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Abstract. Coarse grid projection (CGP) methodology is used to accelerate
the computations of sets of decoupled nonlinear evolutionary and linear
static equations. In CGP, the linear equations are solved on a coarsened
mesh compared to the nonlinear equations, leading to a reduction in cen-
tral processing unit time. The accuracy of CGP has been assessed for the
advection–diffusion equation along with the pressure Poisson equation.
Here we add another decoupled equation to this set: the energy equa-
tion. In this article, we examine the influence of CGP methodology for
the first time on thermal fields. CGP is validated with two different test
cases: first, natural convection induced by a hot circular cylinder located
in the center of a cold square cylinder, and second, the flow over a circu-
lar cylinder with the condition of constant cylinder temperature. For the
first test case, the velocity and temperature fields as well as the local Nus-
selt number on the surface of the inner hot cylinder calculated by CGP
reveal good agreement with the non-CGP data. For the second test case,
the Nusselt number and the spatial structure of the temperature field
obtained by CGP are in a good agreement with the non-CGP data for
different Prandtl numbers. In general, CGP is able to maintain excellent
to reasonable accuracy of the temperature filed, while achieves speedup
factors ranged approximately from 1.7 to 3.7.
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1. Introduction

Pressure projection schemes are widely used for the unsteady incompressible
flow computations [1–4]. Taking the advantages of these techniques, the saddle-
point issue of the continuity and momentum equations disappears [3,4]. Hence,
one only deals with two decoupled cascading elliptic equations: the advection–
diffusion equation and the pressure Poisson one. Different multigrid schemes
have been already introduced to lessen the computational times associated
with the numerical pressure correction methods (see e.g., Refs. [5–9]). Coarse
grid projection (CGP) methodology is a recently used multiresolution scheme
to accelerate these computations [10–15]. CGP saves a considerable amount of
CPU time by reducing the degree of freedom for the discretized Poisson equa-
tion, which is the most time consuming subproblem. Accordingly, the nonlinear
advection–diffusion equation is solved on a fine grid and the linear pressure
Poisson equation is solved on a corresponding coarsened grid. Mapping func-
tions transfer data between the grids. The CGP procedure is described in detail
in Sect. 2.2.

In 2010 Lentine et al. [10] first introduced CGP for accelerating inviscid
flow computations. In 2013 San and Staples [11] used the CGP technique for
the numerical simulation of the incompressible Navier–Stokes equations. In
2014 the CGP algorithm was used in the fast fluid dynamics (FFD) models by
Jin et al. [12]. In 2018 a finite element version of CGP with a semi-implicit time
integration scheme was presented by Kashefi and Staples [13]. In 2019 Kashefi
[14] discussed CGP as a guide for partial mesh refinement of incompressible
flow computations. In 2019 Kashefi [15] introduced a CGP framework for the
acceleration of incremental pressure correction schemes with an application to
low Reynolds number incompressible flows.

In all the literature cited above, the authors [10–15] studied the perfor-
mance of CGP in terms of the level of accuracy obtained in the velocity or
pressure fields and achieved speedup factors. Nonetheless, the influence of the
CGP algorithm on the energy equation has not yet been investigated.

The study of the energy equation in a numerical simulation performed by
the CGP technique is important in two aspects. First, since the advection term
in the energy equation is based on the velocity field obtained by CGP, pre-
serving the accuracy level of the thermal field should be investigated. Second,
in order to obtain the velocity and thermal fields using pressure projection
schemes, one has to deal with three decoupled elliptic equations at each time
step: a linearized equation for the intermediate velocity field, a linear Poisson
equation for the pressure field, and a linearized equation for the thermal field.
Hence, the contribution of the CGP scheme to accelerating the computations
becomes significant. To this end, we consider two different practical situations.

First, when the buoyancy force leads to the thermally-driven flows with
the so-called Boussinesq approximation. By this assumption, the solution of
the energy equation appears in the momentum balance as the source term
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[16]. The natural convection in a square enclosure with a circular cylinder
for different Rayleigh numbers is considered as a standard test case for this
condition.

