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Abstract Coarse grid projection (CGP) methodology is a novel multigrid method
for systems involving decoupled nonlinear evolution equations and linear elliptic
Poisson equations. The nonlinear equations are solved on a fine grid and the linear
equations are solved on a corresponding coarsened grid. Mapping operators execute
data transfer between the grids. The CGP framework is constructed upon spatial and
temporal discretization schemes. This framework has been established for finite vol-
ume/difference discretizations as well as explicit time integration methods. In this
article we present for the first time a version of CGP for finite element discretizations,
which uses a semi-implicit time integration scheme. The mapping functions corre-
spond to the finite-element shape functions. With the novel data structure introduced,
the mapping computational cost becomes insignificant. We apply CGP to pressure-
correction schemes used for the incompressible Navier-Stokes flow computations.
This version is validated on standard test cases with realistic boundary conditions
using unstructured triangular meshes. We also pioneer investigations of the effects of
CGP on the accuracy of the pressure field. It is found that although CGP reduces the
pressure field accuracy, it preserves the accuracy of the pressure gradient and thus
the velocity field, while achieving speedup factors ranging from approximately 2 to
30. The minimum speedup occurs for velocity Dirichlet boundary conditions, while
the maximum speedup occurs for open boundary conditions.
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1 Introduction and motivation

Since the late 1960s, projection methods [1–3] have been widely used for the numer-
ical simulations of transient incompressible Navier-Stokes equations in extensive
scientific areas [4, 5] and industrial fields [6, 7]. The high popularity of these meth-
ods is due to the scheme’s abilities to execute the incompressibility constrains using
a set of two decoupled elliptic equations: a nonlinear advection-diffusion equation,
and subsequently, a linear pressure Poisson equation. Although each of the cascade
equations imposes computational costs to the system, Poisson’s equation tends to be
the most time-consuming component of the flow simulation in complex geometries
[8] as well as in computations with open boundary conditions [6, 9].

To substantially lessen the computational expenses, a common approach is to
design robust multigrid (MG) solvers, which are solely devoted to one of the existing
elliptic systems (see e.g., Refs. [10–12] for MG solvers for the advection-diffusion
equation, and Refs. [13, 14] for those associated with Poisson’s equation). In contrast
with the methods cited above, a novel family of multigrid procedures, the so-called
Coarse Grid Projection (CGP) methodology by the authors [15–18], involves both the
nonlinear and linear equations to efficiently accelerate the computations. In the CGP
methodology, the nonlinear momentum is balanced on a fine grid, and the linear Pois-
son’s equation is performed on a corresponding coarsened grid. Mapping functions
carry out data transfer between the velocity and pressure fields. In this sense, the CGP
methods not only effectively relieve the stiff behavior of the primary Poisson prob-
lem, but can also take advantage of any desired fast elliptic solver to achieve large
speedups while maintaining excellent to reasonable accuracy. The CGP methodology
is provided in detail in Section 2.2.

The CGP framework was originally proposed by Lentine et al. in 2010 [15] for
visual simulations of inviscid flows for video game applications. The uniform grid
finite-volume and explicit forward Euler methods were chosen, respectively, for spa-
tial and temporal discretizations in their numerical simulations. This gridding format
led to dealing with a volume-weighted Poisson equation [19] in the presence of a
solid object (e.g., a sphere) inside the flow field. Aside from the added complication,
the grid format would have caused considerable reductions in visual fidelities, if the
authors had not employed the complex mapping operators that they did. This makes
the CGP technique less practical for curved boundaries. Furthermore, the explicit
time integration restricted their algorithm to low CFL (Courant-Friedrichs-Lewy)
numbers, and therefore long run times. In 2014 Jin and Chen [18] implemented the
same CGP scheme [15] in the fast fluid dynamics (FFD) models to calibrate the effect
of this computational accelerator tool on simulating building airflows. A decrease in
spurious fluctuations of ventilation rates was observed, but the maximum achieved
speedup was only a factor of approximately 1.5.
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In 2013 San and Staples [16] expanded the CGP technique (labeled “CGPRK3”)
to the vorticity-stream function formulation of the incompressible Navier-Stokes
equations and demonstrated speedup factors ranging from approximately 2 to 42
in their numerical studies. Additionally, they extended the method in order to dra-
matically lower computational costs associated with elliptic equations of potential
vorticity in quasigeostrophic ocean models [17]. Notwithstanding these successes,
the CGPRK3 strategy has four main shortcomings. First, the nine-term full weight-
ing restriction [20] and bilinear prolongation [20] operators used can be exclusively
utilized in equally spaced grids. Consequently, one must analytically reformulate all
steps according to generalized curvilinear coordinates except in uniform rectangu-
lar domains. Second, CGPRK3 applies the third-order Runge-Kutta [21] temporal
integration to the non-incremental pressure correction method [1], while the splitting
error of this specific projection scheme is irreducibly first-order in time and higher-
order temporal integration methods do not improve the overall accuracy [1]. Third,
the third-order time stepping scheme unnecessarily forces the CGPRK3 scheme to
run the Poisson solver three times at each time step, whereas the primary goal of CGP
is to reduce the computational effort that arises from the Poisson equation. Fourth,
their suggested mapping procedure becomes more costly than that of the Poisson
equation solver for high coarsening levels.

To obviate the aforementioned problems, a semi-Implicit-time-integration Finite-
Element version of the CGP method (IFE-CGP) is presented in the current study.
The incorporation of a semi-implicit backward time integration results in a simple
five-step CGP algorithm with nearly zero cost for the data restriction/prolongation
operators. It typically enables flow simulations at large time steps and thus improves
speedup [22]. The triangular finite element meshes improve the CGP method in the
following ways. First, they enhance the scheme’s capacity for the solution of fluid
problems defined on complicated domains, where irregular grids and realistic bound-
ary conditions are unavoidable. Second, they facilitate the design of the required
mapping modules so that the restriction/prolongation operators can be optionally
equivalent to the shape functions approximating multilevel nested spaces of velocity
and pressure fields. Third, the generation of the Laplacian and divergence operators
on a coarsened grid is expedited by means of available geometric/algebraic multigrid
(GMG/AMG) tools for the finite element method (see e.g., [23–26]). This feature
is particularly important for obtaining a sufficiently accurate solution of Poisson’s
equation in modeling flow over obstacles.

This article’s objective is to present a simple, elegant version of the CGP method
for finite element discretizations of incompressible fluid flow problems. As accelerat-
ing incompressible flow computations is the major application of CGP, speedup rates
of the computations and the corresponding reduction in the accuracy of velocity and
pressure fields are calculated. As a next concern, because the CGP procedure reduces
the degree of freedom for the pressure component, a greater reduction in the integrity
of the pressure field appears in comparison with the velocity field [16]. On the other
hand, the pressure gradient (instead of simply pressure) is applied to a velocity cor-
rection step of pressure projection schemes [27]. With these two hypotheses in mind,
we examine the effect of the CGP process on variations of both the pressure and
its gradient. All the above mentioned numerical challenges are investigated through
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several representative benchmark problems: the Taylor-Green vortex in a non-trivial
geometry, flow over a backward-facing step, and finally flow past a circular cylinder.

