

Temperature Dependent Characterization of Ga₂O₃ MOSFETs with Spin-on-Glass Source/Drain Doping

Ke Zeng, Uttam Singisetti Electrical Engineering Department, University at Buffalo (SUNY), Buffalo, NY, 14226, USA

75th Device Research Conference, Notre Dame, 2017

Motivation

*M. Higashiwaki et at, *Semicond. Sci. Technol.*, vol. 31, no. 3, p. 034001, (2016).

2

Source: General Electric Company, Getty Images, Infineon.

<u>Ga₂O₃ MOSFETs</u>

- First E-mode MOSFET on <2 × 10¹⁷/cm³ doped substrate
- Low current: high access resistance
- Non-linear IV behavior: Schottky like contact
- Lower 10¹⁷/cm³ is better for breakdown voltage

Annealed Contacts to Ga2O3

- Annealed contacts: Ti/Au, Ti/Al/Ni/Au
- Better on highly doped Ga₂O₃ Low currents for <2 × 10¹⁷/cm³ doping.
- I-V not perfectly linear: Schottky diode parallel with a resistor.
- Cannot extract ρ_c
- Degrade at high temperature

Ion-implantation for Ohmics

- More control on the depth and profile of doping
- Good activation ratio
- Expensive
- Complex process
- High temperature long duration annealing(950 °C/30mins) *
- Difficult to incorporate at shallow depth(70nm RIE etch) *
- Ion-implantation induced damage
- An alternative method without these disadvantages: Spin-On-Glass(SOG) Doping Technique

* WONG et al. IEEE EDL, VOL. 37, NO. 2, FEB 2016.

Spin-on-Glass (SOG) Doping Technique

- SOG: A glass layer that can be spincoated onto the sample.
- TEOS+Dopant Ion → (Hydrolysis Reaction)→ Solution of Dopant in Glass
- Quick and fast turn around process:
 - Spin coat, bake and anneal
- Highest doping at the surface
- Excellent for ohmic contact
- Less control on depth and profile

*T. Nguyen Nhu, *PhD Thesis*, Universiteit Twente, 1999.

Sn SOG Doping Experiment

- Sn is dopant in Ga₂O₃
- SOG Specifications (Dessert Silicon Inc):
 - Elements of Interest: Si, O, Sn
 - Key Element: Sn, 4 × 10²¹/cm³
 - Doping Experiment:
 - Fe doped semi-insulating substrate
 - SOG Coats 170 nm at 3500 rpm
 - Drive-in RTA of 1100° C/5 mins in N₂ ambient

$$D(T) = D_0 \exp(-\frac{D_E}{kT})$$

 $D_0 = 0.8 \text{ and } D_E = 4.2 \text{ eV}$

SOG Doped S/D Contact

- 1100 °C/5mins drive-in diffusion: less than 20nm doping depth.
- $\rho_c = 2.1 \pm 1.4 \times 10^{-5} \,\Omega \cdot \text{cm}^2$. •

•

Higher current than Ti/Al/Ni/Au highest current.

SOG-FET Process Flow

Cross-section schematic

Device Specifications:

- 200 nm Sn-doped Ga₂O₃ epitaxial layer (grown by ozone MBE) on buffered Fe-doped semiinsulating substrate.
- Effective carrier concentration= 2×10^{17} /cm³.
- 20nm gate SiO₂ by ALD.

SOG S/D Doped MOSFET

- Much higher current compared to anneal contacts (DRC 2016)
- Peak current is 30 mA/mm
- Threshold voltage ~ -10V
- C-V characteristic

SOG S/D Doped MOSFET

- On/off ratio from 10⁶ to 10⁸ mainly due to increase of on current
- g_m(peak, max)= 1.23 mS/mm
- L_g scaling
- V_{br}= 382V (390V in 2016 DRC)

Temperature Dependent IV Characteristics

- Higher temperature, lower mobility, lower on current
- Higher temperature, more drain leakage, higher off current
 - Lower on/off ratio

R_{ON} Temperature Dependence

- $\bullet \quad R_{ON} = R_C + R_{sh}.$
- T increases
 - R_C decreases
 - R_{sh} increase
- *R_C* still big enough to play a significant role in R_{ON}.

Pulsed IV

- Pulse width= 500 µs, period= 1000 ms (0.5% duty cycle).
- Pulse width is long: trap effects are not expected
- Increase in pulsed current: reduced self-heating

V_{br} Temperature Dependence

- V_{br} decreases with increasing temperature (same with NICT report)
- Not Impact ionization.(T increases, phonon population increase)
- Breakdown in oxide?
- Related to Oxide defects, interface hot carrier generation, bulk defects.

Breakdown Simulation (TCAD)

- Peak field in Ga₂O₃~ 7.5 MV/cm, near breakdown.
- Field in the gate oxide >20 MV/cm, more likely to breakdown.
- Especially for defected gate oxide.

Conclusion

- SOG doping is a low cost method for ohmic contacts on low doping substrate.
- $\rho_c = 2.1 \pm 1.4 \times 10^{-5} \Omega \cdot \text{cm}^2$, $R_{\text{sh}} = 4.1 \text{ k}\Omega/\Box$ on a 2E17 doped substrate.
- I_{D(max)}= 30 mA/mm , g_m(peak, max)= 1.23 mS/mm on SOG-FET
- T increase, g_m decreases, R_{ON} is lowest at 300° C.
- Breakdown is not impact ionization, more likely related to: Oxide defects, interface hot carrier generation, bulk defects.

Acknowledgement

- National Science Foundation (ECCS 1607833)
- Abhishek Vaidya and Susmita (Labmates)