Second, for small scalar differences, the energy equation is, indeed, the
conservation equation of a passive scalar and can be independently solved
for a given velocity field [17]. An external unsteady flow past a cylinder is a
physically meaningful benchmark case and a model for canonical studies of
demanding fluid mechanics problems [18]. Thus, this test case is solved for
different Prandtl numbers in order to investigate the performance of the CGP
strategy for the study of transporting passive scalars.

The rest of this article is structured as follows. Section 2.1 gives the
governing equations for incompressible flows and conservation of energy. We
discuss coarse-grid projection methodology in Sect. 2.2. Computational aspects
of the problem are described in Sect. 2.3. Numerical results and their relevant
discussions are presented in Sect. 3. Conclusions and notes for extensions of
the work are provided in Sect. 4.

2. Problem Formulation

2.1. Governing Equations

The equations of conservation of momentum, mass, and energy for an incom-
pressible flow of a Newtonian fluid are given by

ρ

[
∂u

∂t
+ (u · ∇)u

]
− μΔu + ∇p = f in V, (1)

∇ · u = 0 in V, (2)
u = uΓD

on ΓD, (3)
−pn + μ∇u · n = tΓN

on ΓN , (4)

ρ

[
∂θ

∂t
+ (u · ∇)θ

]
=

κ

cp
Δθ in V, (5)

θ = θΩD
on ΩD, (6)

∇θ · n = bΩN
on ΩN , (7)

where u is the velocity vector, p stands for the pressure, and θ represents the
temperature of the fluid in domain V . f is the vector of external force. tΓN

and
bΩN

denote the stress vectors applied to the velocity and temperature fields,
respectively. ρ is the fluid density and μ is the dynamic viscosity. κ is the
conductivity of the fluid and cp is the specific heat at a constant pressure. ΓD

and ΓN respectively represent the velocity Dirichlet and Neumann boundaries,
while ΩD and ΩN respectively denote the temperature Dirichlet and Neumann
boundaries of the domain V . n is the outward unit vector normal to the
boundaries. There is no overlapping between ΓD and ΓN subdomains. Similarly
no overlap exists between ΩD and ΩN subdomains as well.
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We discretize the system of equations using a first-order semi-implicit
time integration formula [19]. Then, we apply a non-incremental pressure cor-
rection scheme [4] to the time-discretized system, yielding to

ρ

[
ũn+1 − un

δt
+ (un · ∇)ũn+1

]
− μΔũn+1 = f n in V, (8)

ũn+1 = un+1
ΓD

on ΓD, (9)

μ∇ũn+1 · n = tn+1
ΓN

on ΓN , (10)

Δpn+1 =
ρ

δt
∇ · ũn+1 in V, (11)

∇pn+1 · n = 0 on ΓD, (12)
pn+1 = 0 on ΓN , (13)

un+1 = ũn+1 − δt

ρ
∇pn+1 in V, (14)

ρ

[
θn+1 − θn

δt
+ (un+1 · ∇)θn+1

]
=

κ

cp
Δθn+1 in V, (15)

θn+1 = θn+1
ΩD

on ΩD, (16)

∇θn+1 · n = bn+1
ΩN

on ΩN , (17)

where δt represents the time step and ũ is the intermediate velocity vector.
For a more detailed description of the pressure projection scheme implemented
here, one may refer to Refs. [1–4].

The finite-element Galerkin scheme [3,20] with the piecewise linear basis
function P1 is used to spatially discretize the space of the velocity, pressure,
and temperature fields. The finite-element form of Eqs. (8)–(17) is expressed
as

1
δt

(
MvŨ

n+1 − MvUn
)

+
[
Nn + Lv

]
Ũ

n+1
= MvFn, (18)

LpPn+1 =
ρ

δt
DŨ

n+1
, (19)

MvUn+1 = MvŨ
n+1 − δtGPn+1, (20)

1
δt

(
MθΘ

n+1 − MθΘ
n
)

