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1 Introduction to twolc

twolc, for Two-Level Compiler, is a high-level language for describing morpho-
logical alternations as in fly:flies, swim:swimming and wiggle:wiggling. The twolc
syntax is based on the declarative system of rule constraints, known as TWO-LEVEL

RULES, proposed in Kimmo Koskenniemi’s 1983 dissertation (Koskenniemi, 1983;
Koskenniemi, 1984).

Like the replace rules described in Chapter 3 of (Beesley and Karttunen, 2003),
twolc rules denote regular relations. But twolc rules have a distinct syntax and se-
mantics, and they require the linguist to adopt a different mindset and grammar-
writing approach. This chapter describes the syntax of twolc source files, the twolc
compiler interface, and the use of the results within finite-state systems.

At Xerox, where developers have a choice, they are increasingly avoiding twolc
and using replace rules. For the time being, some developers will have to learn
twolc as well as replace rules, especially those who need to support legacy systems.

twolc rules are always written in a file using a text editor like xemacs, emacs or
vi. The twolc compiler interface, written in C, provides commands for the syntac-
tic checking of source files, compilation, testing, and writing of the results to file.
Two distinct formats of output can be generated: 1) standard Xerox binary format
suitable for composition, inside lexc, with lexicons and other transducers produced
with the Xerox finite-state tools, and 2) TABULAR format, suitable for use by tra-
ditional two-level or “KIMMO” systems, in particular those written with the Ling-
soft TwoL implementation and Evan Antworth’s PC-KIMMO (Antworth, 1990),
which is available from the Summer Institute of Linguistics (SIL). 1

The introduction will continue with a bit of history, laying the groundwork for
understanding why twolc rules were invented and how they work. Special attention
will be paid to visualizing how twolc rules can fit into an overall grammar.

1.1 History

1.1.1 The origins of finite-state morphology

Traditional phonological grammars, formalized in the 1960s by Noam Chomsky
and Morris Halle (Chomsky and Halle, 1968), consisted of an ordered sequence of
REWRITE RULES that converted abstract phonological representations into surface
forms through a series of intermediate representations. Such rewrite rules have the
general form ��������� 	 where � , � , � , and 	 can be arbitrarily complex strings or
feature-matrices. The rule is read “ � is rewritten as � in the environment between� and 	 ”. In mathematical linguistics (Partee et al., 1993), such rules are called
CONTEXT-SENSITIVE REWRITE RULES, and they are more powerful than regular
expressions or context-free rewrite rules.

In 1972, C. Douglas Johnson published his dissertation, Formal Aspects of Phono-
logical Description (Johnson, 1972), wherein he showed that phonological rewrite

1http://www.sil.org/computing/catalog/pc-kimmo.html



2 1 INTRODUCTION TO TWOLC

rules are actually much less powerful than the notation suggests. Johnson observed
that while the same context-sensitive rule could be applied several times recursively
to its own output, phonologists have always assumed implicitly that the site of ap-
plication moves to the right or to the left of the string after each application. For
example, if the rule �
� ����� 	 is used to rewrite the string ����	 as ���	 , any
subsequent application of the same rule must leave the � part unchanged, affecting
only � or 	 . Johnson demonstrated that the effect of this constraint is that the pairs
of inputs and outputs produced by a phonological rewrite rule can be modeled by a
finite-state transducer. Unfortunately, this result was largely overlooked at the time
and was rediscovered by Ronald M. Kaplan and Martin Kay around 1980 (Kaplan
and Kay, 1981; Kaplan and Kay, 1994). Putting things into a more algebraic per-
spective than Johnson, Kaplan and Kay showed that phonological rewrite rules de-
scribe REGULAR RELATIONS. By definition, a regular relation can be represented
by a finite-state transducer.

Johnson was already aware of an important mathematical property of finite-
state transducers (Schützenberger, 1961): there exists, for any pair of transducers
applied sequentially, an equivalent single transducer. Any cascade of rule transduc-
ers can in principle be composed into a single transducer that maps lexical forms
directly into the corresponding surface forms, and vice versa, without any inter-
mediate representations. Later, Kaplan and Kay had the same idea, illustrated in
Figure 1.

Rule 1

Rule n

Rule 2

...

Lexical Strings

Surface Strings

FST
Single Rule

Surface Strings

Lexical Strings

Figure 1: A Cascade of Finite-State Rewrite Rules Composed into an Single
Equivalent FST

These theoretical insights did not immediately lead to practical results. The de-
velopment of a compiler for rewrite rules turned out to be a very complex task. It
became clear that building a compiler required as a first step a complete implemen-
tation of basic finite-state operations such as union, intersection, complementation,
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and composition. Developing a complete finite-state calculus was a challenge in
itself on the computers that were available at the time.

