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Abstract

The continuing process of improving intelligence product requires attention not only
to collection but to methods of analysis as well. The analysis of broad-based movements,
complex organizations, or simply the use of large data bases often make use of quan-
titative tools. We present a framework for representing, and an associated method for
analyzing, evidence-based, context-influenced human reasoning. Our specific interest
is intelligence analysis but the framework we present should be applicable to a broad
range of analytical uses and to decision-making as well. The approach used in this pa-
per is analytically formal but there are important differences between classical formal
logic and our framework. Our primary scientific purpose in developing our model is to
provide increased understanding of analytic reasoning, but possible other applications
of our framework are:

1. the formulation of reasoning and reasoning-report protocols and methodologies to
improve evidence-based analysis and decision making;
2. the development of computer reasoning tools to assist knowledge workers;
3. a basis for teaching and developing better reasoning skills.
Consequently, this paper is relevant not only to analysts in the production of actionable
product but to consumers as well. We believe that analysts, commanders on the ground,

and policy decision makers can all benefit from this discussion. The benefits for trainers,
teachers, and students seems self-evident.

This paper is dedicated to my former colleague and good friend, the logician Kenneth Jon
Barwise (1942-2000). The work presented here is very much in the spirit of his approach
to logic, a theme I pick up in my closing remarks.

1 Introduction

Richards J. Heuer, Jr., in his classic book Psychology of Intelligence Analysis (re-published
by the Central Intelligence Agency in 1999), writes:

“To the leaders and managers of intelligence who seek an improved intelligence product, these
findings offer a reminder that this goal can be achieved by improving analysis as well as col-
lection. There appear to be inherent practical limits on how much can be gained by efforts
to improve collection. By contrast, an open and fertile field exists for imaginative efforts to
improve analysis.

These efforts should focus on improving the mental models employed by analysts to interpret
information and the analytical processes used to evaluate it. While this will be difficult to
achieve, it is so critical to effective intelligence analysis that even small improvements could

have large benefits. 71



Surprisingly, although many organizations have examined the information sources on which
they base crucial decisions, few have devoted much time and effort to a study of the process
whereby they use that information to make decisions. The CIA is one of the few that have.
They had good reason to promote this work. Heuer, himself an intelligence analyst for
many years, also writes:

“Magor intelligence failures are usually caused by failures of analysis, not failures of collection.” 2

In this paper we develop a mathematical framework — a model — in which to represent,
and then study, evidence-based, context-influence reasoning, of which intelligence analysis
is a prime example. How can such a mathematical model be of benefit to analysts? We see
three principal benefits, depending on how the mathematics is viewed:

Benefit 1. Gaining a quick perspective. The mathematics is viewed as a mathematical
model. In this case, the mathematical framework we present — the model — provides a
simple, top-level overview of what is involved in analysis and decision making. While we do
not suggest that any analyst should seek to follow the model in a step-by-step fashion, we
believe that familiarity with the model provides a valuable, theoretical understanding of and
appreciation for the reasoning process that will improve performance. While any analyst
will benefit from having a “God’s eye view” of the analytic process that a mathematical
model provides, this benefit is particularly strong for experienced analysts, who are able to
interpret the model in terms of their own experience, and thereby reflect on that experience.
As Heuer observes:

“Intelligence analysts should be self-conscious about their reasoning process. They should think
about how they make judgments and reach conclusions, not just about the judgments and con-

clusions themselves.”

To maximize this benefit, we need to identify what “interpretation” (of the model) means.
To do this, we have to develop a method for analyzing human reasoning strategies.

Benefit 2. Flexibility and practice. The mathematics is viewed as a theory, i.e., as a
theoretical analysis of analytic reasoning. In this case, novice analysts may gain considerable
benefit both from studying the theory and from tackling simulations of intelligence analysis
based on the theory.*To optimize this benefit, we would need to develop a set of technologies
for stimulating creative and innovative applications of the theory in representative samples
of real-life analyses.

Benefit 3. Avoiding stovepipes. The mathematics is viewed as a representational
framework and an associated analytic process. In this case, our mathematics provides
a valuable means for analyzing past analyses and learning from them. Good analysts
constantly reflect on their past experiences, particularly those where the outcome has been
less than optimal, and they share the results of their analyses with colleagues, so that
experience is realized as shared memory. Identifying the step or steps in an analysis process
where things went wrong can be an extremely difficult task. Human beings have a strong
tendency to create “mental tunnels” that will repeatedly lead them astray. (See [17].)
Breaking out of such mental traps to be able to identify the problem steps requires adopting
a systematic reflection process, one that makes problematic that which was previously
assumed to be unproblematic and obvious.