+
[
Nn+1 + Lθ

]
Θn+1 = Qn+1, (21)

where Mv, Mθ, Lv, Lp, Lθ, D, and G denote the matrices associated, respec-
tively, to the velocity mass, temperature mass, velocity laplacian, pressure
laplacian, temperature laplacian, divergence, and gradient operators. Nn and
Nn+1 indicate the advection operators at time tn and tn+1, respectively. The
vectors Ũ, U, Θ, P, F, and Q represent the nodal values of the intermediate
velocity, the end-of-step velocity, the temperature, the pressure, the forcing
term on the velocity domain, and the stress term on the temperature domain,
respectively.
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2.2. Coarse Grid Projection Methodology

In the CGP scheme, first we balance the advection–diffusion equation on a fine
grid and obtain the intermediate velocity field data Ũn+1

f . Then, we restrict
Ũn+1

f to a corresponding coarsened grid and set Ũn+1
c . We take the divergence

of the restricted intermediate velocity Ũn+1
c in order to set the source term of

the pressure Poisson equation. We solve the Poisson equation on the coarsened
grid and obtain Pn+1

c . In the next stage, we prolong the resulting pressure data
Pn+1

c from the coarse grid to the fine grid and set Pn+1
f . We correct the velocity

domain and obtain Un+1
f on the fine grid. Now, we create the advection matrix

Nn+1 based to the obtained velocity field data Un+1
f . Finally, we solve the last

conservation equation for the energy on the fine grid to obtain Θn+1
f .

In practice we consider four nested spaces: V1 ⊂ V2 ⊂ V3 ⊂ V4 = V .
We uniformly subdivide each triangular element of the discretized space of
Vl (for 1≤ l ≤3) into four triangles. This procedure provides the discretized
space of Vl+1. Hence, for each CGP simulation we have a fine mesh and a
corresponding coarsened mesh respectively with M and N elements such that
N = 4−kM , where k indicates the coarsening level. When k = 0, the non-
CGP framework is covered. The restriction R : V4 → V4−l and prolongation
P : Vl → Vl+1 operators and their matrix representations, respectively R4-l

4 and
Pl+1
l , are constructed using Geometric Multigrid (GMG) tools. R4-l

4 injects the
intermediate velocity data from a fine grid (V4) into the corresponding coarse
grid (V4−l). Pl+1

l corresponds to the finite-element shape functions. Since we
implement P1 in this study, Pl+1

l prolongs the pressure data from the coarse
grid (Vl) to the next nested space (Vl+1) using a linear interpolation. Finally,
we derive the pressure laplacian L̄p and divergence D̄ operators on a relatively
coarse mesh (V4−l) by taking the inner products of the coarse grid finite-
element shape functions. One may see Sect. 2.3 of Ref. [13] for further details.

Equations (22)–(27) summarize the CGP algorithm at each time step, δt,
of the simulation.

1. Calculate Ũn+1
f on V by solving

(
Mv + δtNn + δtLv

)
Ũ

n+1

f = δtMvFn + MvUn
f . (22)

2. Map Ũn+1
f onto V4−l and obtain Ũn+1

c via

Ũ
n+1

c = R4-l
4 Ũ

n+1

f . (23)

3. Calculate Pn+1
c on V4−l by solving

L̄pPn+1
c =

ρ

δt
D̄Ũ

n+1

c . (24)

4. Remap Pn+1
c onto V and obtain Pn+1

f via

Pn+1
f = Pl+1

l Pn+1
c . (25)
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5. Calculate Un+1
f via

MvUn+1
f = MvŨ

n+1

f − δtGPn+1
f . (26)

6. Build up the advection operator Nn+1 using the obtained velocity field
Un+1

f .
7. Calculate Θn+1

f on V by solving(
Mθ + δtNn+1 + δtLθ

)
Θn+1

f = δtQn+1 + MθΘ
n
f . (27)

2.3. Computational Consideration

We employ an in-house C++ object oriented code. We use the ILU(0) pre-
conditioned GMRES(m) algorithm [21,22] to solve Eqs. (22), (24), and (27).
The Gmsh application [23] is used for generating unstructured finite element
meshes. All simulations are performed on a single Intel(R) Xeon(R) processor
with 2.66 GHz clock rate and 64 Gigabytes of RAM.

