Description and explanation: English revisited

Paul Kiparsky
Theoretical choices

1. Theoretical choices

2. A generalization lost and regained

3. Cyclic Palatalization
Classical OT — a restrictive theory

Universal constraints, language-specific ranking, constraints evaluated in parallel, single output representation, a learning algorithm.

- Constraint interaction handles phenomena that ordered rules can’t: conspiracies, top-down effects, the “emergence of the unmarked”.

Classical OT — a restrictive theory

Universal constraints, language-specific ranking, constraints evaluated in parallel, single output representation, a learning algorithm.

- Constraint interaction handles phenomena that ordered rules can’t: conspiracies, top-down effects, the “emergence of the unmarked”.
- Brings substantive universals and typological generalizations to bear on the analysis of individual phonological systems.

Prince and Smolensky 1993
Too restrictive, though

- Can’t handle opacity (overapplication and underapplication), which SPE theory gets with counterbleeding and counterfeeding.
Too restrictive, though

- Can’t handle opacity (overapplication and underapplication), which SPE theory gets with counterbleeding and counterfeeding.
- Can’t handle inheritance of phonological properties from Bases to derivatives, which SPE theory gets by cyclic application of rules.
There’s no going back

Does opacity argue for a return to SPE-type ordered rules? No.

- Rule ordering theories make no principled distinction between opaque and transparent rule interaction.
There’s no going back

Does opacity argue for a return to SPE-type ordered rules? No.

- Rule ordering theories make no principled distinction between opaque and transparent rule interaction.
- Evidence from phonological systems, acquisition, change, and processing that opaque order is marked (hard to learn, restricted distribution). No stacking of opacity beyond a depth of two, no opacity within phrasal phonology.
There’s no going back

Does opacity argue for a return to SPE-type ordered rules? No.

- Rule ordering theories make no principled distinction between opaque and transparent rule interaction.
- Evidence from phonological systems, acquisition, change, and processing that opaque order is marked (hard to learn, restricted distribution). No stacking of opacity beyond a depth of two, no opacity within phrasal phonology.
- The failure of ordering theories to privilege transparency is as damaging at the explanatory level as classical OT’s failure to countenance opacity is at the descriptive level.
There’s no going back

Does opacity argue for a return to SPE-type ordered rules? No.

- Rule ordering theories make no principled distinction between opaque and transparent rule interaction.
- Evidence from phonological systems, acquisition, change, and processing that opaque order is marked (hard to learn, restricted distribution). No stacking of opacity beyond a depth of two, no opacity within phrasal phonology.
- The failure of ordering theories to privilege transparency is as damaging at the explanatory level as classical OT’s failure to countenance opacity is at the descriptive level.

- Cyclic application in SPE is a stipulative mechanism.
Enriching OT with new constraint types

“Transderivational” constraints: O/O constraints, Paradigm Uniformity constraints, Sympathy, Turbidity, Targeted Constraints, Optimal Paradigms Theory, extensions of local constraint conjunction...
Enriching OT with new constraint types

- “Transderivational” constraints: O/O constraints, Paradigm Uniformity constraints, Sympathy, Turbidity, Targeted Constraints, Optimal Paradigms Theory, extensions of local constraint conjunction...
- Most are formally intractable and lack a learning theory.
Enriching OT with new constraint types

- “Transderivational” constraints: O/O constraints, Paradigm Uniformity constraints, Sympathy, Turbidity, Targeted Constraints, Optimal Paradigms Theory, extensions of local constraint conjunction...

- Most are formally intractable and lack a learning theory.

- All badly compromise the factorial typology.
Enriching OT with new constraint types

- “Transderivational” constraints: O/O constraints, Paradigm Uniformity constraints, Sympathy, Turbidity, Targeted Constraints, Optimal Paradigms Theory, extensions of local constraint conjunction...
- Most are formally intractable and lack a learning theory.
- All badly compromise the factorial typology.

⚠️ The cost of maintaining parallelism is too high.
Enriching OT with new constraint types

- Most are formally intractable and lack a learning theory.

- All badly compromise the factorial typology.

The cost of maintaining parallelism is too high.
Sympathy

- Selection

- Cand.

