Ultrafast Pulse Generation using a Ti:sapphire Laser
or
FROGS, SPIDERS, and flying pancakes

Dipl.-Phys. Carsten Langrock
langrock@stanford.edu

Ginzton Lab, Stanford University
Motivation:
What is “Ultrafast” and why should we bother?
Motivation:
What is “Ultrafast” and why should we bother?

Generation of Ultrashort Pulses:
Fast, Faster, ... The Ti:sapphire Laser
Motivation:
What is “Ultrafast” and why should we bother?

Generation of Ultrashort Pulses:
Fast, Faster, … The Ti:sapphire Laser

Measurement Techniques:
Why physicists do have a sense of humor.
Motivation: What is “Ultrafast” and why should we bother?

Generation of Ultrashort Pulses: Fast, Faster, … The Ti:sapphire Laser

Measurement Techniques: Why physicists do have a sense of humor.

Experimental Results: Spectral and Pulsewidth Measurements of two different Ti:sapphire Lasers
Outline

• Motivation:
 What is “Ultrafast” and why should we bother?

• Generation of Ultrashort Pulses:
 Fast, Faster, … The Ti:sapphire Laser

• Measurement Techniques:
 Why physicists do have a sense of humor.

• Experimental Results:
 Spectral and Pulsewidth Measurements of two different Ti:sapphire Lasers

• Conclusion:
 Where do we go from here?
What is “Ultrafast”?

- **Today:** Sub-picosecond pulses can easily be generated.
- **Example:** 15 fs pulse at 800 nm \Rightarrow 4.5 μm thin disk of light, six wavelength long
- **Sub 5 fs pulses have been generated**
What are those pulses good for anyway?

- Bigger is better...
What are those pulses good for anyway?

- Bigger is better…
 - very high peak power & electric fields
 e.g. 20 mJ in 20 fs ~ 1 TW
What are those pulses good for anyway?

- Bigger is better…
 - very high peak power & electric fields
e.g. 20 mJ in 20 fs ~ 1 TW
 - useful for nonlinear effects
e.g. optical rectification \sim Terahertz radiation
Applications

What are those pulses good for anyway?

- Bigger is better…
 - very high peak power & electric fields
 - e.g. 20 mJ in 20 fs ~ 1 TW
 - useful for nonlinear effects
 - e.g. optical rectification \sim Terahertz radiation
 - useful for micromachining
Applications

What are those pulses good for anyway?

- Bigger is better…
 - very high peak power & electric fields
e.g. 20 mJ in 20 fs ~ 1 TW
 - useful for nonlinear effects
e.g. optical rectification \sim Terahertz radiation
- useful for micromachining
- very large bandwidth (~ 350 nm)
What are those pulses good for anyway?

- Bigger is better...
 - very high peak power & electric fields
e.g. 20 mJ in 20 fs \sim 1 TW
 - useful for nonlinear effects
e.g. optical rectification \sim Terahertz radiation
 - useful for micromachining
 - very large bandwidth (\sim350 nm)
 - useful for medical applications, e.g. OCT
Applications

What are those pulses good for anyway?

- Bigger is better…
 - very high peak power & electric fields
e.g. 20 mJ in 20 fs ~ 1 TW
 - useful for nonlinear effects
e.g. optical rectification \sim Terahertz radiation
 - useful for micromachining
 - very large bandwidth (~ 350 nm)
 - useful for medical applications, e.g. OCT
 - “Freeze” fast processes in time
 useful in Chemistry and Biology
Generation of Ultrashort Pulses

- Q-switching? Not really.
- active and passive modelocking
 - additive pulse modelocking (APM)
 - colliding pulse modelocking (CPM)
 - Kerr-lens modelocking (KLM)
- extra cavity optical pulse compression
- soliton lasers
- suitable laser gain media
 Ti:sapphire, Nd:YLF, Cr:LiSAF, Cr:Forsterite
• Direct Detection: The Streak-Camera
Measurement Techniques

- Direct Detection: The Streak-Camera
- Indirect Detection: Autocorrelators
Measurement Techniques

- Direct Detection: The Streak-Camera
- Indirect Detection: Autocorrelators
TPA vs. SHG Autocorrelators

Major advantages of TPA using a photodiode are:
- very sensitive (\(\sim\) pJ)
- broad spectral response
- easy to implement
- really, really, really cheap (\(\sim\) $8 for GaAsP diode)
TPA vs. SHG Autocorrelators

