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Introduction & Motivation
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Deep 
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1. Supervised learning

plentiful labeled data (observations)

2. Unsupervised/weakly supervised 

learning 

no labeled data or only sparse 

labeled data (observations)



Supervised

Learning

Deep Learning Methods for Reynolds-Averaged

Navier–Stokes Simulations of Airfoil Flows
N. Thuerey et al. (2020)

Technical University of Munich



Supervised

Learning





Supervised Learning Framework

Step#1 Obtain the velocity fields for 900 domains using a numerical solver (or 

a lab experiment)

Step#2 Train a neural network on these 900 domains (training set)

Step#3 By the neural network, predict the velocity fields on the remaining 100

domains (test set)

Let’s explain it by an example:

Imagine we would like to obtain the velocity fields around 1000 airfoils

with different geometries



Supervised Learning Framework

Step#1 Obtain the velocity fields for 900 domains using a numerical solver (or 

a lab experiment)

Step#2 Train a neural network on these 900 domains (training set)

Step#3 By the neural network, predict the velocity fields on the remaining 100

domains (test set)

Producing plentiful labeled data is 

expensive!

Sometimes, labeled data are not 

accessible!



Step#1 Obtain the velocity fields for 900 domains using a numerical solver (or 

a lab experiment)

Step#2 Train a neural network on these 900 domains

Step#3 By the neural network, predict the velocity fields on the remaining 100

domains

Unsupervised/Weakly Supervised Learning Framework

Our goal: Designing a neural network to predict the 

solution on multiple domains without plentiful labeled data



Crunch Group



Loss function = governing equations + boundary conditions 

+ initial conditions + sparse observation

S. Cai et al. (2021)

automatic differentiation



Can PINN obtain the solution over more 

than one different geometries 

simultaneously (i.e., in one training set)?

S. Cai et al. (2021)



Uncommon points in 

these two domain

S. Cai et al. (2021)



Even in common points, the solution 

might be different in each of these 

two domains

S. Cai et al. (2021)



No, because there is no mechanism in the fully 

connected network to capture geometric variations!

S. Cai et al. (2021)

Can PINN obtain the solution over more 

than one different geometries 

simultaneously (i.e., in one training set)?



No, because there is no mechanism in the fully 

connected network to capture geometric variations!

S. Cai et al. (2021)

Can PINN obtain the solution over more 

than one different geometries 

simultaneously (i.e., in one training set)?

Why it is bad?!

Because for each new geometry, we must 

retrain the network!



PhyGeoNet strategies:

• Capturing geometric features using encoders in CNNs

• Using non-trainable filter representing a finite difference stencil, instead of using 

automatic differentiation

• Using elliptic coordinate transformations for irregular geometries



PhyGeoNet architecture

Figure taken from the PhyGeoNet journal paper (Gao et al. 2021)



PhyGeoNet limitations:

• Limitations of finite difference schemes such as order of accuracy and issues of 

high order methods near boundaries

• Elliptic coordinate transformations require offline efforts

• Cannot handle more than five 𝐶0 continuous boundaries



parameterized vascular 

geometries

𝑥𝑙 = 𝑠 cos 2𝜋𝑦𝑙 − 0.5

𝑥𝑟 = −𝑠 cos 2𝜋𝑦𝑟 + 0.5



Our proposed solution:

Use PointNet instead of simple fully connected networks

Fully connected network



Our proposed solution:

Use PointNet instead of simple fully connected networks

PointNet
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Physics-Informed PointNet (PIPN)

Methodology



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁

For example in 2D, we have 𝐱1 = (𝑥1, 𝑦1)

N is number of 

points in each 

domain



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁

Approximating geometric feature of the domain by 𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

Max Pool shared MLPglobal feature



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁

𝑢𝑖 = 𝑓 𝐱𝑖 , 𝑔 𝑋

Approximating geometric feature of the domain by 𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

PointNet prediction (output)

The PointNet output at each point depends 

on both the spatial coordinates and the 

geometric feature of the whole domain. 



