Proceedings of the Jon Borwein Commemorative Conference, 2017

How mathematicians learned to stop
worrying and love the computer

IMAGE GALLERY

Keith Devlin, Stanford University, Stanford, CA 94305, USA



The two most iconic computer pioneers
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von Neumann - from theory to practice
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ENIAC: Electronic Numerical Integrator and Computer (1946)
Ballistic Research Laboratory (BRL), Aberdeen Proving Ground, MD
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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and T have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, e, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

t Godel, “Uber formal unentscheidhare Sitze der Principia Mathematica und ver-
wandter Systeme, 1", Monatsheftc Math. Phys., 38 (1931), 173-19S.
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A SHOCK: The Four Color Theorem (1976)

1852, Francis Guthrie asked: Can every possible map be colored using at most 4
colors?

EVERY PLANAR MAP IS FOUR COLORABLE
PART |: DISCHARGING'

BY
K. APPEL AND W, HAKEN

1. Introduction

We begin by describing, in chronological order, the earlier results which led
to the work of this paper. The proof of the Four Color Theorem requires the
results of Sections 2 and 3 of this paper and the reducibility results of Part II.
Sections 4 and 5 will be devoted to an attempt to explain the difficulties of the
Four Color Problem and the unusual nature of the proof.

The first published attempt to prove the Four Color Theorem was made by
A. B. Kempe [19] in 1879, Kempe proved that the problem can be restricted
to the consideration of “normal planar maps™ in which all faces are simply A four coloring Of the Unlted. States

connected polygons, precisely three of which meet at each node. For such maps,

he derived from Euler's formula, the equation 1 976 ; proved b-y- Kenneth

Epapn
(1.1) dpy + 3ps + 2ps + ps = 3 (k — 6)p, + 12
k=7

where p; is the number of polygons with precisely i neighbors and k_,, is the App e]- a-nd- WO]-fga-ng Haken

largest value of i which occurs in the map. This equation immediately implies

that every normal planar map contains polygons with fewer than six neighbors,
In order to prove the Four Color Theorem by induction on the number p of P f d t . 1

polygons in the map (p = % p;), Kempe assumed that every normal planar roo ma e essen la. use

map with p = r is four colorable and considered a normal planar map M, .,

with r + | polygons. He distinguished the four cases that M, contained a

polygon P, with two neighbors, or a triangle P, or a quadrilateral Py, or a Of a Computer to CheCk

pentagon P.; at least one of these cases must apply by (1.1). In each case he

et 2,976 1,476 special map

! The authors wish to express their gratitude to the Research Board of the University of

Illinois for the generous allowance of computer time for the work on the discharging algorithm.
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They also wish to thank the Computer Services Organization of the University of lincis and f t
especially its systems consulting staff for considerable technical assistance. They further wish C O n lgura 10 ns

to thank Armin and Dorothea Haken for their effective assistance in checking the definitions
: L~
i Y '
Ji -

support for the year 1974-75 and the National Science Foundation for support for half of the
year 1971-72 and for summers 1971 through 1974, He also wishes to thank his teacher,
Karl-Heinrich Weise at the University of Kiel, for introducing him to mathematics and in
particular to the Four Color Problem,

Appel wishes to thank his teacher, Roger Lyndon, for teaching him how to think about
mathematics,

419

6 1 & Lameaes oforante

r'.
— oUFFICE
Illinois ]. Math. 21 (1977), 429-490
[PART II: Reducibility, pp.491-567] ; s

R R RN R RY Y YYY Y Y Y sy



The AMS Notices “Computers and Mathematics™ column

NOTICES Over. its six-and-a-half years run, thg cqlumn
o S S published 59 feature articles, 19 editorial
essays, and 115 reviews of mathematical
i software packages
— 31 features 11 editorials, and 41 reviews
S under Barwise, 28 features, 8 editorials, and
14 reviews under Devlin. f
L e | Jon Barwise (1942-2000)
In his introductory essay, Barwise declared
SECTION LAUNCH that the goal of the new column was to
FEATURE COLUMNS reflect, both practically and philosophically,
690 Inside the AMS: Report of the Treasurer (1987) on cases where computers were affecting
gggt?(r;gtrjal report includes a review of the Society's operations during the mathematicians and how they might do so
693 Computers and Mathematics Jon Barwise in the future; to act as an information
botween computars and mathematics,In ths firstfeature, & noted madremar- | | €XChange into what software products were
e oane,r® thempact of computars on his work and that of ofher mathe- available; and to publish mathematicians’
NAMS, May/June 1988, from the title page reviews of new software.




Feb 1991: Barwise bows out of “Computers and Mathematics™
with farewell reflections and a new journal announcement

The Changing Face of Mathematics

Whether we like it or not, computers are changing the face of
mathematics in radical ways, from research, to teaching, to writing,
personal communication, and publication. Over the past couple of years
we have seen numerous articles about these developments.

Computers are even forcing us to expand our ideas about what
constitutes doing mathematics, by making us take much more seriously
the role of experimentation in mathematics. (I draw attention to a new
journal devoted to experimental mathematics below.)

One view of the future is that mathematics will come to have (or
already has) two distinct sides: experimentation, which can exploit the
speed and graphic abilities of programs like Maple and Mathematica,
to allow us to spot regularities and make conjectures, and proof, very
much 1n the style of today’s mathematics.

