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We present a novel deep learning framework for How field predictions in irregular domains when the solution is
a function of the geometry of either the domain or objects inside the domain. Grid vertices in a computational
fluid dynamics (CFD) domain are viewed as point clouds and used as inputs to a neural network based on the
PointNet architecture, which learns an end-to-end mapping between spatial positions and CFD quantities.
Using our approach, (i) the network inherits desirable features of unstructured meshes (e.g.. fine and coarse
point spacing near the object surface and in the far field. respectively), which minimizes network training cost;
(ii) object geometry is accurately represented through vertices located on object boundaries, which maintains
boundary smoothness and allows the network to detect small changes between geometries; and (iii) no data
interpolation is utilized for creating training data; thus accuracy of the CFD data is preserved. None of these
features are achievable by extant methods based on projecting scattered CFD data into Cartesian grids and
then using regular convolutional neural networks. Incompressible laminar steady flow past a ¢:v7 ?
various shapes for its cross section is considered. The mass and momentum of predicted fields ar
For the first time, our network generalizes the predictions to multiple objects as well as an airfoil, ¥
only single objects and no airfoils are observed during training. The network predicts the flow fiel o g

of times faster than our conventional CFD solver, while maintaining excellent to reasonable acct AIP Physics of

Fluids

Volume 25 Number 7

I. INTRODUCTION AND MOTIVATION a network, and thus, an effective data repre |
crucial. The connection of neural networks

One of the main contributions of machine learning  Sian grids is.stradghtfom'a,rd. F}C'I' this scenari
techniques to Computational Fluid Dynamics (CFD)  and three-dimensional CD‘_JNS is a popular 1
simulations is reducing the computational costs. Even — &I1ONE the CFD community (see e.g., Refs.
with the presence of high performance computing tools this m.cthod: each vertex of a Cartesian grid
(see e.g., Refs. [1H5)) and efficient numerical schemes (see 10 2 pixel of an image processed by a CNN.
e.g., Refs. [6HI1)) to accelerate CFD simulations, investi- real-world applications with complex geomet:

gation of design parameters for device optimization re- mg UHOStTUCtl_JICd grids is unaymdablc. In e
mainag camnmtatirmally ovnencive mainly horanes a hnoe Cartesian gl’ldS._ the connection of unstruc
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What is the best (optimized) shape?
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1 Introduction and motivation

Shape optimization based on geometric parameters
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1 Introduction and motivation

How to represent the geometry?

“Pixelation”, a so-far-used strategy for this purpose!
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FIG. 5. Airfoil input image for the parameterization CNN.
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1 Introduction and motivation S main shortcoming

1# Pixelation leads to coarsening previously-smooth
boundaries of a shape and introduces artificial roughness
to its surface. This error can dramatically change the flow
features such as the location of the detachment point on
the surface of an airfoul.
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Detachment points for an airfoil and its voxelisation. X-pixel

FIG. 5. Airfoil input image for the parameterization CNN.

Sekar et al. (2019)
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1 Introduction and motivation S main shortcoming

2# Decreasing the order of accuracy of CFD data due to
the data interpolation/extrapolation.
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Bhatnagar et al. (2019)
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1 Introduction and motivation S main shortcoming

3# While the flow field around an object 1s highly
sensitive to small changes (e.g., rotation or length
increment of the object), the pixelation method cannot
capture these changes unless a CNN with super resolution
input 1s used, which by itself imposes high computational
cost to the system.

«nniiine.... Thuerey et al. (2020)
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1 Introduction and motivation S main shortcoming

4# It 1s common to mask the interior points of objects
However, this procedure Ileads to 1gnoring the
corresponding pixels of a CNN and, in fact, some
portions of 1its computational potential.

128 x 128 x 1

150 200

Thuerey et al. (2020) 15015041 L

FIG. 5. Airfoil input image for the parameterization CNN.