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁

𝛿𝑢𝑖
𝛿𝑥𝑖

=
𝛿

𝛿𝑥𝑖
𝑓 𝐱𝑖 , 𝑔 𝑋

Approximating geometric feature of the domain by 𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

𝛿 is the automatic differentiation

𝑢𝑖 = 𝑓 𝐱𝑖 , 𝑔 𝑋



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁

𝑟continuty =
1

𝑁


𝑖=1

𝑁
𝛿𝑢𝑖
𝛿𝑥𝑖

+
𝛿𝑣𝑖
𝛿𝑦𝑖

2

Approximating geometric feature of the domain by 𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

𝑢𝑖 = 𝑓 𝐱𝑖 , 𝑔 𝑋

𝛿𝑢𝑖
𝛿𝑥𝑖

=
𝛿

𝛿𝑥𝑖
𝑓 𝐱𝑖 , 𝑔 𝑋



Representing each domain as a set of points 𝑋 = 𝐱1 , 𝐱2 ,⋯ , 𝐱𝑁

𝑟continuty =
1

𝑁


𝑖=1

𝑁
𝛿𝑢𝑖
𝛿𝑥𝑖

+
𝛿𝑣𝑖
𝛿𝑦𝑖

2

𝐿𝑜𝑠𝑠 =
1

𝑚


𝑗=1

𝑚

𝑟𝑗
continut𝑦 where m is the number 

of domains

Approximating geometric feature of the domain by 𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

𝑢𝑖 = 𝑓 𝐱𝑖 , 𝑔 𝑋

𝛿𝑢𝑖
𝛿𝑥𝑖

=
𝛿

𝛿𝑥𝑖
𝑓 𝐱𝑖 , 𝑔 𝑋

Thus, the weights of PIPN is updated based on 

all the domains at each epochs during training.



𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

Important features of PointNet (and PIPN)

Let’s imagine we have a 2D domain representing by



𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

𝑥2 𝑦2
𝑥4 𝑦4
𝑥3 𝑦3
𝑥1 𝑦1

Important features of PointNet (and PIPN)

Permute the input The network output 

should not change!



𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

𝑥2 𝑦2
𝑥4 𝑦4
𝑥3 𝑦3
𝑥1 𝑦1

Important features of PointNet (and PIPN)

Permute the input The network output 

should not change!

PointNet (and consequently, PIPN) is invariant to N! permutations using
two features:

1. Shared MLPs

2. A symmetric function



𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

𝑥2 𝑦2
𝑥4 𝑦4
𝑥3 𝑦3
𝑥1 𝑦1

Important features of PointNet (and PIPN)

Permute the input The network output 

should not change!

PointNet (and consequently, PIPN) is invariant to N! permutations using
two features:

1. Shared MLPs

2. A symmetric function

𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

shared MLP

symmetric 

function



𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

𝑥2 𝑦2
𝑥4 𝑦4
𝑥3 𝑦3
𝑥1 𝑦1

Important features of PointNet (and PIPN)

Permute the input The network output 

should not change!

PointNet (and consequently, PIPN) is invariant to N! permutations using
two features:

1. Shared MLPs

2. A symmetric function

𝑔 𝑋 ≈ max ℎ 𝐱1 , ℎ 𝐱2 ,⋯ , ℎ 𝐱𝑁

shared MLP

symmetric 

function

Shared MLPs are “not” dense layers (TensorFlow terminology)!

Implementation of shared MLPs is explained in

➢ the PointNet source code (https://github.com/charlesq34/pointnet)

➢ and the manuscript “Network in Network” (cited 6563),

(https://arxiv.org/abs/1312.4400)

https://github.com/charlesq34/pointnet
https://arxiv.org/abs/1312.4400


Uncommon points in 

these two domain



Even in common points, the solution 

might be different in each of these 

two domains



PIPN framework

Set Ψ = 𝑉𝑖 𝑖=1
𝑙 contains unseen geometries from seen and unseen 

categories with reference to the set Φ = 𝑉𝑖 𝑖=1
𝑚 .



Physics-Informed PointNet (PIPN)

Results & Discussion



Natural convection in a square enclosure with a cylinder

Cold

Hot

Inner cylinders have different 

shapes and different poses!

We do not know the 

temperature distribution on 

the surface of inner cylinder!



Natural convection in a square enclosure with a cylinder

• We would like to obtain the velocity, temperature, and pressure fields for 135

domains with different geometries for the inner cylinder.

