
The risk matrix
Brian Knutson1 and Scott A Huettel2

Available online at www.sciencedirect.com

ScienceDirect
Neuroimaging methods (e.g., functional magnetic

resonance imaging or FMRI) can now resolve

momentary changes in deep brain activity that not only

correlate with but also predict risky choice. Accumulating

evidence beginning from financial choice studies but

extending into other domains indicates that risk assessment

recruits activity in multiple core components which

differentially promote (e.g., ventral striatum) versus inhibit

(e.g., anterior insula) risky choice. Further, frontal control

circuits may modulate the influence of these core

components on risky choice. These findings point toward an

emerging consensus about a ‘risk matrix’ whose

components unite previously disparate literatures related to

anticipation of reward versus pain and whose measurement

can improve the prediction of risky choice.
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Introduction
In the movie The Matrix, mentor Morpheus offers protag-

onist Neo a choice between two pills: ‘You take the blue

pill — the story ends, you wake up in your bed and

believe whatever you want to believe. You take the red

pill — you stay in Wonderland, and I show you how deep

the rabbit hole goes.’ At this point, Neo faces a classic

risky choice, in which a certain option promises minimal

change from the current status (i.e., small gains but also

small losses), but another uncertain option offers poten-

tially larger gains at the cost of potentially larger losses

(Figure 1).

While risk can be defined in many ways [2], most risky

choices require individuals to balance uncertain but sig-

nificant gains against losses [3]. Risky choice predates

economic and financial institutions, pervading the

foraging, survival, and relational challenges faced by
www.sciencedirect.com 
our forebears and other species [4]. Thus, core neural

systems that support risky choice might reside not only in

the most recently evolved regions of human prefrontal

cortex [5], but also in more ancient and deeper affective

and motivational circuits that have been conserved across

evolutionary history [6].

Visualizing activity in neural systems that support risky

choice thus requires methods that can resolve rapid

changes in the dynamic activity of small, deep, and

conserved brain regions moments before choice. The

development of functional magnetic resonance imaging

(FMRI) in the early 1990s provided a method for nonin-

vasively measuring dynamic subcortical activity [7]. Since

then, a rising tide of FMRI studies has identified neural

correlates of risk assessment and choice — beginning with

financial risk taking, but subsequently extending into

other domains [3,8,9].

Below, we review the brief history of FMRI research on

risky choice before highlighting recent findings. Borrow-

ing from and extending the notion of a ‘pain matrix,’

[10,11] we suggest that this work may support the exis-

tence of a ‘risk matrix,’ involving multiple interacting

components that not only assess uncertain gains and

losses but also shape choices across diverse risk scenarios.

We conclude by considering implications for theory,

research, and application.

Defining risk
Although financial incentives provide a convenient labo-

ratory tool for eliciting risky choices, basic theoretical

accounts differ on how to define risk, which has implica-

tions for experimental design and analysis. According to

one of the oldest and simplest economic theories, a

gamble should be chosen based on its expected value,

which can be estimated as the sum of the magnitudes

multiplied by the probabilities of all possible outcomes

[EV =
P

(v(x)*p(x))]. In a subsequent modification, a

gamble’s expected utility (rather than value) is instead

estimated as sum of the utilities multiplied by the proba-

bilities of all possible outcomes [EU =
P

(u(x)*p(x))].

While objective value (v) is linear, subjective utility (u)

instead can curve (e.g., u = vb, where b < 1 implies con-

cavity). Greater downward (or concave) curvature of the

utility function thus implies less risk seeking [12]. Since

expected utility implies that risk attitude is a feature of

the utility function’s curvature, a gamble’s expected

utility implicitly integrates both reward and risk attitude.

In contrast to this traditional economic account, finance

theories have historically distinguished expected risk
Current Opinion in Behavioral Sciences 2015, 5:141–146

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2015.10.012&domain=pdf
mailto:knutson@psych.stanford.edu
http://www.sciencedirect.com/science/journal/23521546/5
http://dx.doi.org/10.1016/j.cobeha.2015.10.004
http://dx.doi.org/10.1016/j.cobeha.2015.10.012
http://www.sciencedirect.com/science/journal/23521546


142 Neuroeconomics

Figure 1
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Morpheus offers Neo a choice between high-risk and low-risk options

[1].
from expected reward. In mean-variance theories for

instance, the value of a risky investment is estimated

as its potential reward (e.g., the mean of past returns)

minus its potential risk (e.g., the variance of past returns),

with the risk term weighted by a risk sensitivity coeffi-

cient [EV(x) = v(x) � b*r(x)] [13]. While both economic

and financial formulations of risk were developed to

describe choice rather than mechanisms that generate

choice, the basic assumption of single versus multiple

terms holds important implications for neuroeconomic

experiments. For instance, modeling reward and risk as a

single term will probably reveal unitary correlates, where-

as modeling them separately increases the likelihood of

detecting multiple correlates.