Whether we applaud or abhor all these changes in mathematics,
there is no denying them by turning back the clock, anymore than there
is in the rest of life. Computers are here to stay, just as writing is, and
they are changing our subject. At least this is my firm conviction, and
it 1s the reason I have been willing to serve as editor of this column
for something over two years.

The Journal of Experimental Mathematics

One of the topics that has come up several times over the past
couple of years in this column is the development of experimental
techniques in mathematics, both for the discovery of new insights and
conjectures. A new journal in this area has now been formed devoted
to the publication of experimental mathematics. Part of the draft an-
nouncement I have seen reads “It is hoped that the journal will help
generate a climate in which accounts of interesting experiments are
not confined to private notebooks and suppressed from accounts of the
mathematics they inspire, but see the light of day, to the benefit of
researchers, students, and the mathematical community in general.”

Is this to be taken seriously? If you have any doubts, the list of
editors and advisors to the journal should be interesting: F. Almgren,
H. Cohen, R. Devaney, D. Epstein (Editor-in-chief), R. Graham, D.
Hoffman, H.W. Lenstra, S. Levy, R. Llave, B. Mandelbrot, A. Marden,
D. Mumford, U. Pinkall, P. Sarnak, J.P. Serre, and W. Thurston.

As the above quote and this list make clear, what we are talking
about is nothing less than a possible revolution in the way mathe-
maticians think about and report their work. Anyone familiar with the
standards of experimentation in other branches of science can only
wonder what standards will evolve for judging experimental work in
mathematics. It is an exciting event.



Mar 1991: Devlin takes over “Computers and Mathematics”

starting with a look to the future (short for the column, long for the computer in mathematics)

Why “Computers and Mathematics?”

This column is surely just a passing fad that will die away before
long. Not because mathematics will cease to have much connection
with computers, but rather, quite the reverse: the use of computers by
mathematicians will become so commonplace that no one thinks to
mention it any more.

As far as the use of scientific text processors to write papers and
books is concerned, that state of affairs is probably here already, or
at least very close, with Donald Knuth’s TEX clearly the favored tool.
As J. 1. Hall of Michigan State University reported in this column in
January, “virtually all of the larger math departments which responded
to the survey have converted their technical typing staff to TgX, in
one of its many configurations.” And yet it was only four years ago,
in 1987, that Richard Palais of Brandeis University organized the se-
ries of articles in Notices, describing the various mathematical word
processing systems available, that for many of us was the first real
introduction to the range of products becoming available for the prepa-
ration of mathematical documents. And I suspect that for most of us it

Imagine then the kind of person coming into our graduate schools,
if not today, then certainly tomorrow. Brought up from early childhood
on a diet involving MTYV, Nintendo, graphical calculators packed with
algorithms, Macintosh-style computers, and, in the not-too-distant fu-
ture, hypermedia educational tools as well. Such a person is going to
enter mathematics with an outlook and a range of mental abilities quite
different from their instructors—in fact I see no a priori reason why
they should be the same people who would have become successful
mathematicians had they come along a generation earlier.* Such a pro-
found change in outlook and skills, and probably also personnel-type,
will surely send mathematics into directions few of us can presently
foresee.

Just before Christmas, I was discussing a particular proof with
one of the sophomore undergraduates in my course on abstraction and
proofs. Much to my surprise, the way the student described the entire
proof process, in a quite matter of fact way, was as the unification (or
amalgamation) of different pieces of information. (He did not use the
word “unification,” but he did keep referring to “information” and the
merging of different information.) The linearity of the proof, which
always seemed so important to me when I was a student, hardly came
into the picture at all as far as this young mathematician was concerned.



Nov/Dec 1994: The column closes down

Coming of Age
“This column is surely just a passing fad that will die away before
long. Not because mathematics will cease to have much connection
with computers, but rather, quite the reverse: the use of computers

by mathematicians will become so commonplace that no one thinks
to mention it anymore.”

The above paragraph opened my introductory editorial for this
column in the March 1991 issue of the Notices, when I took over
the stewardship of the column from founding editor Jon Barwise.
Over the three and a half years I have edited the column, I have
continued to view its very existence with ambivalence.

Though it must be obvious to all that the development of the
modern computer has changed mathematics forever, both in terms
of content (the addition of new areas of research, not the elimination
or replacement of any old areas) and the way many of us go about
our daily lives as mathematicians, I always felt that there was
altogether too much hype. I looked forward to the day when, for
most of us, the computer settled back to become an accepted part
of the mathematician’s working environment, ranked alongside the
blackboard, the pencil and scratch pad, the telephone, and the coffee
pot. We are in the business of mathematics, not computing. Editing
a column entitled “Computers and Mathematics”, the function of
which was to concentrate entirely on the computer connection, did
not seem consistent with my view of the computer as simply one
of the tools we use to get the job done.

On the other hand, the column clearly filled a definite need
within the mathematical community, as mathematicians learned
how to take advantage of the new, electronic tools being made
available—I soon lost count of the number of mathematicians who,
on meeting me, would say how valuable they found the column,
with its mixture of feature articles and software reviews and the
occasional editorial comment from the column editor (the original
format developed by Barwise).

I guess I ended up like the newly elected president who declares
that he did not seek the office, nor did he agree with the system that
elected him, but he would serve anyway, for the general good. Not
that the task was painful. Or difficult. I was, and still am, interested
not only in mathematics and computing but—as a logician—how
the latter effects the way we do the former and how the former
supports the latter.

