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We measure the spin-lattice (T1) and spin-spin (T2) relaxation times of a sample of nuclear
spins, as a function of viscosity and impurity concentration. In the viscosity study, we confirm
Bloembergen’s observation of an inverse-law relationship between relaxation times and viscosity.
The impurity investigation remains inconclusive. In general, our measurements support the claim
that microscopic complexity (increased viscosity; additional impurities) increases relaxation rates.

1. INTRODUCTION

Modern attempts to utilize quantum mechanics for
novel applications (e.g. quantum computing) are severely
limited by the relaxation times associated with the par-
ticular implementation. Relaxation times describe the
timescale for which the system remains under coherent
control by the experimenter. In this paper, we investi-
gate the dynamics of an ensemble of nuclear spins as a
prototype for the relaxation phenomenon.

We manipulate a sample of nuclear spins by the tech-
niques of nuclear magnetic resonance (NMR) developed
by Felix Bloch and E.M. Purcell, through which the spin
ensemble can be perturbed away from thermal equilib-
rium. Following the excitation, we observe an exponen-
tial decay in the fraction of the sample following coherent
evolution, which is the relaxation effect. We have mea-
sured relaxation along two dimensions: the spin-lattice
relaxation time (T1) which describes the return to ther-
mal occupation of the eigenstates; and the spin-spin re-
laxation time (T2) which is the disappearance of the co-
herent evolution due to “dephasing” among the individ-
ual spins. In an upcoming section, we will explain more
explicitly the two effects in the context of a spin system.

We have considered the relaxation times T1, T2 as a
function of viscosity of the sample, and as a function
of magnetic impurity concentration. In both cases, we
observe that relaxation times are shortened (more rapid
decay) when additional interactions are added (i.e. more
viscous; additional impurities). In the viscosity study, we
have verified Bloembergen’s observation of an inverse-law
relationship.[1]

2. THEORETICAL BACKGROUND

2.1. Coherent manipulation of nuclear spins

NMR experiments are conducted in a region of large
bias field B0. In our experiment, the nuclear spin is that
of the proton 1H in glycerine and water molecules. Be-
cause 1H has total nuclear spin I = 1/2[2], there are two
possibilities for the spin projection: |+〉 (aligned with B0)
and |−〉 (anti-aligned). In thermal equilibrium, the sam-
ple occupies the eigenstates |+〉 and |−〉 in accordance
with the Boltzmann distribution.

The system is then perturbed by a small oscillating
magnetic field B1 = B1,0 cos(ωt) in a direction perpen-
dicular to the bias field B0. The interaction between the
applied field ~B = ~B0 + ~B1 and the nuclear spin is due
to the magnetic Hamiltonian H = −~µ · ~B, where ~µ = γ~I
is the magnetic moment associated with the spin, and γ
is the gyromagnetic ratio. In a static B-field, the (ex-
pectation of the) magnetic moment undergoes precessive
motion about B at the Larmor frequency wL = γB0.
The experimental signature of such collective precession
is RF radiation, which is the basic detection mechanism
in our experiment. The observed oscillatory response is
called the free induction decay (FID). The dynamics is
more complicated for a time-dependent B. We give only
a cursory analysis for the time-dependent case; a detailed
and geometrically-enlightening discussion can be found in
[3, 4].

For our time-dependent field ~B(t) = B1(t)~ex + B0~ez,
we represent the spinor |ψ〉 in the basis of the static field
eigenstates {|+〉 , |−〉} as in:

|ψ(t)〉 =
[
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ωL
2 t

Cd(t)e−i
ωL
2 t

]
(1)

where the exponential factor corresponds to the standard
time-evolution due to the bias field B0. (The splitting be-
tween |+〉 and |−〉 corresponds to the Larmor frequency.)
It can be shown[4] that the Schrödinger equation in the
above basis yields:

Ċu =
iωx
2
Cd

[
ei(ω−ωL)t + e−i(ω+ωL)t

]
(2)

Ċd = − iωx
2
Cu

[
ei(ω−ωL)t + e−i(ω+ωL)t

]
(3)

with ωx = µB1,0/~. Now, on resonance (ω = ωL) the
above equations reduce to a set of coupled harmonic os-
cillators in Cu and Cd. (We take the time average of the
rapid oscillation

