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While information design has gained significant attention in the recent literature as a tool for shaping

consumers’ purchase behavior, little is known about its use and implications in two-sided marketplaces,

where both supply and demand consist of self-interested strategic agents. In this paper, we develop a dynamic

game-theoretic model of a two-sided platform that allows for heterogeneity and endogenous behavior on

both sides of the market. We focus on illustrating the potential benefits of optimal information provision in

terms of managing supply-side decisions, including supplier entry/exit and pricing. Our analysis identifies

three distinct mechanisms through which information design may increase platform revenues. First, when

the outside options available to consumers and service providers are relatively unattractive, information

design can be used to mimic the so-called “damaged goods” effect, allowing the platform to fine-tune its

composition of providers and achieve a more revenue-efficient matching between supply and demand. Second,

when consumers and/or providers have access to relatively attractive outside options, information design

can help the platform increase its transaction volume significantly; interestingly, we find that in order to

ramp up its throughput, the platform may need to understate the quality of its best providers. Third, when

the platform uses commission subsidies to resolve the “cold-start” problem and incentivize the entry of new

providers, information design can help achieve the same goal while extracting higher commission revenues;

thus, we highlight the role of information design as a substitute for commission subsidies. Overall, our

numerical experiments suggest that, by influencing the providers’ decisions, optimal information provision

can lead to a substantial increase in platform revenues.
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1. Introduction

Information design has received significant attention in the recent literature as a powerful non-

monetary lever that can be used by firms to induce desirable consumer behavior in a variety of

settings, including queueing systems (Lingenbrink and Iyer 2019), retailing (Drakopoulos et al.

2020), transportation (e.g., Meigs et al. 2020), entertainment (Che and Hörner 2018), service

platforms (Papanastasiou et al. 2018), and content promotion (Candogan and Drakopoulos 2020),
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among others (see Bimpikis and Papanastasiou (2019) for a comprehensive survey).1 Work in this

area of research has focused so far on the “traditional” model of a firm that markets a good or

service to consumers. In such settings, it is natural to treat the features of the firm’s good (e.g.,

quality, service rate) as being exogenous to the information design process.

However, an increasing number of high-profile online firms (also referred to as two-sided platforms

or marketplaces) operate under an entirely different business model, one that relies on connecting

independent self-interested service providers to consumers (e.g., Airbnb, TaskRabbit, Upwork).

For these firms, managing the strategic decisions of the supply side of the market, such as entry

and pricing, can be just as important as managing those of the demand side. In particular, the

platform’s overall supply characteristics (and hence the platform’s ability to attract consumers)

depend critically on the individual service providers the platform is able to attract and maintain.

As previous literature on the topic tends to treat supply as exogenous and fixed over time, it is

unclear whether and how information design can play a beneficial role in managing supply in a

two-sided platform.

The goal of this paper is thus twofold. First, to provide a tractable modeling framework for study-

ing information design in a two-sided marketplace. Second, to highlight the potential supply-side

benefits of optimal information provision for a revenue-maximizing platform, along with qualitative

insights on how these can be achieved.

To achieve these goals, we develop a dynamic game-theoretic model of an online platform con-

necting independent service providers (the “supply”) to consumers (the “demand”). Unlike the

existing literature on information design, our model allows for endogenous behavior on both sides

of the market. In each period, service providers (who differ in their service quality) choose whether

to seek employment inside or outside the platform, as well as what price to charge for their service,

while consumers (who differ in how they value service quality) choose whether to seek service inside

or outside of the platform, as well as which provider to transact with. Importantly, the quality

of each service provider is ex ante unknown, and is revealed only through transactions with con-

sumers inside the platform. The platform maximizes its revenues using two levers: (i) a commission

charged per transaction, and (ii) an information-provision policy, which determines the disclosure

of information pertaining to the providers’ service quality.

Although the model described above involves rich and complex inter-dependencies between the

platform, the providers, and the consumers, we nevertheless demonstrate that it is amenable to

1 Information design refers to the process of designing an optimal policy for disclosing private information. In the
standard paradigm, a principal possesses some private information which he wishes to disclose to an agent in a manner
that achieves some desirable action from the agent. A policy consists of a mapping from the firm’s private information
to a set of “messages” received by the agent and interpreted according to the policy, which is assumed to be disclosed
and committed to by the principal.
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tractable analysis; in particular, we show that there exists a steady-state equilibrium, from which we

are able to extract high-level managerial insights. In solving for equilibrium, we focus on highlight-

ing the implications of the platform’s information-provision policy on the providers’ participation

and pricing decisions, which play an crucial role in the platform’s ability to match supply with

demand in a revenue-efficient manner. The key observation from our analysis is that while the plat-

form cannot exercise any direct form of control on the providers’ decisions, information design can

be used as an indirect way of inducing desirable behavior, and can have a (sometimes surprisingly)

significant impact on platform revenues.

More specifically, our results are structured to illustrate three distinct supply-related mechanisms

through which information design can improve the platform’s revenue potential. These mechanisms

are briefly described as follows:

(i) Improving the composition of active providers on the platform. We consider first an environ-

ment where the consumers’ and the providers’ outside options are relatively unattractive. In

such cases, although the platform’s transaction volume is high even without optimizing its

information-provision policy, we demonstrate that doing so may nevertheless still be valuable

for the firm, by helping to induce a more revenue-efficient match between supply and demand.

The details of the mechanism point to a two-sided platform’s version of the “damaged goods”

idea first described in Deneckere and McAfee (1996): the platform uses information provision

to deliberately “damage” a fraction of its high-quality providers (i.e., by labeling them as

providers of lesser quality), solely for the purpose of price discriminating more effectively.

Interestingly, the described mechanism highlights the use of information by two-sided plat-

forms as an indirect way to mimic a traditional firm’s direct choice of output quality.

(ii) Increasing the volume of transactions. We then consider an environment where the consumers’

and/or the providers’ outside options are relatively attractive, so that in the absence of an

optimized information-provision policy, the platform struggles to generate a high volume of

transactions. In such cases, we find that the impact of information design on platform rev-

enues can be dramatic. In particular, our analysis highlights an intriguing chain reaction: by

labeling some of its best providers as providers of unknown quality, the demand for providers

of unknown quality (a category which includes new providers) increases; as a result, new

providers become more willing to join the platform and are more likely to be hired, leading

to higher levels of experimentation inside the platform. In turn, more experimentation leads

to a higher rate of discovery of high-quality providers, who then (choose to) remain active

on the platform. In the process, the platform enjoys a ramp-up of both new and high-quality

supply, which leads to a significant increase in volume and revenues.
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(iii) Reducing commission subsidies. Many two-sided platforms in practice struggle to gain traction

because of the so-called “cold-start” problem faced by new providers. A direct approach to

alleviate this is to offer subsidies in the form of reduced commission rates for new providers, in

order to incentivize their entry. We first show that, in the absence of an optimized information-

provision policy, such subsidies can indeed be beneficial for the platform; in fact, we find

that in some cases it may even be optimal for the firm to incur a loss on transactions with

new providers, so as to increase entry substantially and, in this way, accelerate the discovery

of high-quality providers. However, we demonstrate that such costly measures need not be

necessary. Instead, we find that information design can significantly reduce the need for

commission subsidies, allowing the platform to achieve a higher level of entry of new providers

without forgoing a significant share of its revenues in the process. Thus, this mechanism

highlights the use of information as a cost-effective substitute for monetary subsidies.

The rest of this paper is organized as follows. In Section 2 we review the related literature.

In Section 3 we present our model and in Section 4 we establish the existence of a steady-state

equilibrium. In Section 5 we solve for the platform’s optimal policy and demonstrate the three main

mechanisms through which information design can improve platform revenues. Section 6 concludes.

2. Related Literature

This work contributes to the growing literature that considers the applications and implications

of information design (see Rayo and Segal (2010) and Kamenica and Gentzkow (2011)) in settings

where a principal seeks to optimally disclose private information to agents whose actions affect the

principal’s payoff. Lingenbrink and Iyer (2019) illustrate how information design can help a service

provider modulate consumers’ queue-joining behavior when the system state (queue length) is not

directly observable to the consumers (for work on queue-joining behavior when the system state

is observable, see Veeraraghavan and Debo (2009) and Veeraraghavan and Debo (2011)). Kostami

(2019) compares the relative merits of static versus dynamic leadtime information provision in

inventory systems. Drakopoulos et al. (2020) show that selective disclosure of inventory information

can help a retailer control consumers’ buy-now-or-wait decisions. Alizamir et al. (2020) investigate

how a principal’s optimal disclosure/warnings relating to harmful events depends on the perceived

accuracy of his private information. Candogan and Drakopoulos (2020) consider information design

in the context of promoting content in social networks. Anunrojwong et al. (2020) study the benefits

of information design in the context of social services catering to individuals who may differ in

their level of need.

Closer to our work is the paper by Papanastasiou et al. (2018), which focuses on information

design in a two-sided service platform, but takes the supply side of the market as exogenous and
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fixed over time. The authors show that partial information structures can induce self-interested

consumers to take actions that benefit their peers. In the same spirit, Kremer et al. (2014) and Che

and Hörner (2018) also consider how information design may affect demand-side decisions while

taking the supply as given. Mansour et al. (2015) take a more algorithmic approach and develop

an algorithm with asymptotically optimal regret. For a more comprehensive survey of related work

that abstracts away from supply-side considerations, see Bimpikis and Papanastasiou (2019). The

current paper considers a two-sided platform setting, but our focus here is on the implications of

information design for the supply side of the market. In investigating these implications, we model

service providers as strategic agents who make their own entry/exit and pricing decisions, and

we show that information design can help the platform increase its revenues by influencing the

providers’ short- and long-run equilibrium behavior. Furthermore, unlike the aforementioned work

that focuses predominantly on total welfare as the objective to be maximized, this paper takes the

perspective of revenue maximization, which renders the analysis significantly more complicated.

A central feature of the market we consider is that service providers (the supply side) are het-

erogeneous in quality, and that the quality of each provider can only be assessed “on the job” (i.e.,

when a provider engages in transactions with the platform’s consumers). In work that addresses

this market feature more directly, Terviö (2009) demonstrates that the potential inefficiencies asso-

ciated with on-the-job discovery of quality may lead to a decrease in the average quality of workers

in the market; Pallais (2014) show experimentally in an online labor marketplace that subsidiz-

ing inexperienced workers to generate information about their quality improves their subsequent

employment outcomes; and Stanton and Thomas (2016) estimate that outsourcing agencies sig-

nificantly increase workers’ average earnings in online marketplaces by signaling the high quality

of affiliated inexperienced workers. Collectively, these papers illustrate the potential for significant

market level benefits of interventions that promote experimentation with new providers. Our work

adds to this literature by highlighting the use of information design as a non-monetary intervention

which may result in significant gains for market participants.

This work also complements the broader literature that studies the design and optimization of

two-sided platforms. Belavina et al. (2020) explore the use of deferred payment mechanisms as a

way to deter misconduct in crowdfunding platforms, while Du et al. (2017) consider the use of

contingent stimulus policies to improve the success rate of crowdfunded projects. Tsoukalas and

Hemenway Falk (2020) examine the effectiveness of token-based platforms to efficiently aggregate

dispersed information from their users for applications ranging from curating content to on-chain

governance. Feldman et al. (2019) study whether food-delivery platforms are beneficial to restau-

rants. Kanoria and Saban (2020) consider matching markets that may exhibit search inefficiencies

and prescribe non-monetary interventions in the form of restrictions on agents’ actions that improve
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welfare. Birge et al. (2020) provide a convex optimization formulation to calculate the revenue

maximizing commission structure for a platform that facilitates trade between buyers and sellers of

different types. Bimpikis et al. (2019) characterize optimal prices and commissions in the context

of a ride-sharing platform that matches geographically dispersed demand for rides with a supply

of drivers, who aim to maximize their expected earnings. Vellodi (2020) focuses on whether the

availability of reviews about the quality of firms may adversely affect entry and derives design

recommendations that lead to higher welfare. Finally, recent work by Johari et al. (2020) consid-

ers a problem of information disclosure in a two-sided market and derive conditions under which

banning a fraction of the supply while not sharing any information about the rest is optimal for

the platform.

3. Model Description

We consider a dynamic model of a two-sided platform that connects service providers with con-

sumers. The model consists of three types of players, who interact with one another over an infinite

discrete-time horizon: (i) the platform, which chooses a commission to be charged per transaction

and an information-provision policy; (ii) the supply (i.e., a population of service providers), who

choose whether to join the platform and, if so, what price to charge for providing service, and (iii)

the demand (i.e., a population of consumers), who choose whether to seek service on the platform

and, if so, with which service provider.

Demand. We assume that in each time period there is a short-lived population of consumers

with total mass normalized to one, who enter the platform seeking service. Consumers are hetero-

geneous in their willingness to pay for service quality. We use θ to denote a consumer’s type, and

we assume that consumer types are uniformly distributed on the interval [1,2]. The net utility for

a consumer with type θ from transacting with provider k is given by:

u= θqk− pk,

where qk is the provider’s service quality and pk is the provider’s service price. Upon entering

the platform, each consumer observes the set of available service providers, the price set by each

provider, and any information on the provider’s service quality provided by the platform (the

latter is determined by the platform’s information-provision policy, as described below). Then, each

consumer chooses among the available service providers with the goal of maximizing her expected

utility. Apart from the providers available on the platform, consumers also have the option of

seeking service outside of the platform; we assume that doing so results in expected service quality

q0 ∈ (0,1) at price p0 ∈ (0,1). We further assume that q0 ≥ p0, so that the outside option results in

non-negative utility for all consumer types.
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Supply. We assume that there is a large pool of potential service providers, a fraction 1−β of

whom cease to exist in each time period and are replaced by new potential providers of equal mass.

In every period, the potential providers may choose to enter the platform or pursue employment

outside of it. Employment outside of the platform yields an expected revenue of w0 per period.

Inside the platform, expected revenues depend on the platform’s commissions and information-

provision policy and the resulting equilibrium behavior of the service providers and consumers. We

assume that the service quality of each provider k can be either high or low, qk ∈ {qH , qL} and we

normalize qH = 1 and qL = 0. The probability of a randomly chosen provider being of high quality

is denoted by γ , P (qk = qH). In our analysis, we will focus on the more interesting environments

where the supply of high-quality providers is relatively scarce; accordingly, we assume that:

(i) E[qj] = γqH + (1− γ)qL < q0 (i.e., although there are high-quality providers in the market,

the expected quality of a randomly drawn provider is lower than that of the outside option); and

(ii) γβ < 1 − β (i.e., the volume of surviving high-quality providers in each period does not

exceed the total volume of providers who cease to exist).

To capture the learning process that is characteristic of platforms with independent service

providers, we assume that the service quality of a new provider is initially unknown and is revealed

only after the provider engages in a transaction with a consumer inside the platform.2 In every

period, each provider, taking into account the platform’s commissions and information-provision

policy, chooses whether to join the platform and, if so, what price to charge for service; with

respect to the latter, we assume that the net payment (i.e., the service price minus the commission

fee), received for providing service must be at least b0, for some b0 ∈ [0, p0] (for instance, this may

represent the provider’s per-period cost of providing service).

Platform. The platform is long-lived and seeks to maximize its expected per-period revenue, by

choosing a commission rate τ and an information-provision policy. The commission rate amounts

to a percentage fee collected by the platform on any transaction that occurs between a consumer

and a provider. The information-provision policy specifies a message or label attached to each

provider, which is displayed to the consumers.3 The label is meant to convey information on the

provider’s service quality based on the provider’s past service outcomes, which we assume are

observable to the platform (e.g., via consumer feedback or reviews). According to the platform’s

quality-learning process described above, the platform’s information about provider k’s quality

2 Alternatively, one may consider a more gradual quality revelation process (i.e., each transaction generates a noisy
signal about the provider’s quality). However, this increases the problem’s state-space and complicates the analysis
considerably, without adding to the qualitative insights we aim to illustrate.

3 Consistent with the rest of the information design literature, we assume that the platform’s information-provision
policy is announced and committed to (e.g., see Kamenica and Gentzkow 2011, Lingenbrink and Iyer 2019, Papanas-
tasiou et al. 2018).



8 Bimpikis, Papanastasiou, and Zhang: Information Provision in Two-Sided Platforms

in any given period is described by state jk ∈ {H,L,U}, corresponding to high, low, or unknown

quality, respectively. The information-provision policy employed by the platform is then expressed

as a (possibly stochastic) mapping from the platform’s private information about provider k to a

“label” which is assigned to the provider and published on the platform,

g(jk) =


H (“high quality”) w.p. ρ

jk
H

L (“low quality”) w.p. ρ
jk
L

U (“unknown quality”) w.p. ρ
jk
U ,

(1)

where ρ
jk
H + ρ

jk
L + ρ

jk
U = 1, for all jk ∈ {H,L,U}. Thus, designing an information-provision policy

consists of choosing the probability with which each label is assigned to each provider state. At one

extreme, a policy such that ρHH = ρLL = ρUU = 1 corresponds to full information disclosure, since the

platform’s information can be perfectly inferred from the labels it assigns. At the other extreme, any

policy with ρ
jk
H , ρ

jk
L , and ρ

jk
U chosen independently of jk corresponds to no information disclosure,

since none of the platform’s information can be inferred from the labels it assigns to the providers.

Policies involving intermediate levels of information provision can be constructed by choosing the

probabilities ρ
jk
H , ρ

jk
L , and ρ

jk
U appropriately between the above two extremes.

With respect to the design of information provision policies, it is intuitive and straightforward to

show that the platform cannot benefit from concealing information about providers whose quality

is known to be low. However, it is less clear whether the platform can benefit from concealing

information about providers known to be of high quality. Accordingly, in the analysis that follows

we focus on the class of policies satisfying

ρUU = 1, ρLL = 1, and ρUH = 1− ρHH =: α∈ [0,1]. (2)

In words, under the class of policies defined in (2), the platform always assigns label U to providers

of unknown quality (i.e., U -type providers) and label L to providers of low quality (i.e., known L-

type providers). However, providers of high quality (i.e., known H-type providers) may be assigned

label U with positive probability. At first glance, it may appear counter-intuitive for the platform

to conceal the quality of its best providers, given that these providers are its highest earners;

however, in Section 5 we demonstrate three distinct mechanisms through which such an approach

to information disclosure can improve the platform’s revenues.

