Stochastic Integration for non-Martingales
Stationary Increment Processes
Multi-color noise approach

Daniel Alpay1 \quad Alon Kipnis 1

1Department of Mathematics
Ben-Gurion University of the Negev

SPA35 2011
Outline

1. Introduction
 - Motivation
 - Fractional Brownian Motion

2. Main Result
 - Stochastic Processes Induced by Operators
 - The m-Noise Space and the Process B_m
 - The S_m Transform
 - Stochastic Integration with respect to B_m

3. Applications
 - Optimal Control
Outline

1 Introduction
 • Motivation
 • Fractional Brownian Motion

2 Main Result
 • Stochastic Processes Induced by Operators
 • The m-Noise Space and the Process B_m
 • The S_m Transform
 • Stochastic Integration with respect to B_m

3 Applications
 • Optimal Control
Stochastic Processes and Colored noises

- Stochastic stationary noises with dependent distinct time samples do exist in nature.
- We wish to model physical phenomena by stochastic differential equations of this form
 \[\mathrm{d}X_t = F (X, dB_m). \]
- If \(B_m \) is a Brownian motion, the notion of Itô integral can be used so the differential \(dB_m \) is what we intuitively think of as white noise.
- Such notion does not exist in general if \(B_m \) is a stationary increment Gaussian process that is not a semi-martingale.
- The aim of this talk is to give meaning to this notation by extending Itô’s integration theory to these processes.
Stochastic Processes and Colored noises

- Stochastic stationary noises with dependent distinct time samples do exist in nature.
- We wish to model physical phenomenas by stochastic differential equations of this form

\[dX_t = F(X, dB_m). \]

- If \(B_m \) is a Brownian motion, the notion of Itô integral can be used so the differential \(dB_m \) is what we intuitively think of as white noise.
- Such notion does not exists in general if \(B_m \) is a stationary increment Gaussian process that is not a semi-martingale.
- The aim of this talk is to give meaning to this notation by extending Itô’s integration theory to these processes.
Stochastic Processes and Colored noises

- Stochastic stationary noises with dependent distinct time samples do exist in nature.
- We wish to model physical phenomenas by stochastic differential equations of this form

\[dX_t = F(X, dB_m). \]

- If \(B_m \) is a Brownian motion, the notion of Itô integral can be used so the differential \(dB_m \) is what we intuitively think of as white noise.
- Such notion does not exists in general if \(B_m \) is a stationary increment Gaussian process that is not a semi-martingale.
- The aim of this talk is to give meaning to this notation by extending Itô’s integration theory to these processes.
Stochastic Processes and Colored noises

- Stochastic stationary noises with dependent distinct time samples do exist in nature.
- We wish to model physical phenomenas by stochastic differential equations of this form

$$dX_t = F(X, dB_m).$$

- If B_m is a Brownian motion, the notion of Itô integral can be used so the differential dB_m is what we intuitively think of as white noise.
- Such notion does not exist in general if B_m is a stationary increment Gaussian process that is not a semi-martingale.
- The aim of this talk is to give meaning to this notation by extending Itô’s integration theory to these processes.
Stochastic Processes and Colored noises

- Stochastic stationary noises with dependent distinct time samples do exist in nature.
- We wish to model physical phenomenas by stochastic differential equations of this form
 \[dX_t = F(X, dB_m). \]

- If \(B_m \) is a Brownian motion, the notion of Itô integral can be used so the differential \(dB_m \) is what we intuitively think of as white noise.
- Such notion does not exist in general if \(B_m \) is a stationary increment Gaussian process that is not a semi-martingale.
- The aim of this talk is to give meaning to this notation by extending Itô’s integration theory to these processes.
Stochastic Processes and Colored noises

- Stochastic stationary noises with dependent distinct time samples do exist in nature.
- We wish to model physical phenomenas by stochastic differential equations of this form
 \[dX_t = F(X, dB_m). \]
- If \(B_m \) is a Brownian motion, the notion of Itô integral can be used so the differential \(dB_m \) is what we intuitively think of as white noise.
- Such notion does not exist in general if \(B_m \) is a stationary increment Gaussian process that is not a semi-martingale.
- The aim of this talk is to give meaning to this notation by extending Itô’s integration theory to these processes.
Outline

1. Introduction
 - Motivation
 - Fractional Brownian Motion

2. Main Result
 - Stochastic Processes Induced by Operators
 - The m-Noise Space and the Process B_m
 - The S_m Transform
 - Stochastic Integration with respect to B_m

3. Applications
 - Optimal Control
Fractional Brownian Motion

The fractional Brownian motion with Hurst parameter $0 < H < 1$ is a zero mean Gaussian stochastic process with covariance function

$$COV(t, s) = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} + |t - s|^{2H} \right), \quad t, s \in \mathbb{R}.$$

In particular, for $H \neq \frac{1}{2}$ it is not a semi-martingale.

Stochastic calculus for fractional Brownian (fBm) has attracted much attention in the last two decades, especially due to apparent application in economics.

The Itô-Wick integral for fBm seems to be the most natural extension of the Itô integral for this class of non-semi-martingale processes.
The fractional Brownian motion with Hurst parameter $0 < H < 1$ is a zero mean Gaussian stochastic process with covariance function

$$COV(t, s) = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} + |t - s|^{2H} \right), \quad t, s \in \mathbb{R}.$$

In particular, for $H \neq \frac{1}{2}$ it is not a semi-martingale.

- Stochastic calculus for fractional Brownian (fBm) has attracted much attention in the last two decades, especially due to apparent application in economics.
- The Itô-Wick integral for fBm seems to be the most natural extension of the Itô integral for this class of non-semi-martingale processes.
The fractional Brownian motion with Hurst parameter $0 < H < 1$ is a zero mean Gaussian stochastic process with covariance function

$$
COV(t, s) = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} + |t - s|^{2H} \right), \quad t, s \in \mathbb{R}.
$$

In particular, for $H \neq \frac{1}{2}$ it is not a semi-martingale.

Stochastic calculus for fractional Brownian (fBm) has attracted much attention in the last two decades, especially due to apparent application in economics.

The Itô-Wick integral for fBm seems to be the most natural extension of the Itô integral for this class of non-semi-martingale processes.
The fractional Brownian motion with Hurst parameter $0 < H < 1$ is a zero mean Gaussian stochastic process with covariance function

$$COV(t, s) = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} + |t - s|^{2H} \right), \quad t, s \in \mathbb{R}.$$

In particular, for $H \neq \frac{1}{2}$ it is not a semi-martingale.

Stochastic calculus for fractional Brownian (fBm) has attracted much attention in the last two decades, especially due to apparent application in economics.