By resolving changing brain activity on the order of

seconds, FMRI afforded investigators the opportunity

not only to visualize correlates of choice but also to

distinguish intermediate choice processes from those

related to earlier sensory input and later motor output.

Although risk assessment might recruit many brain pro-

cesses (e.g., sensory attention, gain anticipation, loss

anticipation, value integration, etc.), only some of these

might influence or predict subsequent risky choice

(Figure 2). Further, although multiple brain processes

might predict risky choice (e.g., conflict resolution, action

selection, motor readiness, etc.), only some of these might
Figure 2
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Distinguishing neural activity that critically promotes choice from

sensory input and motor output (time proceeds from left to right).
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respond to immediate input related to the choice at hand

(Figure 2). Investigators face the challenge of disentan-

gling these processes to determine which mediate the

path from input to output.

Neural correlates of risk assessment
Increased risk is only worth considering in the face of

potentially increased reward. Setting the stage for re-

search on risk assessment, neuroimaging studies at the

beginning of the twenty-first century initially focused on

reward assessment. Building from animal research

[14,15], early and subsequent explorations demonstrated

that anticipation of uncertain reward increased FMRI

activity (or blood oxygen level dependent signal) in

projection targets of midbrain dopamine neurons–which

included the ventral striatum (VS, particularly including

the nucleus accumbens or NAcc subregion) and medial

prefrontal cortex (MPFC) [16–19]. These findings raised

the question of whether this same circuit might process

expected risk, as expected utility theory might imply.

Subsequent findings, however, called such a single com-

ponent account into question. The anticipation of poten-

tial losses, for example, appeared not to activate circuits

implicated in reward assessment like the ventral striatum

as powerfully as the anterior insular cortex [16,17,20].

Researchers further demonstrated that anterior insula

activity scaled with increases in anticipated risk [21] as

well as changes in risk assessment [22]. Since the

researchers defined risk with respect to the variance of

past outcomes, their findings appeared to support the

notion that risk assessment recruited more than one

neural circuit. Indeed, similar to the influence of antici-

pated reward on ventral striatal activity, reviews suggest

that the influence of anticipated risk on anterior insular

activity is one of the most consistent findings in the

neuroeconomic literature [3,8].

Yet, other findings seemed to challenge a multiple com-

ponent account of risk assessment. For instance, findings

from an influential study of loss aversion using mixed

gambles implied that activity in a broad swath of regions

(including the ventral striatum, MPFC, and anterior

insula) increased with anticipated reward and decreased

with anticipated loss [23], consistent with the notion that

a single system represents both reward and risk. However,

a subsequent well-powered replication featuring mixed

gambles with symmetric gains and losses instead found

that while anticipation of the gain component of gambles

activated mesolimbic projection regions including the

ventral striatum, anticipation of the loss component of

gambles instead activated the middle insula [24��]. No-

tably, neither of these studies focused analyses only on

risk assessment, instead modeling both assessment and

choice together, which may have spread observed activity

to connected posterior and dorsal regions (e.g., into the
www.sciencedirect.com
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Figure 3
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Multiple risk matrix components. Activation Likelihood Effect Meta-

analysis suggesting that the mean return of uncertain incentives most

prominently evokes ventral striatal activity (including nucleus

accumbens; upper left; n = 21 studies), while their variance most

prominently evokes anterior insula activity (upper right; n = 10 studies;

adapted from [3]). Neurosynth analyses highlighting the most

prominent neural correlates (reverse-inference) of studies including the

labels ‘reward’ (middle left; n = 671 studies) and ‘pain’ (middle right;

n = 420 studies). Neurosynth analyses indicating negative resting state

connectivity of a nucleus accumbens focus (red; MNI: 10, 10, �8) with

anterior insula activity (blue; lower left), and reciprocally, of an anterior

insula focus (red; MNI: 38, 10, 4) with nucleus accumbens activity

(blue; lower right; accession date Oct. 2, 2015) [28].
dorsal striatum and premotor cortex) implicated in motor

responses [25].