To be useful in all three of the above ways, but particularly for benefit 3, the mathe-
matical framework needs to have two features not found in the majority of applications of
mathematics:



1. The mathematics needs to be simple and as far as possible self-explanatory.

2. The mathematical framework needs to be sufficiently flexible to express (i.e., repre-
sent) the key features of an analytic process, without distorting those features.

In connection with condition 1, we note that most analysts do not have a background in
mathematics or in a mathematics-based discipline such as science or engineering, and may
even be afraid of or averse to mathematical analyses. Even analysts who are comfortable
with mathematics may not have much time to devote to the acquisition of new techniques,
especially if they are yet to be convinced of their value to what they do.

The second condition here is particularly important. Mathematics gains much of its
strength by virtue of its simplistic approach; for example, complex entities become points
in a space, complex relationships become surfaces or manifolds, etc. But this process of
simplification can lead to a state of affairs where the mathematical results tell you a lot
about the mathematical objects being studied and relatively little about the real-world
entitites they were intended to model. The analysis beomes largely theory internal, that
is, the mathematical properties of the model become more significant than the real world
properties of what they were intended to model. It is a particularly prevalent danger with
mathematical analyses because mathematicians, by inclination, training, and the culture of
their discipline, constantly seek simplifying assumptions that lead to “better” and “more
elegant” mathematics. An important virtue of the use of mathematics here is that the
assumptions must be stated and stated precisely.

A third condition that our mathematical framework ought to have is that it should be
possible to view existing mathematical models of reasoning — insofar as they do not violate
condition 2 above excessively — as special cases of ours. While meeting this condition
is not essential to the efficacy of our methods, it would certainly be advantageous if the
mathematical framework we develop can be viewed as a generalization, or relaxation, of
existing methods that have proved their worth in certain circumstances.

2 Beyond logic

Classical logic provides the following conception of logical reasoning: A logical proof consists
of a finite sequence o1, 09, ..., o, of statements, such that for each i = 1,...,n, o; is either
an assumption for the argument (possibly an axiom), or else follows from one or more of
o1, ..., 0gi—1 by a rule of logic.

The importance of formal logic in mathematics is not that mathematicians write proofs
in the system. To do so would in general be far too cumbersome. Rather, formal logic
provides a framework for analyzing the notion of mathematical proof. This has led to
several benefits. One is a deeper understanding of mathematical proof. Another is the
development of techniques for proving that certain statements are in fact not provable. A
third is the development of computer tools to carry out automated proof procedures and
to assist the human user construct proofs. Still another benefit is that the study of formal
logic has educational value for the apprentice mathematician.

Similarly, we do not propose that the formal calculus of reasoning we develop here be
used by the human reasoner. As is the case with formal logic and mathematics, it would be
far too cumbersome to try to conduct reasoning using our framework. But, just as a study
of logic provides a beneficial component of a mathematical education, so too we believe



that study of our calculus will lead to a better understanding of evidence-based reasoning
— and perhaps as a result to better performance. In particular, we believe that a study
of the framework we develop offers educational and performance benefits to both expert and
novice reasoners.

One major difference between our framework and formal logic is that the latter is a pre-
cise mathematical theory, for which it is possible to write down axioms and prove theorems.
That works with a framework developed to study idealized mathematical reasoning because
mathematics itself is precise, axiomatizable, and amenable to theorems — indeed, theorems
lie at the heart of mathematics. Evidence-based reasoning about real life situations is very
different. This is why so many attempts to develop Al systems failed to meet their ambitious
objectives.

Three important specific products we see coming out of this project are:

(i) the formulation of reasoning protocols and methodologies to improve analysis in var-
ious business, commercial, political and military domains;

(ii) the development of computer reasoning tools to assist analysts working in such areas;
(iii) a basis for teaching and developing reasoning skills.

However, none of these three possible applications constitutes our primary motivation,
which we see as prior to all three. Namely, just as formal logic was developed (initially by the
ancient Greeks) with the primary goal of understanding (context-free) logical reasoning,’so
too we seek to understand the underlying logical structure of evidence-based human rea-
soning that takes place in a specific real-life context. This brings up a general issue about
mathematical modeling that we feel needs to be addressed before we proceed further.

Although mathematicians never formulate their arguments completely in the language
of formal logic, which is what would be required to adhere to the strictest form of this
conception of proof, the formal definition nevertheless does capture the essense of real
mathematical proofs. Hence the classical definition of proof (given above) does provide a
good model for what constitutes logical reasoning within mathematics. But the very efficacy
and success of the model within mathematics can lead — and has done so — to an expec-
tation that it may be applied to logical reasoning outside mathematics. And this is where
problems can arise. In our view, familiarity with the classical model of mathematical proof
is a potentially dangerous thing to bring to other forms of reasoning in nonmathematical
domains.

