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Abstract

The problem of electron motion in an arbitrary field of nuclei is an important
quantum mechanical problem finding applications in many diverse fields. From
the variational principle we derive a procedure, called the Hartree-Fock (HF)
approximation, to obtain the many-particle wavefunction describing such a sys-
tem. Here, the central physical concept is that of electron indistinguishability:
while the antisymmetry requirement greatly complexifies our task, it also of-
fers a symmetry that we can exploit. After obtaining the HF equations, we
then formulate the procedure in a way suited for practical implementation on
a computer by introducing a set of spatial basis functions. An example imple-
mentation is provided, allowing for calculations on the simplest heteronuclear
structure: the helium hydride ion. We conclude with a discussion of deriving
physical information from the HF solution.

1 Introduction

In this paper I will introduce the theory and the techniques to solve for the approxi-

mate ground state of the electronic Hamiltonian:

H = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

rAi
+

N∑
i=1

N∑
j>i

1

rij
, rij = |~ri − ~rj | (1)

which describes the motion of N electrons (indexed by i and j) in the field of M nuclei

(indexed by A). The coordinate system, as well as the fully-expanded Hamiltonian,

is explicitly illustrated for N = M = 2 in Figure 1. Although we perform the analysis
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Figure 1: The coordinate system corresponding to Eq. 1 for N = M = 2. The

Hamiltonian is: H = −1
2∇

2
1 − 1

2∇
2
2 + ZA

r1A
+ ZB

r1B
+ ZA

r2A
+ ZB

r2B
+ 1

r12

in dimensionless form, the physical lengths and energies can be readily obtained by

multiplying by the scale factors a0 = 5.3× 10−11m and εa = 27.21eV respectively.

The above Hamiltonian and the system it represents are of profound importance

for many areas of study even beyond physics. In particular, it is the theoretical basis

for quantum chemistry, a field in which one derives from first principles a wealth of

chemical facts, including quantities of practical modern interest such as structures

of molecules and mechanisms of reactions. All of this is possible without relying on

empirical parameters beyond a0 and εa. Accordingly, this paper culminates with a

computer implementation to solve for the ground state of the helium hydride ion. I

then report the computed equilibrium HeH+ bond length, the vibrational frequency,

and present the three-dimensional electronic distribution function, all of which are

useful parameters in characterizing a substance. (All numerical results presented in

this paper were obtained from my own implementations. The appendix describes how

to access these programs.)

Our method, called the Hartree-Fock (HF) approximation or the self-consistent

field (SCF), iteratively treats each of the electrons of the N -particle wavefunction in

sequence, in a one-by-one manner. We begin exploring such an iteration scheme by

analyzing the simplest two-electron system, the He atom.
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1.1 Hartree iteration on the helium atom

It is well-known that the difficulty in obtaining the two-electron wavefunction Ψ(~r1, ~r2)

from the helium Hamiltonian originates from the Coulombic interaction term between

electrons 1 and 2. In fact, when one simply ignores this interaction, the two-particle

Schrödinger equation is satisfied by a product wavefunction, Ψ(~r1, ~r2) = ψa(~r1)ψb(~r2),

where ψi are the scaled single particle states obtained from the hydrogen atom. (Don’t

worry! We will say a word about the antisymmetry requirement shortly.)

With this background, we then follow the suggestion of the numerical analyst

D.R. Hartree, who in the 1920’s proposed that the many-electron wavefunction can

still be expressed as a product of two single-particle states, even in the presence of

mutual repulsion. In other words, we will now simply take for granted the functional

form Ψ(~r1, ~r2) = ψa(~r1)ψb(~r2), but without yet specifying ψa,b.

Given this trial wavefunction, Hartree’s iterative method describes how to deter-

mine the single-particle states ψa,b. Again, “iteration” implies that the algorithm

analyzes each electron one at a time, and repeats ababab · · · .
As a starting point, consider the doubly-charged helium nucleus stripped of both

electrons. In assigning a wavefunction to the first electron around this nucleus, the

relevant potential is clearly Vnucl = −2/r1, for which we have available an analytic

form of the ground-state eigenfunction: call this ψ
(0)
a . The potential and the initial

wavefunction of electron 1 are shown in Figure 2(a).

We then move on to electron 2. Recalling that |ψa(~r1)|2 represents the spatial

probability distribution of electron 1, it is plausible to associate a repulsive poten-

tial Vee due to the corresponding charge density, ρa = e|ψa(~r1)|2. Therefore, the

Schrödinger equation (SE) for electron 2 will involve the electron-electron potential

Vee in addition to Vnucl. In our dimensionless units, the fundamental charge e is

not necessary to convert between spatial and charge distributions. The electrostatic

potential energy of the electron-electron interaction can then be obtained as:

Vee(~r2;ψa) =

∫
d3r1

1

r12
ρa(~r1) =

∫
d3r1

1

r12
|ψa(~r1)|2 (2)

where r12 = |~r1 − ~r2|. The notation for Vee explicitly indicates its dependence on

ψa. The numerical solution for electron 2’s wavefunction ψb, in the effective potential

Vee + Vnucl, is shown in Figure 2(b).