Things have moved swiftly in the mathematics community.
Possibly the last scientists to avail themselves of computer tech-
nology, in just a few short years mathematicians have, for the most
part, embraced it in a significant and far-reaching way, with the
result that the mathematics community is now one of the leading
users of computer technology.



Nov/Dec 1994: The column closes down

With its midwifery role clearly coming to an end, the time was
surely drawing near when “Computers and Mathematics” should
come to an end. The change in format of the Notices, which will
take place at the end of this year, offered an obvious juncture to
wind up the column. Thus, this will be the final regularly scheduled
“Computers and Mathematics” section in the Notices. The February
1ssue will provide a reference bibliography of all the articles and
reviews that have appeared in the column since its inception—
something many readers have asked for on numerous occasions.

The disappearance of this column does not mean that the No-
tices will stop publishing articles on the use of computers in math-
ematics. Rather, recognizing that the use of computer technology
1S now just one more aspect of mathematics, the new-look Notices
will no longer single out computer use for special attention. I’1]
drink to that.

The child has come of age.
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Mathematica launch

Co

rate Speakers at the MATHEMATICA™
roduct Announcement (June 23, 1988):

 Forest Baskett, Vice President, Research & Development,
Silicon Graphics Computer Systems

* Gordon Bell, Vice President, Research, Development
and Engineering, Ardent Computer

« Steven Jobs, President, NeXT, Inc.

» William Joy, Vice President, Research & Development,
Sun Microsystems

» Vicky Markstein, Research Staff Member, IBM
« Eric Lyons, Director of Technology, Autodesk, Inc.

. Tesler, Vice President, Advanced Technology,
Apple Computer

» Stephen Wolfram, President, Wolfram Research, Inc., and
Professor of Physics, Mathematics and Computer Science,
University of Illinois

Bundled with NeXT



Media interest in Mathematica

3,.1415926535897

Enter
Mathematica

emember when you were in
high school in that (expletive
deleted) math class, and you
couldn’t understand the equa-
tion you had to solve? Wouldn't it have
helped to be able to type the equation
on your Mac and instantly see a pic-
ture of it — and a solution? What if
you could check similar equations
quickly to see how they differed? With
Mathematica, an astoundingly power-
ful new mathematics program from
Wolfram Research, such feats become
mere child’s play.
Mathematica opens up the entire
world of mathematics to exploration
by both the curious and the profession-

In which a few thousand years
of mathematical knowledge
suddenly arrive on the desktop,
and we journey through a strange
and wonderful new world

al. What a spreadsheet can do with &

arithmetic, Mathematica can do with 3

all of mathematics. Combining the J

knowledge of a mathematics Ph.D.

with the speed of a computer, Mathe- ] g

matica is a breakthrough product in
the world of small computers. It's pow-
erful enough to provide professional
physicists, mathematicians, or engi- .
neers with important new tools, yet
simple enough to help students with
their algebra.

Mathematica performs numeric
calculations to any desired degree of
precision. It does symbolic mathemat-
ics, manipulating algebraic formulae
with case. It produces dazzling two-

BY JAMES FINN

rocessing

I'I"S HOT, IT’S SEXY, IT’S

oo CAI.CIIlIlS"

Slcph( n Wolfram’s

lun Stephen \\nlfmm Luught
an introductory physics class
to undergraduates at the Uni-

versity of Hlinois last spring, he was
appalled by the display of apathy. “The
students didn't give a damn,” he recalls,
“It was very depressing.” That con-
| vinced him that he had done the right

business partly because he
thought it might leave a big-
ger imprint on the world of
mathematics than he could
in & lifetime of teaching.

A year later a lot of cus-
tamers agree with Wolfram
Since founding Wolfram Re
search Inc., he has lined up
an impressive list of licens-
ees: 1BM, Sun Microsystems,
Silicon Graphics, and Sony |
are selling or planning to
sell & version of his product,
called Mathematica, for
their computers. Steven P.
Jobs, who persuaded Wol-
fram to use the name Math-
ematica, 18 including the pro-
gram with each of his Next
Ine. machines. And Wolfram
| Rescarch sells a $500 ver-

sion for the Apple Macin-
| tosh.
tica the standard,” says Steven M.
Christensen, a research scientist at the
National Center for Supercomputing Ap-
plications at the University of 1llinois in
Urbana-Champaign. Some analysts have
| likened Mathematica to Lotus Develop-
ment Corp.'s 1-233 spreadsheet program,
| pegging the potential market for Mathe-
matica at $500 million.

MATH APPEAL. Mathematica is an ex-
traordinarily powerful caleulator. But
unlike simple calculation programs, it
| does more sophisticated math as well.
Not only does it do arithmetic grunt
work such as finding logarithms, but it
can also do calenlus and solve differen-
tial equations and algebra problems,
Moreover, the program helps students
visualize mathématical functions by dis-
playing them in intricate and colorful
pictures. “IUs going o revolutionize
mathematics instruction,” declares Cur-

It

M.uhcmﬂum may create a giant market

is 8. Wozniz |l\ general manager of the
cducation products division at Sun,
whose version of Mathematica is expect.

| ed to be shipped next month. Wozniak

| thing in 1987, when he set up his own

says that 20% of Sun's business is in
education.

