision Mamba in predicting its permeability (right).
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In the present article, we used the classification branch of Vision
Mamba, where the neural network input represents the geometry of
the porous medium and the output is the permeability as a scalar
value. As one idea for future projects, one could use the segmentation
branch of Vision Mamba such that, although the input remains the
same three-dimensional cube describing the porous-medium geome-
try, the output is the predicted velocity field within the pore space. Of
course, after obtaining the velocity field, the permeability can also be
computed. However, access to the full velocity field provides more
information. This can be done in the form of fully supervised deep
learning or in the form of weakly supervised deep learning, if only
sparse observations from the velocity field are available, by enforcing
the governing equations [e.g., Eqs. (1) and (2)] as a loss function for
the Vision Mamba network.

Another promising research direction could be the development
of large language and vision models for porous media based on Vision
Mamba rather than transformer architectures. Such foundation models
could handle variable-size and multimineral porous media, enabling the
prediction of physical and geometrical features, and offering interactive
environments to integrate images, codes, texts, and mathematical for-
mulations within a unified framework (see, e.g., Ref. 72).
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