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Abstract

We explore spatial price discrimination in the context of a ride-sharing platform that serves a
network oflocations. Riders are heterogeneous in terms of their destination preferences and their
willingness to pay for receiving service. Drivers decide whether and where to provide service so
as to maximize their expected earnings, given the platform’s pricing and compensation policy.
Our findings highlight the impact of the demand pattern on the platform’s prices, profits, and
the induced consumer surplus. In particular, we establish that profits and consumer surplus at
the equilibrium corresponding to the platform’s optimal pricing and compensation policy are
maximized when the demand pattern is “balanced” across the network’s locations. In addition,
we show that they both increase monotonically with the balancedness of the demand pattern (as
formalized by its structural properties). Furthermore, if the demand pattern is not balanced, the
platform can benefit substantially from pricing rides differently depending on the location they
originate from. Finally, we consider a number of alternative pricing and compensation schemes

that are commonly used in practice and explore their performance for the platform.
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1 Introduction

Ride-sharing platforms such as Lyft and Uber are in the process of disrupting the transportation in-
dustry by better matching the supply of drivers with the demand for rides. Interestingly, they do not
employ any drivers but rather they operate as two-sided markets between riders and independent
contractors that provide service as drivers. One of the main tools that such platforms have at their
disposal to facilitate the matching between drivers and riders is their pricing and compensation
policy. In fact, Uber has received a lot of praise but also criticism on how their pricing works.!

The design of a pricing policy for a platform may be challenging as prices need to serve a dual
role: match supply and demand in time and also in space. Most of the attention so far has largely
been focused on the first role, i.e., how to employ surge/dynamic pricing techniques to mitigate the
impact of temporal demand fluctuations on service and, consequently, on profits at a given loca-
tion. Equally important, however, is the second role, i.e., the fact that the platform serves demand
across a network of interconnected locations. In particular, the price set by the platform at a location
not only determines the level of service at that location but also affects the supply of drivers at all
other locations. Thus, even in the absence of any temporal demand fluctuations, the platform can
benefit substantially from setting different prices across the network.

Our goal in this paper is to complement the existing literature, which has mainly addressed the
problem of dealing with temporal demand fluctuations at a given location by focusing squarely on
the demand pattern for rides across a network’s locations and its impact on the platform’s prices,
profits, and consumer surplus. To this end, we consider a time-invariant environment that ensures
that our analytical findings isolate the impact of the demand pattern’s spatial structure and study
how the platform should price rides depending on where they originate from.

We expect that in practice ride-sharing platforms will benefit from using a combination of spa-
tial price discrimination to account for long-term predictable demand patterns across a network of
locations and surge-pricing techniques to smooth out short-term demand fluctuations at a given
location. For instance, if during the morning rush hour riders consistently demand rides from sub-
urban to downtown locations, setting different prices for rides originating from the suburbs versus
those from downtown may lead to gains for both the platform and the riders. If, in addition, there
are short-term fluctuations in supply and demand, e.g., due to the weather conditions, temporary
surge pricing may help to further mitigate the mismatch between the supply of drivers and the de-
mand for rides.

This paper is among the very first to explicitly account for the spatial dimension of a ride-sharing
platform’s pricing problem. Our contributions can be briefly summarized as follows. First, we de-
velop a tractable model to study a platform operating on a network of locations that may differ

'The merits and the potential shortcomings of Uber’s pricing algorithm have been extensively covered in the press. For
example, see: https://wuw.technologyreview.com/s/529961/in-praise-of-efficient-price-gouging/, and
http://fortune.com/2015/01/26/uber-caps-surge-pricing-during-blizzard-but-people-still-complain/.
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in both the size of their potential demand and the destination preferences of riders (we refer to
them jointly as the network’s demand pattern). Importantly, the model features drivers who en-
dogenously determine not only whether and where to join the platform and start providing service
but also where to relocate themselves when they are idle. Second, we provide a characterization of
how the demand pattern affects the platform’s prices, profits, and induced consumer surplus. Our
findings illustrate that the demand pattern’s “balancedness,” which captures the extent to which the
mass of riders who demand a ride leaving a location differs from the mass of those requesting a ride
going to that same location, succinctly summarizes the profit potential of a given network of loca-
tions for the platform. Finally, we explore the benefits and limitations of a number of pricing and
compensation schemes through a combination of analytical results and simulations on real-world
networks. We describe our contributions in detail below.

Main Contributions. We introduce a tractable model that is tailored to exploring the interplay be-
tween the demand pattern across the locations of a ride-sharing network and the platform’s prices
and profits (as well as the resulting consumer surplus). Our model economy is comprised of a set of
interconnected locations and populations of riders that seek transportation from one such location
to another. Both the distribution of the riders’ willingness to pay for a ride as well as their aggregate
origin-destination preferences are assumed to be known. The objective of the platform is to maxi-
mize its aggregate profits. To this end, it sets the price that a rider has to pay and the compensation
given out to the corresponding driver for each ride that it facilitates. These prices and compensa-
tions may differ depending on where the ride originates from. Drivers decide whether and where to
join the platform and where to relocate themselves when they are idle, with the goal of maximizing
their expected earnings over the time they provide service, by taking into account the prices and
compensations set by the platform. Thus, while determining its pricing and compensation policy,
the platform needs to carefully consider its impact on drivers’ entry and relocation decisions. To the
best of our knowledge, ours is among the very first models in the literature to explicitly focus on the
fact that the platform sets prices to serve demand across a set of interconnected locations while the
supply of drivers behaves strategically.

Our first main contribution is to identify a property of demand patterns, which we call balanced-
ness, that, to some extent, is the right property to consider when evaluating the profit potential of a
given network for the platform. Informally, a demand pattern is balanced if the potential demand
for rides at each location is roughly the same as the potential demand for rides with this location
as their destination. We establish that the profits the platform can generate are higher the more
balanced the underlying demand pattern is and, consequently, the profit potential of a network is
highest when the demand pattern is balanced.? In addition, similarly to profits, we show that con-

2To be more specific, for a given demand pattern and any strongly balanced demand pattern (Section 3 provides a
formal definition), we consider the set of demand patterns that can be written as a convex combination of the two. Then,
in Theorem 1, we establish that the closer the demand pattern is to the strongly balanced one, the higher are the profits
the platform can generate. We say that demand pattern A is more balanced than demand pattern B if A lies in the convex



sumer surplus in the induced equilibrium is also monotonic with respect to the balancedness of the
underlying demand pattern.

Furthermore, the extent to which the underlying demand pattern is balanced has implications
on the potential benefits of employing spatial price discrimination. In particular, when the demand
pattern is balanced, there is no need for the platform to price discriminate: it is optimal to set prices
for rides to be equal across the network’s locations. By contrast, in the presence of demand imbal-
ances, it is beneficial to set different prices for rides depending on the location they originate from.
Informally, given that riders are price sensitive, the platform leverages spatial price discrimination
to ensure that the pattern of the demand that gets served becomes more balanced.

In particular, we focus on settings where the number of riders at each location is set to be the
same (and normalized to one) and establish that locations that are relatively more attractive as des-
tinations are likely to receive a large number of incoming rides, and, consequently, they end up
with an excess supply of drivers. The platform “subsidizes” rides originating from such locations in
order to induce more demand. This, in turn, allows for a better utilization of drivers who find them-
selves in such locations after completing a ride. On the other hand, the platform finds it optimal to
set higher prices for rides originating from locations that are relatively less popular as destinations
(and, consequently, end up with a shortage of supply). These locations may also feature higher com-
pensation levels for drivers. The combination of higher prices (which reduce demand) and higher
compensation levels (which increase the incentives of drivers to provide service at these locations)
leads to a better matching of supply with demand at these locations. It is worthwhile to note that,
even though supply and demand are determined endogenously in the context of our model, we
are able to identify locations that end up with an excess or shortage of supply under the platform’s
optimal prices and compensations, directly from the primitives of the economy (specifically, the
demand pattern).

Finally, we consider alternative pricing and compensation schemes that are commonly used
in practice, and explore their implications on platform’s profits. First, we study a compensation
scheme that features fixed commission rates paid to drivers. We identify classes of demand pat-
terns for which employing such a scheme is without loss of optimality, i.e., it can generate the same
profits for the platform as a scheme that features different compensations depending on a ride’s ori-
gin. However, we construct a simple example that shows that, in general, using a fixed commission
rate leads to significant profit losses for the platform. Beyond the fact that solving for the optimal
fixed commission rate may be computationally challenging, our result points to the potential short-
comings of this scheme.

Second, we provide convex programming formulations to compute the platform’s optimal pric-
ing policy when it is restricted to setting the same price at all of the network’s locations and when
it can set different prices depending on both a ride’s origin and its destination. We compare these
pricing schemes with origin based price discrimination, and illustrate their differences using data

combination of B and a strongly balanced demand pattern.



that represents demand imbalances in real-world networks. We find that pricing rides differently
depending on where they originate from may lead to significantly higher profits relative to using
the same price across the network, especially when the demand pattern is highly unbalanced. On
the other hand, the additional gain from setting prices that depend on both the origin and the des-
tination of a ride seems to be less significant.

Implications and Economic Insights. In summary, our modeling framework and analysis yield
a number of novel insights into the operations of ride-sharing platforms. On the descriptive side,
we show that the balancedness of a demand pattern can serve as a measure of the profit poten-
tial of a given geographical region for the platform. On the prescriptive side, we show that a plat-
form should consider using spatial price discrimination especially when the underlying demand
pattern is highly unbalanced, as in such settings spatial pricing yields significant profit gains. In
addition, we establish that a platform should offer relatively low/high prices respectively for rides
originating from attractive/unattractive destinations for riders as determined by their aggregate
origin-destination preferences. Doing so allows for better matching supply with demand and, con-
sequently, maximizing profits.

Another set of prescriptive insights relate to whether and when different pricing and compensa-
tion schemes should be employed in practice. In particular, we show that explicitly compensating
drivers with a fixed ratio of the revenues they generate, generally leads to a significant loss for the
platform. This finding may help explain recent efforts at both Uber and Lyft to implement a richer
compensation scheme by offering compensation “boosts” to drivers depending on the locations
they provide service at.> Finally, we illustrate that pricing rides based on where they originate from
can lead to a significant improvement in a platform’s profits. On the other hand, pricing rides de-
pending on both their origin and destination seems to lead to additional gains that, although more
modest, may still be significant in practice given the volume that such platforms operate.

Related Literature. Our work is related to the burgeoning literature that explores the design and
operations of online marketplaces. Allon et al. (2012) study the role of a platform in improving
the operational efficiency of large-scale service marketplaces. More recent work has provided in-
sights into how product-sharing platforms may affect an individual’s decision to own (Benjaafar
et al. (2018)), how a host’s experience may explain her earnings at AirBnb (Li et al. (2017)), how re-
ducing search costs may lead to inefficiencies in online matching markets (Horton (2018), Arnosti
et al. (2016), Kanoria and Saban (2017)), and how information may be disclosed so as to induce
experimentation (Papanastasiou et al. (2016)). The overview article by Azevedo and Weyl (2016)
highlights the research opportunities provided by the increasing popularity of digital markets.

In the context of ride-sharing platforms, Banerjee et al. (2015), Cachon et al. (2017), and Castillo

3For more details, see https://www.uber.com/drive/atlanta/resources/driver-partner-earnings-boost/ and
http://therideshareguy.com/how-does-uber-earnings-boost-work/.
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et al. (2018) explore the potential benefits of state-contingent pricing when demand for rides is
stochastic. Relatedly, Gurvich et al. (2018), Taylor (2017), and Tang et al. (2017) also explore how
stochasticity in market conditions may affect the platform’s pricing and compensation decisions.
By contrast, we focus squarely on the spatial structure of the underlying demand and endogenous
supply. In particular, we abstract away from short-term supply/demand fluctuations and isolate
the impact of the network structure on the platform’s decision making and the drivers’ equilibrium
behavior. Thus, we complement the existing work that mainly focuses on the temporal aspect of
such an environment, by exploring its spatial dimension.*

Also related is a set of papers that explore the use of design levers other than pricing to match
supply with demand. Ozkan and Ward (2017) propose a linear programming based approach to de-
termine the matching between drivers and potential riders and establish its asymptotic optimality.
Afeche et al. (2018) explore how platforms can optimally accept ride requests and reposition drivers
within a two-location network. Hu and Zhou (2016) provide conditions for optimal matching to
follow a priority hierarchy. In a complementary direction, Yang et al. (2016) consider a model mo-
tivated in part by ride-sharing services in which agents compete for time-varying location-specific
resources. In addition and parallel to the literature on ride-sharing platforms, a recent series of pa-
pers considers the operations of large-scale bike-share systems. Kabra et al. (2018) build a structural
demand model for the Vélib’ bike-share system in Paris. Henderson et al. (2016) study the allocation
of bikes and docks across a city in the context of an ongoing collaboration with the NYC Bike Share.

Finally, our work shares some modeling features with Lagos (2000) who studies a time-invariant
model of the taxi industry.® Prices and the aggregate supply of taxis are fixed and exogenously given
and the paper’s main objective is to illustrate that the drivers’ behavior may result in search frictions.
By contrast, we take the perspective of a ride-sharing platform and explore how it can optimize
its profits by appropriately pricing demand and compensating drivers at different locations. Apart
from the fact that prices are determined by the platform, in our work the supply of drivers is also
endogenous.

2 Model

We consider an infinite horizon discrete time model of a ride-sharing network with »n locations
equidistant from one another. Getting from a location to any other location takes one period.® De-
mand for rides is time-invariant. In particular, every period a continuum of potential riders of mass
6; seek rides originating from location i. The fraction of riders at location ¢ who wish to go to loca-

“Banerjee et al. (2017) also recognize the importance of taking the network structure into account when devising pric-
ing policies for shared vehicle systems. However, their approach is mostly algorithmic whereas our study provides analyt-
ical insights on the interplay between the platform’s pricing, the demand pattern, and the drivers’ incentives.

*Lagos (2003) and Buchholz (2017) build on Lagos (2000) and study empirically the effect of taxi regulations on the
overall efficiency of the market using data from New York City.

®Subsection 5.1 discusses how our findings extend when distances between different locations may not be the same.
In addition, for simplicity, throughout the paper we ignore the cost (of fuel) for traveling between locations.



tion j is given by the ij-th entry of matrix A, denoted by a;;, where } ; a;; = 1 for all i (thus, the total
mass of riders who would like a ride from ¢ to j in each time period is 6;«;;). Note that A can also
be viewed as a weighted adjacency matrix associated with the ride-sharing network, where there is
a directed edge from location ¢ to j when «;; > 0. We call (A, 0) the network’s demand pattern and
we make the following assumption throughout the paper:’

Assumption 1. The network’s demand pattern (A, €) is such that:

(i) For every location i, the mass of riders who wish to take a ride originating from i is strictly
positive, i.e., §; > 0 for all i.

(ii) Each component of the directed graph defined by adjacency matrix A is strongly connected.

Riders are heterogeneous in terms of their willingness to pay for a ride. Specifically, if the price
for receiving service is set to p, the induced demand for rides between locations i and j (at a given
time period) is given by 6;«;;(1 — F(p)). Here, F(-), can be viewed as the (empirical) cumulative dis-
tribution of the riders’ willingness to pay, which we assume to be the same for all origin-destination
pairs, and has support [0, z] (where with some abuse of notation z = oo allows for settings with un-
bounded support).? Finally, we assume that riders who do not get assigned to a driver in the period
they seek service from the platform, e.g., because of excess demand for rides at their locations, use
other means of transportation and leave the platform.

Drivers participating in the platform can provide rides originating from location i at a given time
period only if they are located at i at that period. We assume that the platform can assign a ride
originating from location 7 to any driver present at this location, and drivers cannot reject the rides
they are assigned to.° In particular, if the supply of drivers at a location is lower than the demand
at that location, then all drivers are assigned to rides. Otherwise, we assume that each driver at the
aforementioned location has equal probability, given by the ratio of demand to supply, of getting
matched to a rider. Drivers who do not get assigned to a ride decide where to continue providing
service, i.e., stay at the location where they are currently at or relocate to a location of their choice.
In both cases, we assume that drivers are available again for service at the beginning of the next time

"Assumption 1(ii) implies that a driver can potentially start from any location i and reach any other location j within
the same component of the network defined by A, after serving a sequence of rides.

8The assumption that the riders’ willingness to pay follows the same distribution irrespective of where they are located
or they intend to go allows us to isolate the impact of the riders’ origin-destination preferences, i.e., matrix A, on the
platform’s profits. That said, our approach and formulation readily extend to settings where there is heterogeneity along
this dimension as well.

9We could have also allowed for the following modeling feature: drivers decide whether to make themselves available at
the location they end up upon completing a ride or remain unavailable and relocate to another more attractive (in terms of
expected earnings) location. Although such a feature could seemingly affect the equilibrium outcome, it turns out that at
the optimal prices and compensations drivers always find it optimal to be available for new rides at all locations. This can
be shown by noting that if no service is being provided at a location, then the platform can improve profits by offering a
high price/compensation that induces some service at this location. On the other hand, if some drivers find it in their best
interest to offer service at this location, others also have a (weak) incentive to wait, and relocate only in case of not being
matched to a rider. To simplify the exposition and reduce the notational burden, we omit the aforementioned feature
from the model, but we emphasize that doing so is without loss of optimality.



period (unless they exit the platform altogether as we explain shortly).!? A driver who is assigned to
aride at location 7 has probability «;; of serving a ride with location j as its destination (recall that
«a;; fraction of the induced demand at ¢ wishes to go to location j).

Upon completing a ride or relocating to a location of her choice (both of which, as we mentioned
above, take one period), each driver on the platform exits with probability (1 — 3), where 5 € (0, 1) is
meant to capture the fact that a driver provides service for a limited amount of time in expectation
(e.g., a shift that lasts eight hours in expectation),'! which we refer to as her lifetime.'> We assume
that there is an infinite supply of potential drivers who may enter the platform and start provid-
ing service if their participation constraint is met. In particular, each driver has an outside option
that amounts to lifetime earnings equal to a positive scalar w (for example, w can be thought as the
average wage for low-skilled labor). A driver enters the platform if her expected lifetime earnings
from the platform is at least w.'* Note that drivers’ lifetime earnings depend on their entry loca-
tion, and drivers enter only at locations that yield the highest expected lifetime earnings for them
(as we detail in the next subsection). We emphasize that a key feature of the model is that drivers
endogenously determine both whether and where to enter the platform and also where to relocate
themselves when they are not assigned to a rider, with the objective of maximizing their earnings.

The platform facilitates the matching of riders to drivers. Its objective is to maximize the flow
rate of profits by choosing prices and compensations {p;, ¢;}! ;, where p; denotes the price that a
rider has to pay for a ride that originates from location ¢, and ¢; is the corresponding compensation
for the driver. Note that given that the demand for rides is time-invariant, we restrict attention to
pricing and compensation policies that are also time-invariant.

At this point, it is worthwhile to briefly summarize the key features of our modeling framework:

(1) Drivers decide whether and where to provide service so as to maximize their expected lifetime
earnings. Given that they have an outside option that amounts to lifetime earnings of w, they
only participate in the platform if compensations are such that in expectation their lifetime

earnings are at least w.

As a convention, when a driver who did not get assigned to a ride at location ¢ decides to stay at i, we say that the
driver relocates to i. Thus, any driver who is at ¢ in the beginning of a period either provides service or relocates.