3. Results and Discussion

To assess the performance of the CGP configuration, two standard test cases
are investigated: The natural convection in a square enclosure with a circular
cylinder and transport of passive scalars in flows over a circular cylinder. Note
that each subproblem has own Nusselt number definition. Notations in the
form of M : N demonstrate the grid resolutions of the advection–diffusion
and energy equation solvers, M elements, and the pressure Poisson equation
solver, N elements. If M = N , the non-CGP framework is covered.

3.1. Natural Convection in a Square Enclosure with a Circular Cylinder

One goal of the thermally-driven flow problem is an investigation of the effects
of the temperature solution on the velocity field in the CGP framework. A
second goal of this test case is to check the capability of the CGP method
for heat transfer in complex geometries. To perform this test case, the geom-
etry and boundary conditions are accorded to Lee et al. [16]. In this way, an
opportunity for validation of our results is provided.

A rectangular computational field V := [0, L] × [0, L] is considered. A
circular cylinder with the diameter b is located at the center of the domain
such that b = 0.4L. No-slip conditions are imposed at all the boundaries. For
the temperature, θ = θh is imposed at the cylinder surface, while θ = θc is
enforced at the remaining surfaces. According to the Boussinesq approximation
[16], the forcing term is given by

f n = ρgβ(θn − θref )ĵ, (28)

where g indicates the magnitude of the gravity acceleration. β is the thermal
expansion. θref stands for the reference temperature. ĵ is the unit vector in
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(c)(b)(a)

Figure 1. The finite element grids utilized for the solution
of Poisson’s equation in the simulation of natural convection
in a square enclosure with a circular cylinder: a Standard res-
olution (k = 0), 7560 nodes and 14720 elements; b After one
level coarsening (k = 1), 1940 nodes and 3680 elements; c
After two levels coarsening (k = 2), 510 nodes and 920 ele-
ments

the direction of y axis. The Rayleigh number is expressed as

Ra =
ρ2cpgβ(θh − θc)L3

κμ
. (29)

The local Nusselt number on the cylinder surface is determined as

Nuϕ =
−b

θh − θc

∂θ

∂n
|ϕ, (30)

where ϕ is the angle from the negative x-axis indicating the position of a point
located on the cylinder surface.

The density (ρ), specific heat (cp), hot temperature (θh), box length (L),
gravity acceleration (g), and thermal expansion (β) are set to 1.00; and the
cold temperature (θc) and reference temperature (θref ) are set to 0.00 in the
International Unit System. We consider different viscosity (μ) and conductivity
(κ) values to set the Rayleigh number. A constant time step of δt = 0.01 s
is selected and the numerical computations are executed until the following
criterion is satisfied

max
( ||Un+1||2 − ||Un||2

||Un||2 ,
||Θn+1||2 − ||Θn||2

||Θn||2

)
< 10−7, (31)

where ||...||2 is the L2 norm.
Figure 1 illustrates the grids utilized by the Poisson solver for the

Rayleigh number of Ra = 105 for the standard resolution (k = 0), one level
coarsening (k = 1), and two levels (k = 2) coarsening. It should be noted that
we use grids with higher resolutions for the Rayleigh number of Re = 106 in
comparison with Ra = 105.
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Figures 2 and 3 depict, respectively, the vorticity lines and isotherms
in the buoyancy-driven flow simulation using both the normal and the CGP
processes for two different Rayleigh number of Ra = 105 and Ra = 106. The
vorticity and thermal fields with one (k = 1) and two levels (k = 2) of coarsen-
ing agree well with the full fine scale normal computations, and they present
significantly more reliable outputs in comparison with the corresponding full
coarse scale simulations. This fact, for instance, is noticeable from Fig. 2, when
one compares the vorticity lines of the simulations performed on grids with
three resolutions of the non-CGP full fine scale (k = 0 with 14720:14720),
CGP (k = 2 with 14720:920), and non-CGP full coarse scale (k = 0 with
920:920) at the Rayleigh number of Ra = 105. If one compares the outputs
of these three resolutions (mentioned in the last sentence) with each other,
but now for the temperature field illustrated in Fig. 3, it can be realized that
the efficiency of the CGP technique becomes more pronounced in the vorticity
field rather than the temperature field. In the velocity-pressure formulation of
the Navier–Stokes equation, the vorticity is a post-processed quantity and is
proportional to the spatial gradient of the components of the velocity vector.
Hence, CGP is able to maintain excellent accuracy of the velocity gradient as
well. We will demonstrate that the fact is true for the temperature gradient
when we compute the local Nussult number on the cylinder surface.