I/O Faithfulness, Markedness

Output

Sympathy
Theoretical choices

A generalization lost and regained

Cyclic Palatalization

Input 1

Faithfulness, Markedness

\(\star \)-Selection

\(\star \)Cand 1

Sympathy

Base

Input 2

Faithfulness, Markedness

\(\star \)-Selection

\(\star \)Cand 2

Sympathy

Output

O/O Constraints
Sympathy wrecks the factorial typology

Collapse of the syllable typology: Deriving the putatively non-existent “overkill” case by sympathy.

<table>
<thead>
<tr>
<th>Input: /pam/</th>
<th>DEP-C</th>
<th>Max-V</th>
<th>*CODA</th>
<th>DEP-V(I/O)</th>
<th>Max-C(I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. pam</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. ♀ pamə</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c. ♀ pa</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. ☞ pa.ə</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
The marriage of OT and LPM is a good match because they are about different things.

- LPM is about phonological domains and the phonology-morphology interface, with consequences for interactions among phonological processes; not intrinsically rule-based.
Stratal OT: parallel strata, serial interface

The marriage of OT and LPM is a good match because they are about different things.

- LPM is about phonological domains and the phonology-morphology interface, with consequences for interactions among phonological processes; not intrinsically rule-based.
- OT is about constraint interaction.
The marriage of OT and LPM is a good match because they are about different things.

- LPM is about phonological domains and the phonology-morphology interface, with consequences for interactions among phonological processes; not intrinsically rule-based.

- OT is about constraint interaction.

- Although parallelism has been an important guiding principle behind OT, seriality of various types is perfectly compatible with the OT approach.
The marriage of OT and LPM is a good match because they are about different things.

- LPM is about phonological domains and the phonology-morphology interface, with consequences for interactions among phonological processes; not intrinsically rule-based.
- OT is about constraint interaction.
- Although parallelism has been an important guiding principle behind OT, seriality of various types is perfectly compatible with the OT approach.
- The benefits of parallelism and Lexical Phonology can be reaped in a stratally organized version of OT.
The marriage of OT and LPM is a good match because they are about different things.

- LPM is about phonological domains and the phonology-morphology interface, with consequences for interactions among phonological processes; not intrinsically rule-based.
- OT is about constraint interaction.
- Although parallelism has been an important guiding principle behind OT, seriality of various types is perfectly compatible with the OT approach.
- The benefits of parallelism and Lexical Phonology can be reaped in a stratally organized version of OT.

Stratal OT unifies what parallelism treats as disparate phenomena

Distinctiveness and cyclic inheritance.
Stratal OT unifies what parallelism treats as disparate phenomena

- Distinctiveness and cyclic inheritance.
- Cyclic inheritance and opacity.
Assumptions shared with other stratified models of phonology

- A language may contain distinct phonological subsystems (levels, strata, cophonologies).
Assumptions shared with other stratified models of phonology

- A language may contain distinct phonological subsystems (levels, strata, cophonologies).
- The subsystems are OT constraint systems that may differ in ranking.
Assumptions shared with other stratified models of phonology

- A language may contain distinct phonological subsystems (levels, strata, cophonologies).
- The subsystems are OT constraint systems that may differ in ranking.
- A language may contain distinct morphological subsystems.
Assumptions shared with other stratified models of phonology

- A language may contain distinct phonological subsystems (levels, strata, cophonologies).
- The subsystems are OT constraint systems that may differ in ranking.
- A language may contain distinct morphological subsystems.
- The phonological and morphological subsystems are associated.
Assumptions shared with other stratified models of phonology

- A language may contain distinct phonological subsystems (levels, strata, cophonologies).
- The subsystems are OT constraint systems that may differ in ranking.
- A language may contain distinct morphological subsystems.
- The phonological and morphological subsystems are associated.
- The subsystems form a (partial or total) hierarchy of domains.
Assumptions shared with other stratified models of phonology

- A language may contain distinct phonological subsystems (levels, strata, cophonologies).
- The subsystems are OT constraint systems that may differ in ranking.
- A language may contain distinct morphological subsystems.
- The phonological and morphological subsystems are associated.
- The subsystems form a (partial or total) hierarchy of domains.