The Itô-Wick integral for fBm seems to be the most natural extension of the Itô integral for this class of non-semi-martingale processes.
We have the following relation:

\[
\frac{1}{2} \left(|t|^{2H} + |s|^{2H} + |t - s|^{2H} \right) = \int_{-\infty}^{\infty} \hat{1}_{[0,t]}(0) \hat{1}_{[0,s]}(0)^* m(\xi) d\xi,
\]

where

- \(\hat{1}_{[0,t]} \) is the indicator function of the interval \([0, t]\)
- \(\hat{f} = \int_{-\infty}^{\infty} e^{-i\xi f(u)} du \)
- \(m(\xi) = M(H)|\xi|^{1-2H} \) and \(M(H) = \frac{H(1-H)}{\Gamma(2-2H) \cos(\pi H)} \)

According to the theory of Gelfand-Vilenkin on generalized stochastic processes, the time derivative of the fBm is a stationary stochastic distribution with spectral density \(m(\xi) \).
Fractional Brownian Motion
Spectral Properties

- We have the following relation:
 \[
 \frac{1}{2} \left(|t|^{2H} + |s|^{2H} + |t - s|^{2H} \right) = \int_{-\infty}^{\infty} 1_{[0, t]} 1_{[0, s]}^* m(\xi) d\xi,
 \]

 where
 - \(1_{[0, t]} \) is the indicator function of the interval \([0, t]\)
 - \(\hat{f} = \int_{-\infty}^{\infty} e^{-iu\xi} f(u) du \)
 - \(m(\xi) = M(H)|\xi|^{1-2H} \) and \(M(H) = \frac{H(1-H)}{\Gamma(2-2H) \cos(\pi H)} \)
 - According to the theory of Gelfand-Vilenkin on generalized stochastic processes, the time derivative of the fBm is a stationary stochastic distribution with spectral density \(m(\xi) \).
Fractional Brownian Motion
Member of a Wide Family

- It suggests the fBm is a member of a wide family of stationary increments Gaussian processes whose covariance function is of the form

\[
\text{COV}_m(t, s) = \int_{-\infty}^{\infty} 1_{[0,t]} 1_{[0,s]}^* m(\xi) d\xi
\]

for a function \(m(\xi) \) satisfies

\[
\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty.
\]
Fractional Brownian Motion
 Member of a Wide Family

- It suggests the fBm is a member of a wide family of stationary increments Gaussian processes whose covariance function is of the form

\[
COV_m(t, s) = \int_{-\infty}^{\infty} 1_{[0, t]} 1_{[0, s]}^* m(\xi) d\xi
\] \hspace{1cm} (1)

for a function \(m(\xi) \) satisfies \(\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty \).

Main Goal of this Talk
Extend the Itô integral for Brownian motion to this family of non-martingales stationary increments processes.
Outline

1. Introduction
 - Motivation
 - Fractional Brownian Motion

2. Main Result
 - Stochastic Processes Induced by Operators
 - The \(m \)-Noise Space and the Process \(B_m \)
 - The \(S_m \) Transform
 - Stochastic Integration with respect to \(B_m \)

3. Applications
 - Optimal Control
Stochastic Processes Induced by Operators

Definition

For a given spectral density function \(m(\xi) \) such that
\[
\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty,
\]
we associate an operator
\[
T_m : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R}), \quad \hat{T}_m f(\xi) = \hat{f}(\xi) \sqrt{m(\xi)}, \quad f \in L^2(\mathbb{R}).
\]
or
\[
f \xrightarrow{\sqrt{m}} T_m f
\]

This operator is in general unbounded.

\(1_{[0,t]} \in \text{dom}T_m \) for each \(t \geq 0 \).

The covariance function (1) can now be rewritten as
\[
COV_m(t, s) = \int_{-\infty}^{\infty} \hat{1}_{[0,t]} \hat{1}_{[0,s]}^* m(\xi) d\xi = (T_m 1_{[0,t]}, T_m 1_{[0,s]})_{L^2(\mathbb{R})}.
\]

D. Alpay and A. Kipnis

Multi-color noise spaces
Stochastic Processes Induced by Operators

Definition

For a given spectral density function \(m(\xi) \) such that
\[
\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty,
\]
we associate an operator
\[
T_m : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R}), \quad \hat{T_m}f(\xi) = \hat{f}(\xi) \sqrt{m(\xi)}, \quad f \in L^2(\mathbb{R}).
\]
or
\[
f \xrightarrow{\sqrt{m}} T_m f
\]

This operator is in general unbounded.

\(1_{[0,t]} \in \text{dom} T_m \) for each \(t \geq 0 \).

The covariance function (1) can now be rewritten as
\[
COV_m(t, s) = \int_{-\infty}^{\infty} 1_{[0,t]} 1_{[0,s]}^* m(\xi) d\xi = \left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L^2(\mathbb{R})}.
\]
Stochastic Processes Induced by Operators

Definition

For a given spectral density function \(m(\xi) \) such that
\[
\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty,
\]
we associate an operator
\[
T_m : L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R}), \quad Tmf(\xi) = \hat{f}(\xi) \sqrt{m(\xi)}, \quad f \in L^2(\mathbb{R}).
\]
or
\[
\begin{array}{ccc}
 f & \xrightarrow{\sqrt{m}} & Tmf \\
\end{array}
\]

This operator is in general unbounded.

\(1_{[0,t]} \in \text{dom}T_m \) for each \(t \geq 0 \).

The covariance function (1) can now be rewritten as
\[
COV_m(t, s) = \int_{-\infty}^{\infty} \hat{1}_{[0,t]}(\xi) \hat{1}_{[0,s]}^*(\xi) m(\xi) d\xi = (Tm1_{[0,t]}, Tm1_{[0,s]})_{L^2(\mathbb{R})}.
\]
Stochastic Processes Induced by Operators

Definition

For a given spectral density function \(m(\xi) \) such that
\[
\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty,
\]
we associate an operator
\[
T_m : L_2(\mathbb{R}) \rightarrow L_2(\mathbb{R}), \quad \hat{T_m f}(\xi) = \hat{f}(\xi) \sqrt{m(\xi)}, \quad f \in L_2(\mathbb{R}).
\]
or
\[
f \xrightarrow{\sqrt{m}} T_m f
\]

- This operator is in general unbounded.
- \(1_{[0,t]} \in \text{dom} T_m \) for each \(t \geq 0 \).

The covariance function (1) can now be rewritten as
\[
COV_m(t, s) = \int_{-\infty}^{\infty} 1_{[0,t]} 1_{[0,s]}^* m(\xi) d\xi = (T_m 1_{[0,t]}, T_m 1_{[0,s]})_{L_2(\mathbb{R})}.
\]
Stochastic Processes Induced by Operators

Definition

- For a given spectral density function $m(\xi)$ such that
 $\int_{-\infty}^{\infty} \frac{m(\xi)}{1+\xi^2} d\xi < \infty$, we associate an operator
 \[
 T_m : L_2(\mathbb{R}) \longrightarrow L_2(\mathbb{R}), \quad \hat{T}_m f(\xi) = \hat{f}(\xi) \sqrt{m(\xi)}, \quad f \in L_2(\mathbb{R}).
 \]

- This operator is in general unbounded.
- $1_{[0,t]} \in \text{dom}T_m$ for each $t \geq 0$.
- The covariance function (1) can now be rewritten as
 \[
 \text{COV}_m(t, s) = \int_{-\infty}^{\infty} \hat{1}_{[0,t]}(\xi) \hat{1}_{[0,s]}(\xi)^* m(\xi) d\xi = \left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L_2(\mathbb{R})}.
 \]
To each operator T_m we associate a Gaussian probability space $(\Omega, \mathcal{F}, P_m)$ which will be called the m-noise space.

Stochastic process with covariance function $\left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L^2(\mathbb{R})}$ is naturally defined on the m-noise space.