• For 108 domains, we have sparse observations in sensor locations (set Φ)

• For 27 dominos, we have no observations (set Ψ)



Loss function for the set Φ = conservation of mass 

+ conservation of   momentum + conservation of energy 

+ velocity boundary conditions 

+ temperature boundary condition of the outer cylinder

+ sparse observation of velocity/temperature/pressure in sensor locations

examples of sensor locations in the set Φ = 𝑉𝑖 𝑖=1
108



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
108



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
108



Absolute pointwise error distribution for geometries with maximum and

minimum errors for the set Φ = 𝑉𝑖 𝑖=1
108



Prediction by PIPN vs. the ground truth for a domain of the set Ψ = 𝑉𝑖 𝑖=1
27



Prediction by PIPN vs. the ground truth for a domain of the set Ψ = 𝑉𝑖 𝑖=1
27



Absolute pointwise error distribution for geometries with maximum and

minimum errors for the set Ψ = 𝑉𝑖 𝑖=1
27



Error analysis



Temperature distribution

Set Φ = 𝑉𝑖 𝑖=1
108 Set Ψ = 𝑉𝑖 𝑖=1

27



Natural convection in a square enclosure with a cylinder

So far the set Ψ = 𝑉𝑖 𝑖=1
27 has been established from unseen geometries 

but from seen categories with reference to the set Φ = 𝑉𝑖 𝑖=1
108 such as 

heptagonal, octagonal, nonagonal inner cylinders

Now we set Ψ = 𝑉𝑖 𝑖=1
2 from unseen geometries from unseen categories 

with reference to the set Φ = 𝑉𝑖 𝑖=1
108 such as circular and hexagonal inner 

cylinders.



Prediction by PIPN vs. the ground truth for the circular inner cylinder



Prediction by PIPN vs. the ground truth for the hexagonal inner cylinder



Absolute pointwise error distribution



Error analysis

Temperature distribution



Physics-Informed PointNet (PIPN)

New Research Questions



• When and Why PIPN fails to train?!

How these error analysis change with the presence of

“shared” MLPs and the “Max” function?!



• When and Why PIPN fails to train?!

• Parallel physics-informed PointNet via domain decomposition?!

How we should decompose “multiple domains”

while the solution of each domain depends on its geometry?!



• When and Why PIPN fails to train?!

• Parallel physics-informed PointNet via domain decomposition?!

• Extension to 3D and unsteady problems with applications to other 
areas such as compressible flows, linear and nonlinear elasticity, …

https://arxiv.org/abs/2202.05476



Physics-Informed PointNet (PIPN)

Summary



•We proposed PIPN as a novel physics-informed deep learning framework.

•PIPN solves forward and inverse time-independent problems on several
irregular domains by training only once.

•PIPN overcomes the shortcoming of regular PINNs that need to be
retrained for any single domain with a new geometry.

•We showed applications of PIPN for incompressible flows and thermal
fields.



A Short Advertisement
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Supportive Materials





The snapshot taken from the PhyGeoNet journal paper (Gao et al. 2021)



Non-linear Independent Dual System (NIDS) for Discretization-independent

Surrogate Modeling over Complex Geometries

J. Duvall et al. (2021) on arXiv

University of Michigan

Supervised

Learning



IMPROVED ARCHITECTURES AND TRAINING ALGORITHMS FOR

DEEP OPERATOR NETWORKS

S. Wang et al. (2021) on arXiv

University of Pennsylvania



Method of manufactured solutions in non-trivial geometries

Loss function for the set Φ = conservation of mass 

+ conservation of   momentum + velocity boundary conditions 

+ pressure boundary conditions

𝑢 = cos 𝑥 sin(𝑦)

𝑣 = −cos 𝑦 sin(𝑥)

𝑝 =−
𝜌

4
cos 2𝑦 + cos(2𝑥)

A divergence free velocity field:

with an arbitrary pressure field:

The set Φ = 𝑉𝑖 𝑖=1
26 contains 26

geometries, where we know the velocity

and pressure Dirichlet boundary

conditions!



Geometric descriptions of domains of the set Φ = 𝑉𝑖 𝑖=1
26



Geometric descriptions of domains of the set Φ = 𝑉𝑖 𝑖=1
26



Examples of point-cloud representations of domains of the set Φ = 𝑉𝑖 𝑖=1
26



Examples of point-cloud representations of domains of the set Φ = 𝑉𝑖 𝑖=1
26



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
26



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
26



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
26



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
26



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
26



Prediction by PIPN vs. the ground truth for a domain of the set Φ = 𝑉𝑖 𝑖=1
26



Absolute pointwise error distribution for geometries with maximum and

minimum errors for the set Φ = 𝑉𝑖 𝑖=1
26



Error analysis



Error analysis

The effect of removing the Dirichlet pressure boundary conditions from the loss

function; PIPN preservers the pressure gradient.



Prediction by PIPN and the absolute error for a domain of the set Ψ = 𝑉𝑖 𝑖=1
3