Returning to electron 1, it is now possible to utilize ψb to similarly calculate

Vee(~r1;ψb). The new SE is solved, yielding ψ
(1)
a (~r1). The process is repeated, alter-

nating between the two electrons, until the sequences of functions
{
ψ

(i)
a

}
and

{
ψ

(i)
b

}
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Figure 2: Single-particle wavefunctions and relevant potentials for each electron.

converge within some desired precision. Formally, we are solving the equations:[
−1

2
∇2

1 + Vnucl(~r1) + Vee(~r1;ψb)

]
ψa(~r1) = Eaψa(~r1) (3)[

−1

2
∇2

2 + Vnucl(~r2) + Vee(~r2;ψa)

]
ψb(~r2) = Ebψb(~r2) (4)

in an iterative fashion. Note however, that it is not a priori necessary that Eqs. 3

and 4 are solved in this way. Instead, the essential result of the Hartree procedure

is the reduction of the many-body Hamiltonian (Eq. 1) to several single-particle

Hamiltonians (Eqs. 3 and 4). On the other hand, due to the coupling through Vee,

a direct solution to the above set of nonlinear Schrödinger equations is prohibitively

difficult. In virtually every implementation, the resulting equations are numerically

solved by fixed point iteration, in the way we have illustrated.

As with any iterative scheme, convergence and stability of solution are important

concerns. However, in this paper I shy away from such issues, blissfully expecting all

of my computations to converge without problem. Furthermore, recall that eigenvalue

problems generally admit multiple solutions with different (energy) eigenvalues. Since
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we are interested in the ground state of the many-particle wavefunction, we seek

the set of functions (ψa, ψb) that satisfies Eqs. 3 and 4 with the lowest associated

energies. Having noted these complications, Hartree’s method then gives an algorithm

for producing multi-electron wavefunctions of the form Ψ(~r1, ~r2) = ψa(~r1)ψb(~r2), valid

for Hamiltonians involving electron-electron repulsion as in Eq. 1.

1.2 Shortcomings of the above iteration scheme

Thus far, I have given an uncritical exposition of the Hartree method. I now outline

three of its inadequacies. The remainder of the paper is organized around each of

their resolution.

1. The Hartree method ignores the antisymmetry requirement for the many elec-

tron wavefunction. In Section 2, we will rectify this by introducing the Hartree-

Fock (HF) approximation, which takes as its trial wavefunction Ψ a Slater

determinant.1

2. Beyond heuristic arguments, it is not clear how the conversion from the many-

body Hamiltonian to several single-particle Hamiltonians can be rigorously jus-

tified from the principles of QM. We show in Section 3 that the HF approxima-

tion is an advanced application of the variational principle.

3. In general, numerical integration of the Schrödinger equation in coordinate-

space is difficult. Speaking from personal experience, obtaining a bound-state

wavefunction involves a careful choice of integration bounds, and fine-tuning

of several numerical knobs. For practical purposes, we seek a more robust

approach that is applicable to a wider range of inputs. In Section 4, a mathe-

matical technique is introduced that converts the integro-differential equations

of HF into a matrix equation, which are more tractable, and are actually how

Hamiltonian solvers are implemented in practice.

To summarize, our immediate task is then to derive from the N -particle Hamiltonian

(Eq. 1), N single-particle Schrödinger equations, analogous to Eqs. 3 and 4, that

take into account the proper Fermi statistics.

1It might appear that an easier alternative is to antisymmetrize the single-particle states arising
from the Hartree method. However plausible, this approach is not rigorously justified. A sounder
approach is to assume, from the beginning, a trial wavefunction that properly takes into account
the antisymmetry requirement. See point 2 above.



6 Kim

2 Slater determinant wavefunctions

The defining property of the Hartree-Fock (HF) approximation, as an improvement

on the Hartree method, is that the trial wavefunction Ψ is chosen to be a Slater

determinant of mutually orthonormal single-particle states. Of course, the motivation

arises from the fact that the mathematical properties of a determinant trivially satisfy

the antisymmetry requirement.

However, recall that an electron has a spin degree of freedom in addition to its

spatial coordinates. In fact, the antisymmetry requirement applies to an exchange of

both spatial and spin coordinates, whereas we dealt solely with space in our previ-

ous discussion of the Hartree iteration. Hence, we must now augment our previous

notation to explicitly incorporate spin.

We use ~xi to denote the complete set of coordinates associated with the i-th

electron, comprised of the spatial ~ri and spin wi = ±1
2 parts. Throughout this paper,

the single particle state will be expressed in various forms as deemed convenient:

|m〉 = χm(~xi) = χm(i) = ψm(~ri)⊗ |wi〉 = ψm(~ri) |wi〉 (5)

The first form is useful when we wish to emphasize the state, rather than the electron

index. In the last two expressions, the complete state χm(~xi) (“spin orbital” in

chemistry parlance) is separated into its spatial ψm(~ri) and spin |wi〉 parts.

With this convention, the trial determinantal wavefunction may be written:

Ψ(~x1, ~x2, ..., ~xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) . . . χN (~x1)

χ1(~x2) χ2(~x2) . . . χN (~x2)
...

...
...

χ1(~xN ) χ2(~xN ) . . . χN (~xN )

∣∣∣∣∣∣∣∣∣∣
(6)

=
1√
N !

N !∑
n=1

(−1)pnPn {χ1(1)χ2(2) . . . χN (N)} (7)

In Eq. 7, the index n runs over all N ! permutations of the N single particle states.

The quantity pn takes on 0 or 1 depending on whether the permutation Pn is even

or odd, respectively. An even (odd) permutation is one that can be formed by an

even (odd) number of exchanges of two elements. (Such minimal exchanges are called

transpositions.) We may regard the action of Pn as permuting the electron indices,

so that if P2 is the transposition of 1 and 2, then

P2 {χ1(1)χ2(2)χ3(3) . . . χN (N)} = χ1(2)χ2(1)χ3(3) . . . χN (N)
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and (−1)p2 = −1 by definition.