Having a theoretical, idealized model of an activity at the back of our minds is a powerful
asset. Human intelligence depends in large part on our ability to formulate and utilize such
models. Simplified models help us cope with the often otherwise unmanageable complexities
of real life situations. Acquisition of the ability of the human mind to construct such
models constituted perhaps the most pivotal step in evolutionary human development.The
individual who trades in evidence-based reasoning about real life domains needs to have a
good abstract model of that activity at the back of his or her mind just as much as the
mathematician or any other specialist.

However, classical logic is not only an inappropriate model, it is misleadingly inappro-
priate, and hence should be replaced by something else.

To give just one instance of how pervasive background metaphors can be, consider the
study carried out at the Harvard University Commencement a few years ago, when members
of the graduating senior class and some of their professors were asked, among other things,



to explain why Boston is warmer in the summer. The majority replied that this was because
the Earth is nearer the Sun in the summer. Because this is so obviously false — if true,
it would imply that Australia is also warmer in July, whereas it is in the middle of the
Australian winter — this popular response was touted by many commentators as a sign
that even a Harvard education is sorely lacking in basic science. Now, that may be a valid
conclusion to draw, but there is something far more interesting going on here. Why did
so many obviously bright and “well educated” individuals give the same wrong answer?
Especially since, when prompted by the questioner, many of them eventually did produce
the correct explanation, namely that the seasonal temperature change is a consequence of
the changing angle between the Earth’s axis of rotation and the Sun as the Earth orbits the
Sun. The answer is that the respondents were basing their explanation — which was often
immediate and given with confidence — on a familiar pattern (or model) they had acquired
through their early childhood experiences: namely, when you have a heat source, nearer
means hotter, further away means colder. This is an extremely important rule that we all
learn, sometimes painfully, at an early age. As a model, we use it frequently whenever there
is a heat source. In the case of the Harvard graduates, however, the model led them astray.

Likewise, the model for a logical argument provided by the classic definition of a mathe-
matical proof can lead even highly intelligent, well-educated people astray. We suggest that
the model of evidence-based, contextual reasoning we develop in this paper provides a far
more reliable background metaphor on which to base an intuitive sense for such reasoning.

We should perhaps add that we are aware that, with some effort, it is possible to
represent almost any instance of real-life, context-influenced, evidence-based reasoning in
classical mathematical logic. But, while doing so may and can have positive consequences, it
does little to help us understand the structure of that reasoning; indeed, it usually obscures
it. To be a useful mental aid, an abstract model needs to represent the domain being
modeled in a way that is faithful to the key issues (‘key” here meaning the issues the model
is designed to represent).

3 Modeling real-life reasoning

Some characteristic features of real-life evidence-based reasoning that we seek to represent
in our model (all of which are ignored by classical logic) are:

1. It is not always linear.
2. It is often holistic.

3. The information on which the reasoning is based is often not known to be true. The
reasoner must, as far as possible, ascertain and remember the source of the evidentiary
information used and maintain an estimation of its likelihood of being reliable.”

4. Reasoning often involves searching for information to support a particular step. This
may involve looking deeper at an existing source or searching for an alternative source.

5. Reasoners often have to make decisions based on incomplete information.
6. Reasoners sometimes encounter and must decide between conflicting information.

7. Reasoning often involves the formulation of a hypothesis followed by a search for
information that either confirms or denies that hypothesis.



8. Reasoning often requires backtracking and examining your assumptions.

9. Reasoners often make unconscious use of tacit knowledge, which they may be unable
to articulate.

The factors we have just outlined imply that real-life, evidence-based reasoning is rarely
about establishing “the truth” about some state of affairs. Rather it is about marshalling
evidence to arrive at a conclusion. If the reasoner wants to attach a reliable degree of
confidence to the conclusion, she or he must keep track of the sources of all the evidence
used, the nature and reliability of those sources, and the reliability of the reasoning steps
used in the process.

The model we develop is it not intended to “mathematicize” human reasoning. In-
deed, we believe that for all the factors just listed,®human reasoning cannot be captured
in a mathematical model. Rather, our purpose in developing our model is to try to shine
some light on the logical (sic) structure of human reasoning. This is what mathematics is
supremely good for. The fact that on many occasions it is possible to take a mathematical
model and implement it in some way should not seduce us into thinking that that is the
only way a mathematical model may be of use. Simple (or relatively simple) mathematical
models are above all useful because they provide a means to help us understand a given
domain or phenomenon. They do so in large part because they are clean, lean, and simple
(when they are), and the degree to which they possess those three characteristics generally
correlates well to the effectiveness of the model in assisting our understanding. Complex
mathematical models, while often of great value, are rarely a useful aid to understanding
except for specialists who study and work with the model at length, such as physicists
whose current understanding of the nature of the universe and of the matter in it depends
on some highly complex mathematical models.