Another reason for the slow progress may have been that there were persistent
doubts about the practicality of the approach for morphological analysis. Tradi-
tional phonological rewrite rules describe the correspondence between lexical forms
and surface forms as a uni-directional, sequential mapping from lexical forms to
surface forms. Even if it was possible to model the generation of surface forms ef-
ficiently by means of finite-state transducers, it was not evident that it would lead
to an efficient analysis procedure going in the reverse direction, from surface forms
to lexical forms.

kampatkaNpat

kammat

kampat kammat

Surface Strings

N −> m || _ p

p −> m || m _

Lexical Strings

Intermediate Strings

kammat

Figure 2: Rules Mapping kammat to kaNpat, kampat, kammat

The kaNpat exercise (see Beesley&Karttunen (2003), Section 3.5.3) is a sim-
ple illustration of the problem. The transducers compiled from the two xfst replace
rules,

N -> m || _ p

and

p -> m || m _

map the lexical form “kaNpat” unambiguously down to “kammat”, with “kampat”
as the intermediate representation (see Beesley&Karttune (2003), Figure 3.12). How-
ever if we apply the same transducers in the upward direction to the input “kammat”,
we get the three results “kaNpat”, “kampat” and “kammat” shown in Figure 2.
The reason is that the surface form “kammat” has two potential sources on the in-
termediate level; the downward application of the p -> m || m rule maps
both “kampat” and “kammat” to the same surface form. The intermediate form
“kampat” in turn could come either from “kampat” or from “kaNpat” by the
downward application of the N -> m || p rule. The two rule transducers
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are unambiguous when applied in the downward direction but ambiguous when ap-
plied in the upward direction.

This asymmetry is an inherent property of the generative approach to phono-
logical description. If all the rules are deterministic and obligatory and if the order
of the rules is fixed, then each lexical form generates only one surface form. But
a surface form can typically be generated in more than one way, and the number
of possible analyses grows with the number of rules involved. Some of the anal-
yses may eventually turn out to be invalid because the putative lexical forms, say
“kammat” and “kampat” in this case, might not exist in the language. But in order
to look them up in the lexicon, the system first had to complete the analysis, pro-
ducing all the phonological possibilities. The lexicon was assumed to be a separate
module that was used subsequently to accept or reject the possible analyses. De-
pending on the number of rules involved, a surface form could easily have dozens
or hundreds of potential lexical forms, even an infinite number in the case of certain
deletion rules.

Although the generation problem had been solved by Johnson, Kaplan and Kay,
at least in principle, the problem of efficient morphological analysis in the Chomsky-
Halle paradigm was still seen as a formidable challenge. As counterintuitive as
it was from a psycholinguistic point of view, it appeared that analysis was much
harder computationally than generation. Composing all the rule transducers into a
single one would not solve the “over-analysis” problem. Because the resulting sin-
gle transducer is equivalent to the original cascade, the ambiguity remains.

The solution to the over-analysis problem should have been obvious: to for-
malize the lexicon itself as a finite-state transducer and compose the lexicon with
the rules. With the lexicon included in the composition, all the spurious ambigu-
ities produced by the rules are eliminated at compile time. The runtime analysis
becomes more efficient because the resulting single transducer contains only lexi-
cal forms that actually exist in the language.

The idea of composing the lexicon and the rules together is not mentioned in
Johnson’s book or in the early Xerox work. Although there obviously had to be
some interface relating a lexicon component to a rule component, these were tra-
ditionally thought of as different types of objects. Furthermore, rewrite rules were
seen as applying to individual word forms; the idea of applying them simultane-
ously to a lexicon as a whole required a new mindset and computational tools that
were not yet available.

The observation that a single finite-state transducer could encode the inventory
of valid lexical forms as well as the mapping from lexical forms to surface forms
took a while to emerge. When it first appeared in print (Karttunen et al., 1992), it
was not in connection with traditional rewrite rules but with an entirely different
finite-state formalism that had been introduced in the meantime, Kimmo Kosken-
niemi’s TWO-LEVEL RULES (Koskenniemi, 1983).
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Figure 3: An Example of Two-Level Constraints

1.1.2 Two-Level Morphology

In the spring of 1981 when Kimmo Koskenniemi came to the USA for a visit, he
learned about Kaplan and Kay’s finite-state discovery. (They weren’t then aware of
Johnson’s 1972 publication.) Xerox had begun work on the finite-state algorithms,
but they would prove to be many years in the making. Koskenniemi was not con-
vinced that efficient morphological analysis would ever be practical with generative
rules, even if they were compiled into finite-state transducers. Some other way to
use finite automata might be more efficient.