""'We assume that  is exogenous and it is same for all drivers, implying that their shifts last the same in expectation. A
very interesting direction for future work would be to assume that drivers react to the state of the system when deciding
whether to exit, i.e., parameter § is a function of the drivers’ expectations about their future earnings. Such a modeling
extension would likely necessitate a considerably different analysis and perhaps would be more meaningful in a non-
stationary model (unlike ours).

12To obtain our results, we make the assumption that each driver arriving at a location (after completing a ride or re-
locating) has the same probability, equal to (1 — ), of exiting the platform, but our results do not depend on the exact
process by which these exits happen. One way to formalize the process of drivers exiting the platform is to view them as
points on a circle with a circumference equal to their mass. Then, the drivers who exit the platform are those who lie in
an interval of length (1 — 8) times the mass starting at a point drawn uniformly at random from the circle. We are also ag-
nostic to the specifics of the matching mechanism between riders and drivers. Following a similar idea, i.e., representing
the drivers as points on a circle and constructing intervals starting at randomly drawn points on the circle, it is possible to
ensure that each driver at a location has equal probability of being assigned to a rider going to a given destination, as well
as (when the supply of drivers is higher than the induced demand) remaining unmatched.

BThroughout the main body of the paper, we assume that drivers have the same outside option (reservation wage).
Appendix C.4 discusses how we could incorporate heterogeneity in the drivers’ reservation wages.
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(2) Given that we are interested in studying the potential benefits of spatial price discrimination,
we consider a platform that sets prices/compensations {p;, ¢; } , differently for rides that orig-
inate from different locations. Importantly, in our baseline model, we do not consider pricing
policies that depend on the destination of a ride (in addition to its origin). Arguably, pricing
policies that depend on the location a ride originates from appear to be common in practice.!
For completeness, Appendix C.3 discusses how our results are affected when the platform may
set the price/compensation for a ride as a function of both the ride’s origin and its destination.
In addition, in Subsection 4.2, we report computational results that compare the profits gen-
erated by the platform when it sets prices that depend on a ride’s origin versus both its origin
and destination, using data representative of demand imbalances in real-world networks.

(3) As we are interested in illustrating how a platform may maximize its profits over a network of
locations (thus, we place emphasis on the spatial dimension of the platform’s pricing prob-
lem), we assume that the demand pattern is time-invariant.

2.1 Equilibrium

This subsection considers the equilibrium outcome induced by the pricing and compensation pol-
icy {pi, ci}, set by the platform. Since the demand for rides and prices/compensations are time-
invariant, throughout the paper we focus on a time-invariant equilibrium outcome, where at a given
location, the same mass of drivers enter, provide service, and relocate at every time period. Before
we provide a formal definition of the equilibrium concept, we describe how prices determine the
flow of riders and drivers across locations.

Riders request a ride at location ¢ if their willingness to pay is at least as high as the price p; set
by the platform. Thus, the induced demand for rides at i is given by 6;(1 — F(p;)). We let §; denote
the mass of (new) drivers who choose to enter the platform at a given period and begin providing
service at location i. We denote by y;; the mass of drivers at location ¢ who decide to relocate to
location j upon not getting assigned to a rider at 7 (and y;; stands for the mass of drivers who decide
to stay at location ). Finally, we let z; denote the mass of drivers at location 7 at the beginning of a
period, which is given by the following expression

zi =B | azmin{z;, 0;(1 = F(p;)} + > wji | + - ey
i i

“For example, Uber’s surge pricing used to be based solely on the rider’s pickup location (see https://help.uber.com/
h/e9375d5e-917b-4bc5-8142-23b89a440eec). In November 2016, Uber’s rider app started requiring riders to provide their
destination, and the display of origin-specific surge multipliers was replaced with fare estimates (see http://time.com/
4554138/uber-app-update-2016/). Even when the platform provides riders with such upfront fare estimates, these still
appear to depend only on the supply-demand imbalances at the origin and not at the destination (see https://help.
uber.com/h/4efa31c0-1123-48a7-b9b1-6e968a62fd6e).
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The first summation in Equation (1) is equal to the mass of drivers who find themselves located at
i after completing a ride that started in the previous time period, given that the term min{x;,6;(1 —
F(p;))} is equal to the total demand the platform serves at location j («j; fraction of which has
location i as its destination). The second summation is equal to mass of the drivers who did not
get aride at j in the previous time period (e.g., due to an excess supply of drivers at j) and chose to
relocate to i. Since 1 — /3 fraction of drivers exit after completing a ride or relocating to a location, we
scale both summations by 5. The total mass of drivers relocating from j matches the excess supply
at j, i.e., {y;1}}_, are such that:

>y = max{z; — 0;(1— F(p)),0}.
k

Motivated by this observation, we say that j is a location with excess supply if ), y;, > 0.

It is convenient to associate each location i with the expected future earnings for a driver located
at ¢ at the beginning of a period. In particular, if we let V; denote the expected future earnings for a
driver at location i, we have

Vi = min{W,1} (cz- +§k:aikﬁvk> + (1 - min{W,l}) 8V, )

whereV = max; V;. The first term in (2) corresponds to the case where the driver is assigned to aride
at 4, which happens with probability min { 01‘(1;71?(”")), 1 } In this case, the driver earns ¢; for providing
service and takes a rider to her destination, which is location k£ with probability «;;. After dropping
off the rider at k£, the driver continues providing service with probability 8 and has expected future
earnings of V.. The second term corresponds to the case where the driver does not get assigned to
a ride and chooses to relocate to one of the locations that maximize her expected future earnings.
Note that if a driver enters the platform at location ¢, V; also captures her expected lifetime earnings
from the platform. Motivated by this observation, we alternatively refer to V; as the lifetime earnings
for drivers who enter at location i.

Using the notation above, we formally introduce our equilibrium concept.

Equilibrium. An equilibrium under the vector of prices and compensations {p;, ¢;}1_; is a tuple
{52', Zi, yij}’;’j:l with 52’7 Ti, Yij >0 for all 1,] € {1, cey TL} such that:

(i) The expected lifetime earnings for a driver who enters the platform at i is given by (2). Given
that there exists an infinite supply of potential drivers who can enter the platform and provide
service, there cannot exist a location for which V; > w at equilibrium (since, otherwise, addi-
tional drivers would find it optimal to enter, thus leading to a decrease in V;). In other words,
Vi < w for all 7 at equilibrium. On the other hand, provided that there is entry, we should
have V; = w for at least one location ¢; since if V; < w for all 4, then no driver would find it

10



optimal to enter. Thus, we have V = max; V; = w at equilibrium. Moreover, given that drivers
choose where to enter at/relocate to so as to maximize their earnings, there should only be
entry at/relocation to locations with the highest expected lifetime earnings. In other words,

V; = V = w for all i such that §; + Z yji > 0. (3)
J

Equation (3) captures the drivers’ incentive-compatibility constraints. We refer to locations
with &; + 3, y;; > 0 as entry points.

(ii) The mass of drivers at location i at the beginning of a time period is given by (1), i.e.,
wi =B | azmin{z;, 0;(1— F(p;)} + > wji| + i,
J J

with ), yr = max{z; —6;(1— F(p,)),0}, for everylocation j. We refer to this set of constraints
as the equilibrium flow constraints.

Proposition 1 states that an equilibrium as defined above exists for any given vector of prices
and compensations {p;, ¢; }I ; set by the platform.

Proposition 1. An equilibrium tuple {5;, z;, yi; }; ;_, exists under any given vector of prices and com-
pensations {p;, ¢; }I" ;.

It is worthwhile to note that there may exist multiple equilbria corresponding to the same vector
of prices and compensations {p;, ¢;}I"_,, which generate different profits for the platform (we provide
an example in Appendix C.1). That said, as we establish in what follows, all equilibria corresponding
to the optimal vector of prices and compensations generate the same profits, prices, and aggregate
entry of drivers.

2.2 The Platform’s Optimization Problem

We conclude this section by stating the platform’s optimization problem. The platform determines
the tuple {p;, ¢;}" ,, i.e., prices for riders and compensations for drivers for rides that originate from
each of the n locations. Its objective is to maximize the aggregate flow rate of profits across the
n locations subject to the drivers’ equilibrium constraints. Specifically, the optimization problem
takes the following form:

n
max Z min{z;,0;(1 — F(p;))} - (pi — ¢i)
{pi,ci,06,Ts 73/ij}?,j=1 i=1
s.t. {0i, @i, yij}; ;=1 is an equilibrium under {p;, ¢; };"4, 4)
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where in the objective (p; — ¢;) is the platform’s profit margin for a ride originating from location i
and min{z;, 0;(1 — F(p;))} is equal to the total demand of riders that the platform serves at i.

As a first step towards a tractable analysis, we provide an alternative optimization formulation
in which we relax the drivers’ incentive-compatibility constraints. Subsequently, in Lemma 1, we
establish that this is without loss of optimality for any absolutely continuous and strictly increasing
distribution F'(-) for the riders’ willingness to pay. In particular, we focus on the following optimiza-
tion formulation:

max sz'dz’ — wz&

{p176i7xiuyij7d7,};ij:1

sit. d; = (1 - F(pi)>0i, for all i
;= f [Zajidj + Zyji
J J

Zyij =x; —d;, foralls

J

+ 0;, foralls 5)

pi, 03, y;5 > 0, forall i, j.

The objective function in (5) consists of two terms: the first is equal to the platform’s aggregate
revenue flow rate ), p;d;, where d; denotes the demand that the platform serves at location <. It can
be readily seen that d; = min{z;,6;(1 — F(p;))}.!°> Thus, this term coincides with the corresponding
revenue term in the objective function of (4).

On the other hand, the second term w ), d; captures the platform’s cost rate. Note that the
two formulations use different ways to express the cost for serving the platform’s induced demand.
Specifically, in (4) a cost (compensation) ¢; is assigned to each ride whereas in the context of (5) the
platform incurs cost w (equal to the outside option) for every driver entering the platform to pro-
vide service. In light of the drivers’ incentive-compatibility constraints, the latter is a lower bound
on the platform’s cost at equilibrium, which in turn implies that assuming that the induced demand
is the same under both formulations, the objective value of (5) is an upper bound for that of (4).
In addition, the constraints in (5) correspond to the equilibrium flow constraints as stated in Sub-
section 2.1, whereas the drivers’ incentive-compatibility constraints as expressed in (3) are relaxed
in (5).

The preceding discussion implies that the optimal value for Problem (5) is an upper bound on

BThe first and third equality constraints, together with the non-negativity constraints in (5), imply that d; = 6;(1 —
F(p:)) < z;, i.e., the supply of drivers at each location is sufficient to satisfy the induced demand. This observation
implies that d; = min{z;,0:(1 — F(p;))}.

It is worthwhile to point out that the condition 8, (1 — F(p;)) < x; does not necessarily hold at all feasible solutions of (4).
Thus, (5) implicitly imposes an additional constraint on the prices that the platform can choose. However, it is straigth-
forward to see that this constraint can also be imposed in (4) without loss of optimality, since if this constraint is violated
at a feasible solution of (4), another feasible solution with a higher objective value can be obtained by increasing p;.
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the profits the platform can generate using prices that depend on a ride’s origin. Lemma 1 be-
low states that there exist compensations {c;};" ; that support the optimal solution to optimization
problem (5) as an equilibrium, thus solving (5) yields the optimal prices for the platform.

Lemma 1. Consider optimization problem (5). Suppose that Assumption 1 holds and F'(-) is an ab-

solutely continuous distribution that is strictly increasing over its domain. We have:

@) If{pi; 6i, i, yij, di}} j— is a feasible solution for (5), such that d; > 0 for every i, then there ex-
ist compensations {c;}{_, such that the tuple {0;,z;,y;;}] ;_, constitutes an equilibrium under
{pi, i}l . Furthermore, the (per-period) cost incurred by the platform under these compensa-
tionsisequaltow ), 0;.

(it) If, in addition, (1 — B)w < z, any optimal solution {p}, o7, x},y};, d;}}';— for (5) is such that
dy > 0 for alli, where recall that zZ denotes the upper bound on the riders’ willingness to pay.

Conversely, if (1 — p)w > Zz, any optimal solution for (5) is such that o7 = df = 0 for alli.

Lemma 1 establishes that when the drivers’ outside option is not too high, it is optimal for the
platform to set prices and compensations such that it serves some demand at all locations. In ad-
dition, given any optimal solution for (5), there exists a set of compensations such that the same
solution is optimal for (4) as well.!® On the other hand, when (1 — 8)w > z, it is always optimal to
set 0* = d’ = 0 for any solution for (5), which, in turn, implies that there is no demand served in any
optimal solution for (4). In that sense, it is sufficient to work directly with optimization problem (5)
as we can always construct an optimal solution for (4) from an optimal solution for (5).

Although optimization problem (5) is non-convex for a general cumulative distribution function
F(+), it can be rewritten as a convex optimization problem for distributions for which the platform’s
profits are concave in the induced demand {d;}}" , (this holds for a number of commonly used dis-
tributions, e.g., uniform, exponential, and Pareto). To simplify exposition, in the remainder of the
paper (with the exception of Subsection 5.2), we restrict attention to the case where the riders’ will-
ingness to pay is uniformly distributed in [0, 1].}7 For this case, we can rewrite the platform’s problem

max sz'(l—pi)(% —wz5i

{p’i 0 "Yij }Z‘;j:l

as:

s.t. Zj:yij =p Zj:aﬁ(l —pj)0; + Zyﬁ +0; — (1 — p;)6;, for all i, ©6)

J

p’La(SZay’L] > 07 for all Z.7j7

p; < 1, forall s,

181t is worthwhile to note that there may be several vectors of compensations for the same prices that constitute an
equilibrium and lead to the same profits for the platform. For example, we construct such compensations in the proofs of
Lemma 1 and in Proposition 3.

"Subsection 5.2 establishes the robustness of our main findings to this assumption by reporting computational results
on the case when the riders’ willingness to pay follows distributions other than uniform.

13



where we substitute F'(p;) = p;, d; = (1—p;)0;, and z; = Zj a;i(1—pj)b; +Zj yﬁ} +9; (and impose
p; < 1) to obtain a cleaner formulation. It is straightforward to see that the resulting formulation, i.e.,
optimization problem (6), is convex (in particular, it is a quadratic problem with linear constraints)
and, consequently, it can be solved in a computationally efficient way.

3 Spatial Pricing and the Platform’s Profits

Our main goal in Section 3 is to explore how the demand pattern (A, 8) affects the prices set by
the platform and, consequently, its profits and consumer surplus.'® To this end, in Subsection 3.1
we introduce a notion that captures how “balanced” the demand pattern is across the network’s
locations and establish that demand balancedness is closely related to the profit potential of a net-
work. In particular, we show that the closer a demand pattern is to being balanced (in a way that we
formalize in terms of the pattern’s structural properties), the higher are the platform’s profits. Fur-
thermore, a similar insight holds for consumer surplus (when the platform uses profit maximizing
prices and compensations). This set of results clearly showcases how imbalances in the demand for
rides across a network may affect a platform’s operations and profits. Furthermore, they illustrate
how spatial price discrimination may be helpful (atleast partially) in dealing with those imbalances.

Subsection 3.2 illustrates the results in Subsection 3.1 in the context of a class of networks that
range from the star (where a central location is disproportionately more likely to be the destination
of any given ride) to the complete network (where demand is balanced across locations). For this
class of networks, we show that profits and consumer surplus increase as the underlying network
gets closer to the complete network;, i.e., as the associated demand pattern becomes more balanced.

3.1 Profits and Consumer Surplus

The goal of this subsection is to characterize how the underlying demand pattern shapes the plat-
form’s optimal pricing policy and profits. Our first step toward this goal is to formalize the notion of
a “balanced” demand pattern.

Definition 1 (Balanced Demand Pattern). Demand pattern (A, ) is balanced for a given g if
(BAT —T)6 < 0. (7)

Furthermore, if inequality (7) holds for every g € (0,1), we say that the demand pattern is strongly
balanced.

¥Throughout the section we restrict attention to prices and compensations that depend on the origin of a ride, i.e., we
assume that the platform optimizes over {p;, ¢; };—,. Thus, when we say optimal prices and compensations we refer to the
optimal tuple {p;, ¢; }7—, derived by solving (4). Section 4 considers a larger class of pricing/compensation schemes.
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The notion of “balancedness” introduced in Definition 1 is closely related to a set of flow bal-
ance constraints when the entire potential demand is served.'® In words, a demand pattern is said
to be balanced if, at each location i, the potential demand for rides 6; weakly exceeds 3[AT9]; =
B30, ie., the supply of drivers that would be available at i after completing rides when all po-
tential demand is served at every location. As an illustrative example, note that when 6 = 1, the
complete network in which all destinations are equally likely for a ride originating from any location
in the network, i.e., a;; = 1/(n — 1) for all 4, j with ¢ # j, is balanced—in fact, strongly balanced. On
the other hand, the star network, where rides originating from any location i # 1 have location 1 as
their destination, and rides originating from location 1 are equally likely to have any other location
i # 1 as their destination, is an example of an unbalanced demand pattern (for sufficiently high 5).

Proposition 2 establishes that Definition 1 succinctly characterizes the set of demand patterns
for which the platform can achieve its maximal profits out of all demand patterns with the same
population of riders at each location. Recall that throughout our analysis in Section 3 we assume
that the riders’ willingness to pay is uniformly distributed in [0, 1].

Proposition 2. The platform’s optimal prices and compensations satisfy the following properties:

(@) If (1 — B)w > 1, it is optimal for the platform not to serve any demand at any of the network’s
locations.

(b) If (1 — B)w < 1, we obtain the following for the platform’s optimal prices and compensations

(i) The profits corresponding to a balanced demand pattern are the highest among those achieved
by any demand pattern with the same vector of potential riders 6.

(ii) Under a balanced demand pattern, the platform maximizes its profits by setting the same
price at all locations. The optimal price is given by

*_1 (1_6)"1} -
pi=gt foralli.

In addition, it is optimal to offer the same compensation for drivers at all locations, i.e.,

¢; = (1 - p)w, foralli.

YThe relationship between “balancedness” and flow balance can be best illustrated in the case of strongly balanced
demand patterns. Note that, since A and 6 have nonnegative entries, inequality (7) holds for any 8 € (0, 1) if and only if
it holds for g = 1. Therefore, to characterize strong balancedness, it suffices to consider (7) for 5 = 1. Given that matrix
A is row stochastic, if (7) holds for 3 = 1, then it must hold with equality, i.e., §; = [AT8); for all i. If the entire potential
demand for rides, i.e., 0, is served, each location 7 has ¢; units of supply leaving to serve rides (outflow), and [ATH]i units
of supply arriving after completing aride (inflow). The discussion above implies that these quantities must be equal for (7)
to hold (when 8 = 1). In other words, a network is strongly balanced if and only if the flow balance conditions hold at each
location when the entire potential demand for rides, i.e., 8, is served. When 8 < 1, given that a mass of new drivers enters
the platform and replaces those that exit, the results that follow rely on a weaker notion of balanced demand patterns
(where inequality (7) can be strict).
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The corresponding equilibrium outcome {07, x7, y;; 17—, is such that:

7

1

* * (1_ﬁ)w * * * :
xy =6;(1 —py) :01'(2 - and ; = z; —5Zaﬂx]~, foralli,
j

whereasy;; = 0 for alli, j.

(iii) Under a balanced demand pattern drivers are never idle, i.e., for the length of time they
provide service on the platform they always get assigned to a ride.

The characterization in Proposition 2 is a function of the drivers’ outside option w, i.e., the cost
of the platform’s labor supply. As expected, the platform finds it optimal not to provide any service
when w takes large values. In contrast, when w is sufficiently small, the platform’s optimal prices
and compensations induce an equilibrium outcome in which drivers are always busy.