In order to meet the goals just outlined, our model should capture certain key features
of the reasoning process, not just the result of that process. Moreover, in order to provide
an analyst with a tool to understand a specific reasoning process, which it will have to do if
it is to provide more than a purely theoretical understanding (not that this is without value,
but we are going for more than that) the model should provide a means of “problematizing”
various aspects of the process.

In developing a mathematical model of reasoning that takes into account the the fea-
tures outlined above, we adopt a charitable view of the way analysts arrive at a decision,
in that we assume they do the best job possible under the prevailing circumstances. This
is often not the case. Alexander George’has identified a number of less-than-optimal com-
mon strategies people adopt in making decisions in the face of incomplete information and
multiple, competing values and goals:

e Satisficing: Selecting the first identified alternative that appears “good enough,”
rather than examining all alternatives to determine which is “best.”

e Incrementalism: Focusing on a narrow range of alternatives representing marginal
change, without considering the need for dramatic change from an existing position.

e Consensus: Opting for the alternative that will elicit the greatest agreement and
support. Simply telling the boss what he or she wants to hear is one version of this.

e Reasoning by analogy: Choosing the alternative that appears most likely to avoid
some previous error or to duplicate a previous success.



e Relying on a set of principles or maxims that distinguish a “good” from a “bad”
alternative.

Massimo Piatelli-Palmerini [17] likewise described a number of human tendencies to follow
“mental tunnels” that lead to erroneous or less-than-optimal conclusions.

Our model may be applied to any of these reasoning strategies, by replacing one or more
of the reasoning rules we describe below by one or more of George’s or Piatelli-Palmerini’s
less-than-optimal rules. Thus, one possible application of our framework is to highlight
different reasoning strategies and compare the good from the bad — or perhaps we should
say the better from the worse.

It should be noted that the framework we develop below, while it has explicit represen-
tations of context, is not an attempt to develop yet another “logic of context.” The idea of
trying to handle context in formal logic was first introduced as a research thread in artificial
intelligence by John McCarthy in his 1971 Turing Award lecture, subsequently published

s [15]. See also McCarthy’s more recent article on the subject [16]. Many other attempts
have been made to incorporate features of context in formal logic, for example Attardi and
Simi [1], Buvac and Mason [3], Farquhar and Buvac [9], Farquhar, Dappert, Fikes, and
Pratt [10], Giunchiglia [12], Guha [13], and Shoham [18]. The microtheories employed by
the Cyc system are also clearly an attempt to take account of context. In addition, Rich
Thomason [19] is engaged in an ongoing project to formalize context.

Our approach is quite different. While we recognize the utility of computer reasoning
systems that can reason in specific, defined “contexts” — we would prefer to call them
local domains — we firmly believe that the influence of context cannot be fully captured
this way. We articulate the evidence for this belief in [5] and in our forthcoming paper [7].
As we argue in [7], when a trained human analyst, working with one or more computer
information systems, reasons about real world affairs in a domain in which she or he is
expert, the human analyst is in general far better able to make key decisions about matters
of context than the automated system. Thus, rather than reify contexts and integrate
them into a formal system, we set out to build a framework that has two distinct parts, a
formal system and a context-tracker. The contexts that the context-tracker represents are
not reifications as mathematical objects but pointers to real-world contexts, with all that
entails. Our framework sets out to capture, as far as possible, the linkages between, and
influences of, context and the elements of the formal system. As a model of an activity, our
“logic” attempts to model the human reasoner — perhaps aided by one or more information
systems, possibly including automatic reasoners. It is not intended to form a blueprint for
the design of an automated system. It may, of course, inform the design of such a system,
in which case we would expect that system to make use of some of the “context logics”
developed by the researchers referred to above. Our framework may also form a basis for
various reasoning and reporting protocols to be followed by analysts. We investigate these
issues more fully in [7].

4 The framework

Our framework views evidence-based reasoning as a temporal cognitive process that acts
not on statements o (as in the model of a mathematical proof) but on entities of the form

B ':7'177'27-~ o

where:



1. o is a statement (or fact);

2. sisa situation (in the sense developed at CSLI during the period 1983-93 and described
in Devlin [4]) which provides support or context of origin for o; and

3. 71, To, ...are the indicators'of o, i.e., the specific items of information in s that the
reasoner takes as justification of o.

We call an entity of the form s =, -, .. 0 a basic reasoning element.