From a practical point of view, we note that the class of policies described in (2) is particularly

appealing in that it is operationally equivalent to a policy that simply delays disclosing information

pertaining to the quality of high-quality service providers, an approach that is already observed

in practice (for example, high-quality freelancers on the online labor marketplace Upwork can be

labeled as “top-rated” only if they remain active on the marketplace for at least twelve months
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after their first transaction).4,5 To emphasize this connection, we refer to a policy of the form (2)

as an “information-delay” policy with delay parameter α.

4. Equilibrium

Given that the underlying supply and demand processes are time-invariant in our model, our

analysis will focus on steady-state equilibria of the supply-demand game, for a fixed platform

policy {τ,α}, where recall that τ denotes the commission fee that the platform extracts from

every transaction and α represents the information-provision policy (i.e., the probability with

which a high quality provider is assigned the label U). To establish the existence of a steady-

state equilibrium, the supply-demand game must simultaneously satisfy a number of conditions

relating to supply-side participation and pricing, demand-side participation and provider choice,

and supply-demand matching. We next describe these conditions in detail.

Consider first the platform participation decisions of individual providers. In a steady-state

equilibrium, the expected lifetime earnings of a high-quality provider who is assigned label H in

any period are given by

V H
H = max

{(1− τ)pH
1−β

,
w0

1−β

}
. (3)

That is, such a provider will stay in the platform provided the price he can charge as an H-labeled

provider is sufficiently high and/or the platform’s commission rate is sufficiently low, while he will

seek employment outside the platform otherwise. The expected lifetime earnings of a high-quality

provider who is assigned label U are given by

V H
U = max

{
η(1− τ)pU +β

(
αV H
U + (1−α)V H

H
)
,
w0

1−β

}
, (4)

where the (endogenous) parameter η ∈ [0,1] here accounts for rationing that may occur if in equi-

librium the demand for U-labeled providers is lower than the availability of such providers.6 Finally,

for a provider of unknown quality (i.e., who has not yet transacted on the platform), the expected

lifetime earnings are given by

V U
U = max

{
η

(
(1− τU)pU +β

(
γ
(
αV H
U + (1−α)V H

H
)

+ (1− γ)
w0

1−β

))
+ (1− η)βV U

U ,
w0

1−β

}
.

(5)

4 In particular, the platform here assigns label H to a high-quality provider only after a geometrically distributed
number of transactions with parameter α, after which the label remains unchanged for the remainder of the provider’s
time on the platform.

5 See https://support.upwork.com/hc/en-us/articles/211068468-Become-Top-Rated.

6 Note that there can never be rationing among providers labeled H in equilbrium, since in such a case a provider
could increase his earnings by unilaterally lowering his price slightly, which would guarantee being matched to a
consumer.
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We note that the expressions for V H
H , V

H
U , and V U

U involve prices pU and pH that are determined

endogenously as a function of both the demand for each provider type as well as the competition

between service providers (we provide additional details on this below). Moreover, we point out

that our assumption that each provider must receive a minimum net payment b0 ≥ 0 for providing

service implies that in any equilibrium with positive i-labeled provider participation, where i ∈

{U ,H}, we must have (1− τ)pi ≥ b0 ≥ 0. Moreover, free entry of providers implies that V U
U = w0

1−β .

Assuming that a steady-state equilibrium exists, we use δji to denote the mass of providers of

quality j ∈ {U,H} with label i∈ {U ,H}, who are active on the platform in any time period.

We next discuss the demand for different provider types (i.e., labels) in a steady-state equilibrium.

Recall that each consumer chooses a provider to maximize her expected utility. In particular, a

consumer with type θ chooses

arg max
i∈{0,U,H}

θqi− pi,

where {0,U ,H} represents the set of available options to consumers, i.e., transacting with the

outside option or with a provider on the platform with label U or H. According to the information

policy defined by (2), the expected quality of a provider with label H is equal to qH = 1, i.e., only

high quality providers are assigned label H. On the other hand, the expected quality of a provider

with label U depends on α and is given by

qU(α),
δUU qU + ηδHU qH
δUU + ηδHU

. (6)

The latter expression reflects the fact that, as a result of the platform’s information-delay policy,

the set of providers who get assigned label U may contain providers of high quality in addition to

providers of unknown quality, so that qU(α)∈ [qU , qH ]. Given expected qualities qi and equilibrium

prices pi, let ζi denote the mass of consumers that engage in a transaction with a provider carrying

label i, for i ∈ {U ,H}. The following result describes how the quantities qi, pi and ζi are related,

and provides the main structure of a steady-state equilibrium.

Lemma 1. Consider a steady-state equilibrium under policy {τ,α}.

Suppose qU(α)< q0. Then the equilibrium takes the form of Figure 1. In particular:

(i) If 1< pU−p0
qU (α)−q0

< pH−pU
1−qU (α)

< pH−p0
1−q0

< 2, then

ζU =
pU − p0

qU(α)− q0
− 1 and ζH = 2− pH− p0

1− q0
. (7)

(ii) If max
(
pH−p0
1−q0

,1
)
< pH−pU

1−qU (α)
<min

(
pU−p0
qU (α)−q0

,2
)

, then

ζU =
pH− pU

1− qU(α)
− 1 and ζH = 2− pH− pU

1− qU(α)
. (8)
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Figure 1 Consumers’ equilibrium choices of providers when qU (α)< q0. Left figure: If 1< pU−p0
qU (α)−q0

< pH−pU
1−qU (α)

<

pH−p0
1−q0

< 2 holds, then consumers with low (high) types transact inside the platform with providers

labeled U (H), whereas those with intermediate types take their outside option. Right figure: If

max
(
pH−p0
1−q0

,1
)
< pH−pU

1−qU (α)
<min

(
pU−p0
qU (α)−q0

,2
)

, then the platform covers the entire consumer demand

and low (high) types transact with providers labeled U (H).

(iii) Otherwise, ζU = ζH = 0.

Suppose qU(α)≥ q0. Then the equilibrium takes the form of Figure 2. In particular:

(i) If max
(

pU−p0
qU (α)−q0

,1
)
< pH−pU

1−qU (α)
< 2, then

ζU =
pH− pU

1− qU(α)
−max

( pU − p0
qU(α)− q0

,1
)

and ζH = 2− pH− pU
1− qU(α)

. (9)

(ii) Otherwise, ζU = ζH = 0.

To conclude this section, we establish that a steady-state equilibrium as described above indeed

exists for any given platform policy.

Proposition 1. For any policy {τ,α}, a steady-state equilibrium exists.

In summary, a steady-state equilibrium exists in our model for any platform policy {τ,α}and the

supply-demand interactions induced by the platform’s policy are fully described by the endogenous

quantities δji , ζi, and pi, for j ∈ {U,H} and i∈ {U ,H}.

5. Value Drivers of Optimal Information Provision

The analysis of §4 establishes the existence and properties of a steady-state equilibrium for any given

platform commissions-and-information policy {τ,α}. In this section, we solve for the platform’s
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Figure 2 Consumers’ equilibrium choices of providers when qU (α) ≥ q0 and max
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)
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1−qU (α)
< 2.

Consumers with low types take their outside option, whereas the rest transact with providers inside

the platform.

l

revenue-maximizing policy, with a focus on delivering the main qualitative insights associated with

this policy. In particular, we identify and describe three distinct mechanisms through which an

optimized information-provision policy can increase the platform’s equilibrium revenues. The way

in which information design can benefit the platform depends on the market conditions in which

the platform operates, and in particular on the relative attractiveness for consumers and providers

of transacting through the platform as opposed to taking their respective outside options.

To clearly illustrate each mechanism, our exposition proceeds in two steps. First, we characterize

the equilibrium outcome assuming that the platform employs a full-information provision policy

(i.e., in any period, the platform discloses all information it has in its possession regarding the

quality of each provider active on the platform). Then, we show that employing an appropriately

designed policy with information delay α> 0 (i.e., of the form given in (2)) leads to higher revenues

for the platform, highlighting the mechanics and drivers underlying the revenue improvement.

Taking into account the analysis of §4, before proceeding to the first mechanism we place two

assumptions on our model primitives for the remainder of this section.

Assumption 1. The following inequalities hold: (a) q0− p0 <E[qj]− b0; (b) q0 <
(2−β)γ

2(1−β)+βγ .

Assumption 1(a) ensures that the platform’s revenue under a full-information provision policy is

positive. In particular, when this assumption does not hold, no consumer would ever transact with

a provider inside the platform, preferring instead the outside option. Assumption 1(b) is a technical
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condition we impose for tractability (i.e., the condition is in general sufficient but not necessary

for our results), which essentially places an upper bound on the quality of the outside option.

5.1. Mechanism I: Improving the Provider Composition

The first setting we consider is one where the outside options available to consumers and providers

are relatively unattractive compared to the utility they may derive by transacting inside the plat-

form. In particular, in this section we consider a setting with the following characteristics: (i) q0 is

relatively low and/or p0 is relatively high (i.e., the service quality of the outside option is relatively

low and/or its price is relatively high); (ii) γ is relatively high (i.e., the fraction of high-quality

providers in the population is sufficiently high); and (iii) b0 is relatively low (i.e., the providers’ per

period cost of providing service is low).7 In such a setting, it can be shown that when the platform

employs a full-information provision policy, it is optimal to set the commission τ so as to induce

an equilibrium where the platform satisfies all consumer demand in each period.

Proposition 2. When the platform employs a full-information provision policy (i.e., α = 0)

and sets the commission optimally, all consumers choose a provider inside the platform.

In particular, under a full-information provision policy, the platform’s revenues are maximized at

the highest commission rate such that all consumers prefer to seek service inside the platform.

Increasing the commission rate further would increase the platform’s revenue per transaction, but

would result in a positive measure of consumers choosing the outside option instead of the platform.

The associated loss in transaction volume from doing so outweighs the increase in revenue per

transaction, leading to the result of the proposition.

Proposition 2 describes a situation where the platform already holds a strong position in the

market relative to the outside options available to the consumers and the service providers. Nev-

ertheless, even in such a case there may still be an opportunity for revenue growth if the platform

can find a way to “soften” the tradeoff between revenue per transaction and overall transaction

volume. Proposition 3 establishes that this can be achieved via an appropriately-designed policy

for information provision.

Proposition 3. The optimal platform policy features information provision with positive delay

(i.e., α∗ > 0). In the equilibrium induced by the optimal policy, the total volume of transactions

stays the same but the volume of transactions with H-labeled (U-labeled) providers is strictly lower

(strictly higher), as compared to when the platform employs a full-information provision policy.

7 For example, the conditions γ > q0− p0
2

and b0 = 0 are sufficient.
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Proposition 3 reveals that the mechanism underlying the benefits of an information policy with

positive delay is one of optimizing the composition of transactions occurring on the platform,

while maintaining the total volume of transactions constant. In other words, a policy with positive

information delay allows the platform to match supply with demand in a more revenue-efficient

manner. We next discuss how this is achieved.

Observe that relative to a full-information provision policy, a policy with positive delay (i.e.,

α > 0) effectively amounts to assigning label U to a positive fraction of H-type providers in each

period. This has two implications. The first implication is that the relative proportion of providers

labeled H versus U changes; in particular, as α increases, the relative proportion of H-labeled

providers decreases. The second implication is that the consumers’ quality expectation when hiring

a U-labeled provider changes, because this label now includes both providers of unknown quality

(a proportion γ of whom are high-quality providers) as well as providers who are already known

to be of high quality. In particular, the expected quality of a U-labeled provider increases with the

ratio of H-type providers included in this label. Conversely, the quality expectation when hiring

an H-labeled provider is unchanged.

The first implication tends to drive equilibrium prices for transactions involving H-labeled

(respectively, U-labeled) providers up (down). In particular, H-labeled providers now face less

intense competition from their peers, which allows them to increase their price. On the other hand,

U-labeled providers now face more intense competition from their peers, which tends to drive their

prices down; however, this tendency is counteracted by the second implication, namely, the con-

sumers’ increased expectation of service quality when hiring a U-labeled provider, which increases

their willingness-to-pay for U-labeled service. As we show in the proof of Proposition 3, the latter

effect dominates, causing equilibrium prices for U-labeled transactions to increase.

As a result, we observe that as α increases, (i) the relative volume of H-labeled (U-labeled)

transactions decreases (increases), and (ii) the equilibrium price of both H- and U-labeled trans-

actions increases. Given that in any equilibrium H-labeled transactions are more profitable for the

platform, the optimal policy α∗ then consists of identifying the best possible combination of com-

mission revenues and relative transaction volumes. Figure 3 presents an example of the mechanism

underlying the result of Proposition 3. Observe that the improvement in platform revenue from

employing a policy with information delay is substantial, even though the platform’s “starting

position” (i.e., the steady-state transaction volume achieved under full information) in the setting

considered here is already strong.

On an intuitive level, the mechanism described in Proposition 3 is the two-sided platform ana-

logue of the well-known “damaged goods” effect, which applies under the traditional model of a

firm: in order to price discriminate more effectively, the firm deliberately reduces (i.e., “damages”)
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Figure 3 Mechanism I: Improving the Provider Composition. The left plot depicts the volume of transactions

with providers labeled U and H inside the platform as a function of the information provision policy

α. The right plot depicts the ratio of revenues under information provision policy α over the revenues

under full information disclosure (parameter values: q0 = 0.35, p0 = 0.32, w0 = 0.31, b0 = 0, γ = 0.2, and

β = 0.8).

the quality of a fraction of its output (see Deneckere and McAfee (1996)). In the two-sided platform

model, the platform does not have direct control over the quality of its providers. However, by

setting α∗ > 0 the platform essentially uses information to “damage” a fraction of its high-quality

providers, by labeling them as providers of lesser quality. In turn, this leads to higher equilibrium

prices set by the providers, as compared to when the platform employs a full-information provision

policy. Thus, although the volume of transactions with the more-profitable H-labeled providers is

lower, the platform’s revenue per transaction is higher, leading to an overall increase in revenues.

5.2. Mechanism II: Increasing the Transaction Volume

The mechanism described in §5.1 applies to cases where the market conditions are such that the

platform finds it optimal to cover the entire demand in the absence of an optimized information-

provision policy. The second mechanism we describe is relevant when the consumers’ and/or the

providers’ outside options are sufficiently attractive relative to transacting inside the platform,

so that the platform does not find it optimal to satisfy the entire consumer demand under full

information (i.e., a positive fraction of consumers choose to transact with the outside option).8

This is formalized in the following proposition.

Proposition 4. When the platform employs a full-information provision policy (i.e., α = 0)

8 For example, the condition p0
q0−γ

< 1 + min
(

1
4
,w0

)
is sufficient.
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Figure 4 Mechanism II: Increasing the Transaction Volume. The left plot depicts the volume of transactions with

providers labeled U and H inside the platform as a function of the information provision policy α. The

right plot depicts the ratio of revenues under information provision policy α over the revenues under

full information disclosure (parameter values: q0 = 0.21, p0 = 0.085, w0 = 0.035, b0 = 0.005, γ = 0.15, and

β = 0.8).

and sets the commission optimally, the mass of consumers that choose the outside option in each

period is strictly positive.

Proposition 4 describes an equilibrium where it is optimal for the platform to serve only a subset

of the consumer demand, as a result of the difficulty in attracting providers and consumers to

the platform in a profitable manner. While the platform in these cases finds itself in a difficult

situation, Proposition 5 documents a powerful mechanism through which optimized information

provision can help improve the platform’s circumstance significantly.

Proposition 5. The optimal platform policy features information provision with positive delay

(i.e., α∗ > 0). In the equilibrium induced by the optimal policy, both the overall volume of transac-

tions as well as the volume of transaction with providers labeled H are strictly higher as compared

to when the platform employs a full-information provision policy.

In the mechanism described in Proposition 5, a policy with information delay increases the

platform’s revenue by increasing the total volume of transactions occurring inside the platform.

Interestingly, the result also establishes that concealing (i.e., delaying the release of) information on

the quality of some of its known high-quality providers in each period in fact allows the platform to

maintain and reveal a higher volume of high-quality providers active inside the platform in steady

state.
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It is helpful to discuss the details of the mechanism underlying Proposition 5 in the context of the

example of Figure 4, where we plot the volume of U- and H-labeled transactions occurring inside

the platform in steady state, as a function of the delay parameter α. The plot can be explained on

the basis of two qualitatively different regions depending on the value of α.

Consider first the region where α< 0.1. Note that, in this region, the total volume of transactions

occurring inside the platform is strictly increasing in α up until the entire market is captured

by the platform. Moreover, observe that this occurs through a simultaneous increase in both the

volume of transactions with providers labeled U but also with providers labeled H. With regards

to the first, recall that assigning label U to a positive measure of known H-type providers increases

the expected quality of a transaction with a provider labeled U . As a result, the demand for

those providers increases, which in turn translates into an increase in the volume of U-labeled

transactions. It may appear counter-intuitive that the described manner in which the volume of

transactions increases—which effectively involves a “re-labeling” of H-type providers from H to

U—is seen to result in a simultaneous increase of H-labeled transactions in the platform. The key

lies in the significant increase in participation of new (i.e., U -type) providers inside the platform

(which occurs as a result of the increased demand for U-labeled providers described above). The

increase in new provider participation implies that the platform is able to discover H-type providers

at a higher rate than before, through a higher rate of “experimentation” of consumers with new

providers. Because the rate at which H-type providers are discovered and added to the platform’s

“inventory” is higher than the rate at which H-type providers are hidden from the consumers

through the platform’s information policy, the result is a net increase in the steady-state volume of

H-labeled transactions. Thus, somewhat paradoxically, by hiding high-quality providers from the

consumers, the platform ultimately is able to make a higher volume of such providers available to

consumers.