As a side remark, note that the optimal price p} as prescribed in Proposition 2 is equal to the price
that maximizes the profits the platform generates from location ¢, assuming that the cost of a ride
for the platform is equal to (1 — g)w. In turn, the latter quantity is the per-period compensation rate
that guarantees that a driver makes w during her lifetime (in expectation) given that she is always
busy in the induced equilibrium, i.e., she is assigned to a rider at every time period.

Unbalanced Demand Patterns. Although setting the same price at all locations turns out to max-
imize profits when the demand pattern is balanced, this is not necessarily the case for demand
patterns for which inequality (7) does not hold. As we illustrate in the discussion that follows, the
platform finds it optimal to set prices differently depending on a location’s relative likelihood of be-
ing the destination for a requested ride. For the remainder of the section, we make the following

assumption.

Assumption 2. All locations have the same mass of potential riders, which we normalize to one, i.e.,
0 = 1. Furthermore, the drivers’ outside option w is equal to one.

Assuming that all locations have an equal mass of potential riders allows us to squarely focus
on supply and demand imbalances that arise from riders’ destination preferences and not from ex-
ante differences in the mass of potential riders at the network’s locations. We start by providing a
characterization of the optimal prices and compensations for the platform.

Proposition 3. Suppose that Assumption 2 holds and consider an optimal solution {p;, 6}, y;;}7
to optimization problem (6). Let {\}'}!'_, denote a set of optimal dual variables corresponding to the
equality constraints in (6). Then, the optimal prices take the following form:

LN B, 0

D; 5 (8)
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Also, let k be an entry point and ¢ be a location with excess supply for this optimal solution. Then,

-5 <py<1- and <p; < 9

N | ™

b 1+ _p
2 2 2

N | =

Finally, the tuple {57, z7, y;; 17— withx} = >, Blaji(1 — pi) + yj;] + 6; constitutes an equilibrium
under {p;, c;}_, where

G =N =B ai). (10)
J

As seen from (8) and (10), prices and compensations clearly reflect the marginal value that the
platform assigns to an additional driver at each location of the network. Specifically, the dual vari-
able \; corresponding to the equilibrium flow constraint for drivers at location ¢ (i.e., the equal-
ity constraint in (6)) can be thought of as the marginal value of supply at i for the platform. The
price for a ride leaving i turns out to be an affine function of these dual variables (as captured
by the term A7 — 33, a;;A} in (8)), i.e., the difference between the value of supply at i and the
average value of supply at the destination reached after completing a ride that originated from 1
(scaled by /). Naturally, these dual variables take smaller values at locations with excess supply (as
each additional driver is less valuable at such locations), and larger values at entry points. Conse-
quently, the platform finds it optimal to offer lower prices to riders at locations with excess supply
(as this is where additional supply has less value). This can also be seen from (9) by noting that
1—-p8/2> 1+ B)/2 - p%/2, for 3 € (0,1). Offering low prices at the aforementioned locations, in
turn, increases the demand that the platform serves at these locations, thereby allowing for a higher
utilization of drivers who find themselves there after completing a ride.

On the other hand, the platform finds it optimal to set higher prices for rides originating from
locations for which the corresponding dual variables have higher values, i.e., locations where the
value of supply is higher. In addition, the platform also offers higher compensations to drivers who
get assigned to a ride originating from these locations, thus increasing their incentives to provide
service there. As a side remark, note that under the combination of prices and compensations pro-
vided in Proposition 3, the platform has a positive profit margin (bounded below by 3?/2 as can
be seen from Lemma A.1 in Appendix A) for every ride that it facilitates. Moreover, as is clear from
Expression (9) the set of entry points does not overlap with the set of locations with excess supply
under the optimal prices and compensations.

Complementary to Proposition 3, Corollary 1 provides a (partial) characterization of entry points
and locations with excess supply in terms of the primitives of the demand pattern, i.e., matrix A.
The corollary further suggests that imbalances in the riders’ destination preferences drive the plat-
form’s optimal pricing decisions. To state the corollary, we let x;(A) = >, aj;, i.e., k;(A) is equal to
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matrix A’s i-th column sum (note that since 6 is normalized to 1, ; is also equal to the total mass of

riders who wish to reach destination z).

Corollary 1. Suppose that Assumption 2 holds and consider the demand pattern (A, 1). Then, in the
equilibrium induced by the profit maximizing prices and compensations:

(@) Ifrx;(A) > 1/83, location i has excess supply.

(ii) Ifki(A) < B, location i is an entry point.

This result suggests that when location i is a relatively popular destination for rides (i.e., when x;
is large), the incoming supply of drivers exceeds the demand induced by the price set at : under the
optimal pricing/compensation policy. Consequently, such a location ends up with an excess supply
of drivers, and, as we show in Proposition 3, the platform finds it optimal to offer lower prices for
rides originating from there. On the other hand, when «; is relatively small, the converse holds; thus,
serving demand at i necessitates additional entry of drivers and prices are set to higher levels.

Platform’s Profits. Given that balanced demand patterns lead to the highest profits for the plat-
form (as shown in Proposition 2), intuitively it can be expected that the more balanced a demand
pattern is, the higher profits the platform can generate. Theorem 1 below formalizes this intuition.?°
We state our result, by using the shorthand notation II(A, 1) to denote the profits corresponding to
the platform’s optimal pricing/compensation policy for demand pattern (A, 1).

Theorem 1. Suppose that Assumption 2 holds and consider a strongly balanced demand pattern
(D, 1) and any other demand pattern (F, 1) (not necessarily balanced). Define the family of demand
patterns parameterized by & such that:

F¢ =¢D + (1 - ¢)F. 11)

Then, I1(F¢, 1) is (weakly) increasing in €.

Theorem 1 allows for comparing unbalanced demand patterns in terms of their profit poten-
tial for the platform as it establishes that the more unbalanced a demand pattern is, the lower the
corresponding profits for the platform are (for demand patterns that belong to the convex combi-
nation of a strongly balanced demand pattern and another arbitrary one). Thus, Theorem 1 and
Proposition 2 jointly illustrate the impact of the underlying demand pattern on profits.

We complement Theorem 1 by providing an additional result that allows for comparisons be-
tween demand patterns in terms of their profit potential. To this end, we define sets S1(A) =
{z‘ > i > 1/53} and Sy(A) = {z‘,@ <Y i < 1/63} corresponding to demand pattern (A, 1).
Note that according to Corollary 1 the former corresponds to a set of locations with excess supply,
whereas locations that do not belong to either of the two sets are entry points.

20Although we state Theorem 1 for & = 1, we confirmed computationally that the theorem holds for a general 8 vector.
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Proposition 4. Suppose that Assumption 2 holds and consider demand patterns (A,1) and (A’,1)
for which the following hold:

(l) Sl(A) = Sl(A/) and S2(A) = SQ(A/)

(i) Sies,a) (BRi(AY) = Ki(A)) 2 Yo a) (Ri(A) — B2ri(A).

Then, the optimal profits corresponding to demand pattern (A, 1) are higher than those correspond-
ingto (A’ 1).

Proposition 4 considers demand patterns (A, 1) and (A’, 1) that have the same sets of entry
points and locations with excess supply as identified by Corollary 1; i.e., x;(A’) > 1/32 if and only if
ki(A) > 1/p3 and, similarly, x;(A’) < 8 if and only if x;(A) < B. For such demand patterns, the in-
equality in (ii) implies that } 0, ¢ #i(A’) > 3,5 mi(A) with S; = S1(A) = S1(A’), i.e., the aggregate
of the column sums for locations in S; are larger for A’ than for A. Given that the potential demand
for rides leaving any location is the same across the network under Assumption 2 (i.e, when 6 = 1),
the column sum corresponding to a location captures the potential demand in the network for rides
with this location as their destination. Thus, a higher aggregate for the column sums correspond-
ing to locations in S; implies higher imbalance in these locations between demand for rides with
origin versus destination in S;. In this sense, inequality (ii) intuitively implies that demand pattern
(A’,1) is less balanced than (A, 1). Thus, similarly to Theorem 1, Proposition 4 suggests that more
balanced demand patterns lead to higher profits for the platform.?!

We conclude our discussion on profits by providing two bounds on the difference between the

profits corresponding to a general demand pattern and a balanced one.

Proposition 5. Suppose that Assumption 2 holds and consider any strongly balanced demand pattern
(D, 1) and any other demand pattern (F, 1) (not necessarily balanced). Then,

62 *\T' T
where {\!}7"_, denote a set of optimal dual variables corresponding to the equality constraints in (6)

when the demand pattern is (F,1).

Finally, restricting attention to unbalanced demand patterns for which each location satisfies
one of the two conditions of Corollary 1 yields the following corollary, which provides a bound that
depends only on the modeling primitives and, thus, may be easier to interpret.

2l Consider demand patterns (A, 1) and (C, 1) whose optimal profits cannot be directly compared using Theorem 1
and Proposition 4 and assume that there exists (B, 1) such that (A, 1) can be written as a convex combination of (B, 1)
and a strongly balanced demand pattern and, in addition, (C, 1) and (B, 1) can be compared using Proposition 4, i.e.,
S1(C) = S1(B) and S2(C) = S2(B) and ZiESI(B)(B%i(C) —ki(B)) = X5, (Ri(B) — B%k:(C))*. Then, the profits
corresponding to (A, 1) are higher than those corresponding to (C, 1). Thus, we can leverage Theorem 1 and Proposition 4
to compare the profit potential of a rich set of demand patterns.
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Corollary 2. Suppose that Assumption 2 holds and consider any strongly balanced demand pattern
(D, 1) and any other demand pattern (F, 1) (not necessarily balanced). Further, assume that (F, 1) is
such that the column sum corresponding to a location i satisfies either x;(F) < ( (i.e., i is an entry
point) or k;(F) > 1/33 (i.e., i has excess supply). Then, we have

ID,1)-IF,1) < 1-8) >  (w(F)-1). (13)

62
2

%

To gain some intuition on the bound on the profit difference between balanced and unbalanced
demand patterns given in Expression (13), note that when 6 = 1 the column sum «; associated with
location 7 measures the extent to which the location is unbalanced; i.e., it measures how large the
demand for rides with this location as destination (captured by the column sum «; corresponding
to the location) is relative to the demand for rides for which it is an origin (which is equal to one
since #; = 1). Expression (13) implies that the profit difference can be upper bounded in terms
of Zi\m(F)>1 / 53(/%(F) — 1), which can be viewed as an aggregate measure of how unbalanced the
demand pattern (F, 1) is. Intuitively, Corollary 2 suggests that the profits for the platform under the
optimal pricing and compensation policy can be substantially lower than those under a balanced
demand pattern only when demand pattern (F, 1) is highly unbalanced.

Consumer Surplus. In the final part of the subsection, we leverage the dual formulation of the
platform’s profit maximization problem (6) and establish a result analogous to Theorem 1 for aggre-
gate consumer surplus. First, we provide the definition of aggregate consumer surplus for a given
vector of prices p, assuming that there is sufficient supply to meet the induced demand, i.e., the
mass of riders who get assigned to drivers at location i is equal to (1 — p;).

Definition 2 (Consumer Surplus). Consider the vector of prices p set by the platform and assume
that the induced demand is satisfied. Then, when the riders’ willingness to pay for a ride follows the
uniform distribution, aggregate consumer surplus, denoted by C'S, is given by:>?

CS=1/2(1-p)"(1-p).

We emphasize that consumer surplus at the profit maximizing prices takes a particularly simple
form when the riders’ willingness to pay is uniformly distributed; i.e., it is equal to half the plat-
form’s aggregate profits. As a direct consequence of that, Corollary 3 states that aggregate consumer

2For a general differentiable cumulative value distribution F(-) and mass of potential riders 6;, the consumer surplus
at location 7 under price p; can be expressed as follows: CS; = 6; f:: (v — pi) f(v)dv, where f(z) = d{‘;?. In turn, the
consumer surplus for the entire network is given by 3. C'S;. When ¢; = 1 for all ¢ and the value distribution (distribution
of the willingness to pay) is uniform, we obtain the expression in Definition 2.
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surplus at the profit maximizing prices decreases as the demand pattern across the n locations be-
comes less balanced. It is worthwhile to note that the losses in consumer surplus are not uniformly
distributed in the network as, in general, the platform sets different prices for different locations
(this is illustrated in Figure 2).

Corollary 3. Suppose that Assumption 2 holds. Consider a strongly balanced demand pattern (D, 1)
and any other demand pattern (F,1) (not necessarily balanced). Then, the aggregate consumer sur-
plus under the platform’s optimal prices for demand pattern (F¢, 1) is (weakly) increasing in €.

3.2 Star-to-Complete Networks

The present subsection focuses on the family of star-to-complete networks, which provides a sim-
plified setting to illustrate the results obtained above on the way optimal profits, consumer surplus,
and prices vary as a function of the demand pattern. In particular, our goal is to study how these
quantities change as the underlying network shifts from being a star to being a complete network.

Formally, we consider a class of demand patterns (A¢,1) onn > 3 locations parameterized by
scalar ¢ € [0,1]. The relative frequencies of rides originating from location i and ending at j are
succinctly summarized by matrix A¢ such that

Af =AY+ (1- A",

where
0 1/(n—1) 1/(n—1) 0 1/(n—1) 1/(n—1)
AC _ 1/(n—1) 0 1/(n — and AS — 1 0 0 a4
1/(n—1) 1/(n—1) --- 0 1 0 0

In other words, A€ is a convex combination of A¢ (the complete network) in which all destinations
are equally likely for a ride originating from any location in the network, i.e., o;; = 1/(n — 1) for
all 7, j with i # j, and A® (the star network) where rides originating from any location i # 1 have
location 1 as their destination, and rides originating from location 1 are equally likely to have any
other location j # 1 as their destination. For that reason, with some abuse of terminology, we refer
to location 1 as the center and to the rest of the locations as the leaves.

Intuitively, parameter £ captures how “balanced” the demand pattern described by (14) is. Note
that the sum Aﬁﬂj =2 AEZ is equal to the aggregate mass of potential riders with location ¢ as
their destination (recall that we assume 6 = 1). For £ < 1, location 1 is a relatively more attractive
destination than the rest (in the sense that it is the destination for the largest mass of potential riders,
ie, > y A§1 > j Agg for all ¢ # 1). Furthermore, as ¢ decreases, the mass of potential riders going
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to location 1 increases, and, consequently, the difference between the attractiveness of the center
as a destination and the rest of the locations also increases. Conversely, when ¢ = 1, the demand
pattern is strongly balanced across the network’s locations since every location is a destination for
an equal mass of potential riders, i.e., for any location ¢, we have ; A§1 => ; Aﬁé.

Proposition 6 below provides a characterization of the platform’s optimal prices as a function of
scalar &.

Proposition 6. Suppose that Assumption 2 holds. In addition, assume that the demand pattern
across then locations is given by (A, 1). Then, under the optimal prices:

(i) The platform’s profits and consumer surplus are increasing in €.

(ii) Prices at the leaves are identical to each other and are higher than the price at the center. Fur-
thermore, the price at the center is increasing whereas prices at the leaves are decreasing in €.

(iii) The demand served at the center (at the leaves) is decreasing (increasing) in§.

The first part of Proposition 6 follows directly from Theorem 1 and Corollary 3. In addition, in
Appendix B we provide a closed-form characterization of the optimal prices, profits, and consumer
surplus corresponding to demand pattern (A€, 1), which, in turn, establishes the remaining parts of
the proposition. Figure 1 illustrates the platform’s optimal profits, consumer surplus, and prices as a
function of €. As a final remark, note that although, in general, there may exist multiple compensa-
tion vectors that support the same prices and profits for the platform at equilibrium, expressions (8)
and (10) imply that for the compensation policy provided in Proposition 3, we have py = 1/2+ ¢} /2;
i.e., prices and compensations follow the same trend as £ increases.
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Figure 1: Profits and induced consumer surplus corresponding to the platform’s optimal
prices/compensations {p}, ¢ } for the class of star-to-complete networks with n = 4locations, w = 1,
and 5 = 0.9.

As implied by the proof of the proposition and illustrated in Figure 1, there are three regimes
for the platform’s optimal prices as a function of £. In the first, starting with ¢ = 0, the demand
pattern takes the form of a star-like structure with most riders requesting a ride to location 1. In this
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Figure 2: Prices and induced consumer surplus corresponding to the platform’s optimal
prices/compensations {p}, ¢;} at the center and a leaf location for the class of star-to-complete net-
works with n = 4 locations, w = 1, and § = 0.9.

regime, the price at the center (location 1) is equal to 1/2, which is the price that would maximize
the platform’s profits at that location, assuming that serving a rider was costless for the platform.
On the other hand, the price at the leaves is higher. Intuitively, when ¢ is small, location 1 is a
considerably more attractive destination to riders than the rest. Then, the platform finds it optimal
to set a relatively high price at the leaves and, consequently, limit the incoming supply of drivers to
the center. Despite this, at equilibrium, there is an excess supply of drivers at the center and as a
result riders leaving that location get a “subsidy.” That is, the price at the center is lower than the
rest of the network, and thus a higher fraction of location 1’s overall demand is served. Finally, there
is positive probability that a driver does not get assigned to a ride at the center, i.e., the equilibrium
induced by the optimal prices is such that the supply of drivers at the center exceeds the mass of
riders who are willing to pay for a ride.

At the other extreme, i.e., when ¢ takes large values, the demand pattern is balanced across the
network’s locations. Therefore, there is no need to use prices as an instrument to deal with sup-
ply/demand imbalances. As a result, the optimal price induces an equilibrium in which drivers are
never idle and prices across the network are equal. This regime is the one in which the platform
maximizes its profits. It is also the regime in which aggregate consumer surplus is maximized (as
we establish in Proposition 2 and Corollary 3 respectively).

Finally, in the third regime, which corresponds to intermediate values of ¢, the platform still
limits the number of rides to the center by setting a higher price at the leaves. In addition, riders at
the center are again favored by a relatively lower price. However, unlike in the first regime, here the
equilibrium induced by the platform’s optimal prices is such that no driver is ever idle at any of the
network’s locations.

In sum, this class of demand patterns illustrates that when a subset of locations are relatively
more attractive as destinations than others, the platform sets out to balance the (endogenous) sup-
ply of available drivers with rider demand by setting lower prices and serving more demand at these
“popular” destinations and, conversely, setting relatively higher prices in the rest of the network.
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4 Alternative Pricing/Compensation Schemes

So far, we have considered a pricing scheme that features different prices and compensations de-
pending on the location a ride originates from. The present section studies alternative pricing and
compensation schemes, variants of which are used in practice. In particular, we first explore the
widely adopted scheme that compensates drivers with a fixed ratio of the revenues they generate
for the platform. Then, we formulate the platform’s pricing problem and simulate its profits for de-
mand patterns that capture imbalances in real-world networks under three pricing schemes: having
the same price per ride across the network (much like in the taxi industry), price discriminating rid-
ers based on the origin of their ride, and, finally, discriminating them based on both their origin and
desired destination. The main goal of this section is to shed light on the benefits of spatial price dis-
crimination in practice, i.e., setting the price/compensation for a ride as an explicit function of its
origin and/or destination. Throughout this section we again impose the assumption that the riders’
willingness to pay is uniformly distributed.