We use the analogue of the S-transform to define a Wick-Itô integral on this space.

Application to optimal control theory.
To each operator T_m we associate a Gaussian probability space $(\Omega, \mathcal{F}, P_m)$ which will be called the m-noise space.

Stochastic process with covariance function \((T_m\mathbf{1}_{[0,t]}, T_m\mathbf{1}_{[0,s]})_{L^2(\mathbb{R})}\) is naturally defined on the m-noise space.

We use the analogue of the S-transform to define a Wick-Itô integral on this space.

Application to optimal control theory.
To each operator T_m we associate a Gaussian probability space $(\Omega, \mathcal{F}, P_m)$ which will be called the m-noise space.

Stochastic process with covariance function

$\left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L^2(\mathbb{R})}$

is naturally defined on the m-noise space.

We use the analogue of the S-transform to define a Wick-Itô integral on this space.

Application to optimal control theory.
To each operator T_m we associate a Gaussian probability space $(\Omega, \mathcal{F}, P_m)$ which will be called the \textit{m-noise space}.

Stochastic process with covariance function $(T_m1_{[0,t]}, T_m1_{[0,s]})_{L^2(\mathbb{R})}$ is naturally defined on the \textit{m-noise} space.

We use the analogue of the S-transform to define a Wick-Itô integral on this space.

Application to optimal control theory.
To each operator T_m we associate a Gaussian probability space $(\Omega, \mathcal{F}, P_m)$ which will be called the m-noise space.

Stochastic process with covariance function

$$\left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L_2(\mathbb{R})}$$

is naturally defined on the m-noise space.

We use the analogue of the S-transform to define a Wick-Itô integral on this space.

Application to optimal control theory.
Outline

1. Introduction
 - Motivation
 - Fractional Brownian Motion

2. Main Result
 - Stochastic Processes Induced by Operators
 - The m-Noise Space and the Process B_m
 - The S_m Transform
 - Stochastic Integration with respect to B_m

3. Applications
 - Optimal Control
The m-Noise Space

Notations

We use an analogue of Hida’s white noise space as our underlying probability space. Notations:

- \mathcal{S} - Schwartz space of real rapidly decreasing functions.
- Ω is the dual of \mathcal{S}, the space of tempered distributions.
- $\mathcal{B}(\Omega)$ is the Borel σ-algebra.
- $\langle \omega, s \rangle = \langle \omega, s \rangle_{\Omega, \mathcal{S}}$, $s \in \mathcal{S}$ and $\omega \in \Omega$ will denote the bilinear pairing between \mathcal{S} and Ω.

Lemma

T_m as an operator from $\mathcal{S} \subset L_2(\mathbb{R})$, endowed with the Fréchet topology, into $L_2(\mathbb{R})$ is continuous.
The m-Noise Space

Notations

We use an analogue of Hida’s white noise space as our underlying probability space.

Notations:

- \mathcal{S} - Schwartz space of real rapidly decreasing functions.
- Ω is the dual of \mathcal{S}, the space of tempered distributions.
- $\mathcal{B}(\Omega)$ is the Borel σ-algebra.
- $\langle \omega, s \rangle = \langle \omega, s \rangle_{\mathcal{S}, \Omega}$, $s \in \mathcal{S}$ and $\omega \in \Omega$ will denote the bilinear pairing between \mathcal{S} and Ω.

Lemma

T_m as an operator from $\mathcal{S} \subset L_2(\mathbb{R})$, endowed with the Fréchet topology, into $L_2(\mathbb{R})$ is continuous.
The m-Noise Space

Notations

We use an analogue of Hida’s white noise space as our underlying probability space.

Notations:

- \mathcal{S} - Schwartz space of real rapidly decreasing functions.
- Ω is the dual of \mathcal{S}, the space of tempered distributions.
- $\mathcal{B}(\Omega)$ is the Borel σ-algebra.
- $\langle \omega, s \rangle = \langle \omega, s \rangle_{\Omega, \mathcal{S}}$, $s \in \mathcal{S}$ and $\omega \in \Omega$ will denote the bilinear pairing between \mathcal{S} and Ω.

Lemma

T_m as an operator from $\mathcal{S} \subset L_2(\mathbb{R})$, endowed with the Fréchet topology, into $L_2(\mathbb{R})$ is continuous.
Definition of the Probability Space

Bochner-Minlus Theorem

It follows that \(C_m(s) = e^{\frac{1}{2} \| T_m s \|_{L^2(\mathbb{R})}^2} \) is a characteristic functional on \(\mathcal{S} \).

By the Bochner-Minlos theorem there is a unique probability measure \(P_m \) on \(\Omega \) such that for all \(s \in \mathcal{S} \),

\[
C_m(s) = \exp \left\{ -\frac{1}{2} \| T_m s \|_{L^2(\mathbb{R})}^2 \right\} = \int_{\Omega} e^{i\langle \omega, s \rangle} dP_m(\omega) = \mathbb{E} \left[e^{i\langle \cdot, s \rangle} \right]
\]

\(\langle \omega, s \rangle \) is viewed as a random variable on \(\Omega \).

The triplet \((\Omega, \mathcal{B}(\Omega), P_m)\) will be called the \(m \)-noise space.

The case \(T_m = \text{id}_{L^2(\mathbb{R})} \) (\(m \equiv 1 \)) will lead back to Hida’s white noise space.
It follows that $C_m(s) = e^{\frac{1}{2} \| T_m s \|^2_{L^2(\mathbb{R})}}$ is a characteristic functional on \mathcal{S}.

By the Bochner-Minlos theorem there is a unique probability measure P_m on Ω such that for all $s \in \mathcal{S}$,

$$C_m(s) = \exp \left\{ -\frac{1}{2} \| T_m s \|^2_{L^2(\mathbb{R})} \right\} = \int_{\Omega} e^{i \langle \omega, s \rangle} dP_m(\omega) = \mathbb{E} \left[e^{i \langle \cdot, s \rangle} \right]$$

$\langle \omega, s \rangle$ is viewed as a random variable on Ω.

The triplet $(\Omega, \mathcal{B}(\Omega), P_m)$ will be called the m-noise space.

The case $T_m = id_{L^2(\mathbb{R})}$ $(m \equiv 1)$ will lead back to Hida’s white noise space.
Definition of the Probability Space

Bochner-Minlus Theorem

- It follows that $C_m(s) = e^{\frac{1}{2} \| T_m s \|_{L^2(\mathbb{R})}^2}$ is a characteristic functional on \mathcal{S}.

By the Bochner-Minlos theorem there is a unique probability measure P_m on Ω such that for all $s \in \mathcal{S}$,

$$C_m(s) = \exp \left\{ -\frac{1}{2} \| T_m s \|_{L^2(\mathbb{R})}^2 \right\} = \int_{\Omega} e^{i\langle \omega, s \rangle} dP_m(\omega) = \mathbb{E} \left[e^{i\langle \cdot, s \rangle} \right]$$

- $\langle \omega, s \rangle$ is viewed as a random variable on Ω.
- The triplet $(\Omega, \mathcal{B}(\Omega), P_m)$ will be called the m-noise space.
- The case $T_m = id_{L^2(\mathbb{R})}$ ($m \equiv 1$) will lead back to Hida’s white noise space.
Definition of the Probability Space

Bochner-Minlus Theorem

- It follows that $C_m(s) = e^{\frac{1}{2} \left\| T_m s \right\|_{L_2(\mathbb{R})}^2}$ is a characteristic functional on \mathcal{S}.