Bhatnagar et al. (2019)
Sekar et al. (2019)
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1 Introduction and motivation S main shortcoming

5# The importance of information in a CFD domain 1s not
equal. For 1nstance, the velocity and pressure fields near
the surface of an airfoil and 1n its wake region are more
important than other areas. Nonetheless, using pixelation
and consequently Cartesian grids, the distribution of CNN
pixels 1s uniform everywhere in the domain!
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2 Problem formulation



2. 1 Governing equations of fluid dynamics

Navier-Stokes & continuity for incompressible flows

J
,O[a—?Jr(u-V)u — pAu+Vp=f V.
V-u=0inV,

U = urp, OHFD;

—pn +pVu-n =tp, on 'y,

Velocity vector: u=(u,v,w)
Pressure: P

Fluid density: O

Fluid viscosity: u

(1)
(2)
(3)
(4)
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2. 1 Governing equations of fluid dynamics
Geometry and boundary conditions

Perfect Slip
_______________________________________________________ R
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20



2. 1 Governing equations of fluid dynamics

gmsh
Mesh Generator: Gmsh (open source)

http://gmsh.info/

CED Solver: OpenFoam (open source)  OpenVFOAM

https://openfoam.org/
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2. 1 Governing equations of fluid dynamics
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Figure 1: Representation of the finite volume meshes used for solving the continuity and
Navier-Stokes equations in the simulation of flow over a cylinder; a An elliptical cross
section, 2672 vertices; b A triangular cross section, 2775 vertices



2. 1 Governing equations of fluid dynamics
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Figure 2: Velocity and pressure fields for the steady-state flow over a cylinder with a
rectangular cross section and b pentagonal cross section; pg 1s the atmospheric pressure
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2. 2 Data generation

TABLE 1. Description of the generated data

Shape Schematic Variation in Variation in Number
figure orientation length scale of data

Circle Q [‘ - a=1m 1

Equilateral hexagon < > [ 3%, 6%, ..., 60° a=1m 20

Equilateral pentagon [ 3°,6°, ..., 72° a=1m 24

Square N 3°,6°, ..., 90° a=1m 30

Equilateral triangle 3%, 6°, ..., 180° a=1m 60

Rectangle 3%, 6%, ..., 180° a=1m;b/a=1214,...,36 780
bt

Ellipse Q I 3%, 6%, ..., 180° a=1m;bla=12,14,...,42 960

/M
Triangle 3%, 6%, ..., 360° =1m; bfa=1.5,1.75 720

= 40°, 60°, 80°
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2. 2 Data generation

Input, Spatial Coordinates Output, ' Output, V' Output, p’
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Figure 4: Examples of input and output data
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2. 3 Data generation
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3 Data generation
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2. 3 Neural network architecture

Segmentation component of PointNet

Input Transform MLP (64.64) Feature Transform MLP(64,128,1024) Max Pool
Spatial Coordinates
) — T-Net
1024
" .
é_, % i % matrix % i g global
= |= shdred = multiply = shdred X feam
2 %1 T 00 T E =
= i o i =| & . " .
2 shired j shared ;_ 3 .

MLP (512,256,128) MLP (128,n_,,)

FIG. 5. Structure of our neural network; Labels in the format of (A, B) demonstrate the size of the first layer, A, and the
second layer, B, of the MLP. Labels in the form of (A, B, C') are similarly classified for three layers. ncyp indicates the number
of CFD variables; in this study, ncpp = 3. The figure shows the structure for handling three-dimensional problems; though we
consider two-dimensional problems in this study. Some parts of this figure are reproduced from Ref.
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2. 4 Training

(Z { w; — 1, (v; — 0;)% + (p, ﬁ;)ﬁ)

1=1

= Adam optimizer

= Batch size of 256

= 3552588 parameters

» Three sets of training (80%), validation (10%), and test (10%)
through a random process

= Train the neural network over 2076 data; 260 data for the validation
and the remaining 259 for evaluation

= NVIDIA TITAN Xp graphics card with the memory clock rate of
1.582 GHz and 12 Gigabytes of RAM

= Stop after 4000 epochs

= Approximately takes 10 hours



Ground truth Prediction after 10 epochs Prediction after 100 epochs Prediction after 1000 epochs
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FIG. 6. A comparison between the ground truth and prediction of the network for the velocity and pressure fields after 10,
100, and 1000 epochs