4.1 Fixed Commission Rates

The ride-sharing industry has predominantly adopted fixed commission rates, i.e., the compen-
sation for a driver is a fixed ratio of the total fare (typically in the order of 75%-80%) paid by the
rider.”® Here, we discuss whether and when such a scheme (which may be simpler to communi-
cate to drivers) performs well relative to the compensation scheme we studied in Section 3, which
is such that a compensation for a ride depends on its origin. In particular, in this section we restrict
attention to a setting where the compensation ¢; for a driver who gets assigned to a ride at location
i is given by ~p;, where p; is the price for the ride and v € [0, 1] is the fraction of the fare that is given
out to the driver. We study the platform’s profits when it optimally determines the vector of prices
{pi}7—, and the fraction v of the fare that is given to the driver as compensation.

Solving for the optimal prices and commission rate ~ analytically is, in general, a challenging
task. This is mainly due to the fact that the set of vectors that satisfy the equilibrium conditions
is non-convex.?* Despite the fact that the platform’s optimization problem under the assumption
that the commission rate is the same across locations is non-convex, there are instances where it is
tractable. For instance, in a setting with a single location, one can implement the optimal solution
(p1, ¢}) described in Section 3 by setting v = ¢j/pi. In other words, in a single location, the drivers’
incentive-compatibility constraints can be relaxed and the platform’s optimization problem sim-
plifies to that studied in Section 3. More generally, we identify two classes of networks for which

BThe following webpage explains Lyft's commission structure: https://help.lyft.com/hc/en-us/articles/
213815618.

%4This can be readily illustrated in a setting with a single location, location 1, with §; = 1. Note that if there is any
demand served at location 1 the following condition has to be satisfied for drivers to enter and provide service: yp: (1 —
p1)/x1+BVi =w = Vi or, equivalently, ypi(1—p1)/x1 = w(1—p). Thus, the (p1, 1, ) tuples that satisfy this constraint
can be written as solutions to a nonlinear equation and, consequently, their set is non-convex.
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the equilibrium described in Section 3 can be implemented with a fixed commission rate leading
to the same profits and demand served at each location. In particular, we first state that there is
no loss by imposing a fixed commission rate when the underlying demand pattern is balanced (see
Definition 1).

Corollary 4. Consider a balanced demand pattern . Then, using a fixed commission rate is without
loss of optimality for the platform.

This corollary follows directly from the optimal solution to optimization problem (6) as given in
Proposition 2. In this solution, all locations feature the same price and compensation, i.e., p; = p;
and ¢; = ¢;. Thus, the equilibrium outcome can be implemented using a fixed commission rate
v = ci/pi.

In addition, Proposition 7 identifies another class of demand patterns, which we call two-type
demand patterns, for which there is also no profit loss when using a fixed commission rate.

Definition 3. We say that (A, 8) belongs to the class of two-type demand patterns if the network’s
locations can be partitioned into two subsets N7, N5 such that:

(i) 0, =0; foreveryi,j € Niori,j € N,
() D pen, @ik = 2 pen, @k and Y on Qip = D e, @k, foralli, j € Nyand £ € {1,2},

(D) D pen, ki = D pen, Qkj AN Y 4 s Qi = D peny, gy foralld, j € NVpand £ € {1,2}.

Essentially, networks that belong to the class of two-type demand patterns are such that their
locations can be partitioned into two subsets A7, N5, so that any two locations in the same subset
look exactly the same in terms of their population of riders (item (i)), the demand for rides leaving
the locations towards destinations in A; and A; (item (ii)), and the incoming demand from origins
in M7 and NV; (item (iii)). Given the definition above, we establish the following proposition.

Proposition 7. Consider a two-type demand pattern and assume that w = 1. Then, using a fixed
commission rate is without loss of optimality for the platform.

The following corollary follows directly from the definition of two-type demand patterns and Propo-
sition 7 (for the sake of brevity, we omit the proof).

Corollary 5. Consider the class of star-to-complete networks. Then, using a fixed commission rate is
without loss of optimality for the platform.

Although Corollary 4, Proposition 7, and Corollary 5 provide some justification for the widespread
use of fixed commission rates, their optimality, as we argue next, is not guaranteed for richer net-
work structures. In particular, in Figure 3 we provide a simple example that illustrates the potential
drawbacks of such a compensation scheme. We show that although the network consists of only
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Figure 3: A simple network with three locations. The total demand at each location is equal to 6, =
1,0, = ¢ < 1, and 03 = 2 respectively. Finally, a;2 = a9; = ass = 1, i.e., riders at location 1 want
to go to location 2 and vice versa, whereas rides that originate from location 3 end up at the same
location. The plot on the right illustrates the profit gap as a function of parameter 5 when drivers’
compensation per ride is a fixed fraction of the fare. For example, the gap in profits is 16.5% for
B =0.7,14% for 8 = 0.8, and 9% for 5 = 0.9.

three locations, the gap in the profits corresponding to fixed commission rates compared to those
generated with the compensation scheme of Section 3 can reach 10-15% under reasonable mod-
eling parameters.?® To some extent, this is the simplest example that violates the conditions of
Corollary 4 and Proposition 7, i.e., it does not belong to the class of two-type demand patterns and
it is not balanced. This further underscores the need to carefully account for the network struc-
ture imposed by the demand pattern when evaluating the trade-offs associated with different pric-

ing/compensation schemes.

4.2 Comparing Different Pricing Schemes

Having established the shortcomings of fixed commission rates, in the present subsection we com-
pare the profits generated by the platform under the following three pricing schemes:

(i) Single price. The platform sets the same price p for all rides irrespective of their origin or
destination (the platform may use different compensations for drivers depending on a ride’s
origin). The optimal price p for aride and the vector of compensations {¢;}} ; can be obtained
by solving optimization problem (6) with the additional constraint that p; = p for all .25

(i) Origin pricing. The platform optimizes over {p;, ¢;}! ; by solving (6), where p; and ¢; denote
the price and compensation for a ride that originates from location i regardless of its destina-

tion.

%We provide additional details on how we compute the platform’s optimal profits for the network depicted in Figure 3
in Appendix C.2.

*Note that a quick inspection of the proof of Lemma 1 directly implies that as long as the platform can choose poten-
tially different compensations for each of the locations, solving optimization problem (6) with the additional constraint
that p; = p for all i generates the optimal solution for the platform, since the optimal single price can be supported by
appropriately chosen compensations.
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(iii) Origin-destination pricing. The platform optimizes over {p;;, Cij}z =1 i.e., the price and com-
pensation for a ride may be a function of both its origin and its destination. It turns out that
the platform’s decision problem can be formulated as a convex program similarly to (6). We
provide the details and an extensive discussion in Appendix C.3.

The single price scheme is a special case of origin pricing, which itself is a special case of origin-
destination pricing. Thus, profits for the platform are highest for origin-destination pricing and
lowest when the platform uses the same price across the network. Next, we quantify the benefits
of pricing rides differently depending on where they originate from (origin pricing) relative to using
the same price for the entire network (single price). Furthermore, we explore whether setting prices
as a function of both the origin and the destination of a ride generates any additional value for the
platform relative to origin pricing.?’
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Figure 4: Flows of realized rides by Uber for the cities of Chicago, New York, and San Diego (Source:
Uber Newsroom).

The discussion that follows is based on real-world networks/demand patterns, which we ob-
tained from Uber Newsroom.?® The data include information about the flow of riders in different
neighborhoods in a number of major US cities. In particular, for each of Chicago, New York City,
and San Diego the data available on the Newsroom include:

e A partition of the city into a number of different locations/neighborhoods. Each such loca-
tion corresponds to a node in Figure 4. For our simulations, we assume that these different
locations are equidistant.

2"We allow for general w and 6, i.e., we do not restrict attention to w = 1 and @ = 1. The optimization formulations
corresponding to the pricing schemes we discuss here are all valid for general w and 6.

%The data on Chicago, New York City, and San Diego, was obtained from the following URLs: https:
//newsroom.uber.com/wp-content/uploads/2014/07/uber_chi_connectome_.html, https://newsroom.uber.com/
wp-content/uploads/2014/07/uber_nyc_connectome_.html, and https://newsroom.uber.com/wp-content/uploads/
2014/07 /uber_sd_connectome_.html.
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e For each location/node, we also obtain information on the total number of rides that had
this location as their origin (represented in the figure by the size of the corresponding node).
We use this information as our vector 8. An important caveat here is that we do not have
information on uncensored demand but only on realized rides. That said, the realized rides
leaving a location can be seen as a reasonable proxy for the potential demand at that location
(at least in the context of our numerical study given that our results remain the same when we
scale the vector of ’s by the same factor).

¢ Finally, we also obtain information on the “weight” of the edges connecting pairs of locations.
These weights (which are proportional to the thickness of the edges in Figure 4) give us our
second primitive, the matrix A of origin-destination preferences.

Thus, we can map this information to the primitives of our model, i.e., vector # and matrix A
respectively, as we describe above, and obtain the platform’s profits under the single price, origin
pricing, and origin-destination pricing schemes by solving the corresponding optimization prob-
lems.?® We emphasize that this exercise is only meant to illustrate our findings on data resembling
the demand imbalances in real-world networks. To the extent that imbalances in the number of
realized rides leaving different locations is a good proxy for the corresponding imbalances in the
potential demand for rides at these locations, our numerical study captures the differences in prof-
its for the platform associated with different pricing schemes reasonably well. A comprehensive
empirical study of a ride-sharing platform and its interaction with drivers and riders is outside the
scope of the present paper (in part due to the fact that the data we have at our disposal is not suffi-
cient for this purpose).3’

Figure 5 illustrates how the profits corresponding to the three pricing schemes compare to one
another as a function of w, the drivers’ outside option, for the cities of Chicago, New York, and
San Diego. Note that for small values of w, there is little difference in the performance of the three
schemes. This is a natural consequence of the fact that when labor is inexpensive (w takes small
values) compensating drivers does not have a considerable impact on the platform’s profits (note
that when w = 0 it is optimal to set the same price at each location, i.e., the price that maximizes
the platform’s profits at a location when serving demand is costless). On the other hand, for large
values of w, i.e., w > 1/(1 — ), itis not profitable for the platform to serve any demand (labor is so
expensive that, even if a driver remained busy throughout her time on the platform, the revenues
she would generate would be lower than her outside option). Thus, in Figure 5 (as well as Figure 6)
we report our findings restricting attention to the regime where w is not too large.

29To further test the robustness of our analytical findings, we computed numerically the profits corresponding to the
three pricing schemes in over 500 instances, where both the vector 8 and matrix A were generated at random. The sim-
ulation results were qualitatively the same as those obtained based on the data from Uber Newsroom; hence, they are
omitted from the paper.

3For one, the data we obtained from Uber Newsroom includes only aggregate information about the realized rides. We
do not have any information about the uncensored demand at each location, the prices set by the platform, the average
time that drivers spent providing service, etc.
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Figure 5: Ratio of profits corresponding to the optimal single price over those corresponding to the
origin pricing scheme (Left) and ratio of profits corresponding to the origin pricing scheme over
those corresponding to the origin-destination pricing scheme (Right) for the cities of Chicago, New
York, and San Diego as a function of the drivers’ outside option w. In both cases, we set 8 = 0.9.

As can be seen in Figure 5, as w increases, so does the benefit of using origin pricing relative
to a single price, and of using origin-destination pricing relative to origin pricing. For example, for
San Diego, the ratio of the profits the platform can generate by using a single price to those it can
generate by using the optimal origin pricing scheme is equal to 0.93 for w = 3 and is only equal to
0.51 for w = 5. It is worthwhile to note that the benefit from using prices that depend on the ride’s
origin relative to using the same price at all locations is the highest in San Diego (interestingly, as
Figure 4 suggests, the demand pattern in San Diego has a star-like structure, i.e., it is unbalanced).
In addition, New York City has a more balanced structure and it is associated with the smallest
benefit from origin pricing among the three cities we consider. This is in line with our theoretical
results that illustrate that spatial price discrimination can serve as a valuable tool for the platform
to mitigate supply/demand imbalances across the network’s locations.

On the other hand, the additional gain from setting prices that depend on both the origin and
the destination of a ride appears to be more modest. One way to explain this is by resorting to
Proposition C.1 in Appendix C.3: even though the platform can set n? prices (one for each origin-
destination pair), the vector of optimal origin-destination prices can be expressed compactly in
terms of n dual variables associated with the constraints in the optimization problem for finding the
optimal origin-destination prices.?! In summary, the numerical results depicted in Figure 5 provide

$Importantly, when the riders’ willingness to pay is different for different origin-destination pairs, origin-destination
pricing may yield more substantial benefits to the platform. This can be seen, for instance, by considering a star network
with three locations and assuming that at the leaves the mass of potential riders is close to zero (therefore, most of the
profits are generated by the center of the star). If the riders at the center who want to go to different leaf locations have
the same willingness to pay, it is optimal for the platform to set the same price for both destinations. On the other hand,
if they have very different willingness to pay distributions, the pricing problem at the center effectively decouples for
riders with different destinations and the platform can improve its profits by offering different prices. We note that the
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evidence in favor of using spatial price discrimination and suggest that the benefits are higher when
the underlying demand pattern is unbalanced. Furthermore, they also illustrate that using different
prices for rides originating from different locations (origin pricing) yields significantly higher profits
for the platform relative to using the same price at all locations. On the other hand, the gain from us-
ing origin-destination pricing relative to origin pricing is more modest (though still non-negligible
and potentially quite relevant in practice, at least for high values for the outside option w).

We conclude the subsection by discussing another natural pricing scheme, which sets prices
such that the supply of drivers at each location of the network exactly matches the induced demand,
i.e., the market for rides clears at each location (note that matching the supply of drivers with rider
demand is always optimal in a single isolated location). In particular, we explore the performance
of the following pricing scheme:

(iv) Local market clearing pricing. Similar to the origin pricing scheme, the platform optimizes
over {p;, ¢;}I' 1, where p; and ¢; denote the price and compensation for a ride that originates
from location 7 with the additional constraint that the supply of drivers is equal to the induced
demand at each location, i.e., z; = 1 — p; is added as a constraint to (6).

Imposing the additional constraint that the induced demand is always equal to the available
supply of drivers at each location (and thus, effectively, drivers are always busy) clearly leads to
weakly lower profits for the platform than the optimal origin pricing scheme. As can be seen in
Figure 6, the difference in profits is more pronounced when the drivers’ outside option w takes small
values (i.e., labor is inexpensive) as, then, it may be beneficial for the platform to induce an excess
supply of drivers at a subset of locations. On the other hand, when labor is relatively expensive,
having an excess supply of drivers at any of the network’s locations is costly for the platform. Thus,
the market clearing pricing scheme that guarantees that drivers remain busy throughout the time
they provide service performs reasonably well. Finally, note that setting the same price at all of the
network’s locations performs well precisely when the market clearing pricing rule does not (when w
takes small values).

5 Extensions

This section discusses the natural extension of our benchmark model to the case of networks in
which the distances between different pairs of locations may not be equal. In addition, we provide
simulation results that illustrate the robustness of our findings to the assumption that the riders’
willingness to pay follows the uniform distribution.

convex optimization problem in Appendix C.3 readily extends to this setting after expressing the demand for each origin-
destination pair appropriately.
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Figure 6: Ratio of profits corresponding to the optimal single price and local market clearing over
those corresponding to the origin pricing scheme respectively for the city of Chicago as a function
of the drivers’ outside option w (here, 5 = 0.9).

5.1 Unequal Distances

We consider a network in which the distance between locations ¢ # j is given by a positive integer (;;
with (;; = (j;. We also follow the convention that ¢;; = 1 for all . For simplicity, we assume that the
time it takes to complete a ride from i to j is equal to the distance between the two locations, i.e., (;;.
In addition, we interpret the willingness to pay, price p;, and compensation ¢; for a ride originating
from location 7 in a per unit of time (distance) basis. In other words, a driver who gets assigned to a
ride from location i to location j earns (;; - ¢; whereas the rider pays to the platform a fare equal to
Gij - pi- Finally, a driver exits the platform upon completing a ride from i to j (or relocating from i to
4) with probability (1 — 8%). This is a natural generalization of our benchmark formulation to the
case where locations may not be equidistant, given that (1 — 3%) is equal to the probability that a
driver would have exited the platform after ¢;; time periods in the model we study in Section 3. In
this case, the resulting optimization problem for the platform can be written in a similar way to (6):

max ZzaijCijpi(l —pi)0; — wz&'
i i

{Pi,0:,yi; };L,j=1

—6; =0, forall:

s.it. (1 —pi)0; + Z Yij — Z ,34“ [Ozji(l — pj)ej + Yji (15)
J J

plaézaylj > 07 for all 7’7.]

p; <1, forall i,

where we relax the drivers’ incentive-compatibility constraints and we only require that the plat-
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form incurs cost equal to w for each driver upon her entry. Optimization problem (15) is convex
and, consequently, can be solved efficiently to derive the optimal prices, assuming that the plat-
form has explicit control over the flow of drivers. In general, this is not possible since we assume
that drivers choose whether and where to provide service to maximize their expected lifetime earn-
ings. Proposition 3 establishes that when the network’s locations are equidistant from one another
there exist compensations such that the optimal solution to optimization problem (15) can be im-
plemented as an equilibrium leading to the same profits for the platform, i.e., the relaxation of the
drivers’ incentive-compatibility constraints is without loss of optimality. However, it is not clear
whether this holds for the case where distances between different pairs of locations may not be the
same (the proof of Proposition 3 relies on the fact that locations are equidistant from one another).
As Proposition 8 establishes, the same holds under Assumption 2 for the case of unequal distances.>?

)

Proposition 8. Suppose that Assumption 2 holds and consider the optimal solution {p;, 6}, y;;}7
for optimization problem (15). Also, let {\}}I"_, denote the optimal dual variables corresponding to
the equality constraints in (15). Then, the tuple {5}, z7, y;;}7,—1 withz; = 5, B [evji (1 — pj)b; +
Y5l +6; constitutes an equilibrium under (per unit of distance) prices and compensations {p;, c; }}"_;,
where

1
= e (3= Yy ). a6
ZjOéijCij ( ; ! ]>

In addition, the expected future earnings for a driver at location i are equal to the corresponding dual
variable, i.e., V; = \}.

Implementing the optimal prices and compensations {p}, ¢/}, involves solving convex opti-
mization problem (15) and its dual to obtain the prices and compensations as given by Proposi-
tion 8. The per unit of time/distance compensation ¢} at the optimal solution for a driver who
accepts aride at location i can be perhaps best understood when we rewrite (16) as

cr Y ity = <Vz - O‘ijﬁc“‘/j> :
j j

Note that the left-hand side of the expression above is equal to the expected compensation asso-
ciated with a ride leaving location 4, since a driver earns c(;; for completing a ride from i to j and

3 In the case of unequal distances, the expressions involved in the equilibrium definition are scaled appropriately
according to the (;;’s. In particular, Expression (2) turns into:

Vi = min{(l *pi)’l}zaij (CiCij +5Cijv],> 4 <1min{(1 pi)71}>vi7
X; 7 €T

where V; = maxy, f°* V;. In addition, Expression (1) becomes: z; = Y ; 3% {Clji min{z;,0;(1 — p;)} + y;i | + 6.
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Figure 7: Profits, consumer surplus, and prices corresponding to the platform’s optimal origin pric-
ing policy for the class of star-to-complete networks with n = 4 locations, w = 1, and § = 0.9. Here,
the riders’ willingness to pay is distributed according to the exponential distribution with parameter
A = 2. Note that, in this case, the mean is equal to that of a uniform distribution in [0, 1].
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the fraction of rides leaving ¢ with j as their destination is equal to «;;. On the other hand, the
right-hand side of the expression captures the difference between the expected future earnings in
the origin (i.e., ;) and the average of the expected future earnings at the destinations for such rides
discounted by the time to reach the destination (i.e., > ; a;; 5“7 V).