As for the region where α≥ 0.1, here what we observe is the “composition” mechanism described

in §5.1. In particular, once the platform successfully increases the total volume of transactions

occurring on the platform through the mechanism described above, injecting further delay into its

information policy allows the platform fine-tune the composition of transaction occurring on the

platforms in order to achieve the most revenue-efficient set of transactions possible. As demon-

strated in Figure 4, in this example the optimal policy increases the delay parameter α to a value

higher than 0.1 so as to increase the relative volume of U-labeled transactions while maintaining

the same absolute volume of transactions; however, note that most of the revenue increase for the

platform is attributed to the increase in the overall volume of transactions and the corresponding

higher rate of discovery of high-quality providers (described above) which occurs over the region

α< 0.1.
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5.3. Mechanism III: Reducing Commission Subsidies

Given the analysis in the previous sections, it is reasonable to ask whether the same effect (i.e.,

increasing the platform’s revenues through a higher volume of transactions and/or a better com-

position of providers) can be achieved through an optimized menu of commissions, and without

the need for redesigning the platform’s information-provision policy. To answer this question, we

now consider the case where the platform’s commission policy can be label-dependent. Let the

platform’s actual commission from a U- and H-labeled transaction under the information-provision

policy α be denoted by τ cU(α) and τ cH(α), respectively.9 The following result establishes that the

optimal commission menu when the platform employs a full-information provision policy “subsi-

dizes” providers for which the platform does not hold any information.10

Proposition 6. When the platform employs a full-information provision policy, the optimal

commission menu satisfies τ c,∗U (0) < τ c,∗H (0). Moreover, under the optimal commission menu, all

consumers choose to transact on the platform.

Note that the optimal differentiated-commissions policy described in Proposition 6 is such that

the platform captures the entire consumer demand. In this way, the result underscores a key

objective for the platform, namely, to increase the entry of new providers into the platform. Doing so

has two main benefits: (i) the capacity to serve consumers demanding a U-labeled service provider

increases, and (ii) the capacity to serve consumers demanding H-labeled providers also increases

(indirectly, given the higher rate of discovery of H-type providers that occurs as a result of more

experimentation with new providers). In the proof of Proposition 6, we further show that under

the optimal policy, the platform subsidizes the entry of new providers, by either offering a reduced

commission rate for U-labeled transactions, or (in more extreme cases) offering to pay U-labeled

providers a premium over and above a zero commission rate.

Despite the fact that a differentiated-commissions policy allows the platform to maximize the

volume of transactions occurring inside the platform, optimizing its information-provision policy

still adds value, as we establish in the proposition that follows.

Proposition 7. When the platform employs a differentiated-commissions policy, the optimal

information-provision policy features positive delay (i.e., α∗ > 0). Moreover, under the optimal

platform policy, the commissions on all transactions are strictly higher as compared to when the

platform employs a full-information provision policy, (i.e., τ c,∗U (α∗)> τ c,∗U (0) and τ c,∗H (α∗)> τ c,∗H (0)).

9 To ease the exposition, it is convenient to present the results in this section in terms of the actual commissions that the
platform imposes on transactions, rather than in terms of percentages of the equilibrium prices; it is straightforward to
show that when the platform’s commissions can be label-dependent, the two ways of expressing results are equivalent.

10 Note that the menu of commissions we consider is quite general in that it allows for the possibility that the platform
reimburses a fraction of providers for them being active on the platform.
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Figure 5 Mechanism III: Reducing Commission Subsidies. The left plot depicts the optimal commission fees

for transactions with providers labeled U and H inside the platform as a function of the information

provision policy α. The right plot depicts the ratio of revenues under information provision policy α

over the revenues under full information disclosure (parameter values: q0 = 0.38, p0 = 0.26, w0 = 0.22,

b0 = 0, γ = 0.22, and β = 0.8).

The key driver underlying the increase in revenue under the optimal information-provision policy

is the platform’s ability to charge higher commissions—and, in particular, a lower commission

“subsidy” for new providers—without this resulting in a decrease in the entry of new providers or

the overall volume of transactions.

To describe this mechanism in more detail, it is useful to consider the example of Figure 5. As

the platform starts injecting delay into its information-provision policy (i.e. at low values of α),

H-labeled providers face less intense competition and are therefore able to increase their prices.

This price increase is appropriated by the platform through a higher commission. At the same time,

consumer demand for U-labeled providers increases (owing to a higher expected service quality)

but the commission for U-labeled transactions remains low, as the platform still finds it optimal

to subsidize new providers. As the information delay increases, consumer demand for U-labeled

providers eventually increases enough to drive a higher level of entry of new providers; at this

point, the platform is able to increase the commission for U-labeled providers without jeopardizing

entry. The optimal policy strikes a balance between the composition of transactions occurring on

the platform and the resulting revenue per transaction.

6. Concluding Remarks

This paper explores the benefits of information design for a two-sided platform in the presence of

heterogeneity and endogenous behavior on both sides of the market. Service providers (the supply
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side) differ in their quality whereas consumers (the demand side) differ in how much they value

service quality. The platform acts as an intermediary between the two sides and aims to maximize

its revenues by appropriately designing two levers: (i) a commission charged per transaction, and

(ii) an information-provision policy, which determines the disclosure of information pertaining to

the providers’ service quality inside the platform.

Depending on the market conditions in which the platform operates, we illustrate three main

mechanisms through which information design can lead to higher revenues. When transacting

outside the platform is relatively unattractive for providers and consumers, we demonstrate that

the platform may find it optimal to delay disclosing the quality of a fraction of its best providers.

This mechanism can be thought of as a two-sided platform analogue of the “damaged goods”

effect (see Deneckere and McAfee (1996)) and its main purpose is to allow for more effective

price discrimination. On the other hand, when consumers and/or service providers have access to

relatively attractive outside options, we show that the platform may still benefit from delaying

labeling a fraction of its high quality providers as such. However, the mechanism driving the

increase in revenues in this case is entirely different qualitatively: bundling high-quality and new

providers increases the overall volume of transactions on the platform and subsequently the rate

at which consumers generate information about the quality of providers. As a result, the platform

ends up featuring more providers labeled as high quality (although each high quality provider is

labeled as such with a delay). Finally, we find that the benefits of information design persist even

when the platform may set different commissions for providers of different labels. Here, we show

that information can effectively act as a substitute for commission subsidies.

Throughout the paper, we focus on revenue maximization as the platform’s primary objective

and we show that information design can lead to a substantial increase in revenues (e.g., see Figures

3 and 4). At the same time, the platform’s information-provision policy affects consumer surplus as

well.11 In Figure 6, we plot the consumer surplus as a function of the information delay parameter

α, in the two numerical examples presented in §5.1 and §5.2 (see Figures 3 and 4, respectively).

In the left plot (which corresponds to the “composition” mechanism of §5.1), the platform uses

information design to alter the composition of providers who are active inside the platform, which

essentially results in more effective price discrimination (albeit indirectly, through the providers’

equilibrium pricing decisions). Accordingly, consumer surplus at the platform’s optimal policy α∗

is lower than under the full-information provision policy (i.e., α = 0). In contrast, in the right

plot of Figure 6 (which corresponds to the “volume” mechanism of §5.2), we observe that both

the platform and consumers benefit substantially from the higher rate of experimentation and

11 We note that free entry on the supply side implies that the providers’ expected earnings inside the platform are
equal to their outside option; that is, information design does not affect the providers’ surplus.
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Figure 6 Consumer Surplus under Mechanisms I and II (see §5.1 and §5.2, respectively). The left plot depicts the

ratio of the consumer surplus under information provision policy α over the consumer surplus under full

information, for the parameter values used in Figure 3 (Mechanism I). The right plot depicts the same

ratio for the parameter values used in Figure 4 (Mechanism II). The optimal information provision policy

for the platform α∗ results in lower consumer surplus under Mechanism I (due to price discrimination)

but higher consumer surplus under Mechanism II (due to a higher volume of transactions and rate of

discovery of high-quality providers).

the resulting discovery of high-quality providers induced under the optimal information-provision

policy. Interestingly, here we find that the delayed release of information that occurs under the

platform’s optimal policy in fact leads to a Pareto improvement.

Our findings complement the growing literature on the design and operations of two-sided plat-

forms. Unlike much of the prior work that treats supply as exogenous and fixed over time, we

mainly explore the impact of information design on the supply side of the marketplace and illustrate

the significant benefits that this may entail. To best illustrate how jointly optimizing commissions

and information provision leads to benefits for the platform, we make a number of assumptions,

including that demand is time-invariant; that providers’ quality is revealed to the platform after

a single transaction; and that providers are only vertically differentiated. Relaxing these assump-

tions constitute fruitful, albeit likely challenging, directions for future research. More generally,

in light of the growing prominence of the gig economy and its increasing role in the market for

labor, work that explores the interplay between the platform’s design levers and the (equilibrium)

behavior they induce from market participants represents an avenue for future research that is

both theoretically interesting and practically relevant.
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Appendix

A. Preliminaries

Throughout the Appendix, we use the following notation to simplify the exposition of our analysis and

results:

(i) λ, α
1−βα . Note that λ is increasing in α, i.e., the delay parameter in the platform’s information provision

policy and λ= 0 when α= 0.

(ii) η, 1−β
βγ
· q0−γ

1−q0
. Note that η > 0 and Assumption 1(b) implies that η < 1/2.

A.1. Formal Description of the Equilibrium Concept

This subsection provides a formal description of the equilibrium concept we employ under a general policy

(τU , τH, α) by the platform. In particular, an equilibrium under information provision policy {α} and com-

mission structure {τU , τH} is a tuple of prices {pU , pH}, a mass of providers who engage with the platform

{δUU , δHU , δHH}, and a mass of consumers who transact inside the platform {ζU , ζH} such that

(i) Expected earnings: If high-quality providers labeled U and H choose to remain active on the platform,

then their expected future earnings are given as

V H
U = η(1− τU)pU +βαmax

{
V H
U ,

w0

1−β

}
+β(1−α) max

{
V H
H ,

w0

1−β

}
, (10)

and V H
H =

(1− τH)pH
1−β

, (11)

respectively. Here η denotes the rationing rate among U-labeled providers. If new providers choose to join

the platform, then their expected lifetime earnings are given as

V U
U = η

(
(1− τU)pU +βαγmax

{
V H
U ,

w0

1−β

}
+β(1−α)γmax

{
V H
H ,

w0

1−β

}
+β(1− γ)

w0

1−β

)
+ (1− η)βV U

U .

(12)

When there is entry to the platform and subsequently transaction, the expected earnings for new providers

should be at least as high as their outside options. This together with our assumption that the supply of

potential providers is infinite result in the following free-entry condition

V U
U =

w0

1−β
.

(ii) Providers’ retention decisions: High-quality providers (i.e., H-type providers) with label U and H

decide whether or not to remain active on the platform to maximize their expected earnings. In particular,

the decisions of high-quality providers with label U and high-quality providers with label H are characterized

by

sU = arg max
s∈[0,1]

sV H
U + (1− s) w0

1−β
and sH = arg max

s∈[0,1]

sV H
H + (1− s) w0

1−β
,

where sU and sH represent the fractions of high-quality providers with label U and label H, respectively,

who remain active on the platform. Finally, the mass of providers is time-invariant and satisfies the following

condition

δHH = β
(
sHδ

H
H + (1−α)(sUδ

H
U + γδUU )

)
and δHU = βα

(
sUδ

H
U + γδUU

)
. (13)
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(iii) Customers’ choice of providers: Given that the mass of providers on the platform is positive, customers

choose providers with different labels so as to maximize their expected utility. Specifically, the choice of a

customer with type θ is given by

arg max
i∈{∅,U,H}

θqi− pi,

where {∅,U ,H} represents the set of available options for customers, i.e., transacting with the outside option

or with a provider with labels U and H inside the platform, respectively. The mass of customers who find

it optimal to transact with providers with labels U and H is given by ζU and ζH, respectively. Finally, the

induced demand clears the available supply of providers. That is,

ζU = δUU + sUηδ
H
U and ζH = sHδ

H
H . (14)

(iv) Minimum payment: The payment received by each provider should be no less than b0. That is,

(1− τU)pU ≥ b0 and (1− τH)pH ≥ b0.

Remarks: The existence of an equilibrium as defined above is established by Proposition A.1. When τU =

τH = τ , this equilibrium coincides with the equilibrium defined in Section 4.

A.2. Sufficient Conditions for Mechanisms I and II

This subsection formalizes the conditions underlying Mechanism I and II discussed in Section 5. In particular,

Assumption 2 below provides sufficient conditions under which Propositions 2 and 3 hold.

Assumption 2. The following conditions on the modeling primitives are sufficient for Mechanism I to

hold at equilibrium, i.e.,

p0

q0− γ
> 1 +

1−β
1−β+βγ

, and

b0 <min

{
p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

,
p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

}
w0. (15)

Next, we provide sufficient conditions on the modeling primitives for Mechanism II to hold at equilibrium,

i.e., the following conditions are sufficient for Propositions 4 and 5 to hold.

Assumption 3. The following condition on the modeling primitives is sufficient for Mechanism II to hold

at equilibrium

p0

q0− γ
< 1 + min

(1

4
,w0

)
.

A.3. Auxiliary Technical Results

This subsection provides a number of technical results, which are required to establish our main findings.

We point out that the following results hold under the general case when τU and τH may be different.

Proposition A.1 An equilibrium as defined in Appendix A.1 exists under any {τU , τH, α}.
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Proof. We proceed in three steps to establish the existence of an equilibrium. First, we construct an

auxiliary normal form game with a finite number of players and convex and compact strategy spaces. Second,

we establish the existence of a pure strategy Nash equilibrium of the auxiliary game using the results in

Dasgupta and Maskin (1986). Third, we show that the equilibrium of the auxiliary game corresponds to an

equilibrium of the original game, i.e., it satisfies the equilibrium conditions presented in Appendix A.1.zzzz

Step 1: In the first step, we construct an auxiliary game that involves 15 agents. In what follows, we

characterize each agent’s strategy space and payoff function, denoted by ui, where i ∈ {1,2, ...,15}. Given

agent i, we further establish that ui is upper semi-continuous (u.s.c.) in the actions of all agents and quasi-

concave (q.c.) in agent i’s action, and that maxui is lower semi-continuous (l.s.c.) in the actions of all agents

other than agent i. In terms of notation, we let a denote the action vector of all agent and a−i denote the

action vector of all agents except agent i. We then let {Mi} denote a set of constants such that Mj�Mi� 0

if i < j.

1. Agent 1: We denote the agent’s action space by δ̃UU ∈ [0,M1] and her payoff function by

u1(δ̃UU ,a−1) =−ηδ̃UU
∣∣∣V U
U −

w0

1−β

∣∣∣,
where η is the action of agent 13 with action space [0,M1], and V U

U is the action of agent 6 with action

space [0,M4]. Therefore, u1 is u.s.c. in a and q.c. in δ̃UU . In addition, maxδ̃UU u1 = 0, which is l.s.c. in a−1.

2. Agent 2: We denote the agent’s action space by δHU ∈ [0,M2] and her payoff function by

u2(δHU ,a−2) =−
∣∣∣δHU − βγα

1−βαsU
ηδ̃UU

∣∣∣,
where sU is the action of agent 4 with action space [0,1]. Therefore, u2 is u.s.c. in a and q.c. in δHU . In

addition, maxδHU u2 = 0, which is l.s.c. in a−2.

3. Agent 3: We denote the agent’s action space by δHH ∈ [0,M3] and her payoff function by

u3(δHH ,a−3) =−
∣∣∣δHH − β(1−α)

1−βsH

(
sUδ

H
U + γηδ̃UU

)∣∣∣.
Therefore, u3 is u.s.c. in a and q.c. in δHH . In addition, maxδHH u3 = 0, which is l.s.c. in a−3.

4. Agent 4: We denote the agent’s action space by sU ∈ [0,1] and her payoff function by

u4(sU ,a−4) =−sUmax
( w0

1−β
−V H

U ,0
)
− (1− sU) max

(
V H
U −

w0

1−β
,0
)
,

where V H
U is the action of agent 7 with action space [0,M3]. Therefore, u4 is u.s.c. in a and q.c. in sU .

In addition, maxsU u4 = 0, which is l.s.c. in a−4.

5. Agent 5: We denote the agent’s action space by sH ∈ [0,1] and her payoff function by

u5(sH,a−5) =−sHmax
( w0

1−β
−V H

H ,0
)
− (1− sH) max

(
V H
H −

w0

1−β
,0
)
,

where V H
H is the action of agent 9 with action space [0,M2]. Therefore, u5 is u.s.c. in a and q.c. in sH.

In addition, maxsH u5 = 0, which is l.s.c. in a−5.
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6. Agent 6: We denote the agent’s action space by V U
U ∈ [0,M4] and her payoff function by

u6(V U
U ,a−6) =−

∣∣∣∣∣V U
U −

η

1− (1− η)β

(
(1− τU)pU +βγαsHV

H
U +βγ(1−α)sHV

H
H

+β
(
γα(1− sU) + γ(1−α)(1− sH) + 1− γ

) w0

1−β

)∣∣∣∣∣,
where pU is the action of agent 14 with action space [ b0

1−τU
,M1]. Therefore, u6 is u.s.c. in a and q.c. in

V U
U . In addition, maxV UU u6 = 0, which is l.s.c. in a−6.

7. Agent 7: We denote the agent’s action space by V H
U ∈ [0,M3] and her payoff function by

u7(V H
U ,a−7) =−

∣∣∣∣∣V H
U −

1

1−βαsU

(
η(1− τ)pU +β(1−α)sHV

H
H +β

(
α(1−sU)+(1−α)(1−sH)

) w0

1−β

)∣∣∣∣∣.
Therefore, u7 is u.s.c. in a and q.c. in V H

U . In addition, maxVHU u7 = 0, which is l.s.c. in a−7.

8. Agent 8: We denote the agent’s action space by V H
H ∈ [0,M2] and her payoff function by

u8(V H
H ,a−8) =−

∣∣∣V H
H −

(1− τH)pH
1−β

∣∣∣,
where pH is the action of agent 12 with action space [ b0

1−τH
,M1]. Therefore, u8 is u.s.c. in a and q.c. in

V H
H . In addition, maxVHH u9 = 0, which is l.s.c. in a−8.