Special assumptions of Stratal OT

- *Intra-level parallelism*: Each level (stratum) is a parallel constraint system of the Classical OT type (no Output-Output constraints, Turbidity, Sympathy, etc.).
Special assumptions of Stratal OT

- **Intra-level parallelism**: Each level (stratum) is a parallel constraint system of the Classical OT type (no Output-Output constraints, Turbidity, Sympathy, etc.).

- **Inter-level seriality**: The strata interface serially as input/output. The output of a constraint system is the input to the constraint system that characterizes the next level.
Special assumptions of Stratal OT

- **Intra-level parallelism**: Each level (stratum) is a parallel constraint system of the Classical OT type (no Output-Output constraints, Turbidity, Sympathy, etc.).

- **Inter-level seriality**: The strata interface serially as input/output. The output of a constraint system is the input to the constraint system that characterizes the next level.

- Cyclic effects are input/output faithfulness effects. Thus, bases determine properties of their derivatives but not conversely.
Special assumptions of Stratal OT

- **Intra-level parallelism**: Each level (stratum) is a parallel constraint system of the Classical OT type (no Output-Output constraints, Turbidity, Sympathy, etc.).

- **Inter-level seriality**: The strata interface serially as input/output. The output of a constraint system is the input to the constraint system that characterizes the next level.

- Cyclic effects are input/output faithfulness effects. Thus, bases determine properties of their derivatives but not conversely.

- Opacity is constraint masking.
OT with two strata

OT with two strata

- Unofficial two-stratum model common in descriptive practice: the phonology outputs citation forms of words, ignoring sentence-level sandhi.
OT with three strata

- Stem phonology
 - Word phonology
 - Postlexical Phonology
Strata may differ in constraint ranking

The constraint system of level \(n+1 \) may differ in ranking from constraint system of level \(n \) by promotion of one or more faithfulness constraints or markedness constraints to undominated status.
Outline

1. Theoretical choices

2. A generalization lost and regained

3. Cyclic Palatalization
What do derived words inherit from their bases?

- **Stress**
 - *rèdefinítion* vs. *redùplicátion*
 - cf. *rèdefine*, *redúplicàte*
 - *glòttalización* vs. *imàginátion*
 - cf. *glòttalíze*, *imágine*
What do derived words inherit from their bases?

- **Stress**
 - rèdefinítion vs. redùplicátion
cf. rèdefíne, redúplicàte
 - glòttalizátion vs. imàginátion
cf. glòttalíze, imágine

- But not always
 - còntribútion = còntradíction
vs. contríbute, còntradíct
The SPE-style explanation

- Stress is inherited from bases to derivatives because it is assigned cyclically.
The SPE-style explanation

- Stress is inherited from bases to derivatives because it is assigned cyclically.
- Stress assignment is followed by destressing in certain environments, such as pretonic open syllables.
The SPE-style explanation

- Stress is inherited from bases to derivatives because it is assigned cyclically.
- Stress assignment is followed by destressing in certain environments, such as pretonic open syllables.
- Prediction: cyclically assigned phonological properties persist unless wiped out by later rules.
Lexical contrastiveness and cyclicity

- Derived words preserve the stress of their base in all and only those contexts where stress is lexically distinctive (Pater 2000).
Lexical contrastiveness and cyclicity

- Derived words preserve the stress of their base in all and only those contexts where stress is lexically distinctive (Pater 2000).

- In any context where a phonological property is contrastive, it is cyclically inherited. (Chung 1983)
Lexical contrastiveness and cyclicity

- Derived words preserve the stress of their base in all and only those contexts where stress is lexically distinctive (Pater 2000).
- In any context where a phonological property is contrastive, it is cyclically inherited. (Chung 1983)
- LPM: lexical rules are cyclic.
Lexical contrast: *Epàminóndas* vs. *Tàtamagóuchi*

<table>
<thead>
<tr>
<th>Input: [epáminondas]</th>
<th>IDENT-STRESS</th>
<th>ALIGN-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (èpa)mi(nón)das</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. e(pàmi)(nón)das</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Lexical contrastiveness and cyclicity

