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A. PROOFS AND MATHEMATICAL ARGUMENTS FOR SECTION 4: LONG-RUN
BEHAVIOR AND THE INVARIANT INDUSTRY DISTRIBUTION

LEMMA A.3: Let Assumptions 3.2 and 3.3 hold. Assume that firms follow a
common oblivious strategy μ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the ex-
pected time that each firm spends in the industry is finite. Let {Zx :x ∈ N} be a
sequence of independent Poisson random variables with means {s̃μ�λ(x) :x ∈ N},
and let Z be a Poisson random variable with mean

∑
x∈N

s̃μ�λ(x). Then:
(a) {st : t ≥ 0} is an irreducible, aperiodic, and positive recurrent Markov

process;
(b) the invariant distribution of st is a product form of Poisson random vari-

ables;
(c) for all x, st(x) ⇒Zx;
(d) nt ⇒Z.

PROOF: If every firm uses a strategy μ ∈ M̃ and entry is according to an
entry rate function λ ∈ Λ̃, then A = {st : t ≥ 0} is clearly an irreducible Markov
process. All states reach the state ∅ = {0�0� � � �} with positive probability and
all states can be reached from ∅ as well. Moreover, state ∅ is aperiodic; hence,
A is aperiodic. Finally, A is positive recurrent because the expected time to
come back from state ∅ to itself is finite (Kleinrock (1975)).

Now, let us write

st(x)=
t∑

τ=0

Wτ∑
i=1

1{Xi�t−τ=x}�(S.1)

where Wτ are i.i.d. Poisson random variables with mean λ, the first sum is taken
over all periods previous to (and including) t, the second sum is taken over the
firms that entered the industry in each period, and for each τ, Xi�t−τ are ran-
dom variables that represent the state of firm i after t − τ periods inside the
industry when using strategy μ. Since firms use oblivious strategy μ ∈ M̃ and
shocks are idiosyncratic, their state evolutions are independent, so 1{Xi�t−τ=x}
are i.i.d. across i. It follows that

∑Wτ

i=1 1{Xi�t−τ=x} is a filtered Poisson random
variable, so it is a Poisson random variable. Thus st(x), as a sum of indepen-
dent Poisson random variables, is also Poisson. Given that the expected time
a firm spends inside the industry is finite, using characteristic functions it is
straightforward to show that st(x) ⇒ Zx ∀x ∈ N. To show that {Zx :x ∈ N} is a
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sequence of independent random variables, note that by the filtering property
of Poisson random variables, for all t, {st(x) :x ∈ N} is a sequence of indepen-
dent random variables (Durrett (1996)). By summing over x ∈ N, we can show
that nt ⇒ Z. Q.E.D.

LEMMA A.4: Let Assumptions 3.2 and 3.3 hold. Assume that firms follow a
common oblivious strategy μ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the ex-
pected time that each firm spends in the industry is finite. Let {Yn :n ∈ N} be a
sequence of integer-valued i.i.d. random variables, each distributed according to
s̃μ�λ(·)/∑

x∈N
s̃μ�λ(x). Then, for all n ∈ N,

(x(1)t� � � � � x(nt )t |nt = n) ⇒ (Y1� � � � �Yn)�

PROOF: The proof relies on a well known result for Poisson processes; con-
ditional on n arrivals on an interval [0�T ], the unordered arrival times have
the same distribution as n i.i.d. uniform random variables in [0�T ].

Let us condition on nt = n. {x(j)t : j = 1� � � � � n} are the random variables that
represent the state of each of the n firms in the industry when they are sam-
pled randomly. The expected time a firm spends inside the industry is finite,
so the time a firm spends inside the industry is finite with probability 1. A firm
can increase its quality level by at most w states each period. Therefore, for
all ε > 0, there exists a state z, such that, for all j ∈ {1� � � � � n} and for all t,
P [x(j)t > z]< ε

n
. Hence, P [⋃n

j=1{x(j)t > z}|nt = n]< ε, for all t, so the sequence
of random vectors {(x(1)t� � � � � x(nt )t |nt = n) : t ≥ 0} is tight. By Theorem 9.1 in
Durrett (1996) and tightness, to prove the lemma it is enough to show that for
all n, for all (z1� � � � � zn),

lim
t→∞

P [x(j)t = zj� j = 1� � � � � n|nt = n] =
n∏

j=1

p(zj)�

where p(·) is the probability mass function (pmf) s̃μ�λ(·)/∑
x∈N

s̃μ�λ(x). Let T̃j

be the entry time period for firm (j) and let Tj = t − T̃j be its age. Then we can
write

P [x(j)t = zj� j = 1� � � � � n|nt = n](S.2)

=
∑

0≤t1<∞�����

0≤tn<∞

P [x(j)t = zj� j = 1� � � � � n|T1 = t1� � � � �Tn = tn� nt = n]

× P [T1 = t1� � � � �Tn = tn|nt = n]

=
∑

0≤t1<∞�����

0≤tn<∞

n∏
j=1

P [x(j)t = zj|Tj = tj]
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× P [T1 = t1� � � � �Tn = tn|nt = n]�
The last equation follows because the evolution of firms is independent across
firms. Note that if any tj has a value greater than t, then P [T1 = t1� � � � �Tn =
tn|nt = n] = 0. We can write

P [x(j)t = zj|Tj = tj] = P [x(j)t = zj� Tj = tj]
P [Tj = tj](S.3)

= P [Tj = tj� Xj�tj = zj]
P [Tj = tj]

= P [Tj = tj]P [Xj�tj = zj]
P [Tj = tj]

= P [Xj�tj = zj]�
where Xj�tj is a random variable that represents a firm’s state after tj periods,
conditional on having stayed in the industry. Note that for all k, {Xj�k : j ≥ 1}
are i.i.d. The second to last equation follows because the evolution of a firm is
independent of its entry time.