This article structured as follows. Section 2.1 provides the governing equations
for incompressible viscous flows and their finite element formulations. Details on the
proposed CGP algorithm are presented in Section 2.2. The computational implemen-
tation and a computational cost analysis are described, respectively, in Sections 2.3
and 2.4. Numerical results and their interpretations are collected in Section 3.
Conclusions are given in Section 4.

2 Problem formulation

2.1 Governing equations

Mass and momentum conservation of an incompressible isothermal flow of a Newto-
nian fluid are governed by the Navier-Stokes and continuity equations, with boundary
conditions

ρ

[
∂u

∂t
+ (u · ∇)u

]
− μ�u + ∇p = f in V, (1)

∇ · u = 0 in V, (2)

u = uΓD
on ΓD, (3)

−pn + μ∇u · n = tΓN
on ΓN, (4)

where u and p respectively denote the velocity vector and the absolute pressure in the
fluid domain V . The external force and stress vectors are represented by f and tΓN

,
respectively. ρ is the fluid density and μ is the dynamic viscosity. The boundary Γ of
the domain V consists of two non-overlapping subsets of Dirichlet ΓD and Neumann
ΓN boundaries, where n indicates the outward unit vector normal to them.

The system of equations is temporally integrated by the semi-implicit first-order
backward differentiation formula [28] with time increment δt , and takes the form:

ρ

[
un+1 − un

δt
+ (

un · ∇)
un+1

]
− μ�un+1 + ∇pn+1 = f n+1 in V, (5)

∇ · un+1 = 0 in V, (6)

un+1 = un+1
ΓD

on ΓD, (7)

−pn+1n + μ∇un+1 · n = tn+1
ΓN

on ΓN. (8)

In the next stage, the non-incremental pressure-correction method [1] decouples the
solution of the velocity and pressure variables. Based on it, at each time step tn+1,
the output of the momentum equation is a non-divergent vector field called the inter-
mediate velocity ũn+1. Next, the divergence of the intermediate velocity is fed to the
source term of the pressure Poisson equation. Finally, the intermediate velocity ũn+1
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is corrected using the obtained pressure pn+1 such that the end-of-step velocity vec-
tor un+1 satisfies the incompressibility constraint. The procedure yields two elliptic
problems along with one correction equation, expressed as

ρ

[
ũn+1 − un

δt
+ (

un · ∇)
ũn+1

]
− μ�ũn+1 = f n+1 in V, (9)

ũn+1 = un+1
ΓD

on ΓD, (10)

μ∇ũn+1 · n = tn+1
ΓN

on ΓN, (11)

�pn+1 = ρ

δt
∇ · ũn+1 in V, (12)

∇pn+1 · n = 0 on ΓD, (13)

pn+1 = 0 on ΓN, (14)

un+1 = ũn+1 − δt

ρ
∇pn+1. (15)

Notice that the Poisson equation is restricted to unrealistic homogenous Neumann
boundary conditions, when the velocity is subject to Dirichlet types. Contrarily,
natural Neumann conditions for the momentum equation result in boundaries with
spurious homogenous Dirichlet pressures.

The velocity and pressure spaces are approximated by the piecewise linear basis
functions (P1/P1) of standard Galerkin spectral elements [29]. In this way, the
resulting finite element form of Eqs. (9)–(15) is

1

δt

(
MvŨ

n+1 − MvU
n
)

+ [N + Lv] Ũn+1 = MvF
n+1, (16)

LpP n+1 = ρ

δt
DŨn+1, (17)

MvU
n+1 = MvŨ

n+1 − δtGP n+1, (18)

where Mv and N indicate, respectively, the velocity mass and the nonlinear convec-
tion matrices. Lv , Lp, D, and G denote the matrices associated, respectively, to the
velocity laplacian, the pressure laplacian, the divergence, and the gradient operators.
The vectors Ũn+1, Un+1, Fn+1, and P n+1 contain, respectively, the nodal values of
the intermediate velocity, the end-of-step velocity, the forcing term and the pressure
at time tn+1. The desired boundary conditions are implicitly enforced in the dis-
crete operators. Further details of the elemental matrices are available in references
[29, 30].

Because the projection method overcomes the well-known saddle-point issue of
Eqs. (1)–(2), the discrete Brezzi-Babuska condition [31, 32] can be ignored [27] and
therefore the degree of the polynomials over the triangular mesh elements is chosen
to be equal for the velocity and pressure. In addition, the identical resolutions allow
the comparison of computational effectiveness between the current approach and that
described in previous works [15–18].
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2.2 Coarse grid projection methodology

The CGP methodology provides a multiresolution framework for accelerating
pressure-correction technique computations by performing part of the computations
on a coarsened grid. Figure 1 gives a schematic illustration of the IFE-CGP algo-
rithm for triangular finite element meshes. As shown in Fig. 1, at each time step tn+1,
the intermediate velocity field data Ũn+1

f obtained on a fine grid is restricted to a

coarsened grid. The divergence of Ũn+1
c , the intermediate velocity field data on the

coarsened grid, plays the role of the source term in solving the Poisson equation on
the coarse grid to determine the pressure P n+1

c on the coarse grid; then, the resulting
pressure data P n+1

c is prolonged to the fine grid and becomes of P n+1
f .

Either GMG or AMG techniques are key numerical tools to conveniently formu-
late the grid transfer, laplacian, and divergence operators in the IFE-CGP algorithm.
In the present work, GMG methods are used, because using AMG methods in the
derivation of the divergence operator is challenging for anisotropic triangular grids
[33]. Here we generate hierarchical meshes in which each triangular element of a
coarse mesh is conformingly subdivided into four new triangles. As a consequence, if
the available finest mesh (with M-element resolution) is generated after l refinement
levels, a relatively coarse mesh (with a resolution of N = 4−lM elements) and its
basis functions are available. Generally, one can obtain the corresponding coarsened
grid using the space decomposition algorithm discussed for nonuniform triangular
grids in the literature (see e.g., Refs. [34, 35]).

1Un
f
+

1Un
c
+ 1Pnc

+

1Pnf
+

Poisson’s Equation 

1 1P Pn n
f c
+ += k+1

kP

1 1P Un n
p c c

ρ
δt

+ +=L D

P
ro

lo
n
g
at
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n

R
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n

1 1U Un n
c f
+ += 4-k

4R

Fig. 1 Scheme of coarse grid projection methodology involving the restriction and prolongation of the
intermediate velocity and pressure data
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In principle, there can be an arbitrary number, j , of nested spaces of progres-
sively coarsened grids such that: V1 ⊂ V2 ⊂ · · · ⊂ Vj = V . In practice, however,
reasonable levels of accuracy can only be obtained for a maximum of three levels
of coarsening. We restrict our attention to such cases. Consider a sequence of four
nested spaces, V1 ⊂ V2 ⊂ V3 ⊂ V4 = V , wherein if Vk+1 (k = 1, 2, 3) corre-
sponds to a fine grid, Vk characterizes the space of the next coarsest grid. Recall that
for any arbitrary P1 element on Vk , there is a piecewise linear shape function ψk

that is capable of estimating the space of the four sub-elements over Vk+1. With this
in mind, linear interpolation is implemented to construct the prolongation operator
P : Vk → Vk+1 and its matrix representation Pk+1

k . Mathematically, the transpose of
the prolongation operator is a feasible option for the definition of the restriction oper-
ator R [26]. In spite of this fact, the restriction matrix R4−k

4 is designed so that fine
data of V4 is directly injected throughout the coarse grid V4−k only if the data belongs
to a common node between the two spaces; otherwise, it cannot be accessed by the
coarse grid. Unlike Pk+1

k , R4−k
4 is able to directly connect two non-nested spaces. It

is worth noting that the CGP method is compatible with other advanced data interpo-
lation/extrapolation architectures (see e.g., [36]); however, even the simple mapping
techniques introduced here are adequate.