Within our framework, a process of evidence-based reasoning to decide an issue Z can
be represented like this:

A
51 = o1
52 Ero,... 02

S3 ':T3,... 03

S l:7'1,~~77'27-~~,7'3~-~ 9

where each basic reasoning element either supplies evidence for the reasoning or else follows
from one or more previous elements by a logical deduction rule.

Analogous to the concept of a mathematical proof (sequence), we define (subject to
some technical modifications) an evidential reasoning process as a finite sequence p1, pa2,
.., pn of entities of the above form such that each p; is either evidential (i.e., an input
to the reasoning process) or else the result of applying some logical rule of evidence-based
reasoning to one or more of p1, ..., p;—1. Here is the formal development of this notion.

By an evidential reasoning element we mean a 1 x 3 matrix of the form

| FACT | SUPPORT | INDIC(1), INDIC(2), ... |

such that
SUPPORT [=\pic(1), INDIC(2), ... FACT

By an evidential reasoning step we shall mean a finitary array of the form

| OPERATOR | FACT] SUPPORT] INDICq (1), INDIC;(2), ...
FACT? SUPPORT? INDIC(1), INDIC2(2), . ..

FACTy, SUPPORTY} INDIC(1), INDICE(2), . ..
OUTPUT FACTj41 | SUPPORT)41 | INDICk41(1), INDICL1(2), ...

where each row

| FACT; | SUPPORT; | INDIC;(1), INDIC;(2), .. . |

is an evidential reasoning element. The index k£ depends on the operator OPERATOR, and
is called the arity of the operator.

The idea is that a basic evidential reasoning step consists of the application of the logical
operator to one or more consituents of the evidential reasoning elements in its scope (the
first k elements listed) to produce the output element in the final row.



An evidential reasoning process is a finite sequence p1, ...p, of basic reasoning steps
such that each element is either evidential (i.e., an input to the reasoning process) or else
the output of some previous (in the sequence) evidential reasoning step, or else is the special
element STOP, which is the final element in the process. (STOP is a failure condition; we
describe it later.)

The sequence of elements in an evidential reasoning process are not intended to provide
a temporal model of the actual steps carried out by a reasoner. Rather, an evidential
reasoning process models the logical flow of the reasoning as it leads to the conclusion. As
we mentioned earlier, much real-life reasoning is not linear. However, our model is such that
any linear progression of steps in the actual reasoning a human carries out will be mapped
to a linear ordering of the corresponding basic reasoning elements in the model.

The actual operators that arise in any particular instance of evidence-based reasoning
will depend on the specific circumstances that pertain in that application. In this document
we simply indicate the general form of some of the more generic operations that are likely
to be used in any instance.

For example, among the operators are some that correspond to classical logic. Since
classical logic ignores context, we have to exercise care in porting classical logic operators
into our calculus. This means that our rules all have restrictions on when they may be
applied. We start with the following two rules, each of which involves a binary reasoning
operator:

Evidential Conjunction Rule

|CONJOIN | o s T1, T2, . .

0 t V1725 - -
|oUTPUT |0 AG | sUtU{6} |6, m1,72,...,71,7, - --

where 6 = Con{7,72,...,71,72,...}, the assertion that the set {r1,72,...,71,72,...} is
logically consistent (i.e., has no internal contradictions), and where the rule may be applied
only if ¢ is valid. The restriction that § is called the indicator consistency condition for the
rule. If this condition is not satisfied, the rule produces the output sTop. (We consider
later what happens when the STOP element is generated.)

Evidential Modus Ponens Rule

|MP o S T1,7T2, ...

o— 0 t Y1,7Y2s - - -
| oUTPUT 0 sUtU{S} |6, 71,72, ...,71,72, - - -

where § = Con{r1,72,...,71,72,...}, and where the rule may be applied only if 6. If this
condition is not satisfied, the rule produces the output sToP.

We need to exercise care in using these two rules. If the supports s and ¢ are identical,
there is in general no problem, nor if one support is contained within the other. In either
of these cases, the indicator consistency condition can generally be assumed to be auto-
matically satisfied, since reasoning generally proceeds under the tacit assumption that each
individual source is internally consistent. (If, however, the reasoner suspects — or comes
to suspect — that one of the supports used in the reasoning is internally inconsistent, then



resolving that inconsistency becomes part of the reasoning process. This is a particular case
of the following general observation concerning evidence-based reasoning.)