More specifically, Table 1 compares the efficiency and the accuracy of
the velocity and temperature fields for the standard approach (k = 0) and
the CGP algorithm (k = 1, and 2) for the Rayleigh number of Ra = 106.
The resulting data captured from the CGP simulations (k = 1, and 2) is
considerably more accurate than the outputs of standard simulations executed
on the full coarse scale grid resolutions (k = 0 with 18720:18720, and k =
0 with 4680:4680), as can be seen from the computed error norms relative
to the simulation performed on the finest mesh (k = 0 with 74880:74880).
Interestingly, the flow field reaches stationary for a relatively equal number of
iterations (i.e., time steps) for both the CGP and non-CGP schemes for all
the spatial resolutions. However, the CGP method reduces the CPU time per
iteration. The maximum achieved speedup is a factor of approximately 2.0.

To more precisely examine the performance of the results produced by
CGP, the local Nusselt number (Nuϕ) on the surface of the cylinder for dif-
ferent spatial resolutions for the Rayleigh number of Ra = 105 and Ra = 106

is plotted in Fig. 4. The obtained results by both the CGP and non-CGP
methods reveal good agreement with the numerical data reported by Lee
et al. [16]. For all levels of coarsening, the CGP approach provides more accu-
rate data compared to that modeled with a full coarse scale computation, with
reference to the prediction of full fine scale computations. This trend becomes
more obvious for the calculation of the maximum local Nussult number, where
it occurs at the bottom surface of the cylinder (π < ϕ < 2π), as can be seen
from Fig. 4.
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Figure 2. Vorticity lines for the buoyancy-driven flow for
two different Rayleigh numbers of Ra = 105 and Ra = 106.
Labels in the form M : N specify the grid resolution of the
advection–diffusion and energy equation solvers, M elements,
and the pressure Poisson equation solver, N elements. k indi-
cates the coarsening level. When k = 0, the non-CGP frame-
work is covered
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Figure 3. Isotherms for the buoyancy-driven flow for two dif-
ferent Rayleigh numbers of Ra = 105 and Ra = 106. Labels in
the form M : N indicate the mesh resolution of the advection–
diffusion and energy equation solvers, M elements, and the
pressure Poisson equation solver, N elements. k shows the
coarsening level. When k = 0, the non-CGP framework is
covered
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Figure 4. Distribution of the local Nusselt number along the
surface of the cylinder for the buoyancy-driven flow for two
different Rayleigh numbers of Ra = 105 and Ra = 106. Reso-
lution in the form of M : N represents the spatial resolution of
the advection–diffusion and energy solvers, M elements, and
Poisson’s equation, N elements. When M = N , the non-CGP
framework is covered

3.2. Transport of Passive Scalars in Flows Over a Circular Cylinder

We consider a rectangular computational domain V := [0, 38] × [0, 32]. The
cylinder is represented by a circle with diameter d in two dimensions. The
center of the circle lies at the point (8, 16). At the inflow boundary, we impose
a free stream velocity u∞ perpendicular to the vertical axis, while the outflow
boundary is described with a natural Neumann condition

μ∇u · n = 0. (32)
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The velocity at the top and bottom of the field is perfectly slipped with
the magnitude and direction of u∞. The circle is considered as a rigid body
with no-slip conditions. For the temperature we take boundary conditions from
Ref. [18] such that θ = θw is enforced at the circle, while θ = θ∞ is imposed
at the remaining boundaries. The conditions correspond to a problem with
constant cylinder temperature. Note that while homogenous natural Neumann
conditions are enforced on ΓN , temperature Dirichlet conditions are imposed
on ΩD, indicating two different types of boundary conditions at the outflow
boundary. The Reynolds number is expressed as

Re =
ρdu∞

μ
, (33)

and the Prandtl number is determined as

Pr =
cpμ

κ
. (34)

We determine each point on the circular cylinder surface by the angle
α from the negative x-axis. Thus, the local Nusselt number on the cylinder
surface is formulated as