In the GMG method used, a relatively coarse mesh, V4−k , with {ψ4−k
1 , ψ4−k

2 , . . .,
ψ4−k

#(V4−k)
} as a basis is directly accessible. Hence, the relevant laplacian (Lp) and

divergence (D) operators are derived by taking the inner products of a coarse-grid
finite element shape function ψ4−k on V4−k . Note that the spaces of velocity and
pressure variables are not physically the same, although the same notation is used
here for the sake of simplicity.

Equations (19)–(23) summarize the explanations in the preceding paragraphs and
depict the IFE-CGP scheme for executing one time interval of the simulation.

1. Calculate Ũn+1
f on V by solving

(Mv + δtN + δtLv) Ũn+1
f = δtMvF

n+1 + MvU
n
f . (19)

2. Map Ũn+1
f onto V4−k and obtain Ũn+1

c via

Ũn+1
c = R4−k

4 Ũn+1
f . (20)

3. Calculate P n+1
c on V4−k by solving

LpP n+1
c = ρ

δt
DŨn+1

c . (21)

4. Remap P n+1
c onto V and obtain P n+1

f via

P n+1
f = Pk+1

k P n+1
c . (22)

5. Calculate Un+1
f via

MvU
n+1
f = MvŨ

n+1
f − δtGP n+1

f . (23)
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2.3 Computational implementation

A C++ object oriented code is developed according to the concepts addressed in
Ref. [37]. To accelerate linear algebra executions and minimize memory require-
ments, the standard compressed sparse row (CSR) format [38] is employed for sparse
matrix-vector multiplication (SpMV) except in data transfer applications. Concern-
ing accelerating the computations, the performance of IFE-CGP can be accurately
presented when the fastest possible Poisson solver is chosen. In this study, we select
the ILU(0) preconditioned GMRES(m) algorithm [39, 40], which is one of the
fastest well-known available iterative linear solver. This solver has been also used
by Lentine et. al [15] to study finite-volume CGP methodology. One may combine
this solver with a more advanced preconditioning method to obtain higher speedup
factor using CGP. The ILU(0) preconditioned GMRES(m) algorithm [39, 40] is
chosen as an iterative linear solver. The public unstructured finite element mesh gen-
erator Gmsh [41] is utilized. Calculations are performed on a single Intel(R) Xeon(R)
processor with a 2.66 GHz clock rate and 64 Gigabytes of RAM.

As we discussed earlier, the mapping functions correspond to the finite element
shape functions used. Since in the current study we utilize P1, mapping operators
associated with this shape function are discussed here. One may conveniently adjust
the operators in case of using other shape functions. The implementation of R4−k

4 in
the CSR format is not possible because the matrix contains null vectors. Additionally,
if Pk+1

k is constructed in the CSR format, the data prolongation cost of each IFE-CGP
loop is approximated by O(CNf ) where C is proportional to the number of non zero
elements per row of Pk+1

k (Depending on the mesh nonuniformity, it varies between
2 and 10 in the current grids.) and Nf denotes the number of pressure unknowns
on Vk+1. Though CSR is inexpensive, an easier-to-implement method is introduced
next. Consider two data structures sp and su including three (α, β, γ ) and two (η, ξ)

integer indices, respectively. An array of each data structure
{
s
p
Nf

}
and

{
su
Nc

}
, with

Nc equal to the node numbers on Vk , is created as follows:
For ∀αi ∈ s

p
i find a pair of indices (βi, γi) ∈ s

p
i that satisfies

P n+1
f (αi) = P n+1

c (βi) + P n+1
c (γi)

2
, (24)

and for ∀ηi ∈ su
i find an index ξi ∈ su

i that satisfies

Ũn+1
c (ηi) = Ũn+1

f (ξi) , (25)

where P n+1
f (αi) is the pressure value at the αi th node of the spanned space Vk+1,

while Ũn+1
c (ηi) is the restricted intermediate velocity of the ηi th node of the dis-

cretized space Vk . P n+1
c (βi), P n+1

c (γi), and Ũn+1
f (ξi) are similarly defined. With

respect to the prolongation function, this trick improves the performance by reduc-
ing the computational effort to O(Nf ), with only moderately increased memory
usage. Likewise, the numerical expense of the suggested injection operator is of order
O (Nc).
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2.4 Computational cost analysis of IFE-CGP

A finite element analysis traditionally consists of three major portions: preprocessing,
processing, and postprocessing. In the simulations undertaken here, the postprocess-
ing stage mostly involves writing output files without a significant effect on the CPU
time. As a result, the numerical cost, Cc, of the pressure correction approach on a
given coarse grid is estimated by

Cc = Cpre + Cv + Cp, (26)

where Cpre is the preprocessing cost, whereas Cp and Cv comprise, respectively,
the cost of the Poisson equation (see, Eq. (17)) and the remaining algorithms in the
processing portion. For transient problems with a significant number of time steps,
the processing cost always overcomes the preprocessing price. By l-level uniform
refinements of a two dimensional domain, a high-resolution simulation takes time
Cf , roughly expressed as

Cf ≈ aCpre + 4lCv + 4lCp, (27)

with two factors a and 4l . The factor a depends on the computational resources and
global matrix assembling algorithms. Because by quadrupling the P1 element num-
bers, the global node numbers are doubled at minimum, 2l is lower bound for the
increment in the node numbers. Consequently, 4l represents a lower bound associated
with the matrix size enhancement. Additionally, note that 4l is the lowest possible
factor for cost scaling of Eqs. (16)–(17), because the cost of a matrix inversion is
not linearly proportion to its size. Taking the advantages of the IFE-CGP method
into account, the Poisson solution is performed on the coarse grid and its cost is not
scaled. Therefore, Cf is reduced to the IFE-CGP cost Ccgp, given by

Ccgp ≈ bCpre + 4lCv + Cp + Cm, (28)

where b is a new factor for the preprocessing and Cm indicates the mapping expenses.
The coefficient b is not necessarily equal to the factor a and the relation is variable.
For instance, because the assembling process of D̄ rather than D is more cost-
effective, it might be concluded that a > b. But if one takes the transpose of G to
establish D, that conclusion is questionable. Besides, the preparation of Pk+1

k and
R4−k
4 involves an extra cost for IFE-CGP. A numerical comparison in Section 3.2

clarifies this point further. Cm has been shown to be negligible in comparison with
the other three terms of Eq. (28) in Section 2.3.