The idea behind our approach is this. Coupling a fact ¢ with its support s in our
framework does two things: (i) it acknowledges that o does come from a particular source,
and (ii) it provides a record of that source. Explicitly listing the indicators

T, To,... with ¢ and s puts on record the particular items of information in s that
the reasoner believes are salient in supporting o, and uses to justify making use of ¢ in the
reasoning. When an unexpected or troublesome conclusion is reached, or when the reasoning
fails to yield a conclusion, it may be necessary to re-examine the veracity of some of the
facts used in the reasoning, and that may involve reconsideration of the indicator already
identified, or a search for indicators hitherto ignored. In an extreme case, the reasoner may
have to question an entire source, perhaps rejecting it and looking for evidence elsewhere.

There are two unary reasoning operators associated with the indicators in a reasoning
element: EVAL-INDIC, which checks the indicators already identified for veracity, and FAC-
TORIZE, which identifies new items of information in the support that are salient to the use
of the fact in the reasoning process. The rules associated with these operators are:

Indicator Evaluation Rule

EVAL-INDIC | 0 | § | T1,72, ...
OUTPUT:: oS |T1,72,...
STOP

where the notation here (note the double-colon after OUTPUT) indicates that the output of
the rule is exactly one of the two elements

(0[5 ]

and
STOP

The former output is obtained if the evaluation of 71, 7o, ...affirms their veracity; the
output is STOP if the evaluation determines that one of these indicators is in fact not valid,
or at least is in doubt.

Thus, the evidential reasoning step generated by an application of the Indicator Evalu-
ation Rule is of one of the two forms:

EVAL-INDIC | o | s | 71,79, ... EVAL-INDIC | o [ s | 71,72, ...
OUTPUT ols|m,m,... OUTPUT STOP

Indicators Extension Rule

EXTEND-INDICS | 0 | § | T1,T2, ...
OUTPUT O | S| T1,7T2,---37Y1,72,---

where v1,72,... € s.
This rule implies that

s ):7'1,7'2,”-,71&/2,-.- o

10



The intuition is that the reasoner identifies additional information (additional indicators)
that she or he judges to contribute to the acceptance of the fact ¢ under consideration.

Use of the following rule, which involves the unary operator EVAL-SUPPORT, indicates a
suspicion that the reasoning process has a serious flaw.

Support Evaluation Rule

EVAL-SUPPORT | 0 | S | T1,72,...
OUTPUT:: o\|S|T1,T2,...
STOP

The former output is obtained if the evaluation of s affirms its internal consistency and
reliability; the output is STOP if the evaluation determines that s is inconsistent or unreliable,
or at least that the consistency or reliability of s is in serious doubt.

Thus, the evidential reasoning step generated by an application of the Support Evalua-
tion Rule is of one of the two forms:

EVAL-SUPPORT | o | s | 71,70, ... EVAL-SUPPORT | 0 | s | 71,7, ...
OUTPUT ols|m,m,... OUTPUT STOP

When a reasoning step produces the output STOP, the reasoner has to backtrack and
examine the process so far. If it is not possible to make any changes to any previous steps,
then the reasoning process breaks down. In such a case, the available information is either
contradictory or else simply not adequate to resolve the target issue.

A common step in evidence-based reasoning is to decide between two or more different
possibilities, which may or may not be mutually exclusive. The exact mechanism by which
the comparison is made will vary from case to case, but functionally such an operation
produces the following basic reasoning step:

Selection Rule

|SELECT o1 S1 7'1(1),7'1(2),...
g9 59 7‘2(1),7‘2(2),...

on | Sn | Ta(1),(2),...
|oUTPUT | 0 | siUs [ 7,6,7:(1),7:(2),...

for some i, 1 < i < n, where s is the very reasoning process the agent is carrying out (and
which we are capturing with our calculus), v € s is the fact that this particular selection
has been made, and § € s is the criterion for making the selection.

Note that the output of a selection step carries a record of the selection having been
made and of how it was made.

In practice, making a selection may involve examination of the supports and the indica-
tors associated with the facts being compared, possibly leading to additional factorization
for some facts or other operations. Such factorizations, or other steps, will be captured in
our model by being represented explicitly as earlier steps in the process sequence.

11



Sometimes during the course of reasoning, the reasoner believes it is necessary to expand
the scope of the domain from which particular facts were obtained, perhaps with a view
to finding additional indicators to strengthen confidence in the fact or to replace the fact
with a stronger version. This is captured by the following rules, often used in successively
in conjunction, together with the indicators extension rule.

Support Expansion Rule

EXPAND-SUPPORT |0 | § | T1, 72, .-
OUTPUT oS |T1,7T2,...

where s C .

Strengthen Fact Rule

| STRENGTHEN-FACT | 0 | s | 11,72, . ..
| OUTPUT o ls|rm,m,...

where s =7, 5, 0/ — 0.