9. Agent 9: We denote the agent’s action space by ζH ∈ [0,1] and denote her payoff function by

u9(ζH,a−9) =−

∣∣∣∣∣ζH−
(

2−max
{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
})∣∣∣∣∣,

where qH = 1. Therefore, u9 is u.s.c. in a and q.c. in ζH. In addition,

max
ζH

u9 =

 0, if max
{
pH−p0
qH−q0

, pH−pU
qH−qU

,1
}
≤ 2,

−
∣∣∣2−max

{
pH−p0
qH−q0

, pH−pU
qH−qU

,1
}∣∣∣, otherwise.

Therefore, maxζH u9 is l.s.c. in a−9.

10. Agent 10: We denote the agent’s action space by ζ̃U ∈ [0,1] and her payoff function by

u10(ζ̃U ,a−10) =−
∣∣∣ζ̃U −DU(a−10)

∣∣∣(1{pU<p0}(a−10)+1{pU>p0}(a−10)+1{qU<q0}(a−10)+1{qU>q0}(a−10)
)
,

where DU(a−10) =



max

{
min

{
pU−p0
qU−q0

, pH−pU
qH−qU

,2
}
,1

}
− 1, if qU < q0,

max

{
min

{
pH−pU
qH−qU

,2
}
,1

}
−min

{
max

{
pU−p0
qU−q0

,1
}
,max

{
min

{
pH−pU
qH−qU

,2
}
,1

}}
, if qU > q0,

max

{
min

{
pH−pU
qH−qU

,2
}
,1

}
− 1, if qU = q0 and pU < p0,

0, if qU = q0 and pU ≥ p0.

In the characterization of DU(a−10), qH = 1, and qU is the action of agent 15 with action space [γ,1].
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Next, we show that DU(a−10) is continuous in {a−10|qU 6= q0} ∪ {a−10|pU 6= p0}. First, it follows that

DU(a−10) is continuous in {a−10|qU < q0} ∪ {a−10|qU > q0} by its definition. Second, we show that

DU(a−10) is continuous at any point within {a−10|qU = q0 and pU < p0}. In particular, it suffices to

show that the following holds given p < p0:

lim
(qiU ,p

i
U )→(q−0 ,p

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q−0 ,p

+)
DU(qiU , p

i
U) =DU(q0, p), (16)

and lim
(qiU ,p

i
U )→(q+0 ,p

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q+0 ,p

+)
DU(qiU , p

i
U) =DU(q0, p). (17)

The first equalities in Expression (16) and Expression (17), respectively, hold because DU(a−10) is

continuous in {a−10|qU < q0} and {a−10|qU > q0}, respectively. Then, we establish the second equality

in Expression (16). Note that when qiU → q−0 and piU → p+,

DU(qiU , p
i
U) = max

{
min

{piU − p0

qiU − q0
,
pH− piU
qH− qiU

,2
}
,1

}
− 1

converges to

DU(q0, p) = max

{
min

{ pH− p
qH− q0

,2
}
,1

}
− 1,

as
piU−p0
qiU−q0

→+∞ and
pH−piU
qH−qiU

→ pH−p
qH−q0

. Therefore, the second equality in Expression (16) holds. Similarly,

we show that the second equality in Expression (17) holds. In particular, note that when qiU → q+
0 and

piU → p+,

DU(qiU , p
i
U) = max

{
min

{pH− piU
qH− qiU

,2
}
,1

}
−min

{
max

{piU − p0

qiU − q0
,1
}
,max

{
min

{pH− piU
qH− qiU

,2
}
,1

}}
converges to

DU(q0, p) = max

{
min

{ pH− p
qH− q0

,2
}
,1

}
− 1,

as
piU−p0
qiU−q0

→−∞ and
pH−piU
qH−qiU

→ pH−p
qH−q0

. Therefore, DU(a−10) is continuous at any point with qU = q0 and

pU = p < p0. Third, we show that DU(a−10) is continuous at any point within {a−10|qU = q0 and pU >

p0}. Given p̄ > p0,

lim
(qiU ,p

i
U )→(q−0 ,p̄

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q−0 ,p̄

+)
DU(qiU , p

i
U) =DU(q0, p̄), (18)

and lim
(qiU ,p

i
U )→(q+0 ,p̄

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q+0 ,p̄

+)
DU(qiU , p

i
U) =DU(q0, p̄). (19)

The first equalities in Expression (18) and Expression (19) hold because DU(a−10) is continuous in

{a−10|qU < q0} and {a−10|qU > q0}, respectively. To show that the second equality in Expression (18)

holds, we note that when qiU → q−0 and piU → p̄+,

DU(qiU , p
i
U) = max

{
min

{piU − p0

qiU − q0
,
pH− piU
qH− qiU

,2
}
,1

}
− 1
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converges to DU(q0, p̄) = 0, as
piU−p0
qiU−q0

→−∞ and
pH−piU
qH−qiU

→ pH−p̄
qH−q0

. Similarly, to show the second equality

in Expression (19), we note that when qiU → q+
0 and piU → p̄+,

DU(qiU , p
i
U) = max

{
min

{pH− piU
qH− qiU

,2
}
,1

}
−min

{
max

{piU − p0

qiU − q0
,1
}
,max

{
min

{pH− piU
qH− qiU

,2
}
,1

}}
converges to DU(q0, p̄) = 0, as

piU−p0
qiU−q0

→+∞ and
pH−piU
qH−qiU

→ pH−p̄
qH−q0

. Therefore, DU(a−10) is continuous at

any point with qU = q0 and pU = p̄ > p0. In sum, we have established the continuity of DU(a−10) in

{a−10|qU 6= q0}∪ {a−10|pU 6= p0}.

Then, based on the continuity of DU(a−10), we rewrite u10(ζ̃U ,a−10) as follows:

u10(ζ̃U ,a−10) =



0, if qU = q0 and pU = p0

−
∣∣∣ζ̃U −DU(a−10)

∣∣∣, if qU > q0 and pU = p0

or qU < q0 and pU = p0

or qU = q0 and pU > p0

or qU = q0 and pU < p0

−2
∣∣∣ζ̃U −DU(a−10)

∣∣∣, if qU > q0 and pU > p0

or qU < q0 and pU > q0
or qU > q0 and pU < q0
or qU < q0 and pU < q0

.

Based on the above characterization, it immediately follows that u10 is u.s.c. in a and q.c. in ζ̃U . In

addition, maxζ̃U u10 = 0, which is l.s.c.

Moreover, we observe that when qU 6= q0 or pU 6= p0, we have

ζ∗H+DU(a−10)≤ 1, (20)

where

ζ∗H = arg max
ζH

u9 = max

{
2−max

{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}
,0

}
.

In what follows, we show that inequality (20) holds in all four possible cases, i.e., (1) qU < q0, (2)

qU > q0, (3) qU = q0 and pU < p0, and (4) qU = q0 and pU > p0, separately.

(1) In this case, we note that

DU(a−10) = max

{
min

{pU − p0

qU − q0
,
pH− pU
qH− qU

,2
}
,1

}
≤ 1.

Therefore,

ζ∗H+DU(a−10) =

{
DU(a−10),1 + min

{pU − p0

qU − q0
,
pH− pU
qH− qU

,2
}
−max

{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}}

.

Then, to show that the above expression is no greater than 1, it is equivalent to show

min
{pU − p0

qU − q0
,
pH− pU
qH− qU

,2
}
≤max

{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}
. (21)

It is straightforward to verify that under qU < q0, either

pH− p0

qH− q0
≤ pH− pU
qH− qU

≤ pU − p0

qU − q0
or

pU − p0

qU − q0
≤ pH− pU
qH− qU

≤ pH− p0

qH− q0
holds. In the first case, inequality (21) is equivalent to min

{
pH−pU
qH−qU

,2
}
≤max

{
pH−pU
qH−qU

,1
}

, which

holds, and in the second case, inequality (21) is equivalent to min
{
pU−p0
qU−q0

,2
}
≤max

{
pH−p0
qH−q0

,1
}

,

which also holds.
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(2) In this case, we note that

DU(a−10) = max

{
min

{pH− pU
qH− qU

,2
}
,1

}
−min

{
max

{pU − p0

qU − q0
,1
}
,max

{
min

{pH− pU
qH− qU

,2
}
,1

}}
≤ 1.

Then, to show that inequality (20) holds, it is equivalent to show

max
{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}
−max

{
min

{pH− pU
qH− qU

,2
}
,1

}

+ min

{
max

{pU − p0

qU − q0
,1
}
,max

{
min

{pH− pU
qH− qU

,2
}
,1

}}
≥ 1.

The above inequality holds as

max
{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}
−max

{
min

{pH− pU
qH− qU

,2
}
,1

}
≥ 0, (22)

and its third term is no less than 1.

(3) In this case, we note that

DU(a−10) = max

{
min

{pH− pU
qH− qU

,2
}
,1

}
− 1.

Then, we have

ζ∗H+DU(a−10) = max

{
1−max

{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}

+ max

{
min

{pH− pU
qH− qU

,2
}
,1

}
,DU(a−10)

}
≤ 1,

where the inequality holds because DU(a−10)≤ 1, and inequality (22) holds.

(4) Note that DU(a−10) = 0 in this case. Since ζ∗H ≤ 1, inequality (20) follows.

Therefore, we conclude that inequality (20) holds when qU 6= q0 or pU 6= p0.

11. Agent 11: We denote the agent’s action space by ζU ∈ [0,1] and her payoff function by

u11(ζU ,a−11) =−
∣∣∣ζU −min(ζ̃U ,1− ζH)

∣∣∣.
Therefore, u11 is u.s.c. in a and q.c. in ζU . In addition, maxζU u11 = 0, which is l.s.c. in a−11.

12. Agent 12: We denote the agent’s action space by pH ∈ [ b0
1−τH

,M1] and her payoff function by

u12(pH,a−12) =
(
pH−

b0
1− τH

)
(ζH− sHδHH).

Therefore, u12 is u.s.c. in a and q.c. in pH. In addition, maxpH u12(pH,a−12) = max
{(
M1− b0

1−τH

)
(ζH−

sHδ
H
H),0

}
, which is l.s.c. in a−12.

13. Agent 13: We denote the agent’s action space by η ∈ [0,M1] and her payoff function by

u13(η,a−13) =−
∣∣∣ζU − η(δ̃UU + sUδ

H
U )
∣∣∣.

Therefore, u13 is u.s.c. in a and q.c. in η. In addition,

max
η
u13(η,a−13) = min

{
− ζU +M1(δ̃UU + sUδ

H
U ),0

}
,

which is l.s.c. in a−13.
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14. Agent 14: We denote the agent’s action space by pU ∈ [ b0
1−τU

,M1] and her payoff function by

u14(pU ,a−14) =
(
pU −

b0
1− τU

)
(η− 1).

Therefore, u14 is u.s.c in a and q.c. in pU . In addition,

max
pU

u14(pU ,a−14) = max
{(
M1−

b0
1− τU

)
(η− 1),0

}
,

which is l.s.c. in a−14.

15. Agent 15: We denote the agent’s action space by qU ∈ [γ,1] and her payoff function by

u15(qU ,a−15) =−
∣∣∣qU − ηγ(δ̃UU + sUδ

H
U ) + sHδ

H
H

η(δ̃UU + sUδHU ) + sHδHH

∣∣∣ηδ̃UU .
Therefore, u15 is u.s.c. in a and q.c. in qU . In addition, maxqU u15 = 0, which is l.s.c. in a−15.

This concludes the description of the auxiliary game that we will employ in the proof of equilibrium existence.

Step 2: Next, we show that the auxiliary game has a pure strategy Nash equilibrium, which follows directly

by the Corollary of Theorem 2 in Dasgupta and Maskin (1986). In addition, we note that the following

conditions hold in any given equilibrium:

1. By the equilibrium actions of agents 2 and 3, we have

δHU =
βγα

1−βαsU
ηδ̃UU and δHH =

β(1−α)

1−βsH

(
sUδ

H
U + γηδ̃UU

)
. (23)

2. By the equilibrium actions of agents 6, 7, and 8, we have

V U
U =

η

1− (1− η)β

(
(1− τU)pU +βγαsHV

H
U +βγ(1−α)sHV

H
H

+β
(
γα(1− sU) + γ(1−α)(1− sH) + 1− γ

) w0

1−β

)
, (24)

V H
U =

1

1−βαsU

(
η(1− τ)pU +β(1−α)sHV

H
H +β

(
α(1− sU) + (1−α)(1− sH)

) w0

1−β

)
, (25)

and V H
H =

(1− τH)pH
1−β

. (26)

Furthermore, if ηδ̃UU > 0 holds in equilibrium, the following should also hold

1. By the equilibrium action of agent 1, we have

V U
U =

w0

1−β
. (27)

2. By the equilibrium action of agent 15, we have

qU =
ηγ(δ̃UU + sUδ

H
U ) + sHδ

H
H

η(δ̃UU + sUδHU ) + sHδHH
. (28)

3. By the equilibrium action of 14, we have

0< η≤ 1. (29)

We show Expression (29) by way of a contradiction. Suppose η > 1, which implies that pU =M1→+∞
by the equilibrium action of agent 14. As a result, ζ̃U = 0 by the equilibrium action of agent 10, and

hence ζU = 0 by the equilibrium action of agent 11. Thus, we have η = 0 by the equilibrium action of

agent 13 (note that δ̃UU + sUδ
H
U ≥ δ̃UU > 0), which yields a contradiction.
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4. By the equilibrium action of agent 13, we have

ζU = η(δ̃UU + sUδ
H
U ). (30)

5. By the payoff function of agent 12, we have

ζH = sHδ
H
H . (31)

We first show ζH ≤ sHδHH by way of another contradiction. Suppose ζH > sHδ
H
H . Then, agent 12’s equi-

librium action is pH =M1→+∞. Then, we have pH−p0
qH−q0

→+∞ and pH−pU
qH−qU

→+∞. By the equilibrium

action of agent 9, we have ζH = 0, which yields a contradiction. Then, we show ζH ≥ sHδHH by way of yet

another contradiction. Suppose ζH < sHδ
H
H . Then, agent 12’s action is pH = b0

1−τH
< w0

1−τH
, which then

results in V H
H < w0

1−β . By the equilibrium action of agent 5, we have sH = 0, which yields a contradiction.

Step 3: Finally, we show that the equilibrium of the auxiliary game coincides with the equilibrium we defined

in Appendix A.1. It is straightforward to verify that (i) the free-entry condition holds because of Expression

(27); (ii) providers’ lifetime earnings as characterized in Equation (12), Equation (10), and Equation (11)

coincide with Expression (24), Expression (25), and Expression (26), respectively; (iii) providers’ retention

decisions, i.e., sU and sH, coincide with the equilibrium actions of agents 4 and 5; (iv) the mass of providers

given in Equation (13) coincides with Expression (23); (v) condition Equation (14) holds because of Expres-

sion (30) and Expression (31); and (vi) the minimum payment constraints hold because of the action spaces

of agents 12 and 14.

Next, we verify that ζU and ζH are equal to the mass of customers who choose providers with labels U
and label H, respectively, as their optimal choice. In terms of notation, we let ΘU and ΘH denote the set of

customers within [1,2], whose optimal choice are providers with label U and label H, respectively. We use

µ(·) to denote the measure of a given customer set.

We first verify that ζH = µ(ΘH), where ζH is given by the equilibrium action of agent 9. Note that given

θ ∈ΘH, we have θqH−pH ≥ θq0−p0 and θqH−pH ≥ θqU−pU , from which we obtain θ≥max
{
pH−p0
qH−q0

, pH−pU
qH−qU

}
.

Therefore,

ΘH =
[

max
{pH− p0

qH− q0
,
pH− pU
qH− qU

}
,+∞

)
∩ [1,2],

and µ(ΘH) = max
{

2−max
{
pH−p0
qH−q0

, pH−pU
qH−qU

,1
}
,0
}

= ζH.

Then, we verify ζU = µ(ΘU), where ζU is given by the equilibrium action of agent 11. By the definition of

ΘU , we have

θqU − pU ≥ θq0− p0 and θqU − pU ≥ θqH− pH. (32)

We then show that ζU = µ(ΘU) in the following 5 possible cases:

1. Suppose qU < q0 holds in equilibrium. Then inequality (32) results in θ≤min
{
pU−p0
qU−q0

, pH−pU
qH−qU

}
. There-

fore,

ΘU =
(
−∞,min

{pU − p0

qU − q0
,
pH− pU
qH− qU

}]
∩ [1,2],

and µ(ΘU) = max
{

min
{
pH−p0
qH−q0

, pH−pU
qH−qU

,2
}
,1
}
− 1 = ζ̃U = ζU , where the first equality holds because of

agent 10’s equilibrium actionand thesecond equality holds because of inequality (20) and the equilibrium

action of agent 11.
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2. Suppose qU > q0 holds in equilibrium. Then, inequality (32) results in pU−p0
qU−q0

≤ θ≤ pH−pU
qH−qU

. Therefore,

ΘU =
[pU − p0

qU − q0
,
pH− pU
qH− qU

]
∩ [1,2],

and µ(ΘU) = max
{

min
{
pH−pU
qH−qU

,2
}
,1
}
−min

{
max

{
pU−p0
qU−q0

,1},max
{

min
{
pH−pU
qH−qU

,2
}
,1
}}

= ζ̃U = ζU ,

where the first equality holds because of agent 10’s equilibrium actionand thesecond equality holds

because of inequality (20) and the equilibrium action of agent 11.

3. Suppose qU = q0 and pU < p0 hold in equilibrium. Then inequality (32) results in θ≤ pH−pU
qH−qU

. Therefore,

ΘU =
(
−∞, pH− pU

qH− qU

]
∩ [1,2],

and µ(ΘU) = max
{

min
{
pH−pU
qH−qU

,2
}
,1
}
− 1 = ζ̃H = ζU , where the first equality holds because of agent

10’s equilibrium actionand thesecond equality holds because of inequality (20) and the equilibrium

action of agent 11.

4. Suppose qU = q0 and pU > p0 hold in equilibrium. Note that the first inequality of inequality (32)

cannot hold for any θ. Therefore, ΘU = ∅, and µ(ΘU) = 0 = ζ̃U = ζU , where the first equality holds

because of agent 10’s equilibrium actionand thesecond equality holds because of inequality (20) and

the equilibrium action of agent 11.