Mathematica is particularly useful for
scientists and anyone doing serious
mathematical analysis. G-Bar Corp., an

comes the closest to direct competition. |
What's more, Mathematica appears to |
be the right program at the right time. |
As pCs become more powerful, they can |
more easily run programs such as Math-
ematica, which requires at least 2.5 meg-
abytes of internal memory. Predicts
Fred Thorlin, an analyst at Dataquest
Ine, in San Jose, Calif.: “It won't happen
overnight, but Mathematica could be
stupendously successful.”
‘GENIUS' GRANT. A native of London,
Wolfram, 29, started early, writing re-
search papers on particle physics while
still at Eton, the elite private school near
London. He didn't graduate, but that
didn't stop him from entering Oxford
University at age 17. Without a degree
from Oxford, he entered the California
Institute of Technology as a graduate
student. A few weeks after his 20th

| WOLFRAM: WIS SOFTWART COULD REVOLUTIONIZE MATH INSTRUCTION
“That b.uu«.‘ll) makes \(.nlhun.a

arbitrage firm in Chicago, uses the pro-
gram 1o do stock market analygis. Chris-
tensen, a theoretical physicist, says
Mathematica helped him solve complex
cquations in u few days instead of the
months it would have taken him to write
his own program,

Despite a late start, Wolfram has the
potential to take a quick market lead.
Symbolics Inc. in Cambridge, Mass,, the
University of Waterloo in Ontario, and a
few others have been selling theoretical
math programs for workstations and
minicomputers since the early 19808,
And pC software firms such as Universal
Technical Systems Inc. in Rockford, 111,
and Mathsoft Inc. in Cambridge sell
more limited equation solvers, Mathema-
tica could appeal to u larger market,
as it performs both bagic calculations
and highdevel mathematics. Mathsoft's
new product for Sun Microsystems
Ine.'s workstations, called MathStation,

birthday, he received his
—j‘ PhD. At age 21, Wolfram
was the youngest recipient
of a John D. and Catherine
T. MacArthur Foundation
“genius” grant—3$125,000
over five years to use as he
pleased. He used some of
that and most of his sav-
ings, about $250,000 in all, to
start Wolfram Research.
Wolfram was just as pre-
cocious in his business deal-
ings. With some fellow stu-
dents at Caltech, he
developed SMP, a mathemat-
ics program for use by re-
search scientists. Sensing an
opportunity, Wolfram want-
ed to license SMP to a compa-
ny to sell. But a protracted
and bitter struggle ensued,
) and in 1982 Caltech won
qmm-nlnp of the program, eventually
selling the distribution rights on its own,
Soon afterward the disillusioned Wol-
fram left Caltech for Princeton Universi-
ty and then the University of [Illinois,
where he's a tenured professor of phys-
ics, mathematics, and computer science.
It took Wolfram and seven colleagues
a year to design Mathematica. The com-
pany now has about 35 employees, with
Wolfram as president and Ceo, His goal
is to sce his program become as indis-
pensable to PCs as word processors are.
Then, he s: ays, he will know he has made
his mark. “Writing an acalicmnc paper
about your computer pmgram isn’t the
way to make a difference,” Wolfram
says, “It's a lot more exciting to make
something @« lot of other people can
use.” With so many computer manufac-
turers already in his corner, the odds are
with him.
By Katherine M. Hafner in New York




Media interest in Mathematica

A Top Scientist’s Latest: Math Software

By ANDREW POLLACK

Special to The New York Times

SANTA CLARA, Calif., June 23 — A
man widely regarded as one of the
world's most brilliant scientists for-
mally entered the computer business
today with a program intended to do
for mathematics what the calculator
did for arithmetic.

Stephen Wolfram, who earned a
Ph.D. in physics when he was 20, is
the force behind the new program,
Mathematica, which seems to be a
dream come true for math students
who have trouble factoring complex
polynomials, graphing elliptical func-
tions or calculating pi to 2,000 deci-
mal places.

Mathematica, which is also in-
tended for use by scientists and engi-
neers, can solve equations in algebra
and calculus and draw two- and
three-dimensiona) graphs instantly.

Math Done the Old Way

Dr. Wolfram, who is 28 years old,
said that, surprisingly, mathematics
is still done largely with pencil, paper
and calculator.

Whether Dr. Wolfram, a professor
at the University of Illinois, proves to
be as good an entrepreneur as he is a
scientist remains to be seen. His pro-
gram is not the first directed at
mathematics, and many previous
ones have not been great commercial
successes,

Dr. Wolfram’'s program has at-
tracted unusual attention, partly be-
cause of who he is and partly because
of the companies that are backing

Continued on Page 30

The New York Times/ Terrence McCariay
Stephen Wolfram, with a frame from his software, Mathematica, that
shows a three-dimensional plot of the wave pattern on a drum head.
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SOFTWARE/BOOK REVIEW -

Twilight of the pencil?

William H. Press

Mathematica. Wolfram Research Inc.. PO Box 6059, Champaign, Winois 61821. $495
(Macintosh Plus/SE version); $795 (Macintosh Il version). Stop Press: on 15 December a
version becomes available for 386-based IBM-PCs; prices from $695 10 $1,295.
Mathematica: A System of Doing Mathematics by Computer. By Stephen Wollram
Addison-Wesley: 1988. Pp. 749, Hbk $40.95; £36.85; pbk $27.75, £19.95.

Mathematica s a remarkable, perhaps
even revolutionary, computer program
written by a small group of young pro-
grammers at Wolfram  Research  Inc.
Inside it are of the order of 200,000 lines
of source code. More interesting is that
belind the program there are a number of
powerful, perhaps radical. ideas on what
amounts 10 ‘machine-assisted  human
thought” as it applies to mathe-
matics. The manual, available in

practically scamless.