2.1 Matrix elements involving determinantal wavefunctions

The Slater determinant state is fundamental to the HF theory. We have also previ-

ously hinted at the connection between the Hartree-Fock method and the variational

principle. As one might expect, the bridge between the two is the energy expectation

〈Ψ|H |Ψ〉 of a Slater determinant state Ψ.

Our task in computing 〈Ψ|H |Ψ〉 is made simpler by recognizing the “one- and two-

electron” structure of the electronic Hamiltonian, and by using the indistinguishability

of electrons to take advantage of that structure. Begin by writing Eq. 1 as

H =
N∑

i=1

(
−1

2
∇2

i −
M∑

A=1

ZA

riA

)
+

N∑
i=1

N∑
j>i

1

rij

=
N∑

i=1

h1(i) +
N∑

i=1

N∑
j>i

h2(i, j) (8)

Here, we have identified the one-electron operator h1(i) = −1
2∇

2
i −
∑M

A=1 ZA/riA (of

the i-th electron) and the two-electron operator h2(i, j) = r−1
ij (involving electrons i

and j). The terminology corresponds to the fact that only one and two sets of electron

coordinates are involved in the matrix elements of h1(i) and h2(i, j) respectively. In

particular, h1(i) is also termed the core-Hamiltonian of the i-th electron, describing

its kinetic and potential energy in the field of the nuclei.

2.1.1 One-electron integrals

We now show explicitly that 〈Ψ|h1(i) |Ψ〉 reduces to an integral over a single electron

coordinate. Consider i = 1. Expanding Ψ as given in Eq. 7,

〈Ψ|h1(1) |Ψ〉 =
1

N !

N !∑
i

N !∑
j

(−1)pi(−1)pj

∫
d~x1d~x2 . . . d~xN

× Pi {χ∗1(1)χ∗2(2) . . . χ
∗
N (N)}h1(1)Pj {χ1(1)χ2(2) . . . χN (N)}

Since the single particle states are chosen to be orthonormal, the above expression

is zero unless electrons 2, 3,. . .,N occupy the same spin orbitals in the i-th permutation

as in the j-th permutation. (Recall that h1(1) depends only on the coordinates of

electron 1. The other electrons “go right through” h1(1).) This condition is equivalent
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to the two permutations being identical. In such a case, the sums over i and j can

be accounted for by a single index, and (−1)pi(−1)pj = (−1)pi(−1)pi = 1, yielding:

〈Ψ|h1(1) |Ψ〉 =
1

N !

N !∑
i

∫
d~x1d~x2 . . . d~xN

× Pi {χ∗1(1)χ∗2(2) . . . χ
∗
N (N)}h1(1)Pi {χ1(1)χ2(2) . . . χN (N)}

Now note that in the sum over the N ! permutations, electron 1 occupies each spin

orbital χm, (N − 1)! times. This follows since there are (N − 1)! ways to arrange

electrons 2, 3, . . ., N , after having fixed the orbital of electron 1. In conclusion,

〈Ψ|h1(1) |Ψ〉 can be expressed as:

〈Ψ|h1(1) |Ψ〉 =
(N − 1)!

N !

N∑
m=1

∫
d~x1χ

∗
m(~x1)h1(1)χm( ~x1)

=
1

N

N∑
m=1

〈m|h1(1) |m〉 (9)

where the sum is over the single-particle states.

So, we find that the core-energy of electron 1 is an average of the expected core-

energy of every single-particle state that comprises the determinant. This is a direct

consequence of the indistinguishability of electrons: because we have applied the

proper statistics to describe the many-particle wavefunction (i.e. a Slater determi-

nant), it does not make sense to assign an electron into a distinguishable combination

of the single-particle states. Instead, every electron must occupy each single-particle

state in an exactly identical way! (And hence Eq. 9.)

Given the indistinguishability of the electrons, it is then clear that h1(i) = h1(j)

for every i, j. We can thus conclude:

〈Ψ|
N∑

i=1

h1(i) |Ψ〉 =
N∑

m=1

〈m|h1(1) |m〉 (10)

Conventionally, the integration variable of the one-electron integral is taken to be ~x1.

2.1.2 Two-electron integrals

This time, we exploit indistinguishability from the beginning, and write

〈Ψ|
N∑

i=1

N∑
j>i

h2(i, j) |Ψ〉 =

(
N

2

)
〈Ψ|h2(1, 2) |Ψ〉 =

N(N − 1)

2
〈Ψ|h2(1, 2) |Ψ〉 (11)
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This is valid since any pair of electrons will have identical 〈Ψ|h2(i, j) |Ψ〉 according

to indistinguishability. Furthermore, the double sum accounts for all of the unique

pairs among N electrons, of which there are N(N − 1)/2.

Proceeding as before, we obtain:

N(N − 1)

2
〈Ψ|h2(1, 2) |Ψ〉 =

1

2(N − 2)!

N !∑
i

N !∑
j

(−1)pi(−1)pj

∫
d~x1d~x2 . . . d~xN

× Pi {χ∗1(1)χ∗2(2) . . . χ∗N (N)}h2(1, 2)Pj {χ1(1)χ2(2) . . . χN (N)}

However, unlike the one-electron case, the orthogonality of single-particle states

only stipulates that electrons 3, 4, . . ., N be assigned the same spin orbital by per-

mutations Pi and Pj . With fixed Pi, there are actually two possible choices for Pj

that satisfy this constraint: Pj can either be identical to Pi, or be the composition of

Pi and the transposition of electrons 1 and 2 (which we have previously called P2).

In the latter case, note that (−1)pi(−1)pj = (−1)pi(−1)pi+p2 = −1.

In the sums over N ! permutations, electrons 1 and 2 will occupy any two different

spin orbitals χm and χn, (N − 2)! times. (For each pair, there are (N − 2)! ways to

permute the other N − 2 electrons among the N − 2 remaining states.) Hence,

N(N − 1)

2
〈Ψ|h2(1, 2) |Ψ〉 =

1

2(N − 2)!
(N − 2)!

N∑
m=1

N∑
n 6=m

∫
d~x1d~x2

× χ∗m(1)χ∗n(2)h(1, 2) [χm(1)χn(2)− χm(2)χn(1)]

=
1

2

N∑
m=1

N∑
n 6=m

〈mn|h2(1, 2) |mn〉 − 〈mn|h2(1, 2) |nm〉

As a final modification, note that 〈mn|h2(1, 2) |mn〉−〈mn|h2(1, 2) |nm〉 vanishes

when n = m, so we can eliminate the restriction on the inner sum to conclude:

N(N − 1)

2
〈Ψ|h2(1, 2) |Ψ〉 =

1

2

N∑
m=1

N∑
n=1

〈mn|h2(1, 2) |mn〉 − 〈mn|h2(1, 2) |nm〉 (12)

Referring back to Eq. 8, we have then finished the task of computing 〈Ψ|H |Ψ〉:

〈Ψ|H |Ψ〉 = 〈Ψ|
N∑

i=1

h1 |Ψ〉+ 〈Ψ|
N∑

i=1

N∑
j>i

h2 |Ψ〉

=
N∑

m=1

〈m|h1 |m〉+
1

2

N∑
m=1

N∑
n=1

〈mn|h2 |mn〉 − 〈mn|h2 |nm〉 (13)

Due to indistinguishability, we are able to suppress the electron coordinate indices in

the operators h1 and h2 without ambiguity.
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3 Derivation of HF from the Variational Principle

In this section we derive the Hartree-Fock equations, analogous to Eqs. 3 and 4, that

are applicable to the Slater-determinant trial function. The HF equations will be a set

of coupled, nonlinear Schrödinger equations for the each of the single-particle states.

The arguments presented here originate from John Slater (he of the determinant!)

who first performed the following analysis on the Hartree iteration.

We begin by reminding the reader of the variational principle. For any choice of

Ψ, the energy expectation 〈Ψ|H |Ψ〉 represents an upper bound to the true ground

state energy of H. Having constrained Ψ to be an element of some set of functions,

the best approximation to the ground state is obtained by minimization of the energy

expectation over that set.

In the Hartree-Fock theory, the many-particle wavefunction Ψ is constrained to

remain a Slater determinant formed by mutually orthonormal single-particle states

{|m〉 |m = 1, 2, . . . , N}. However, as in the original Hartree procedure, the single

particle states are not yet identified, and therein lie our variational degrees of freedom.

More precisely, we view the energy expectation 〈Ψ|H |Ψ〉 as a functional on {|m〉}.
We can then apply the standard techniques of the calculus of variations, seeking an

optimal set of single-particle states that makes 〈Ψ|H |Ψ〉 stationary under arbitrary

infinitesimal changes, |m〉 → |m〉 + |δm〉. The variational principle then shows that

the resulting set produces the best single-determinant approximation to the ground

state.

An useful analogy is available. In classical mechanics, variational minimization

of the Lagrangian functional yields a set of differential equations of motion in the

individual coordinates called the Euler-Lagrange equations. Here, we are similarly

expecting variational minimization of 〈Ψ|H |Ψ〉 to yield the “equations of motion”

i.e. the HF equations in each of the “coordinates,” namely {|m〉}.
In the current problem, the variations in {|m〉} are constrained by the orthonor-

mality requirement, 〈m|n〉− δmn = 0. The standard procedure in accomodating such

constraints in an optimization problem is to introduce Lagrange multipliers εmn. This

is a technique in which one minimizes the Lagrange function L′

L′({|m〉} , εmn) = 〈Ψ|H |Ψ〉 −
N∑

m=1

N∑
n=1

εmn(〈m|n〉 − δmn)

rather than the energy expectation 〈Ψ|H |Ψ〉 directly.
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However, for the sake of arriving at the HF equations more quickly, I will only en-

force the normalization constraint 〈m|m〉− 1 = 0 in the Lagrange function. Through

the resulting equations, we can check a posteriori that the single-particle states are

also orthogonal as required. (We don’t have the space to actually perform the ver-

ification, I’m afraid.) The possibility of this particular approach was shown in the

reference by Bethe and Jackiw. The relevant Lagrange function L is then,

L = 〈Ψ|H |Ψ〉 −
N∑

m=1

εm(〈m|m〉 − 1)

=
N∑

m=1

〈m|h1 |m〉+
1

2

N∑
m=1

N∑
n=1

{〈mn|h2 |mn〉 − 〈mn|h2 |nm〉} −
N∑

m=1

εm(〈m|m〉 − 1)

Applying the arbitrary changes |m〉 → |m〉+ |δm〉 in the single-particle states, we

find the first variation of L to be

δL =
N∑

m=1

〈δm|h1 |m〉+ 〈m|h1 |δm〉

+
1

2

N∑
m=1

N∑
n=1

〈(δm)n|h2 |mn〉+ 〈m(δn)|h2 |mn〉+ 〈mn|h2 |(δm)n〉+ 〈mn|h2 |m(δn)〉

− 1

2

N∑
m=1

N∑
n=1

〈(δm)n|h2 |nm〉+ 〈m(δn)|h2 |nm〉+ 〈mn|h2 |(δn)m〉+ 〈mn|h2 |n(δm)〉

−
N∑

m=1

εm(〈δm|m〉+ 〈m|δm〉) (14)

The key to making sense of the above expression is to recognize that the two-electron

operator is invariant to an exchange in the order of electrons: h2(i, j) = h2(j, i).

This of course follows from the fact that h2 represents Coulombic interaction, which

depends only on the relative distance of the two interacting particles. In particular,

the first term in the second double sum (third line of Eq. 14) may be rewritten:

〈(δm)n|h2 |nm〉 =

∫
d~x1d~x2 δχ

∗
m(~x1)χ

∗
n(~x2)h2χn(~x1)χm(~x2)

=

∫
d~x2d~x1 δχ

∗
m(~x2)χ

∗
n(~x1)h2χn(~x2)χm(~x1) = 〈n(δm)|h2 |mn〉

where, in the second line, we have essentially swapped the names of the “dummy”

integration variables. Similarly, the second term of the second double sum can be

shown to be 〈m(δn)|h2 |nm〉 = 〈(δn)m|h2 |mn〉.
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Making these substitutions, it can be shown that every term in Eq. 14 occurs

in complex conjugate pairs. For notational simplicity, we will show only the terms

involving variations that are conjugated (i.e. a δ in the bra) and suppress their

complex conjugates as “c.c.”. With this convention, δL can be expressed as

δL =
N∑

m=1

〈δm|h1 |m〉

+
1

2

N∑
m=1

N∑
n=1

〈(δm)n|h2 |mn〉+ 〈(δn)m|h2 |nm〉

− 1

2

N∑
m=1

N∑
n=1

〈(δm)n|h2 |nm〉+ 〈(δn)m|h2 |mn〉

−
N∑

m=1

εm 〈δm|m〉+ c.c.

Now note that the two-electron integral 〈(δa)b|h2 |ab〉 involving any two single

particle states |a〉 and |b〉 will be attained twice in the first double summation, namely,

when (m = a, n = b), and also when (m = b, n = a). We can say the same for

〈(δa)b|h2 |ba〉 in the second double sum. Therefore, we finally formulate δL in a form

suitable for use:

δL =
N∑

m=1

〈δm|h1 |m〉+
N∑

m=1

N∑
n=1

{〈(δm)n|h2 |mn〉 − 〈(δm)n|h2 |nm〉}−
N∑

m=1

εm 〈δm|m〉+c.c.

Expressing the inner products in coordinate-space, and factoring out δχ∗m(~x1),

which is common to all terms, yields:

δL =
∑N

m=1

∫
d~x1δχ∗m(~x1)

×
[
h1χm(~x1)+

∑N
n=1

∫
d~x2χ∗n(~x2)h2χm(~x1)χn(~x2)−

∑N
n=1

∫
d~x2χ∗n(~x2)h2χn(~x1)χm(~x2)−εmχm(~x1)

]
+c.c.

δL =
∑N

m=1

∫
d~x1δχ∗m(~x1)

×
[
h1+

∑N
n=1

∫
d~x2

1
r12

|χn(~x2)|2−
∑N

n=1

∫
d~x2χ∗n(~x2)

1
r12

P2χn(~x2)−εm

]
χm( ~x1)+c.c. (15)

In the last line, we have substituted in h2 = r−1
12 , and again used the operator P2 that

performs transposition of electrons 1 and 2, i.e. P2χn(~x2)χm(~x1) = χn(~x1)χm(~x2).

As is the usual in the calculus of variations, we then argue that since δχ∗m is arbitrary,

the stationary condition δL = 0 is obtained when each of the multiplicative factors
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in Eq. 15 are zero. In other words, the minimization condition is equivalent to:

f(~x1)χm( ~x1) = εmχm(~x1) (16)

f(~x1) = h1 +
N∑

n=1

∫
d~x2

1

r12
|χn(~x2)|2 −

N∑
n=1

∫
d~x2χ

∗
n(~x2)

1

r12
P2χn(~x2)

which holds for m = 1, 2, . . . , N . These equations, having the form of a single-particle

Schrödinger equation, are the Hartree-Fock equations that characterize the optimal

single-particle states to be used in the Slater determinant. Given the structure of

Eq. 16, we can also conclude that the corresponding Lagrange multipliers have the

important physical interpretation as the single-particle energies. The operator f(~x1)

is called the Fock operator, and the orthogonality of its eigenfunctions is proved in Ref

2. Unfortunately, the Fock operator couples the N equations, and makes Eq. 16 a

nonlinear SE; hence the need for iterative methods. We now note that the conjugate

terms we have suppressed in δL do not give independent constraints. Instead, they

merely produce conjugated forms of Eq. 16.

It is reassuring to find the electronic repulsion term
∑N

n=1

∫
d~x2

1
r12
|χn(~x2)|2 in

the HF equations, which agrees with the intuition embodied in the original Hartree

iteration. However, the additional exchange term
∑N

n=1

∫
d~x2χ

∗
n(~x2)

1
r12
P2χn(~x2) orig-

inates from antisymmetrization of the trial wavefunction, and has no direct classical

interpretation. A discussion of the exchange force can be found in Griffiths Ch. 5, in

the context of a non-interacting two-electron system.

Thus ends our derivation of the Hartree-Fock equations from the variational prin-

ciple. We have reduced the N -electron Hamiltonian into N coupled single-particle

problems that are then typically solved by fixed point iteration, as shown in the

introduction.

4 Computer implementation of HF

It is apparent that the Hartree-Fock equations are more complicated than their coun-

terparts in the Hartree procedure. Therefore, this section is devoted to simplifying and

converting Eq. 16 into a form suitable for practical implementation. Our mathemat-

ical method is to introduce a set of basis functions that span the space of physically

relevant wavefunctions. It is an explicit, numerical embodiment of the type of linear

algebra we have encountered so far in QM.
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4.1 Integration over the spin coordinate

The first concession we make in exchange for simplification is to specialize in systems

for which the number of electrons N is even.

Recall that to form the many-particle ground state, we seek the N lowest-energy

single-particle eigenfunctions of the Hartree-Fock equation (Eq. 16). When N is even,

the Fock operator does not depend on electron spin, as will be shown below. It then

follows that we can focus on the N
2 lowest-energy spatial states {ψn | n = 1, 2, . . . , N/2},

and then doubly occupy each with electrons of opposite spin. In other words, we let:

χm = ψn(m) ⊗ |w(m)〉 m = 1, 2, . . . , N (17)

where n(m) =

{
m/2 if m is even

(m+ 1)/2 if m is odd
. The spin variable is w(m) = ±1

2 , also

depending on whether m is even or odd.

Applying the Fock-operator (Eq. 16) to the single-particle state of Eq. 17 yields:

f(~x1)χm(~x1) = f(~x1)
[
ψn(m)(~r1) |w1(m)〉

]
= (h1ψn(m)(~r1)) |w1(m)〉

+

{
N∑

l=1

∫
d~r2dw2

1

r12

∣∣∣ψ∗n(l)(~r2) |w2(l)〉
∣∣∣2 · ψn(m)(~r1)

}
|w1(m)〉

−
N∑

l=1

∫
d~r2dw2

1

r12

{
ψ∗n(l)(~r2) 〈w2(l)|

}
P2

{
ψn(l)(~r2) |w2(l)〉

}{
ψn(m)(~r1) |w1(m)〉

}
In the second term, the inner product over the spin variable w2 normalizes to unity.

We analyze the last term more carefully, where the transposition operator P2 swaps

electron indices 1 and 2 to yield:

P2

{
ψn(l)(~r2) |w2(l)〉

}{
ψn(m)(~r1) |w1(m)〉

}
=
{
ψn(l)(~r1) |w1(l)〉

}{
ψn(m)(~r2) |w2(m)〉

}
Since this last result is combined with ψ∗n(l)(~r2)⊗ 〈w2(l)|, the terms in the last sum-

mation are nonzero only when the the spins |w2(l)〉 and |w1(m)〉 align. With N even

and occupation as in Eq. 17, there are N
2 terms that meet this constraint for either

w1(m) = ±1
2 . Evidently, the Fock operator f(~x1) does not affect nor depend on the

spin of χm(~x1), so that we can write:

f(~x1) = f(~r1)⊗ 1 (18)

f(~r1) = h1 +

N/2∑
n=1

{
2

∫
d~r2

1

r12
|ψn(~r2)|2 −

∫
d~r2

1

r12
ψ∗n(~r2)P2ψn(~r2)

}
(19)
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where f(~r1) is the spatial Fock operator, and 1 is the identity operator in the spin

space. The transposition operator P2 is understood in this context to swap the spatial

coordinates. As indicated earlier, we have now proven that the full Fock operator is

independent of spin in the case when N is even. Our task is then to obtain the N
2

lowest-energy single-particle eigenstates of the spatial Hartree-Fock equation:

f(~r1)ψn(~r1) = εnψn(~r1) (20)

4.2 Introduction of a basis

In the introduction we remarked on the difficulty of solving the HF equations in

coordinate space. The major advance came in 1951 when C.C.J. Roothaan demon-

strated that, by introducing a set of known spatial basis functions, the differential

Hartree-Fock equations could be reformulated as an algebraic equation to be solved

by standard matrix techniques.

Suppose that {φµ} represents a set of basis functions for the space of square

integrable functions. In practice, we must choose some K-element subset of this

basis for a computer implementation. We can then approximate the i-th spatial

wavefunction by a linear combination

ψi =
K∑

µ=1

Cµiφµ i = 1, 2, . . . , (K ≥ N

2
)

The above expression would be exact if the truncated basis set {φµ | µ = 1, 2, . . . , K}
were in fact complete.2 However, in practice, the basis functions typically have no

claim on rigorous completeness. In fact, in the calculations on HeH+, I use a set

of just two functions! The justification for such an audacious move is that typical

applications do not demand mathematical completeness. Rather, the more relevant

requirement is that our wavefunctions be expressible in the chosen basis. Therefore,

by choosing functions that are appropriate for the particular physics, one gets away

with deficient basis sets. In the current problem, the physically motivated basis set

involves the atomic wavefunctions centered at each of the nuclei.

Finally, we also note that the choice of a particular basis set does not affect the

general theory that follows. In fact, in most implementations, the choice of basis set

is configurable at the beginning of each simulation. (Not in my application, however!)

2In order to obtain square matrices, we will seek K ≥ N/2 spatial orbitals. As long as we have at
least N/2 states, we’re fine. We’re not required by law to actually use every solution that we find.
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4.3 Roothaan Equation

To obtain the HF equations in matrix form, consider again the spatial Hartree-Fock

equation (Eq. 20). Begin by expanding ψm(~r1) in the chosen basis,

f(~r1)
∑

ν

Cνmφν(~r1) = εm
∑

ν

Cνmφν(~r1) (21)

We then multiply by φ∗µ(~r1) on the left and integrate, to obtain:∑
ν

{∫
d~r1φ

∗
µ(~r1)f(~r1)φν(~r1)

}
Cνm = εm

∑
ν

{∫
d~r1φ

∗
µ(~r1)φν(~r1)

}
Cνm (22)

This motivates the definition of two matrices. The first is the Fock matrix Fµν =∫
d~r1φ

∗
µ(~r1)f(~r1)φν(~r1). The second is the overlap matrix Sµν =

∫
d~r1φ

∗
µ(~r1)φν(~r1).

With these definitions Eq. 22 becomes,∑
ν

FµνCνm = εm
∑

ν

SµνCνm (23)

This result may more succinctly written as a single matrix equation, known as the

Roothaan equation:

FC = SCε (24)

Here, the matrix ε is diagonal and contains the single-particle energy εm as the m-th

element. Furthermore, C is the K×K coefficient matrix whose n-th column denotes

the expansion coefficients of ψn in the basis set {φµ}. Hence, solving for the optimal

single-particle states in the Hartree-Fock approximation is equivalent solving for the

coefficient matrix C that solves the Roothaan equation!

4.3.1 Structure of the Fock matrix

The Roothaan equation is an eigenvalue problem for the columns of C and their

corresponding eigenvalues in ε. With the basis set chosen, S is determined (Eq. 22),

so that the only remaining component in Eq. 24 is the Fock matrix, which we now

calculate in terms of the chosen basis. From the definition of the Fock matrix (Eq.

22) and f(~r1) (Eq. 19), we have:

Fµν =

∫
d~r1φ

∗
µ(~r1)h1φν(~r1)

+

N/2∑
n=1

∫
d~r1φ

∗
µ(~r1)

[∫
d~r2

1

r12
|ψn(~r2)|2 −

∫
d~r2ψ

∗
n(~r2)

1

r12
P2ψn(~r2)

]
φν(~r1)
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Using the following expansions: ψn(~r2) =
∑

λCλnφλ(~r2), and ψ∗n(~r2) =
∑

σ C
∗
σnφ

∗
σ(~r2),

the last term may be written as (after also exchanging the order of sums):

∑
λσ

N/2∑
n=1

CλnC
∗
σn

{
2

∫
d~r1d~r2φ

∗
µ(~r1)φ

∗
σ(~r2)

1

r12
φν(~r1)φλ(~r2)−

∫
d~r1d~r2φ

∗
µ(~r1)φ

∗
σ(~r2)

1

r12
φλ(~r1)φν(~r2)

}
(25)

For sanity, we shall define Pλσ = 2
∑N/2

n=1CλnC
∗
σn (sometimes called the density ma-

trix ) and adopt a new “bracket-like” notation for the basis function integrals:

(µσ|r−1
12 |νλ) =

∫
d~r1d~r2φ

∗
µ(~r1)φ

∗
σ(~r2)

1

r12
φν(~r1)φλ(~r2) (26)

then Fµν takes the tolerable form:

Fµν = Hcore
µν +

∑
λσ

Pλσ

{
(µσ|r−1

12 |νλ)− 1

2
(µσ|r−1

12 |λν)
}

(27)

where the sums on λ and σ are over all of the basis functions. In the above, we have

also defined the core-Hamiltonian matrix Hcore
µν which has its own internal structure:

Hcore
µν =

∫
d~r1φ

∗
µ(~r1)h1φν(~r1) =

∫
d~r1φ

∗
µ(~r1)

{
−1

2
∇2

1 −
M∑

A=1

ZA

r1A

}
φν(~r1)

=

∫
d~r1φ

∗
µ(~r1)

{
−1

2
∇2

1

}
φν(~r1) +

∫
d~r1φ

∗
µ(~r1)

{
−

M∑
A=1

ZA

r1A

}
φν(~r1)

= Tµν + V nucl
µν (28)

Finally, we have defined the kinetic energy T and the nuclear potential V nucl matrices

that comprise Hcore. Given the bewildering number of new quantities we have named

in this section, we will revisit the procedure for constructing the Fock matrix in Section

4.4 with the help of a flowchart.

4.3.2 Solving the Roothaan equation

In exploring the structure of the Fock matrix, it was shown that F depends on

the coefficient matrix (through P ). It then follows that the Roothaan equation is

nonlinear, and cannot be directly solved by standard linear techniques.

Instead, we use an iterative approach in which we first compute F (i−1) based on

the previous set of coefficients C(i−1) (or by an initial guess). The Fock matrix thus
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generated is then considered to be fixed, which allows us to solve for the next set of

coefficients C(i) via the Roothaan equation, which may now be notated as:

F (i−1)C(i) = SC(i)ε (29)

As in the introduction, such iteration is tantamount to holding the wavefunctions

of the other electrons (j 6= i) fixed as we generate the new wavefunction for the

i-th electron. The limit of the sequence of matrices C(i) → C is then taken to be

the solution of the Roothaan equations. The columns of the coefficient matrix can

then be used to express the single-particle wavefunctions (in the chosen basis) of the

Slater-determinant, thus completing our implementation.

There are several matrix techniques for solving Eq. 29, which differs from standard

eigenvalue equations by the presence of the overlap matrix. In my implementation, I

utilize one possibility called symmetric orthogonalization.

4.4 Summary of the algorithm

We summarize in a flowchart the steps involved in a Hartree-Fock program.

Figure 3: Flowchart for the Hartree-Fock algorithm
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5 Calculations on HeH+

To illustrate the variety of physical information one may obtain from a HF solver, we

now present few of the results from a calculation on helium hydride. In this section,

we will keep the implementation details to a minimum, referring the interested reader

to the appendix (i.e. to the program itself) and to Ref 1.

The Hartree-Fock algorithm produces, for any set of nuclear coordinates
{
~RA

}
,

the optimal single-determinant electronic configuration. From this we can calculate

the corresponding expected energy
〈
Helec(~RA)

〉
.3 Since the time scale of electronic

motion far exceeds that of nuclear motion, we argue (as did Born and Oppenheimer)

that the electronic system is always optimized for any instantaneous configuration of

the nuclei. In such a case, the effective potential for nuclear motion is the sum of

nuclear-nuclear repulsion and the average electronic energy
〈
Helec(~RA)

〉
.

For the HeH+ ion, the effective nuclear potential can be parameterized by the

interatomic distance R. The result is plotted below:

Figure 4: Effective potential for nuclear motion: Veff (R) = 2
R + 〈Helec(R)〉

3Although related, the overall energy
〈
Helec(~RA)

〉
is not simply the sum of the single-particle

energies we have obtained through the Fock operator. See Ref 1: pg. 125, 176.
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The validity of this numerical potential can be assessed by examining the limiting

behavior as R → ∞. This extreme case represents a hydrogen atom and a helium

ion in complete separation. The corresponding theoretical total energy is ETheory
∞ =

−13.6eV + 4 × −13.6eV = −68eV . On the other hand, recalling the scale factors

from the introduction, the HF solution yields EHF
∞ = εa×−2.7090 = −73.7eV . This

is not a poor result, given that our basis set consisted of only two functions!

With this calibration, Figure 4 shows that there exists a stable equilibrium bond

length of Req = a0×1.8 = 0.92 angstroms. Furthermore, by computing the curvature

of the well, we deduce the (angular) vibrational frequency to be 5.1× 1014 Hz, which

puts us in the infrared region, appropriate for a vibrational mode. Lastly, because

the HF solution contains full three-dimensional information for the many-electron

system, there is an opportunity for some wonderful visualizations:

Figure 5: Two visualizations of the electron spatial density. Helium is located at the

origin, and hydrogen is at [1.8, 0, 0]

In Figure 5 are two representations for the electron density. (More precisely,

|ψ|2 of the lowest-energy spatial state.) The isosurface plot (left) clearly indicates

the formation of a chemical bond between the two nuclei. The density plot (right)

corroborates our intuition that the electron is more likely to be found near the helium

nucleus, where the nuclear charge is greater. In summary, with just pen and paper

(and silicon!), we have fully specified the electronic structure of helium hydride!
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6 Conclusion

In this paper, we have given a basic, but complete account of Hartree-Fock theory and

implementation. From the variational principle, we derived the Hartree-Fock equa-

tions that identify the single-particle states comprising the optimal Slater-determinant

wavefunction. Then, by introducing a set of basis functions, we converted the resulting

differential equations into matrix form, which can be solved efficiently on a computer.

Finally, we briefly showcased some of the physical information one can derive using

a HF solver. My hope is that an interest has been piqued (perhaps there is now some

desire to build an HF program to perform calculations on one’s favorite molecule?);

and if so, that the discussion presented here was sufficient for actual implementation.

In closing, I would like to thank my peer reviewer Connor McEntee and my grad-

uate tutor David Guarrera for their careful reading of this rather long paper. Even

beyond their suggestions for improving this work, I enjoyed discussing physics with

them. In addition, I would also like to thank Prof. Mookie Baik of Indiana University,

who was reckless enough to expose the ideas of quantum chemistry to a high-school

junior, who then wondered about them for the next four years!
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A How to access the paper’s programs

All of the numerical computations in this paper were conducted in Matlab, and all

scripts can be found at:

http://web.mit.edu/kimt/www/8.06/paper/program/

There, one finds the following subdirectories:

1. “first/”: This section contains the scripts responsible for the results presented in

Section 5. The two-element basis set used for the calculation is called “minimal

STO-3G”, where each basis function is a linear combination of three Gaus-

sian functions. Many years of work by quantum chemists and applied math-

ematicians have gone into developing sophisticated and efficient mathematical

routines involving Gaussian functions. (In particular, for calculating Eq. 26).

2. “hartree iteration/”: These are the programs used for conducting the first two

iterations of the Hartree method (Section 1.1). There is an app to compute Eq.

2, and also to produce Figure 2 of the paper.

3. “scrap/”: In the paper, I did not discuss the sophisticated routines involving

Gaussian functions. Hence, I attempted to implement a simpler HF solver with

straightforward “brute force” methods for computing the necessary matrices.

To my surprise, I found that it took over three minutes to compute (to terrible

accuracy) a single basis function integral (Eq. 26). Since we need to perform

hundreds of such integrations for a single HF run, this implementation is totally

impractical, and was eventually “scrapped”.

4. “second/”: Over the course of this paper, it was realized that the helium hydride

ion produces identical results for the Hartree-Fock method and the Hartree

iteration. (This follows because the exchange term of HF is always zero for

N = 2.) Hence, I worked on a four-electron system: namely, two-interacting

hydrogen molecules. However, I have not yet established the correctness of the

numerical results, so they were never incorporated into the paper.

Finally, to produce Figure 5, I utilized the impressive “Volume Browser” program

written by Eike Rietsch, obtained from the MATLAB Central File Exchange:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13526