By the Bochner-Minlos theorem there is a unique probability measure P_m on Ω such that for all $s \in \mathcal{S}$,

$$C_m(s) = \exp \left\{ -\frac{1}{2} \left\| T_m s \right\|_{L_2(\mathbb{R})}^2 \right\} = \int_{\Omega} e^{i\langle \omega, s \rangle} dP_m(\omega) = \mathbb{E} \left[e^{i\langle \cdot, s \rangle} \right]$$

- $\langle \omega, s \rangle$ is viewed as a random variable on Ω.
- The triplet $(\Omega, \mathcal{B}(\Omega), P_m)$ will be called the m-noise space.
- The case $T_m = id_{L_2(\mathbb{R})}$ ($m \equiv 1$) will lead back to Hida’s white noise space.
Definition of the Probability Space

Bochner-Minlus Theorem

- It follows that $C_m(s) = e^{\frac{1}{2} \| T_ms \|^2_{L^2(\mathbb{R})}}$ is a characteristic functional on \mathcal{S}.

By the Bochner-Minlos theorem there is a unique probability measure P_m on Ω such that for all $s \in \mathcal{S}$,

$$C_m(s) = \exp \left\{ -\frac{1}{2} \| T_ms \|^2_{L^2(\mathbb{R})} \right\} = \int_{\Omega} e^{i\langle \omega, s \rangle} dP_m(\omega) = \mathbb{E} \left[e^{i\langle \cdot, s \rangle} \right]$$

- $\langle \omega, s \rangle$ is viewed as a random variable on Ω.
- The triplet $(\Omega, \mathcal{B}(\Omega), P_m)$ will be called the m-noise space.
- The case $T_m = id_{L^2(\mathbb{R})}$ $(m \equiv 1)$ will lead back to Hida's white noise space.
The Process B_m

Definition

- $\langle \omega, s \rangle$, $s \in \mathcal{S}$, is a zero mean Gaussian random variable with variance

$$E \left[\langle \cdot, s \rangle^2 \right] = \| T_m s \|_{L_2(\mathbb{R})}^2.$$

- The last isometry $L_2 (\Omega, \mathcal{B}(\mathcal{S}'), P_m) \mapsto T_m \mathcal{S}$ can be extended such that $\langle \omega, f \rangle$, $f \in \text{Dom}(T_m)$ is meaningful and

$$E \left[\langle \cdot, f \rangle^2 \right] = \| T_m f \|_{L_2(\mathbb{R})}^2.$$

- In particular, for $t \geq 0$ we may define the stochastic process $B_m : \Omega \times [0, \infty] \mapsto \mathbb{R}$ by

$$B_m(t) := B_m(\omega, t) := \langle \omega, 1_{[0,t]} \rangle.$$
The Process B_m

Definition

- $\langle \omega, s \rangle$, $s \in \mathcal{S}$, is a zero mean Gaussian random variable with variance

$$\mathbb{E} \left[\langle \cdot, s \rangle^2 \right] = \| T_m s \|_{L_2(\mathbb{R})}^2.$$

- The last isometry $L_2(\Omega, \mathcal{B}(\mathcal{S}'), P_m) \hookrightarrow T_m \mathcal{S}$ can be extended such that $\langle \omega, f \rangle$, $f \in \text{Dom}(T_m)$ is meaningful and

$$\mathbb{E} \left[\langle \cdot, f \rangle^2 \right] = \| T_m f \|_{L_2(\mathbb{R})}^2.$$

- In particular, for $t \geq 0$ we may define the stochastic process $B_m : \Omega \times [0, \infty] \rightarrow \mathbb{R}$ by

$$B_m(t) := B_m(\omega, t) := \langle \omega, 1_{[0,t]} \rangle.$$
The Process B_m

Definition

- $\langle \omega, s \rangle$, $s \in \mathcal{S}$, is a zero mean Gaussian random variable with variance

$$
\mathbb{E} \left[\langle \cdot, s \rangle^2 \right] = \| T_m s \|_{L^2(\mathbb{R})}^2.
$$

- The last isometry $L_2(\Omega, \mathcal{B}(\mathcal{S}'), P_m) \mapsto T_m \mathcal{S}$ can be extended such that $\langle \omega, f \rangle$, $f \in \text{Dom}(T_m)$ is meaningful and

$$
\mathbb{E} \left[\langle \cdot, f \rangle^2 \right] = \| T_m f \|_{L^2(\mathbb{R})}^2.
$$

- In particular, for $t \geq 0$ we may define the stochastic process $B_m : \Omega \times [0, \infty] \rightarrow \mathbb{R}$ by

$$
B_m(t) := B_m(\omega, t) := \langle \omega, 1_{[0,t]} \rangle.
$$
The Process B_m

Properties

- The process $\{B_m\}_{t \geq 0}$ is a zero mean Gaussian process with covariance function
 \[
 \mathbb{E}[B_m(t)B_m(s)] = \left(T_m1_{[0,t]}, T_m1_{[0,s]} \right)_{L_2(\mathbb{R})}.
 \]

- $\frac{d}{dt} B_m$ (in the sense of distribution) has spectral density $m(\xi)$.

- In view of the previous isometry, it is natural to define for $f \in \text{Dom}(T_m)$,
 \[
 \int_0^t f(u) dB_m(u) = \langle \omega, 1_{[0,t]} f \rangle, \quad t \geq 0.
 \]
The Process B_m

Properties

- The process $\{B_m\}_{t \geq 0}$ is a zero mean Gaussian process with covariance function
 $$\mathbb{E}[B_m(t)B_m(s)] = \left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L^2(\mathbb{R})}.$$

- $\frac{d}{dt} B_m$ (in the sense of distribution) has spectral density $m(\xi)$.

- In view of the previous isometry, it is natural to define for $f \in \text{Dom}(T_m)$,
 $$\int_0^t f(u) dB_m(u) = \langle \omega, 1_{[0,t]} f \rangle, \quad t \geq 0.$$
The Process B_m

Properties

- The process $\{B_m\}_{t \geq 0}$ is a zero mean Gaussian process with covariance function
 $$\mathbb{E}[B_m(t)B_m(s)] = \left(T_m 1_{[0,t]}, T_m 1_{[0,s]} \right)_{L^2(\mathbb{R})}.$$

- $\frac{d}{dt} B_m$ (in the sense of distribution) has spectral density $m(\xi)$.