It onc thinks of Mathematica as a
comp language — approxi-
mate but incomplete description — then it
is something like LISP, but with a friendly
user interface, with several dozen pre-
defined data structures, and with several
hundred pre-defincd operations on these
structures. Also pre-defined are anyone’s

Dol pleie2isnel] = (4,3,k), (4.0,1),(5.0,1).(x.0,1))

book form, provides an intelicctual | BomIr.d 1= SaetipliNI"24p1121) 24113117 2)
entrée tothese ideas: the software is | Y1301} = Product [1-Ade(qlIIN 1 -pLA [1300). (4,0))
separately available from Wolfram | rercetsl_.p2 ) 1= (pi-p2) /Mormipi-p2)*3

Rescarch (for Macintosh machings) | criarorcetq) = Sual w(s)(q) Force(pli). Receivere],. (1.8)]

and from Sun Microsystems Inc. (fOr | paceivere = (2.6,1.9.1.0);

Sun workstations). Mathematica is oiscreple)

included free with the new Next
computers.
The program is sufficicntly dif-

= Bleek{ (ri.r2),
Fi = Forcelq Receivert);
Y2 = GeidForcelq);
Worm[Fi-¥2) /Momm(r1)
!

ferent from existing computer t00lS, | p1eesntoiscreptin.y. 331, i 0,10, 15,0, 111

and so powerful in its way. that it is
hard to describe exactly what it is.
The casiest description, though it
misses the mark, is to say that itis a
symbolic  manipulation  package
comparable, say. to  Macsyma
(Symbolics Inc.). If you type “Inte-
grate  [11+x6). Mathematica
echoes back the indefinite integral,

a complicated expression involVing | eiscrepta/2.3/2,3/21)

arctangents and loganthms. As
compared with Macsyma (available
for VAX, Sun and Apollo work-
stations, but not for the Macintosh),
Mathematica is less good at doing
integrals, but scems better at solv-
ng systems of (even nonlincar)

Feslid
cquations. number theorctical caleula-

tions and special functions. Mathematica
has the vastly superior user interface, but
its output format (like Macsyma's) leaves
something 1o be desired.

The reason that this comparison misses
the mark is that Mathematica is deeper
in its concept than previous symbolic
mathematics. programs. It is a Kind of
‘general algorithmic engine’, for, which
symbolic mathematics is only one possible
application. inc can operate with
cqual facility, _algebraic  objects.
numerical objects trary precision in
integer or floating). graphical objects
(represented  ultimately in Postscript
graphics language). or any other object
that the user simply defines “on the fly',
The interface among these modes is

o

Receivert = (4.1/2,1/2):
Discrep[(1/2,0/2,172))//InputVorn

) IHILT - - /22 s N I
0 =@ /2% o g O T R T

Using Mathematica for algorithmic experimentation.

favoynite control structures, an inclusive
st taken from C. FORTRAN and Pascal.
Mathematica ¢cmerges as a higher-level
language than any of its antecedents, Itisa
huge language. in terms of its number of
pre-defined operations.

All of this structure means that Mathe-
matica can be used by the novice as a kind
of super-BASIC. Follow the examples in
the §ouk. and you have: (i) 3 numerical
calculator that knows lots of special
fupctions. handles real @r complex
numbers in arbitrary precision: or (ii) &
graphics package that plots functionsy
coptowr plots, shaded three-dimensional
surfaces (in coloyr if you like): or (iii) a
symbolic mathematics package that can
do algebra, matnx algebra, derivatives,
integrals and so forth.

) matica. It has a sophisticated bier-

A nice feature is the way that your
session is recorded in an on-sereen “Note-
book”, in which the program statements
can casily be cleaned up, explanatory text
inserted and the result printed out in laser-
printer fonts as an clegant-looking docu-
ment. Wolfram's informal statistics suggest
that a surprisingly large number of users
are financial analysts, who are probably
using Mathematica in this mode

This is flashy stuff. but by itself it is
unlikely to revolutionize the way that
working scientists do mathematics. Two
deeper aspects of the program — which
require a correspondingly greater invest-
ment of effort 1o master — might, however,
bring about just such a change

The first of these is Mathematica's usc-
fulness as a concise test-bed for algonthmic
experimentation. Some sense of this may
be conveyed in the accompanying figure,

cven without detailed explanation,
| A sequence of definitions (lines
with the “:=" construction) creates
cight 3-vectors on the comner of a
unit cube, defines “triangular’ lineag
interpolation functions, and teaches
Mathematica 1o compare the iny
verse square force resulting from.a
particle at an arbitrary location with
| that from the particie’s interpola-
tion onto the corners of the cube,
The defimtions are then used’in
three ways: first. to make plot of the
force comparison on a two-dimeny
sional slice through the unit cubey
sccond. 10 compute a particuleg
value: and third. to give an alges
braic formula. It would be difficulty
if not impossible, to get the same
intuitive grasp of a problem like this
by hand calculation.