Back in Finland, Koskenniemi invented a new way to describe phonological al-
ternations in finite-state terms. Instead of cascaded rules with intermediate stages
and the computational problems they seemed to lead to, rules could be thought of as
statements that directly constrain the surface realization of lexical strings. Multiple
rules would be applied not sequentially but in parallel. Each rule would constrain a
certain lexical/surface correspondence and the environment in which the correspon-
dence was allowed, required, or prohibited. For his 1983 dissertation, Koskenniemi
constructed an ingenious implementation of his constraint-based model that did not
depend on a rule compiler, composition or any other finite-state algorithm, and he
called it TWO-LEVEL MORPHOLOGY. Two-level morphology is based on three
ideas:

� Rules are symbol-to-symbol constraints that are applied in parallel, not se-
quentially like rewrite rules.

� The constraints can refer to the lexical context, to the surface context, or to
both contexts at the same time.

� Lexical lookup and morphological analysis are performed in tandem.

To illustrate the first two principles we can turn back to the kaNpat example
again. A two-level description of the lexical-surface relation is sketched in Fig-
ure 3. As the lines indicate, each symbol in the lexical string “kaNpat” is paired
with its realization in the surface string “kammat”. Two of the symbol pairs in Fig-
ure 3 are constrained by the context marked by the associated box. The N:m pair
is restricted to the environment having an immediately following p on the lexical
side. In fact the constraint is tighter. In this context, all other possible realizations



6 1 INTRODUCTION TO TWOLC

of a lexical N are prohibited. Similarly, the p:m pair requires the preceding surface
m, and no other realization of p is allowed here. The two constraints are indepen-
dent of each other. Acting in parallel, they have the same effect as the cascade of the
two rewrite rules in Figure 2. In Koskenniemi’s notation, these rules are written as
N:m <=> p: and p:m <=> :m , where <=> is an operator that combines
a context restriction with the prohibition of any other realization for the lexical sym-
bol of the pair. The p followed by a colon in the right context of first rule, p:, in-
dicates that p refers to a lexical symbol; the colon preceding m in the left context
of the second rule, :m, indicates that m is a surface symbol.

p

p

s

s e

0s p + s

s e

0 s

s0

+y

s0ip i

y

Figure 4: A Two-Level View of y � ie Alternation in English

Two-level rules may refer to both sides of the context at the same time. The
y � ie alternation in English plural nouns could be described by two rules: one re-
alizes y as i in front of an epenthetic e; the other inserts an epenthetic e between a
lexical consonant-y sequence and a morpheme boundary (+) that is followed by an
s. Figure 4 illustrates the y:i and 0:e constraints.

Note that the e in Figure 4 is paired with a 0 (= zero) on the lexical level. For-
mally the rules are expressed as y:i <=> 0:e and 0:e <=> y: %+:.
From the point of view of two-level rules, zero is a symbol like any other; it can
be used to constrain the realization of other symbols. In fact, all the other rules
must “know” where zeros may occur. In two-level rules, the zeros are not epsilons,
even though they are treated as such when two-level rules are eventually applied to
strings.

Like replace rules, two-level rules describe regular relations; but there is an im-
portant difference. Because the zeros in two-level rules are in fact ordinary sym-
bols, a two-level rule represents an equal-length relation (see Beesley&Karttunen
(2003), Section 2.3). Counting the “hard zeros”, each string and its related strings
always have exactly the same length. This has an important consequence: although
transducers cannot in general be intersected (see Beesley&Karttunen (2003), Sec-
tion 2.3.3), equal-length transducers are a special case, and so Koskenniemi’s con-
straint transducers can be intersected. In fact, when a set of two-level transducers
are applied in parallel, the apply routine in a KIMMO-style system simulates the
intersection of the rule automata and the composition of the input string with the
virtual constraint network (see Beesley&Karttunen (2003), Section 1.6).

Figure 5 illustrates the upward application of the N:m and p:m rules sketched
in Figure 3 to the input “kammat”. At each point in the process, all lexical can-
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didates corresponding to the current surface symbol are considered one by one. If
both rules accept the pair, the process moves on to the next point in the input. In the
situation shown in Figure 5, the pair p:m will be accepted by both rules. The N:m
rule accepts the pair because the p on the lexical side is required to license the N:m
pair that has tentatively been accepted at the previous step. The p:m rule accepts
the p:m pair because the preceding pair has an m on the surface side.

Rule Rule
p:mN:m

ak

k a a tm

pN

m

Figure 5: Parallel Application of Two-Level Rules for Analysis

When the pair in question has been accepted, the apply routine moves on to con-
sider the next input symbol and eventually comes back to the point shown in Fig-
ure 5 to consider other possible lexical counterparts of a surface m. They will all be
rejected by the N:m rule, and the apply routine will return to the previous m in the
input to consider other alternative lexical counterparts for it such as p and m. At
every point in the input the apply routine must also consider all possible deletions,
that is, pairs such as +:0 and e:0 that have a zero on the input side.