〈
e−i2ωLt

〉
= 0.) In other words, during

the interval for which a resonant transverse field B1 is
applied, the spinor undergoes Rabi oscillations between
the two static eigenstates. By properly timing the dura-
tion of the B1 “pulse”, it is possible to invert the spin
state (the so-called “180◦ pulse”; i.e. |+〉 → |−〉 and
vice versa), or even drive the spinor to a superposition
state whose expectation lies in the transverse plane (a
“90◦ pulse”). In principle, such a vector remains in the
superposition state indefinitely.
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2.2. Spin-lattice relaxation, T1

In the actual experiment, however, the samples are
free to exchange energy with the environment (the “lat-
tice”). Therefore, the superposition state is energetically
permitted to undergo wavefunction collapse into one of
the eigenstates, thereby losing the component undergo-
ing precession. The timescale of the return to the bias
field axis is called the spin-lattice relaxation time T1.

We have chosen to measure T1 by using a 90◦−τ −90◦
pulse sequence. In this experiment, we first drive the
spins into the transverse plane using a 90◦ pulse. We then
wait a period τ , during which some of the precessing spins
will have collapsed into the eigenstates. By applying a
second 90◦ pulse, we then bring the collapsed spins back
into precession. At the same time, the second pulse sends
the initially uncollapsed spins towards the bias field axis.
By considering the size of the secondary FID, we can
deduce the timescale of the spin-lattice relaxation.

2.3. Spin-spin relaxation, T2

Even when the spin ensemble does not interact with
the surroundings, the internal interaction among the
spins can result in decoherence of the precessive motion.
As we have remarked earlier, the macroscopic Hamilto-
nian due to the static B0-field should in principle result
in perpetual precession. However, the actual Hamilto-
nian experienced by the spins includes microscopic effects
such as the µ/r3 spin-spin interactions among the nuclei.
Furthermore, the bias field inhomogeneity and diffusion
of individual spins through the volume all contribute as
to yield a complicated microscopic Hamiltonian that is
inconsistent with the coherent, precessive motion of the
macroscopic Hamiltonian.

Thus there is potential for loss of transverse magnetiza-
tion without collapse into the eigenstates. This is known
as the spin-spin relaxation T2. Among the above effects,
the most fundamental is the spin-spin interaction, since
the other effects are not intrinsic to the system. More-
over, there exist experimental procedures for overcoming
the latter effects, as we now show.

Consider a purely non-diffusive sample in an inhomo-
geneous bias field. We can partition the sample into suf-
ficiently small regions for which the local field is well-
approximated to be uniform. In such a partition, each
region has a fixed frequency of precession. Note that
even in the case of ideal, non-interacting spins, the over-
all transverse magnetization will then be seen to decay,
because the spins of different regions will evolve out of
phase. In 1950, E. Hahn showed that a 180◦ pulse to
such a system will precisely reverse the relative phase ac-
cumulation in the different regions, so that the in-phase
dynamics is recovered (the “spin echo”) at some time
following the 180◦ pulse.[5] (See Fig. 1.)

We measure T2 by the Carr-Purcell (CP) pulse se-
quence, consisting of the following pulses: 90◦−τ−180◦−

2τ − 180◦ − 2τ − ..., where τ is a fixed waiting period.
The ensemble responds to the CP sequence with a spin-
echo halfway between each 180◦ pulses. By choosing a
small τ , we can even diminish the effect of diffusion in
the sample, since there will be little time for the spins
to move in between pulses. By considering the decay of
the echo heights, we then calculate the loss of transverse
magnetization in a way independent of the bias field in-
homogeneity and diffusion effects.

3. EXPERIMENTAL SETUP

The experimental apparatus consisted of a B0 = 1770
gauss permanent magnet, RF drive and detection circuit,
and a PC-based oscilloscope-capture card as shown in
Figure 1.

FIG. 1: Schematic of the experimental apparatus. The scope
trace shows the spin echo that arises due to a 180◦ pulse
following the decay of the initial FID. Figure from [6]

The function generator provided a continuous sinu-
soid, yielding a RF drive of approximately 25V(pp) at
the probe. We generated pulses of desired duration by
gating this signal with a switch, using logic from a digital
pulse programmer. A major shortcoming of the appara-
tus was the limited precision with which we could time
the pulses. In particular, we had a timing resolution of
1µs, which was not sufficient for the generation of 180◦
pulses (and by implication also the 90◦ pulses). When a
180◦ pulse is applied to the thermal sample, we do not ex-
pect any FID. However, during the experiment, we found
that it was impossible to adjust the parameters as to give
a 180◦ pulse that did not produce some FID.

