Effects of Testing Parameters in Capacitance-Voltage Profiling of MOS Capacitors

Tony Hyun Kim

Abstract—Small-signal \(CV \) curves of MOS capacitors were observed as a function of various test parameters, such as sweep direction and stepping rate of the bias voltage, lighting conditions, and \(N_2 \) flow over the device under test. Qualitative differences are found as the bias voltage behavior was changed; in particular, the phenomenon of deep-depletion was observed at faster sweep rates. Furthermore, it is observed that improper lighting conditions and unsintered devices yield \(CV \) curves that differ from the direct measurements of the structural properties of the wafer, such as the doping level.

I. INTRODUCTION

SMALL-SIGNAL capacitance-voltage (\(CV \)) measurement is a standard technique for the characterization of semiconductor devices. In this investigation, several square MOS capacitors were fabricated and analyzed under various testing conditions. In particular, the sweep direction and stepping rate of the bias voltage source, lighting conditions, and \(N_2 \) flow over the device under test were investigated for their effect on the \(CV \) curve of the capacitors.

Based on independent measurements of structural parameters, in particular the doping level of the substrate, the optimal \(CV \) testing settings can be discovered.

The experiment was conducted with square (100 \(\mu \)m)\(^2 \) and (500 \(\mu \)m)\(^2 \) MOS capacitors. This investigation also evaluates electrical consequences of sintering, in which the completed device is annealed in hydrogen gas, neutralizing unbound silicon atoms (i.e. charged impurities) at the oxide interface. It is shown that (lack of) sintering causes a horizontal shift in the \(CV \) curve corresponding to a shifted flatband voltage.

II. EXPERIMENT

A. Device Fabrication

MOS capacitors were fabricated on \(\rho = 4.3 \pm 1.5 \Omega \cdot cm \) n-type Si wafers, corresponding to \(N_D \approx 10^{15} cm^{-3} \)[1]. The resistivity was obtained by a four-point probe measurement of the sheet resistance, along with the manufacturer’s stated wafer thickness of 675 \pm 25 \(\mu \)m. Following standard cleans used to remove organic (10 minute, SC-1) and inorganic/metal-ion contaminants (15 minute, SC-2), and HF etch of native oxide, new oxide was grown by a one-hour atmospheric pressure dry oxidation at 1000\(^\circ\)C. The thickness of the grown oxide was measured to be \(t_{ox} = 483 \pm 43 \AA \) by ellipsometry. These reported values are averages over the set of six wafers that were developed for this experiment, hence the relatively large standard deviations.

Subsequently, 2500 \(\AA \) of aluminum was deposited over the oxide by physical vapor deposition. The deposition rate was about 35 \(\AA \)/s. The oxide layer on the backside of the wafer was etched by \(SF_6 \) gas, in order to open up an electrical contact to the substrate-end of the MOS capacitor.

The capacitors were lithographed as follows: the aluminum-deposited wafer was first treated with hexamethyldisilazane (HMDS) in order to promote photoresist adhesion. Positive photoresist was applied and pre-baked at 95\(^\circ\)C for 30 seconds. In the i-Stepper Projection Aligner Wafer Stepper, the wafers were exposed through a mask containing square capacitors of various sizes. The post-exposure bake was at 110\(^\circ\)C for 30 seconds. The exposed photoresist regions were dissolved in the development process using TMAH. A gaseous mixture of \(Cl_2 \) and \(BCl_3 \) was then applied for 30 seconds to the wafers in the reactive ion etching (R.I.E.) metal dry etch system to remove the unprotected aluminum, thereby defining the aluminum gate of the devices.

In order to observe the electrical consequences of sintering, three out of the six wafers were then sintered for 15 minutes at 425\(^\circ\)C degrees in 75\% flow of forming gas; the other three remained unsintered as controls.

B. \(CV \) Measurement

Small-signal capacitance of the MOS capacitor was measured at various bias voltages. The measured capacitances were normalized by the device area to yield capacitance per area, denoted by \(C^* \). At different bias levels, the MOS capacitor behaves in qualitatively different modes (inversion, depletion, accumulation) which have measurable characteristic capacitances, \(C_{inv} \) and \(C_{acc} = C_{ox} \). The different capacitances can be ascribed to the different charge distributions that arise within the structure at different DC biases. The bias voltage level at which the capacitor transitions between modes is given by the flatband voltage \(V_{FB} \).