3 Results and discussion

To evaluate the various aspects of the IFE-CGP method, three standard test cases
are studied: the Taylor-Green decaying vortex problem, the flow over a backward-
facing step, and the flow around a circular cylinder. Here, the grid resolution of a
numerical simulation is denoted by M : N , where M indicates the element numbers
of a fine grid used for the advection-diffusion solver, and N demonstrates the element
numbers of a corresponding coarsened grid for the Poisson solver. When N is equal
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to M , the standard, non-IFE-CGP, algorithm is recovered. l indicates the level of
mesh coarsening used in the IFE-CGP method, and is equal to zero for the standard
algorithm. If function A (x, t) is assumed to be a finite element approximation of an
exact solution, a (x, t), on the domain V , with M elements, the difference between
these two functions, e (x, t), is defined as:

e (x, t) = A (x, t) − a (x, t) . (29)

The discrete norms are defined as:

‖e‖L2(V ) :=
√√√√ 1

M

M∑
i=1

‖e‖2
L2(Ei)

, (30)

‖e‖L∞(V ) := max
1≤i≤M

(‖e‖L∞(Ei)

)
, (31)

where Ei is the discrete space of ith element, E, of V . Note that when an exact solu-
tion is not available, the norms are measured with reference to the standard algorithm
(l = 0).

3.1 Taylor-Green vortex in a non trivial geometry

The Taylor-Green vortex problem [42] is a widely-used benchmark problem which
is an exact analytic solution of the unsteady incompressible Navier-Stokes equations
in two-dimensions (see e.g., [6]). The velocity field is given by:

u (x, y, t) = − cos (2πx) sin (2πy) exp
(
−8π2μt

)
, (32)

v (x, y, t) = sin (2πx) cos (2πy) exp
(
−8π2μt

)
. (33)

And the pressure field is given by:

p (x, y, t) = −cos (4πx) + cos (4πy)

4
exp

(
−16π2μt

)
. (34)

A density value of ρ = 1kg
/

m3 and a viscosity of μ = 0.01Pa · s are used.
One goal of the Taylor-Green test case is an examination of the IFE-CGP method

capability in complex geometries. For this purpose, a square domain with a circular
hole is chosen such that

V :=
{
(x, y) | (0.25)2 ≤ (x − 0.5)2 + (y − 0.5)2 , 0 ≤ x, y ≤ 1

}
.

The geometry is depicted in Fig. 2 and details of the meshes are given. A similar com-
putational domain (a rectangular hole instead of a circular one) has been implemented
by J. M. Alam et al. [43] to perform this test case. A second goal of this section
is an investigation of the effects of velocity Dirichlet boundary condition (and con-
sequently artificial Neumann boundary conditions) on the rate of accelerating com-
putations by the IFE-CGP algorithm. Therefore, the velocity domain boundaries are
set to the exact solution of Eqs. (32)–(33). These types of boundary conditions have
been previously applied to the Taylor-Green vortex problem in the literature [6, 27].
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a b c

Fig. 2 Representation of the triangular finite element meshes used for solving Poisson’s equation in the
simulation of Taylor-Green vortex. a After one level coarsening (l = 1), 27520 nodes and 54144 elements;
b After two levels coarsening (l = 2), 6992 nodes and 13536 elements; c After three levels coarsening
(l = 3), 1804 nodes and 3384 elements

San and Staples [16] have also studied this problem to validate CGPRK3 perfor-
mance, but using periodic boundary conditions. In this way, an opportunity for
comparison is provided. A time step of 0.00125 s is selected.

The discrete norms of the velocity field for different mesh resolutions are tabu-
lated in Table 1. Considering all the cases, for one and two levels (l = 1, and 2)

of the Poisson grid coarsening, the minimum and maximum of the error percentage
relative to the finest mesh (l = 0) are, respectively, 0.30% and 3.61%. However, a
considerable reduction in the velocity accuracy is found for three levels of coarsen-
ing. For instance, the infinity norm computed for the velocity field obtained on the
216576:3384 grid resolution indicates a 99% reduction in the accuracy level, but it
is still two orders of magnitude more accurate in comparison with the resulting data

Table 1 Error norms, CPU times, and relative speedups for different grid resolutions of the Taylor-Green
vortex simulation at t = 1 s

l Resolution ‖u‖L∞(V ) ‖u‖L2(V ) CPU time (s) Speedup

0 216576 : 216576 1.59453E − 9 8.34306E − 10 114555 1.000

1 216576 : 54144 1.59938E − 9 8.38567E − 10 71529 1.601

2 216576 : 13536 1.63584E − 9 8.64473E − 10 50964 2.247

3 216576 : 3384 3.18962E − 9 1.15333E − 9 50424 2.272

0 54144 : 54144 1.29274E − 8 6.78120E − 9 3867 1.000

1 54144 : 13536 1.29418E − 8 6.85697E − 9 1902 2.033

2 54144 : 3384 1.38146E − 8 7.48644E − 9 1654 2.337

0 13536 : 13536 1.05619E − 7 5.58118E − 8 155 1.000

1 13536 : 3384 1.08807E − 7 5.73166E − 8 68 2.279

0 3384 : 3384 8.73658E − 7 4.69697E − 7 6 1.000

Resolution in the form of M : N represents the grid resolution of the advection-diffusion solver, M

elements, and Poisson’s equation, N elements
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Fig. 3 The solution of Taylor-Green vortex in a non trivial geometry at t = 1 s obtained using the CGP
(l = 3) method. The resolution of the nonlinear and linear equations is, respectively, 54144 and 3384
elements. a Velocity magnitude contour and streamlines; b Pressure field

captured from the full coarse scale simulation performed on the 3384:3384 grid reso-
lution. The speedup factors achieved range from 1.601 to 2.337. The velocity and the
pressure field magnitudes for the result with three levels of coarsening are depicted in
Fig. 3. The flow fields have reasonable levels of accuracy, however, dampened flows
can be observed near the boundaries.

In the non-incremental pressure correction methods, for a non-smooth domain
with artificial Neumann boundary conditions, the pressure error norms are not sensi-
tive to the spatial resolution and they are mostly not improved by increasing the node
numbers [27]. Contrarily, the pressure gradient error norms decrease by an increase
in the number of degree of freedom [27]. The data collected in Table 2 demonstrates
these findings. Regarding the standard computations (l = 0), the discrete norms of

Table 2 The infinity and second error norms of pressure quantity and its gradient for the Taylor-Green
vortex simulation at t = 1 s

l Resolution ‖p‖L∞(V ) ‖p‖L2(V ) ‖GP‖L∞(V ) ‖GP ‖L2(V )