The gated RF signal was amplified and sent to the
probe circuit, consisting of a solenoid wrapped around
a vial containing the NMR sample. During the readout
step of the experiment, the same solenoid was used to
detect the precessing spins by magnetic induction.

The multiplier and the LPF allowed us to quantita-
tively estimate the resonant frequency of the samples. In
general, the applied frequency ω and the spin precession



3

FIG. 2: The 90◦ − τ − 90◦ pulse method applied to a sample of 100% glycerine. (Left) A single FID fit against V (t) =
αe−γt sin(ωt+ φ) + δ. The decaying envelope is plotted and the extrapolated amplitude is placed with its corresponding error
bar. (Right) FIDs of various τ are superimposed, and an exponential envelope is fitted. From this regression, it is found that
T1 = 25.0± 0.6 ms.

rate ωL will not be identical. Recall that the effect of a
multiplier is to produce a superposition of two sinusoids
at the difference and sum frequencies. The LPF preserves
only the difference frequency. Hence, the apparatus of-
fered an observable benchmark for being “on-resonance”:
at resonance, we observed a severely band-limited signal
on the oscilloscope. We were also able to obtain an error
in our estimate of ωL by examining the frequency content
of the final signal via a Fourier transform.

For the remainder of the experiment, the multi-
plier/LPF chain was a slight detriment, because we were
forced to purposely move off of resonance (order of kHz),
in order to observe reasonable FIDs. Since our pulse
durations were around 50µs, this slightly invalidates our
assumption of perfect Rabi oscillations over the pulse du-
ration, i.e. that ei(ω−2ω0)t = 1 over the interval.

Finally, a major limitation in our experiment was the
rather slow sampling rate (Tsample = 25µs for the T2

measurements) of the oscilloscope acquisition. In some
of our runs, we have noticed significant discrepancies on
the actual oscilloscope trace, and the PC-acquired data.
This is troublesome for our estimates for the heights of
peaks, since the actual maximum of a peak may have
been aliased in the sampling process. We also note that
the acquisition software converted the signal into arbi-
trary units; and that it introduced quantization errors of
0.6× 10−3 in the arbitrary units.

4. RESULTS AND DISCUSSION

4.1. Determination of resonant frequencies and the
gyromagnetic ratio

We have performed ten measurements of the resonant
frequency by the frequency differencing technique previ-

ously described, and found ω/2π = (7.522± 0.049) MHz.
Using the relation ω = γB0 at resonance, and measure-
ments of B0, we have calculated the gyromagnetic ratio
in terms of the g-factor. We obtained g = 5.58± 0.03.

4.2. Relaxation times vs. viscosity

We have performed T1 and T2 measurement for various
glycerine-water mixtures, using the 90◦ − τ − 90◦ and
Carr-Purcell pulse sequences respectively. The degree of
mixing (i.e. glycerine percent weight) was converted into
a measure of viscosity via [7]. Figure 2 shows the typical
growth of the secondary FID amplitude as a function of τ
in the T1 measurement. The results from various τ have
been superimposed in order to illustrate the exponential
characteristic of the spin-lattice relaxation.

To each of the secondary FIDs, we were able to fit a
decaying sinusoid. We then extrapolated the exponen-
tial envelope to the beginning of the FID. The initial
amplitude was taken to be the “height” of the secondary
FID. As shown in Figure 2, the exponential model was an
excellent characterization of the relaxation process. This
analysis was performed for each of the available mixtures,
yielding T1 values as function of viscosity.

For the spin-spin relaxation measurements, we have
used a much simpler numerical procedure. This was nec-
essary due to several factors: (1) the double-sided expo-
nential envelope proved to be a more difficult function to
fit numerically; and (2) the spin echoes from the Carr-
Purcell sequences were embedded in long data vectors
that were difficult to parse reliably. With this in mind,
Figure 3 illustrates the procedure we have used to deduce
T2 from the Carr-Purcell response.

We began by considering two adjacent spin echoes (top
panel), from which the basic period was deduced. Using
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FIG. 3: Illustration of the Carr-Purcell analysis on 98% glyc-
erine. The basic periodicity of the signal is deduced by con-
sidering the first two FIDs (top). Based on the computed
period, the spin echoes are identified (middle). Finally, an
exponential regression of the echo peaks is performed. Here,
we obtain T2 = 20.0± 2.2 ms, and χ2

ν−1 = 1.23.

this spacing, we were able to grab each echo (middle).
For each, we then computed the value of the maximum
height (bottom). Note that this “peak sampling” tech-
nique for T2 is more susceptible to aliasing issues than
the regression procedure for T1, since the latter method
is sensitive to the internal phase of the oscillatory sig-
nal. We have chosen to employ an estimate for the error
in the height determination (for T2) that would compen-
sate for the additional susceptibility. Namely, we con-
sider N neighboring points about the maximum, and use
their standard deviation as the error. Note that if the
sampled peak were not a true maximum in the original
signal, we expect larger standard deviation in the set of
neighborhood points, since the slope will be nonzero.

These procedures yielded T1 and T2 values as pre-
sented in Fig 4. For comparison, Bloembergen’s original
study of the viscosity dependence of T1 is also plotted.
It is evident that our measurements yield a slope parallel
to Bloembergen’s results. Hence, we confirmed Bloem-
bergen’s inverse-law observation between the relaxation
times vs. viscosity. As we have predicted, additional mi-
croscopic interactions (a more viscous sample) increases
the relaxation rates.

4.3. Relaxation times vs. paramagnetic ion doping

The above T1 and T2 fitting procedures were repeated
on a sequence of samples that were doped with various
Fe3+ concentrations. The addition of these ions are ex-
pected to increase relaxation rates, since they contribute
to microscopic spin-spin interactions within the sample.
The results are plotted in Fig. 5.

Unfortunately, only limited comparisons to Bloember-

FIG. 4: Relaxation times T1 and T2 as a function of sample
viscosity. Bloembergen’s original data for T1 is also plotted
for comparison. We have verified Bloembergen’s observation
of the inverse relationship between T1 and viscosity.

FIG. 5: Relaxation times T1 and T2 as a function of impu-
rities. Bloembergen’s original data for T2 is also plotted for
comparison. Note the threshold effect near 1017 ions/cc.

gen’s data can be made, because the available range of
concentrations did not overlap well with Bloembergen’s
samples. However, in the overlapping regions, we have
found plausible agreement with the original study. In
addition, below 1017 ions/cc levels, we have observed an
interesting saturation behavior of the relaxation times.
There are many possible interpretations of this phe-
nomenon. The plateau may reflect a threshold effect in
the impurity concentration. It may also be the case that
some imperfection within our apparatus placed a ceiling
in the relaxation times at the 1s range. Or, in the worst
case, it may signify flawed numerical procedures or defec-
tive samples. In general, however, the basic claim that
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increased microscopic complexity leads to faster relax-
ation rates is supported by our measurements.

5. ERROR ANALYSIS

We have resorted to the “peak-sampling” technique
for measuring heights of spin echoes due to its simplicity.
Ideally, the pulses should be characterized by a full re-
gression, as was performed for the T1 analysis. The main
advantage is that the latter procedure is sensitive to the
internal phase of the oscillatory signal, and is therefore
less susceptible to aliasing issues in the sampling process.
In particular, we have performed both techniques on T1

data, and have found up to 100ms discrepancies in the
resulting relaxation times.

We remarked previously that an estimate of the peak
error (due to aliasing) may be obtained by considering
the neighborhood of the maximal point. Such errors were
typically on the order of 0.005 (in the arbitrary units
of the sampling process). This can be compared to the
intrinsic digitization error of 0.0006 of our equipment.
Hence, if the proper fittings are performed in the spin
echoes, it is in principle possible to obtain a factor of ten
reduction in the echo height errors.

More fundamentally, we have observed that the en-
velope of each FID and spin echoes are not perfect ex-
ponentials. Some of this deviation may be observed

in the FID of Fig. 2 where the tail shows discrepan-
cies in the expected amplitude, as well as the oscillation
frequency. Thus, we suspect that our fitting functions
V (t) = αe−γt sin(ωt+φ) + δ may be theoretically incom-
plete.

We have already discussed several instrumental short-
comings. In addition, we also believe that some of the
paramagnetic ion samples may have been improperly pre-
pared. For instance, precipitation was observed in many
of the samples, which is clearly inappropriate for our ex-
periment.

6. CONCLUSIONS

We have investigated relaxation phenomena in a sam-
ple of nuclear spins. The spin-lattice relaxation T1 and
the spin-spin relaxation T2 times were measured as a
function of sample viscosity and impurity concentrations.
For the former, we have verified Bloembergen’s observa-
tion that the relaxation times are inversely related to the
sample viscosity. The study of impurity effects remains
inconclusive. We require more samples in the range of
Bloembergen’s original study for a better assessment. In
general, our experiment corroborates the intuition that
additional microscopic interactions (increased viscosity,
additional impurities) increases relaxation rates.
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