- In view of the previous isometry, it is natural to define for $f \in \text{Dom}(T_m)$,
 $$\int_0^t f(u) dB_m(u) = \langle \omega, 1_{[0,t]} f \rangle, \quad t \geq 0.$$
The Process B_m

Examples

Example (Standard Brownian Motion)

Take $m \equiv 1$, then $T_m = id_{L_2(\mathbb{R})}$ and

$$\mathbb{E}[B_m(t)B_m(s)] = (T_m\mathbf{1}_{[0,t]}, T_m\mathbf{1}_{[0,s]}) = \int_{-\infty}^{\infty} \mathbf{1}_{[0,t]}\mathbf{1}_{[0,s]}^*du = t \wedge s.$$

Example (Fractional Brownian Motion)

Take $m(\xi) = M(H)|\xi|^{1-2H}$, then

$$\mathbb{E}[B_m(t)B_m(s)] = \int_{-\infty}^{\infty} \mathbf{1}_{[0,t]}\mathbf{1}_{[0,s]}^* \ m(\xi)d\xi = \frac{|t|^{2H} + |s|^{2H} - |t-s|^{2H}}{2}.$$
Outline

1. Introduction
 - Motivation
 - Fractional Brownian Motion

2. Main Result
 - Stochastic Processes Induced by Operators
 - The m-Noise Space and the Process B_m
 - The S_m Transform
 - Stochastic Integration with respect to B_m

3. Applications
 - Optimal Control
We wish to define a Wick-Itô-Skorohod stochastic integral based on the process \(\{B_m\}_{t \geq 0} \).

A standard definition in Hida’s white noise space would be

\[
\int_0^\Delta X(t) dB(t) \triangleq \int_0^\Delta X(t) \diamond \frac{d}{dt} B_m(t) dt,
\]

where

\(\{X(t)\}_{0 \leq t \Delta} \) is a stochastic process

\(\frac{d}{dt} B_m(t) \) is the time derivative (in the sense of distributions) of the Brownian motion.

\(\diamond \) is the Wick product.

Those definitions make use of the Wiener-Itô Chaos decomposition of the white noise space.
Any $X \in L_2(\Omega, \mathcal{B}, P_m)$ can be represented as

$$X = \sum_{\alpha} f_{\alpha} H_{\alpha}(\omega).$$

Any such basis for $L_2(\Omega, \mathcal{B}(\mathcal{S}'), P_m)$ depends explicitly on $m(\xi)$.

In order to keep our construction as general as possible, we take an S-transform approach for the Wick-Itô-Skhorhod integral, which does not use chaos decomposition.
Definition of the S_m-Transform

- We reduce to the σ-field \mathcal{G} generated by $\{\langle \omega, f \rangle \}_{f \in \text{Dom}(T_m)}$.

Definition

For a random variable $X \in L_2 (\Omega, \mathcal{G}, P_m)$ define

$$(S_m X)(s) \triangleq \mathbb{E} \left[e^{\langle \cdot, s \rangle} X(\cdot) \right] e^{-\frac{1}{2} \| T_m s \|^2}, \quad s \in \mathcal{S}.$$

- Any $X \in L_2 (\Omega, \mathcal{G}, P_m)$ is uniquely determined by $(S_m X)(s)$.

Lemma

$$(S_m B_m(t))(s) = (T_m s, T_m 1_{[0,t]})_{L_2(\mathbb{R})}$$

is everywhere differentiable with respect to t.

D. Alpay and A. Kipnis Multi-color noise spaces
We reduce to the σ-field \mathcal{G} generated by $\{\langle \omega, f \rangle \}_{f \in \text{Dom}(T_m)}$.

Definition

For a random variable $X \in L_2(\Omega, \mathcal{G}, P_m)$ define

$$(S_mX)(s) \triangleq \mathbb{E} \left[e^{\langle \cdot, s \rangle} X(\cdot) \right] e^{-\frac{1}{2} \| T_ms \|^2}, \quad s \in \mathcal{S}.$$

Any $X \in L_2(\Omega, \mathcal{G}, P_m)$ is uniquely determined by $(S_mX)(s)$.

Lemma

$$(S_mB_m(t))(s) = (T_ms, T_m1_{[0,t]} \rangle_{L_2(\mathbb{R})}$$

is everywhere differentiable with respect to t.

D. Alpay and A. Kipnis Multi-color noise spaces
Definition of the S_m-Transform

- We reduce to the σ-field \mathcal{G} generated by $\{\langle \omega, f \rangle \}_{f \in \text{Dom}(T_m)}$.

Definition

For a random variable $X \in L_2(\Omega, \mathcal{G}, P_m)$ define

$$(S_mX)(s) \triangleq \mathbb{E} \left[e^{\langle \cdot, s \rangle} X(\cdot) \right] e^{-\frac{1}{2} \| T_m s \|^2}, \quad s \in \mathcal{S}.$$

- Any $X \in L_2(\Omega, \mathcal{G}, P_m)$ is uniquely determined by $(S_mX)(s)$.

Lemma

$$(S_mB_m(t))(s) = (T ms, T m 1_{[0,t]})_{L_2(\mathbb{R})}$$

is everywhere differentiable with respect to t.

D. Alpay and A. Kipnis

Multi-color noise spaces
Definition of the S_m-Transform

- We reduce to the σ-field \mathcal{G} generated by $\{\langle \omega, f \rangle \}_{f \in \text{Dom}(T_m)}$.

Definition

For a random variable $X \in L_2(\Omega, \mathcal{G}, P_m)$ define

$$(S_mX)(s) \triangleq \mathbb{E} \left[e^{\langle \cdot, s \rangle} X(\cdot) \right] e^{-\frac{1}{2} \| T_ms \|^2}, \quad s \in \mathcal{S}.$$

- Any $X \in L_2(\Omega, \mathcal{G}, P_m)$ is uniquely determined by $(S_mX)(s)$.

Lemma

$$(S_mB_m(t))(s) = (T_ms, T_m1_{[0,t]})_{L_2(\mathbb{R})}$$

is everywhere differentiable with respect to t.

D. Alpay and A. Kipnis
Multi-color noise spaces
Outline

1. Introduction
 - Motivation
 - Fractional Brownian Motion

2. Main Result
 - Stochastic Processes Induced by Operators
 - The m-Noise Space and the Process B_m
 - The S_m Transform
 - Stochastic Integration with respect to B_m

3. Applications
 - Optimal Control
Definition of the Stochastic Integral

A stochastic process \(X(t) : [0, \Delta] \rightarrow L_2(\Omega, \mathcal{G}, P_m) \) will be called Wick-Itô integrable if there exists a random variable \(\Phi \in L_2(\Omega, \mathcal{G}, P_m) \) such that

\[
(S_m \Phi)(s) = \int_0^\Delta (S_m X(t))(s) \frac{d}{dt} (S_m B_m(t))(s) dt.
\]

In that case we define \(\Phi(\Delta) = \int_0^\Delta X(t) dB_m(t). \)

- For any polynomial \(p \in \mathbb{R}[X] \), \(p(B_m(t)) \) is integrable.
Definition of the Stochastic Integral

A stochastic process \(X(t) : [0, \Delta] \rightarrow L_2 (\Omega, \mathcal{G}, P_m) \) will be called Wick-Itô integrable if there exists a random variable \(\Phi \in L_2 (\Omega, \mathcal{G}, P_m) \) such that

\[
(S_m \Phi) (s) = \int_0^\Delta (S_m X(t)) (s) \frac{d}{dt} (S_m B_m(t)) (s) dt.
\]

In that case we define \(\Phi(\Delta) = \int_0^\Delta X(t) dB_m(t) \).

- For any polynomial \(p \in \mathbb{R} [X] \), \(p (B_m(t)) \) is integrable.
The Wick product of $X, Y \in L_2(\Omega, \mathcal{G}, P_m)$ can be defined by

$$(S_m (X \diamond Y)) (s) = S_m X(s) S_m Y(s)$$

So

$$\int_0^\Delta X(t) dB_m(t) = \int_0^\Delta X(t) \diamond \frac{d}{dt} B_m(t)$$

where the integral on the right is a Pettis integral.