Nuα =
−d

θw − θ∞
∂θ

∂n
|α. (35)

The time-averaged Nusselt number per time cycle, tp , is expressed by

Nu =
1
tp

∫ tp

0

Nuαdt. (36)

And the time- and space-averaged Nusselt number is calculated by

Nu =
1
tp

∫ tp

0

(
1
2π

∫ 2π

0

Nuαdα

)
dt. (37)

The density (ρ), free stream velocity (u∞), specific heat (cp), cylinder temper-
ature (θw), and cylinder diameter (d) are set to 1.00; and the temperature at
infinity (θ∞) is set to 0.00 in the International Unit System. The viscosity (μ)
and conductivity (κ) of the fluid vary to set the Reynolds and Prandtl num-
bers. A fixed time step of δt = 0.05 s is chosen and we execute the numerical
simulations until time t = 150 s.

The Poisson solver uses the meshes with 108352 nodes and 215680 ele-
ments, 27216 nodes and 53920 elements, 6868 nodes and 13480 elements, and
1749 nodes and 3370 elements, respectively, for k = 0, k = 1, k = 2, and k = 3.
Figure 5 shows those grids for k = 2 and k = 3.

The detailed results related to the velocity field were presented in one of
our previous works (see Sect. 3.3 of Ref. [13]) and are not repeated here again.

Table 2 lists the CPU times devoted to each subproblem and speedup
factors achieved for the simulations with several spatial resolutions. The
most time-consuming component of the simulations with standard resolutions
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(a) (b)

Figure 5. Representation of the triangular finite element
meshes used for solving Poisson’s equation in the simulation
of flow over a cylinder. a After two levels coarsening (k = 2),
6868 nodes and 13480 elements; b After three levels coars-
ening (k = 3), 1749 nodes and 3370 elements. This figure is
reproduced from Ref. [13]

(215680:215680, 53920:53920, 13480:13480, and 3370:3370) is the Poisson equa-
tion. Taking the advantages of the CGP method into account, the price of the
Poisson equation portion becomes less than 1.2% only for two levels (k = 2) of
coarsening. The maximum achieved speedup is a factor of 3.694. In practice,
one must solve the linear system of Eqs. (22) and (27) to compute respec-
tively the intermediate velocity field (Ũ

n+1

f ) and the temperature field (Θn+1
f ).

From a numerical linear algebra point of view, the
(
Mv + δtNn + δtLv

)
and(

Mθ + δtNn+1 + δtLθ

)
matrices are similar to each other. Hence, the value of

the ratio of the computational cost to the number of unknowns is the same
for the both systems. The nodal value of the velocity field is twice the nodal
value of the temperature field. And this is why for all the simulations with and
without the CGP technique, the computational cost of the advection–diffusion
equation is roughly twice as much as the cost of the conservation equation of
the temperature field. As discussed earlier, the prolongation and restriction
operators are constructed based on the idea proposed in Sect. 2.3 of Ref. [13].
Following the data structure introduced in Ref. [13], the numerical expense of
the mapping part becomes insignificant, as can be seen from Table 2.

Figure 6 visually compares the temperature fields obtained for Re = 100
and Pr = 2 with and without CGP for different grid resolutions at time
t = 150 s. The temperature fields obtained by the CGP procedure for one
level (k = 1) and two levels (k = 2) of the Poisson grid coarsening are close
to that simulated with the standard full fine grid resolution (215680: 215680).
For three (k = 3) levels of coarsening; however, a considerable reduction in the
fidelity of the temperature field is observed. Nonetheless, the resulting field
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Figure 6. Temperature fields for the flow over a circular
cylinder for Re = 100 and Pr = 2 at t = 150 s. Labels
in the form of M : N illustrate the grid resolutions of the
advection–diffusion and passive scalar fields, M elements, and
the pressure field, N elements. When M = N , the non-CGP
framework is covered

of CGP with the 215680:3370 spatial resolution is still better than those that
are performed on the standard full coarse grid resolution (3370:3370). Similar
observation is reported by Kashefi and Staples [13] for the velocity field (see
e.g., Figs. 9–10 of Ref. [13]).

