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Abstract
Coarse-grid projection (CGP)multigrid techniques are applicable to sets of equations that include at least one decoupled linear
elliptic equation. In CGP, the linear elliptic equation is solved on a coarsened grid compared to the other equations, leading
to savings in computation time and complexity. One of the most important applications of CGP is when a pressure correction
scheme is used to obtain a numerical solution to the Navier–Stokes equations. In that case, there is an elliptic pressure Poisson
equation. Depending on the pressure correction scheme used, the CGP method and its performance in terms of acceleration
rate and accuracy level vary. The CGP framework has been established for non-incremental pressure projection techniques.
In this article, we apply CGP methodology for the first time to incremental pressure correction schemes. Both standard and
rotational forms of the incremental algorithms are considered. The influence of velocity Dirichlet and natural homogenous
boundary conditions in regular and irregular domains with structured and unstructured triangular finite element meshes is
investigated. L2 norms demonstrate that the level of accuracy of the velocity and the pressure fields is preserved for up to
three levels of coarsening. For the test cases investigated, the speedup factors range approximately from 1.2 to 102.7.

Keywords Incremental pressure correction schemes · Coarse-grid projection · Multiresolution methods

Mathemathics Subject Classification 35Q30 · 65Y20 · 65N30 · 65N55

1 Introduction andmotivation

Projection methods [1–3] are popular schemes for simulat-
ing the unsteady incompressible Navier–Stokes equations,
since the technique overcomes the saddle-point issue of the
mass and momentum conservation equations by replacing
those two equations with two decoupled elliptic ones: a
nonlinear advection diffusion equation and a linear Pois-
son equation. Notwithstanding this benefit, the solution of
Poisson’s equation is a major issue as it imposes high com-
putational expenses to the system [4,5].

Since we deal with the nonlinear convection term in the
momentum equation, high spatial resolution is a key for con-
servation of the fidelity of the velocity field, especially for
high Reynolds numbers. On the other hand, as the Poisson
equation is a linear partial differential equation, such a refined
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grid resolution is not essential for its solution. Hence, an idea
to accelerate these types of simulations is to solve the non-
linear momentum equation on a fine grid and compute the
pressurePoisson equationon a corresponding coarsenedgrid.
In 2010, Lentine et al. [4] first proposed this multiresolution
technique, called coarse-grid projection (CGP)methodology,
to lessen the computational cost associated with the Poisson
equation for inviscid flow simulations. In 2013, San and Sta-
ples [5] expanded CGP to the incompressible Navier–Stoke
equations (labeled “CGPRK3”). Moreover, they applied the
CGP technique to elliptic equations of potential vorticity in
quasigeostrophic ocean models [6]. In 2014, Jin and Chen
[7] used CGP for the fast fluid dynamics (FFD) models to
study building airflows. In 2018, Kashefi and Staples [8] pre-
sented a semi-implicit time integration finite-element version
of the CGP method (labeled “IFE-CGP”). In 2019, Kashefi
[9] discussed CGP as a partial mesh refinement tool for
incompressible flow simulations.

In all the methods cited above, the authors [4–6,8,9]
applied CGP to the non-incremental pressure projection
scheme [1–3]. There are several limitations with this scheme
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which affect the efficiency of the CGP algorithm. The perfor-
mance of the CGP technique can be measured by means of
two technical parameters: speedup factor and accuracy level.
For each CGP simulation, we look for how many levels of
coarsening can be performed while preserving the accuracy
level in either the velocity or the pressure field, and the asso-
ciated computational speedup. The CGPRK3 approach [5]
significantly reduced the integrity of the pressure field even
for one coarsening level. In addition, a considerable reduc-
tion in the accuracy of the velocity field was observed for two
and three levels of coarsening. San and Staples [5] achieved
speedup factors ranging from roughly2 to 42usingCGPRK3.
Kashefi and Staples [8] demonstrated that IFECGP was only
able to preserve the accuracy of the pressure gradient not the
pressure itself (see, e.g., Fig. 12 of Ref. [8]). Like CGPRK3,
the IFE-CGP computations lost the superb fidelity of the
velocity field for more than one coarsening level. The split-
ting error of the non-incremental pressure correction method
[1,2] is irreducibly first order in time with Dirichlet bound-
ary conditions [3]. Due to the artificial Neumann boundary
conditions for the pressure, the overall accuracy of this pro-
jection scheme is dominated by the temporal error rather than
the spatial one [3]. Hence, IFE-CGP experienced shortcom-
ings with realistic boundary conditions. The speedup factors
of the numerical studies by IFE-CGP ranged from approxi-
mately 2 to 30.

To obviate the aforementioned problems, we implement
the CGP strategy in the incremental pressure correction
schemes including the standard [3,10] and rotational [3,10,
11] forms. Taking this approach, the Poisson equation is
solved on a coarsened grid for an intermediate variable and
not for the pressure itself. Combining incremental pressure
projection methods and CGP enhances the CGP capability
in several ways. First, CGP preserves the accuracy of the
velocity and the pressure field for a high level of the Pois-
son equation grid coarsening and thus remarkable speedup is
reached. Second, since the incremental pressure projection
scheme in standard formhas an irreducible second-order time
stepping error [3], a CGP algorithm with the standard form
is improved from temporal integration point of view. Third,
the incremental pressure correction technique in rotational
form overcomes the artificial layers caused by the artifi-
cial homogenous pressure Neumann conditions [3]. Hence, a
CGP method with the rotational form inherits this feature as
well.We investigate the performance of theCGPalgorithm in
incremental pressure correction schemes through three stan-
dard test cases: the Taylor–Green vortex [12] with velocity
Dirichlet boundary conditions in a square, the Jobelin vor-
tex [10] with open boundary conditions in a square, and the
Jobelin vortex [10] with velocity Dirichlet boundary condi-
tions in a circle.

The present work is structured as follows. The governing
equations for incompressible flows and their spatial/temporal

discretizations are given in Sect. 2.1. The CGP algorithm and
its computational consideration are discussed in Sect. 2.2
and Sect. 2.3, respectively. Numerical results are collected in
Sect. 3 and conclusion is given in Sect. 4.

2 Problem formulation

2.1 Governing equations

We consider an incompressible isothermal flow of a Newto-
nian fluid, which is governed by the dimensionless form of
the Navier–Stokes and continuity equations:

[
∂u
∂t

+ (u · ∇)u
]

− 1

Re
Δu + ∇ p = f in V , (1)

∇ · u = 0 in V , (2)

u = uΓD on ΓD, (3)

−pn + 1

Re
∇u · n = tΓN on ΓN , (4)

where u and p stand for the velocity vector and the pressure
of the fluid in domain V , respectively. f represents the vector
of external force and tΓN denotes the stress vector. Re is the
Reynolds number. ΓD and ΓN , respectively, represent the
Dirichlet and Neumann boundaries of the domain V , where
n denotes the outward unit vector normal to them. Note that
there is no overlapping between ΓD and ΓN subdomains.

Discretizing the system of equations using a second-order
backward differentiation formula [13] with respect to the
time variable yields to

[
3
2u

n+1 − 2un + 1
2u

n−1

δt
+ ((2un − un−1) · ∇)un+1

]

− 1

Re
Δun+1 + ∇ pn+1 = f n+1 in V , (5)

∇ · un+1 = 0 in V , (6)

un+1 = un+1
ΓD

on ΓD, (7)

−pn+1n + 1

Re
∇un+1 · n = tn+1

ΓN
on ΓN , (8)

where δt represents the time step. To obtain the numerical
solution of Eqs. (5)–(8), we utilize incremental pressure cor-
rection schemes [3]. Accordingly, at each time step tn+1, we
solve two cascading elliptic problems: a linearized equation
for the intermediate velocity field ũn+1, and a linear Pois-
son’s equation for an intermediate variable φ. Afterwards,
the end-of-step velocity un+1 and the pressure pn+1 are cal-
culated through two correction equations. The corresponding
equations are as follows:
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[
3
2 ũ

n+1 − 2un + 1
2u

n−1

δt
+ ((2un − un−1) · ∇)ũn+1

]

− 1

Re
Δũn+1 = −∇ pn + f n+1 in V , (9)

ũn+1 = un+1
ΓD

on ΓD, (10)

−pn + 1

Re
∇ũn+1 · n = tn+1

ΓN
on ΓN , (11)

Δφ = 3

2

1

δt
∇ · ũn+1 in V , (12)

∇φ · n = 0 on ΓD, (13)

φ = 0 on ΓN , (14)

un+1 = ũn+1 − 2

3
δt∇φ, (15)

pn+1 = pn + φ − χ
1

Re
∇ · ũn+1, (16)

where χ is a coefficient. If χ = 0 the standard form of the
incremental pressure correction scheme is captured, whereas
χ = 1 leads to the rotational form of the method.

Equations (9)–(16) can be spatially discretized using any
desired method. Here, we use the finite element Galerkin
scheme [11,15,16] to approximate the space of velocity and
pressure.

The piecewise linear basis function (P1/P1) is imple-
mented for the discretization of both the velocity and pressure
variables. With this in mind, the finite element form of Eqs.
(9)–(16) is expressed as

1

δt

(
3

2
MvŨ

n+1 − 2MvU
n + 1

2
MvU

n−1
)

+[
N + Lv

]
Ũn+1 = −GPn + MvF

n+1, (17)

LpΦ = 3

2

1

δt
DŨn+1, (18)

MvU
n+1 = MvŨ

n+1 − 2

3
δtGΦ, (19)

MpP
n+1 = MpP

n + MpΦ − χ
1

Re
DŨn+1, (20)

where Mv , Mp, N, Lv , Lp, D, and G indicate the matri-
ces associated, respectively, with the velocity mass, pressure
mass, nonlinear convection, velocity Laplacian, pressure
Laplacian, divergence, and gradient operators. The nodal val-
ues of the intermediate variable, the intermediate velocity,
the end-of-step velocity, the forcing term, and the pressure at
time tn+1, respectively, gather in the vectorsΦ, Ũn+1, Un+1,
Fn+1, and Pn+1.

2.2 Coarse-grid projectionmethodology

The main idea of the CGP scheme is solving the Poisson
equation subproblem on a coarsened grid. Since this is the
most time consuming component of the pressure correction

process, a reduction in the degrees of freedom of the dis-
cretized Poisson equation leads to the acceleration of these
simulations. In practice, the procedure at each time step tn+1

is as follows:

(i) Obtain the intermediate velocity field data Ũn+1
f on a

fine grid by solving the advection–diffusion equation.
(ii) Restrict Ũn+1

f to a coarsened grid to find Ũn+1
c .

(iii) Solve the Poisson equation forΦc and set the divergence
of Ũn+1

c as its source term.
(iv) Prolong the solution of the Poisson equation Φc to the

fine grid to find Φ f .
(v) Correct the velocity domain on the fine grid and obtain

Un+1
f .

(vi) Update the pressure field on the fine grid and obtain
Pn+1
f .

Geometricmultigrid (GMG) tools (see, e.g., [17]) are used
for the derivation of the mapping operators. In this way, hier-
archical meshes are generated by subdividing each triangular
element of a coarse grid into four triangles. Consider, for
example, a coarse mesh with N elements. A fine mesh with
M elements is obtained by k−level uniform mesh refine-
ment of the coarse grid such that N = 4−kM . In this study,
we define the restriction, R : V4−l → V4, and prolongation,
P : Vl → Vl+1, operators for l =1, 2, and 3, representing
mapping functions for a sequence of four nested spaces,V1 ⊂
V2 ⊂ V3 ⊂ V4 = V , wherein if Vl+1 characterizes the space
of a finemesh,Vl corresponds to the space of the next coarsest
mesh. The principle addressed in Sect. 2.3 of Ref. [8] is fol-
lowed to construct thematrix representation of the restriction
R4-l
4 and prolongation Pl+1

l operators. Consider two nodes
located at (x f , y f ) ∈ Vl+1 and (xc, yc) ∈ Vl , respectively,
on a fine grid and a corresponding coarsened grid. A pure
injection process is used to restrict the intermediate velocity
data such that Ũn+1

f (x f , y f ) = Ũn+1
c (xc, yc) if x f = xc

and y f = yc. A linear interpolation is used to prolong
the intermediate pressure data such that Φn+1

f (x f , y f ) =
(Φn+1

c (x
′
c, y

′
c) + Φn+1

c (x
′′
c , y

′′
c ))/2 if x f = (x

′
c + x

′′
c )/2 and

y f = (y
′
c + y

′′
c )/2. Since we utilize GMG techniques, the

Laplacian (L̄p) and divergence (D̄) operators of a coarsened
mesh (V4−l) are directly derived by taking the inner products
of the coarse-grid finite-element shape functions. One may
refer to Sect. 2.3 of Ref. [8] for further details.

Equations (21)–(26) summarize the CGP algorithm
described for the incremental pressure correction schemes.

1. Calculate Ũn+1
f on V by solving

( 3
2Mv + δtN + δtLv

)
Ũn+1

f = −δtGPnf + δtMvFn+1

+2MvUn
f − 1

2MvU
n−1
f . (21)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



16 Iran Journal of Computer Science (2020) 3:13–23

2. Map Ũn+1
f onto V4−l and obtain Ũn+1

c via

Ũn+1
c = R4-l

4 Ũn+1
f . (22)

3. Calculate Φc on V4−l by solving

L̄pΦc = 3

2

1

δt
D̄Ũn+1

c . (23)

4. Remap Φc onto V and obtain Φ f via

Φ f = Pl+1
l Φc. (24)

5. Calculate Un+1
f via

MvU
n+1
f = MvŨ

n+1
f − 2

3
δtGΦ f . (25)

6. Calculate Pn+1
f via

MpP
n+1
f = MpP

n
f + MpΦ f − χ

1

Re
DŨn+1

f . (26)

From the formulation point of view, there are two main
differences between applying CGP to non-incremental
pressure correction schemes in comparison with incre-
mental ones. First, in the case of the non-incremental
CGP process, we solve the Poisson equation for the pres-
sure variable p on a coarsened grid, whereas in case of
the incremental CGP algorithm,we solve Poisson’s equa-
tion for an intermediate variable φ on the coarsened grid.
In fact, the spatial resolution of both the velocity and
pressure fields in incremental CGP simulations is kept
on the fine grid level. Second, in the incremental CGP
formulation, the pressure gradient of the previous time
step GPn+1

f exists as the source term of the momentum
equation (see Eq. (21)), while the pressure does not have
any contribution to the momentum equation in the non-
incremental CGP computations. We discuss the effect of
these two points on the efficiency of the CGP method in
Sect. 3.