Lexical contrast: *Epàminóndas* vs. *Tàtamagóuchi*

<table>
<thead>
<tr>
<th>Input: [epáminondas]</th>
<th>IDENT-STRESS</th>
<th>ALIGN-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (èpa)mi(nón)das</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. e(pàmi)(nón)das</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Cyclic inheritance: *imàginátion* vs. *sèdimentátion*

<table>
<thead>
<tr>
<th>Input: [[imágin] ation]</th>
<th>IDENT-STRESS</th>
<th>ALIGN-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (ìma)gi(ná)tion</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. i(màgi)(ná)tion</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
 - The ranking $\text{FAITH-P(I/O)} \gg *P$ preserves input P in output forms ($= P$ is contrastive).
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
 - The ranking FAITH-P(I/O) \gg *P preserves input P in output forms (= P is contrastive).

2. O/O faithfulness constraints (MAX, DEP, IDENT)
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
 - The ranking FAITH-P(I/O) ≫ *P preserves input P in output forms (= P is contrastive).

2. O/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between the output representations of Bases and their derivatives.
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
 - The ranking FAITH-P(I/O) \gg *P preserves input P in output forms (= P is contrastive).

2. O/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between the output representations of Bases and their derivatives.
 - The ranking FAITH-P(O/O) \gg *P preserves base P in derivative forms (= P is cyclically inherited).
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
 - The ranking FAITH-P(I/O) ≫ *P preserves input P in output forms (= P is contrastive).

2. O/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between the output representations of Bases and their derivatives.
 - The ranking FAITH-P(O/O) ≫ *P preserves base P in derivative forms (= P is cyclically inherited).

- Misses the connection between lexical contrastiveness and cyclicity.
Parallel OT has two kinds of faithfulness

1. I/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between inputs and outputs.
 - The ranking FAITH-P(I/O) \gg *P preserves input P in output forms (= P is contrastive).

2. O/O faithfulness constraints (MAX, DEP, IDENT)
 - Hold between the output representations of Bases and their derivatives.
 - The ranking FAITH-P(O/O) \gg *P preserves base P in derivative forms (= P is cyclically inherited).

Misses the connection between lexical contrastiveness and cyclicity.
An unwanted consequence

Ranking the markedness constraints between the I/O and O/O constraints allows contrast without inheritance:

<table>
<thead>
<tr>
<th>Input:</th>
<th>Base:</th>
<th>ID-STR(I/O)</th>
<th>ALIGN-L</th>
<th>ID-STR(O/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[imagin] ation]</td>
<td>imagining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. ☞ (ìma)gi(ná)tion
- b. i(màgi)(ná)tion
- a. (èpa)mi(nón)das
- b. e(pàmi)(nón)das
An unwanted consequence

Ranking the markedness constraints between the I/O and O/O constraints allows **contrast without inheritance**:

<table>
<thead>
<tr>
<th>Input:</th>
<th>Base:</th>
<th>ID-STR(I/O)</th>
<th>ALIGN-L</th>
<th>ID-STR(O/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[imagin] ation]</td>
<td>imáginé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ☞ (ìma)gi(ná)tion</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td>i(màgi)(ná)tion</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Input:</td>
<td>[epáminondas]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>(èpa)mi(nón)das</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. ☞ e(pàmi)(nón)das</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

...and **inherence without contrast.**
Stratal OT predicts this because it has just I/O faithfulness; contrast and cyclic inheritance result from same ranking (FAITHFULNESS ≫ MARKEDNESS).
Stratal OT predicts this because it has just I/O faithfulness; contrast and cyclic inheritance result from same ranking (FAITHFULNESS \gg MARKEDNESS).

“Cyclic” effects are just I/O faithfulness effects, due to IDENT-P \gg *P.
Stratal OT predicts this because it has just I/O faithfulness; contrast and cyclic inheritance result from same ranking (\textsc{Faithfulness} \gg \textsc{Markedness}).

“Cyclic” effects are just I/O faithfulness effects, due to $\textsc{Ident-P} \gg \text{*P}$.