5. Suppose qU = q0 and pU = p0 hold in equilibrium. Then inequality (32) results in θ≤ pH−p0
qH−q0

. In addition,

since providers U and customers’ outside options are identical, customers are indifferent when choosing

between them, and any

ΘU ⊆
(
−∞, pH− p0

qH− q0

]
∩ [1,2]

is valid. Therefore, µ(ΘU)≤max
{

min
{
pH−p0
qH−q0

,2
}
,1
}
−1. On the other hand, we note that ζU ≤ 1−ζH,

since ζ̃U can take any value within [0,1]. To establish that given ζU there exists a ΘU such that µ(ΘU) =

ζU , it is equivalent to show that max
{

min
{
pH−p0
qH−q0

,2
}
,1
}
− 1 = 1− ζH. By the characterization of ζH

from the equilibrium action of agent 9, it is equivalent to show

2−max

{
min

{pH− p0

qH− q0
,2
}
,1

}
= max

{
2−max

{pH− p0

qH− q0
,
pH− pU
qH− qU

,1
}
,0

}

= max

{
2−max

{pH− p0

qH− q0
,1
}
,0

}

= 2 + max

{
−max

{pH− p0

qH− q0
,1
}
,−2

}

= 2−min

{
max

{pH− p0

qH− q0
,1
}
,2

}
.

The second equality holds as pH−pU
qH−qU

= pH−p0
qH−q0

in this case. Then, it is straightforward to verify that

max

{
min

{pH− p0

qH− q0
,2
}
,1

}
= min

{
max

{pH− p0

qH− q0
,1
}
,2

}
.

Therefore, we show that there exists a ΘU such that µ(ΘU) = ζU given ζU .
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This concludes the proof of existence of an equilibrium as formalized in Appendix A.1. �

Lemma A.1 Suppose providers with label H remain active on the platform in equilibrium. Then, the mass

of high-quality providers with labels U and label H, respectively, are:

δHU = βγλδUU and δHH =
βγ

1−β

(
1− (1−β)λ

)
δUU . (33)

Proof. Equation (33) follows directly from Equation (13). �

Lemma A.2 Suppose providers with label H remain active on the platform in equilibrium. Then, the free-

entry condition for new providers (i.e., V U
U = w0

1−β ) is equivalent to

βγ

1−β
· 1− (1−β)λ

1 +βγλη

(
(1− τH)pH−w0

)
=
w0

η
− (1− τU)pU . (34)

Proof. First, by Equation (12) and the fact that V H
U ≥ w0

1−β and V H
H ≥ w0

1−β , we can rewrite V U
U = w0

1−β as:

(1− τU)pU +βαγV H
U +β(1−α)γV H

H −βγ
w0

1−β
=
w0

η
.

Second, we substitute V H
U and V H

H in the equality above using Equation (10) and Equation (11), respectively,

and obtain:

(δUU + ηδHU )
(

(1− τU)pU −
w0

η

)
+ δHH

(
(1− τH)pH−w0

)
= 0.

Lastly, by substituting δHU and δHH in the equality above using Equation (33), we obtain Equation (34). �

Lemma A.3 Suppose τU = τH = τ . Then, L-type providers, i.e., low-quality providers that have completed

a transaction inside the platform, take their outside option under any information provision policy given by

Equation (2).

Proof. We prove the lemma by showing that it holds for L-type providers with label U and label L,

respectively.

1. For a L-type provider with label L, we claim that she takes the outside option at each period as her

lifetime earnings inside the platform are lower than the outside option. That is,

(1− τ)pL
1−β

<
w0

1−β
, (35)

where pL is the price for her service. Note that pL < pU since qL = 0< qU (otherwise, no customer would

hire providers with label L given that they are dominated by providers with label U , whose supply is

infinite). Therefore, to show inequality (35), it suffices to show that (1− τ)pU ≤w0. We verify the last

inequality by way of a contradiction. Suppose (1− τ)pU >w0. Then, the lifetime earnings of a provider

that is assigned label U satisfy the following

V U
U ≥ (1− τ)pU +β

w0

1−β
>

w0

1−β
.

This holds given that the provider can take her outside option from the subsequent period onward. In

turn, this contradicts the free-entry condition, i.e., V U
U = w0

1−β . Therefore, we have (1−τ)pL < (1−τ)pU ≤
w0, and L-type providers with label L will take the outside option.
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2. For a L-type provider with label U , it follows that remaining active on the platform is a suboptimal

option using a similar argument as under the case above.

In sum, L-type providers choose the outside option in equilibrium under any given information provision

policy. �

Lemma A.4 Suppose τU = τH = τ . Then, in equilibrium, the mass and the expected quality of providers with

label U are

δU = (1 +βγλη)δUU and qU =
γ+βγλη

1 +βγλη
,

respectively. Moreover, if qU ≤ q0, then the structure of the equilibrium is described by one of the following

cases:

Case 1 (Eq1): There is no rationing among U-labeled providers (i.e., η= 1), and all customers transact

with providers inside the platform (i.e., δU + δHH = 1). In addition,

(i) The mass of new providers who are active on the platform satisfy δUU = 1−β
1−β+βγ

.

(ii) Prices of providers with label U and label H are given by

(a) pU = w0

1−τ −
βγ

1−β+βγ

(
1− (1−β)λ

)(
1

1+βγλ
+ 1−β

1−β+βγ

)
(1− γ), and

(b) pH = pU +
(

1
1+βγλ

+ 1−β
1−β+βγ

)
(1− γ).

(iii) Platform revenues are given by τ
1−τw0.

(iv) Finally, the equilibrium satisfies the following conditions:

- Providers with label U are not financially constrained, i.e., (1− τ)pU ≥ b0.

- The customer with type 1 + δU prefers providers with label U to the outside option, i.e.,

pU ≤ p0−
( 1

1 +βγλ
+

1−β
1−β+βγ

)(
q0− γ−βγλ(1− q0)

)
.

Case 2 (Eq2): There is rationing among U-labeled providers (i.e., η < 1), and all customers transact

with providers inside the platform (i.e., δU + δHH = 1). In addition,

(i) The mass of new providers who are active on the platform satisfy

δUU =
1

1−β+βγ
1−β −βγλ(1− η)

.

(ii) Prices of providers with label U and label H are given by

(a) pU = b0
1−τ .

(b) pH = pU +
(

1
1+βγλη

+ δUU

)
(1− γ).

(iii) Platform revenues are given by τ
(
pU +

(
1

1+βγλη
+ δUU

)
δHH(1− γ)

)
.

(iv) Finally, the equilibrium satisfies the following conditions:

- There is rationing among providers with label U , and η is given as the solution to Equation (34).

- The customer with type 1 + δU prefers providers with label U to the outside option, i.e.,

1 + δU ≤
p0− pU
q0− qU

.
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Case 3 (Eq3): There is rationing among U-labeled providers (i.e., η < 1), and there is a positive mass of

customers who choose the outside option (i.e., δU + δHH < 1). In addition,

(i) The mass of new providers who are active on the platform satisfy

δUU =
p0− b0

1−τ

q0− γ−βγλη(1− q0)
− 1

1 +βγλη
.

(ii) Prices of providers with label U and label H are given by

(a) pU = b0
1−τ .

(b) pH = p0 +
(

2− βγ

1−β

(
1− (1−β)λ

)
δUU

)
(1− q0).

(iii) Platform revenues are given by

πr,3(τ,λ),
τ

1− τ

( βγ

1−β
+

1

η

)
w0δ

U
U .

(iv) Finally, the equilibrium satisfies the following conditions:

- There is rationing among providers with label U , and η is given as the solution to Equation (34).

- The volume of transactions inside the platform with providers labeled U is strictly positive.

- The volume of transactions inside the platform is strictly positive. In addition, a strictly positive

fraction of consumers take their outside option.

Case 4 (Eq4): There is no rationing among U-labeled providers (i.e., η= 1), and there is a positive mass

of customers choosing the outside option (i.e., δU + δHH < 1). In addition,

(i) The mass of new providers who are active on the platform satisfy

δUU =

1−β+βγ
1−β (p0− w0

1−τ ) + 2βγ
1−β (1− q0)− (q0− γ)− (1− q0)βγλ

( βγ

1−β )2(1− q0) + (q0− γ)−
(

1−β+2βγ
1−β (1− q0)− (q0− γ)

)
βγλ

.

(ii) Prices of providers with label U and label H are given by

(a) pU = p0− ( 1
1+βγλ

+ δUU )
(
q0− γ−βγλ(1− q0)

)
.

(b) pH = p0 +
(

2− βγ

1−β

(
1− (1−β)λ

)
δUU

)
(1− q0).

(iii) Platform revenues are given by

πr,4(τ,λ),
τ

1− τ
· 1−β+βγ

1−β
w0δ

U
U .

(iv) Finally, the equilibrium satisfies the following conditions:

- Providers with label U are not financially constrained, i.e., (1− τ)pU ≥ b0.

- The volume of transactions inside the platform is strictly positive. In addition, a strictly positive

fraction of consumers take their outside option.

Proof. First, note that the mass of providers with label U who are active on the platform is given by

δU = ζU = δUU + ηδHU = (1 +βγλη)δUU ,

where the last equality is obtained from Equation (33). Then, their expected quality is given by

qU =
δUU γ+ ηδHU
δUU + ηδHU

=
γ+βγλη

1 +βγλη
,

where the second equality follows from Equation (33).

Next, we provide a characterization of the equilibrium quantities corresponding to each of the four cases

described above.



Bimpikis, Papanastasiou, and Zhang: Information Provision in Two-Sided Platforms 37

Eq1: By the definition of this case, there is no rationing among providers with label U and all customers

transact with providers inside the platform. Therefore, η= 1 and δU +δHH = 1. From these two equalities

and Equation (33), we further obtain that

δUU =
1−β

1−β+βγ
.

Next, we obtain the equilibrium prices by Expression (8) as

pH = pU + (1 + ζU)(1− qU) = pU +
( 1

1 +βγλ
+

1−β
1−β+βγ

)
(1− γ).

The expression for pU is obtained directly from Equation (34). Finally, from Equation (34) we also

obtain that (1− τ)(δHHpH + δUpU) = w0. In turn, this implies that revenues for the platform are given

by τ
1−τw0.

Eq2: By the definition of this case, providers with label U are financially constrained given that there is

rationing among them, i.e., η < 1. Furthermore, all customers transact with providers inside the plat-

form. Therefore,

pU =
b0

1− τ
and δU + δHH = 1.

First, we solve for δUU from the last equality above and Equation (33). Then, we characterize pH based

on Expression (8) and we obtain

pH = pU + (1 + ζU)(1− qU) =
b0

1− τ
+
( 1

1 +βγλη
+

1
1−β+βγ

1−β −βγλ(1− η)

)
(1− γ).

Given the characterization of pU and pH, we determine η from Equation (34). Finally, for the platform’s

revenues, we have

πr,2 = τ(pUδU + pHδ
H
H) = τ

( b0
1− τ

+ (
1

1 +βγλη
+ δUU )δHH(1− γ)

)
,

where the second equality is obtained by substituting pH from above.

The characterization of the equilibrium quantities corresponding to the remaining cases follows by similar

arguments and straightforward algebra, which we omit for brevity. �

Proposition A.2 Suppose τU = τH = τ and α= 0. Then, the structure of the equilibrium as a function of τ

and the modeling primitives can be described as follows.

(0) If p0 ≤ q0− γ, then there is no provider on the platform.

(1) If q0− γ < p0 ≤ 2(1−β)+βγ

1−β+βγ
(q0− γ) and 0< b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

(1-a) The structure of the equilibrium follows case Eq3 from Lemma A.4 if

0≤ τ < 1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

. (36)

(1-b) The structure of the equilibrium follows case Eq4 from Lemma A.4 if

1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

≤ τ < 1− w0

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

. (37)
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(1-c) Otherwise, there is no provider on the platform.

(2) If q0− γ < p0 ≤ 2(1−β)+βγ

1−β+βγ
(q0− γ) and p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤w0, then

(2-a) The structure of the equilibrium follows case Eq3 from Lemma A.4 if

0< τ < 1− b0
p0− (q0− γ)

. (38)

(2-b) Otherwise, there is no provider on the platform.

(3) If 2(1−β)+βγ

1−β+βγ
(q0− γ)< p0 ≤ 2(1−β)+βγ

1−β · 1−q0
1/η−1

and

0< b0 ≤
p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

w0,

then

(3-a) The structure of the equilibrium follows case Eq2 from Lemma A.4 if

0< τ < 1− (1−β+βγ)2

βγ
(
2(1−β) +βγ

) w0− b0
1− γ

. (39)

(3-b) The structure of the equilibrium follows case Eq1 from Lemma A.4 if

1− (1−β+βγ)2

βγ
(
2(1−β) +βγ

) w0− b0
1− γ

≤ τ ≤ 1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

. (40)

(3-c) The structure of the equilibrium follows case Eq4 from Lemma A.4 if

1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

< τ < 1− w0

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

. (41)

(3-d) Otherwise, there is no provider on the platform.

(4) If 2(1−β)+βγ

1−β+βγ
(q0− γ)< p0 ≤ 2(1−β)+βγ

1−β
1−q0
1/η−1

and

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

w0 < b0 <
p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

w0,

then

(4-a) The structure of the equilibrium follows case Eq2 from Lemma A.4 if

0< τ ≤ 1− b0

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

. (42)

(4-b) The structure of the equilibrium follows case Eq3 from Lemma A.4 if

1− b0

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

< τ < 1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

.

(4-c) The structure of the equilibrium follows case Eq4 from Lemma A.4 if Expression (37) holds.

(4-d) Otherwise, there is no provider on the platform.

(5) If 2(1−β)+βγ

1−β+βγ
(q0− γ)< p0 ≤ 2(1−β)+βγ

1−β · 1−q0
1/η−1

and p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 ≤ b0 ≤w0, then

(5-a) The structure of the equilibrium follows case Eq2 from Lemma A.4 if Expression (42) holds.



Bimpikis, Papanastasiou, and Zhang: Information Provision in Two-Sided Platforms 39

(5-b) The structure of the equilibrium follows case Eq3 from Lemma A.4 if

1− b0

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

< τ < 1− b0
p0− (q0− γ)

. (43)

(5-c) Otherwise, there is no provider on the platform.

(6) If p0 >
2(1−β)+βγ

1−β · 1−q0
1/η−1

and 0< b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

(6-a) The structure of the equilibrium follows case Eq2 from Lemma A.4 if Expression (39) holds.

(6-b) The structure of the equilibrium follows case Eq1 from Lemma A.4 if Expression (40) holds.

(6-c) The structure of the equilibrium follows case Eq4 from Lemma A.4 if Expression (41) holds.

(6-d) Otherwise, there is no provider on the platform.

(7) If p0 >
2(1−β)+βγ

1−β · 1−q0
1/η−1

and p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 ≤ b0 ≤
p0−

2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, then

(7-a) The structure of the equilibrium follows case Eq2 from Lemma A.4 if Expression (39) holds.

(7-b) The structure of the equilibrium follows case Eq1 from Lemma A.4 if Expression (40) holds.

(7-c) The structure of the equilibrium follows case Eq4 from Lemma A.4 if

1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

< τ ≤ 1−
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
− 1)p0− 2(1−β)+βγ

1−β (1− q0)
.

(7-d) The structure of the equilibrium follows case Eq3 from Lemma A.4 if

1−
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
− 1)p0− 2(1−β)+βγ

1−β (1− q0)
< τ < 1− b0

p0− q0 + γ
.

(7-e) Otherwise, there is no provider on the platform.

(8) If p0 >
2(1−β)+βγ

1−β · 1−q0
1/η−1

and
p0−

2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 ≤w0, then

(8-a) The structure of the equilibrium follows case Eq2 from Lemma A.4 if Expression (42) holds.

(8-b) The structure of the equilibrium follows case Eq3 from Lemma A.4 if Expression (43) holds.

(8-c) Otherwise, there is no provider on the platform.

Proof. To establish the proposition, we employ Lemma A.4 and verify that the equilibrium conditions

are satisfied for each of the cases.

(0) When p0 ≤ q0−γ, no providers choose to remain active on the platform, as the platform cannot induce

an equilibrium that features a positive volume of transactions and leads to non-negative revenues.

(1) Under the assumptions of case (1), we note that

w0

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

≤
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

.

Thus, the partition of the interval for τ in cases (1-a) and (1-b) is valid.

(1-a) To show that the structure of the equilibrium follows case Eq3 under (1-a), it suffices to verify

conditions δUU + δHH < 1, 0 < η < 1, and δUU > 0. Note that δHU = 0 and δHH = βγ

1−β δ
U
U . Condition

δUU + δHH < 1 is equivalent to δUU <
1−β

1−β+βγ
, which in turn can be rewritten as

p0−
2(1−β) +βγ

1−β+βγ
(q0− γ)<

b0
1− τ

.
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The last inequality holds since its left-hand side is non-positive while the right-hand side is positive.

Then, we solve for η as

η=
w0

βγ

1−β (1− τ)pH− βγ

1−βw0 + b0
.

Note that η > 0 is equivalent to

τ < 1−
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

.

The inequality above holds from Expression (36). Moreover, again from from Expression (36), we

observe that η < 1. Finally, condition δUU > 0 follows from Expression (38).

(1-b) To show that the structure of the equilibrium follows case Eq4 under (1-b), it suffices to verify

conditions δUU +δHH < 1, (1−τ)pU ≥ b0, and δUU > 0. The first condition is equivalent to δUU <
1−β

1−β+βγ
,

which holds because τ < 1, b0 > 0, and p0 ≤ 2(1−β)+βγ

1−β+βγ
(q0− γ). Next, we solve for pU as

pU =

1−β+βγ
βγ

w0

1−τ + ( 1
η
− 1)p0−

(
2 + βγ

1−β

)
(1− q0)

1
η

+ 1−β
βγ

.

Note that condition (1− τ)pU ≥ b0 is equivalent to the first inequality of Expression (37). Then,

condition δUU > 0 holds as it is equivalent to the second inequality of Expression (37).

(1-c) Under case (1-c), none of the equilibrium structures Eq1, Eq2, Eq3, and Eq4 can arise and no

providers join the platform.