From a general point of view, the spatial discretization of the advection–
diffusion domain acts as a lowpass filter on the grid, and the Poisson solver
also acts as a pre-filtering process [11]. The CGP procedure specifically uses
the belief in order to increase saving in computational time without negatively
affecting the properly-resolved velocity field, and consequently the temperature
field. A visual demonstration of these effects is displayed in Fig. 7. Figure 7
depicts the temperature distributions along the horizontal centerline in the
wake region behind the cylinder for Re = 100 and Pr = 2 at time t = 150
s. While the outputs of the pure coarse grid are contaminated by spurious
fluctuations at the end of the fluid domain, these fluctuations are filtered in
the temperature field obtained by the CGP framework.

There could be a phase lag between the velocity outputs of the standard
and CGP approaches, depending on the time increment (δt) [13]. As can be
seen in Figs. 6 and 7, these phase lags are transmitted from the velocity field
into the temperature one.
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Figure 7. Comparison of the temperature in the wake region
of the flow past a cylinder for different grid resolutions for
Re = 100 and Pr = 2 at t = 150 s for a k = 0, 1, and 0; b
k = 0, 2, and 0. Labels in the form of M : N illustrate the
grid resolutions of the advection–diffusion and passive scalar
fields, M elements, and the pressure field, N elements. When
M = N , the non-CGP framework is covered

Figure 8 compares the local Nusselt number (Nuα) computed for Re =
100 and Pr = 0.5 by the standard and CGP algorithms at two different angels
of α = π and α = 5π/3. For one (k = 1 with 215680:53920) and two (k = 2 with
215680:13480) levels of the Poisson grid coarsening, the CGP results are close
to the outputs of the full fine scale simulation (k = 0 with 215680:215680).
More importantly, they are significantly more accurate than the local Nusselt
number (Nuα) computed on the full coarse grids (k = 0 with 53920:53920,
and k = 0 with 13480:13480). For one level (k = 1) of mesh coarsening,
there is a phase lag between the local Nusselt number (Nuα) obtained by the
standard and CGP simulations at both angels of α = π and α = 5π/3 (see
Fig. 8a, c). On the other hand, there is no phase lag between the standard
and CGP outputs for two levels (k = 2) of grid coarsening at these angles (see
Fig. 8b, d). Comparing these results with the temperature fields presented
in Fig. 7, we experience the same observation. From a mathematical point
of view, this phenomena is expected since the local Nusselt number (Nuα)
is proportional to the normal derivative of the temperature variable, and the
phase of a continuous bounded oscillatory function gets transmitted to its
derivative.

As can be seen in Fig. 8, for two levels (k = 2) of the Poisson grid
coarsening, the local Nusselt number (Nuα) predicated by the CGP approach
is slightly underestimated at angle of α = π in comparison with the outcomes
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Figure 8. The local Nusselt number around the cylinder in
the simulation of transport of passive scalars for Re = 100
and Pr = 0.5 with and without the CGP algorithm for a
one level coarsening (k = 1) at angle of α = π; b two levels
coarsening (k = 2) at angle of α = π; c one level coarsening
(k = 1) at angle of α = 5π/3; d two levels coarsening (k = 2)
at angle of α = 5π/3. Legends in the form of M : N indicate
the spatial resolutions of the advection–diffusion and passive
scalar fields, M elements, and the pressure field, N elements.
When M = N , the non-CGP framework is covered

of the full fine scale simulation (215680:215680). We observe, in contrast, an
over prediction at angle of α = 5π/3. It is because the architecture of the
unstructured coarse grid (with 13480 elements) at these two different zones.
Depending on the morphology of a fine grid and the corresponding coarsened
grid, the CGP outputs can be slightly over- or under-predicted. We will discuss
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Figure 9. Distribution of time-averaged heat transfer
around the cylinder for Re = 100 and Pr = 0.5 with and
without the CGP algorithm for a one level coarsening (k = 1);
b two levels coarsening (k = 2). Legends in the form of M : N
indicate the spatial resolutions of the advection–diffusion and
passive scalar fields, M elements, and the pressure field, N
elements. When M = N , the non-CGP framework is covered

this issue further in the next paragraph. All in all, the important thing is that
although the local Nusselt number (Nuα) obtained by the CGP computation
(215680:13480) is slightly deviated from the full fine scale (215680:215680)
result, it is still significantly more accurate than those that are solely computed
on the full coarse mesh (13480:13480).