If B_m is the Brownian motion ($m(\xi) \equiv 1$), our definition of the stochastic integral coincides with the Itô-Hitsuda integral [Hida1993].

If B_m is the fractoinal Brownian motion ($m(\xi) = |\xi|^{1-2H}$), our definition of the stochastic integral reduces to the one given in [Bender2003] which coincides the Wick-Itô-Skorokhod integral defined in [Duncan,Hu 2000] and [Hu,Øksendal 2003].
The Wick product of $X, Y \in L_2(\Omega, \mathcal{G}, P_m)$ can be defined by

$$(S_m (X \diamond Y))(s) = S_m X(s)S_m Y(s)$$

So

$$\int_0^\Delta X(t)dB_m(t) = \int_0^\Delta X(t) \diamond \frac{d}{dt} B_m(t)$$

where the integral on the right is a Pettis integral.

If B_m is the Brownian motion ($m(\xi) \equiv 1$), our definition of the stochastic integral coincides with the Itô-Hitsuda integral [Hida1993].

If B_m is the fractoinal Brownian motion ($m(\xi) = |\xi|^{1-2H}$), our definition of the stochastic integral reduces to the one given in [Bender2003] which coincides the Wick-Itô-Skorokhod integral defined in [Duncan,Hu 2000] and [Hu,Øksendal 2003].
The Wick product of $X, Y \in L^2(\Omega, \mathcal{G}, P_m)$ can be defined by

$$(S_m (X \diamond Y))(s) = S_m X(s) S_m Y(s)$$

So

$$\int_0^\Delta X(t) dB_m(t) = \int_0^\Delta X(t) \diamond \frac{d}{dt} B_m(t)$$

where the integral on the right is a Pettis integral.

If B_m is the Brownian motion ($m(\xi) \equiv 1$), our definition of the stochastic integral coincides with the Itô-Hitsuda integral [Hida1993].

If B_m is the fractoinal Brownian motion ($m(\xi) = |\xi|^{1-2H}$), our definition of the stochastic integral reduces to the one given in [Bender2003] which coincides the Wick-Itô-Skorokhod integral defined in [Duncan,Hu 2000] and [Hu,Øksendal 2003].
The Wick product of $X, Y \in L_2(\Omega, \mathcal{G}, P_m)$ can be defined by

$$(S_m(X \diamond Y))(s) = S_mX(s)S_mY(s)$$

So

$$\int_0^\Delta X(t)dB_m(t) = \int_0^\Delta X(t) \diamond \frac{d}{dt}B_m(t)$$

where the integral on the right is a Pettis integral.

If B_m is the Brownian motion ($m(\xi) \equiv 1$), our definition of the stochastic integral coincides with the Itô-Hitsuda integral [Hida1993].

If B_m is the fractoional Brownian motion ($m(\xi) = |\xi|^{1-2H}$), our definition of the stochastic integral reduces to the one given in [Bender2003] which coincides the Wick-Itô-Skorokhod integral defined in [Duncan,Hu 2000] and [Hu,Øksendal 2003].
Itô’s Formula

We have the following version of Itô’s Formula:

- Let \(X(t) = \int_0^t f(u) dB_m(u) = \langle \omega, 1_{[0,t]} f \rangle \)
 where \(f \in domT_m \) and \(t \geq 0 \), such that \(\| T_m 1_{[0,t]} f \| ^2 \) is absolutely continuous in \(t \).
- \(F \in C^{1,2} ([0, t], \mathbb{R}) \) with \(\frac{\partial}{\partial t} F(X_t), \frac{\partial}{\partial x} F(X_t), \frac{\partial^2}{\partial x^2} F(X_t) \) all in \(L_1 (\Omega \times [0, t]) \).
- The following holds in \(L_2 (\Omega, \mathcal{G}, P_T) \):

\[
F(t, X_t) - F(0, 0) = \int_0^t f(u) \frac{\partial}{\partial x} F(u, X(u)) dB_m(u) \\
+ \int_0^t \frac{\partial}{\partial u} F(u, X(u)) du + \frac{1}{2} \int_0^t \frac{d}{du} \| T_m 1_{[0,u]} f \|^2 \frac{\partial^2}{\partial x^2} F(u, X(u)) du
\]
Itô’s Formula

We have the following version of Itô’s Formula:

- Let \(X(t) = \int_0^t f(u)\,dB_m(u) = \langle \omega, 1_{[0,t]}f \rangle \)
 where \(f \in \text{dom}T_m \) and \(t \geq 0 \), such that \(\| T_m 1_{[0,t]}f \|_2^2 \) is absolutely continuous in \(t \).

- \(F \in C^{1,2}([0, t], \mathbb{R}) \) with \(\frac{\partial}{\partial t} F(X_t), \frac{\partial}{\partial x} F(X_t), \frac{\partial^2}{\partial x^2} F(X_t) \) all in \(L_1(\Omega \times [0, t]) \).

- The following holds in \(L_2(\Omega, \mathcal{G}, P_T) \):

\[
F(t, X_t) - F(0, 0) = \int_0^t f(u) \frac{\partial}{\partial x} F(u, X(u)) \, dB_m(u) \\
+ \int_0^t \frac{\partial}{\partial u} F(u, X(u))\,du + \frac{1}{2} \int_0^t \frac{d}{du} \| T_m 1_{[0,u]}f \|_2^2 \frac{\partial^2}{\partial x^2} F(u, X(u))\,du
\]
Itô’s Formula

We have the following version of Itô’s Formula:

- Let $X(t) = \int_0^t f(u)dB_m(u) = \langle \omega, 1_{[0,t]}f \rangle$
where $f \in \text{dom}T_m$ and $t \geq 0$, such that $\|T_m1_{[0,t]}f\|^2$ is absolutely continuous in t.

- $F \in C^{1,2}([0, t] \times \mathbb{R})$ with $\frac{\partial}{\partial t}F(X_t), \frac{\partial}{\partial x}F(X_t), \frac{\partial^2}{\partial x^2}F(X_t)$ all in $L_1(\Omega \times [0, t])$.

- The following holds in $L_2(\Omega, G, P_T)$:

\[
F(t, X_t) - F(0, 0) = \int_0^t f(u) \frac{\partial}{\partial x}F(u, X(u))dB_m(u)
+ \int_0^t \frac{\partial}{\partial u}F(u, X(u))du + \frac{1}{2} \int_0^t \frac{d}{du} \|T_m1_{[0,u]}f\|^2 \frac{\partial^2}{\partial x^2}F(u, X(u))du
\]
Introduction

Motivation
Fractional Brownian Motion

Main Result

Stochastic Processes Induced by Operators
The m-Noise Space and the Process B_m
The S_m Transform
Stochastic Integration with respect to B_m

Applications

Optimal Control
Consider the scalar system subject to

\[
\begin{aligned}
\frac{dx_t}{dt} &= (A_t dt + C_t dB_m(t)) x_t + F_t u_t dt \\
x_0 &\in \mathbb{R} \quad \text{(deterministic)}
\end{aligned}
\]

where \(A(\cdot), C(\cdot), F(\cdot) : [0, \Delta] \to \mathbb{R} \) are bounded deterministic functions.