(2) Under the assumptions of case (2), there are two cases to consider:

(2-a) To show that the structure of the equilibrium follows case Eq3 under (2-a), it suffices to show that

conditions 0< δUU <
1−β

1−β+βγ
and 0< η < 1 hold. Following the same argument as in (1-a), we verify

that these conditions hold.

(2-b) Under case (2-b), none of the equilibrium structures Eq1, Eq2, Eq3, and Eq4 can arise and no

providers join the platform.

The remaining cases, i.e., cases (3)-(8), can be shown using similar arguments. We omit the details for the

sake of brevity. �

Proposition A.3 Suppose α= 0 and let

τ̄∗ , 1− 2w0

p0 +w0 + 2βγ
1−β+βγ

(1− 1
2
η)(1− q0)

.

Then, the optimal commission under the full-information provision policy, τ∗(0)and thestructure of the equi-

librium under (τ∗(0),0) can be described as follows:

(1) If q0− γ < p0 <
2(1−β)+βγ

1−β+βγ
(q0− γ) and 0< b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then we have the following:

(a) If

b0 >
1−β+βγ

1−β+βγ/η

(
1−

(2 + βγ

1−β )(1− q0)− ( 1
η
− 1)p0

1−β+βγ
2βγ

(p0 +w0) + (1− 1
2
η)(1− q0)

)
w0, (44)

then

τ∗(0) = arg maxπr,3(τ,0)1

{
0< τ < 1−

1−β+βγ
βγ

w0− ( 1
η

+ 1−β
βγ

)b0
2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

}
(45)

and the structure of the equilibrium under (τ∗(0),0) follows case Eq3.
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(b) Otherwise, if inequality (44) does not hold, then τ∗(0) = τ̄∗ and the structure of the equilibrium

under (τ∗(0),0) follows case Eq4.

(2) If q0− γ < p0 <
2(1−β)+βγ

1−β+βγ
(q0− γ) and p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤w0, then

τ∗(0) = arg maxπr,3(τ,0)1

{
0< τ < 1− b0

p0− (q0− γ)

}
and the structure of the equilibrium under (τ∗(0),0) follows case Eq3.

(3) If 2(1−β)+βγ

1−β+βγ
(q0− γ)< p0 <

2(1−β)+βγ

1−β · 1−q0
1/η−1

and 0< b0 ≤
p0−

2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, then

τ∗(0) = max

{
τ̄∗,1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

}
. (46)

Moreover, if

p0 ≥w0 +
2(1−β)

1−β+βγ

(3(1−β) +βγ

2(1−β+βγ)
− 1−β

1−β+βγ

1

η

)
(q0− γ), (47)

then the structure of the equilibrium under (τ∗(0),0) follows case Eq1; otherwise, the structure of the

equilibrium under (τ∗(0),0) follows case Eq4.

(4) If 2(1−β)+βγ

1−β+βγ
(q0− γ)< p0 <

2(1−β)+βγ

1−β · 1−q0
1/η−1

and

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

w0 < b0 <
p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

w0,

then:

(a) If inequality (44) holds, then

τ∗(0) = arg maxπr,3(τ,0)1

{
1− b0

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

≤ τ < 1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

}
(48)

and the structure of equilibrium under (τ∗(0),0) follows case Eq2 or Eq3.

(b) Otherwise, if inequality (44) does not hold, then τ∗(0) = τ̄∗ and the structure of the equilibrium

under (τ∗(0),0) follows case Eq4.

(5) If 2(1−β)+βγ

1−β+βγ
(q0− γ)< p0 <

2(1−β)+βγ

1−β · 1−q0
1/η−1

and p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 ≤ b0 ≤w0, then

τ∗(0) = arg maxπr,3(τ,0)1

{
1− b0

p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

≤ τ < 1− b0
p0− (q0− γ)

}
(49)

and the structure of equilibrium under (τ∗(0),0) follows case Eq2 or Eq3.

(6) If p0 >
2(1−β)+βγ

1−β · 1−q0
1/η−1

and 0< b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then τ∗(0) is given by Expression (46).

Moreover, if inequality (47) holds, then the structure of the equilibrium under (τ∗(0),0) follows case

Eq1; otherwise, the structure of the equilibrium under (τ∗(0),0) follows case Eq4.
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(7) If p0 >
2(1−β)+βγ

1−β
1−q0
1/η−1

and

p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

w0 ≤ b0 ≤
p0− 2(1−β)+βγ

1−β+βγ
(q0− γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

w0,

then we have the following:

(a) If inequality (44) holds, then

τ∗(0) = arg maxπr,3(τ,0)1

{
1−

( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
− 1)p0− 2(1−β)+βγ

1−β (1− q0)
< τ < 1− b0

p0− q0 + γ

}
(50)

and the structure of the equilibrium under (τ∗(0),0) follows case Eq3.

(b) Otherwise, if inequality (44) does not hold, then τ∗(0) is given by Expression (46). Moreover, if

inequality (47) also holds the structure of equilibrium under (τ∗(0),0) follows case Eq1; otherwise,

if (47) does not hold, the structure of the equilibrium under (τ∗(0),0) follows case Eq4.

(8) If p0 >
2(1−β)+βγ

1−β · 1−q0
1/η−1

and
p0−

2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 ≤w0, then τ∗(0) is given by Expres-

sion (49) and the structure of equilibrium under (τ∗(0),0) follows case Eq2 or Eq3.

Proof. The proof of the proposition is based on the following five observations.

Observation 1. By Lemma A.4, it is straightforward to show that revenues for the platform increase in

τ when the structure of the equilibrium follows cases Eq1 and Eq2. Therefore, the optimal commission τ∗(0)

can only be at the boundary of the intervals specified under cases (3-a), (3-b), (4-a), (5-a), (6-a), (6-b), (7-a),

(7-b), and (8-a) of Proposition A.2.

Observation 2. If τ∗(0) is in the interior of the interval when the structure of the equilibrium follows case

Eq4, we show that τ∗(0) = τ̄∗. That is,
∂πr,4

∂τ
(τ̄∗,0) = 0, where πr,4(τ,λ) is given by Lemma A.4. This follows

from Lemma A.4 given that maximizing revenues turns out to be equivalent to maximizing the following

quadratic function:

(u− 1)

(
1

w0

(
p0 +

2βγ

1−β+βγ

(
1− 1

2
η
)

(1− q0)
)
−u

)
,

where u= 1
1−τ . The expression above is maximized at τ∗(0) = τ̄∗.

Observation 3. Consider the expressions for thr platform’s revenues when the structure of the equilibrium

follows cases Eq3 and Eq4, i.e., πr,3(τ,0) and πr,4(τ,0), respectively, given by Lemma A.4. There exist unique

τ̂3 and τ̂4, such that

∂πr,3
∂τ

(τ̂3,0) = 0,
∂πr,4
∂τ

(τ̂4,0) = 0,
∂2πr,3
∂τ2

(τ̂3,0)< 0, and
∂2πr,4
∂τ2

(τ̂4,0)< 0. (51)

In addition, πr,i(τ,0) is increasing in τ within [0, τ̂i] and decreasing in τ within [τ̂i,1], where i∈ {3,4}.

For πr,4(τ,0), the observation follows from πr,4(0,0) = 0, πr,4(1−,0) = −∞, maxτ∈[0,1] πr,4(τ,0) > 0and

thefact that that πr,4(τ,0) is quadratic in 1
1−τ .

For πr,3(τ,0), the observation follows from

πr,3(0,0) = 0, πr,4(1−,0) =−∞, ∂πr,3
∂τ

(0,0)> 0,
∂πr,3
∂τ

(1−,0) =−∞,
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and the fact that
∂2πr,3
∂τ2

(τ,0)> 0 only if τ < 1− 3b0

b0 + p0 +

(
1
η
−1
)
p0−(1−q0)

1−β
βγ

+ 1
η

.

Observation 4. Consider cases (1) and (4) of Proposition A.2. Then

τ̂3 > τ̂4, (52)

where τ̂3 and τ̂4 are given by Expression (51).

Given inequality (52), the optimal commission τ∗(0) in cases (1) and (4) can be determined by checking

whether the structure of the equilibrium follows case Eq4 under τ̂4. In particular, if the structure of the

equilibrium follows case Eq4 under τ̂4, then τ∗(0) = τ̂4. Otherwise, τ∗(0) can be determined by Expressions

(45) and (48).

Before verifying inequality (52), we rewrite the expression for the platform’s revenues under cases Eq3 and

Eq4 as π(τ) = τh(pU), where h(pU) is a function of pU . In particular,

h(pU), δUU pU + δHHpH =
βγ

1−β
δUU

(
1−β
βγ

pU + p0 +
(

2− βγ

1−β
δUU

)
(1− q0)

)

=
1 + βγ

1−β
1
η

q0− γ

(
p0− (q0− γ)− pU

)(
pU +

(
2 + βγ

1−β

)
(1− q0)−

(
1
η
− 1
)
p0

1−β
βγ

+ 1
η

)
.

Note that π′(τ) = 0 is equivalent to τp′U = − h(pU )

h′(pU )
, where p′U is the derivative of pU with respect to τ .

Furthermore,

h′(pU)

h(pU)
=− 1

p0− (q0− γ)− pU
+

1

pU +

(
2+ βγ

1−β

)
(1−q0)−

(
1
η
−1

)
p0

1−β
βγ

+ 1
η

,

which is decreasing in pU .

Then, we establish inequality (52) by way of a contradiction. Suppose that τ̂3 ≤ τ̂4. Then, we obtain

τ̂3p
′
U(τ̂3) =−

h
(
pU(τ̂3)

)
h′
(
pU(τ̂3)

) , and τ̂4p
′
U(τ̂4) =−

h
(
pU(τ̂4)

)
h′
(
pU(τ̂4)

) ,
by Expression (51). Next, we claim that p′U(τ̂3)< p′U(τ̂4) holds. Note that this can be rewritten as

b0
(1− τ̂3)2

<
1−β+βγ

1−β+βγ1/η
· w0

(1− τ̂4)2

by Lemma A.4. To show that this inequality holds, it suffices to show that

b0 ≤
1−β+βγ

1−β+βγ 1
η

w0. (53)

We also note that

b0 ≤
p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

w0

holds under cases (1) and (4) of Proposition A.2. Then, to verify inequality (53), it suffices to show that

p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)( 2
η
− 1)

w0 <
1−β+βγ

1−β+βγ 1
η

w0.
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The inequality above is equivalent to p0 <
2(1−β)+βγ

1−β · 1−q0
1/η−1

, which holds under cases (1) and (4). Therefore,

we have shown that p′U(τ̂3)< p′U(τ̂4). Furthermore, we obtain

τ̂3p
′
U(τ̂3)< τ̂4p

′
U(τ̂4) and − h′(pU(τ̂3))

h(pU(τ̂3))
>−h

′(pU(τ̂4))

h(pU(τ̂4))
,

which results in a contradiction. Therefore, τ̂3 ≤ τ̂4 cannot hold.

Observation 5. Consider case (7) of Proposition A.2. Then

τ̂3 < τ̂4 (54)

where τ̂3 and τ̂4 are given by Expression (51).

Given inequality (54), the optimal commission τ∗(0) in case (7) can be determined by checking whether

the structure of the equilibrium follows case Eq3 under τ̂4. In particular, if the structure of the equilibrium

follows case Eq2, Eq1, or Eq4 under τ̂4, then τ∗(0) is given by Expression (46). Otherwise, if the structure

of the equilibrium follows case Eq3 under τ̂4, then τ∗(0) is given by Expression (50).

The proof of inequality (54) follows similar arguments as those in Observation 4 above.

Given the five observations above, we can characterize τ∗(0) and the structure of the equilibrium under

(τ∗(0),0) for each of the eight cases stated in the proposition.

(1) Under case (1), it is straightforward to show that Expression (44) is equivalent to

τ̄∗ < 1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

. (55)

If Expression (44) holds, then by Observations 2, 3, and 4 we obtain that τ∗(0) is given by Expression

(45) and the structure of the equilibrium follows case Eq3 under τ∗(0). Based on the same observations,

if Expression (44) does not hold, we obtain τ∗(0) = τ̄∗ and the structure of the equilibrium follows case

Eq4.

(2) The characterization of case (2) is straightforward. We omit the details for brevity.

(3) Under case (3), Observation 1 implies that τ∗(0) is either at the left boundary or the interior of the

interval where the structure of the equilibrium follows case Eq4. It is straightforward to show that

inequality (47) is equivalent to

τ̄∗ ≤ 1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

.

By Observation 2, if inequality (47) holds, revenues are maximized at

1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0− γ)( 1

η
− 1)

.

In addition, the structure of the equilibrium under (τ∗(0),0) follows case Eq1. Otherwise, revenues are

maximized at τ̄∗ and the structure of the equilibrium follows case Eq4. In sum, τ∗(0) is given by (46).

(4) Under case (4), we note that Expression (44) is equivalent to Expression (55). By Observations 1-4,

if Expression (44) holds, then τ∗(0) is obtained by Expression (48)and thestructure of the equilibrium

under (τ∗(0),0) follows case Eq2 or Eq3. By the same observations, if Expression (55) does not hold, we

have τ∗(0) = τ̄∗and thestructure of the equilibrium under (τ∗(0),0) follows case Eq4.
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(5) Case (5) follows from Observation 1 in a straightforward manner.

(6) Case (6) follows from Observations 1 and 2 using similar arguments as in case (3).

(7) Under case (7), we note that Expression (44) is equivalent to

τ̄∗ > 1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

.

On the one hand, by Observations 1-3, and 5, it follows that τ∗(0) is given by Expression (50) if Expression

(44) holds. Moreover, the structure of the equilibrium follows case Eq3 under (τ∗(0),0) by case (7-d) in

Proposition A.2.

On the other hand, by the same observations, the optimal commission τ∗(0) is either equal to the left

boundary or lies in the interior of the interval where the structure of the equilibrium follows case Eq4.

Note that

τ̄∗ ≤ 1−
1−β+βγ

βγ
w0− ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ

1−β (1− q0)− ( 1
η
− 1)p0

,

is equivalent to

b0 ≤
1−β+βγ

1−β+βγ/η

(
1−

(2 + βγ

1−β )(1− q0)− ( 1
η
− 1)p0

1−β+βγ
2βγ

(p0 +w0) + (1− 1
2
η)(1− q0)

)
w0.

Following the same arguments as in case (3), we show that if Expression (44) does not hold, τ∗(0) is

given by Expression (46). In addition, we can determine whether the structure of the equilibrium follows

case Eq1 or Eq4 under τ∗(0) based on inequality (47).

(8) Case (8) follows by Observation 1 and we omit the proof for brevity.

We have completed the characterization of τ∗(0) as well as the corresponding structure of the equilibrium

under (τ∗(0),0). �

A.4. Differentiated Commissions

The remainder of this appendix provides a number of results that apply to the case when the platform may

set different commissions depending on a provider’s label, i.e., τU and τH may be different. We consider the

general case when τU , τH ∈R. In particular, the platform may find it optimal to compensate customers to

transact with providers on the platform, i.e., pU , pH may be negative, and subsidize providers to join the

platform by choosing τU , τH > 1 or τU , τH < 0 (so that (1− τU)pU ≥ b0 and (1− τH)pH ≥ b0 hold).

Lemma A.5 The platform’s revenue maximization problem can be formulated as

max
τU∈R,τH∈R,λ≥0

τUpUδU + τHpHδ
H
H

s.t.

(Steady state condition) δHH =
βγ

1−β

(
1− (1−β)λ

)
δUU ,

δHU = βγλδUU , and δU + δHH ≤ 1

(Mass of U-labeled providers) δU = (1 +βγλη)δUU
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(Mass of H-labeled providers) δHH =
βγ

1−β

(
1− (1−β)λ

)
δUU

(Expected quality of U-labeled providers) qU =
γ+βγλη

1 +βγλη
(56)

(Price of U-labeled providers) pU =

{
p0− (1 + δU)(q0− qU), if qU ≤ q0
p0 + (2− δU − δHH)(qU − q0), if qU > q0

(Price of H-labeled providers) pH =

{
p0 + (2− δHH)(1− q0), if qU ≤ q0
pU + (2− δHH)(1− qU), if qU > q0

(Free-entry condition)
βγ

1−β
· 1− (1−β)λ

1 +βγλη

(
(1− τH)pH−w0

)
=
w0

η
− (1− τU)pU .

(Participation constraint for H-labeled providers) (1− τH)pH ≥w0

(Financial constraint) (1− τU)pU ≥ b0

Proof. This proof focuses on characterizing the prices of U-labeled andH-labeled providers, as the remain-

ing constraints are straightforward. First of all, we note that ζU = δUU + ηδHU and ζH = δHH , which follow from

market clearing. Then, we characterize pU and pH based on the following possible equilibrium structures.

1. When qU ≤ q0 and a positive mass of customers choosing the outside option, we have

ζU =
pU − p0

qU − q0
− 1 and ζH = 2− pH− p0

1− q0
,

which follows by Lemma 1. We then obtain

pU = p0− (1 + δUU + ηδHU )(q0− qU) and pH = p0 + (2− δHH)(qH− q0)

by the market-clearing conditions.

2. When qU ≤ q0 and there are no customers choosing the outside option, we obtain

ζU =
pH− pU
1− qU

− 1 and ζH = 2− pH− pU
1− qU

by Lemma 1. Then, by the market-clearing conditions, we obtain

pH = pU + (2− δHH)(qH− qU).

In addition, a customer with type 1 + ζU prefers providers with label U to the outside option (i.e.,

pU ≤ p0−(ζU+1)(q0−qU)). Next, we claim that any policy with pU < p0−(ζU+1)(q0−qU) is suboptimal.

By Equation (34), it is straightforward to verify that increasing τH and/or τU can increase pU given

that all other equilibrium quantities are fixed. Therefore, if pU < p0 − (ζU + 1)(q0 − qU) holds, the

platform can always increase its revenues by increasing either commission. In other words, if the optimal

policy leads to qU ≤ q0 and all customers transact with providers inside the platform, it must be that

pU = p0− (ζU + 1)(q0− qU) holds. Therefore, we obtain

pU = p0− (1 + δUU + ηδHU )(q0− qU) and pH = p0 + (2− δHH)(1− q0).