Applying the rules in parallel does not in itself solve the over-analysis prob-
lem discussed in the previous section. The two constraints sketched above allow
“kammat” to be analyzed as “kaNpat”, “kampat”, or “kammat”. However,
the problem is easy to manage in a system that has only two levels; the possible
upper-side symbols are constrained at each step by consulting the lexicon, which is
itself implemented as a kind of network. In Koskenniemi’s two-level system, lexi-
cal lookup and the analysis of the surface form are performed in tandem. In order to
arrive at the point shown in Figure 5, we must have traversed a path in the lexicon
that contains the lexical string in question, see Figure 6. The lexicon thus acts as a
continuous lexical filter on the analysis. The analysis routine only considers sym-
bol pairs whose lexical side matches one of the outgoing arcs of the current state of
the lexicon network.

In Koskenniemi’s 1983 system, the lexicon was represented as a forest of tries
(also known as letter trees), tied together by continuation-class links from leaves
of one tree to roots of another tree or trees in the forest.2 Koskenniemi’s lexicon
can be thought of as a partially deterministic, unminimized simple network. In the
Xerox lexc tool, the lexicon is actually compiled into a minimized network, typi-

2The TEXFIN analyzer developed at the University of Texas at Austin (Karttunen et al., 1981) had
the same lexicon architecture.
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Rule
N:m

Rule
p:m

ma tak m

p
k a

N

Figure 6: Following a Path in the Lexicon. The lexicon acts as a continuous filter
on the analyses produced by a traditional two-level system.

cally a transducer, but the filtering principle is the same. The lookup utility in lexc
matches the lexical string proposed by the rules directly against the lower side of
the lexicon. It does not pursue analyses that have no matching lexical path. Fur-
thermore, the lexicon may be composed with the rules at compile time to produce a
single transducer that maps surface forms directly to lexical forms, and vice versa
(see the Section 4.5.1 in Beesley&Karttunen (2003)).

Koskenniemi’s two-level morphology was the first practical general model in
the history of computational linguistics for the analysis of morphologically com-
plex languages. The language-specific components, the rules and the lexicon, were
combined with a universal runtime engine applicable to all languages. The original
implementation was primarily intended for analysis, but the model was in principle
bidirectional and could be used for generation.

1.1.3 Linguistic Issues

Although the two-level approach to morphological analysis was quickly accepted as
a useful practical method, the linguistic insight behind it was not picked up by main-
stream linguists. The idea of rules as parallel constraints between a lexical symbol
and its surface counterpart was not taken seriously at the time outside the circle of
computational linguists. Many arguments had been advanced in the literature to
show that phonological alternations could not be described or explained adequately
without sequential rewrite rules. It went largely unnoticed that two-level rules could
have the same effect as ordered rewrite rules because two-level rules allow the re-
alization of a lexical symbol to be constrained either by the lexical side or by the
surface side. The standard arguments for rule ordering were based on the a priori
assumption that a rule could refer only to the input context.

But the world has changed. Current phonologists, writing in the framework of
OT (Optimality Theory), are sharply critical of the “serialist” tradition of ordered
rewrite rules that Johnson, Kaplan and Kay wanted to formalize (Prince and Smolen-
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sky, 1993; Kager, 1999; McCarthy, 2002).3 In a nutshell, OT is a two-level theory
with ranked parallel constraints. Many types of optimality constraints can be repre-
sented trivially as two-level rules. In contrast to Koskenniemi’s “hard” constraints,
optimality constraints are “soft” and violable. There are of course many other dif-
ferences. Most importantly, OT constraints are meant to be universal. The fact that
two-level rules can describe orthographic idiosyncrasies such as the y � ie alterna-
tion in English with no appeal to universal principles makes the approach uninter-
esting from the OT point of view.4

1.1.4 Two-Level Rule Compilers

In his 1983 dissertation, Koskenniemi introduced a formalism for two-level rules.
The semantics of two-level rules were well-defined but there was no rule compiler
available at the time. Koskenniemi and other early practitioners of two-level mor-
phology had to compile their rules by hand into finite-state transducers. This is te-
dious in the extreme and demands a detailed understanding of transducers and rule
semantics that few human beings can be expected to grasp. A complex rule with
multiple overlapping contexts may take hours of concentrated effort to compile and
test, even for an expert human “compiler”. In practice, linguists using two-level
morphology consciously or unconsciously tended to postulate rather surfacy lexi-
cal strings, which kept the two-level rules relatively simple.