Together, these findings implicate multiple neural com-

ponents in risk assessment. Further, they hint that re-

cruitment of these components might also predict risky

choice, but possibly in different ways. For instance,

extrapolating from theories suggesting that affect can

influence risky choice [26,27], an ‘anticipatory affect’

account might predict that although risk assessment

should increase both ventral striatal and anterior insular

activity, increased ventral striatal activity should promote

approach toward risk (along with positive arousal), but

increased anterior insula activity should instead promote

avoidance of risk (along with general or negative arousal)

[16]. Indeed, consistent with these predictions, meta-

analyses suggest that: firstly, while risky financial options

elicit both ventral striatal and anterior insular activity, the

reward component most powerfully activates ventral stri-

atum, while the risk component most powerfully activates

the anterior insula; secondly, while ventral striatal activity

implies a high likelihood that an article includes the term

‘reward,’ anterior insula activity instead implies a high

likelihood that an article includes the term ‘pain;’ and

finally resting state functional connectivity between the

ventral striatum and anterior insula is localized, signifi-

cant, and negative (Figure 3).

Neural prediction of risky choice
Although both ventral striatal and anterior insula compo-

nents are activated during risk assessment, mounting

evidence suggests that before risky choice, anterior insula

activity may serve as a motivational counterpoint to

ventral striatal activity. In an initial study using gambles,

although risk assessment elevated insula activity, insular

activity correlated with individual differences in risk

aversion rather than risk seeking [20]. Subsequent re-

search using an investing task further established that

while ventral striatal activity predicted optimal as well as

excessive risk seeking within subjects on a trial-to-trial

basis, anterior insula activity instead predicted optimal as

well as excessive risk aversion [29], a pattern supported by

later findings [30–32].

Converging research on neural correlates of risk assess-

ment and neural predictors of risky choice therefore

implies the existence of a ‘risk matrix’ consisting of

multiple components that activate in response to a risky

option (involving a mix of uncertain but significant gains

and losses), but then promote subsequent approach to-

ward or avoidance of that option. These findings further

point toward candidate components for the approach

circuit in the ventral striatum (particularly the nucleus

accumbens) and for the avoidance circuit in the anterior

insula. More sophisticated parametric experimental

designs and multivariate analyses will doubtless illumi-

nate additional aspects of these circuits, and so could
www.sciencedirect.com 
expand the precision and predictive power of such a risk

matrix account [33]. Although the risk matrix alludes to at

least two components, it differs from other popular ‘dual

system’ accounts of decision making that typically juxta-

pose motivational versus control elements, since it in-

stead invokes two opposing motivational components

[34]. Control circuits, accordingly, may modulate either

or both of the risk matrix components, depending on the

choice context (e.g., gains, losses, probability, ambiguity,

time, etc.) — a possibility that we consider next.

Neural control of risky choice
Risky choice minimally involves choosing whether or not

to accept one risky option, and classically involves
Current Opinion in Behavioral Sciences 2015, 5:141–146
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choosing between low risk versus high risk options (e.g.,

the blue versus the red pill in the Matrix). While these

simplified choice scenarios may confer experimental con-

trol, they may at the same time sacrifice much of the

complexity commonly encountered in real world choices.

Thus, recent research has focused on how decision

makers calibrate risky choice to accommodate multiple

options and emphasize different decision features. These

studies have adapted a welter of tasks and dynamic

processes, but there has been one point of convergence.

Much of this research now points to a particular role for

the dorsomedial prefrontal cortex (or DMPFC) — alter-

natively labeled as the anterior cingulate cortex (or ACC)

— in exerting cognitive control over risky choice.

Anterior cingulate cortical activity has traditionally been

linked to notification of anticipated or obtained errors

[35,36] as well as environmental unpredictability [37],

suggesting that it supports cognitive control processes

capable of altering currently active behavioral tendencies.

Research has linked ACC activity to increased demand

for control in complex choice scenarios, such as when

people choose against a typical decision frame [38] or

adopt a decision strategy that runs counter to their usual

tendency [31,39]. More recent work has further linked

dynamic ACC activity to changes in risk preference based

on the current environmental context [40]. These and

related findings have been codified into a ‘cost of control’

framework which postulates that ACC activity tracks

tradeoffs between potential rewards and the cognitive

and physical effort necessary for obtaining them [41��] —

which can then can alter activity in the risk matrix to

shape upcoming choices [32,40]. Despite this conver-

gence of findings and theory, exactly how these prefrontal

cortical circuits modulate the risk matrix remains to be

determined.