These measurements can be utilized to deduce various structural quantities of interest, such as the oxide thickness \(t_{ox} \), substrate doping level \((N_D) \), and interface impurity charges \((Q_F) \). They are related by the following formulas:

\[
t_{ox} = \frac{\epsilon_{ox} C_{ox}^*}{C_{ox}^*}
\]

\[
N_D = \frac{4|\Phi_F| C_{S}^*}{q \epsilon_S}
\]

\[
Q_F = -C_{ox}^* (V_{FB} - \phi_{MS})
\]

where \(\epsilon \) are the permittivities and \(q \) is the fundamental charge; \(C_S \) is the “semiconductor capacitance” which can be deduced from the measured capacitances according to the formula \(C_{inv} = \frac{C_S^* C_{ox}}{C_{ox}^* + C_S^*} \); and finally \(\Phi_F = \frac{kT}{q} \log \frac{N_D}{n_i} \) is
the workfunction of the doped wafer with respect to intrinsic silicon. A good theoretical discussion of these relationships can be found in [1, p. 29].

The HP-4061A CV measurement system offered several adjustable electrical settings, such as the direction of the bias voltage sweep (i.e. $-5\,\text{V}$ to $5\,\text{V}$ vs. $5\,\text{V}$ to $-5\,\text{V}$) and also the stepping rate of the sweep (3 ms vs. 500 ms delay between steps). These settings were varied to study their effects on the resulting CV curves.

The measurement system isolated the wafer under test from room lighting, and offered a feature in which N$_2$ gas was streamed on the wafer. Both of these parameters were investigated for their effects on the CV measurement.

III. RESULTS AND DISCUSSION

A. Bias Voltage Sweep Direction

The effect on the CV curve due to the bias sweep direction is shown in Figure 1. It was generally found that the accumulation portion of the CV curve (right side of graph) is robust against various parameter changes. However, the inversion regime (left side of graph) shows dependence on the sweep direction, with the 5 to -5 sweep consistently yielding a lower inversion-mode capacitance C_{inv}. The lower capacitance is a characteristic signature of the “deep-depletion” phenomenon, explained below.

The inversion mode of pMOS capacitor operation arises when, at significantly negative voltage at the aluminum gate, the MOS capacitor structure accumulates minority carriers at the substrate side of the oxide layer (the “inversion”). Simultaneously, the depletion region ceases to expand since the excess charge at the gate is matched at the inversion layer by the minority carriers. However, since minority carriers are generally not abundant in the bulk, the device may not arrive at the theoretical inversion state equilibrium, when the applied bias voltage is varied too rapidly with respect to the minority carrier generation time. In such a case, the charge continues to accumulate in the depletion region rather than in the inversion layer. Such a charge configuration leads to a lower than expected overall capacitance, which is clearly exhibited in Figure 1C in the inversion side of the 5 to -5 sweep.

One may expect deep-depletion with the 5 to -5 sweep, since it is in this sweep direction that the device transitions into the inversion mode. In other words, the transient dynamics associated with inversion layer formation plays an important role in the resulting CV curves. This hypothesis is consistent with the measured data: the 5 to -5 sweeps consistently yield a lower inversion capacitance, indicating deep-depletion.

B. Bias Voltage Sweep Rate

The effect of the sweep rate was also considered. Figure 2 shows the resulting CV curves when the delay between each bias step is set to 3 ms and 500 ms. As with the previous case, only the portion of the curve corresponding to the inversion regime is susceptible to testing parameters. Hence, these comparisons (in particular, Figure 2D) again suggest deep-depletion.

As noted earlier, deep-depletion occurs when the capacitor is subject to conditions that are too rapidly-changing for the generation of minority carriers needed for inversion-mode equilibrium. It is then natural to suspect deep-depletion for faster bias sweeps. This prediction is confirmed by Figure 2, which shows the faster sweep to consistently yield a low capacitance. It appears then that a step delay of 3 ms is too fast for inversion-mode equilibrium in these devices.

C. Lighting conditions and N$_2$ flow

The HP-4061A system provides a metallic casing which shields the device from external light sources. Additionally,
nitrogen gas can be flowed over the the wafer throughout
the measurement. In the presence of external light, it was
found that the inversion capacitance was smaller by an order
of magnitude; and the calculated results for \(N_D \) were on
the order of \(10^{15} cm^{-3} \), which is clearly incorrect.

