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What is the best (optimized) shape?
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Shape optimization based on geometric parameters
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How to represent the geometry?

“Pixelation”, a so-far-used strategy for this purpose!

Bhatnagar et al. (2019)



13

5 main shortcoming

1# Pixelation leads to coarsening previously-smooth

boundaries of a shape and introduces artificial roughness

to its surface. This error can dramatically change the flow

features such as the location of the detachment point on

the surface of an airfoil.

Sekar et al. (2019)
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2# Decreasing the order of accuracy of CFD data due to 

the data interpolation/extrapolation.

5 main shortcoming

Before interpolation After interpolation

Bhatnagar et al. (2019)
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3# While the flow field around an object is highly

sensitive to small changes (e.g., rotation or length

increment of the object), the pixelation method cannot

capture these changes unless a CNN with super resolution

input is used, which by itself imposes high computational

cost to the system.

5 main shortcoming

Thuerey et al. (2020)
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4# It is common to mask the interior points of objects

However, this procedure leads to ignoring the

corresponding pixels of a CNN and, in fact, some

portions of its computational potential.

5 main shortcoming

Bhatnagar et al. (2019)

Thuerey et al. (2020)

Sekar et al. (2019)
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5# The importance of information in a CFD domain is not

equal. For instance, the velocity and pressure fields near

the surface of an airfoil and in its wake region are more

important than other areas. Nonetheless, using pixelation

and consequently Cartesian grids, the distribution of CNN

pixels is uniform everywhere in the domain!

5 main shortcoming
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Navier-Stokes & continuity for incompressible flows

Velocity vector:

Pressure:

Fluid density:

Fluid viscosity:

( ), ,u v w=u
p







Geometry and boundary conditions
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Mesh Generator: Gmsh (open source)

http://gmsh.info/

CFD Solver: OpenFoam (open source)

https://openfoam.org/
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Segmentation component of PointNet
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▪Adam optimizer

▪ Batch size of 256

▪ 3552588 parameters

▪ Three sets of training (80%), validation (10%), and test (10%) 

through a random process

▪ Train the neural network over 2076 data; 260 data for the validation 

and the remaining 259 for evaluation

▪ NVIDIA TITAN Xp graphics card with the memory clock rate of 

1.582 GHz and 12 Gigabytes of RAM

▪ Stop after 4000 epochs 

▪Approximately takes 10 hours
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▪ Speed-up:

Wall time for prediction of the 259 unseen data: 6 seconds

Simulation of the flow fields for these 259 geometries using the CFD 

software: 11071 seconds (about 3 hours) 

Average achieved speedup: 1846 

This is not an absolute number and depends on the framework of our 

available computational facilities!
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Residuals:
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In computer graphics:

For instance, Qi et al.  tested PointNet for the semantic segmentation 

of unseen categories such as “face”, “house”, “rabbit”, and “teapot”, 

while these objects did not exist in their data set.

What does it mean?!

In computational mechanics:

???
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For the first time:

our network generalizes the predictions to multiple objects as well

as an airfoil, even though only single objects and no airfoils are

observed during training.
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NACA 0028 
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Applications of airfoils in airplane wings 
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Applications of airfoils in wind turbines 



52

Applications of airfoils in wind turbines 
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National Advisory Committee for Aeronautics (NACA)

The first meeting of the NACA in 1915

The NACA Test Force at the High Speed 

Flight Station in Edwards, California. 

Formed: March 3, 1915

Dissolved: October 1, 1958

Superseding agency: NASA
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National Advisory Committee for Aeronautics (NACA)

4 Digits NACA airfoils:

https://en.wikipedia.org/wiki/NACA_airfoil

NACA 0028 NACA 0028
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Future directions:

1) Unsteady CFD problems due to moving objects and mesh

deformation

2) Unsupervised learning of CFD problems in variable

geometries

3) Multidisciplinary design optimization
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Future directions:

1) Unsteady CFD problems
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Unsteady flows due to the physics but with a fixed geometry
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Unsteady flows due to the physics but with a fixed geometry

Steady-State

Unsteady
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Unsteady flows due to the physics but with a fixed geometry

Steady-State

Unsteady

1t 2t 3t

But we are not 

interested in these types 

of problems,

because the geometry 

is fixed in time!
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Unsteady flows due to the inconsistent geometry
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Unsteady flows due to the inconsistent geometry

Supersonic Flow (compressible)

A warplane leaves an object in sky.

What is the position of the object at time T?

And what is the flow field (velocity, density, 

and pressure) around the object at time T?
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T = 60 T = 100 T = 140 T = 175

Unsteady flows due to the inconsistent geometry
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Unsteady flows due to the inconsistent geometry

PointNet

Cloud Point: 

Presenting 

New Mesh

u
v

p
Cloud Point: 

Presenting 

Old Mesh

MLP (or 

other NN 

architecture)

Using LSTM (at each time step)

F ma =

M I =
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The idea of Physics Informed Neural Network (PINN)

first introduced at Brown University and has become

popular recently. Here are a few papers discussing this

approach:

➢ Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations

https://www.sciencedirect.com/science/article/pii/S0021999118307125

➢ NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the
incompressible Navier-Stokes equations

https://arxiv.org/abs/2003.06496

➢ Physics-informed neural networks for high-speed flows
https://www.sciencedirect.com/science/article/pii/S0045782519306814

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2003.06496
https://www.sciencedirect.com/science/article/pii/S0045782519306814
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To say the idea of PINN at a high level, we enforce the

loss function to minimize the residual of governing

equations. Specifically, let’s see how it works for

continuity and Navier-Stokes equations.



Continuity & Navier-Stokes Equations:
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Residuals:



Loss function:
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All figures in this section are taken from Raissi et. al. (2018) and Mao et. al. (2020)

Neural Network for PINN
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None of the current PINN can capture variable

geometries! They have designed for the fixed

geometries!

Connection to

Point Cloud and PointNet
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Connection to

Point Cloud and PointNet

Replace the MLP by our CFD PointNet
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Future directions:

3) Multidisciplinary Design Optimization
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1) Multidisciplinary Design Optimization

Lift
Range

Drag


So many directions exist to incorporate neural networks!

Needs literature review to take a “evolutionary” direction!
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