Notice that nothing in the defini-
| tions specifics whether they are
’ numerical or symbolic. That,.is

determined. interpretatively, by the
| actual calling arguments in, cach
| invocation. This, in fact. relates to
the second deep aspect of Mathe-

archical mechanism for “overloading’ proy
cedural definitions. even its most funda-
mental pre-defined ones. The same operas
tion (addition, for example. or “do loop))
can be defined to work on numbers. vee-
tors or any other object. in any desired
way. Functions automatically parse their
arguments and search for a previously
stored definition that matches syntacti-
cally. If nothing matches. then the func-
tion becomes @ new symbolie “atom’.
Once ope masters the knack. one can
‘teach’, Mathematica 10 be anything one
wantsit to be, or to deal with virtually any
kind of mathematical object.

The potential user should be aware of
some practicalities. Mathematica requires
at least four megabytes of memory to run

cffectivelv on a Macintosh — and Mac
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This month’s column

Experimental mathematics is the theme of this month’s feature article,
written by the Canadian mathematical brothers, Jonathan and Peter Bor-
wein. This is followed by a number of review articles and a couple of
announcements. Paul Abbott compares Maple and Mathematica. (See
also the benchmark test results presented by Barry Simon in the previ-
ous column in the September Notices.) J. S. Milne provides an update
on some reviews he wrote for this column back in October 1990 on
scientific word processors. Louis Grey looks at the program Numbers,
and Tevian Dray reports on the programs 4-dimensional Hypercube and
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Some Observations
on Computer Aided Analysis
Jonathan Borwein* and Peter Borwein*

Preamble

Over the last quarter Century and especially during the last
decade, a dramatic “‘re-experimentalization” of mathematics
has begun to take place. In this process, fueled by advances
in hardware, software, and theory, the computer plays a
laboratory role for pure and applied mathematicians; a role
which, in the eighteenth and nineteenth centuries, the physical
sciences played much more fully than in our century.

Jonathan B dy Professor of Math the Department
of Combinatorics and Optimization at the University of Waterloo. His other main

scach intests are in Optimization and Functional Analysis. Peter Borwein
is presently Professor of Mathematics at Dalhousie University. His other main
esearch inerests re in Approximation Theory and Number Theary. As of next
iy they both will be at Simon Fraser Uiversity in Vancouver and invite
ineresed people to make contact with the new Centre for Experimental and
Consructive Mathemaics et

Operations previously viewed as nonalgorithmic, such as

indefinite integration, may now be performed within powerful

symbolic manipulation packages like Maple, Mathematica,

Macsyma, and Scratchpad to name a few. Similarly, calcu-

lations previously viewed as “practically” nonalgorithmic or

certainly not worth the effort, such as large symbolic Taylor
ions, are with very little i

effort.

New subjects such as computational geometry, fractal
geometry, turbulence, and chaotic dynamical systems have
sprung up. Indeed, many second-order phenomena only be-
come apparent after considerable computational experimen-
tation. Classical subjects like number theory, group theory,
and logic have received new infusions. The boundaries be-
tween mathematical physics, knot theory, topology, and other
pure mathematical disciplines are more blurred than in many
generations. Computer assisted proofs of “big” theorems are
more and more common: witness the 1976 proof of the Four
Colour theorem and the more recent 1989 proof of the non-
existence of a projective plane of order ten (by C. Lam et al
at Concordia).

There is also a cascading profusion of sophisticated
computational and graphical tools. Many mathematicians use
them but there are still many who do not. More importantly,
expertise is highly focused: researchers in partial differential
equations may be at home with numerical finite element
packages, or with the NAG or IMSL Software Libraries,
but may have little experience with symbolic or graphic
languages. Similarly, optimizers may be at home with non-
linear programming packages or with Marlab. The learning
curve for many of these tools is very steep and researchers and
students tend to stay with outdated but familiar resources long
after these have been superceded by newer software. Also,
there is very little methodology for the use of the computer as
a general adjunct to research rather than as a means of solving
highly particular problems.

We are currently structuring “The Simon Fraser Centre
for Experimental and Constructive Mathematics” to provide
afocal point for Mathematical research on such questions as

“How does one use the computer:
~ to build intuition?
~ to generate hypotheses?

~to validate or prove theorems?
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~ to discover nontrivial examples and o

(Since we will be offering a number of graduate student,
postdoctoral, and visiting fellowships, we are keen to hear
from interested people.)

0. Introduction

Our intention is to display three sets of analytic results
which we have obtained over the past few years entirely or
principally through directed computer experimentation. While
each set in some way involves 7, our main interest is in the
role of directed discovery in the analysis. The results we
display either could not or would not have been obtained
without access to high-level symbolic computation. In our
case we primarily used Maple, but the precise vehicle is not
the point. We intend to focus on the pitfalls and promises of
what Lakatos called “quasi-inductive” mathematics.

1. Cubic Series for 7
The Mathematical Component. Ramanujan [10] produced a
number of remarkable series for 1/7 including

(L) S

1103 +26390n]
T

‘This series adds roughly eight digits per term and was used by
‘Gosper in 1985 to compute 17 million terms of the continued
fraction for 7. Such series exist because various modular
invariants are rational (which is more-or-less equivalent to
identifying those imaginary quadratic fields with class number
1), see [3]. The larger the discriminant of such a field the
greater the rate of convergence. Thus with d = —163 we have
the largest of the class number 1 examples

a2

nIPGn)! (64032097172

123 iy ML 13591409+ nsaSIa014
F= e

a series first displayed by the Chudnovskys [10]. The
underlying approximation also produces

7 ~ 310g(640320)/V163

and is correct to 16 places.