3. When qU ≥ q0 and there are no customers choosing the outside option, we obtain

ζU =
pH− pU
1− qU

− 1 and ζH = 2− pH− pU
1− qU
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by Lemma 1. Then, by the market-clearing conditions, we obtain pH = pU + (2 − δHH)(qH − qU). In

addition, a customer with type 1 prefers providers with label U to the outside option, i.e., pU ≤ p0 +

qU − q0. Next, we claim that any policy with pU < p0 + qU − q0 is suboptimal. By Equation (34), it is

straightforward to verify that increasing τH and/or τU can increase pU given that all other equilibrium

outcomes are fixed. Therefore, if pU < p0 + qU − q0 holds, the platform can always increase its revenues

by increasing either commission. In other words, if the optimal policy leads to qU ≥ q0 and all customers

transact with providers inside the platform, it must be that pU = p0 + qU − q0 holds. Therefore,

pH = pU + (2− δHH)(qH− qU) and pU = p0 + (2− δUU − ηδHU − δHH)(qU − q0),

where δUU + ηδHU + δHH = 1.

4. When qU ≥ q0 and a positive mass of customers choose outside option, we obtain

ζU =
pH− pU
1− qU

− pU − p0

qU − q0
and ζH = 2− pH− pU

1− qU

by Lemma 1. By the market-clearing conditions, we obtain

pH = pU + (2− δHH)(qH− qU) and pU = p0 + (2− δUU − ηδHU − δHH)(qU − q0).

Therefore, we have established that the platform’s revenue maximization problem is given by formulation

(56). �

Lemma A.6 Suppose γ < 1−β
β

holds. Then, the optimal information provision policy with differentiated com-

missions results in no rationing (i.e., η= 1) in equilibrium. Moreover, the optimal differentiated commissions

under the full-information provision policy (i.e., α= 0) also results in no rationing in equilibrium.

Proof. It suffices to show that if policy (τU , τH, λ) induces an equilibrium with η < 1, we can always

propose another policy, denoted by (τ̃U , τ̃H, λ̃), which leads to strictly higher revenues.

By Equation (34) and the objective function of Formulation (56), platform revenues can be rewritten as

πr , δ
U
U

(
βγ

1−β

(
1− (1−β)λ

)
pH+ (1 +βγλη)pU −

( βγ

1−β
+

1

η

)
w0

)
. (57)

Note that Equation (57) is independent of the commissions. Next, we consider the following two cases, qU ≤ q0
and qU > q0, separately.

1. Suppose qU ≤ q0 and η < 1 hold under policy (τU , τH, λ). Substituting the characterizations of pU and

pH from Lemma A.5 in Equation (57), we obtain

πr = δUU

((1−β+βγ

1−β
−βγλ(1− η)

)
p0−

(
q0− γ−βγλη(1− q0)

)
+

2βγ

1−β

(
1− (1−β)λ

)
(1− q0)−

( βγ

1−β
+

1

η

)
w0

−
( βγ

1−β

(
1− (1−β)λ

))2

(1− q0)δUU − (1 +βγλη)
(
q0− γ−βγλη(1− q0)

)
δUU

)
. (58)
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By Equation (58), it immediately follows that πr is fully determined by λ, η, and δUU (i.e., it is inde-

pendent of τU and τH). Next, we show that ∂πr
∂η

> 0. In particular, ∂πr
∂η

has the same sign as

βγλp0 +βγλ(1− q0) + 2(βγλ)2(1− q0)ηδUU +βγλ(1 + γ− 2q0)δUU +
w0

η2
> 0. (59)

The inequality above holds as 1 + γ− 2q0 > 0 (note that η < 1
2

and γ < 1−β
β

).

We use δUU , η, and pU to denote the equilibrium quantities under policy (τU , τH, λ). To construct another

policy that achieves higher revenues, we let λ̃ = λ, and we choose τ̃U and τ̃H such that the following

holds

βγ

1−β
1− (1−β)λ

1 +βγλ

(
(1− τ̃H)p̃H−w0

)
=w0− (1− τ̃U)p̃U , and (1− τ̃U)p̃U = (1− τU)pU ,

where

p̃H = p0 +
(

2− βγ

1−β

(
1− (1−β)λ

)
δUU

)
(1− q0) and p̃U = p0− δUU

(
q0− γ−βγλ(1− q0)

)
.

Therefore, under policy (τ̃U , τ̃H, λ̃), we observe δ̃UU = δUU , yet η̃ = 1. In addition, it is straightforward to

verify that (1− τ̃H)p̃H ≥ w0 and w0 ≥ (1− τ̃U)p̃U = (1− τU)pU ≥ b0. Lastly, by inequality (59), policy

(τ̃U , τ̃H, λ̃) strictly outperforms policy (τU , τH, λ) with regards to revenues.

2. Suppose qU > q0 and η < 1 hold under policy (τU , τH, λ). We let δUU and η denote the equilibrium

quantities under the original policy. Then, we construct a policy, (τ̃U , τ̃H, λ̃), such that its equilibrium

outcomes satisfy δ̃UU = δUU , η̃= 1, q̃U = qU , and λ̃= λη. In addition, we choose τ̃U and τ̃H such that

βγ

1−β
· 1− (1−β)λ̃

1 +βγλ̃

(
(1− τ̃H)p̃H−w0

)
=w0− (1− τ̃U)p̃U , and (1− τ̃U)p̃U = (1− τU)pU ,

where

p̃U = p0 +
(

2− 1−β+βγ

1−β
δUU

)
(qU − q0) and p̃H = p̃U +

(
2− βγ

1−β

(
1− (1−β)λ̃

)
δUU

)
(1− qU).

Next, we claim that the proposed policy leads to higher revenues than the original policy. To simplify

the notation, we let u, λη= λ̃η̃= λ̃, which is the same under both policies. Then, given u, we rewrite

the expression for revenues as follows

πr(λ) =δUU

((1−β+βγ

1−β
−βγλ+βγu

)(
p0 +

(
2−

(1−β+βγ

1−β
−βγλ+βγu

)
δUU

)
(qU − q0)

)
+

2βγ

1−β

(
1− (1−β)λ

)
(1− qU)−

( βγ

1−β

(
1− (1−β)λ

))2

(1− qU)δUU −
( βγ

1−β
+
λ

u

)
w0

)
. (60)

To establish that the proposed policy leads to higher revenues than the original policy, it suffices to

show that πr(λ) is decreasing in λ given u and δUU , which follows from straightforward algebra. Since

λ̃ < λ, the proposed policy without rationing (i.e., η̃ = 1) results in higher revenues than the original

policy with rationing (η < 1). Therefore, any policy with qU ≥ q0 and η < 1 is suboptimal.

In sum, any policy that induces an equilibrium with η < 1 is suboptimal, which conclude the proof.12 �

12 Noticeably, the proof applies to the special case of finding the optimal full-information provision policy. We simply
let λ = 0 and follow the argument under the case of qU < q0. As a result, we again conclude that the optimal
full-information provision policy results in no rationing either.
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Lemma A.7 Suppose γ < 1−β
β

, η < 1, and α is such that 0≤ λ≤ q0−γ
βγ(1−q0)

. Then, the mass of new providers

under the optimal differentiated commissions given α can be characterized as

δU,∗U (λ) = min

(
1

2
·

1−β+βγ
1−β (p0−w0)− (q0− γ) + 2βγ

1−β (1− q0)−βγλ(1− q0)

q0− γ+
(

βγ

1−β

)2

(1− q0)−βγλ
(

1 + γ− 2q0 + 2βγ
1−β (1− q0)

) , 1−β
1−β+βγ

)
. (61)

In addition, δU,∗U (λ) is increasing in λ.13

Proof. When γ < 1−β
β

, by Lemma A.6, we only need to consider the policy with no rationing among

providers with label U (i.e., η = 1). For λ ∈ [0, q0−γ
βγ(1−q0)

], we have qU ≤ q0. Then, by Equation (58), the

platform’s revenues can be simplified as

πr(δ
U
U , λ) = δUU

(
1−β+βγ

1−β
(p0−w0)−

(
q0− γ−βγλ(1− q0)

)
+

2βγ

1−β

(
1− (1−β)λ

)
(1− q0)

−
(

(1 +βγλ)
(
q0− γ−βγλ(1− q0)

)
+
( βγ

1−β
−βγλ

)2

(1− q0)
)
δUU

)

= δUU

(
1−β+βγ

1−β
(p0−w0)− (q0− γ) +

2βγ

1−β
(1− q0)−βγλ(1− q0)

−
(
q0− γ+

( βγ

1−β

)2

(1− q0)−βγλ
(

1 + γ− 2q0 +
2βγ

1−β
(1− q0)

))
δUU

)
. (62)

Note that given λ, Equation (62) is quadratic in δUU ; hence, it is maximized by δU,∗U (λ), given in Expression

(61).

To show that δU,∗U (λ) is increasing in λ, it suffices to show that it holds when δU,∗U (λ) < 1−β
1−β+βγ

. In this

case, we note that
dδ
U,∗
U
dλ

(λ) has the same sign as the following expression(
1 + γ− 2q0 +

2βγ

1−β
(1− q0)

)(1−β+βγ

1−β
(p0−w0)− (q0− γ) +

2βγ

1−β
(1− q0)

)
− (1− q0)

(
q0− γ+

( βγ

1−β

)2

(1− q0)
)
.

Straightforward algebra implies that when η < 1, the quantity above is positive. �

Lemma A.8 Suppose γ < 1−β
β

and η < 1. Then, all customers transact with providers inside the platform

under the optimal differentiated commissions when λ= q0−γ
βγ(1−q0)

. That is,

δU,∗U

( q0− γ
βγ(1− q0)

)
=

1−β
1−β+βγ

,

where δU,∗U (λ) is given by Expression (61).

Proof. Given the expression for δU,∗U (λ) given in Expression (61), it is equivalent to show that

1

2
·

1−β+βγ
1−β (p0−w0)− (q0− γ) + 2βγ

1−β (1− q0)− (q0− γ)

q0− γ+
(

βγ

1−β

)2

(1− q0)− q0−γ
1−q0

(
1 + γ− 2q0 + 2βγ

1−β (1− q0)
) ≥ 1−β

1−β+βγ
.

13 The superscript ∗ represents that the corresponding quantity is obtained under the optimal differentiated commis-
sions given α.
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The inequality above can be rewritten as

1−β+βγ

1−β
(p0−w0) +

2βγ

1−β
(1− q0)− 2(q0− γ)

≥ 2(1−β)

1−β+βγ

(
q0− γ+

( βγ

1−β

)2

(1− q0)− q0− γ
1− q0

((
1 +

2βγ

1−β

)
(1− q0)− (q0− γ)

))

=
2(1−β)

1−β+βγ

(( βγ

1−β

)2

(1− q0)− 2βγ

1−β
(q0− γ) +

(q0− γ)2

1− q0

)

=
2(1−β)

1−β+βγ
· 1

1− q0

( βγ

1−β
(1− q0)− (q0− γ)

)2

.

Note that p0−w0 > 0. To show that the preceding inequality holds, it suffices to show that

2>
2(1−β)

1−β+βγ
· 1

1− q0

( βγ

1−β
(1− q0)− (q0− γ)

)
=

2βγ

1−β+βγ

(
1− 1−β

βγ

q0− γ
1− q0

)
,

which follows, since γ < 1−β
β

and q0 >γ. �

Lemma A.9 Suppose γ < 1−β
β

, η < 1, and α is such that 0≤ λ≤ q0−γ
βγ(1−q0)

. Then, if δU,∗U (λ)< 1−β
1−β+βγ

, where

δU,∗U (λ) is given by Expression (61), the platform’s revenues under the optimal differentiated commissions

given λ are convex in λ. Otherwise, the platform’s revenues under the optimal differentiated commissions

given λ are linearly increasing in λ.

Proof. The proof of the lemma follows from straightforward algebra using Expressions (61) and (62). �

Proposition A.4 Suppose γ < 1−β
β

and η < 1. Then, the optimal policy satisfies

λ∗ =


q0−γ

βγ(1−q0
, if δU,∗U (0) = 1−β

1−β+βγ
q0−γ

βγ(1−q0
, if δU,∗U (0)< 1−β

1−β+βγ
and q0−γ

βγ(1−q0
≥ λ̄

0, otherwise

, (63)

where δU,∗U (λ) is given by Expression (61), and

λ̄=

((
1−β+βγ

1−β (p0−w0)− (q0− γ) + 2βγ
1−β (1− q0)

)
− 2
(

1−β
1−β+βγ

)(
q0− γ+

(
βγ

1−β

)2

(1− q0)
))2

4
(
q0− γ+

(
βγ

1−β

)2

(1− q0)
)(

1−β
1−β+βγ

)(
1−β

1−β+βγ

(
βγ
(

1 + γ− 2q0 + 2βγ
1−β (1− q0)

))
−βγ(1− q0)

) .
Moreover, the optimal differentiated commissions are

τ∗U(λ∗) = Median
{

1− w0

p∗U(λ∗)
,1− b0

p∗U(λ∗)
,0
}
. (64)

and τ∗H(λ∗) = 1−
1−β+βγ

1−β w0− (1 +βγλ∗)
(

1− τ∗U(λ∗)
)
p∗U(λ∗)

βγ

1−β

(
1− (1−β)λ∗

)
p∗H(λ∗)

, (65)

where

p∗U(λ) = p0−
(

1 + (1 +βγλ)δU,∗U (λ)
)(
q0−

γ+βγλ

1 +βγλ

)
,

and p∗H(λ) = p0 +
(

2− βγ

1−β
(
1− (1−β)λ

)
δU,∗U (λ)

)
(1− q0).
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Proof. First, the optimality of λ∗ as stated above follows directly from Lemmas A.10 and A.11, which

are specified as follows.

Lemma A.10 Suppose γ < 1−β
β

, η < 1, and α is such that 0≤ λ≤ q0−γ
βγ(1−q0)

. Then, the informational delay

of the optimal policy, λ∗, is given by (63).

Proof. Note that qU ≤ q0 when 0≤ λ≤ q0−γ
βγ(1−q0)

, and we only need to consider the policies such that η= 1

by Lemma A.6 (under γ < 1−β
β

).

First, note that the optimal informational delay satisfies λ∗ = q0−γ
βγ(1−q0)

if δU,∗U (0) = 1−β
1−β+βγ

. This holds

because the platform’s revenues are linearly increasing in λ under γ < 1−β
β

(Lemma A.9).

Next, we consider the converse case, i.e., δU,∗U (0)< 1−β
1−β+βγ

. Platform’s revenues at λ= 0 (i.e., α= 0) are

given by

πr(0) =
1

4
·

(
1−β+βγ

1−β (p0−w0)− (q0− γ) + 2βγ
1−β (1− q0)

)2

q0− γ+
(

βγ

1−β

)2

(1− q0)
.

Similarly, platform revenues at λ= q0−γ
βγ(1−q0)

are

πr

( q0− γ
βγ(1− q0)

)
=

[
1−β+βγ

1−β
(p0−w0)− (q0− γ) +

2βγ

1−β
(1− q0)−

(
q0− γ+

( βγ

1−β

)2

(1− q0)

)
1−β

1−β+βγ

+

((
βγ
(
1 + γ− 2q0 +

2βγ

1−β
(1− q0)

)) 1−β
1−β+βγ

−βγ(1− q0)

)
q0− γ

βγ(1− q0)

]
1−β

1−β+βγ
.

It is straightforward to verify that πr
(

q0−γ
βγ(1−q0)

)
≥ πr(0) if and only if q0−γ

βγ(1−β)
≥ λ̄. Given the convexity of

πr(λ) in λ (Lemma A.9), it follows that that the optimal informational delay within λ ∈ [0, q0−γ
βγ(1−q0)

] is

λ = q0−γ
βγ(1−q0)

. Likewise, if q0−γ
βγ(1−q0)

< λ̄, then πr
(

q0−γ
βγ(1−q0)

)
< πr(0). Thus, the optimal informational delay

within 0≤ λ≤ q0−γ
βγ(1−q0)

is λ= 0. �

Lemma A.11 Suppose γ < 1−β
β

, η < 1, and α is such λ≥ q0−γ
βγ(1−q0)

. Then, the optimal policy satisfies λ∗ =

q0−γ
βγ(1−q0)

.

Proof. First, we show that given a policy, (τU , τH, λ), with λ> q0−γ
βγ(1−q0)

, we can find an alternative policy

(τ̃U , τ̃H, λ̃) with q0−γ
βγ(1−q0)

≤ λ̃ < λ. We use δUU and η to denote the equilibrium quantities under the original

policy, and we use δ̃UU and η̃ to denote the equilibrium quantities under the alternative policy. In particular,

we select τ̃U and τ̃H such that δ̃UU = δUU , η̃= 1,

βγ

1−β
· 1− (1−β)λ̃

1 +βγλ̃

(
(1− τ̃H)p̃H−w0

)
=w0− (1− τ̃U)p̃U , and (1− τ̃U)p̃U = (1− τU)pU ,

where

p̃U = p0 +
(

2− 1−β+βγ

1−β
δUU

)
(q̃U − q0) and p̃H = p̃U +

(
2− βγ

1−β

(
1− (1−β)λ̃

)
δUU

)
(1− q̃U).

It is straightforward to show that such τ̃U and τ̃H exist.
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Then, we show that the alternative policy results in higher platform revenues compared to the original

policy. It suffices to show that given η = 1 and δUU ∈ [0, 1−β
1−β+βγ

], we have ∂πr
∂λ

(δUU , λ)< 0, where πr(δ
U
U , λ) is

given by Equation (60). In particular, we have

πr(δ
U
U , λ) = δUU

(
1−β+βγ

1−β
(p0−w0) +

1−β+βγ

1−β

(
2− 1−β+βγ

1−β
δUU

)βγλ(1− q0)− (q0− γ)

1 +βγλ

+
βγ

1−β

(
1− (1−β)λ

)(
2− βγ

1−β

(
1− (1−β)λ

)
δUU

) 1− γ
1 +βγλ

)
.

