SR QPM OPO
or
How many acronyms can you put in your title?

Dipl.-Phys. Carsten Langrock

langrock@stanford.edu

Ginzton Lab, Stanford University
• Motivation:
What are optical parametric oscillators? Why not use a laser instead?
Outline

- Motivation:
 What are optical parametric oscillators? Why not use a laser instead?

- Theory:
 SVEA, SFG, DFG, OPA, OPG, OPO, QPM

... any questions?
Outline

• Motivation:
 What are optical parametric oscillators? Why not use a laser instead?

• Theory:
 SVEA, SFG, DFG, OPA, OPG, OPO, QPM
 … any questions?

• Experimental Setup:
 What to do when you cannot measure your signal directly.
Outline

• Motivation:
 What are optical parametric oscillators?
 Why not use a laser instead?

• Theory:
 SVEA, SFG, DFG, OPA, OPG, OPO, QPM
 … any questions?

• Experimental Setup:
 What to do when you cannot measure your signal directly.

• Experimental Results:
 Temperature & QPM-Period Tuning, Pump Depletion.
Outline

- **Motivation:**
 What are optical parametric oscillators? Why not use a laser instead?

- **Theory:**
 SVEA, SFG, DFG, OPA, OPG, OPO, QPM
 … any questions?

- **Experimental Setup:**
 What to do when you cannot measure your signal directly.

- **Experimental Results:**
 Temperature & QPM-Period Tuning, Pump Depletion.

- **Conclusion:** Where do we go from here?
What are optical parametric oscillators?

- Widely tunable source for coherent radiation.
- Efficient nonlinear conversion from “pump” to “signal” wavelength.
- Low threshold for onset of oscillation.
Motivation II

Why not use a laser instead?

- **LASER**
 - collect & store wideband uncollimated spectral energy.
 - center wavelength & linewidth determined by atomic transition.
 - pump does not influence output of laser to first order.

- **OPO**
 - No energy storage. Instantaneous nonlinear process.
 - center frequency & linewidth determined by phase mismatch.
 - phase coherence between signal, idler, and pump is essential.
Theory

Optical Parametric Oscillators (OPO)

- Maxwell’s equations in source-free media
- Slowly Varying Envelope Approximation (SVEA)
- Examine $\chi^{(2)}$ processes, i.e. $P(t) \sim E^2(t)$
- Three field interaction at ω_p, ω_s, and ω_i

\[
\frac{dE_p}{dz} = -i\eta_p \omega_p d(z) E_s E_i e^{i\Delta k z} \quad \text{with} \quad \omega_p = \omega_s + \omega_i
\]
\[
\frac{dE_s}{dz} = -i\eta_s \omega_s d(z) E_p E_i^* e^{-i\Delta k z}
\]
\[
\frac{dE_i}{dz} = -i\eta_i \omega_i d(z) E_p E_s^* e^{-i\Delta k z}
\]
\[\Delta k = k_p - k_s - k_i\]
Coupled equations describe various nonlinear processes.

- **Sum Frequency Generation (SFG):**
 strong pump signal at ω_i, weak signal at ω_s
 \leadsto up-converted signal at ω_p

- **Difference Frequency Generation (DFG):**
 strong pump at ω_p, signal at ω_s \leadsto signal at ω_i

- **Parametric Generation (OPA, OPG, OPO):**
 strong pump at ω_p \leadsto generation of signals at ω_s and ω_i
Simple cartoon for optical parametric amplification.

1. Electromagnetic waves at ω_p and ω_s generate polarization at ω_i.

2. If polarization travels with same speed as free electromagnetic wave at ω_i, signal at ω_i will grow.

3. ω_i mixes with ω_p and creates polarization current at $\omega_s \rightarrow$ signal at ω_s grows.

Same principle holds for OPG and OPO where input fields at ω_s and ω_i are created out of quantum vacuum fluctuations.
Phase Matching and Quasi Phase Matching (QPM).

Solutions to coupled equations predict efficient frequency conversion only if

\[\Delta k = k_p - k_s - k_i = 0 \]

\textbf{Phase Mismatch}

Due to dispersion, this is not given, in general.

\textbf{Solution:}

- **Birefringence:**
 works, but we are stuck with material properties.

- **Quasi Phase Matching:**
 engineer appropriate phase mismatch for desired signal wavelength; take advantage of largest nonlinear coefficient.
Quasi Phase Matching (QPM).

Problem:

- $\Delta k \neq 0$
- Conversion only over crystal length $L_c = \pi / \Delta k$.
- Polarization and free wave slip out of phase.

Reset phase after L_c by changing sign of nonlinear coefficient (QPM).

Equivalent to introducing a grating $k_g = 2L_c$ with $g = 2L_c$.

Theory V
Quasi Phase Matching (QPM).

Solution:

- Reset phase after L_c by changing sign of nonlinear coefficient (QPM)
- Equivalent to introducing a grating k-vector $K_g = 2\pi/\Lambda_g$ with $\Lambda_g = 2L_c$.
Quasi Phase Matching (QPM).
Experimental Setup

Signal and idler wavelength are determined by phase mismatch:

$$\frac{1}{\Lambda_g} = \frac{n_p}{\lambda_p} - \frac{n_s}{\lambda_s} - \frac{n_i}{\lambda_i}$$

Tuning is achieved by varying either Λ_g, n_p, n_s, or n_i, i.e. change temperature or QPM period.
Experimental Results

Temperature Tuning.

Measured \(\omega_p + \omega_s \sim \omega_s \) and \(\omega_i \) via \(\omega_p = \omega_s + \omega_i \) and \(\omega_p = 1.06 \mu m. \)
15 QPM periods on chip starting at 31.5 μm, decreasing in 0.5 μm decrements.
Experimental Results III

Pump Depletion = Increased Conversion Efficiency.

As the pump energy is being increased, the conversion efficiency increases and the pump gets depleted.
In this talk we presented the theory behind OPA, OPG, OPO, and other $\chi^{(2)}$ processes.

- need for phase matching to achieve efficient conversion.
- advantage of quasi phase matching as compared to birefringent phase matching.
- generation of 1.6 μm, 3 μm, and 636 nm radiation using an OPO.
- possibility of temperature and QPM-period tuning.
Future research will involve

- direct detection of signal wavelength at 1.6 µm.
- complete characterization of conversion efficiency.
- modification of setup to lower oscillation threshold (DRO instead of SRO).
- implementation of continuously tunable QPM-period by means of “fanned” grating structure.
I would like to acknowledge contributions to this research by the following people:

- Arun Sridharan
- Karel Urbanek
- Supriyo Sinha
- David S. Hum
- Eleni Diamanti
- Mathieu Charbonneau-Lefort