5.2 Robustness

We close this section by arguing that the qualitative nature of our results is robust to the assumption
that the riders’ willingness to pay is uniformly distributed (which was made to simplify the analysis
and exposition). Figures 7 and 8 illustrate simulation results for the profits, induced consumer sur-
plus, and prices at different locations corresponding to the platform’s optimal origin pricing policy.
The underlying networks belong to the class of star-to-complete networks and the riders’ willing-
ness to pay follows the exponential and Pareto distributions respectively with the same mean as
in the uniform distribution. The figures clearly showcase that our insights regarding profits and in-
duced consumer surplus are robust to the assumptions on the distributions of the riders’ willingness
to pay and they are consistent with the findings in Subsection 3.2. In addition, we computationally
tested and verified the robustness of our theoretical findings with respect to other modeling primi-
tives and, in particular, the drivers’ outside option w and the vector of potential riders ¢ (for the sake

of brevity we omit these computational results from the paper).

6 Concluding Remarks

This paper explores the benefits of spatial price discrimination for a ride-sharing platform that
serves a network of locations. Potential riders at different locations have possibly different destina-
tion preferences, which induce a demand pattern across the network’s locations. Given the prices
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Figure 8: Profits, consumer surplus, and prices corresponding to the platform’s optimal origin pric-
ing policy for the class of star-to-complete networks with n = 4 locations, w = 1, and § = 0.9.
Here, the riders’ willingness to pay is distributed according to the Pareto distribution with parame-

tersa = 1+ +v2and z,, = 2 1‘? V)" Note that, in this case, the mean is equal to that of a uniform

distribution in [0, 1].

and compensations set by the platform, drivers decide whether to join the platform and, if so, where
to locate themselves so as to maximize their expected lifetime earnings. Therefore, when setting its
prices for riders and compensations for drivers, the platform must take into account the drivers’
endogenous decision making at the induced equilibrium.

We establish that both profits for the platform and aggregate consumer surplus are maximized
when the demand pattern is balanced across the network’s locations. Moreover, in this case, prices
for riders and compensations for drivers are the same irrespective of where the ride originates from.
On the other hand, when a subset of locations are relatively more popular as destinations than
others (after setting the potential demand at every location to be the same), i.e., when the demand
across the network is unbalanced, the platform finds it optimal to set the price for a ride differently
depending on where it originates from, as a way to better balance the demand for rides with the
(endogenous) supply of drivers across the network. In particular, prices are lower for rides leaving
popular destinations as these are typically the locations that feature an excess supply of drivers
at the induced equilibrium. Finally, both the profits the platform can generate by optimizing its
prices and compensations and the induced consumer surplus increase with the balancedness of
the underlying demand pattern.

Our findings complement the recent focus on exploring the use of surge pricing as a way to ad-
dress short-term demand fluctuations over time and they highlight that spatial pricing, i.e., setting
the price of aride as a function of where it originates from, may be an effective tool to match the de-
mand across the ride-sharing network’s locations with the supply of drivers. As a way to best isolate
the impact of the network structure on equilibrium outcomes, we make a number of assumptions,
most notably that the demand is time-invariant. In practice, we expect that ride-sharing platforms
would use a combination of spatial pricing to account for long-term predictable demand patterns,
e.g., weekday commuting, and surge-pricing techniques to address short-term demand fluctuations
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that may be more challenging to forecast. Therefore, an interesting avenue for future research would
be to empirically estimate the benefits of such tools using real-world datasets and to relate their rel-
ative performance to the geography of the corresponding regions. More broadly, as urban centers
become denser we believe that it may be worth exploring how such spatial pricing techniques may
be employed to combine ride-sharing with a city’s transportation infrastructure as a way to alleviate

congestion and ensure a more efficient utilization of resources.
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Appendix A: Dual Formulation and Auxiliary Results

Recall from Section 2 that, when the riders’ willingness to pay is uniformly distributed in [0, 1], the
platform’s profit maximization problem can be written as:

max sz‘(l — pi)0; _wzéi
{p1a517y17}z,]:1 i 7

s.t. Zy,-j =5 Zaﬁ-(l —p;)0; + Zyji +0; — (1 — ;)0 17
J J ]

J

p17517ylj > 07 for all iaja

where we relaxed the constraint that p; < 1 for all i (we subsequently establish that this is without
loss of optimality for the results in Appendix A—see Remark 1). Next, we state Proposition A.1 that
provides a characterization of the dual of optimization problem (17). In what follows, ® denotes the
n x n diagonal matrix whose i-th diagonal element is equal to 6;.

Proposition A.1. Suppose that the drivers’ outside option w is equal to one. The dual of Problem (17)
is given as follows:

min %(1 (1- BA))\)T@<1 (I- BA)A)

A
sit. N > B, foralli,j, (18)
\i <1, foralli.

The primal and dual optimization problems, i.e., Problems (17) and (18), satisfy strong duality. Fi-
nally, the vector of optimal prices p* in (17) and the vector of optimal dual variables X* satisfy:

. 142" — AN

5 ; (19)

and the platform’s optimal profits are equal to (1 — p*)"©(1 — p*).

Proof. Optimization problem (17) is a quadratic maximization problem with a concave objective
function and affine constraints. Thus, Slater’s condition is satisfied for (17) and, consequently,
strong duality also holds. Substituting w = 1, we obtain that the Lagrangian of Problem (17) is
given by:

Lp, Y, 00 =p'O®1 —p) 176 + X (6 + Y 1+ BATO(1 —p)) = AT(Y1+O(1 —p)). (20)
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By strong duality we obtain

p,r{{l%é() m}in L(p,Y,0,A) = m}%n pg{l%éo L(p,Y,0, ).
Let g(A) := maxp v 650 L(p, Y,0, A). The dual problem, which has the same optimal objective value
as the primal one, is given by miny g(A). Furthermore, the feasibility of the primal problem implies
that both the primal and the dual optimal objectives are bounded and the corresponding optimal
solutions exist.

Next, we consider expression maxp v s>0 L(p, Y,d, A) for some fixed A. First, observe that

oL
— =06\ — A\
yij !
Given that the Lagrangian is linear in Y, it follows that g(X) = oo, if A; < SA;. Moreover, if in the
optimal solution y;; > 0, then \; = gA;. Similarly,

oL

=14,

a;,
and hence g(A) = oo, if \; > 1 as the Lagrangian is linear in ¢;. Moreover, if in the optimal solution
d; > 0, then \; = 1. These observations imply that g(A) < co only when \; < 1foralliand \; > 8);
for all 4, j. Thus, we can rewrite the dual problem as follows:

min g(A) = min m;a%(pT@(l —p)+ AT |BATO(1 —p) —O(1 — p) 1)
p=

st. A > BA;, foralli,j,

A <1, forall i,
where in the objective function we replace maxp v s>0 L(p, Y,d, A) with:

maxp? O(1 — p) + AT [BATO(1 — p) — ©(1 — p)], (22)

p=>0

since, as mentioned above, in the optimal solution, §; > 0 implies \; = 1 and y;; > 0 implies
Ai = fA;; thus, we can remove the terms that involve 6 and Y.

Ignoring the non-negativity constraint on the vector of prices for a moment, the first order opti-
mality conditions of the optimization problem in the right hand side of (21) suggest that:

9p — 1+ BAN— A =0,
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or equivalently p = %. Using the fact that matrix A is row-stochastic and \; > g\; for all 4, j
yields:
A—BAA> A — <6ml?XAk>A1 > A (Bm]?x)\k)l > 0.

Thus, it follows that 0 < % and the non-negativity constraint in the right hand side of (21)
can be relaxed without affecting the optimal solution, i.e., the optimal solution is interior. By strong
duality, it follows that the primal optimal solution (p*, Y*, §*) satisfies

*Y*,6%) € arg max L(p,Y,0,\"),
(P ) € arg e (P )

for the optimal dual solution A*. Thus, the vector p* that solves (22) for A = A* is also equal to the
vector of optimal prices in (17). That is,

S LEX - pAN
2 )

as stated in the proposition. Using the characterization for the vector of optimal pricesp = (1 + X —
BAX)/2 derived above (for A such that \; > gA; for all 7, j), we then conclude that the dual problem
can be rewritten as

. 1 T
min (1 (- ﬁA)A) @(1 - BA)A>
st. A\ > B, foralli,j,

A <1, foralls.

Finally, strong duality and Expression (19) directly imply that the platform’s optimal profits, i.e., the
value of the objective function of optimization problem (17) at the optimal vector of prices p*, are
given as

%(1 —(I- BA)A*)TG(l — (- 6A)>\*) =(1-p")'0(1-p").
O

In the remainder of Appendix A we state and prove two lemmas that establish a number of prop-
erties for the optimal dual vector A* and the optimal vector of prices p*. The lemmas are used in the
analysis that follows in Appendix B.

Lemma A.1. Suppose that the drivers’ outside option w is equal to one. Then,
(@) In the optimal solution to optimization problem (17) we have ), 67 > 0.
(b) The following hold for the optimal dual vector \* of Problem (17) :

(i) Xr € [B,1] foralli.

38



(ii) \; =11ifo; > 0.
(iii) X = B and \; =1, ify;; > 0.

Proof. Given that w = 1, in any optimal solution for (17), there exists location £ such that §;; >
0, since otherwise serving some demand at & would lead to a solution with a higher value for the
objective function. To see this, note that setting pr = 1 — ¢, 6, = €(1 — 3?), and y;, = Bai(1 — pr)Os
for all 7 and for some ¢ < 1 is a feasible solution for (17) and generates positive profits for the
platform (by contrast, setting ¢; = 0 for all : generates zero profits).

For part (b), recall from the proof of Proposition A.1 that the primal optimal solution (p*, Y*, 6*)
satisfies

(p*,Y*,0") € arg max L(p,Y,d, \"),
(p,Y,0

for the optimal dual solution A*. In addition, again from the proof of Proposition A.1, we have \} =

when §F > 0, which establishes part (b)(ii) of the lemma. Also, by part (a) we have that there exists
location i such that 67 > 0, which together with A7 > ﬁ)g from the feasibility constraints of the dual,
establishes part (b) (i) of the lemma. Finally, noting that A} = A} when y7; > 0 in combination with
part (b)(i), establishes part (b)(iii) of the lemma. O

Lemma A.2. Suppose that the drivers’ outside option w is equal to one. The following set of inequali-

ties hold for all i
* x _ 32
14+ X B§p$§1+)\z B'
2 2
Proof. From Equation (19) the optimal vector of prices p* and the corresponding optimal dual vec-

tor A\* satisfy (I — SA)A\* = (2p* — 1). Restricting attention to the i-th row of the vectors in this
equation, we obtain

A= B aiXy =2pf — 1. (23)
J
Note that since )\j € [8,1] (Lemma A.1) and A is a row stochastic matrix, we get
B2=PB> (aiiB) < BY ayhy < B oy =B (24)
J J J
Using (23) and the inequalities in (24), we obtain
N =B <2pf -1 <A =, (25)

which, by rearranging terms, concludes the proof of the lemma. O

Finally, we conclude Appendix A with the following remark:
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Remark 1. Lemmas A.1 and A.2 imply that p < 1 for all 4, when w is equal to one; thus, Problem (6)
is equivalent to Problem (17), i.e., relaxing the constraint p < 1 for Problem (17) is without loss of
optimality (assuming that w = 1). Moreover, A* characterized in Appendix A is a vector of optimal
dual multipliers for Problem (6) (together with the multipliers for the constraint p < 1 which are
equal to zero, since the inequality is strict in the optimal solution).

Appendix B: Proofs

Proof of Proposition 1

To establish the existence of an equilibrium, we construct an auxiliary normal form game with
finitely many players, and convex and compact strategy spaces. We start by introducing some no-
tation. Let M, L denote large constants such that M > max{w, ), 6;} and L > M. Note that if an
equilibrium exists, then the following must hold for all

Vi—min{(l_F(pi))ei,l} cﬁﬂzaijv; +<1—min{(1_FW,1})ﬁw.

T Ty
J
Collecting the terms involving V;, this is equivalent to

v min{%ﬁ”))ei,l} (ci—l—ﬁzjﬁaiﬂ/j)+<1—min{%§m,l}> Bw

i (1 min {OE202 11 50, (26)

We let function R;(z;, V_;) denote the right hand side of Expression (26), i.e.,

min { UL 14 (4 550 V5 ) + (1 — min { G20 11) gy

Ri(zi, V_;) = (1 — min {%ﬁi))ei’ 1} Ba”)

Next, we construct the auxiliary game. In this (auxiliary) normal form game, we assume that
there exist 5 types of agents:

e Type 1: For each i € {1,---,n} we have a type 1 agent, who chooses her strategy ¢; from the
strategy space S} = [0, M]. The payoff function for the type 1 agent i is given by

ul = —6;|V; —w.

e Type 2: For each pair (i,5) € {1,---,n} x {1,---,n} we have a type 2 agent, who chooses her
strategy y;; from the strategy space Sfj = [0, M]. The payoff function for the type 2 agent
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associated with the pair of locations (4, j) is given by
2 — Ve —
U5 = Yii| Vi — wl.

e Type 3: Foreach i € {1,---,n} we have a type 3 agent, who chooses her strategy V; from the
strategy space S; = [0, M]. The payoff function for the type 3 agent i is given by

uj = —|Vi — R(w; + e, Vi),

where, ¢; denotes the action of the type 5 agent associated with location 4, which is defined
below.

e Type 4: Foreach i € {1,---,n} we have a type 4 agent, who chooses her strategy x; from the
strategy space S# = [0, L]. The payoff function for the type 4 agent i is given by

uf =—|x; — § — 5Zajimin{$j,9j<1 - F(p]))} - 52%’%’ :
j J

e Type 5: For each i € {1,---,n} we have a type 5 agent, who chooses her strategy e; from the
strategy space S? = [0, L]. The payoff function for the type 5 agent i is given by

u? = —61(1 — 1‘/1211;) + 1‘4211}(‘/7, - UJ)CZ‘.

Note that in this construction the strategy spaces of all agents are convex and compact. The payoffs
of agents of types 1,2, 3, and 4 are continuous, whereas the payoffs of agents of type 5 are upper
semi-continuous. Moreover, for each agent other than agents of type 4, the payoff function is con-
cave in her strategy. For a type 4 agent, it is straightforward to see that the payoffs are quasi concave
in the agent’s strategy.

In addition, let 4 = max,, u? = maxe, —e;(1 — Ly;>4) + 1v;>0 (Vi — w)e;. Note that

0 ifV,<w
u; = 0 ifVi=w 27)
L(V; —w) ifV; > w.

Thus, it follows that @ is a lower semi-continuous function of strategies of agents other than the
type 5 agent i; i.e., the agent who chose action e;. Similarly, for type 1,2,3, and 4 agents, maximizing
each agent’s payoff over her own action, yields a continuous function, since their payoff functions
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are continuous. Together with the upper semi-continuity of payoffs, convex and compact strategy
spaces, and (quasi)concavity of each agent’s payoff in her own actions, this implies that the game as
constructed above has a pure strategy Nash equilibrium (this is a direct consequence of Dasgupta
and Maskin (1986)—refer to Theorem 2 and the corresponding corollary).

Next, we argue that the Nash equilibrium of this auxiliary game corresponds to an equilibrium of
the original game. First, note that the payoffs of type 1 and 2 agents imply that at a Nash equilibrium
we have

0 =0,y5 =0, when V; # w. (28)

Similarly, note that the payoff function for a type 4 agent implies that
wi =6+ B ajimin{z;,0;(1— F(pj)} + 8 yji, (29)
J J

which is always feasible since z; € [0, L], §;,y;; € [0, M],and L > M.

Finally, consider agent i of type 5. For the sake of contradiction, let V; > w, which, consequently,
implies that e; = L. Also, note that as x; — oo, we have R;(z;, V_;) — pw. Thus, for sufficiently large
L, itfollows that R;(z;+e;, V_;) < wforanyV_;, since L > M. On the other hand, the payoff function
of type 3 agents implies that at such an equilibrium, we also have V; = R;(z; + ¢;, V_;) < w. Hence,
we obtain a contradiction to V; > w, and conclude that at the Nash equilibrium of the auxiliary
game, we always have V; < w.

Finally observe that given that V; < w, the equilibrium action of type 3 agent i is given by

Vi=Ri(z; +e;,V_;) <w.
Suppose thate; > 0 at the equilibrium. Note that in this case V; = w (as for V; < w the corresponding
type 5 agent finds it optimal to set e; = 0). Using the fact that V; = w, it can be readily checked that
another equilibrium can be constructed by setting 6. = J; + e;, ¢, = 0, and =, = x; + e; while keeping
all other actions the same. Thus, without loss of generality, we can restrict attention to equilibria
where ¢; = 0 for all 4. In this case, the condition V; = R;(x; + ¢;, V_;) < w reduces to

Vi = Ri(x;, V_;) < w. (30)

Expressions (28), (29), and (30) coincide with the equilibrium conditions for the original game stud-
ied in the paper. Hence, we conclude that an equilibrium always exists; thus, the claim follows. [
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Proof of Lemma 1

Consider a feasible solution{p;, 6;, z;, yi;, di}zjzl

for Problem (5), such that d; = 6;(1 — F(p;)) > 0
for every i. Note that if the compensation structure, the supply of drivers, and the demand are such
that V; = w for all locations 4, then it directly follows that the corresponding tuple {6;, z;, y;; }7*,—; can
be supported at equilibrium. Thus, part (i) of the lemma follows from constructing a compensation

structure {¢;}?_, that guarantees that V; = w for all . In particular, let

Bl 32, aji(l = F(pj))o; +3_; yﬁ] + 0
(1= F(p:))0; '

w(l — p), forall:. (31)

C; =

First, note that the compensation structure is well-defined, i.e., ¢; < oo, since, by assumption,
d; = (1 — F(p;))0; > 0for all :. In addition, note that the probability that a given driver is assigned to
aride atlocationiis equal to 6;(1—F(p;))/z; withz; = 8| >, aji(1—F(p;))0;+>_; yj,-] +46;. Thus, the
expected earnings for a single time period for a driver located at i are equal to w(1 — ). Since, this
holds for all locations 7, it follows that the expected lifetime earnings V; corresponding to any loca-
tion ¢ are given by > | j B’(1 — B)w = w, which establishes that feasible solution {p;, &;, i, yi, di}} =1
can be supported as an equilibrium when compensations are given by (31).

In addition, the cost incurred by the platform under these compensations per period is equal to:

S i (1 F(pi)) b _Z[ (Zaﬂ +Zyﬂ)+5} Zwl B)wzzi:éiw,

%

where the last equality follows from the fact that }°,6; = >, z;(1 — 3), i.e,, the mass of drivers
entering the platform to provide service at every time period is equal to the mass of drivers that are
leaving.

For part (ii), first note that the expected revenues that a driver can generate for the platform
during the time she provides service are upper bounded by z/(1 — 3), which corresponds to the case
when she is never idle and rides are priced at the maximum willingness to pay. Thus, when w >
z/(1 — j3), the cost incurred per driver is higher than the revenue she generates and, consequently,
it is optimal for the platform not to serve any demand and set ¢ = d; = 0.

For the remainder of the proof, we assume that w < z/(1 — 3). Then, any optimal solution for (5)
would be such that ), dF > 0, since otherwise serving some demand at a location i, e.g., by setting
F=e(1-p8% < 1,pf =F1(z—¢/0;), and y5; = Baij0i(1 — F(p;)), would lead to a solution with a
higher value for the objective function. To complete the proof of part (ii), it remains to show that if
it is optimal to have ), d7 > 0, then there exists an optimal solution in which it is optimal to have
dr > 0for all i. Assume, by way of contradiction, that this is not the case. Then, consider an optimal
solution {p;, 6, z7, y;;, d; }}';_; for (5) and partition the network into those locations for which d} > 0

1,7=1
and those for which df = 0. By Assumption 1, the network is strongly connected; thus, there must
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exist 4, j such that dj > 0,d; = 0 and a;; > 0. Thus, we have 25 > 0and >, y7, > 0.

Next, we show that serving some demand at j (weakly) improves the platform’s profits. In par-
ticular, consider a new feasible solution in which price p/; is such that 6;(1 — F(p})) = ¢; for some
0 <¢; < 7. Also, the remaining excess supply at location j is routed as in the original solution, i.e.,
Yir = Yj(z; —€;) /2 forall k. On the other hand, mass ¢; of drivers is assigned to riders at location j
and relocate according to the riders’ destination preferences, e.g., o, - ¢; of them end up at location
¢. In the next time period, after (1 — /) fraction of them leaves the platform, the remaining drivers
are routed in the new feasible solution such that mass Bejy]*.k / x; is sent to each location k. Thus, the
total mass of drivers who relocate from j to k (directly or after being assigned to a rider, moving to
some location /, and then routed to k) is given by

Yie(T] — €)% + Bejyh /o5

To ensure that ) = x, the mass of drivers that enter atlocation k and start providing service should
increase by:

Bu5 — By} — &)/ + Besy/}) = Besyi/ @) — Byl @),

since only § fraction of the drivers who relocate to k provide service in the subsequent time period.
Thus, the total increase in the mass of drivers that enter the platform at every time period is given

by:
D 6 =D i =(8-8%e.
k k

For the new solution to generate (weakly) higher profits than the original one it should be the case
that the increase in revenues is higher than the higher cost associated with entry, i.e.,

ejp; = €;B(1 = Bw.

Note that setting such a price p/, is feasible as the riders’ willingness to pay is distributed according
to an atomless F'(-) with supportin [0, z] where z > w(1 — ) > wp(1 — ). O

Proof of Proposition 2

Part (a) of the proposition follows directly from observing that when the riders’ willingness to pay is
upper bounded by 1, then the expected revenues that a driver can generate for the platform during
the time she provides service are upper bounded by 1/(1 — 3). Thus, it is optimal for the platform
not to serve any demand when 1/(1 — ) < w.

For the remainder of the proof, we assume that 1/(1 — 3) > w and focus on establishing part (b)
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of the proposition. First, note that the solution to

p=>0

max Y (1 —pi)bipi — (1= B))_(1 - pi)biw, (32)

i

is an upper bound to the maximum profit in any given network. To see this, note that the problem
above corresponds to one in which the incentive-compatibility constraints for the drivers and the
flow constraints at each location are relaxed. In addition, the second summation is a lower bound
on the total cost that the platform would have to incur in order to satisfy demand 6;(1 — p;) at each
location i since atleast ) _, ;(1 — p;) drivers need to be providing service at the platform at any given
time period and

(1=8)> (1 —pi)bi,

%
drivers leave in each time period.
Next, note that the solution to the optimization problem above is given by

*_1 (1_ﬁ)w -
P =g +72 , for all .

Lety;; = 0 for all 4, j and vector §* that takes the following form:
= (1-p;)o 520@1 =(1-1p)) <0—5Zaﬂ )

where the second equality is a consequence of p} = ; forall s, 5.

The fact that demand pattern (A, 0) is balanced implies that §* > 0. In addition, by construc-
tion (p*, %, Y*) satisfies the equality constraints and the rest of the non-negativity constraints of
Problem (6), thus is is feasible.

Next, we argue that (p*, 6%, Y*) as constructed above is in fact optimal for optimization problem
(6). Noting that 6 = (1 — p}) ( — B> it ) we obtain that:

wy oF=wd (1=p}) [0 =B aub; | =wd (1-p})(1-B)6; (33)
i i j i
where the second equality follows from the fact that p; = pj for all 4, j which, in turn, implies that
BY (1= it =BA—p)D Y gy =B —p}) D 0
( J (2] J

Note that this implies that the value of the objective function of (6) for (p*, 6*,Y*) is equal to the
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optimal value of the objective function of (32). Given that the optimal value of (32) is an upper
bound for the optimal value of (6), we conclude that (p*, *, Y*) is indeed optimal for (6).

To conclude the proof, first note that y;; = 0 for all 4, j, which implies that the supply of drivers
and demand for rides at location i are equal for all 7, i.e.,

f =B ab;(1—p}) + ;= 6:(1 - p}),
J
and, as a consequence, drivers always get assigned to rides. In turn, this implies that we can write

* ok ok
0; —xi—ﬁg it}
J

Furthermore, setting compensations to be such that ¢} = w(1 — ) for all i guarantees that:
V; = w, forall,

since drivers always get assigned to rides, i.e., they are never idle. Thus, {47, 27, yj;}];_; is an equi-
librium under {p}, ¢/ }I" ;.

Finally, the optimal value of Problem (32) is an upper bound on the profits the platform can
generate for any demand pattern. We established above that when the demand pattern is balanced,
using prices and compensations {p}, ¢/ }!' ; generates profits equal to the optimal value of Problem
(32), which implies part (b) (i) of the proposition.

This completes the proof of the claim. In particular, we established that when the demand pat-
tern is balanced there exists a profit maximizing solution for the platform in which the optimal price
and compensation at location i are given by p; = 1/2 + (1 — f)w/2 and ¢} = (1 — 5)w respectively,
and BATd* < d*, i.e., drivers always get assigned to rides. O

Proof of Proposition 3

The first part of the proposition, i.e., the part that relates to the prices set by the platform, follows
directly from Proposition A.1, which establishes the characterization of the price vector {p;}? ; as
a function of the dual variables {\;} ,, and Lemmas A.1 and A.2. In particular, note that the dual
variables corresponding to an entry point k£ and a location with excess supply ¢ are equal to \;, = 1
and )\, = $3. Substituting these values for the prices as given in Lemma A.2 yields the desired result.

It remains to show that the compensations defined by Equation (10) can support {67, =7, y;; }7 ;-1

i.e., the optimal solution to Problem (6), as an equilibrium under price vector {p}};—;. First, note
that the compensations defined in (10) are the solution to Equation (34) below, i.e., the equation
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that describes the drivers’ expected earnings, when we set V; = A} for all i:
*

1 _p: * 1 — b
J

To see this, first consider the case where =7 > (1 —p7), which, in turn, implies that yl*] > 0 for some ;.
Recall from Lemma A.1 that A} = 8 when y;; > 0 for some j and max;, A\; = 1. Thus, we can rewrite
(34) as:

*

V_l_p?i( o A* 1 1_pi A*
z—TZ@u g +BA |+ T ml?xﬁ k
(] J 7
1—p* 1—p* 1—p*
= e RS +<1— x*“)m,gxm

Ty
].—p* ]_—p*
:ﬁl)\?‘*‘(l_*l AT =N

i A

where the equality in the last line follows directly from the definition of compensation ¢} (Equation
(10)) and the fact that A} = max; SA\; = 3. The claim for the case where ] = (1 — p}) follows
immediately from (34) and the definition of ¢}.

Therefore, V;’s as defined here satisfy Equation (2) (as it is equivalent to (34) when z7 > (1 — p})).
In addition, they satisfy the drivers’ incentive-compatibility constraints, i.e., Equation (3), since \* =
Vi =1 = w, when §F > 0 and A} < 1 for all i. Finally, condition (ii) in the equilibrium definition,
i.e.,, Equation (1), is satisfied trivially as {0}, =7, yl*] rie1 is feasible for Problem (6) and 7 > (1 — p}).
Thus, we conclude that the compensations defined by Equation (10) can support {5, z7, y;; }}';_1

as an equilibrium under price vector {p} };,—; and expected future earnings for a driver at location :
given by V; = A7, O

Proof of Corollary 1

The corollary follows directly from Lemmas A.1 and A.2. In particular, note that the supply of drivers
at any location i is lower bounded by:

1_1—52> 83

$¢Zﬁzj:aji(1—29§)252j:aji<1—2 5 2 Kigs

1+Ar—32
2

(from Lemma A.1). Thus, the assumption that x; > 1/33 for the first part of the corollary implies

where the second inequality follows by using p} < from Lemma A.2 and A} < 1 for all j

that the supply of drivers at location i is greater than 1/2 and, consequently, location 7 has excess
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supply (note again by Lemmas A.1 and A.2, it holds that p} > 1/2, thus the maximum mass of riders
that the platform finds optimal to serve at location i is 1/2).

For the second part of the corollary, assume by way of contradiction that there exists location ¢
such that x;(A) < f, but location 7 is not an entry point, i.e., §; + >_ ;i = 0. Then, the supply of
drivers at location ¢ is upper bounded by:

x §ﬁzaji(1_p;) S/Bzaji(l_%) < Kig'
J J

Thus, since #;(A) < 3 we obtain that the supply of drivers at i is strictly less than 52/2. Given that
pr < 1 — $%/2 (from Proposition 3), this leads to a contradiction, since there has to be additional
entry at location i to satisfy the demand induced by setting pf < 1 — 52/2 (otherwise, the platform
can generate strictly higher profits by increasing p; as doing so does not violate the feasibility con-
straints). Thus, we conclude that if x; < 3, location i has to be an entry point. O

Proof of Theorem 1

Consider a strongly balanced demand pattern (D, 1). In addition, let II(F¢, 1) denote the optimal
profits for the platform when the underlying demand pattern is given by (({D + (1 —¢)F, 1). Assump-
tion 2 and Lemma 1 imply that the profits can be obtained as follows:

II(F,1) = max p’(1—p)—178
p,Y,0

st.Y1=64+(1-p)—BY 1 -B(D+(1-F) ' 1-p)=0 (35)
paévY 2 07

where we omit the constraint p < 1 which is without loss of optimality as established in Appendix
A (Remark 1).

To establish the theorem, it suffices to show that IT(F¢, 1) is (weakly) increasing for ¢ € [0, 1].
Since F is an arbitrary matrix, it suffices to prove the claim for £ = 0, i.e., show that at ¢ = 0, TI(F¢, 1)
is (weakly) increasing in ¢. This is due to the fact that II(F¢, 1) is (weakly) increasing in ¢ for some
¢ €[0,1] if and only if II(F¢', 1) is increasing in ¢’ at ¢’ = 0, where F' = ¢D + (1 — ¢)F.

Note that, since the constraints are affine, Slater’s condition and, consequently, strong duality
hold. Moreover, the objective and constraints are continuous in (p, Y,d, £) and convex in (p, Y,d).
In addition, the upper contour sets at the objective are compact.3® Thus, it follows that II(F¢, 1) is
(Hadamard) differentiable in ¢ (for more details see Bonnans and Shapiro (2013)).

¥ Compactness in p, § readily follows from the quadratic payoff structure and § > 0.To see compactness in the space of
(p,Y, ), note that for arbitrary large Y feasibility implies also large p and § and, consequently, arbitrarily small value for
the objective function.
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Thus, it follows from Bonnans and Shapiro (2013) and Milgrom and Segal (2002) (Corollary 5)
that for some primal optimal solution (p*, Y*, *), and dual optimal solution A* of (35) at¢ = 0, we

have
O+ TI(F¢, 1)

0¢ £=0

The proof follows directly from the following technical lemma (which we prove below).

— BX*(D — F)T(1 - p*). (36)

Lemma B.1. For any permutation matrix H, and any primal-dual pair of optimal solutions (p*, Y*, 6*)
and X* associated with ¢ = 0 in (35) the following holds:

MH-F)T1-p9>o0.

To complete the proof of Theorem 1, note that by the Birkhoff-von Neumann theorem, we ob-
tain that any doubly-stochastic matrix belongs to the convex hull of permutation matrices. Thus,
Lemma B.1 above implies that A*(D — F)7(1 — p*) > 0 for any strongly balanced demand pattern
(D, 1) (note that (D, 1) being strongly balanced implies that D is a doubly-stochastic matrix). Using

F<1)

this observation together with (36), we conclude that % > 0, which in turns implies that

the theorem holds. O

Proof of Lemma B.1
Lemma B.1 follows from a series of claims that we state and prove below.
Lemma B.2. Leti, j be such that \; < A}. Then, we have (1 — p;)/(1 — p}) < 1/B.

Proof. The following inequality follows directly from the lower and upper bounds on p; and p} re-
spectively obtained by Lemma A.2:

l—p; _ 148X

: 37
1—pf ~1- X+ 32 57

Furthermore, the assumption that A7 < A} implies

l—p;(< 1+5—)\;
L—ps = 1= X452

Recall that by Lemma A.1, we have A} € [5,1] for all i. Let h(z) = fffgﬁ”é and note that h(z) is

increasing for = € [, 1]. Therefore,
1+ 8 =X 1
—_— <
N

as can be seen by setting A} to one, which completes the proof of the lemma. O
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Lemma B.3. Consider renaming the locations such that \i < X5 < ... < Ay, which is without loss of
generality. Let o be a permutation of the locations such that 1 — p;(l) >l-pyy = 21— U(n)
Then, for alli we have
1 —p}
—t>1- pg(l)
Proof. We prove the claim by contradiction. Leti be the smallest index such that (1-p})/8 < 1—p% (i)

By the definition of the permutation o, for every j < i, we have:

1 _
1=pgi) = 1 =P > P, (38)

However, Lemma B.2 implies that we have (1 — p;)/(1 — pf) < 1/5 when X\; > X!. Since, by
Expression (38) we have "(” > ﬁ, this implies that o(j) < i — 1 for all j < 4. Similarly, Expression

(38) also suggests that . "< ) > ﬂ, and hence o(i) < i — 1. Therefore, we must have o(j) < i — 1 for
all j <, which leads to a contradlctlon as o(-) defines a permutation (and hence a bijection). O
Finally, using Lemmas A.1 and B.3 we complete the proof of Lemma B.1, i.e., we show that for a
permutation matrix H and a primal-dual pair of optimal solutions (p*, Y*, 6*) and A* the following
holds:
MH-F)T(1-p*)>o0.

In particular, consider a permutation matrix H, and define a function f : R" — R such that
f(A) = AT(HT — FT)(1 — p*). We prove the claim by showing that f(A*) > 0. First, let 1 denote
the vector of ones and note that f(1) = 0, since both F and H are row-stochastic matrices (hence,
1THT = 17FT = 17). Therefore, to prove the claim it suffices to show that f(A*) > f(1) = 0. We
show this by constructing a sequence of vectors {\* = A1, A2 ... A" = 1} such that f(A\*) = f(A!) >
f(A?) > ... > f(1) = 0, which readily implies the claim.

To construct such a sequence, assume without loss of generality that \} < A5 < ... < Ar, and
define set S; as S; = {j : j < i}. In addition, for each 2 < k£ < n, define n, asn, = A} — A\;_;. In
words, 7, is the difference between the k-th and (k — 1)-th smallest entry of A*, and thus n; > 0.
Given a set of indices S, we use eg to denote the indicator vector of S, i.e., (eg); = 1ifi € S, and zero
otherwise. We define the following sequence of vectors:

Al =
A= AR nkes,_, for all k such that2 < k <n.

Note that by construction, for each \* we have that \¥ = Xt if i < k, and A\F = \f > A1 ifi > k.
Next, we show that for the sequence of vectors defined above, we have

FON =AY > A > ... > f(1).
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Since f(-) is a linear function of X, it follows that f(A\*) = f(A*~1) + f(nes,_,). Thus, to prove the
claim it suffices to show that f(nies, ,) < Oforall2 < k < n. To this end, using the definition of f(-),
we can express f(nieg,_,) as follows:

flmes, ) = m|ef, H(1-p)— Y [F(1-p),

JESK-1
< Mk Z (1 =p5;)) — Z [F7(1- P*)]j
1<i<k—~1 1<j<k—-1

where ¢ is a permutation of vertices such that 1 — p;(l) >1- p(*fm >...>1- p;(n).

Recall that, by Lemma A.1, we have that A} = 1. Note that, if \; = 1, thenn; = 0 for all j >
k + 1 and the inequality f(n;es, ,) < 0 trivially holds. Therefore, it suffices to show that the above
inequality also holds for every & such that \; , < 1. However, if \} < 1 for a some location j, then
it follows that 67 = y;; = 0 for all i (as shown in Lemma A.1). On the other hand, feasibility implies
that the total supply of available drivers at location j should be greater than the demand that the

platform serves at j, i.e., B[AT (1 — p*)] j>1- p;. Hence, for every k such that A} _; < 1 we have:

Y. U-wmg)- > [Fra-p));< > “—W&ﬁy‘; >, -1

1<j<k-1 1<j<k-1 1<j<k-1 1<j<k-1

By Lemma B.3, we have 1 — Phjy < 1;}”  for all j. Therefore,

* 1 *
> (-ryp)-3 2. 1-#<o
1<j<k-1 1<j<k-1
The bound above together with the fact that n; > 0 implies that f(nzes, ,) < Oforall2 <k <mn,
and thus f(A*) > f(A2) > ... > f(1) = 0. Therefore, we have established that, for every permutation
matrix H, we have A*(H — F) (1 — p*) > 0, which completes the proof of the lemma. O

Proof of Proposition 4

Consider the optimal prices {p/}! ; corresponding to demand pattern (A’, 1). To establish that the
platform can generate higher profits under demand pattern (A, 1) than under (A’, 1) we consider
the profits that correspond to prices {p;}?_; in the two demand patterns, assuming that the plat-
form serves the induced demand in both cases. Given the latter, it’s sufficient to compare the costs
associated with serving the demand or, more specifically, compare the mass of drivers who do not
get assigned to aride (since the mass of drivers who get assigned to rides is the same in both cases).

First, note that the bounds on the optimal prices provided in Lemma A.2 apply to the locations
in S7 and S, regardless of whether the demand pattern is (A, 1) or (A’,1). This implies that the
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demand served at location i, which recall that we denote by d;, satisfies:
B*/2<di=1-p; <1/2, (39)

where we use Lemmas A.1 and A.2.
For alocation i in set S;(A) and demand pattern (A, 1), we have that the excess supply of drivers
at i is equal to:

ﬁzaﬂ —d; >5/22aﬂf1/2—53/2m1( ) —1/2,

where the first inequality follows from (39). Similarly, for (A’, 1) wehave 33~ o;d;—d; > B3 /2ki(A")
1/2. Sets S1(A) = S1(A’) correspond to locations with excess supply under the two demand pat-
terns. The difference in the excess supply of drivers at alocation i € S;(A) corresponding to the two

demand patterns (under prices {p;}? ;) can be bounded below from:

(5 Z oydy — ) (ﬁ Z agidj — z) Z Z ozﬂ g < ki(A') — m(A)) ,  (40)

where again we use (39). Similarly, for the set of locations in S3(A) = S3(A’) we have that the

difference of excess supply under the two demand patterns can be bounded as follows:

+ + 3 +
(5]~ (o) < (o - Sty ) = (i) - i)
J J J J

(41)

where the inequality follows from (39) and the fact that for any two real numbers q, b it holds that

T —b* < (a — b)". Finally, for any remaining location, i.e., i ¢ S1(A) U S2(A), we have x;(A) <
g and k;(A’) < . By Corollary 1 it follows that i is an entry point under both demand patterns
and, consequently, does not feature any excess supply. Expressions (40) and (41) along with the
assumptions of the proposition establish the claim since the difference in the cost the platform has
to incur in order to serve the demand induced by prices {p;}?_, under the two demand patterns is
equal to:

2 (e (o)) 5 (ps0e) ~(504) )

which, from the discussion above, is greater than zero. Thus, we conclude that the platform can
generate (weakly) higher profits under A than under A’, as claimed. O

52



Proof of Proposition 5

Let (p*, Y*, 6*) and A\* be a primal-dual pair of optimal solutions for demand pattern (F, 1). Simi-
larly, let (p, Y, ) and A be a primal-dual pair of optimal solutions for demand pattern (D, 1). Then,
strong duality implies the following

II(F,1) = L(p*, Y*, 8%, ")

=p (1 -p)— 175+ (AT + Y"1+ BF (1 - p)) — (A (Y1+(1-p))
(D, 1)+ A)T6 + Y1+ FT(1-p) - Y1 - (1-p))

=TI(D, 1) + (A")"(BF"(1 — p) — 5D (1 - p))

(D, 1) + S(A")"(F - D) (1 - p),

(42)

where the first line follows from the saddle point characterization of the optimal solution, and the
second one follows since the primal optimal solution (p*, Y*, §*) maximizes the Lagrangian for the
optimal vector of dual multipliers A*. In the third line, we provide the expression for the Lagrangian
explicitly, whereas the fourth one uses the fact that

I(D,1) = pL(1—p)—174.

The feasibility of vector (p, Y, d) for the platform’s optimization problem corresponding to (D, 1)
requires
6+8Y"1+8DT(1-p)—¥Y1—(1—p)=0.

Combining this observation with the fourth line, we obtain the fifth. Finally, rearranging terms
yields the last line. As a side remark, note the bound we obtain in (42) holds for any pair of demand
patterns (since, so far, we have not used the fact that (D, 1) is balanced).

Next, we specialize (42) for a strongly balanced demand pattern (D, 1). Note that Proposition 2
implies that p = (1 - g) 1. Thus, the bound we provide in (42) can be rewritten as follows

2

™

I(D,1) - II(F,1) < = \)T(D - F)T1.

|

Finally, using the fact that D is doubly stochastic, since the corresponding demand pattern is strongly
balanced, we obtain

(D,1) - TI(F, 1) < ﬁ;(A*)T(l —FT1), (43)

which concludes the proof of the proposition.
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Proof of Corollary 2

We consider demand patterns (F, 1) for which «;(F) > 1/4% or ;(F) < . Note that Lemma A.1 and
Corollary 1 imply that \¥ = 3 for i such that ,;(F) > 1/8% and A} = 1 for i such that ;(F) < 8. Thus,
the bound provided in (43) can be rewritten as

(D,1) - TI(F,1) < 522(>\*)T(1 - F)
2
= i( DN -m(F)+ D N(OI- m(F)))

i|rs (F)>1/5 i ki (F)<B

2
= @(5 Z (1—ri(F))+ Z (1—/%(1:‘)))

F)>1/8? i| ki (F)<p

62
= 2( Y (1= r(F)(B- 1))

i| ki (F)>1/8
62
=50-8 Y (uE-1),
i| ki (F)>1/83

where the equality in the fourth line uses the fact that ) _,(1 — «;(F)) = 0 or equivalently

Z (1 —ri(F)) = — Z (1= ri(F)).

i| ki (F)<p i|ki (F)>1/3

This concludes the proof of the corollary.

Proof of Corollary 3

The corollary is a consequence of the fact that the expression for the profits corresponding to the
platform’s optimal prices, i.e., the value of the objective function in (17), is equal to the expression
for the consumer surplus (up to a constant factor) induced under the same prices (this can be seen
from Proposition A.1 and Definition 2). Then, invoking Theorem 1 directly yields the result. O

Proof of Proposition 6

Assume that the demand pattern across the n locations is given by (A%, 1). We provide a closed form
characterization of the platform’s optimal prices and profits as a function of £. Then, the proof of
the proposition follows directly from this characterization. In particular, we show the following:
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(@ If £€ [O,max <20-—([%/31(21—2) <ﬁ(1 —20)+ W) ,0)] , then optimal prices are given

as:
1 I 1-B21—€+€/(n—1)+EB(n—2)/(n—1
el and ey Sl 1oAY D)+ -9/
2 2 2
where location 1 is the center of the star and locations 2, - - -, n are the leaves. In addition, the

platform’s profits as a function of £ for this range are equal to

n - B%(1 - n— n— n— 2
%) =2 - o 1) (L2 €= )+ 63020 1)
_ R2(1 _ g n—2
—w(é—l = “2”1)+£B”1)((1—ﬁ2)(n—1)—ﬁQnﬁ—(n—Q)éﬁ)-

b) If ¢ e [max <2(1_(g)%1(;_2) (/3(1 —28) + 52(”—711)4{4/3—4> ,0> ,%], then optimal prices

are given as:

o _1+ﬁZ(1+5Z+5w)+w(n—1)—w55(n_2)
br=r=Pn =5 2(n — 1) + 23222 ’

where Z = (((n —2) — (n — 1)) and

p1=1=6((1=80—-1)+ & - pa).

In addition, the platform’s profits for this range are equal to

p1(1=p1) + (n—1)p2(l —p2) —w(l = B) ((n —1)(1 —p2) + (1 —p1))-

(c) Finally, if ¢ € [ﬁ gz;g;l, 1} , then optimal prices are all equal, i.e.,

1 1—- 5w
plz"':pn:2+( 2[3) .

The platform’s profits are equal to

(3t

Proof. First, recall that in any optimal solution we must have d; = (1 — p;). Thus, we can rewrite
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problem (6) as follows

{d“(ggi?(ﬁjﬂ ; (1—-d;)di —w ; 0
s.t. Z Yij = B[Z Oéjidj + Z yjl} +6; — d; for all ¢ (44)
J J J
0z Yij >0, for all 1,7].

Note that in Problem (44) we relax the constraints p > 0 and p < 1 (equivalently, d < 1 and
d > 0), which is without loss of optimality, since the resulting optimal prices do not violate the con-
straints, as we argue subsequently. This is a convex optimization problem with affine constraints, so
the Karush-Kuhn-Tucker conditions are both necessary and sufficient for optimality. In particular,
letv;(i =1,---,n) and w;;(i,j = 1,- - -, n), denote the dual variables corresponding to the inequality
constraints —¢; < 0 and —y;; < 0 respectively, and \;(: = 1,---,n) denote those corresponding to
the equality constraints in optimization problem (44). Then, the corresponding KKT conditions can
be written as:

i 1-2d; + 523* Ajagj — Ay = 0forall i,
(ii) —w + \; +~; = 0 for all 4,
(iil) —X; + BAj + w;; = 0foralli, j,
(i) A (B] 53 a5 + X5 + 0 = di = 0, 0i5) =0,
(V) vi6; = 0 = wjjy44, forall 4, j,

along with primal feasibility and the non-negativity of v;,w;;. Using these conditions, we establish
the optimality of Cases (a) and (b) by constructing a pair of primal-dual solutions. The optimality of
Case (c) follows directly from Proposition 2.

Case (a): First, we provide values for the primal variables. Using the expressions for p; and po, - - -, p,,
as stated in Case (a) above, we have d; = % and d; = 1 — p; fori > 2. In addition, we let 6; = 0 and

T

op=d; = p

1 n—=2 Caen—2 B ¢ 4
e e A G I

n — n—1

In addition, we let y;1 = 0, y;; = 0and yi; = S((1 — &) +&/(n —1))d; — m for2 <i,5 < n. Note
that, under the conditions of Case (a), this is a feasible solution. In particular, note that the supply
of drivers reaching the center of the star is at least 1/2. Then, it is straightforward to see that if we
let \; = wfori > 2, \; = pw, 1 = (1 — Bw,v; = 0fori > 2, and w;; = A\; — A, for 4, j, the KKT

conditions are satisfied.
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Case (b): Similarly, we provide values for the primal variables. Using the expressions for p; and

p2, -+, pn as stated in Case (b) above as well as the expression for Z, we have thatifd; = 1 — p;
and d; = 1 — p; fori > 2, then d; = —Zdy. Noting that the entry is only at the leaves (and thus
09, ++,0n > 0), weobtainy, = --- =, =0and A2 = --- = )\, = w. Using the definition of \; for

i > 2, we note that \; must be equal to 1 — 2d; + f(n — 1)\jay; = 1 + 262Zd; + Pw for i > 2. To show
optimality, we simply need to check that the equality 2d; = 1+ 8(n —2) ;o5 + BA1a41 — A; is satisfied
forall 7, j # 1 (all other conditions are satisfied). Note thata;; =¢/(n—1)+ (1 -¢) = —-Z/(n—1) for
i # 1; thus, we can rewrite the right hand side as:

£

1+ ﬁ(n — 2))\2'051‘3' + BAMain — A =1+ 5(n — 2)wn 1

- B (1+28Zd; + pw) — w,

n—1

fori,j # 1. Multiplying by (n — 1) and rearranging terms yields
(2(n—1)+26°Z%) di=(n—1)+ ((B(n—2) — B°Z — (n— 1)) w — BZ.

By adding and subtracting 32 Z? from the left-hand side, we obtain the desired expression. There-
fore, we have shown that the solution induced by these prices is optimal. O

Proof of Corollary 4

The claim follows directly from Proposition 2, which establishes that when the underlying demand
pattern is balanced, the platform maximizes its profits by setting the same price at all locations, i.e.,
pf =p*=1/2+ (1 — B)w/2 for all i, and, in addition, the optimal solution can be supported by the
same compensation for drivers at all locations, i.e., ¢; = ¢* = (1 — f)w, for all i. Thus, the platform
maximizes its profits by setting p; = p* = 1/2 + (1 — §)w/2 for all i and using fixed commission rate
~v* = ¢*/p*, which implies that for every ride a driver completes, she earns v*p* = ¢*. O

Proof of Proposition 7
Before establishing the proposition, we state and prove two lemmas.

Lemma B.4. Consider a demand pattern (A, 0), and assume that w = 1. Let {p},d;, Yritt =1 be an
optimal solution to Problem (6). Then, if 6; + >, y3; > 0 for alli, the solution to Problem (6) can be
implemented using a commission rate that is fixed across the network’s locations with the same prices

2(1—
{pii, andy* =230

Proof. Let {p7,d;, Uit =1 be an optimal solution to Problem (6). Recall that for any arbitrary 0 the
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vector of optimal prices {p;}!"_; and the vector of optimal dual variables A* must satisfy:

*

14— BAN
_ . ,

as given in Equation (19). Furthermore, as all locations are entry points, we must have \} = 1 for
all i (see Lemma A.1). Given that A is row-stochastic, we have p; = 1 — 3/2 for all i. In addition,
since all locations are entry points, we obtain that the supply in the optimal solution must satisfy
x} = (1 — p;)0; at all locations.

To complete the proof, we show that the optimal solution to Problem (6) is in fact an equilibrium
under the same vector of prices {p;}" ;and fixed commission rate v* as defined in the statement of
the lemma. To that end, consider the recursion given by

vi= o ]z:)ei’ypf . 1*9?)% > aiVi+ 8 <1 _d=pi ff)9i> V forall . (45)
Using the fact that pf = 1 — /2 and z} = (1 — p})6; at all locations, we can rewrite the expression
above as V =~y (1 - g) 1+ BAV. Using v = ~*, it is straightforward to see that V; = 1 for all i is in
fact a solution to the above system. Therefore, the fixed commission rate v* and the vector of prices
p* given above constitute an equilibrium as claimed. O

Lemma B.5. Consider a network with two locations, demand pattern (A, 0), and w = 1. Then, the
optimal solution to Problem (6) can be implemented using a fixed commission rate.

Proof. Let {p},d;,y};}7 ;—, be an optimal solution to Problem (6). We will show that there exists a
~* such that the profit of the platform using a fixed commission rate with parameters {p}}! ;and
v = ~* is equal to the optimal profit corresponding to the solution to Problem (6). Note that if
0f = 0 for all 4, then the claim follows trivially since the platform provides no service. Thus, for the
remainder of the proof we assume that there exists location ¢ with §* > 0. Since the network has
only two locations, we know that it must be the case that either one or both are entry points in the
optimal solution to Problem (6). If both locations are entry points, the result follows by Lemma B.4.
Therefore, it suffices to show the result for the case in which only one location is an entry point.

To that end, assume without loss of generality that 6; > 0, i.e., location 1 is an entry point. First,
we show that there exists a v such that the expected earnings of the drivers when prices, entry, and
relocation are given by {p;, 67, C‘/i*j 3 =1 satisfy V; = 1 and V5 < 1, that is, they satisfy the equilibrium
conditions under a fixed commission rate. Second, we establish that this implies that the profits
under a fixed commission rate are equal to those of the optimal solution to Problem (6).

Let ¢ = w denote the probability of accepting a ride at location ¢, where z is as defined

i

by Equation (1). Noting that ¢ = 1 (since Lemma A.1 implies that when ¢* > 0 for some location ¢,
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then y7; = 0 for all j and ¢;" = 1), we obtain the following for a fixed v € (0,1):

Vi =p] + BaiiVi + BanaVa (46)

Vo = vg3p5 + B(1 — go02) Vi + B s Va. (47)

Next, we show that p; > p3 and, as a consequence, 0 < (p7 — p3) < pj — ¢5p5. Assume by way of
contradiction that p5 > py. Recall that the vector of optimal prices p* and the vector of optimal dual

variables A* must satisfy
. 1+ X—pBAX*
b = )
2

from Equation (19). By subtracting the equation for p7 from that of p} , we must have:

A5 — AT+ BA; (o2 — a2) + BAT (a1 — a21)
= (A=A + B8 = A]) (12 — a)
= (A=) (1+ B (12 —a)),

0 < 2(p5 —pi)

where the second equality follows from the fact that A is row-stochastic and thus a;; = 1 — a1 and
ag1 = 1 — agy. Note that (14 5 (a2 — ag2)) > 0 for 8 < 1. In addition, recall that at any optimal
solution we must have § < A7 < 1for all 4, and A} = 1if i is an entry entry point (see Lemma
A.1). Therefore, we have that (\5 — A7) < 0 and thus (A5 — A\}) (1 + 5 (12 — a22)) < 0, which is a
contradiction implying that pj > p3.

Subtracting the Expression (47) from (46) yields

0<~(@f—a@ps) = Vi—pBanVi—PaVa—Va+ B(1— gia)Vi + BgsanVs
= Vi(1—-Bon + B(1 —gya)) — Vo (1 + faiz — fgran)
= (Vi =V2) (14 B — Bair — Beyaae) ,

where in the last equality we used the fact that A is row-stochastic and thus a2 = 1 — ay;. Note that
this implies that V; > V; for any fixed ~, provided that the rest of {p, ¢*, yz-*j ijl remain fixed.
We conclude the first step by noting that for {z7,d,y;;}7;,; to be an equilibrium under a fixed
commission rate with {p;}" ;and v = v* it suffices to set v* so that V; = 1.

The second step involves establishing that the profits corresponding to the two solutions, i.e., the
optimal solution to Problem (6) and its implementation using a fixed commission rate, are equal.

This follows from noting that Expressions (46) and (47) when V; = 1 imply that

vpi(1 —p1)bh = (1 — pY)01 — Baxi (1 — p1)bh — Bar2Va(l — pi)oy

P35 (1 — p3)b2 = (Vo — B)xh + Bana(1 — p3)02 — Baga(l — p3)0aVa,
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which, in turn, using the fact that 23 = S(a12(1 — p7)01 + 22 (1 — p3)62) yields:
Y(Pp1(1 = p1)b1 + p5(1 — p3)02) = (1 — p1)0h — Boni (1 — p1)fr — Bh + Ba(l — p3)02 = 07,

where the last equality following from the first constraint in Problem 6. Finally, given that the profits
corresponding to the two solutions can be written as ) . pr(1 — p;)6; — 67 and >, p; (1 — p})0; —
v (O, pr(1 — py)b;) respectively, we conclude that the two solutions lead to equal profits. O

Proof of Proposition 7: We reduce the platform’s pricing problem with a two-type demand pat-
tern to an equivalent pricing problem in a network with only two locations such that each location
aggregates all locations belonging to the same type. We show that the optimal solution in this two-
location network can be constructed using the optimal solution to the original problem. We then
exploit the fact that there exists a v* such that the optimal solution for the two-location network can
be implemented using a fixed commission rate (Lemma B.5) to finally argue that {z7, 67, y;;}}';_; is
an equilibrium under a fixed commission rate with {p}" and v = ~* that achieves the optimal
profit.
In particular, we define a network with two locations for which 0 and A are defined as follows:

° él = ZiE/\/l QZ and éQ = ZjGNQ 9]

N 21 Zi/ Qiil A Zl Z Qij A Z ZL Qg ~ Z Z»" 50
ENYy EN7 eNy JjEN2 7, Ao = JE/\/‘Q‘N2‘EN1 J , and G99 = JENo j'ENg Tiid

® 11 = A y 12 =

N N

That is, location 1 aggregates the locations in A, and location 2 aggregates those in N,. The
demand at each location corresponds to the total demand of the locations in each of the two sets
and the transition probabilities represent the average probability that a ride originating from one of
the sets has as its destination a location in the same/different set.

We can now relate the optimal solution to Problem (6) in the original network with that in the
two-location network as follows. Let {p}, ¢, Uit =1 be the optimal solution to Problem (6) in the
original network, and let z* denote the associated vector of supply. Since the objective function in
Problem (6) is concave, we can establish that there is a symmetric solution in the original network,
i.e., a solution that features the same price for all locations belonging to the same subset, i.e., p} = p},
foralli,i" € Ny and p} = pj, for all j, j* € N>. To see why, assume by way of contradiction that this is
not the case, i.e., there does not exist an optimal solution that is symmetric. Then, if {p}, 67, Yiitiiz1

is an optimal solution to (6), consider tuple {p}, o, yz’-j #';=1 such that:
o 1} = [ Lken; Pk foralli € Ny and pj = 5 Yopen, pj forall j € Az,
_ 1 _ 1
[ (5; = m ZkENl (S;; and 6; = W ZkGNz 52, and

_ 1 _ 1 . .
® Yij = TWINGT 2okeNs 2oteNs Yie A0 Ul = TR 2oven, 2oken Vi for alli € Ny and j € Ao
_ 1 1 »

AlSO, y;l/ = Wzke./\ﬂ Zk/GNl y;k, and y;], = WZICENz Zk'ENz yl:k’ for all Z,Z, € Nl and
. ., N
1,7 € Na.
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Note that the concavity of the objective function implies that the profits corresponding to tuple
{p,, oy, ;111 are at least as high as those corresponding to {p, J;, y;;}';—, assuming that there is
enough supply to satisfy the entire induced demand > (1 — p})6;. To see that the latter is true,
consider locations that belong to A (a similar argument holds for locations in N5). Note that by
construction the supply of drivers and the induced demand under {p;, 5;, y;;}1';_; is the same at
each of the locations in N;. Thus, it suffices to establish that ), N T > Y e (1= p;)0;. To this
end, we have

> ah=8 3 | 3 =)+ ye) + 3 (o1 =)0+ uni)| + 3

iENY ieNT  keEN: kEN, ieN,
=>"ar > (-phti= Y (1—p)o,
€N, 1EN, €N,

where the equalities follow from the definition of two-type demand patterns and the construction of
tuple {p;, 5;, y;; }1';=1- The inequality >, v, i > >, v (1 —p;)0; follows directly from the fact that in
an optimal solution the available supply of drivers has to be greater than the induced demand. Thus,
it follows that there exists a symmetric optimal solution, i.e., we can assume that {p;, 67, y;;}}';_; is
symmetric.