We obtain that derivative ∂πr
∂λ

(δUU , λ) has the same sign as

−1−β+βγ

1−β
δUU +

βγ

1−β

(
1− (1−β)λ

)
δUU ,

which is negative as 1−β+βγ
1−β δUU is the mass of all providers on the platform and βγ

1−β

(
1− (1−β)λ

)
δUU is mass

of providers with label H. Note that the proposed policy is such that λ̃ < λ, so it results in higher platform

revenues than the original one.

Therefore, when α satisfies λ≥ q0−γ
βγ(1−q0)

, platform revenues are decreasing in λ, and, hence, the optimal

policy satisfies λ∗ = q0−γ
βγ(1−q0)

. �

Next, we characterize the optimal commissions (i.e., τ∗U(λ∗) and τ∗H(λ∗)). Note that τ∗U(λ∗) and τH(λ∗) may

not be unique. An optimal pair of commissions can be determined as follows: First, τ∗U(λ) is determined by

Expression (64). It follows that under such τ∗U(λ), the financial constraint of U-labeled providers holds (i.e.,(
1− τ∗U(λ)

)
p∗U(λ) ≥ b0). Second, given τ∗U(λ), we determine the corresponding τ∗H(λ) using Equation (34),

where p∗U(λ) and p∗H(λ) are determined by Lemma A.5. �

Corollary A.1 Suppose γ < 1−β
β

and η < 1. Then, the optimal differentiated commissions under the full-

information provision policy (i.e., α = 0), τ∗U(0) and τ∗H(0), can be characterized by Expression (64) and

Expression (65), where

p∗U(0) = p0−
(

1 + δU,∗U (0)
)

(q0− γ), p∗H(0) = p0 +
(

2− βγ

1−β
δU,∗U (0)

)
(1− q0),

and δU,∗U (0) = min

(
1−β+βγ

1−β (p0−w0)− (q0− γ) + 2βγ
1−β (1− q0)

2
(
q0− γ+

(
βγ

1−β

)2

(1− q0)
) ,

1−β
1−β+βγ

)
. (66)

In addition,

τ∗U(0)p∗U(0)< τ∗H(0)p∗H(0). (67)

Proof. First, by Lemma A.7 (under γ < 1−β
β

) and α = 0, it is straightforward to verify that δU,∗U (0) is

given by Expression (66). Next, the optimal commissions are given by Proposition A.4. In addition, the

expressions for p∗U(0) and p∗H(0) follow from Lemma A.5.

Next, we show that inequality (67) holds. By Expressions (64) and (65), we obtain

τ∗U(0)p∗U(0) = p∗U(0)−w0 + Median
{

0,w0− b0,w0− p∗U(0)
}
,

and τ∗H(0)p∗H(0) = p∗H(0)− 1−β+βγ

βγ
w0 +

1−β
βγ

p∗U(0)− 1−β
βγ

τ∗U(0)p∗U(0).
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Given the expressions above, inequality (67) becomes

1−β+βγ

βγ
Median

{
0,w0− b0,w0− p∗U(0)

}
< p∗H(0)− p∗U(0). (68)

If p∗U(0)≥w0, then we claim that inequality (68) holds as its left-hand side is zero and its right-hand side is

positive. If p∗U(0)<w0, then the left-hand side of inequality (68) is no more than 1−β+βγ
βγ

(
w0− p∗U(0)

)
. So,

it suffices to show that

p∗H(0)− p∗U(0)>
1−β+βγ

βγ

(
w0− p∗U(0)

)
=

1−β+βγ

βγ

(
w0− p0 +

2(1−β) +βγ

1−β+βγ
(q0− γ)

)
.

Note that w0 ≤ p0. To verify the inequality above, it suffices to show that

p∗H(0)− p∗U(0) =
2(1−β) +βγ

1−β+βγ
(1− γ)>

2(1−β) +βγ

βγ
(q0− γ).

This holds since it is equivalent to η < 1. �

Lemma A.12 Suppose γ < 1−β
β

and η < 1
2

. Then, all customers transact with providers inside the platform

under the optimal commissions and a full-information provision policy. That is, δU,∗U (0) = 1−β
1−β+βγ

, where

δU,∗U (0) is given by Expression (66).

Proof. By Expression (66), note that δU,∗U (0) = 1−β
1−β+βγ

is equivalent to

1−β+βγ
1−β (p0−w0)− (q0− γ) + 2βγ

1−β (1− q0)

2
(
q0− γ+

(
βγ

1−β

)2

(1− q0)
) ≥ 1−β

1−β+βγ
.

It is straightforward to verify that the inequality above is equivalent to the following inequality

1−β+βγ

1−β
p0−w0

q0− γ
+

2(1−β)

1−β+βγ

1

η
≥ 1 +

2(1−β)

1−β+βγ
.

Note that p0 ≥w0. Therefore, to show that the inequality above holds, it suffices to show that η≤ 2(1−β)

3(1−β)+βγ
.

The preceding inequality follows by the assumptions that γ < 1−β
β

and η < 1
2
. �

Corollary A.2 Suppose γ < 1−β
β

, η < 1
2

. Then, the platform generates more revenues from each U-labeled

provider and from each H-labeled provider under the optimal policy than those generated under the optimal

commissions and a full-information provision policy. In particular,

τ∗U(0)p∗U(0)< τ∗U(λ∗)p∗U(λ∗), and (69)

τ∗H(0)p∗H(0)< τ∗H(λ∗)p∗H(λ∗), (70)

where τ∗U(λ), p∗U(λ), τ∗H(λ), and p∗H(λ) are given by Proposition A.4.

Proof. Under the conditions of the corollary, we first note that the optimal informational delay α∗ satisfies

λ∗ = q0−γ
βγ(1−β)

by Proposition A.4 and Lemma A.12. In addition, we note that p∗U(λ∗) = p0 by Lemma A.5.

First, we establish inequality (69). Note that p∗U(0)< p0 = p∗U(λ∗) by Corollary A.1 and Lemma A.5. Then,

by Expression (64), we obtain

τ∗U(λ)p∗U(λ) = Median
{
p∗U(λ∗)−w0, p

∗
U(λ∗)− b0,0

}
,
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which implies that τ∗U(0)p∗U(0)< p0−w0 = τ∗U(λ∗)p∗U(λ∗).

Next, we establish inequality (70). Since τ∗H(λ)p∗H(λ∗) = p∗H(λ∗)−w0, it is equivalent to show that

τ∗H(0)p∗H(0) = p∗H(0)− 1−β+βγ

βγ
w0 +

1−β
βγ

(
1− τ∗U(0)

)
p∗U(0)≤ p∗H(λ∗)−w0.

Note that p∗H(0)< p∗H(λ∗) because of δH∗H (0)> δH∗H (λ∗) and Lemma A.5. So it suffices to show that

w0 ≤
1−β+βγ

βγ
w0−

1−β
βγ

(
1− τ∗U(0)

)
p∗U(0).

Note that the inequality above is equivalent to
(
1− τ∗U(0)

)
p∗U(0) ≤ w0, which holds because of Expression

(64) and b0 ≤w0. �

B. Proofs for Sections 4 and 5

Proof of Lemma 1

First, we note that the equilibrium involves three types of threshold customers who are indifferent between

two options. Specifically,

(i) Let θU0 denote the customer, who is indifferent between providers with label U and the outside option.

By definition,

θU0qU(α)− pU = θU0q0− p0,

which implies

θU0 =
pU − p0

qU(α)− q0
.

Next, note that if qU(α) < q0, then customers with θ < θU0 prefer U-labeled providers to the outside

option, whereas those with θ > θU0 prefer the outside option to providers with label U . On the other

hand, if qU(α)≥ q0, customers with θ > θU0 prefer U-labeled providers to the outside option, whereas

those with θ < θU0 prefer the outside option to providers with label U .

(ii) Let θH0 denote the customer, who is indifferent between providers with label H and the outside option.

That is,

θH0− pH = θH0q0− p0,

which implies

θH0 =
pH− p0

1− q0
.

Then, customers with θ < θH0 prefer the outside option to providers with label H, whereas those with

θ > θH0 prefer H-labeled providers to the outside option.

(iii) Let θHU denote the customer, who is indifferent between providers with label U and providers with

label H. That is,

θHU − pH = θHUqU − pU ,

which implies

θHU =
pH− pU

1− qU(α)
.

Then, customers with θ < θHU prefer U-labeled providers to H-labeled providers, whereas customers

with θ > θHU prefer providers with label U to providers with label H.
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Based on this characterization of customers who are indifferent between different providers, we proceed

to characterize the structure of the equilibrium under qU(α) < q0 and qU(α) ≥ q0, separately. First, we

characterize the equilibrium under qU(α)< q0. It is straightforward to verify that either θU0 < θHU < θH0 or

θH0 ≤ θHU ≤ θU0.

(a) Suppose θU0 < θHU < θH0 holds in equilibrium. Then, customers with θ < θU0 choose U-labeled providers

given that θ < θU0 and θ < θHU . Using a similar argument, it follows that customers with θ≥ θH0 choose

providers with label H. Finally, customers with types in interval [θU0, θH0] take the outside option.

Thus, ζU and ζH are given by

ζU = `
(

(−∞, θU0]∩ [1,2]
)

and ζH = `
(

[θH0,+∞)∩ [1,2]
)
,

where `(·) measures the length of a given interval. Therefore, ζU > 0 if and only if θU0 > 1, and ζH > 0

if and only if θH0 < 2. By Equation (13), i.e., the time-invariant condition, and Equation (14), i.e., the

market-clearing condition, we conclude that ζU and ζH are either both positive or both zero. Therefore,

if θU0 > 1 and θH0 < 2, then Expression (7) holds; otherwise, we have ζU = ζH = 0 in equilibrium, , i.e.,

the equilibrium features no transactions inside the platform.

(b) Suppose θH0 ≤ θHU ≤ θU0 holds in equilibrium. Then, customers with θ < θHU choose U-labeled providers

given that θ < θU0 and θ < θHU . Using a similar argument, we obtain that customers with θ ≥ θHU
choose H-labeled providers and no customers take the outside option. Thus, ζU and ζH are given by

ζU = `
(

(−∞, θHU ]∩ [1,2]
)

and ζH = `
(

[θHU ,+∞)∩ [1,2]
)
.

Therefore, ζU > 0 if and only if θHU > 1 and ζH > 0 if and only if θHU < 2. By Equation (13) and Equation

(14), we conclude that ζU and ζH are either both positive or both zero. Therefore, if 1< θHU < 2, then

Expression (8) holds; otherwise, we have ζU = ζH = 0 in equilibrium.

The equilibrium structure when qU(α)≥ q0 can be established by similar arguments. �

Proof of Proposition 1

Equilibrium existence follows directly by Proposition A.1. �

Proof of Proposition 2

We establish Proposition 2 under Assumption 2. To simplify notation, we let η , 1−β
βγ

q0−γ
1−β . We also point

out that η < 1/2 by Assumption 1 (b).

First, note that Assumption 2 implies that

p0 >
2(1−β) +βγ

1−β+βγ
(q0− γ).

So, to characterize τ∗(0) and determine the equilibrium structure, we only need to consider cases (3) to (8)

in Proposition A.3. In addition, condition Expression (15) implies that only cases (3) and (6) are possible

when b0 is sufficiently small. Lastly, we show when η < 1/2 holds, inequality (47) also holds. In particular,

the right-hand side of inequality (47) is less than w0 given that

3(1−β) +βγ

2(1−β+βγ)
− 1−β

1−β+βγ

1

η
< 0

when η < 1/2 and γ < 1−β
β

. Therefore, Proposition A.3 implies that the equilibrium takes form Eq1. In

particular, the all customers transact inside the platform at equilibrium.
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Proof of Proposition 3

We proceed in three steps to establish the proposition under Assumption 2. In step 1, we argue that the

following policy results in a type Eq1 equilibrium

λ∗ =
q0− γ

βγ(1− q0)
> 0, (71)

and τ∗ = 1− w0

p0 + βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

) , (72)

where recall that we use λ= α
1−βα to simplify notation.

In step 2, we show that the proposed policy is optimal by establishing the equivalence between the equilib-

rium it induces and the equilibrium under the optimal policy with differentiated commissions, as characterized

by Lemma A.12 and Proposition A.4. Finally, on step 3, we show that the mass of H-labeled (U-labeled)

providers under the proposed policy is lower (higher) compared to the optimal full-information provision

information.

Step 1: We show that a type Eq1 equilibrium arises under the λ∗ and τ∗ given above. It is straightforward

to verify that qU = q0 and pU = p0 follow under λ∗ and τ∗. By Lemma A.4, it suffices to verify that the

customer with type 1 + δU prefers U-labeled providers to the outside option, and that U-labeled providers

are not financially constrained. That is, pU ≤ p0 and (1− τ∗)pU ≥ b0. In addition, we need to verify that

the free-entry condition (i.e., Equation (34)) holds. First, we note that pU ≤ p0 holds trivially since pU = p0.

Then, (1− τ∗)pU ≥ b0 is equivalent to

τ∗ ≥ 1− w0− b0
βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

) .
The inequality above is equivalent to

w0− b0
βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

) ≥ w0

p0 + βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

) ,
which is further equivalent to

b0 ≤
p0

p0 + βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

)w0. (73)

Then, we claim that Expression (73) holds under Assumption 2. In particular, note that b0 <

p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)

(
2
η
−1

)w0 by Expression (15). Thus, to show Expression (73), it suffices to show the following

p0− (q0− γ)

p0 + 1−β
1−β+βγ

(q0− γ)
(

2
η
− 1
)w0 <

p0

p0 + βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

)w0,

which follows from simple algebra given that 0< η < 1. Finally, we need to verify that the free-entry condition

holds. This is equivalent to showing that the following equality holds (note that η= 1 and δUU = 1−β
1−β+βγ

under

a type Eq1 equilibrium)

βγ

1−β
·

1− η
1 + q0−γ

1−q0

(
(1− τ∗)pH−w0

)
=w0− (1− τ∗)pU ,
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where

(1− τ∗)pH =w0 + (1− τ∗)
( 1−β

1−β+βγ
+

βγ

1−β+βγ
η
)(

1− q0 +
1−β

1−β+βγ
(q0− γ)

)
, and

(1− τ∗)pU =w0− (1− τ∗) βγ

1−β+βγ
(1− η)

(
1− q0 +

1−β
1−β+βγ

(1− γ)
)
.

Then, the free-entry condition becomes

(1− τ∗) βγ

1−β
·

1− η
1 + q0−γ

1−q0

( 1−β
1−β+βγ

+
βγ

1−β+βγ
η
)(

1− q0 +
1−β

1−β+βγ
(1− γ)

)
=(1− τ∗) βγ

1−β+βγ
(1− η)

(
1− q0 +

1−β
1−β+βγ

(1− γ)
)
,

which can be shown to hold from simple algebra.

Step 2: Next, we show that the equilibrium under (τ∗, λ∗) is the same as the equilibrium under the optimal

joint policy with differentiated commissions. In particular, the informational delay of the optimal joint policy

with differentiated commissions satisfies λ = q0−γ
βγ(1−q0)

, which is the same as λ∗, since η < 1/2 (Proposition

A.4 and Lemma A.12). In addition, it is straightforward to verify that under the optimal joint policy with

differentiated commissions, the induced revenues for the platform are equal to those under (τ∗, λ∗) (Lemma

A.5 and Equation (57)). This establishes that (τ∗, λ∗) is indeed the optimal policy for the platform.

Step 3: Finally, we show that under (τ∗, λ∗), the mass of providers with label H who are active on the

platform, i.e., δHH , is lower than that under the optimal full-information provision policy. In particular, we

have that

δH,∗H = (1− η)
βγ

1−β+βγ
,

under (τ∗, λ∗). On the other hand, under the full-information provision policy, we have by the proof of

Proposition 2) that

δH,0H =
βγ

1−β+βγ
.

Then, it follows that δH,∗H < δH,0H , and δ∗U = 1− δH,∗H > δ0
U = 1− δH,0H .

In sum, we have shown that the optimal policy for the platform features positive delay (i.e., α∗ > 0) in this

setting. In addition, we established that the mass of providers with label H who are active on the platform

is lower than that under the optimal full-information provision policy. �

Proof of Proposition 4

We establish Proposition 4 under Assumption 3. Since

p0

q0− γ
< 1 +

1

4
< 1 +

1−β
1−β+βγ

,

only cases (1) and (2) of Proposition A.3 can arise. So, the equilibrium can take either form Eq3 or Eq4.

Both feature customers who take their outside option, which concludes the proof of the proposition. �

Proof of Proposition 5

The proof follows arguments similar to those in the proof of Proposition 3. In particular, we proceed in

three steps to establish that policy (τ∗, λ∗) with λ∗ and τ∗ given by Expression (71) and Expression (72),

respectively, is optimal under Assumption 3. We also establish that (τ∗, λ∗) results in a higher volume of

transaction with H-labeled providers compared to the optimal full-information provision policy. We omit the

details for brevity. �
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Proof of Proposition 6

First, by the definition of τ c,∗U (0) and τ c,∗H (0), we have

τ c,∗U (0) = max
(
τ∗U(0)p∗U(0),0

)
and τ c,∗H (0) = max

(
τ∗H(0)p∗H(0),0

)
,

where τ∗U(0), τ∗H(0), p∗U(0), and p∗H(0) are given by Corollary A.1. In addition, we note that τ∗H(0)p∗H(0) >

0; otherwise, the platform’s revenues will become negative. Therefore, it follows that τ c,∗U (0) < τ c,∗H (0) by

Corollary A.1. �

Proof of Proposition 7

First, by the definition of τ c,∗U (α∗) and τ c,∗H (α∗), we have

τ c,∗U (α∗) = max
(
τ∗U(λ∗)p∗U(λ∗),0

)
and τ c,∗H (α∗) = max

(
τ∗H(λ∗)p∗H(λ∗),0

)
,

where τ∗U(α∗), τ∗H(α∗), p∗U(α∗), and p∗H(α∗) are given by Corollary A.2. The proof of the corollary also implies

that

τ∗U(λ∗)p∗U(λ∗) = p0−w0 > 0.

Therefore, it follows that τ c,∗U (0)< τ c,∗U (α∗) and τ c,∗H (0)< τ c,∗H (α∗) by Corollary A.2. �


