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Abstract
We discuss coarse grid projection (CGP) methodology as a guide for partial mesh
refinement of incompressible flow computations for the first time. Based on it, if for a
given spatial resolution the numerical simulation diverges or the velocity outputs are
not accurate enough, instead of refining both the advection–diffusion and the Poisson
grids, the CGP mesh refinement suggests to only refine the advection–diffusion grid
and keep the Poisson grid resolution unchanged. The application of the novel mesh
refinement tool is shown in the cases of flow over a backward-facing step and flow
past a cylinder. For the backward-facing step flow, a three-level partial mesh refine-
ment makes a previously diverging computation numerically stable. For the flow past
a cylinder, the error of the viscous lift force is reduced from 31.501 to 7.191% (with
reference to the standard mesh refinement results) by the one-level partial mesh refine-
ment technique.
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1 Problem Formulation

To simulate incompressible flows using pressure-correction schemes [1], the compu-
tational cost on a given coarse grid with N elements, Cc, is approximated by

Cc � Cv + Cp, (1.1)
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where Cv and Cp comprise the numerical cost of the nonlinear advection–diffu-
sion equation and the linear pressure Poisson equation, respectively. Now, if the
two-dimensional coarse grid is uniformly refined by l-level, the simulation using a
high-resolution grid with M elements takes time Cf, roughly determined as

Cf ≈ 4lCv + 4lCp, (1.2)

where 4l is a factor for cost scaling of the advection–diffusion and the Poisson equa-
tions in a two-dimensional problem. According to the CGP technique [2–5], the
advection–diffusion equation is executed on the fine grid with M elements, while
the pressure Poisson equation is still solved on the coarse grid with N elements. Gen-
erally, we show the resolution of a CGP simulation in the form of M : N , where M
and N are defined as above. Hence, the computational cost of CGP, Ccgp, is estimated
by

Ccgp ≈ 4lCv + Cp + Cm, (1.3)

whereCm is the mapping cost and is negligible in comparison with the other two terms
of Eq. (1.3). One might see Sect. 2.3 of Ref. [5] for further details.

Let us consider a condition that the standard numerical simulation diverged for the
N : N case due to a relative high Reynolds number or too coarse a mesh. Or the results
obtained with a N : N grid resolution are not sufficiently resolved and a fluid field
with more detailed information is needed. The standard approach to resolving these
common issues in pressure-correction methods [1] is to refine both the advection–dif-
fusion and the Poisson grids. In contrast with this approach, the CGP strategy suggests
refining the advection–diffusion grid, without changing the resolution of the Poisson
mesh. To be more precise from a terminology point of view, CGP does not propose a
new mesh refinement method; however, it guides users to implement available mesh
refinement techniques for the grids associated with the nonlinear equations.

From a mesh refinement application point of view, the cost increment factor of the
computational CGP tool

(
hcgp

)
is approximated by

hcgp � Ccgp

Cc
. (1.4)

Similarly, this factor for a regular triangulation refinement (hf) is conjectured to
be:

hf � Cf

Cc
. (1.5)

Based on the above discussion, hf is greater than hcgp. This is mainly due to the
factor of 4l that multiples Cp in Eq. (1.2). These results imply that mesh refinement
using the CGP idea is more cost effective than the standard technique. Note that we
analyzed the computational cost for finite-element discretizations.A similar discussion
is valid for finite volume/difference discretizations [2, 3].
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2 Results and Discussion

Here, we describe the concept by showing two simple examples. Both examples are
taken from one of our recent published studies [5], but another interpretation of the
numerical results of these examples is discussed here.

As the first example, consider the simulation of the flow over a backward-facing
step. Let us assume that one is interested in the flow information at the Reynolds
number of Re � 800 [see Eq. (38) of Ref. [5] for the definition of the Reynolds
number]; however, due to wall clock time or computational resource limitations, he is
not able to run a simulation with the required pure fine 102400:102400 grid resolution.
On the other hand, because a coarse 1600:1600 resolution is not high enough, the
simulation diverges after 96 time steps, as depicted in Fig. 1a. The CGP framework
with an intermediate resolution of 102400:1600 provides a converged solution as
shown in Fig. 1b. The relative velocity error norms with reference to the full fine
simulation are of order 10E−5. Furthermore, the normalized reattachment length can
be estimated around 14.0. Although the error percentage of this estimation is 16.67%
relative to that obtained by the standard computations, it is captured 30 times faster.
Note that these results are achieved by only refining the advection–diffusion equation
solver mesh. Table 1 lists relative norm errors of the velocity domain and hf/hcgp.
For instance, refining the coarse mesh with the 6400:6400 spatial resolution using the
CGP tool leads to a 1042.388% reduction in the L2 norm error of the velocity field,
while it is 28.613 times cheaper than the regular mesh refinement technique. Note
that in the case of 1600:1600 spatial resolution, because the simulation on the coarse
grid diverges, there is no real number for Cc; however, if a virtual Cc considered,
hf/hcgp � 29.534.

As the second example, let us consider theflowover a circular cylinder computations
described in Sect. 3.3 of Ref [5]. The time evolution of the viscous lift coefficient (CLf)

at the Reynolds number of Re � 100 [see Eq. (39) of Ref. [5] for the definition of the

Fig. 1 Demonstration of partial
mesh refinement application of
the CGP method for the
backward-facing step flow at
Re � 800, a comparison
between axial velocity contours
obtained using a coarse-scale
computations (1600:1600),
diverged, and b the CGP mesh
refinement tool (102400:1600),
converged. This figure is
reproduced from Ref. [5]
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Table 1 Comparison of relative norm errors and hf/hcgp between the standard and CGP mesh refinement
tools for the backward-facing step flow at Re � 800

Resolution ‖u‖L∞(V) % decrease in error ‖u‖L2(V) % decrease in error hf/hcgp

1600:1600 * – * – –

102400:1600 4.48543E − 5 – 2.23362E − 5 – 29.534

6400:6400 1.64502E − 4 – 6.12495E − 5 – –

102400:6400 1.43997E − 5 1042.398 4.87393E − 6 1156.675 28.613

25600:25600 5.17352E − 5 – 4.21246E − 6 – –

102400:25600 6.69447E − 6 672.805 7.88459E − 7 434.265 19.924

The norm errors are taken from Ref. [5]
*The simulation diverges after 96 time steps
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Fig. 2 Viscous lift coefficient obtained using the regular mesh refinement tool (215680:215680), the CGP
mesh refinement tool (215680:53920), and the full coarse-scale simulation (53920:53920). This figure is
reproduced from Ref. [5]

Reynolds number] for three different combinations of the advection–diffusion and the
Poisson grid resolutions is depicted in Fig. 2. Let us assume an exact measurement
of the lift coefficient is needed for a specific engineering purpose. Using standard
methods, this can be accomplished using either 215680:215680 or 53920:53920 grid
resolutions. An implementation with the finer grid produces a more precise answer. It
could be a user’s incentive to locally/globally refine the full coarse mesh. Obviously,
this mesh refinement ends in an increase in CPU time for the simulation. In this case,
our numerical experiments show that the increase is equal to 339271.6 s (over 94 h).
As discussed in Sect. 3.3 of Ref. [5], having a coarse mesh only degrades the level of
accuracy of the viscous lift not the pressure lift. In fact, instead of refining the grids
associated with both the nonlinear and linear equations, a mesh refinement of the
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nonlinear part is enough alone. Hence, to increase the precision of the lift force, one
can refine the advection–diffusion grid and keep the resolution of the Poisson mesh
unchanged. In this case, the CGP grid refinement cost factor is hcgp � 3.638; whereas,
this factor for the regular mesh refinement is hf � 11.088, illustrating a considerable
saving of computational resources.

As a last point, obviously the types of two-dimensional flow simulations described
here are not challenging computation problems today. These problems aremerely used
as examples to explain one of the features of the CGP algorithm. Practical applications
of the CGP mechanism as a mesh refinement tool are expected to be useful for three-
dimensional flow simulations on parallel machines.
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