3 Results and discussion
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3.1 General analysis
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Figure 6: A comparison between the ground truth and our network prediction for the
velocity and pressure fields for two different cross sections; the first set of examples
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3.1 General analysis
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Figure 6: A comparison between the ground truth and our network prediction for the
velocity and pressure fields for two different cross sections; the first set of examples
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3.1 General analysis
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3.1 General analysis
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Figure 7: A comparison between the ground truth and our network prediction for the
velocity and pressure fields for two different cross sections. the second set of examples



3.1 General analysis
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Figure 8: A comparison between the ground truth and our network prediction for the
velocity and pressure fields for two different cross sections. the third set of examples
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3.1 General analysis
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3.1 General analysis
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Figure 9: A comparison between the ground truth and our network prediction for the
velocity and pressure fields for two different cross sections, the fourth set of examples
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3.1 General analysis
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3.1 General analysis

TABLE II. Error analysis of the velocity and pressure fields
predicted by our neural network for 259 unseen data; ||...||

indicates the L? norm.

[|lu — ul| [lv — o] lp — 7l

Average 4.49666FK—2 3.70540E -2 2.71661E—-2
Maximum 2.49088E—1 2.34281E—1 1.16901E—1
Minimum 1.10453E—2 9.20977E—3 7.58447FE—3
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3.1 General analysis

(a) it (m/s) (b)

x (m) x (m) x (m})

FIG. 11. Distribution of absolute pointwise error when the mean square error becomes a maximum for %, b maximum for 7, ¢
maximum for p, d minimum for %, e minimum for ¥, and f minimum for p.
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3.1 General analysis
= Speed-up:
Wall time for prediction of the 259 unseen data: 6 seconds

Simulation of the flow fields for these 259 geometries using the CFD
software: 11071 seconds (about 3 hours)

Average achieved speedup: 1846

This 1s not an absolute number and depends on the framework of our
available computational facilities!
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3.2 Investigation of conservation of mass and momentum

p[%—?Jr(u-V)u —pAu +Vp=f iV, (1)
V-u=0inV, (2)
u = ur, on I'p. (3)
—pn + pNVu-n =tp, on 'y, (4)
Residuals:
Fimomentum, = (16)

'momentum, —

/ 08 ORN 0 (0% 0\
Vi P tt&);n—'_i'@y Dy HA\ 922 Oy? b

o O
— +— ) av], 18
LNN (dﬂf @y) ‘ (18)

Feontinuity —
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3.2 Investigation of conservation of mass and momentum

TABLE III. Investigation of conservation of mass and mo-
mentum of the flow fields predicted by our neural network for
259 unseen data. All values are reported in the International
Unit System.

I'momentum 'mom entumy TI'continuity

Average 4.14958E—-3 2.46155E—3 2.99411E-3
Maximum 3.38842E—1 3.59399E—2 8.74008E—2
Minimum 5.69245E—6 9.03372E—-7 3.58928KE—6
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3.3 Neural network generalizability

What does it mean?!

In computer graphics:
For instance, Q1 et al. tested PointNet for the semantic segmentation

of unseen categories such as “face”, “house”, “rabbit”, and “teapot”,
while these objects did not exist in their data set.

In computational mechanics:

?7?

45



3.3 Neural network generalizability

What does it mean?!

In computer graphics:
For instance, Q1 et al. tested PointNet for the semantic segmentation

of unseen categories such as “face”, “house”, “rabbit”, and “teapot”,
while these objects did not exist in their data set.

In computational mechanics:

?7?
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3.3 Neural network generalizability

our network generalizes the predictions to multiple objects as well
as an airfoil, even though only single objects and no airfoils are
observed during training.
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3.3.1 Prediction of flow around an airfoil

NACA 0028
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3.3.1 Prediction of flow around an airfoil

Applications of airfoils in airplane wings

E)} alamy stock photo
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3.3.1 Prediction of flow around an airfoil

Applications of airfoils in airplane wings
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3.3.1 Prediction of flow around an airfoil

Applications of airfoils in wind turbines

How Wind Power Wo {s Turbine Aerodynamics
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3.3.1 Prediction of flow around an airfoil

Applications of airfoils in wind turbines

WIND TURBINE BLADE DESIGN L

TURBINE
CHARACTERISTICS




3.3.1 Prediction of flow around an airfoil

A

Low-speed ULM (1 m)

S

Propeller blade (15 cm)

R ——
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Supersonic interceptor (2 m)
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Blackbird (6 cm)

0\/\/\/0\—/—\

Dragonfly wing (12 mm)
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Dolphin flipper fin (10 cm)

_ e —

Turbofan fan blade (80 cm)

o

Turbine blade (8 cm)

s T

Sailboat (3 m)
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3.3 Prediction of flow around an airfoil

National Advisory Committee for Aeronautics (NACA)

- a

The first meeting of the NACA in 1915

The NACA Test Force at the High Speed
Flight Station in Edwards, California.

Formed: March 3, 1915
Dissolved: October 1, 1958

Superseding agency: NASA
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3.3 Prediction of flow around an airfoil

National Advisory Committee for Aeronautics (NACA)

4 Digits NACA airfoils:
https://en.wikipedia.org/wiki/NACA airfoil

NACA 0028 NACA 0028
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3.3.1 Prediction of flow around an airfoil

TABLE V. Error analysis of the velocity and pressure fields

predicted by our neural network for NACA 0028; || ... || indi-
cates the L? norm.

Angle of attack  ||u — ul ||lv — o] llp — pl|

0° 1.05631E—1 5.47357TE—2 1.04842E—1
30° 2.83492E—1 1.30977E—1 2.07335E—1
—30° 1.62185E—1 1.00821E—1 2.42353E—1
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3.3.2 Prediction of flow around multiple objects
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3.4 Prediction of flow around multiple objects

TABLE 1V. Error analysis of the velocity and pressure fields predicted by our neural network for multiple bodies; ||...|]
indicates the L? norm.

65

Two circular cylinders (Fig. (JED |1|l;)1_1;1(|]|]5]—1 !:Jlé[:l $|2|E—2 gp22_6§|9|E—2
Circular and elliptical cylinders (Fig. .l 1.63664E—1 7.50613E—2 1.09544E—1
Two elliptical cylinders (Fig. 2.19626FE—1 8.93397TE—-2 1.35396E—1
Elliptical, circular, and rectangular cylinders (Fig. 1.30335E—1 8.59303E-2 1.33239E—1
[Ju — [lv — 7] [lp — Bl
1.51130E—1 5.80172E—2 9.22659E—2
1.63664FE—1 7.50613E—2 1.09544FE—1
2.19626 E—1 8.93397E—2 1.35396E—1
1.30335E—1 8.59303E—2 1.33239E—1



4 Conclusions and future directions

4 Conclusions and future directions
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4 Conclusions and future directions
Future directions:

1) Unsteady CFD problems due to moving objects and mesh
deformation

2) Unsupervised learning of CFD problems 1n variable
geometries

3) Multidisciplinary design optimization
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4 Conclusions and future directions

Unsteady Flows with Moving
Objects and Boundaries
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4 Conclusions and future directions

Future directions:

1) Unsteady CFD problems

Unsteady
flows

Due to Due to
Physics [l Geometry
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2. 1 Governing equations of fluid dynamics

Unsteady flows due to the physics but with a fixed geometry

Perfect Slip
_______________________________________________________ R
—_— :
Inlet ; Outlet
ﬁ |
—> 88 30 S !
< =———— >
U, 328

K-———— e e e e e — == -

S=1m Perfect Slip
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4 Conclusions and future directions
Unsteady flows due to the physics but with a fixed geometry

Separated Vortex Pair, Re=40

Unsteady 7



4 Conclusions and future directions
Unsteady flows due to the physics but with a fixed geometry

Separated Vortex Pair, Re=40

But we are not
interested 1n these types
of problems,
because the geometry
1s fixed in time!