Quadratic versions of these series correspond to class
number two imaginary quadratic fields. The most spectacular
and largest example has d = —427 and

S\ (—1)"(6n)! (A +nB)
G Cn

where

A :=212175710912v/61 + 1657145277365
B = 13773980892672V/61 + 107578229802750
C := [5280(236674 + 30303V61)]*

Thi igits per term, v/C /(124)
already agrees with pi to twenty-five places [3]. The last two
series are of the form

B!y GO kS

@ Yoy S 1 _ V=IO
=

‘where

bt) = (t1728 — j&))'2,

w0058 )

1728E3(t)
0= B - B3y
Here ¢ is the appropriate discriminant, j is the “absolute
invariant”, and E;, Es, and E are Eisenstein series.

For a further discussion of these, see [2], where many
such quadratic examples are considered. Various of the recent
record setting calculations of 7 have been based on these
series. In particular, the Chudnovskys computed over two
billion digits of 7 using the second series above.

‘There is an unlimited number of such series with increas-
ingly more rapid convergence. The price one pays is that
one must deal with more complicated algebraic irrationalities.
Thus a class number p field will involve p* degree algebraic
integers as the constants A = a(t), B = b(t), and C = o(t)
in the series. The largest class number three example of (+)
corresponds to d = 907 and gives 37 or 38 digits per term.
Itis

(1.4)

@Gn)l(n!y Cn

V=C3 __(6n)! A+nB

where
€ = 4320 2 22/3 « 31/3(~4711544446661617873062970863
+ 5273595419633 » 27211/2)!/3 — 4320 4 22/3
*31/3(4711544446661617873062970863 + 5273595419633
*2721'/2)1/3 — 16580537033280
A=2m

+99780432501542041707016500  2721'/2)1/3
~27136(~2581002591670714650084289323501202067163298721
+99780432501542041707016500 + 27211/2)1/2
+ 37222766169818947772
B =193019904 « 907"/
(6696886031513505648275135384091973612
+22970050316722125 + 2721'/2)1/3 — 193019904 » 907/
(~6696886031513505648275135384091973612
+22970050316722125 + 2721'/2)1/2
+ 3521779493604002065512
The series we computed of largest discriminant was the
class number four example with d = —1555. Then
C = ~214772995063512240 — 96049403338648032 » 5'/2
1296 + 51/2(10985234579463550323713318473
+4912746253692362754607395912 + 51/2)1/2
A= 63365028312971999585426220
+28337702140800842046825600 + 5'/2
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Some Observations
on Computer Aided Analysis

Jonathan Borwein* and Peter Borwein®*
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Preamble

Over the last quarter Century and especially during the last
decade, a dramatic “re-experimentalization” of mathematics
has begun to take place. In this process, fueled by advances
in hardware, software, and theory, the computer plays a
laboratory role for pure and applied mathematicians; a role
which, in the eighteenth and nineteenth centuries, the physical
sciences played much more fully than in our century.

*Jonathan Borwein is presently Professor of Mathematics in the Department
of Combinatorics and Optimization at the University of Waterloo. His other main
research interests are in Optimization and Functional Analysis. Peter Borwein
is presently Professor of Mathematics at Dalhousie University. His other main
research interests are in Approximation Theory and Number Theory. As of next
July they both will be at Simon Fraser University in Vancouver and invite
interested people to make contact with the new Centre for Experimental and
Constructive Mathematics. jmborwei @orion.uwaterloo.ca, pborwein@cs.dal.ca.
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Operations previously viewed as nonalgorithmic, such as
indefinite integration, may now be performed within powerful
symbolic manipulation packages like Maple, Mathematica,
Macsyma, and Scratchpad to name a few. Similarly, calcu-
lations previously viewed as “practically” nonalgorithmic or
certainly not worth the effort, such as large symbolic Taylor
expansions, are computable with very little programming
effort.

New subjects such as computational geometry, fractal
geometry, turbulence, and chaotic dynamical systems have
sprung up. Indeed, many second-order phenomena only be-
come apparent after considerable computational experimen-
tation. Classical subjects like number theory, group theory,
and logic have received new infusions. The boundaries be-
tween mathematical physics, knot theory, topology, and other
pure mathematical disciplines are more blurred than in many
generations. Computer assisted proofs of “big” theorems are
more and more common: witness the 1976 proof of the Four
Colour theorem and the more recent 1989 proof of the non-
existence of a projective plane of order ten (by C. Lam et al
at Concordia).

There is also a cascading profusion of sophisticated
computational and graphical tools. Many mathematicians use
them but there are still many who do not. More importantly,
expertise is highly focused: researchers in partial differential
equations may be at home with numerical finite element
packages, or with the NAG or IMSL Software Libraries,
but may have little experience with symbolic or graphic
languages. Similarly, optimizers may be at home with non-
linear programming packages or with Matlab. The learning
curve for many of these tools is very steep and researchers and
students tend to stay with outdated but familiar resources long
after these have been superceded by newer software. Also,
there is very little methodology for the use of the computer as
a general adjunct to research rather than as a means of solving
highly particular problems.

We are currently structuring “The Simon Fraser Centre
for Experimental and Constructive Mathematics” to provide
a focal point for Mathematical research on such questions as

“How does one use the computer:

— to build intuition?
— to generate hypotheses?
— to validate conjectures or prove theorems?
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— to discover nontrivial examples and counterexamples?”

(Since we will be offering a number of graduate student,
postdoctoral, and visiting fellowships, we are keen to hear
from interested people.)