The distribution of the time-averaged Nusselt number (Nu) for Re = 100
and Pr = 0.5 on the bottom surface of the cylinder is plotted for the stan-
dard and CGP computations with different grid resolutions in Fig. 9. This
variable for the simulations with one level (k = 1 with 215680:53920) and
two levels (k = 2 with 215680:13480) of coarsening agrees well with the data
obtained by the standard simulations with the full fine grid resolution (k = 0
with 215680:215680), approximately from α = π to α = 7π/4. For the rest
of the bound, even though the local Nusselt number (Nuα) predicted by the
CGP mechanism has a good agreement with the study presented in Ref. [24],
a reduction in the accuracy level, in comparison with the full fine scale simu-
lation (k = 0 with 215680:215680), is observed. This is due to the architecture
of the triangular unstructured grids established in this zone. Note that we
use the simplest strategy for generating the unstructured grids, while using
advanced techniques for mesh generation can significantly affect the perfor-
mance of GMG tools like CGP.
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The data collected in Table 3 demonstrates that the prediction of the
time- and space-averaged Nusselt number (Nu) by the CGP technique is gen-
erally reliable and has an excellent agreement with the correlations reported in
the literature [25,26]. By increasing the Prandtl number (Pr), a deviation from
the full fine scale computation occurs. In fact at low Prandtl numbers (Pr) the
conduction term (Δθn+1) dominates the advection term ((un+1 · ∇)θn+1) in
the conservation equation (Eq. (15)) of the temperature. Since a linear map-
ping function is used here, a higher level of accuracy is obtained at a lower
Prandtl number (Pr). Taking the advantages of more advanced data interpo-
lation schemes (see e.g., Ref. [27]) can be a solution to this issue. However,
even using the simple extrapolation technique, the outcomes of the CGP con-
figuration are still more accurate than the resulting data captured from the
full coarse scale simulations.

4. Conclusions and Future Directions

In this article, we used for the first time the CGP multiresolution scheme to
reduce the computational cost for obtaining a numerical solution to the tem-
perature field. In order to examine the performance of CGP, two standard
test cases were investigated: Natural convection in a square enclosure with a
circular cylinder, and transport of passive scalars in flows past a circular cylin-
der with constant temperature. The speedup factors ranged approximately
from 1.7 to 3.7. The minimum speedup occurred in the thermally-driven flow
problems with velocity Dirichlet boundary conditions. However, the maximum
speedup belonged to the flow past a cylinder with stress free boundary condi-
tions. A similar conclusion was reported by Kashefi and Staples [13]. For one
and two levels of the Poisson grid coarsening, the isotherms and vorticity lines
for the buoyancy-driven flow, the structure of the von Karman street for the
passive scalars, and generally the heat transfer coefficients were in excellent
agreement with those simulated using pure fine grid computations. However,
only a reasonable level of accuracy was obtained for three levels of the Poisson
mesh coarsening.

The objective of our future research is to perform a comparison between
the CGP approach with one level of coarsening (k = 1) and the standard
finite element algorithm with Taylor-Hood mixed finite elements P2/P1 (see
e.g., Ref. [20]). From a grid resolution point of view, for an assumed number of
grid points of the velocity component, the Poisson solver utilizes a space with
an equal pressure node numbers, discretized using either the CGP (k = 1)
method or Taylor-Hood elements. In this sense, a detailed investigation of the
similarity/difference between these two concepts may introduce novel mapping
functions for the CGP tool.

Moreover, we are interested in designing a three-dimensional (3D) finite-
element CGP framework. Although Lentine et al. [10] and San and Staples
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[11] represented 3D finite-volume and finite-difference CGP configurations,
their methodologies have been limited to cubic domains discretized by uniform
grids. We hope that a 3D finite-element CGP algorithm could handle complex
geometries with a wide range of scientific and engineering applications such
as simulations of blood flows [28], gas turbine combustors [29], aircraft flights
[30], and etc.
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