At the stem level, this ranking is equivalent to saying that P is lexically distinctive.
Stratal OT

Lexical contrast: *Epàminóndas* vs. *Tàtamagóuchí*

<table>
<thead>
<tr>
<th>Input</th>
<th>IDENT-STRESS</th>
<th>ALIGN-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (èpa)mi(nón)das</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. e(pàmi)(nón)das</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Lexical contrast: *Epàminóndas* vs. *Tàtamagóuchi*

<table>
<thead>
<tr>
<th>Input: [epáminondas]</th>
<th>IDENT-STRESS</th>
<th>ALIGN-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (èpa)mi(nón)das</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. ☞ e(pàmi)(nón)das</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Cyclic inheritance: *imàginâtion* vs. *sèdimentâtion*

<table>
<thead>
<tr>
<th>Input: [[imágin] ation]</th>
<th>IDENT-STRESS</th>
<th>ALIGN-LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (ìma)gi(ná)tion</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. ☞ i(màgi)(ná)tion</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Testing the correlation

1. Pretonic light syllables lose their stress (a consequence of foot binarity): órigin, oríginal; grámmar, grammárian; májesty, majéstic; mírácle, miráculous, sýnoným, synómýnous, phonétic, phònétícian, mèteorólogy, mèteorológica\al; àcadémic, àcademícian, épígràph, epígraphy
Testing the correlation

1. Pretonic light syllables lose their stress (a consequence of foot binarity): origin, original; grammár, grammárían; májesty, májestic; mírácle, miráculous, sýnoným, synónymous, phonétíc, phonétícian, mèteorólogy, mèteorológical; àcadémic, àcadémícian, épígraph, epígraphy

2. Stress is preserved in heavy pretonic syllables: quóte, quótátion; vítal, vítálity
Testing the correlation

1. Pretonic light syllables lose their stress (a consequence of foot binarity): origin, original; grammatical, grammatical; majesty, majestic; miracle, miraculous, synonymous, phonetic, phonetician, meteorology, meteorological; academic, academician, epigraphy

2. Stress is preserved in heavy pretonic syllables: quote, quotation; vital, vitality

3. Stress is preserved in non-pretonic syllables: original, originality; phenomenon, phenomenonology; apocalyptic, apocalyptic; apocopate, apocopation; episcopalian, epigrammatic; equalize, equalization
Same distribution for lexically distinctive stress

Same distribution for lexically distinctive stress

2. Contrastive stress in heavy pretonic syllables: chìmpànzée, Hàlicàrnássus, ìncàntátion (vs. níncompòop, Kìlimanjáro)
Same distribution for lexically distinctive stress

2. Contrastive stress in heavy pretonic syllables: chìmpànzée, Hàlicàrnássus, încàntátion (vs. níncompòop, Kìlimanjáro)

3. Contrastive stress in non-pretonic syllables: Epàminóndas, apòtheósis (vs. èpíththalámium, àbracadábra, àpotropáic)
Same distribution for lexically distinctive stress

2. Contrastive stress in heavy pretonic syllables: chìmpànzée, Hàlicàrnássus, încàntátion (vs. níncompòop, Kìlimanjáro)
3. Contrastive stress in non-pretonic syllables: Epàminóndas, apòtheósis (vs. èpithalámium, àbracadábra, àpotropáic)

Stratal OT predicts cyclic stress preservation at sites of lexical distinctiveness.
Same distribution for lexically distinctive stress

2. Contrastive stress in heavy pretonic syllables: chìmpà nzée, Hàlicàrnássus, încàntátion (vs. níncompòop, Kìlimanjáro)

3. Contrastive stress in non-pretonic syllables: Epàminóndas, apòtheósis (vs. èpithalámium, àbracadábra, àpotropáic)

[Stratal OT predicts cyclic stress preservation at sites of lexical distinctiveness.]
Outline

1. Theoretical choices
2. A generalization lost and regained
3. Cyclic Palatalization
Palatalization before \(y \)

- palace
 palatial \([\text{p}^{\text{h}}\text{\textae}\text{i}\text{\textae}]\) (cf. baron-ial)
- revise
 revision (cf. rebell-ion)
- Tunis
 Tunisia (cf. Mongol-ia)
- space
 spacious (cf. bil-ious)