2.3 Computational consideration

In the case of standard forms (χ = 0), onemay directly solve
the algebraic Eq. (16) instead of its discretized form Eq. (20),
which is computationally cheaper. We take this approach for
our numerical experiments. In the case of rotational forms
(χ = 1), one may rewrite Eq. (20) in the following form:

Pn+1 = Pn + Φ − χ
1

Re
M−1

p DŨn+1, (27)

where M−1
p is the inverse of the lumped pressure mass

matrix. Taking advantage of Eq. (27), the necessity of invert-
ing the consistent pressure mass matrix Mp disappears and
consequently a more cost-effective procedure is obtained.
However, our numerical results indicatemore accurate results
for the pressure p by solving Eq. (20). Hence, we use Eq. (20)
for our simulations.

An in-house C++ object oriented code is used. The ILU(0)
preconditioned GMRES(m) algorithm [18,19] is employed.
We use the public unstructured finite element grid genera-
tion software Gmsh [20]. To accurately compare speedups
of our simulations, we perform all calculations on a single
Intel(R) Xeon(R) processor with 2.66 GHz clock rate and 64
Gigabytes of RAM.

3 Results and discussion

In this section, we study three standard test cases: The
Taylor–Green vortex [12] with velocity Dirichlet boundary
conditions, the Jobelin vortex with open boundary condi-
tions (see Sect. 4.2 of Ref. [10]), and the Jobelin vortex with
Dirichlet boundary conditions (see Sect. 4.3 of Ref. [10]).
We indicate the mesh resolution of our simulations with the
notation M : N , where M denotes the number of elements in
a fine grid. If we coarsen the fine grid by k levels, N indicates
the number of elements of the resulting coarsened grid.

To save space, we mark the implementation of CGP with
the non-incremental pressure correction scheme by “NCGP,”
CGP with the standard incremental pressure correction tech-
nique by “SCGP,” and CGP with the rotational pressure
correction method by “RCGP.”

3.1 Taylor–Green vortex with velocity Dirichlet
boundary conditions

The concern of this section is to investigate the effects of
velocity Dirichlet boundary conditions on the performance
of the SCGP and RCGP implementations of the method.

The velocity field of the two-dimensional Taylor–Green
vortex [12] is given by

u(x, y, t) = − cos(2πx) sin(2π y) exp(−8π2t/Re), (28)

v(x, y, t) = sin(2πx) cos(2π y) exp(−8π2t/Re). (29)

And the pressure field is given by

p(x, y, t) = −cos(4πx) + cos(4π y)

4
exp(−16π2t/Re).

(30)

We impose the exact solution of Eqs. (28)–(29) on the
velocity domain boundaries while we solve the Poisson
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Table 1 Velocity error norms
for different grid resolutions of
the Taylor–Green vortex
simulation at t = 1

k Resolution Standard form Rotational form

‖u‖L∞(V ) ‖u‖L2(V ) ‖u‖L∞(V ) ‖u‖L2(V )

0 65536:65536 1.90075E−6 1.55734E−6 1.90075E−6 1.55734E−6

1 65536:16384 1.90075E−6 1.55734E−6 1.90075E−6 1.55735E−6

2 65536:4096 1.90075E−6 1.55735E−6 1.90075E−6 1.55735E−6

3 65536:1024 1.90075E−6 1.55736E−6 1.90075E−6 1.55737E−6

0 16384:16384 7.60304E−6 6.22685E−6 7.60304E−6 6.22685E−6

1 16384:4096 7.60304E−6 6.22686E−6 7.60304E−6 6.22686E−6

2 16384:1024 7.60304E−6 6.22688E−6 7.60304E−6 6.22687E−6

0 4096:4096 3.04127E−5 2.48677E−5 3.04127E−5 2.48677E−5

1 4096:1024 3.04127E−5 2.48678E−5 3.04127E−5 2.48677E−5

0 1024:1024 0.00012166 9.88459E−7 0.00012166 9.88459E−7

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

Table 2 Pressure error norms
for different grid resolutions of
the Taylor–Green vortex
simulation at t = 1

k Resolution Standard form Rotational form

‖p‖L∞(V ) ‖p‖L2(V ) ‖p‖L∞(V ) ‖p‖L2(V )

0 65536:65536 3.63539E−06 2.06204E−06 3.63539E−06 2.06172E−06

1 65536:16384 3.63539E−06 2.06205E−06 3.63539E−06 2.06187E−06

2 65536:4096 3.63539E−06 2.06207E−06 3.63539E−06 2.06194E−06

3 65536:1024 0.000176743 0.000136857 3.63539E−06 2.06199E−06

0 16384:16384 1.43317E−05 8.17426E−06 1.43317E−05 8.17290E−06

1 16384:4096 1.43317E−05 8.17428E−06 1.43317E−05 8.17352E−06

2 16384:1024 0.00199501 0.00152358 1.43317E−05 8.17385E−06

0 4096:4096 5.14363E−05 3.25573E−05 5.14363E-05 3.25546E−5

1 4096:1024 5.14363E−05 3.25574E−05 5.14366E-05 3.25523E−5

0 1024:1024 0.000216977 0.000129742 0.000216977 0.000129722

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

equation with homogenous artificial Neumann boundary
conditions (see Eq. (13)). The numerical studies are executed
until time t = 1.

We simulate the Taylor–Green vortex [12] for a Reynolds
number of Re = 10 in the computational domain V :=
[0, 1]×[0, 1]with different grid resolutions. The simulations
are run with a constant time step δt = 0.00125.

The discrete norms of the velocity, the pressure, and
the pressure gradient fields are tabulated, respectively, in
Tables 1, 2 and 3 for different mesh resolutions for both the
standard and the rotational forms at time t = 1.

As far as the velocity error norms are concerned, both the
SCGP and RCGP approaches preserve the accuracy level of
the field for all mesh coarsening levels that we consider. For
instance, the infinity and L2 norms calculated for full fine
(65536:65536), k = 1 (65536:16384), k = 2 (65536:4096),
and k = 3 (65536:1024) computations are approximately
identical.

For the pressure, RCGP is more successful than SCGP
in maintaining the pressure field accuracy for two and three
coarsening levels. For example, consider the standard fine
scale 65536:65536 gird resolution (k = 0). The associated
L2 norms are equal to 2.06204E-06 and2.06172E-06, respec-
tively, using the standard and rotational incremental pressure
projection schemes. By choosing k = 3 (65536:1024), the
L2 norms change to 0.000136857 and 2.06199E-06, respec-
tively, for SCGP and RCGP, indicating 6536.971% and
0.013% error increase with reference to the regular fine scale
(k = 0) computations. This trend also occurs when we com-
pare the resulting data of the pure fine 16384:16384 spatial
resolution (k = 0) with the CGP 16384:1024 grid resolution
(k = 2). Here, we illustrate the cause. Looking at Eq. (26),
the end-of-step pressure Pn+1

f is corrected by divergence of

the intermediate velocity field 1
ReDŨ

n+1
f in the rotational

form formulation, while this term is neglected in standard
form computations. The intermediate velocity field Ũn+1

f is
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Table 3 Pressure gradient error
norms for different grid
resolutions of the Taylor–Green
vortex simulation at t = 1

k Resolution Standard form Rotational form

‖GP‖L∞(V ) ‖GP‖L2(V ) ‖GP‖L∞(V ) ‖GP‖L2(V )

0 65536:65536 9.58885E−14 1.02348E−14 3.77312E−13 3.55036E−14

1 65536:16384 3.44286E−13 8.93675E−14 4.48572E−13 3.86897E−14

2 65536:4096 4.26302E−13 1.99537E−13 4.49496E−13 3.87436E−14

3 65536:1024 3.53933E−12 1.72439E−12 4.53791E−13 3.90375E−14

0 16384:16384 2.11731E−12 3.21126E−13 5.74009E−12 7.38968E−13

1 16384:4096 8.57518E−12 3.56109E−12 7.08534E−12 9.19657E−13

2 16384:1024 3.05404E−11 1.40611E−11 7.13954E−12 9.22436E−13

0 4096:4096 8.99248E−11 1.56495E−11 3.21784E−11 5.12380E−12

1 4096:1024 9.00494E−11 5.90353E−11 6.33028E−11 1.13387E−11

0 1024:1024 3.80987E−10 1.15607E−10 3.31517E−10 9.91869E−11

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

Table 4 CPU times and relative
speedups for different grid
resolutions of the Taylor–Green
vortex simulation at t = 1

k Resolution Standard form Rotational form

CPU time (s) Speed up CPU time (s) Speed up

0 65536:65536 10372.90 1.000 10446.00 1.000

1 65536:16384 8305.65 1.248 8263.63 1.264

2 65536:4096 7312.59 1.418 7256.50 1.439

3 65536:1024 7234.28 1.433 7187.89 1.453

0 16384:16384 724.61 1.000 736.07 1.000

1 16384:4096 548.19 1.321 548.02 1.343

2 16384:1024 478.97 1.512 470.29 1.565

0 4096:4096 61.31 1.000 63.19 1.000

1 4096:1024 38.58 1.589 37.67 1.677

0 1024:1024 6.05 1.000 1.050 1.000

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

calculated on a fine grid, in contrast with the intermediate
pressure variable Φ f , which is prolonged from the corre-
sponding coarsened grid dataΦc. Thus, for high Poisson grid
coarsening levels, when Φc, and consequently Φ f , includes
relatively large errors, the additional divergence of the inter-
mediate velocity field term can mitigate these errors in the
pressure field.

Concerning the pressure gradient, we observe similar
trends between the pressure and the pressure gradient L2

norms for SCGP and RCGP. For example, the pressure
gradient L2 norms for SCGP for k = 1 (65536:16384),
k = 2 (65536:4096), and k = 3 (65536:1024), respec-
tively, imply 773.173%, 1849.593%, and 16748.301% error
increases, whereas for RCGP they imply 8.974%, 9.125%,
and 9.953% error increases, all with reference to k = 0
(65536:65536). The data indicate the higher capacity of
RCGP for preserving the accuracy of the pressure gradient
field.

Note that San and Staples [5] have also studied this
problem at Reynolds number of Re = 10.0 using NCGP.

However, their method totally lost the accuracy of the pres-
sure field even after one level coarsening. According to Table
3 of Ref. [5], the velocity L2 norms for k = 1, k = 2,
and k = 3, respectively, implied 1.141%, 218.483%, and
2465.824% error increases, with reference to k = 0.

The corresponding CPU times and acceleration rates are
tabulated inTable 4. The speedup factors achieved range from
1.248 to 1.677. For each spatial resolution, the rotational form
demonstrates slightly higher speedup factors in comparison
with the standard forms.

3.2 Jobelin vortex with open boundary conditions

To study the capability of the proposedCGP framework in the
presence of open boundary conditions, we analyze the vortex
introduced by Jobelin et al. [10]. Based on it, the forcing term
of the Navier–Stokes equation is adjusted for the divergence
free velocity field

u(x, y, t) = sin(x) sin(y + t), (31)

v(x, y, t) = cos(x) cos(y + t), (32)
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Table 5 Error norms and
relative speedups for different
grid resolutions of the Jobelin
vortex problem with open
boundary conditions using the
incremental projection method
(standard form) at t = 1

k Resolution ‖u‖L2(V ) ‖p‖L2(V ) ‖GP‖L2(V ) Speedup

0 16384:16384 6.44488E−7 1.51654E−5 2.20803E−9 1.000

1 16384:4096 6.44964E−7 1.51663E−5 2.21058E−9 3.179

2 16384:1024 6.45539E−7 1.51684E−5 2.21401E−9 3.943

0 4096:4096 4.43303E−6 5.68172E−5 3.15348E−8 1.000

1 4096:1024 4.51250E−6 5.68981E−5 3.84971E−8 3.686

0 1024:1024 2.62312E−5 0.000280331 4.50577E−7 1.000

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

Table 6 Error norms and
relative speedups for different
grid resolutions of the Jobelin
vortex problem with open
boundary conditions using the
non-incremental projection
method at t = 1

k Resolution ‖u‖L2(V ) ‖p‖L2(V ) ‖GP‖L2(V ) Speedup

0 16384:16384 1.39996E−6 1.53335E−5 2.71414E−9 1.000

1 16384:4096 1.40080E−6 1.53402E−5 3.19550E−9 2.986

2 16384:1024 1.40182E−6 1.53457E−5 3.44549E−9 3.693

0 4096:4096 4.68969E−6 6.16750E−5 3.84971E−8 1.000

1 4096:1024 4.70228E−6 6.17718E−5 6.29129E−8 3.798

0 1024:1024 1.88151E−5 0.000247378 1.27147E−6 1.000

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

and an arbitrary pressure field

p(x, y, t) = cos(x) sin(y + t). (33)

Jobelin et al. [10] considered this vortex for a Stokes
flow simulation, while we consider the nonlinear convec-
tion term of the Navier–Stokes equation in the present work.
A Reynolds number of Re = 10 is used. The computational
domain is set to V := [0, 1] × [0, 1]. Homogenous natural
Neumann conditions

−pn + 1

Re
∇u · n = 0, (34)

are enforced at the y-axis, while velocity Dirichlet boundary
conditions are imposed at the remainingboundaries. The time
step is chosen to be δt = 0.01.

Velocity, pressure, and pressure gradient error norms are
tabulated in Tables 5 and 6, respectively, for the SCGP and
NCGP computations for several spatial resolutions at real
time t = 1. For all levels of coarsening, SCGP keeps the level
of accuracy of velocity and pressure fields the same as the
output data with regular simulations (k = 0). For instance,
the L2 norms computed on the 16384:1024 spatial resolution
indicate only a 0.163% and 0.019% reduction, respectively,
in the accuracy level for the velocity and pressure fields
with reference to the full fine scale simulations. And, more
importantly, they are two and one orders of magnitude more
accurate, respectively, in comparison with the velocity and
pressure fields obtained from the full coarse scale simulation
performed with 1024:1024 spatial resolution.

Compared to NCGP, SCGP performs noticeably more
robustly in order to preserve the pressure gradient accuracy.
According to the data presented in Table 5, the pressure gra-
dient L2 norm ||GP||L2(V ) for k = 1 (4096:1024) shows
a 22.078% error in comparison with k = 0 (4096:4096);
however, this measurement is equal to 63.422% for the
NCGP computations. Based upon Kashefi and Staples [8],
the CGP methodology achieves higher speedup factors in
the presence of stress-free conditions compared to velocity
Dirichlet boundary conditions. Here, our numerical exper-
iments illustrate similar behaviors. While the maximum
speedup factor found for two levels of coarsening k = 2
in Sect. 3.1 is 1.565, this quantity is 3.943 in the current
section.

Similar to the Taylor–Green vortex problem, we do not
observe a significant difference between the SCGP and
RCGPoutputs. Thus, in order to save space,wedonot present
the results of the RCGP simulations.