Next, we define a solution {p, §, Y} for the two-location network that generates the same profits

as {p;, d;, y;;}1 ;=1 in the original network as follows:
e p1 = p; fori € Ny and pp = pj for j € Na.
o 01 =Y pen, 0f = IN1|0F fori € Ny, and 0y = 3", Of = [N2|8% for j € 5.
® D12 =D ien, 2ojen, Yy and do1 = D iens, Dien, Yjie

It is straightforward that {p, 4, Y} is in fact an optimal solution to Problem (6) in the two-location
case. By way of contradiction, suppose that there exists another solution {p,d,Y} in the two-
location network that generates higher profits for the platform. Then, the following is a solution
to Problem (6) that generates higher profits for the platform than {p;, 67, y;; }1;_; in the original net-

work, which leads to a contradiction:
o p =piforalli € Ny and pf] = p, foralli € Ns,
o & = [y701 foralli € Ny and 6 = 5 foralli € A5, and

oyl = mglz and y}; = mggl foralli € Ny and j € Na. Also, gy, = 0 and ¢/};, = 0 for all
1,1 € Ny and j, 5’ € Na.

The optimality of {p, §, Y} in the two-location network and Lemma B.5 imply that there exists a
~* such that {;, 6;, Ui }i—; is an equilibrium under a fixed commission rate v* and prices {p;};"; in
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the two-location network. To complete the proof, it suffices to argue that {z7, 6;, y;;}}’;_; is an equi-
librium under a fixed commission rate with {p7}?" ; and v = ~* that achieves the optimal profit.
However, this follows from the mapping between the solutions in the original and two-location
networks—a driver entering the platform to provide service makes exactly the same profit in both
cases. O

Proof of Proposition 8

Let (i = 1,---,n), ¢;(i = 1,---,n), wi(i,7 = 1,---,n), v;(i = 1,---,n) denote the dual variables
corresponding to the inequality constraints —p; < 0, —6; < 0, —y;; < 0,p; — 1 < 0, respectively, and
Ai(i = 1,---,n) denote those corresponding to the equality constraints in optimization problem
(15). Then, the corresponding KKT conditions imply the following for the optimal solution to (15)
under Assumption 2 (note that the platform’s optimization problem is a convex program with affine
constraints and, therefore, Slater’s condition holds):

(1) Taking the derivative of the objective function and constraints with respect to ¢; yields —1 =
—\r — ¢f. Given that ¢7 > 0 we have that A7 < 1. In addition, from complementary slackness
we obtain that A\¥ = 1 when §F > 0.

(2) Furthermore, the derivative with respect to y;; yields 0 = A} — (S A; - wl*] Note that since
w;j > 0 we have A\ > (S )\; and from complementary slackness we have that if yl*] > 0, i.e, if
it is optimal to relocate excess supply from location i to j, then \f = 3% AJ.

Next, we establish that the compensations defined by Equation (16) can support {57, =7,y }7,_1,
i.e., the optimal solution to Problem (15), as an equilibrium under price vector {p} };,—;. First, note
that the compensations defined in (16) are the solution to Equation (48) below, i.e., the equation
that describes the drivers’ expected earnings, when we set V; = A\ for all i:

*

1—pf - 1—p v
‘/:i = 2 i * i CUV. 1 — 1 Czkv‘ 48
o gj 04]<CZC]+ﬁ J>+< o >ml?x5 e (48)

)

To see this, first consider the case where z7 > (1 — py), which, in turn, implies that y; > 0 for some
j. Then, we can rewrite (48) by setting V; = )\j in the right hand side as follows:

Vi — 1 —p; * Gig \* 1 1—p; Gir \*
1 _p’f 1-— p* y 1 _]f'k K
= T:ZC: ZJ: aij(ij + ZL‘: t ZJ: Oéijﬁcm )\; + (1 — 7{[;: z m’?X BQ )\2

].—p* ]_—p*
_ u;+<1_*z X,

*
T T
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where the equality in the last line follows directly from the definition of compensation ¢} (Equation
(16)) and the fact that A} = max, 8%+ A} from item (2) above. The claim for the case where 27 =
(1 — pr) follows immediately from (48) and the definition of c}.

Therefore, the V;’s as defined here satisfy Equation (48) (which is equivalent to Equation (2) when
the compensations and the terms involving § are appropriately scaled with the (;;’s). In addition,
the drivers’ incentive-compatibility constraints, i.e., Equation (3), are satisfied as well, since \} =
Vi =1 = w, when ¢; > 0and A’ < 1 for all ;. Finally, condition (ii) in the equilibrium definition, i.e.,
Equation (1) (appropriately scaled to incorporate the (;;s), is satisfied trivially as {67, z, yz*] ric1 is
feasible for Problem (16) and z} > (1 — p}).

Thus, we conclude that the compensations defined by Equation (16) can support {47, =7, yj; }'i
as an equilibrium under price vector {p} };—1 and expected future earnings for a driver at location i
given by V; = \5.3 O

Appendix C: Supporting Material

C.1 Nonuniqueness of Equilibria

In this subsection, we illustrate that the equilibrium need not be unique. As a simple example,
consider a network consisting of a single location with ay; = 1, and let¢; = (1 — f)w and p; = 1/2.
Suppose that the riders’ willingness to pay is uniformly distributed in [0, 1]. Then, we can construct
a continuum of equilibria. In particular, any tuple {41, z1, y11 } with

01 < 01(1 = F(1/2))(1 = B),

and z; = 01/(1 — ) and y1; = 0, constitutes an equilibrium under (p1,¢1) = (1/2, (1 — f)w). This is
straightforward to see, since for any such 4, drivers are indifferent between entering or not and upon
entering they always get assigned to a ride. Moreover, the profits for the platform corresponding to
these equilibria are not the same. In particular, the flow rate of profits for the platform is given by

p1r] — Wi = (2(1 1_ 5) — w) 01.

C.2 Derivations for the Example in Figure 3

Example. Consider the network depicted in Figure 3 and assume thatw = 1. Then, restrict attention
to location 3 and let v take some fixed value in [0, 1]. For a driver to find it optimal to enter and

31Recall that in the case of unequal distances, the expressions involved in the equilibrium definition are scaled appro-
priately according to the (;;’s as we discuss in Subsection 5.1 (footnote 32).
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provide service at location 3, i.e., for any demand to be served at location 3, it has to be the case that
the price ps set by the platform at location 3 satisfies:

YP3
1-p5’

w = V3 =min{l, (1 —p3)/z3} - yp3 + V3 < (49)
where z3 denotes the supply of drivers who provide service at location 3. The right hand side of
the inequality is equal to the expected lifetime earnings of a driver when the probability of getting
assigned to a rider at location 3 is equal to one (and, therefore, it is an upper bound to the earnings
that a driver can make by providing service at 3 when the compensation per ride is equal to yps).
Expression (49) further implies that, when w is normalized to one, we must have p3 > (1 — 3)/v
for any demand to be served at location 3. Thus, in such solutions, the platform’s optimal profits at
location 3 are equal to the solution to the following problem:

max (1 —)03p3(1 — p3), subject to p3 >
pBE[Ovl]

1-8

’)/ Y
which implies that for fixed ~ the optimal price p}(v) is equal to max{1/2, (1 — 8)/v} whereas the
platform’s optimal profits from location 3 as a function of v, which we denote by II}(y), take the

following form:

M) =4 (L-78s52 (1= 52) ify e (1- g min{2(1 - 8),1}),
1/4(1 — ~)05 otherwise.

To complete the description of the equilibrium outcome for location 3 for a fixed -, we have

p3(v) =94 (A=p)/y ifye (1-Bmin{2(1-p)1}),
1/2 otherwise

where with some abuse of notation p3() denotes the optimal price for the platform at location 3 as

a function of ~. Similarly,

() =14 1=B)1—ps(1))8s ify e (1— B min{2(1 - B),1}),
1/4-~6; otherwise

and z3(v) = 03(7)/(1 - 8), whereas y33(v) = 23(v) — (1 — p3(7))0s and yj3(7) = y3;(y) = 0 fori # 3.

64



Furthermore, for the subgraph consisting of locations 1 and 2 a similar analysiswhen 6, = ¢ — 0
yields the following for the optimal profits in the subgraph as a function of v (which we denote by

HT,Q(’Y)):

0 lf’}/ S 1- ﬂ2a
20) =4 =NHEE(1-2) ify e (1- 82 min{2(1 - 52),1}),
1/4(1 — )61 otherwise.

To complete the description of the equilibrium outcome for the subgraph for a fixed ~, we have

i) =9 (1=p8%)/y ifye (-5 min{2(1-5%),1}),
1/2 otherwise
and p5(v) = 0. Also,
01(v) =4 1 =p)1-pi(y)01 ifye (1% min{2(1 - 5?),1}),
1/4 - ~6; otherwise

and 63(y) = 0. Finally, #1(7) = 6(7)/(1 — 8%),23(7) = B(1 — pi(3), y&1(7) = B(1 - pi(~)), and
y11(v) = 2j(y) — (1 — p1(7))61, which completes the description of the equilibrium outcome for
locations 1,2 for a fixed ~.

To see this, note that if any demand is served at the subgraph consisting of locations 1 and 2,
it has to be the case that §; > 0 = J9, i.e., drivers enter at location 1. Moreover, a driver who gets
assigned to aride at 1, completes it at location 2, and then returns to 1 without earning additional
compensation. Thus, the supply of new drivers who enter the platform at location 1 in each time
period is equal to (1 — 3%)x%(v) given that 32-fraction of the drivers who provide service at 1 return
back to this location and continue providing service. Thus, the platform’s problem at the subgraph
consisting of locations 1 and 2 is essentially equivalent to the problem at location 3 when the frac-
tion of drivers continuing to provide service changes from 3 to 52. Finally, the platform’s optimal
choice of v is the value that maximizes I17 ,(v) + II3(v). Let I, denote the corresponding opti-
mal objective of (6) for the same network. In Figure 3, we illustrate the profit gap between I1,,; and
maxy I17 () + II5(7), i.e., 1 — (max, (I15 o () + 3(v)) /oy for different values of 3.

C.3 Origin-Destination Pricing

Our analysis so far has restricted attention to pricing/compensation policies that depend only on
the origin of a requested ride, i.e., the platform optimizes over the tuple {p;, ¢;}} , where p;, ¢; are
the price and compensation respectively corresponding to a ride that originates from location i (ir-

65



respective of its destination). Here, we consider the extension of origin-destination pricing policies,
i.e., we allow the platform to optimize over {p;;, c;; }';_, where p;; (c;;) denotes the price (compensa-
tion) for aride from i to j. Finally, similarly to the rest of our analysis, we assume that the distribution
of the riders’ willingness to pay is the same for all origin-destination pairs.

Similar to optimization problem (6) we obtain

max Zzaijpzj( pzj U)Z(S
i g

{pis0iyii by

s.t. Zaij( p” 9 +Zyz] BZ [a]l pJZ 0 +yJ’L
J

Ppij» i, yij > 0, for alli,j

—6; =0, foralls (50)

pij < 1, forall i, j,

for determining the optimal origin-destination pricing policy when the drivers’ incentive-compatibility
constraints are relaxed and we only require that each incoming driver is given a one-time payment

of w. Next, note that a result analogous to Lemma 1 holds in the case of origin-destination pricing

as well, thus enabling us to work directly with optimization problem (50) (the proofis essentially the
same as that of Lemma 1 after restricting attention to the case where the riders’ willingness to pay

is uniformly distributed in [0, 1] and it is, therefore, omitted).

Optimization problem (50) is clearly convex, therefore, deriving the optimal origin-destination
pricing policy is computationally efficient. In addition, the Karush—-Kuhn-Tucker conditions imply
the following proposition that provides a characterization of the optimal prices as a function of the
set of dual variables corresponding to the equality constraints in (50).

Proposition C.1. Suppose that Assumption 2 holds and consider the optimal solution {p};, 67, y;}1' ;-1
to optimization problem (50) and let {\}}}'_, denote the set of optimal dual variables corresponding

to the equality constraints in Problem (50). Then,

L LN —BX
Py = —— 2. (51)

Furthermore, X7 € [3,1] for all i with \; = 8 when y;; > 0, i.e., location i has an excess supply of
drivers, and \} = 1 when §} + Zj y]*Z > 0, i.e., location i is an entry point.

Proof. First, we relax the constraints p;; > 0 and p;; < 1 in optimization problem (50) (which as

we establish subsequently is without loss of optimality). Then, we let ¢;(i = 1,---,n),w;;(i,j =
1,---,n), denote the dual variables corresponding to the inequality constraints —§; < 0, —y;; <
0, respectively, and X;(i = 1,---,n) denote those that correspond to the equality constraints for

optimization problem (50). The Karush-Kuhn-Tucker conditions associated with Problem (50) yield
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the following conditions for optimality (note that the platform’s optimization problem is a convex
program with affine constraints and, therefore, Slater’s condition holds):

(1) Taking the derivative with respect to p;; we obtain
Q5 — 20éijp:j = —Oéij)\;( + )\;Baw

(2) Similarly, the derivative with respect to ¢; yields —1 = —\} — ¢}. Given that ¢; > 0 we have that
AF <1 and, by complementary slackness, A\; = 1 when §* > 0.

(3) Finally, the derivative with respect to y;; yields 0 = A} — ﬁ/\]*- - Wz*j Note that since Wz‘*j > 0we
have \} > A} and by complementary slackness we have that when y;; > 0, i.e., if it is optimal
to relocate excess supply from location i to j, then A} = BA7.

Since there is at least one location, say i, with 67 > 0 (the equilibrium features some entry of
new drivers under Assumption 2 as we have established in Lemma A.1) we have that A} = 1 and,
consequently, from the KKT conditions involving y;; we obtain that )\j > BAr = pforall j. Also, the
KKT conditions involving ¢; imply that A7 < 1 for all j, therefore, overall we have \} € [3,1] for all j.
Moreover, note that the KKT conditions involving y;; imply that when Z/i*j > 0 then \} = 5>\} which
in light of the fact that A} € [3,1] implies that A} = 8 and A} = 1. Finally, from item (1) above we
obtain RS

Pis Ty

Inlight of the fact that A} € [, 1] for all 4, prices {p};}}';_; € (0,1) and, therefore, relaxing constraints
pi; > 0and p;; < 1is without loss of optimality, which completes the proof of the claim. O

The characterization we provide in Proposition C.1, which is a direct generalization of (8), yields
the following interesting observation: although, in principle, the platform has n? decision variables
when determining the optimal origin-destination pricing policy, it turns out that the optimal prices
can be written as a function of only the n dual variables. In addition, A7 can be interpreted as the
marginal benefit that the platform derives from having an additional unit of supply at location .
Therefore, the price for a ride from location i to j reflects the relative “values” for the supply of
drivers in the two locations, i and j. Intuitively, the value of supply is higher in entry points than
it is in locations with excess supply. This is clearly illustrated in the characterization we provide in
Proposition C.1: rides from entry points to locations with excess supply are more expensive than
those going the opposite direction. Similar to our baseline model, the platform leverages its pricing
to deal with imbalances in the demand pattern by incentivizing drivers (through accepting rides) to
relocate from locations with excess supply to entry points.
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C.4 Heterogeneity in the Drivers’ OQutside Option

Throughout the paper, we assume that the drivers have the same outside option, which amounts to
lifetime earnings equal to w. This allows us to focus on the questions we are mostly interested in;
i.e., how imbalances in the demand and its destination preferences across a network of locations
may affect a platform’s pricing policy and profits.

That said, we describe below how we could accommodate heterogeneity in the outside option
among the platform’s potential drivers. Suppose that the mass of potential drivers that could join
and start providing service for the platform at each time period is A and their outside option (reser-
vation wage) is distributed with CDF G(-); i.e., A - G(w) is the total mass of drivers that would be
willing to join the platform when their expected lifetime earnings by participating are equal to w. In
the remainder of this appendix, we consider optimizing over prices and compensations {p;, ¢;}} ;,
where p; denotes the price that a rider has to pay for a ride that originates from location i, and ¢; is
the corresponding compensation for the driver (as in the main body of the paper). Then, the plat-
form’s optimization problem would be written as (this is an extension of optimization problem (6)
incorporating heterogeneity in the reservation wages—note that the relaxation implied by Lemma
1 applies here as well):

max Zpi(l—pi)& —w-A-Gw)

wAPi,0i,Yis } 7 =1

s.t. Zyij =p Zaji(l —pj)(gj +Zyji +0; — (1 — p;)0;, forall i,
J J B J (52)
p175’b7yl] > 07 for all 2,

p; < 1, forall i,

> 6 <A-G(w),

]

where in the objective function we substitute w ) . 6; = w - A - G(w), which is a consequence of the
fact that the platform will set w so that the total mass of drivers ), §; that would enter each time
period is precisely equal to the drivers the platform needs.

Note that although in general optimization problem (52) is non-convex for a general G(-), it is
convex for a number of distributions (similar to our discussion in the paper for the riders’ will-
ingness to pay distribution F'(-)). For example, if the distribution of drivers’ reservation wages is
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uniform with support in [0, w], we could rewrite (52) as:

max (1 —p;)0; — AJw - w?
N Xi:pz( pi)di — A/

s.t. Zyij =p Zaji(l —pj)0; + Zyji +6; — (1 — pi)b;, foralli,
J J j

J

plaézayl] > 07 for all i?j? (53)
p; <1, foralli,

)

w < W.

Note that imposing w < w above (which is necessary given our assumption on the support of the
reservation wages) is without any loss of optimality as the platform would never find it optimal to set
the wage w higher than w (even in the absence of the w < w constraint). The resulting optimization
problem (53) is convex and upon solving it we obtain the equilibrium wage w the platform would
find optimal to induce as a function of its demand pattern.

Moreover, note that in the context of the model of the main body, where w is fixed and there is
free-entry, drivers’ surplus is equal to zero (as their expected lifetime earnings at equilibrium are
equal to their outside option). On the other hand, if drivers are heterogeneous in their outside op-
tion, i.e., their outside options are distributed according to G(w), we obtain the following expression
for their surplus when expected earnings in the platform at equilibrium are equal to w:

A [ w = ooy,

where recall that A denotes the total mass of drivers who are willing to provide service at every time
period. When outside options are distributed uniformly in [0, w], we can rewrite the expression for
the drivers’ surplus as follows

w A
A/w/ (w—z)dr = w?,
0

=5
i.e., drivers’ surplus is increasing with the prevailing equilibrium wage in the platform.

Although drivers’ surplus is increasing with the equilibrium wage induced by the platform’s pric-
ing policy, this wage and, consequently, drivers’ surplus do not satisfy a monotonicity property as
a function of the demand pattern’s balancedness. In particular, as the following figure illustrates,
equilibrium wage/drivers’ surplus may increase or decrease as the network becomes more balanced
(unlike platforms’ profits and consumer surplus that always increase with balancedness even under
heterogeneity in the drivers’ reservation wages as also illustrated in the figure).

69



S 142 | -, 0.25 | -
15 =
o0 B
= 1.40 | - 202 i
g —
= Q
E § 0.23 =
= 1.38 - I 2
g‘ g 0.22 =
0 o
1.36 | I
0.21 =
T T T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
§ 3

Figure 9: Induced equilibrium wage w and consumer surplus corresponding to the platform’s op-
timal origin pricing policy for the class of star-to-complete networks with n = 4 locations, 8 = 1,
and 5 = 0.9. Here, the riders’ willingness to pay is uniformly distributed in [0, 1] and the drivers’
reservation wage is uniformly distributed in [0, 5]. Finally, A = 0.5.
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