Multiple Views Uniformization Rule

Reasoners sometimes view more than one data source in order to use their experience and
tacit knowledge to synthesize a conclusion that may not follow directly from the different
sources by logical reasoning. To capture such actions, we could add an operator that
provides some form of merge or unification for simultaneous views of information from
different sources. However, the evidential conjunction rule that we already have will handle
many cases of multiple views of data.

In circumstances where two views of a data item o can be regarded as providing two
indicator sets for the same fact within the same context:

§Erim,.. 0 and sl 0

we can apply the following operator:

MV UNIF [0 [ s | 7,7, ..

O|S| 7,72, --
|OUTPUT |0 | s|6,71,72,--.,71,72, - --

where § is the fact that this unification has taken place.

Subtasking

Reasoners often need to break a particular task into subtasks. Typically, this entails
defining a set of subtasks that together will complete the given task, and then working
on each subtask in turn. Alternatively, the reasoner may decide to abandon (perhaps just
for the time being) the current goal and concentrate solely on some subtask, which then
becomes the new goal.

The framework as described so far can handle the individual steps in each subtask
analysis, and can track choices of subtasks as localized reasoning contexts. But we have not
introduced an operator for subtask selection or for breaking a task into a sufficient group of
subtasks. Instead, we have left this as a meta-level operation. We did so in order to avoid
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making our technical machinery more complicated than it already is. Since our primary
aim is to provide a framework to aid human reasoners, not a blueprint for an automated
reasoning system, we feel this is a reasonable choice. But before moving on let’s take a brief
look at what would be required to modify our framework to incorporate subtasking.

Within our current framework, a process of evidence-based reasoning to decide an issue
7 is represented like this:

7z
51 ':Tl,... g1
82 ':Tz,... 02

53 Er o3

8 Frymems. O

The issue 7 is kept constant throughout our development. In order to incorporate subtask
selection, we could introduce a mechanism to represent the selection of a subtask J of Z or
else the division of 7 into a collection of subtasks 71, Jo, ..., J,. The framework would
need to keep track of the supports and the indicators, both when the subtask(s) is (are)
selected and when the completion of all the tasks in a subdivision results in the completion
of the original task. This is all very straightforward.

5 Some special cases

To get a sense of how our framework operates, we show how it applies to some familiar
special cases or models for reasoning

Mathematical reasoning. First of all, let’s take the case of mathematics, where o1, ..., 0,
are statements about some mathematical structure M, say a group or a field. We may
assume that oy,...,0, are written in the first-order language for M. In that case, each
of the expressions s; = 0; denotes a standard proposition of classical Tarski-based model
theory. In this case, by the Completeness Theorem of first-order predicate logic, s = M

and the deduction takes the form
T

M E o
MIZO'Q

M E oy,
MEo
If this reasoning is valid, then we must have
I=IMEoa]?

where an expression of the form !'P? for some proposition P denotes the goal “Determine
whether P true or false.” That is, the goal is to determine whether or not ¢ is true of M.

The completeness theorem also tells us that (if the deduction is valid), o follows from
01,...,0, by the rules of logic alone.
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Reasoning from a common source. Another special case is where all of the information
01,...,0, comes from the same source, S. In this case the conclusion support s is also S,

and the deduction takes the form:
T

8'201
S':UQ

S Eon

SkEo
For a valid process, we must have

=107

(Determine whether to do o, or else determine whether o is true.)

Bayesian inference. In some cases, knowledge of the source of each data item o; may
be converted into a numerical probability of the reliability of o;, i.e. the probability that
o; is true. In such a situition, we may be able to apply Bayes’ Theorem repeatedly in
order to obtain a conclusion ¢ and assign a probability to o. In this case, the function
F' is a numerical function based upon Bayes’ Theorem and the function H is an instance
of Bayesian inference. This kind of reasoning is quite common, particularly in intelligence

gathering.
We may represent a Bayesian reasoning process using the original notation
A
S1 |: g1

S9 ):(72

Sn Eon
s Eo

with the understanding that each of si,, ..., s,, s is a number between 0 and 1 inclusive,
and each expression s; = o; should be interpreted as a probability statement p(o;) = s;,
and similarly for s = o.

6 Summary and discussion

The basis for our method is to view evidence-based reasoning as a temporal cognitive process
that acts on entities of the form

8 Erira. O
where o is a statement (or fact), s is its support or context of origin, and 7, 7, ... are its

indicators, the specific items of information in s that the reasoner takes as justification of
.

We analyze evidence-based reasoning so described in terms of a number of basic reason-
ing steps, an illustrative example being the Evidential Modus Ponens Rule:

|MP o S T15T2y .-

o— 0 t Y1572y - -
loutput | 0 |sUtU{d} |6, 71,72, .,71,72,-- -
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where 6 = Con{7y,T2,...,71,72, ...}, and where the rule may be applied only if §.

We list a number of such rules, but acknowledge that many applications will involve
rules not listed here. Our framework is designed to allow for such additional rules to be
incorporated.

Readers familiar with situation theory will have observed that our present framework
amounts to making explicit in the model the features of the context situation — our indica-
tors — that provide direct support for the items of information considered in the reasoning
— what we call the facts. Moreover, we model (aspects of) the process of reasoning, not
just the sequence of facts and their situational supports. By making this additional salient
information explicit in the model, we can obtain a finer grained analysis than is possible
in situation theory, that requires much less ad hocing when we carry out an analysis of a
specific reasoning process. In our framework, the Evidential Modus Ponens rule performs
the task that was handled by constraints in situation theory. Our decision to ignore much of
the machinery for handling situation-theoretic constraints was based on pragmatic grounds,
with a view to the kinds of reasoning we are attempting to model.

Although our primary goal is to develop a framework that aids understanding, we are
aware that any enterprise such as ours has the potential of forming the basis for the specifi-
cation of reasoning protocols or the design of reasoning support tools. The model we have
developed would result in protocols or support tools that:

1. Force explicit identification and tracking of sources.
2. Force explicit identification and tracking of supporting information (the indicators).
3. Force regular reconsideration of the reasoning process itself.

4. Allow for backtracking when a problem is encountered, without the necessity of start-
ing over afresh.

Above all, our framework makes it clear that reasoning involves three components: facts,
sources, and indicators. Real-life reasoning typically involves all three. Any protocol or tool
developed in line with our model should provide the user with regular prompts to check
all three components. Many examples of failures in human reasoning and analysis have
resulted from a neglect of one or more of the three basic components.

Jon Barwise

I think it is appropriate to end with a quotation from my former friend and colleague Jon
Barwise, whose untimely death in 2000 deprived the world of one of the most innovative
logicians of the twentieth century. In his collected work The Situation in Logic 2], Barwise
wrote [pp.xv—xvi|:

Back in the days before I became interested in the situated aspects of logic, I sometimes
used to wonder how logicians felt in the first quarter of this century. Did they feel
confused. Reading the literature of that period, one senses the extent to which they
were groping toward the view of logic that eventually emerged, but also the extent to
which they were still in the dark about what was central and what was peripheral. One
also realizes that they were just missing certain key distinctions. In other words, they
were confused. It was only with the pioneering work of Godel, Church, Turing, Tarski,
and Kleene in the 1930’s that the modern conception of logic really took hold.
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I now feel T have some idea of how logicians must have felt in that period before the
really seminal work, since I feel we are in an analogous stage now ... As we try to let
go of some of the simplifying idealizations made in standard logic, we too are groping
for the key notions, and probably missing some key distinctions. In giving up these
simplfying assumptions, there are many things to be rethought, many choices to be
made, and many things to be tried. It is an exciting time, if you have the patience for
that sort of thing, and a taste for the basic task of conceptual clarification. But it is
also frustrating ...

... There is only one point about which I am really certain. That is that the view of
language and logic as situated activities is an important one, and that situating logic
is a task that must be carried out if we are to come to grips with some of the problems
that currently vex the field.

I say Amen to that.
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Notes

1.

[14], Chapter 5, p6. The book is currently available only on the Web. Page numbers
are internal to each chapter.

. [14], Chapter 6, pl.

[14], Chapter 4, pl.

Use of theory based simulations in training are fairly common, and widely believed
to be beneficial to the trainee, although we have to say that we are not aware of any
concrete evidence to that effect.

At the time, little attention was paid to context. The ancient Greek logicians simply
set out to understand logical reasoning. It is only with hindsight that we can look
back at what they did and recognize that they ignored issues of context.

In our book The Math Gene, we argued that the capacity to construct abstract men-
tal models is cognitively equivalent to having language, generally viewed as the key
capacity that sets humans apart from all other species.

Heuer [14, Chapter 4, pl] observes: “Judgment is an integral part of all intelligence
analysis. While the optimal goal of intelligence collection is complete knowledge, this
goal is seldom reached in practice. Almost by definition of the intelligence mission,
intelligence issues involve considerable uncertainty. Thus, the analyst is commonly
working with incomplete, ambiguous, and often contradictory data. The intelligence
analyst’s function might be described as transcending the limits of incomplete infor-
mation through the exercise of analytical judgment.”
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8. And for a great many more reasons we described at length in our book Goodbye
Descartes, New York, NY: Wiley (1997).

9. Presidential Decisionmaking in Foreign Policy: The Effective Use of Information and
Advice, Boulder, CO: Westview Press (1980), Chapter 2.

10. Our use of the term “indicators” with this meaning comes from social science.
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