However, there was no appreciable effect of \(N_2 \) flow over
the substrate. It was suspected that \(N_2 \) flow could affect
the \(CV \) results by changing the temperature of the device.
However, according to [1, p. 54] there is only a subtle
dependence of the \(CV \) curve on the temperature of the device,
which lies beyond the precision of this investigation.

D. Sintered vs. Non-Sintered Devices

During the oxidation process, nonnegligible amounts of un-
bonded, charged silicon atoms are collected at the bulk/oxide
interface. These extra charges, as well as any impurities in
the fabrication process, are the so-called interface charges
\(Q_F \) that cause variations in the electrical properties of the device. In
particular, the flatband voltage \(V_{FB} \) (and correspondingly the
other critical voltages that mark the different regimes of MOS
capacitor operation) are shifted according to

\[
V_{FB} = \phi_{MS} - \frac{Q_F}{C_{ox}}
\]

where \(\phi_{MS} \) is the intrinsic work function difference between
the aluminum gate and the silicon substrate; \(Q_F \) is the amount
of impurity charges present; and \(C_{ox} \) is the capacitance across
the oxide layer. Hence, the presence of interface charges
should be controlled in order to minimize device-to-device
variations. This is achieved by sintering, in which the un-
bounded Si atoms are reduced by hydrogen gas.

Figure 3 illustrates the difference between the \(CV \) curves
of sintered and non-sintered devices. As given by Eq. 4, the
\(CV \) curve is shifted horizontally. In addition, non-sintered
\(CV \) measurements appear to give an underestimated value
for the semiconductor doping level. According to the direct
resistivity measurements, the wafers have a doping level of
approximately \(10^{15} cm^{-3} \), which may serve as a benchmark
for the \(CV \) results. The \(CV \) analysis of the sintered capacitors
yield an average of \(N_D = (1.5 \pm 0.7) \cdot 10^{15} cm^{-3} \) while the
non-sintered capacitors give \(N_D = (6.6 \pm 3.2) \cdot 10^{14} cm^{-3} \).
This discrepancy, however, may be explained by the fact
that sintered and non-sintered devices were on two different wafers
whose doping levels may in fact be different. Without
characterizing the specific wafer containing the devices, it is
not possible to state conclusively that sintering is necessary
for obtaining an accurate measurement of \(N_D \).

In the absence of sintering, \(Q_F = (5 \pm 2) \cdot 10^{-8} C/cm^2 \) of inter-
face charges were observed, corresponding to approximately
\(\left| \frac{Q_F}{e} \right| = 2.9 \cdot 10^{11} cm^{-2} \) unbound silicon atoms at the inter-
face. With 15 minutes of annealing, the interface charge was
reduced by an order of magnitude to \(\left| \frac{Q_F}{e} \right| = 2.7 \cdot 10^{10} cm^{-2} \).

IV. CONCLUSION

Variations in \(CV \) curves were observed as a function of
testing parameters. While the accumulation regime was robust,
it was shown that inversion-regime measurements are highly
susceptible to details such as the direction and the rate of the
bias voltage sweep. In this investigation, while the dependen-
cies were observed, it was not possible to conclusively identify
the testing parameters that yield the most accurate results in
structural characterization. Regardless, in order to avoid deep-
depletion, a slow \(-5 \) to \(5 \) V bias sweep is recommended based
on this study.

An improved scheme for optimal setting determination is
as follows: the measurement of the wafer resistivity (and
hence \(N_D \)) should be carried out specifically for the wafer
that is used in the \(CV \) measurements. Since the estimation
of \(N_D \) through \(CV \) data is highly sensitive to the inversion
capacitance, one could then use the accuracy of \(N_D \) to evaluate
the effect of \(CV \) testing parameters on the validity of results.
Unfortunately, this was not possible with the current data,
because the direct resistivity measurements were conducted
on two randomly chosen wafers, and the wafers were then
shuffled during the processing stages. (Note: other parameters,
such as \(t_{ox} \) are not quite as useful benchmarks, since it only
depends on the accumulation capacitance \(C_{ox} \) which has been
shown to be robust against testing settings.)

It was demonstrated that lighting conditions can signifi-
cantly alter the results. Estimates of \(N_D \) were an order of
magnitude off when the wafer was exposed to external light.
\(N_2 \) flow had no appreciable effect on \(CV \) testing.

Finally, the ability of interface charges to horizontally shift
the \(CV \) curve was observed. Based on the degree of shift, it
was possible to estimate that 15 minutes of sinter reduces the
number of interface charges by an order of magnitude.

REFERENCES