3.3 Jobelin vortex with Dirichlet boundary
conditions

So far we have investigated the CGP scheme in simple square
domains with structured grids. The main goal of this section
is an examination of the CGP framework in a more challeng-
ing geometry with unstructured triangular meshes. To this
purpose, we consider another vortex used by Jobelin et al.
[10] such that the velocity and pressure fields for an incom-
pressible flow read:
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(a) (b)

Fig. 1 The triangular finite element meshes used for solving Poisson’s equation in the simulation of Jobelin vortex with a Dirichlet boundary
condition. a After one level coarsening (k = 1), 4705 nodes and 9216 elements; b After two levels coarsening (k = 2), 1201 nodes and 2304
elements

Table 7 Error norms and
relative speedups for different
grid resolutions of the Jobelin
vortex problem with Dirichlet
boundary conditions using the
incremental projection method
(rotational form) at t = 1

k Resolution ‖u‖L2(V ) ‖p‖L2(V ) ‖GP‖L2(V ) Speedup

0 36864:36864 1.97531E−8 5.19843E−6 2.37525E−10 1.000

1 36864:9216 1.97531E−8 5.19843E−6 2.37525E−10 4.596

2 36864:2304 1.97531E−8 5.19843E−6 2.37525E−10 102.715

0 9216:9216 8.07724E−8 2.18577E−5 4.83658E−9 1.000

1 9216:2304 8.08305E−8 2.18579E−5 4.83861E−9 2.155

0 2304: 2304 3.16102E−7 8.62595E−5 7.51999E−8 1.000

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

Table 8 Error norms and
relative speedups for different
grid resolutions of the Jobelin
vortex problem with Dirichlet
boundary conditions using the
non-incremental projection
method at t = 1

k Resolution ‖u‖L2(V ) ‖p‖L2(V ) ‖GP‖L2(V ) Speedup

0 36864:36864 5.52553E−8 5.42703E−6 3.06539E−10 1.000

1 36864:9216 5.53430E−8 5.42704E−6 3.06676E−10 2.219

2 36864:2304 5.56868E−8 5.42706E−6 3.06683E−10 3.943

0 9216:9216 2.19621E−7 2.34661E−5 1.28570E−8 1.000

1 9216:2304 2.20984E−7 2.34663E−5 1.28648E−8 2.056

0 2304: 2304 8.68060E−7 0.000110098 4.05365E−7 1.000

M : N represents the grid resolution of the advection–diffusion solver (M elements) and Poisson’s equation
(N elements)

u(x, y, t) = sin(x + t) sin(y + t), (35)

v(x, y, t) = cos(x + t) cos(y + t), (36)

p(x, y, t) = cos(x − y + t), (37)

with a forcing term to balance the Navier–Stokes equations.
Note that Jobelin et al. [10] performed this simulation for
Stokes flow, whereas we consider the nonlinear convection
term as well. The computational domain is a circle V :=
{(x, y)|x2 + y2 < 0.25}. The problem geometry is exhibited
in Fig. 1 and details of the mesh are described. The compu-

tational domain uses velocity Dirichlet boundary conditions
and consequently artificial pressure homogenous Neumann
boundary conditions. A Reynolds number of Re = 10 is uti-
lized.The time step chosen for these simulations is δt = 0.01.

Tables 7 and 8 list the discrete error norms for the veloc-
ity, pressure, and pressure gradient fields as well as speedup
factors, respectively, for RCGP and NCGP at time t = 1.
Considering the 36864:36864 grid resolution, after two lev-
els (k = 2) of the Poisson grid coarsening, the minimum
speedup gained is equal to 3.943 and belongs to NCGP,
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Fig. 2 Distribution of pointwise velocity error for Jobelin vortex problem with Dirichlet boundary conditions at t = 1. Labels in the form of M : N
indicate the grid resolution of the advection–diffusion solver, M elements, and the Poisson equation, N elements

whereas the maximum speedup achieved is equal to 102.715
and occurs in RCGP. To more precisely discuss the speedup
factors, the relevant quantities are reported in detail. The
computational times for the performed simulations using
RCGP are: 61044.8, 13281.0, and 594.31, respectively, for
k = 0 (36864:36864), k = 1 (36864:9216), and k = 2
(36864:2304), while the same simulation using NCGP takes:
60831.7, 27414.0, and 15427.7, respectively, for k = 0,
k = 1, and k = 2. On the other hand, the computational cost
devoted to the Poisson equation solver in the RCGP scheme
is: 60839.9, 13076.2, and 389.28, respectively, for k = 0,
k = 1, and k = 2, while obtaining the solution of Poisson’s
equation performed by the NCGP method takes: 60626.4,
26991.2, and 14105.3, respectively, for k = 0, k = 1, and
k = 2. Even in unstructured grids, the RCGP system keeps
the accuracy of the pressure field to an excellent degree, as
can be seen from Table 7. Interestingly, the computational
cost paid to this goal becomes inexpensive and high saving
in CPU time is gained. The NCGP tool, in contrast, preserves
the accuracy of the pressure and velocity fields in a lower
order and with lower speedups. A visual demonstration of
this interpretation is displayed in Figs. 2 and 3.