- Palatalization: \(t,d,s,z \rightarrow \text{\textlangle} f,g,f,z \text{\textrangle} / _y \)
Palatalization before y

- palace palatial $[p^h\theta l\text{e}i\text{ʃ}t]$ (cf. baron-ial)
- revise revision (cf. rebell-ion)
- Tunis Tunisia (cf. Mongol-ia)
- space spacious (cf. bil-ious)

- **Palatalization:** $t,d,s,z \rightarrow t\text{ʃ},\theta l,f,z /_y$

- Perhaps part of a general coronal assimilation process ($tr \rightarrow t_l$ etc.).
Palatalization before y

- **palace**: palatial $[\text{p}ʰ\text{əl}ɪ\text{ʃ}ʃ]$ (cf. baron-ial)
- **revise**: revision (cf. rebell-ion)
- **Tunis**: Tunisia (cf. Mongol-ia)
- **space**: spacious (cf. bil-ious)

- Palatalization: $t,d,s,z \rightarrow tʃ,dʒ,f,ʒ$ / $_y$
- Perhaps part of a general coronal assimilation process ($tr \rightarrow tʃ$ etc.).
- Doesn’t apply before stressed u ([yuːw]). Standard analysis: y here is part of the nucleus.

Opacity: overapplication of palatalization

<table>
<thead>
<tr>
<th>Asia [éiζə]</th>
<th>Asiatic [èiζi:ærɪk]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocean [óuʃŋ]</td>
<td>oceanic [òuʃi:ænɪk]</td>
</tr>
<tr>
<td>palace</td>
<td>palatial [pʰəlɛiʃt]</td>
</tr>
<tr>
<td>artifice</td>
<td>artificial [àrrɪfɪʃt]</td>
</tr>
<tr>
<td></td>
<td>artificiality [àrrɪfɪʃiælɪrɪ]</td>
</tr>
</tbody>
</table>
Opacity: overapplication of palatalization

<table>
<thead>
<tr>
<th>English</th>
<th>Phonemic Form</th>
<th>Overapplication!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>[êiʒə]</td>
<td></td>
</tr>
<tr>
<td>ocean</td>
<td>[óuʃəŋ]</td>
<td></td>
</tr>
<tr>
<td>palace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>artifice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asiatic</td>
<td>[èiʒi:ærɪk]</td>
<td></td>
</tr>
<tr>
<td>oceanic</td>
<td>[óuʃi:ænɪk]</td>
<td></td>
</tr>
<tr>
<td>palatal</td>
<td>[pʰəlɛiʃʃ]</td>
<td></td>
</tr>
<tr>
<td>artificial</td>
<td>[àrrɪfiʃʃ]</td>
<td></td>
</tr>
<tr>
<td>artificiality</td>
<td>[àrrɪfiʃiælɪrɪ]</td>
<td></td>
</tr>
</tbody>
</table>
Overapplication is productive: nonce forms

- space spacious spà[ᵻː]ósity
- grace gracious grà[ᵻː]ósity
- pretence pretentious pretèn[ᵻː]ósity
- palace palatial palà[ᵻː] álity

Q: Where does the [ᵻː] come from?
Overapplication is productive: nonce forms

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>space</td>
<td>spacious</td>
<td>spà[][i:]ósity</td>
</tr>
<tr>
<td>grace</td>
<td>gracious</td>
<td>grà[][i:]ósity</td>
</tr>
<tr>
<td>pretence</td>
<td>pretentious</td>
<td>pretèn[][i:]ósity</td>
</tr>
<tr>
<td>palace</td>
<td>palatial</td>
<td>palà[][i:]álity</td>
</tr>
</tbody>
</table>

Q: Where does the [i:] come from?