0 216576 : 216576 1.34241E − 6 6.00171E − 7 2.22832E − 12 1.81154E − 13

1 216576 : 54144 1.34241E − 6 6.00270E − 7 3.09665E − 12 1.90897E − 13

2 216576 : 13536 1.34241E − 6 6.00416E − 7 3.21871E − 12 2.43972E − 13

3 216576 : 3384 1.34241E − 6 6.00500E − 7 3.65721E − 12 5.78906E − 13

0 54144 : 54144 4.98048E − 6 2.38657E − 6 3.22830E − 11 3.48936E − 12

1 54144 : 13536 4.98048E − 6 2.38692E − 6 3.96108E − 11 3.81608E − 12

2 54144 : 3384 4.98048E − 6 2.38748E − 6 4.09860E − 11 6.43534E − 12

0 13536 : 13536 1.89334E − 5 9.42590E − 6 4.86969E − 10 7.21105E − 11

1 13536 : 3384 1.89334E − 5 9.42727E − 6 5.31351E − 10 8.42464E − 11

0 3384 : 3384 6.74979E − 5 3.66242E − 5 6.55823E − 9 1.66480E − 9

Resolution in the form of M : N represents the grid resolution of the advection-diffusion solver, M

elements, and Poisson’s equation, N elements
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the pressure are only reduced by one order of magnitude with three levels of mesh
refinement of both the pressure and the velocity spaces, whereas these quantities for
the pressure gradient have a reduction of three orders of magnitude with the same
grid resolution increase. By looking at the resulting pressure error norms using IFE-
CGP, we find almost the same data obtained using the standard algorithm. But this
does not mean that the IFE-CGP procedure conserves the accuracy of the pressure
field, because the pressure field from the full fine scale simulations itself has a high
level of error. In fact, it can be only concluded that the prolongation operator does
not make the results worse. In contrast with the pressure norms, we observe simi-
lar trends between the velocity and pressure gradient norms for the IFE-CGP results.
For instance, for one level (l = 1) of coarsening, the minimum and maximum of the
error percentage with reference to the finest mesh (l = 0) are, respectively, 5.37%
and 16.83%. As a note, the discrete norms calculated for the pressure gradient are
relatively small in comparison with the velocity and pressure norms, and it is because
we use the discrete gradient operator G in order to compute the gradient of both the
exact solution and the numerical result. Recall that at the velocity correction step (see
Eq. (15)), the pressure gradient is used to correct the velocity field, not the pressure
itself. Hence, since IFE-CGP conserves the pressure gradient accuracy, the fidelity of
the velocity field is also conserved.

3.2 Flow over a backward-facing step

To study the IFE-CGP algorithm efficiency in the presence of open boundary con-
ditions, the flow over a backward-facing step inside a channel is analyzed. Figure 4
presents the problem geometry and imposed boundary conditions. Because an inlet
channel upstream significantly affects the flow simulation at low Reynolds number
[44], the inflow boundary is located at the step and is described by a parabolic profile:

u = 24.0 (y − 0.5) (1.0 − y) , (35)

v = 0. (36)

H = 2h
(channel height)

h (step height)

L = 50h
(channel length)

r (reattachment length)

homogeneous natural
Neumann condition 

at outflow

parabolic 
inflow

x

y

Fig. 4 Schematic view of flow past a backward-facing step
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The origin of the coordinate system is placed in the lower left corner of the step.
Homogeneous natural Neumann conditions

μ∇u · n = 0, (37)

are enforced at the exit. The Reynolds number is calculated as

Re = ρHū

μ
, (38)

where H is the channel height and ū represents the space-averaged mean entrance
flow velocity.

Although the stress free boundary condition is less restrictive than Dirichlet type
boundary conditions at the outflow [27], it leads to the increase of the possibility of a
loss in spatial accuracy [6]. This unfavorable situation is mainly due to imposing arti-
ficial homogenous Dirichlet boundary conditions in the pressure Poisson solver [6].
On the other hand, because the IFE-CGP technique reduces the number of pressure
unknowns at the outflow, it is one of the current research interests to check whether
the IFE-CGP methodology provides a valid solution. For this purpose, the predic-
tion of the reattachment length r with respect to Re is plotted in Fig. 5. The obtained
results for one (l = 1) and two (l = 2) levels of coarsening reveal good agreement
with the numerical data of Kim and Moin [45], and Erturk [46]. At Re = 800, the
reattachment length just differs from that reported by Erturk [46] about 0.7% and
4.0%, respectively, for the IFE-CGP (l = 1) and IFE-CGP (l = 2) algorithms. How-
ever, the IFE-CGP (l = 3) approach vastly overestimates the reattachment length
after the Reynolds number has reached the value 300.

To save space, detailed results are only presented for a Reynolds number of Re =
800. The time step is chosen to be δt = 0.035 s. Based on our numerical experiments,

Fig. 5 Normalized reattachment length
(
r
/
h

)
as a function of Reynolds number; comparison with Kim

and Moin [45], and Erturk [46]
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the flow field reaches stationarity at t = 280 s for the regular fine computations. The
results for all other options are reported at this fluid flow time.

Figure 6 depicts the axial velocity contour maps of the flow simulated using both
the normal and the IFE-CGP processes. Additionally, the efficiency and accuracy of
the velocity field for the standard algorithm and the IFE-CGP approach are compared
in Table 3. Flow velocity variables with one and two levels of coarsening agree well
with the fine scale standard computations. Significantly, a 30-times reduction in com-
putational cost of the IFE-CGP solution with the 102400:1600 resolution is obtained,
as the corresponding velocity error norms are still in the acceptable range. As can be
seen from Fig. 7a, interestingly, the advection-diffusion solver diverges after 96 time
steps for a simulation with the coarse 1600:1600 resolution.

The CPU times devoted to the restriction/prolongation operators are tabulated in
Table 4. By increasing the coarsening level l, the prolongation operator becomes
more expensive, whereas the time consumed by means of the restriction function
decreases. To explain this fact, let’s consider, for instance, the data mapping pro-
cedure of the IFE-CGP (l = 3) strategy on the 102400:1600 grid resolution. The
restriction operator directly injects the intermediate velocity field data from a grid
with 102400 elements into the corresponding coarse grid with 1600 elements. From
a programming point of view, this operation needs only 905 loops, which is the pres-
sure node numbers of the coarse grid. The prolongation operator, in contrast, has to
utilize two intermediate grids, associated with l = 2 and l = 1, in order to extrapolate

Fig. 6 Horizontal velocity component contour plot of flow over backward-facing step at Re = 800.
Labels in the form of M : N indicate the grid resolution of the advection-diffusion solver, M elements,
and Poisson’s equation, N elements
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Table 3 Comparison of relative norm errors and total CPU times between the standard and IFE-CGP
algorithms for the flow past a backward-facing step at Re = 800

l Resolution ‖u‖L∞(V ) ‖u‖L2(V ) CPU (s) Speedup

0 102400:102400 – – 3447941 1.000

1 102400:25600 6.69447E − 6 7.88459E − 7 173052 19.924

2 102400:6400 1.43997E − 5 4.87393E − 6 120500 28.613

3 102400:1600 4.48543E − 5 2.23362E − 5 116745 29.534

0 25600:25600 5.17352E − 5 4.21246E − 6 165993 1.000

0 6400:6400 1.64502E − 4 6.12495E − 5 9875 1.000

0 1600:1600 * * * *

*The simulation diverges after 96 time steps

the pressure domain data. To handle this transformation, the prolongation operation
requires 68659 loops, which is the summation of grid points belonged to the two
intermediate as well as the finest meshes. As can be seen from Table 4, the IFE-CGP
method slightly increases the time spent on the preprocessing block. Even though
the Lp and D matrix assembling process is computationally cheaper in comparison
with the standard algorithm, the mapping operator constructions ultimately overcome
these savings. That is, the ratio b /a is greater than 1.00 in Table 4. Appling AMG
tools in order to establish the Lp and D matrices in the IFE-CGP technique is a way
to optimize the preprocessing subroutine costs.