Using Itô’s formula, one may verify that

\[
x_\Delta = x_0 \exp \left\{ \int_0^\Delta (A_t + F_t u_t) dt + \int_0^\Delta C_t dB_m(t) - \frac{1}{2} \| T_m^1_{[0,\Delta]} \|^2 \right\}
\]
Consider the scalar system subject to

\[
\begin{aligned}
\text{d}x_t &= (A_t \text{d}t + C_t \text{d}B_m(t)) \ x_t + F_t u_t \text{d}t \\
x_0 &\in \mathbb{R} \quad \text{(deterministic)}
\end{aligned}
\]

where \(A(\cdot), C(\cdot), F(\cdot) : [0, \Delta] \rightarrow \mathbb{R} \) are bounded deterministic functions.

Using Itô’s formula, one may verify that

\[
x_{\Delta} = x_0 \exp \left\{ \int_0^\Delta (A_t + F_t u_t) \text{d}t + \int_0^\Delta C_t \text{d}B_m(t) - \frac{1}{2} \| T_m 1_{[0, \Delta]} \|^2 \right\}
\]
Consider the scalar system subject to

\[\begin{align*}
\frac{dx_t}{dt} &= (A_t dt + C_t dB_m(t)) x_t + F_t u_t dt \\
x_0 &\in \mathbb{R} \quad \text{(deterministic)}
\end{align*}\]

where \(A(\cdot), C(\cdot), F(\cdot) : [0, \Delta] \rightarrow \mathbb{R}\) are bounded deterministic functions.

Using Itô's formula, one may verify that

\[x_\Delta = x_0 \exp \left\{ \int_0^\Delta (A_t + F_t u_t) dt + \int_0^\Delta C_t dB_m(t) - \frac{1}{2} \| T_m 1_{[0,\Delta]} \|^2 \right\}\]
We present a quadratic cost functional

\[J(x_0, u(\cdot)) := \mathbb{E} \left[\int_0^\Delta \left(Q_t x_t^2 + R_t u_t^2 \right) dt + G x_\Delta^2 \right]. \]

where \(R(\cdot), Q(\cdot) : [0, \Delta] \to \mathbb{R}, R_t > 0, Q_t \geq 0 \forall t \geq 0 \) and \(G \geq 0 \).

We reduce ourselves to control signals of linear feedback type:

\[u_t = K_t \cdot x_t. \]

so the control dynamics reduces to

\[
\begin{cases}
 dx_t = [(A_t + F_t K_t) dt + C_t dB_m(t)] x_t \\
 x_0 \in \mathbb{R} \quad \text{(deterministic)}
\end{cases}
\]
We present a quadratic cost functional

\[J(x_0, u(.)) := \mathbb{E} \left[\int_0^\Delta \left(Q_t x_t^2 + R_t u_t^2 \right) dt + G x_0^2 \right]. \]

where \(R(\cdot), Q(\cdot) : [0, \Delta] \rightarrow \mathbb{R}, \ R_t > 0, \ Q_t \geq 0 \ \forall t \geq 0 \) and \(G \geq 0 \).

We reduce ourselves to control signals of linear feedback type:

\[u_t = K_t \cdot x_t. \]

so the control dynamics reduces to

\[
\begin{cases}
\text{d}x_t = \left[(A_t + F_t K_t) \text{d}t + C_t \text{d}B_m(t) \right] x_t \\
x_0 \in \mathbb{R} \quad \text{(deterministic)}
\end{cases}
\]
And the cost may be associated directly with the feedback gain $K_t : [0, \Delta] \rightarrow \mathbb{R}$:

$$J(x_0, K(\cdot)) := \mathbb{E} \left[\int_0^\Delta \left(Q_t + K_t^2 R_t \right) x_t^2 \,dt + Gx_\Delta^2 \right], \quad (2)$$

The optimal stochastic control problem:

Minimize the cost functional (2), for each given x_0, over the set of all linear feedback controls $K(\cdot) : [0, \Delta] \rightarrow \mathbb{R}$.

This control problem was formulated and solved in the case of fractional Brownian motion by Hu and Yu Zhou in 2005, and appears in [Biagini, Hu, Øksendal, Zhang 2008].

D. Alpay and A. Kipnis

Multi-color noise spaces
And the cost may be associated directly with the feedback gain $K_t : [0, \Delta] \rightarrow \mathbb{R}$:

$$J \left(x_0, K(\cdot) \right) := \mathbb{E} \left[\int_0^\Delta \left(Q_t + K_t^2 R_t \right) x_t^2 dt + Gx^2_{\Delta} \right],$$ \quad (2)$$

The optimal stochastic control problem:

Minimize the cost functional (2), for each given x_0, over the set of all linear feedback controls $K(\cdot) : [0, \Delta] \rightarrow \mathbb{R}$.

This control problem was formulated and solved in the case of fractional Brownian motion by Hu and Yu Zhou in 2005, and appears in [Biagini,Hu,Øksendal,Zhang 2008].
And the cost may be associated directly with the feedback gain $K_t : [0, \Delta] \rightarrow \mathbb{R}$:

$$J(x_0, K(\cdot)) := \mathbb{E} \left[\int_0^\Delta \left(Q_t + K_t^2 R_t \right) x_t^2 dt + G x_\Delta^2 \right], \quad (2)$$

The optimal stochastic control problem:

Minimize the cost functional (2), for each given x_0, over the set of all linear feedback controls $K(\cdot) : [0, \Delta] \rightarrow \mathbb{R}$.

This control problem was formulated and solved in the case of fractional Brownian motion by Hu and Yu Zhou 2005, and appears in [Biagini,Hu,Øksendal,Zhang 2008].
If \(\frac{d}{dt} \left\| T_m1_{[0,t]} C(\cdot) \right\|^2 \) is bounded in \((0, \Delta)\), then the optimal linear feedback gain \(\tilde{K}_t \) is given by

\[
\tilde{K}_t = -\frac{F_t}{R_t} p_t. \tag{3}
\]

where \(\{p_t, t \in [0, \Delta]\} \) is the unique positive solution of the Riccati equation

\[
\begin{aligned}
\dot{p}_t + 2p_t \left[A_t + \frac{d}{dt} \left\| T_m1_{[0,t]} C(\cdot) \right\|^2 \right] + Q_t - \frac{F_t^2}{R_t} p_t^2 &= 0 \\
p_\Delta &= G
\end{aligned} \tag{4}
\]
Proof.