Now we show that

lim
t→∞

P [T1 = t1� � � � �Tn = tn|nt = n] =
n∏

j=1

u[tj]

for some pmf u. We derive this equation by invoking the relationship between
nt and a Poisson process.

Similarly to equation (S.1), we can write

nt =
t∑

τ=0

Wτ∑
i=1

Ai�t−τ�

where Ai�t−τ are i.i.d. Bernoulli random variables that equal one if the firm is
still in the industry after t−τ periods when using strategy μ and zero otherwise.
Since Ai�t−τ are i.i.d., nt�τ = ∑Wτ

i=1 Ai�t−τ is a filtered Poisson random variable
and is therefore Poisson. Let us denote its mean by αt�τ. It follows that nt is
a sum of independent Poisson random variables, so it is Poisson with mean∑t

τ=0 αt�τ.
Consider {N(t) : t ≥ 0}, a homogeneous Poisson process on the real line with

rate 1. Note that N(t) and nt are equivalent in the sense that we can construct
nt using the process {N(s) : 0 ≤ s ≤ ∑t

τ=0 αt�τ}. For each 0 ≤ τ ≤ t, with some
abuse of notation, let N(αt�τ−1� αt�τ−1 + αt�τ) be the total number of events of
the Poisson process in the interval [αt�τ−1� αt�τ−1 + αt�τ], where αt�−1 = 0. Then
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we can construct nt = ∑t

τ=0 nt�τ by defining nt�τ = N(αt�τ−1� αt�τ−1 +αt�τ) for all
τ.

Now, conditional on the event N(
∑t

τ=0 αt�τ) = n, the unordered arrival times
of N(t) have the same distribution as n i.i.d. uniform random variables in
[0�∑t

τ=0 αt�τ] (Durrett (1996)). By the equivalence argument described above,
conditional on nt = n, the unordered arrival times of the n firms are i.i.d. dis-
crete random variables with pmf:

vt(τ)= αt�τ∑t

j=0 αt�j

� 0 ≤ τ ≤ t�

Recall that αt�τ is the expected number of firms that entered at time τ and are
still inside the industry at time t. Since the entry rate is oblivious, all firms use
the same oblivious strategy and shocks are idiosyncratic, αt�τ = α̃t−τ, where α̃t−τ

is the expected number of firms that entered the industry at time s, for any s,
and are still inside the industry at time s+ t−τ. This suggests making a change
of variable and defining

ut(k) = α̃k∑t

j=0 α̃j

� 0 ≤ k≤ t�

ut(k) is the probability a random sampled firm from the industry at time t
entered k periods ago, conditional on nt = n. Taking the limit as t tends to
infinity, we get that

lim
t→∞

ut(k) = u(k) = α̃k∑∞
j=0 α̃j

� 0 ≤ k <∞�

provided that limt→∞ E[nt] = ∑∞
j=0 α̃j <∞, which is true because the expected

time that each firm spends in the industry is finite. u(k) is the probability a
random sampled firm, while the industry state is distributed according to its in-
variant distribution, entered k periods before the sampling period. Therefore,

lim
t→∞

P [T1 = t1� � � � �Tn = tn|nt = n] =
n∏

j=1

u[tj]�

Replacing the previous equation together with equation (S.3) into equa-
tion (S.2) we obtain

lim
t→∞

P [x(j)t = zj� j = 1� � � � � n|nt = n] =
n∏

j=1

∑
0≤t<∞

P [Xj�t = zj]u(t)�

where the interchange between the infinite sum and the limit follows by the
dominated convergence theorem. The sum yields the pmf p(·). The previ-
ous equation proves that, for all n ∈ N, (x(1)t� � � � � x(nt )t |nt = n) ⇒ (Y1� � � � �Yn),
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where Y1� � � � �Yn are i.i.d. random variables with pmf p(·) which does not de-
pend on n.

To finish, consider a very large time period. Formally, suppose that s0 is
sampled from the invariant distribution of {st : t ≥ 0} (which is well defined by
Lemma A.3). In this case, st is a stationary process; st is distributed according
to the invariant distribution for all t ≥ 0:

s̃μ�λ(x) =E[st(x)] =E

[
nt∑
j=1

1{x(j)t=x}

]
�

Conditioning on nt and considering that we already proved that {x(j)t : j =
1� � � � � n} are i.i.d. with pmf p(·), we conclude that p(·) = s̃μ�λ(·)/∑

x∈N
s̃μ�λ(x). Q.E.D.
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