Major advantages of TPA using a photodiode are

- very sensitive (\(\sim pJ \))
- broad spectral response
- easy to implement
- really, really, really cheap (\(\sim \$8 \) for GaAsP diode)

Major disadvantages using SHG crystal

- sub 10 fs pulse requires < 25 \(\mu m \) crystal
- sensitivity decreases with thickness of crystal
- sensitive to angular misalignment
- really, really, really expensive
Real-time and single-shot characterization of femtosecond laser pulses possible

- **SPIDER**
 Spectral Phase Interferometry for Direct Electric-field Reconstruction
Brand New Techniques

Real-time and single-shot characterization of femtosecond laser pulses possible

- **SPIDER**
 Spectral Phase Interferometry for Direct Electric-field Reconstruction

- **FROG**
 Frequency Resolved Optical Gating
Brand New Techniques

Real-time and single-shot characterization of femtosecond laser pulses possible

- SPIDER
 Spectral Phase Interferometry for Direct Electric-field Reconstruction

- FROG
 Frequency Resolved Optical Gating

- GRENOUILLE
 GRating-Eliminated No-nonsense Observation of Ultrafast Incident Laser Light E-fields
The signal out of an autocorrelator can be modeled by

\[G(\tau) = \int_{-\infty}^{\infty} \left\{ \left[E(t - \tau) + E(t) \right]^2 \right\}^2 dt \]
The signal out of an autocorrelator can be modeled by

\[G(\tau) = \int_{-\infty}^{\infty} \{[E(t - \tau) + E(t)]^2\}^2 \, dt \]

For an unchirped Gaussian pulse envelope, we get

\[G_{\text{int}}(\tau) = \sqrt{\frac{\pi}{a}} + 2\sqrt{\frac{\pi}{a}} \cdot \exp\left(-a\tau^2\right) \]

for the intensity autocorrelation function.
The signal out of an autocorrelator can be modeled by

\[G(\tau) = \int_{-\infty}^{\infty} \left\{ [E(t - \tau) + E(t)]^2 \right\}^2 \, dt \]

For an unchirped Gaussian pulse envelope, we get

\[G_{nc}(\tau) = \sqrt{\frac{\pi}{a}} + 2\sqrt{\frac{\pi}{a}} \cdot \exp(-a\tau^2) + \sqrt{\frac{\pi}{a}} \cdot \exp(-a\tau^2) \cdot \cos(2\omega_0\tau) \]

\[+ 4\sqrt{\frac{\pi}{a}} \cdot \exp\left(-\frac{3a\tau^2}{4}\right) \cdot \cos(\omega_0\tau) \]

for the interferometric autocorrelation function.
• Theory: 15 fs Gaussian pulse centered around 800 nm
Autocorrelation:
Theory and Experiment

- **Theory:**
 15 fs Gaussian pulse centered around 800 nm

- **Experiment:**
 Intensity autocorrelation

![Graphs showing theoretical and experimental autocorrelation](image-url)
Autocorrelation: Theory and Experiment

- **Theory:**

 15 fs Gaussian pulse centered around 800 nm

- **Experiment:**

 Intensity autocorrelation

 Interferometric autocorrelation
Autocorrelation traces don’t tell the whole story…

Spectral Measurements

![Graph](image_url)

- **Experimental Data (KMLabs TS)**
 - Gaussian Fit (TS)
 - FWHM = 40.345 nm
- **Experimental Data (Spectra-Physics Tsunami)**
 - Gaussian Fit (Tsunami)
 - FWHM = 9.075 nm

Amplitude (a.u.) vs. Wavelength (nm)
In this talk we demonstrated the
- generation of sub 40 fs pulses
- effect of dispersion on short pulses
- advantage of interferometric autocorrelation
- advent of sophisticated measurement techniques
Conclusion & Outlook

In this talk we demonstrated the
 • generation of sub 40 fs pulses
 • effect of dispersion on short pulses
 • advantage of interferometric autocorrelation
 • advent of sophisticated measurement techniques

Future research will involve
 • optimization of dispersion compensation
 • complete characterization of pulse profiles
 • physics of ultrafast pulses
I would like to acknowledge contributions to this research by the following people:

- Andrew Schober
- Ryan P. Scott
- David S. Hum
- Eleni Diamanti
- Mathieu Charbonneau-Lefort