Using Itô’s formula with:
\[x_t = x_0 \exp \left[\int_0^t c_u dBm(u) + \int_0^t (A_u + F_u K_u) \, du - \frac{1}{2} \left\| T_m (1_t C) \right\|^2 \right], \]
leads to

\[
p_{\Delta} x^2_{\Delta} = p_0 x^2_0 + 2 \int_0^\Delta x^2_t C_t p_t dBm(t)
+ \int_0^\Delta x^2_t \left[\dot{p}_t + 2p_t (A_t + F_t K_t) + 2p_t \frac{d}{dt} \left\| T_m 1_t \right\|^2 \right] \, dt.
\]

Taking the expectation of both sides and substituting the Riccati equation (4) yields

\[
J(x_0, K(\cdot)) = p_0 x^2_0 + \mathbb{E} \int_0^\Delta \left(K_t + \frac{B_t}{R_t} p_t \right)^2 \, dt,
\]
of which the result follows.
We use the following specification
\[\frac{A}{C} = \text{SNR}, \quad x_0 = 5, \quad F = 0.3 \]
in the state-space model which results in
\[
\begin{cases}
 dx_t = \left(A + \frac{1}{2} 0.3 K_t \right) x_t dt + x_t C dB_m(t), & (\text{SNR} = \frac{A}{C}) \\
 x_0 = 5.
\end{cases}
\]

We take \(B_m \) to have a spectral density:
\[
m(\xi) = \alpha |\xi|^{1-2H} + \beta \sin^2 \left(\Delta (\xi - 2\pi f_0) \right),
\]
with \(\Delta = 20, \quad f_0 = 2, \quad H = 0.6, \quad \alpha = 0.05 \) and \(\beta = 80. \)
We use the following specification
\[\frac{A}{C} = \text{SNR}, \ x_0 = 5, \ F = 0.3 \]
in the state-space model which results in
\[
\begin{cases}
 dx_t = (A + \frac{1}{2} 0.3 K_t) x_t dt + x_t C dB_m(t), & (\text{SNR} = \frac{A}{C}) \\
 x_0 = 5.
\end{cases}
\]

We take \(B_m \) to have a spectral density:
\[
m(\xi) = \alpha |\xi|^{1-2H} + \beta \sin^2 (\Delta(\xi - 2\pi f_0)),
\]
with \(\Delta = 20, \ f_0 = 2, \ H = 0.6, \ \alpha = 0.05 \) and \(\beta = 80. \)
We use the following specification
\[\frac{A}{C} = \text{SNR}, \ x_0 = 5, \ F = 0.3 \]
in the state-space model which results in
\[\begin{align*}
 dx_t &= (A + \frac{1}{2} 0.3K_t) \ x_t \ dt + x_t CdB_m(t), \ (\text{SNR} = \frac{A}{C}) \\
 x_0 &= 5.
\end{align*} \]

We take \(B_m \) to have a spectral density:
\[m(\xi) = \alpha |\xi|^{1-2H} + \beta \sin^2 (\Delta(\xi - 2\pi f_0)), \]
with \(\Delta = 20, f_0 = 2, H = 0.6, \alpha = 0.05 \) and \(\beta = 80. \)
We design to different controllers:

- $K_{Opt}(\cdot)$ is the optimal controller from Theorem 7 for a system perturbated by dB^m.
- $K_{Nai}(\cdot)$ is the optimal controller designed for a system perturbated by the time derivative of a Brownian motion, so it corresponds to a naive design.

We compare the cost function

$$J_{(Opt,Nai)} = \mathbb{E} \left[\int_0^\Delta \left(1 + 2K_{(Opt,Nai)}(t)^2 \right) x_t^2 dt + 2x_\Delta^2 \right],$$

for the two controllers $K_{Opt}(\cdot)$ and $K_{Nai}(\cdot)$ and their corresponding state-space trajectories.
We design to different controllers:

- $K_{Opt}(\cdot)$ is the optimal controller from Theorem 7 for a system perturbated by dB^m.
- $K_{Nai}(\cdot)$ is the optimal controller designed for a system perturbated by the time derivative of a Brownian motion, so it corresponds to a naive design.

We compare the cost function

$$J_{(Opt,Nai)} = \mathbb{E} \left[\int_0^\Delta \left(1 + 2K_{Opt,Nai}(t)^2 \right) x_t^2 dt + 2x_{\Delta}^2 \right],$$

for the two controllers $K_{Opt}(\cdot)$ and $K_{Nai}(\cdot)$ and their corresponding state-space trajectories.
We design to different controllers:

- $K_{Opt}(\cdot)$ is the optimal controller from Theorem 7 for a system perturbated by dB^m.

- $K_{Nai}(\cdot)$ is the optimal controller designed for a system perturbated by the time derivative of a Brownian motion, so it corresponds to a naive design.

We compare the cost function

$$J_{(Opt,Nai)} = \mathbb{E} \left[\int_0^\Delta \left(1 + 2K_{(Opt,Nai)}(t)^2 \right) x_t^2 dt + 2x_\Delta^2 \right],$$

for the two controllers $K_{Opt}(\cdot)$ and $K_{Nai}(\cdot)$ and their corresponding state-space trajectories.
We design to different controllers:

- $K_{Opt}(\cdot)$ is the optimal controller from Theorem 7 for a system perturbated by dB^m.
- $K_{Nai}(\cdot)$ is the optimal controller designed for a system perturbated by the time derivative of a Brownian motion, so it corresponds to a naive design.

We compare the cost function

$$J_{(Opt,Nai)} = \mathbb{E}\left[\int_0^\Delta \left(1 + 2K_{(Opt,Nai)}(t)^2\right) x_t^2 \, dt + 2x_{\Delta}^2\right],$$

for the two controllers $K_{Opt}(\cdot)$ and $K_{Nai}(\cdot)$ and their corresponding state-space trajectories.
Simulation
Over 10,000 independent sample paths

Average ratio \(\frac{J_{\text{Nai}}}{J_{\text{Opt}}} \) for different SNR values
We have used a variation on Hida’s white noise space and the S-transform to develop Wick-Itô stochastic calculus for non-martingales Gaussian processes with covariance function

$$\text{COV}(t, s) = \int_{-\infty}^{\infty} 1_{[0,t]}(\xi) 1_{[0,s]}^{*}(\xi) m(\xi) d\xi,$$

In particular, it extends many works on stochastic calculus for fractional Brownian motion from the past two decades.

We have formulated and solved a stochastic optimal control problem in this new setting.
We have used a variation on Hida’s white noise space and the S-transform to develop Wick-Itô stochastic calculus for non-martingales Gaussian processes with covariance function

$$COV(t, s) = \int_{-\infty}^{\infty} 1_{[0,t]} \overline{1_{[0,s]}}^* m(\xi) d\xi,$$

In particular, it extends many works on stochastic calculus for fractional Brownian motion from the past two decades.

We have formulated and solved a stochastic optimal control problem in this new setting.
We have used a variation on Hida’s white noise space and the \(S \)-transform to develop Wick-Itô stochastic calculus for non-martingales Gaussian processes with covariance function

\[
COV(t, s) = \int_{-\infty}^{\infty} \mathbf{1}_{[0,t]} \mathbf{1}_{[0,s]}^* m(\xi) d\xi,
\]

In particular, it extends many works on stochastic calculus for fractional Brownian motion from the past two decades. We have formulated and solved a stochastic optimal control problem in this new setting.
We have used a variation on Hida’s white noise space and the S-transform to develop Wick-Itô stochastic calculus for non-martingales Gaussian processes with covariance function

$$COV(t, s) = \int_{-\infty}^{\infty} 1_{[0,t]} 1_{[0,s]}^* m(\xi) d\xi,$$

In particular, it extends many works on stochastic calculus for fractional Brownian motion from the past two decades.

We have formulated and solved a stochastic optimal control problem in this new setting.
D. Alpay and A. Kipnis.
Stochastic integration for a wide class of non-martingale Gaussian processes
In preparation.

Yaozhong Hu and Xun Yu Zhou.
Stochastic control for linear systems driven by fractional noises.

Y. Hu and B. Øksendal