Although two-level rules are formally quite different from the rewrite rules stud-
ied by Kaplan and Kay, the basic finite-state methods that had been developed for
compiling rewrite-rules were applicable to two-level rules as well. In both formalisms,
the most difficult case is a rule where the symbol that is replaced or constrained
appears also in the context part of the rule. This problem Kaplan and Kay had al-
ready solved by an ingenious technique for introducing and then eliminating auxil-
iary symbols to mark context boundaries. Another fundamental insight was the en-
coding of contextual requirements in terms of double negation. For example, a con-
straint such as “p must be followed by q” can be expressed as “it is not the case that
something ending in p is not followed by something starting with q.” In Kosken-
niemi’s formalism, the same constraint is expressed by the rule p => q.

In the summer of 1985, when Koskenniemi was a visitor at the Center for the
Study of Language and Information (CSLI) at Stanford, Kaplan and Koskenniemi
worked out the basic compilation algorithm for two-level rules. The first two-level
rule compiler was written in InterLisp by Koskenniemi and Karttunen in 1985-87
using Kaplan’s implementation of the finite-state calculus (Koskenniemi, 1986; Kart-
tunen et al., 1987). The current C-version of the compiler, based on Karttunen’s
1989 Common Lisp implementation, was written by Lauri Karttunen, Todd Yam-
pol and Kenneth R. Beesley in consultation with Kaplan at Xerox PARC in 1991-
92 (Karttunen and Beesley, 1992). The landmark 1994 article by Kaplan and Kay

3The term SERIAL, a pejorative term in an OT context, refers to SEQUENTIAL rule application.
4Finite-state approaches to Optimality Theory have been explored in several recent articles (Eis-

ner, 1997; Frank and Satta, 1998; Karttunen, 1998).
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on the mathematical foundations of finite-state linguistics gives a compilation al-
gorithm for phonological rewrite rules and for Koskenniemi’s two-level rules.5

The Xerox two-level compiler has been used to compile rules for large-scale
morphological analyzers for French, English, Spanish, Portuguese, Dutch, Italian
and many other languages.

1.1.5 Implementations of Two-Level Morphology

The first implementation of Two-Level Morphology (Koskenniemi, 1983) was quickly
followed by others. The most influential implementation was by Lauri Karttunen
and his students at the University of Texas (Karttunen, 1983; Gajek et al., 1983;
Dalrymple et al., 1983). Published accounts of this project inspired many copies
and variations, including those by Beesley (Beesley, 1989; Beesley, 1990). A copy-
righted but freely distributed implementation of classic Two-Level Morphology,
called PC-KIMMO, available from the Summer Institute of Linguistics (Antworth,
1990), runs on PCs, Macs and Unix systems.6

In Europe, two-level morphological analyzers became a standard component
in several large systems for natural-language processing such as the British Alvey
project (Black et al., 1987; Ritchie et al., 1987; Ritchie et al., 1992), SRI’s CLE Core
Language Engine (Carter, 1995), the ALEP Natural Language Engineering Platform
(Pulman, 1991) and the MULTEXT project (Armstrong, 1996). ALEP and MULTEXT

were funded by the European Commission. The MMORPH morphology tool (Petit-
pierre and Russel, 1995) built at ISSCO for MULTEXT is now available under GNU

Public License.7

Some of these systems were implemented in Lisp (Alvey), some in Prolog (CLE,
ALEP), some in C (MMORPH). They were based on simplified two-level rules, the
so-called PARTITION-BASED formalism (Ruessink, 1989), which was claimed to
be easier for linguists to learn than the original Koskenniemi notation. But none
of these systems had a finite-state rule compiler. Another difference was that mor-
phological parsing could be constrained by feature unification. Because the rules
were interpreted at runtime and because of the unification overhead, these systems
were not very efficient, and two-level morphology acquired, undeservedly, a rep-
utation for being slow. MMORPH solves the speed problem by allowing the user
to run the morphology tool off-line to produce a database of fully inflected word
forms and their lemmas. A compilation algorithm has since been developed for the
partition-based formalism (Grimley-Evans et al., 1996), but to our knowledge there
is no publicly available compiler for it.

5The Kaplan and Kay article appeared many years after the work on the two-level compiler was
completed but before the implementation of the so-called REPLACE RULES in the current Xerox
regular-expression compiler. The article is accurate on the former topic, but the compilation algo-
rithm for replace rules (Karttunen, 1995; Karttunen, 1996; Kempe and Karttunen, 1996) differs in
many details from the compilation method for rewrite rules described by Kaplan and Kay.

6http://www.sil.org/computing/catalog/pc-kimmo.html
7http://packages.debian.org/stable/misc/mmorph.html
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A considerable amount of work has been done, and continues to be done, in the
general framework of Two-Level Morphology, and the twolc compiler has made
that work much less onerous. The newer Xerox replace rules, which are part of an
extended regular-expression language and are compiled using the regular-expression
compiler in xfst, have largely supplanted twolc rules in some applications. For the
time being, some linguistic developers will have to master both replace rules and
twolc rules.

1.2 Visualizing twolc Rules

At Xerox, twolc rules are compiled automatically into rule transducers and are typ-
ically composed on the lower side of lexicon transducers made with lexc. As shown
in Figure 7, the two-level rules conceptually map between strings on the lower side
of the lexicon and real surface strings. That is, the upper side of each twolc rule
transducer refers to the lower-side language of the lexicon, and the lower side of
each rule transducer is the surface language. The twolc rules are arranged in one
horizontal level and apply in parallel—the order of the rules in a twolc file is there-
fore not significant.

(FST Compiled from lexc)

Upper Side

Lower Side

FSTFSTFSTFSTFSTFST

Surface Strings

Figure 7: twolc Rules Relate Lower-Side Lexicon Strings and Surface Strings.
twolc rules apply in parallel, and their relative order is not significant.

This model of parallel, simultaneously applied twolc rules must be sharply con-
trasted with the serial or cascade model of replace rules, as shown in Figure 8. Re-
place rules are arranged vertically, mapping strings from the lower side of the lexi-
con through a cascade of steps down to the surface level. The following differences
must be noted and understood:
� Replace rules are organized vertically, in a cascade, and so they potentially
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Upper Side

(FST Compiled from lexc)

Lower Side

FST

FST

FST

Surface Strings

...

Figure 8: A Cascade of Replace Rules. In a cascade, rules can “feed” each other,
and so the proper ordering of the rules is often crucial.

feed each other. In contrast, a grammar of twolc rules is organized horizon-
tally; the twolc rules apply in parallel and do not feed each other.

� Because they can feed each other, replace rules must usually be ordered care-
fully. A grammar of twolc rules, on the other hand, can be written in any order
without affecting the output at all. Rule order in a twolc grammar is formally
insignificant.8

� Replace rules conceptually produce many intermediate languages (levels) when
mapping between the lower side of the lexicon and the final surface language.
twolc rules each map directly from the lower-side of the lexicon to the surface
in one step.

� twolc rules conceptually apply simultaneously; this avoids the ordering prob-
lems but means that sets of twolc rules must be carefully written to avoid
nasty and often mysterious conflicts among rules. Correct, non-conflicting

8In a PC-KIMMO-like system, in which each two-level rule is stored as a separate transducer and
consulted individually at each step of analysis, rule order can affect the performance but not the output
of a system. In particular, performance can be improved by identifying the rules that most frequently
block analysis paths in practice, and ordering them early in the set so that they are checked first.
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twolc rule sets are notoriously difficult to write when some of the rules per-
form deletion or, especially, epenthesis.

� Replace rules are compiled using the normal xfst regular-expression com-
piler, which is invoked by the read regex and define commands; replace rules
are just an extension of the Xerox regular-expression metalanguage. twolc
rules must be compiled using the dedicated twolc compiler that can be ac-
cessed only through the twolc interface.

A system of replace rules is relatively easy to check and modify because each
rule can be applied individually. The output from one rule can be typed as input
to the next rule and the effect of a whole cascade of replace rules can be checked
step by step. When we move to twolc rules, however, the semantics of the rules
demand that we conceive of them always as simultaneously applied constraints on
the relation between the lexical language and the surface language. Because twolc
rules are designed to apply in parallel, it is difficult to test them individually.

Written correctly, grammars of unordered twolc rules can perform the same map-
pings that require carefully ordered cascades of replace rules. Conversely, any twolc
grammar can be rewritten as a grammar of replace rules; this formal equivalence is
guaranteed by the fact that both formalisms are just metalanguages for describing
regular relations. The practical choice is therefore one of notational perspicuity, hu-
man ease of use, and human taste. Xerox developers, given a choice between twolc
rules and replace rules, are increasingly choosing replace rules.

1.3 Plan of Attack

The presentation will continue as follows:

� Section 2 (Basic twolc Syntax) describes the basic syntax and interface com-
mands needed to get started, consolidating the concepts with some practical
exercises.

� Section 3 (Full twolc Syntax) completes the formal description.

� Section 4 (The Art and Craft of Writing twolc Grammars) discusses some
useful tricks and idioms.

� Section 5 (Debugging twolc Rules) explains why twolc rules conflict with
each other and how to understand and resolve the clashes. The troublesome
epenthesis rules and diacritics, as well as classic programming errors, are also
discussed.

� Section 6 (Final Reflections on Two-Level Rules) looks at the real choice be-
tween using twolc or replace rules in various applications. The possibility of
upward-oriented two-level rules is also explored.
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2 Basic twolc Syntax

This section contains a description of the basic twolc syntax that you need to get
started. twolc source files are created using a text editor such as emacs, xemacs
or vi. Each twolc file consists of named SECTIONS, two of which, the Alphabet
section and the Rules section, are obligatory.

2.1 Alphabet

The Alphabet keyword introduces the obligatory Alphabet section, which must
appear at the top of the twolc source file. The Alphabet section must contain at least
one declared upper:lower symbol pair and is terminated by a semicolon.

Alphabet a:a ;

Figure 9: A Minimal Alphabet Section. The Alphabet section is required and
must appear at the top of the twolc source file.

twolc grammars operate relative to an alphabet of character pairs such as a:a,
a:0, 0:u, e:i, etc. In twolc rules, the notation z:y must always have a single symbol
on the left and a single symbol on the right of the colon. As in regular expressions,
the symbol to the left of the colon is the upper-side symbol, and the symbol on the
right of the colon is the lower-side symbol. When only a single symbol a is written,
as in Figure 10, it is automatically interpreted by twolc as a shorthand notation for
a:a.

Alphabet a ;

Figure 10: Declaration of a is Equivalent to a:a

The alphabet in a twolc grammar always consists of SYMBOL PAIRS, some-
times called FEASIBLE PAIRS in two-level systems. twolc uses the u:d no-
tation to designate a symbol pair with u on the upper side and d on the lower
side. Both u and d must be single symbols in a twolc grammar.

By default, twolc assumes that the identity symbol pairs, a:a, b:b, c:c, d:d, etc.,
are part of the alphabet; they do not normally have to be declared. Alphabet pairs
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like e:i and h:0, representing phonological or orthographical alternations, can be
declared explicitly in the Alphabet section, or they can be declared implicitly
simply by using them in a rule.

The assumptions about default identity pairs, such as a:a, b:b, c:c, etc., being in
the alphabet are overridden by the explicit “mentioning” of particular symbols. For
example, the declaration of the symbol pair a:e in Figure 11 involves mentioning
both a and e, and so it overrides the default assumption that a:a and e:e are possible
character pairs in the alphabet.

Alphabet a:e ;

Figure 11: Declaring a:e Suppresses the Default Declaration of a:a and e:e

In practice, declaring a:e by itself causes twolc to conclude that a can appear only on
the lexical side and that e can appear only on the surface side. If you wish to declare
a:e and yet retain a:a and e:e as possible symbol pairs, you must then declare a:a
and e:e as well as in Figure 12; alternatively a:a and e:e are declared implicitly if
they are used anywhere in a rule.

Alphabet a:e a e ;

Figure 12: Regaining a:a and e:e by Overt Declaration

In practice, the alphabet in a twolc grammar is often a source of errors and
mystery, especially when a mistake in a rule inadvertently declares an un-
intended symbol pair.

2.2 Basic Rules

The Rules keyword introduces the obligatory Rules section, which must contain
at least one rule.

2.2.1 Rule Syntax

The most commonly used twolc rules are built on the template shown in Figure 13.
Each twolc rule must be preceded by a unique name in double quotes. The Center
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"Unique Rule Name"

Center <=> LeftContext _ RightContext ;

Figure 13: The Most Commonly Used twolc Rule Template

part on the left side of a twolc rule typically consists of a single symbol pair like
u:d, where u is the upper-level symbol and d is the lower-level symbol.

Rules

"Rule 1"
s:z <=> Vowel _ Vowel ;

Figure 14: A Simple Rules section with one Two-Level Rule. The keyword
Rules introduces the section, which must contain one or more rules. Each rule
must have a unique name.

The Center may also be a union of two or more symbol pairs, e.g. [u1:d1 |
u2:d2], that are subject to identical constraints. For example, to indicate that the
voiced stops b, d, and g are all realized as unvoiced in the same context (e.g. at the
end of the word, as in some Germanic languages), one would write the Center as [
b:p | d:t | g:k ] as in Figure 15.

"Rule 2"
[ b:p | d:t | g:k ] <=> _ .#. ;

Figure 15: A Two-Level Rule with a Complex Left-Hand Side

After the Center comes an operator; the most commonly used is the <=> or
double-arrow operator, typed as a left angle-bracket, an equal sign, and a right angle-
bracket. After the operator, the LeftContext and RightContext are arbitrarily com-
plex twolc regular expressions that surround an underscore ( ) indicating the en-
vironment in which the Center relation is constrained. The LeftContext and/or the
RightContext may be empty. There may be multiple contexts, and each is termi-
nated with a semicolon as shown in Figure 16.