Why not *vicious*: *vi[[j]osity*, like *viscous*: *viscosity*?
Overapplication is productive: nonce forms

<table>
<thead>
<tr>
<th>Word</th>
<th>Word</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>space</td>
<td>spacious</td>
<td>spà[ʃiː]ósity</td>
</tr>
<tr>
<td>grace</td>
<td>gracious</td>
<td>grà[ʃiː]ósity</td>
</tr>
<tr>
<td>pretence</td>
<td>pretentious</td>
<td>pretèn[ʃiː]ósity</td>
</tr>
<tr>
<td>palace</td>
<td>palatial</td>
<td>palà[ʃiː]álity</td>
</tr>
</tbody>
</table>

Q: Where does the [iː] come from?

- Why not *vicious* : viscous : viscosity?
- Why not *social* : total : totality?
Overapplication is productive: nonce forms

space spacious spà[ʃiːː]ósity
grace gracious grà[ʃiːː]ósity
pretence pretentious pretèn[ʃiːː]ósity
palace palatal palà[ʃiːː]álity

Q: Where does the [iː] come from?

- Why not *vicious : vicious : viscosity?
- Why not *social : social : totality?

A: [ʃ] is /-sy-/. /y/ triggers palatalization, becomes syllabic before a stressed vowel (*\text{\textsc{Clash}}), and deletes elsewhere (OCP).
Opacity and cyclicality: the connection

- y-deletion makes palatalization opaque, so Stratal OT tells us that it must be at later level.
Opacity and cyclicity: the connection

- y-deletion makes palatalization opaque, so Stratal OT tells us that it must be at later level.
- Palatalization applies at the stem level, y-deletion at the word level.
Opacity and cyclicality: the connection

- y-deletion makes palatalization opaque, so Stratal OT tells us that it must be at later level.
- Palatalization applies at the stem level, y-deletion at the word level.
- Independent confirmation: if y-deletion applied at the stem level, it would apply cyclically in *artificial* etc., deleting y before it can be vocalized in *artificiality.*
Opacity and cyclicity: the connection

- y-deletion makes palatalization opaque, so Stratal OT tells us that it must be at later level.
- Palatalization applies at the stem level, y-deletion at the word level.
- Independent confirmation: if y-deletion applied at the stem level, it would apply cyclically in *artificial* etc., deleting y before it can be vocalized in *artificiality*.
- This *predicts* the retention of palatalization in the base.
Inheritance

a. perpe[tʃ]ual perpe[tʃ]uity
b. ma[tʃ]ure ma[tʃ]uration
c. si[tʃ]uate si[tʃ]uation
d. in[tʃ]uit in[tʃ]uition
e. luk[ʃ]ury lug[ʒ]urious
Inheritance

a. perpe[tʃ]ual perpe[tʃ]uity
b. ma[tʃ]ure ma[tʃ]uration
c. si[tʃ]uate si[tʃ]uation
d. in[tʃ]uit in[tʃ]uition underapplication!
e. luk[ʃ]ury lug[ʒ]urious
Inheritance

a. perpe[tj]ual perpe[tj]uity
b. ma[tj]ure ma[tj]uration
c. si[tj]uate si[tj]uation
d. in[tj]uit in[tj]uition underapplication!
Intuition vs. maturation

Assume u is short when unstressed and long when stressed.
Intuition vs. maturation

- Assume *u* is short when unstressed and long when stressed.
- So the *y* in short *u* must be an onset, hence triggers palatalization.
Intuition vs. maturation

- Assume \(u \) is short when unstressed and long when stressed.
- So the \(y \) in short \(u \) must be an onset, hence triggers palatalization.
- No palatalization in *intuition* because prevocalic vowels don’t shorten: *expiation* vs. *explication*, *inchoation* vs. *intonation*.
Stratal OT provides a tight theory of the interaction of phonological processes.
Conclusion

- Stratal OT provides a tight theory of the interaction of phonological processes.
- The deductive structure provides a basis for typological predictions about phonological systems.
Conclusion

- Stratal OT provides a tight theory of the interaction of phonological processes.
- The deductive structure provides a basis for typological predictions about phonological systems.
- It also helps explain how phonology can be acquired.
Conclusion

- Stratal OT provides a tight theory of the interaction of phonological processes.
- The deductive structure provides a basis for typological predictions about phonological systems.
- It also helps explain how phonology can be acquired.
- It provides a framework for comprehensive phonological description.