0. Introduction

Our intention is to display three sets of analytic results
which we have obtained over the past few years entirely or
principally through directed computer experimentation. While
each set in some way involves 7, our main interest is in the
role of directed discovery in the analysis. The results we
display either could not or would not have been obtained
without access to high-level symbolic computation. In our
case we primarily used Maple, but the precise vehicle is not
the point. We intend to focus on the pitfalls and promises of
what Lakatos called “quasi-inductive” mathematics.

1. Cubic Series for 7
The Mathematical Component. Ramanujan [10] produced a
number of remarkable series for 1/7 including

an 1_2V2 &3 (4n)! [1103 +26390n]
‘ ™ 9801 £ 4¥n(nl)t 994n

This series adds roughly eight digits per term and was used by
Gosper in 1985 to compute 17 million terms of the continued
fraction for m. Such series exist because various modular
invariants are rational (which is more-or-less equivalent to
identifying those imaginary quadratic fields with class number
1), see [3]. The larger the discriminant of such a field the
greater the rate of convergence. Thus with d = —163 we have
the largest of the class number 1 examples

(6n)! 13591409 + n545140134
n1)3(3n)!  (6403203)7t1/2

1 [e <]
12 —-=12 -nr
a2 - §< "

a series first displayed by the Chudnovskys [10]. The
underlying approximation also produces

™ ~ 310g(640320)/v/163

and is correct to 16 places.

Quadratic versions of these series correspond to class
number two imaginary quadratic fields. The most spectacular
and largest example has d = —427 and

1 = (=1)™6n)! (A+nB)
1.3) -7;_12; PG G

where

A :=212175710912V/61 + 1657145277365
B := 13773980892672v/61 + 107578229802750
C := [5280(236674 + 30303v/61)]°.
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This series adds roughly twenty-five digits per term, v/C /(124)
already agrees with pi to twenty-five places [3]. The last two
series are of the form

© (6n)! 1 /=)
(*) Z(a(t) + nb(t)) (3n),(n')3 (J(t))n - T

n=0

where

b(t) = (t(1728 — j(t))'/?,
_b®) [ Eat) 6
a(t) = 3 (1 0 (Ez(t) - n_\/i)> )
1728E3(t)
E}(t) - EX(t)’

j®)=

Here t is the appropriate discriminant, j is the “absolute
invariant”, and F,, F4, and E are Eisenstein series.

For a further discussion of these, see [2], where many
such quadratic examples are considered. Various of the recent
record setting calculations of 7 have been based on these
series. In particular, the Chudnovskys computed over two
billion digits of 7 using the second series above.

There is an unlimited number of such series with increas-
ingly more rapid convergence. The price one pays is that
one must deal with more complicated algebraic irrationalities.
Thus a class number p field will involve pt* degree algebraic
integers as the constants A = a(t), B = b(t), and C = c(t)
in the series. The largest class number three example of (x)
corresponds to d = —907 and gives 37 or 38 digits per term.
Itis

(1.4)

V-C3 _ i (6n)! A+nB
T “ (Bn)l(n!p C™

where
C = 4320 * 22/3 % 31/3(—4711544446661617873062970863
+52735595419633 % 27211/2)1/3 _ 4320 x 22/3
¥31/3(4711544446661617873062970863 + 52735595419633
¥27211/2)1/3 _ 16580537033280

A = 27136(2581002591670714650084289323501202067163298721
+99780432501542041707016500  27211/2)1/3
—27136(—2581002591670714650084289323501202067163298721
+99780432501542041707016500 * 27211/2)1/3
+ 37222766169818947772
B = 193019904  9071/3
(6696886031513505648275135384091973612
+22970050316722125 + 27211/2)1/3 — 193019904  907!/3
(—6696886031513505648275135384091973612
+22970050316722125 * 27211/2)1/3
+ 3521779493604002065512
The series we computed of largest discriminant was the
class number four example with d = —1555. Then

C = —214772995063512240 — 96049403338648032 * 5!/2
—1296 * 51/2(10985234579463550323713318473
+4912746253692362754607395912 « 51/2)1/2

A = 63365028312971999585426220
+28337702140800842046825600 % 5'/2
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Embracing the computer: Experimental Mathematics
THINK - COMPUTE - REPEAT

Some techniques of experimental mathematics

1. Symbolic computation using a computer algebra system
such as Mathematica or Maple

2. Data visualization methods

3. Search Web resources, eqg. Sloane’s Online Encyclopedia
of Integer Sequences

4. Integer-relation methods, such as the PSLQ algorithm
5. High-precision integer and floating-point arithmetic

6. High-precision numerical evaluation of integrals and
summation of infinite series,
THE COMPUTER AS CRUCIBLE 7

AN INTRODUCTION TO EXPERIMENTAL MATHEMATICS

. Use of the Wilf-Zeilberger algorithm for proving
summation identities

JONATHAN BORWEIN ¢ KEITH DEVLIN

8. Iterative approximations to continuous functions

AK Peters/CRC Press, 2008 g 1gentification of functions based on graph characteristics
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Dr Keith Devlin is a mathematician at Stanford University in Palo Alto, California.
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If you are connected with the world of K-12 mathematics education, it's highly unlikely
that a day will go by without you uttering, writing, hearing, or reading the term “number
sense”. In contrast everyone else on the planet would be hard pressed to describe what
it is. Though entering the term into Google will return close to 38 million hits, it has yet
to enter the world’s collective consciousness. Stanford mathematician Keith Devlin
explains what it is.