x/h
0 5 10 15 20 25

-400 -200 0 200 400

m/s

1600:1600

x/h
0 5 10 15 20 25

-0.1 0.2 0.5 0.8 1.1 1.4102400:1600

m/s

a

b

Fig. 7 A comparison between axial velocity contours of a Regular computation, diverged, and b The IFE-
CGP (l = 3), converged, for flow past backward-facing step at Re = 800. Labels in the form of M : N

indicate the grid resolution of the advection-diffusion solver, M elements, and the Poisson equation, N

elements
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Table 4 CPU times consumed by restriction and prolongation operators, preprocessing segment, and its
ratio (b /a ) in comparison between the IFE-CGP and standard schemes for the backward-facing step flow
simulation (see Section 2.4 for further details)

l Resolution Restriction (s) Prolongation (s) Preprocessing (s) b /a

0 102400:102400 – – 407.471 1.000

1 102400:25600 0.89 3.11 698.441 1.714

2 102400:6400 0.21 3.67 713.521 1.751

3 102400:1600 0.05 3.64 725.521 1.780

3.3 Flow past a circular cylinder

The concern of this section is a study of the effect of curvature on the IFE-CGP
method. Although this capability of the method has been already investigated for
decaying vortices in curved geometries in Section 3.1, an external unsteady flow over
a cylinder is a more physically meaningful benchmark case [47]. San and Staples
[16] have performed this fluid mechanics problem by means of the CGPRK3 solver,
but for steady-state flows, at Re = 40, and exclusively using one level of coarsening
(l = 1). Here, the IFE-CGP methodology with three levels of coarsening is applied
to this canonical flow problem at Re = 100.

The computational field is considered as a rectangular domain V := [0, 38] ×
[0, 32]. A circle with diameter d represents the cylinder in two dimensions, and its
center lies at the point (8, 16). A free stream velocity u∞ parallel to the horizontal
axis is imposed at the inflow boundary. The circle is treated as a rigid boundary and
no-slip conditions are enforced. The velocity at the top and bottom of V is perfectly
slipped in the horizontal direction. The outflow velocity is specified with a natural
Neumann condition, Eq. (37). The Reynolds number is determined as

Re = ρdu∞
μ

. (39)

To set this dimensionless number to Re = 100, the density, cylinder diameter, and
free stream velocity are set to 1.00; and the viscosity is set to 0.01 in the International
Unit System. The described geometry and boundary conditions are taken from the
literature [48, 49] to satisfy far-field assumptions. A fixed time increment of δt =
0.05 s is selected and the numerical experiments are executed until time t = 150 s.
The grids utilized by the Poisson solver for l = 0, l = 1, l = 2, and l = 3 are like
those shown in Fig. 8, with 108352 nodes and 215680 elements, 27216 nodes and
53920 elements, 6868 nodes and 13480 elements and 1749 nodes and 3370 elements,
respectively, with very fine grid spacing near the circle.

A visual comparison between the obtained vorticity fields with and without the
IFE-CGP method is made in Fig. 9 for several spatial resolutions at time t = 150 s.
For all levels of coarsening, the IFE-CGP field provides more detailed data compared
to that modeled with a full coarse grid resolution. A comparison between the resulting
vorticity fields with the resolutions of 215680:215680 and 13480:13480 demon-
strates that the phases of periodic variation of these two fields are not equal to each
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a b

Fig. 8 Computational mesh for the Poisson equation solution of the flow past a circular cylinder. a After
two levels coarsening (l = 2); b After three levels coarsening (l = 3). Details of the grids are reported

other. Conversely, the fields computed by 215680:215680 and 215680:13480 oscil-
late with the same phase. However, there is a phase lag between the outcomes with
215680:215680 and 215680:53920 or 215680:3370 mesh resolutions. Our numerical

Fig. 9 Vorticity fields for the flow past a circular cylinder at t = 150 s. Labels in the form of M : N

illustrate the spatial resolution of the advection-diffusion grid, M elements, and the Poisson equation mesh,
N elements
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Fig. 10 Comparison of various output variables in the wake of the flow over a cylinder at t = 150 s
for different values of the advection-diffusion and the Poisson grid resolutions. a Horizontal velocity for
IFE-CGP (l = 0, 1, and 0); b Horizontal velocity for IFE-CGP (l = 0, 2, and 0); c Vertical velocity for
IFE-CGP (l = 0, 1, and 0); d Vertical velocity for IFE-CGP (l = 0, 2, and 0); e Vorticity for IFE-CGP
(l = 0, 1, and 0); f Vorticity for IFE-CGP (l = 0, 2, and 0). The grid resolution in the form of M : N

shows the element numbers of the advection-diffusion grid by M , and the Poisson grid by N
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experiments show that the phase lag between the standard and IFE-CGP results
depends on the time step chosen. For instance, the velocity field phases, and con-
sequently the vorticity ones, are the same in both the simulations performed by
IFE-CGP (l = 0) and IFE-CGP (l = 1) tools when δt = 0.1 s.

To more precisely analyze the IFE-CGP algorithm’s performance, velocity and
vorticity distributions along the horizontal centerline, behind the cylinder and in the
wake region, are shown in Fig. 10 at time t = 150 s. By coarsening the advection-
diffusion mesh at the exit of the fluid domain, the results of the 53920:53920
resolution includes spurious fluctuations. These fluctuations become stronger in the
pure coarse case with the 13480:13480 resolution. However, they are successfully
removed using the IFE-CGP approach. The computational times for the performed
simulations are: 491068.2 s, 70809.2 s, 65492.7 s, and 56251.1 s, respectively for
l = 0 (215680:215680), l = 1 (215680:53920), l = 2 (215680:13480), and l = 3
(215680:3370), leading to speedup factors between 6.935 and 8.730.

