

Can Neural Networks Predict the Flow around Blunt Bodies?

Ali Kashefi Aashwin Mishra Gianluca Iaccarino

Department of Mechanical Engineering & Center for Turbulence Research (CTR)

Motivation Computer Graphics + Deep Learning (Bao et al. 2018, Stanford)

Medicine + Deep Learning

(Yang et al. 2016, Southern Medical University)

How about Computational Mechanics + Deep Learning?!

Cavity flow

Deep Learning Model

200

150

100

Deep Learning

Ground truth

Heat conduction (Farimani et al. 2017)

Stress field for linear elasticity

(Nie et al. 2018, Carnegie Mellon University)

Flow around airfoil (Thuerey et al. 2018, University of Munich)

What is a neural network?

Problem formulation

 \succ The prediction of laminar steady incompressible flows around bodies with various shapes (17000): Circle, Hexagon, Rectangle, Ellipse, Triangle, Square, Pentagon, and etc, with different sizes and orientations (a)

(b)

CFD domain ANN domain

> Took 5 hours to generate 17000 data on the certainty cluster (~120000 nodes)

Took 3 weeks to write a sequence of C++/batch files to make the procedure automatic

Data Generation □ Examples of input/output of the network

300 400

Input

300 ×

Input

300 X 400

400 500

500

1.0

- 0.8

- 0.6

0.4

0.2

0.0

- 1.0

- 0.8

- 0.6

0.4

0.2

0.0

500

500 -

100

200

300

400

500

100

200 -

300

400

500

>

100 200

100 200

100 200

7

$$y_{\text{Prediction}} = f(x, V_{11}, \dots, V_{mn}, W_{11}, \dots, W_{no})$$

- **39,158,080** hyper-parameters
- No fully-connected layer
- □ No max-pooling and no up-sampling
- □ Leaky ReLU activation in the CNN layers
- **ReLU activation** in the **DCNN** layers

Network design

Layer#1 Layer#2 Layer#3 Layer#4 Layer#5 Layer#6 Layer#7 Layer#8 Layer#9 Layer#10 Layer#11 Layer#12 Layer#13 Layer#14 Layer#15 Layer#16 = Input C(f = 16, k = 4, s = 2), Leaky ReLU C(f = 32, k = 4, s = 2), Leaky ReLU, Batch Normalization C(f = 64, k = 4, s = 2), Leaky ReLU, Batch Normalization C(f = 128, k = 4, s = 2), Leaky Re LU, Batch Normalization C(f = 256, k = 4, s = 2), Leaky ReLU, Batch Normalization C(f = 512, k = 4, s = 2), Leaky ReLU, Batch Normalization C(f = 1024, k = 4, s = 2), Leaky ReLU, Batch Normalization CT(f = 1024, k = 4, s = 1), Re LU, Batch Normalization CT(f = 512, k = 4, s = 2), ReLU, Batch Normalization CT(f = 256, k = 4, s = 2), ReLU, Batch Normalization CT(f = 128, k = 4, s = 2), ReLU, Batch Normalization CT(f = 64, k = 4, s = 2), ReLU, Batch Normalization CT(f = 32, k = 4, s = 2), ReLU, Batch Normalization CT(f = 16, k = 4, s = 2), Re LU, Batch Normalization Output = CT(f = 1, k = 4, s = 2), Re LU

Training took ~2h on GPU or (equivalently 9 days on CPU)

Training \Box Prediction after 1, 100, and 500 epochs, and a comparison with the ground truth

Prediction over **200 unseen data** in **1 minute (on CPU)** with the average **mean square error of 0.1 %**

0.0

500 -

x

x

□ The effect of Choosing/Designing Neural Network on the accuracy of the model

> The network proposed by scientists at CMU:

Our network:

Challenges

□ The effect of the Learning Rate on the accuracy of the model

 \Box Adam optimizer parameters: {Learning rate, $\beta_1, \beta_2, \varepsilon$ }

Examine the capability of our network to predict the flow around combination of two shapes, for instance "two separated cylinders"

Prediction?

MSE = 0.5%

MSE = 0.8%

0 -

100

200

300

400

500 -

 \geq

х

300

400

500

200

Ground truth

- 1.2

- 1.0

0.8

0.6

0.4

- 0.2

0.0

MSE = 0.9%

Input

1.0

0.8

0.6

0.4

- 0.2

0.0

0 -

100

200

300

400

500 -

0

100

200

300

х

400

500

 \geq

MSE = 0.7%

Thank you!