Re = plus :
[L

Unsteady 7



4 Conclusions and future directions

Unsteady flows due to the inconsistent geometry

t=0.0 [sec]
B 1.16 t=0.1 [sec]

1.08 t=0.2 [sec]

t=0.3 [sec]

d t=0.4 [sec]
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4 Conclusions and future directions

Unsteady flows due to the inconsistent geometry

A warplane leaves an object in sky.

What 1s the position of the object at time T?

And what 1s the flow field (velocity, density,
and pressure) around the object at time T?

I I I Supersonic Flow (compressible) >



4 Conclusions and future directions

Unsteady flows due to the inconsistent geometry

T = 60 T=100 T=140 T=175
; : s WL
& i i Eﬁ%’l}ﬁwﬂ}?ﬁﬁé A
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4 Conclusions and future directions

Unsteady flows due to the inconsistent geometry

Using LSTM (at each time step)

MLP (or
other NN
architecture)
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4 Conclusions and future directions

Physics Informed Neural Network:
An-unsupervised DL approach
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4 Conclusions and future directions
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4 Conclusions and future directions
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4 Conclusions and future directions

The 1dea of Physics Informed Neural Network (PINN)
first introduced at Brown University and has become
popular recently. Here are a few papers discussing this
approach:

»  Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations
https://www.sciencedirect.com/science/article/pii/50021999118307125

»  NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the
incompressible Navier-Stokes equations
https://arxiv.org/abs/2003.06496

»  Physics-informed neural networks for high-speed flows
https://www.sciencedirect.com/science/article/pii/S0045782519306814
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4 Conclusions and future directions

To say the 1dea of PINN at a high level, we enforce the
loss function to minimize the residual of governing
equations. Specifically, let’s see how 1t works for
continuity and Navier-Stokes equations.
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4 Conclusions and future directions
Continuity & Navier-Stokes Equations:

U, + Uy + v, = —p, + Re '(u, + Uyy),
U, + Uv, + VUy = —PDy + Re_l (vxx + Uyy) — Nu,
u, + v, =0.

Residuals:

ey :=u, + uu, + vu, + p, — Re ' (uy + uy,),
€y :=V; + uv, + v, + p, — Re™' (v + vyy) + 7ar
€3 1= Uy T V.
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4 Conclusions and future directions

3 N
Loss function: Lx(lef(f",x",y”)lz)

i=1 n=I1

Neural Network for PINN

' ? e1 = Uy + uny + vty + py— Re™! (e + uyy) J
.‘_- @ W ’@ "I‘l-?. ‘\'h A’)H‘(,
0] K2
2 @R
'?‘[ @:r,’ ‘H‘H \ e3=ux—|—vy }

b €2 =V, + uvy + voy+ py— Re™! (Ve + vyy) + nﬂ}

All figures in this section are taken from Raissi et. al. (2018) and Mao et. al. (2020)
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4 Conclusions and future directions

None of the current PINN can capture variable
geometries! They have designed for the fixed

geometries!

ey = Uy + 1, + v, + py — Re™! ft bl

+ uv, + vy + py— Re™' (U + vyy) +

.
—lels! ; e
@ ia

)

T

Connection to
Point Cloud and PointNet
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4 Conclusions and future directions

Replace the MLP by our CFD PointNet

‘ ey = Uy o Uk + ity + Pr— Re ™! (e + uy) J

(Dhga= 1, ok uyushaiv el naas Re! (Ueeabutlodach nﬁ]

Connection to
Point Cloud and PointNet
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4 Conclusions and future directions

Future directions:

3) Multidisciplinary Design Optimization
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4 Conclusions and future directions

1) Multidisciplinary Design Optimization

Aerodynamic
Optimization
max Range
w.r.t. twist
s.t.  lift = weight

I

displacements
weight

forces
drag ‘

Structural
Optimization
max Range
w.r.t. thicknesses
s.t. stress constraints

Range oc

Lift
Drag

So many directions exist to incorporate neural networks!

Needs literature review to take a “evolutionary” direction!



Thank you!
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