Table 5 lists the calculated Strouhal number (St), lift (CL), total drag (CD),
pressure drag

(
CDp

)
, and viscous drag

(
CDf

)
coefficients compared with the experi-

mental and numerical studies presented in [50–53]. The Strouhal number is based on
the time evolution of the blunt body lift, and is formulated as:

St = fsd

u∞
, (40)

where fs is the shedding frequency. The data presented in Table 5 demonstrates that
as the coarsening level (l) increases, the drag and lift forces slightly decrease and
increase, respectively. However, they still agree well with the values found in the lit-
erature. Looking at drag coefficients, CDf computed by IFE-CGP is always more
accurate than CDf associated with the full coarse scale simulations. However, the
accuracy of CDp slightly reduces and this is because the IFE-CGP method com-
putes the pressure variable on a coarsened mesh. Hence, the success of the CGP

Table 5 Strouhal number, drag and lift coefficients for Re = 100

Study St CL CD CDp CDf

Braza et al. [50] 0.160 ±0.25 1.364 ± 0.015 − −
Liu et al. [51] 0.165 ±0.339 1.350 ± 0.012 − −
Hammache and Gharib [52] 0.158 − − − −
Rajani et al. [53] 0.156 − 1.335 − −
215680:215680 (l = 0) 0.156 ±0.217 1.270 ± 0.005 1.122 0.148

215680:53920 (l = 1) 0.156 ±0.217 1.258 ± 0.006 1.112 0.146

215680:13480 (l = 2) 0.154 ±0.233 1.223 ± 0.006 1.072 0.151

215680:3370 (l = 3) 0.149 ±0.344 1.168 ± 0.034 1.007 0.161

53920: 53920 (l = 0) 0.156 ±0.217 1.256 ± 0.004 1.120 0.136

13480: 13480 (l = 0) 0.150 ±0.208 1.234 ± 0.005 1.116 0.118

3370: 3370 (l = 0) * * * * *

*The flow field is under-resolved
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Fig. 11 A Comparison between the time evolution of lift coefficients of the flow past a cylinder
at Re = 100 for different combinations of the advection-diffusion and the Poisson mesh resolu-
tions. a Viscous lift coefficient for IFE-CGP (l = 0, 1, and 0); b Viscous lift coefficient for IFE-CGP
(l = 0, 3, and 0); c Pressure lift coefficient for IFE-CGP (l = 0, 1, and 0); d Pressure lift coefficient for
IFE-CGP (l = 0, 3, and 0); e Lift coefficient for IFE-CGP (l = 0, 1, and 0); f Lift coefficient for IFE-
CGP (l = 0, 3, and 0). The spatial resolution in the format of M : N indicates the finite element numbers
of the advection-diffusion grid by M , and the Poisson grid by N
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method would be more pronounced if the intent of a simulation is to obtain the
velocity field with a high accuracy level, while the accuracy level of the pressure
field data is not the primary concern. The time evolution of the viscous

(
CLf

)
, pres-

sure
(
CLp

)
, and total lift coefficients are plotted separately in Fig. 11. The viscous

and pressure lift diagrams for the full fine scale and the IFE-CGP (l = 1) simula-
tions become nearly identical after approximately time t = 100 s. Even though a
numerical computation performed on a pure coarse grid degenerates the viscous lift
coefficient, choosing one level of coarsening for the IFE-CGP mechanism does not
influence the viscous force integrity. With reference to the standard mesh resolu-
tion (215680:215680), the error of the viscous lift force is 7.191% for the IFE-CGP
(215680:53920) simulation, whereas this error is equal to 31.501% for the full coarse
scale computation (53920:53920). For two further levels of the Poisson grid coars-
ening, spurious fluctuations can be observed at the beginning of the fluid flow
simulation. Surprisingly, the lift force obtained by full coarse scale (3370:3370) com-
putations oscillates around approximately 0.2 (instead of 0.0), showing the flow field
is under-resolved. Contrarily, the IFE-CGP (l = 3) lift force is more reliable since it
fluctuates around 0.0.

The magnitude of the centerline pressure and its gradient along the x-axis in
the wake region are shown in Fig. 12 for the full fine (215680:215680), IFE-CGP
(l = 1, and 2) (215680:53920 and 215680:13480), and full coarse (53920:53920 and
13480:13480) simulations at time t = 150 s. This figure reveals a key feature of the
CGP methodology. The pressure magnitude estimated by the IFE-CGP (l = 1, and 2)

method is far from that computed with the full-fine scale resolution. Comparably,
the pressure magnitudes obtained using the standard algorithm with the full fine
and coarse resolutions are relatively close to each other. Notwithstanding this, the
pressure gradient magnitude of the full fine-scale and the IFE-CGP (l = 1, and 2)

computations are indistinguishable for most of the domain (although with a phase lag
in the case of one level coarsening). As discussed earlier, in contrast with the implicit
pressure quantity, the pressure gradient is the relevant variable in the incompressible
Navier-Stokes equations [27]. Hence, it does not matter if the IFE-CGP strategy does
not retain absolute pressure values close to the full fine results. Importantly, it calcu-
lates the pressure gradients with a high level of accuracy and significantly better than
those that are solely computed on a coarse grid.

So far we have emphasized the fact that spurious oscillations of the velocity and
vorticity fields are removed by IFE-CGP. In other words, one may consider the
restriction operator of IFE-CGP as a filter smoothing the velocity field. Now by look-
ing at Fig. 12, we see that this is also the case for the pressure fields. Although both
the IFE-CGP (l = 1, and 2) and full coarse (53920:53920 and 13480:13480) simu-
lations solve the pressure Poisson equation on the same coarse mesh, the artificial
oscillations at the end of domain are removed only in the case of the IFE-CGP out-
puts. Thus, for the same number of degrees of freedom, when the pressure Poisson
equation is fed with a smoother intermediate velocity field, the outcome pressure
filed is also smoother. Lastly, there is a noticeable difference between the pressure
gradient magnitude of IFE-CGP and full fine scale computations near x = 38 m. This
difference comes from homogenous artificial Dirichlet boundary condition for the
pressure (p = 0). As can be seen from Fig. 12a and c, the pressure of IFE-CGP falls
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Fig. 12 The IFE-CGP methodology’s effect on the integrity of a The pressure variable and b Its gra-
dient; The 215680:215680 label indicates the standard algorithm with full fine scale computations, The
215680:53920 and 215680:13480 labels show, respectively, the IFE-CGP outputs with one and two levels
of coarsening, and 53920:53920 and 13480:13480 labels illustrate the standard algorithm with full coarse
scale computations

sharply near x = 38 m to satisfy this boundary condition. It is conjectured that this
issue would be eliminated by switching from non-incremental pressure projection
methods to incremental ones.

3.4 Boundary conditions and data structure effects on CGP efficiency

Figure 13a–d compare the CPU times consumed by various components of the
processing segment for four test cases using different boundary conditions. The
Taylor-Green vortex, flow over a backward-facing step, and flow past a cylinder
are modeled by the IFE-CGP approach, while the double shear layer problem is
simulated by the CGPRK3 technique [16]. Regarding the IFE-CGP strategy, by the
coarsening level increment, the Poisson equation price lessens dramatically so that
its portion becomes less than 5% after just one level of coarsening. For that reason,
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a considerable speedup cannot be achieved after l = 2. A similar trend occurs in
application of the CGPRK3 method with the difference that the major reduction in
the Poisson solver cost is obtained at l = 3. The significant difference between the
IFE-CGP and CGPRK3 algorithms is associated with the computational expense of
the data transfer between the advection-diffusion and the Poisson grids. According to
Fig. 13d, the CGPRK3 method allocates more CPU resources to mapping the data for
each subsequent level of coarsening, and finally the mapping process costs overcome
the Poisson equation costs at l = 3. In contrast, this charge never exceeds 0.004% of
the total algorithm computational cost using the IFE-CGP strategy.