Implications and extensions
Core components of the risk matrix have also been

implicated in anticipation of diverse gains (ventral stria-

tum) and diverse losses (including pain anticipation;

anterior insula) [10], and so might bridge literatures

focusing on reward circuitry and the pain matrix

[11,25] (Figure 3). Particularly when choices are complex,

prefrontal value integration and control circuits may

modulate activity in both components of the risk matrix.

Physiologically, these findings cohere with recent neuro-

anatomical accounts of risky choice in which ascending

frontostriatal and insular circuits enlist anticipatory affect

to inform subsequent value integration and motivation

(e.g., the AIM framework; [42�]).

These developments have important implications for

neuroscientific and behavioral theory. Neurally and psy-

chologically, they suggest that affect and motivation play

a significant role in risky choice, and further imply that

symbolic numerical representation of costs and benefits
Current Opinion in Behavioral Sciences 2015, 5:141–146 
may influence choice through affective circuits [3,26,27].

Economically and financially, the findings suggest that

accounts of risky choice that incorporate multiple com-

ponents (e.g., mean-variance theory) more closely reflect

the underlying mechanics of the risk matrix than do

accounts that include only one component (e.g., expected

utility theory) [43].

Beyond the surprisingly close fit of brain activity to mean-

variance theory, these advances have also generated novel

predictions that extend beyond the scope of traditional

finance theories, and which researchers have just begun to

explore. First, by definition, mean-variance theory does

not consider higher-order sources of variability involving

asymmetric (skewed) or extreme (kurtotic) outcomes. But

researchers have begun to demonstrate that asymmetric

outcomes [44,45], and lottery-like (or positive-skewed)

gambles in particular, can drive ventral striatal activity

and preference [46]. Second, traditional finance theories

do not typically account for the origin or dynamic adjust-

ment of reward and risk expectations. A growing literature

on reward and risk learning, however, suggests not only

that updating these expectations recruits risk matrix

components [22,47], but also that people may learn in

biased ways reflected in brain activity [48], such as

updating expectations with heavier weights on gain than

loss outcomes [49]. Third, a surprising implication of

proposed affective contributions is that even incidental

activation of risk matrix components might bias risky

choice [16]. In fact, researchers have found that presen-

tation of irrelevant positive images can increase risky

choice by activating the ventral striatum [50], while

negative images and threats of shock can instead decrease

risky choice [49], possibly by activating the anterior insula

[51�].

Along with input from prefrontal circuits in response to

demands for value integration and control, other circuits

doubtless modulate the risk matrix and its output,

depending on the choice context. For instance, socially

risky choices powerfully activate risk matrix components

in ways that can promote cooperation or competition [52].

Further, in investment settings involving others, modu-

latory control from circuits that support social inference

(e.g., DMPFC) can increase performance [53].

Even more remarkably, new findings suggest that group

risk matrix activity may allow researchers to forecast

choice at the aggregate level of markets. For example,

in a neuroimaging study of financial market bubble for-

mation, group ventral striatal (i.e., specifically in the

nucleus accumbens) activity tracked market bubble for-

mation, while individual differences in anterior insula

activity predicted who would bail out most rapidly and

so minimize their losses after a crash [54��]. If deciding to

share resources with a stranger represents a socially risky

choice, emerging research further suggests that ventral
www.sciencedirect.com
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striatal activity predicts individual choices to donate or

lend [55], and further, that group ventral striatal activity

provides a forecast of the success of loan requests on the

internet — even better than group choice itself [56�].
These discoveries imply that risk matrix activity not only

can predict socially risky choices in individuals, but

further that in some cases, group brain activity might

forecast aggregate choice better than the behavior of that

group.

In retrospect, neuroimaging research on risky choice has

advanced over the span of a decade with unexpected

speed. Findings have progressed from documenting ini-

tial correlates of risk assessment, to identifying neural

predictors of risky choice in individuals, to exploring the

potential for the neural activity of groups to forecast

aggregate choice. Despite this rapid progress, much work

remains to be done on several fronts. Parallel animal

models of risky choice could be combined with targeted

neurochemical probes (e.g., optogenetics) to causally test

neuroscientific accounts of risky choice and to help ex-

plain observed patterns of brain activity in humans.

Improved experimental designs and multivariate analyses

might optimize generalizable models of neural predictors

of risky choice. Further research should explore the

extent to which risk matrix activity predicts risky choice

in nonmonetary domains, since risk preferences can

vary across domains (e.g., financial, physical, social)

[57]. Future studies will undoubtedly also explore which

components of the risk matrix support forecasting choice

at larger scales (e.g., on the internet and in markets).

Though presently more potential than reality, in the near

future, the risk matrix may transform from science fiction

into scientific fact.
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