Figures 2 and 3 show the associated pointwise error distri-
butions, respectively, for the velocity and pressure variables
using the NCGP and RCGP simulations. The general resul-
tant patterns of pointwise error distribution of NCGP and
RCGP over the velocity domains are identical. However,

NCGP calculations lead to higher infinity norms in compar-
ison with RCGP. Moreover, the RCGP procedure produces
identical velocity noise patterns for k = 0, k = 1, and k = 2.
As shown in Fig. 3, the pointwise error distribution pattern
of NCGP over the pressure domain is completely different
in comparison with those executed by RCGP. As depicted
in Fig. 2, because the NCGP module is disable to remove
resulting artificial layers from the artificial Neumann pres-
sure boundary conditions, the maximum velocity noise is
observed on its circular domain boundaries, while these lay-
ers disappear in velocity domains simulated by RCGP for all
the presented resolutions.

It is worthwhile to note that SCGP is also successful in
terms of accuracy and speedup levels. However, its perfor-
mance is similar to RCGP from the both aspects and that is
whywe only presented the results computed by RCGP in this
section.

4 Conclusions and future directions

The contribution of the CGP methodology to pressure cor-
rection schemes is to accelerate the computations while
preserving the accuracy of the pressure and velocity fields by
evolving the nonlinear advection–diffusion equation on a fine
grid and solving the linear Poisson equation on a correspond-
ing coarsened grid. For the first time in this article, a CGP
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Fig. 3 Distribution of pointwise pressure error for Jobelin vortex problem with Dirichlet boundary conditions at t = 1. Labels in the form of M : N
indicate the grid resolution of the advection–diffusion solver, M elements, and the Poisson equation, N elements

mechanism is implemented in standard/rotational incremen-
tal pressure correction methods. Here, Poisson’s equation
is solved on a coarsened mesh for an intermediate variable
related to the pressure field. Hence, in contrast with the non
incremental procedure, the resolution of the pressure field
remains unchanged.

Three different standard test cases were solved to examine
the performance of the proposedCGP technique:TheTaylor–
Green vortex with velocity Dirichlet boundary conditions
[12], the Jobelin vortex with open boundary conditions [10],
and the Jobelin vortex with Dirichlet boundary conditions
[10]. The speedup factors ranged from 1.248 to 102.715. We
observed the minimum speedup in the Taylor–Green vortex
with Dirichlet boundary conditions [12] with the standard
form of the incremental pressure correction scheme, while
the maximum speedup belonged to the Jobelin vortex with
Dirichlet boundary conditions [10] with the rotational form.

In terms of the accuracy level, generally the velocity,
pressure, and pressure gradient fields, for one, two, and
three Poisson grid coarsening levels maintained excellent
agreementwith those performed on full fine scale grid resolu-
tions. In the presence of open boundary conditions, the CGP
incremental form of pressure correction schemes obtained
velocity and pressure norms approximately identical to those
computed using full fine scale simulations. For velocity
Dirichlet boundary conditions as well as irregular physical

domains, the CGP incremental form of pressure correction
methods achieved significant speedup factors while preserv-
ing the accuracy of both the velocity and pressure fields.

In this article, we used the method of manufactured solu-
tions. We considered a low Reynolds number of Re = 10.
Generally, the SCGP and RCGP techniques were prosper-
ous. Note that there is an important difference between the
non-incremental and incremental correction formulations. In
the incremental techniques, the Poisson equation is solved
for an intermediate variable relevant to the pressure. This
feature enables the CGP method to preserve the pressure
accuracy level high even for three Poisson grid coarsening
levels, whereas this precision is not obtained in the incor-
poration of the CGP mechanism and the non-incremental
pressure projection method. On the other hand, incremen-
tal forms force the pressure gradient term to the momentum
balance. The pressure gradient coming from CGP still expe-
riences artificial fluctuations.

Although the magnitude of these fluctuations is low, we
need to filter them at high Reynolds number implementations
ofRCGPandSCGPmethodologies.Thus, designing efficient
filters to reach this goal is the topic of our future research.

Another objective of a future study is to apply a CGP
method to the Nodal Discontinuous Galerkin (NDG) [21]
spatial discretization scheme. From a grid resolution point
of view, in the NDG approach the polynomial order of an
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element demonstrates its grid resolution. Hence, coarsening
a mesh can take a new shape. Instead of decreasing the num-
ber of elements, one may decrease the polynomial order of
the discretized space. In this way, incorporation of the CGP
methodology and the NDG scheme for incompressible flow
simulations means solving the momentum balance and the
Poisson equations on grids with the same number of ele-
ments but with different polynomial orders for each mesh.
Accordingly, the advection–diffusion grid takes higher order
polynomials in comparison with the Poisson equation one.
In this case, defining novel restriction, prolongation, diver-
gence and Laplacian operators as well as designing efficient
data structures for nodal connectivity between the advection–
diffusion and the pressure grids should be investigated.

Acknowledgements AK wishes to thank Dr. Peter Minev for helpful
discussions.
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