Concerning influences of the boundary condition, the maximum speedup is
achieved when the outflow velocity in the backward-facing step problem is treated as
a stress-free condition, and the lowest acceleration of the computations is observed
when velocity Dirichlet boundary conditions are enforced for the Taylor-Green
vortex simulation. The speedups when using periodic boundary conditions are in
between these two extremes. This difference is expected because solving a Poisson
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Fig. 13 The influence of boundary condition types and mapping algorithms on the achieved speedup by
the CGP technique for a the Taylor-Green vortex problem with velocity Dirichlet boundary conditions,
b the flow over a backward-facing step with stress free conditions, c the flow past a cylinder with open
boundary conditions, and d the double shear layer problem [16] with periodic boundary conditions
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equation with spurious homogeneous Dirichlet boundary conditions (p = 0) might
require more computational effort in comparison with pressure Neumann conditions
[54]. In terms of the accuracy level, the CGP class of methods retains the veloc-
ity field data close to that of full fine grid resolution simulations in the presence of
less restrictive velocity boundary conditions, such as open and periodic ones. How-
ever, the CGP approach with pure velocity Dirichlet conditions results in a dampened
velocity field, which has been also reported by Lentine et al. [15]. In the case of
Euler’s equations, where the viscous term is neglected and the flow is allowed to slip
on the solid surfaces, the CGP method acquires much less damped flows. For the
same reason, the damping phenomenon disappears when the CGP solver is run at
high Reynolds numbers.

4 Conclusions

The CGP method is a new multigrid technique applicable to pressure projec-
tion methods for solving the incompressible Navier-Stokes equations. In the CGP
approach, the nonlinear momentum equation is evolved on a fine grid, and the lin-
ear pressure Poisson equation is solved on a corresponding coarsened grid. Mapping
operators transfer the data between the grids. Hence, one can save a considerable
amount of CPU time due to reducing the resolution of the pressure filed while
maintaining excellent to reasonable accuracy, depending on the level of coarsening.

In this article, we proposed a semi-Implicit-time-integration Finite-element ver-
sion of the CGP (IFE-CGP). The newly added semi-implicit time integration feature
enabled CGP to run simulations with large time steps, and thus further accelerated
the computations compared to the standard/previous CGP algorithms. The new data
structure introduced resulted in nearly zero computational cost for the mapping pro-
cedures. Using the finite element discretization, CGP was adapted to be suitable
for complex geometries and realistic boundary conditions. Moreover, the mapping
functions were conveniently derived from the finite element shape functions.

In order to examine the efficiency of the IFE-CGP method, we solved three stan-
dard test cases: The Taylor-Green vortex in a non-trivial geometry, flow over a
backward-facing step, and flow past a circular cylinder. The speedup factors ranged
from 1.601 to 29.534. The minimum speedup belonged to the Taylor-Green vortex
problem with velocity Dirichlet boundary conditions, while the maximum speedup
was found for the flow over a backward-facing step with open boundary conditions.
Generally, the outputs for one and two levels of the Poisson grid coarsening agreed
well with those computed using full fine scale computations. For three levels of
coarsening, however, only a reasonable level of accuracy was achieved. This obser-
vation was expected since we used P1 (which is a linear shape function) in order to
construct the mapping functions. From a mathematical point, the mapping operators
were expected to perform well only for one level of coarsening. However, they rea-
sonably executed the data transfer for two and three levels of coarsening in practice.
Additionally, we demonstrated that although CGP reduces the accuracy level of the
pressure field, it conserves the accuracy of the pressure gradient, a key to the efficacy
of the CGP method.
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32. Babuška, I.: The finite element method with Lagrangian multipliers. Numerische Mathematik 20(3),
179–192 (1973)

33. Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for H (grad), H (curl), and H (div)
systems on graded and unstructured grids. In: Multiscale, nonlinear and adaptive approximation,
pp. 599–659. Springer (2009)

34. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49(4), 379–412
(1986)

35. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73(1), 1–36
(1996)

36. Hu, J.: A robust prolongation operator for non-nested finite element methods. Comput. Math. Appl.
69(3), 235–246 (2015)

37. Besson, J., Foerch, R.: Large scale object-oriented finite element code design. Comput. Methods Appl.
Mech. Eng. 142(1), 165–187 (1997)

38. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Nvidia Technical
Report NVR-2008-004, Nvidia Corporation (2008)

39. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmet-
ric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

40. Van der Vorst, H.A.: Iterative Krylov methods for large linear systems, vol. 13. Cambridge University
Press, Cambridge (2003)

41. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-
processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

42. Taylor, G., Green, A.: Mechanism of the production of small eddies from large ones. Proc. Royal Soc.
Lond. Ser. A, Math. Phys. Sci. 158(895), 499–521 (1937)

43. Alam, J.M., Walsh, R.P., Alamgir Hossain, M., Rose, A.M.: A computational methodology for two-
dimensional fluid flows. Int. J. Numer. Methods Fluids 75(12), 835–859 (2014)

44. Barton, I.: The entrance effect of laminar flow over a backward-facing step geometry. Int. J. Numer.
Methods Fluids 25(6), 633–644 (1997)

45. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations.
J. Comput. Phys. 59(2), 308–323 (1985)

46. Erturk, E.: Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part
I: High Reynolds number solutions. Comput. Fluids 37(6), 633–655 (2008)

47. Belov, A.A.: A new implicit multigrid-driven algorithm for unsteady incompressible flow calculations
on parallel computers (1997)

48. Behr, M., Hastreiter, D., Mittal, S., Tezduyar, T.: Incompressible flow past a circular cylinder: depen-
dence of the computed flow field on the location of the lateral boundaries. Comput. Methods Appl.
Mech. Eng. 123(1), 309–316 (1995)

49. Ding, H., Shu, C., Yeo, K., Xu, D.: Simulation of incompressible viscous flows past a circular cylinder
by hybrid FD scheme and meshless least square-based finite difference method. Comput. Methods
Appl. Mech. Eng. 193(9), 727–744 (2004)

50. Braza, M., Chassaing, P., Minh, H.H.: Numerical study and physical analysis of the pressure and
velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)



1090 A. Kashefi, A. E. Staples

51. Liu, C., Zheng, X., Sung, C.: Preconditioned multigrid methods for unsteady incompressible flows. J.
Comput. Phys. 139(1), 35–57 (1998)

52. Hammache, M., Gharib, M.: A novel method to promote parallel vortex shedding in the wake of
circular cylinders. Phys. Fluids A: Fluid Dyn. (1989-1993) 1(10), 1611–1614 (1989)

53. Rajani, B., Kandasamy, A., Majumdar, S.: Numerical simulation of laminar flow past a circular
cylinder. Appl. Math. Modell. 33(3), 1228–1247 (2009)

54. Wang, Z.J.: Efficient implementation of the exact numerical far field boundary condition for Poisson
equation on an infinite domain. J. Comput. Phys. 153(2), 666–670 (1999)


	A finite-element coarse-grid projection method...
	Abstract
	Introduction and motivation
	Problem formulation
	Governing equations
	Coarse grid projection methodology
	Computational implementation
	Computational cost analysis of IFE-CGP

	Results and discussion
	Taylor-Green vortex in a non trivial geometry
	Flow over a backward-facing step
	Flow past a circular cylinder
	Boundary conditions and data structure effects on CGP efficiency

	Conclusions
	Acknowledgments
	References