One or more rules may appear in the Rules section. The order of the rules in
a twolc file has no formal effect on the functioning of the grammar.
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"Rule 3"
n:m <=> .#. _ ;

u _ i ;
i _ u ;

Figure 16: A Two-Level Rule with a Multiple Contexts. Each context must be
terminated with a semicolon.

2.2.2 twolc Rule Operators

In addition to the double-arrow <=> twolc rule operator, which is by far the most
frequently used in practice, there are also the right-arrow =>, the left arrow <=,
and the negated left-arrow /<= operators. All four operators are exemplified and
explained in Table 1.

The key to success in reading, writing, and debugging twolc rules is to know
the semantics of the rule operators by heart. As unfashionable as it may seem, the
student is urged to commit Table 1 to memory. There is no avoiding the fact that
the mastery of twolc rules is difficult for many students, but it’s impossible for those
who do not learn the semantics of the rule operators.

Figure 17 shows examples of rules with the four different operator types and
the string pairs that they allow and block; the blocked string pairs are crossed out.
After learning the semantics of twolc rule operators, you should be able to explain
why the crossed-out string pairs are blocked by each rule, and why the other string
pairs are allowed.

Note that in twolc rules the left-arrow and right-arrow constraints are not
symmetrical.

2.2.3 twolc Rule Contexts

Complex left contexts and right contexts are built using a syntax that resembles xfst
regular expressions in many, but not all, ways. The following are the main points
of twolc regular expressions:

� A notation u:d is a regular expression that denotes the relation of upper-side
u to lower-side d. In twolc the colon notation u:dmust always have at most
a single symbol on each side of the colon.

� twolc contexts are always two-level. If a rule context includes a symbol x
written alone, it is interpreted as x:x. The context written p: matches any
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it must be in the context l _ r.  
1.  If the symbol pair a:b appears,

be realized on the surface as b.
context l _ r, then it must be
2.  If lexical a appears in the

If lexical a appears in the context  
l _ r, it must be realized on the 
surface as b.

If the symbol pair a:b appears,
it must be in the context l _ r.  

1.  If the symbol pair a:b appears
outside the context l _ r, FAIL.

a:b <=> l _ r ;

a:b <=  l _ r ;

a:b /<= l _ r ;

If the symbol pair a:b appears
outside the context l _ r, FAIL.

If lexical a appears in the context
l _ r and is realized as anything
other than b, FAIL.

If lexical a is realized as b in the

anything other than b, FAIL.

2. If lexical a appears in the
context l _ r and is realized as

context l _ r, FAIL.
Lexical a is never realized as b
in the context l _ r .

Positive Reading Negative Reading

a:b  => l _ r ;  

Table 1: twolc Rule Operator Semantics

symbol pair in the alphabet having p on the upper side. The context written
:q matches any symbol pair in the alphabet having q on the lower side. The
notation :, i.e. a colon with a space on each side, matches any symbol pair in
the alphabet. The notation ? also matches any symbol pair in the alphabet.

� The left side of the left context and the right side of the right context are ex-
tended to infinity by concatenating the relation :* on the appropriate side of
each context, as shown in Figure 18.

� Bracketing can be used as in xfst regular expressions: [b] is equivalent to
b. An empty pair of brackets, [], denotes the empty relation that maps the
empty string to itself.

� The 0 (zero) in twolc rules denotes not the empty string (as in xfst) but a
special “hard zero” symbol. More will be said about this below. (As part of a
larger expression like 007, the zero is not hard.) The expression b:0 denotes
the relation of the upper-side symbol b to the lower-side hard-zero symbol 0,
which, within twolc rules, is an ordinary symbol just like b.

� The concatenation of regular expressions X and Y is notated X Y, i.e. sepa-
rated by white space and without any overt operator.
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a:b /<= l _ r ;  

a:b  => l _ r ;

a:b <=> l _ r ;  

! lar  lar  lbr  xay    

! lbr  lar  lbr  xby

! lar  lar  lbr  xay    

! lbr  lar  lbr  xby

! lar  lar  lbr  xay    

! lbr  lar  lbr  xby

a:b <=  l _ r ;  ! lar  lar  lbr  xay    

! lbr  lar  lbr  xby

Figure 17: Rule Constraints Allow Certain String Pairs and Disallow Others.
Review the semantics of two-level rules until you understand why each rule
blocks and allows what it does.

� The union of regular expressions X and Y is notated X | Y . In twolc, both
curly brackets and square brackets can be used to surround unioned expres-
sions.

� Optionality is indicated by surrounding an expression with parenthesis: (X)
is equivalent to [ X � [] ].

� The Kleene Star (*), meaning zero or more iterations, can be postfixed to an
expression, e.g. X*.

� The Kleene Plus (+), meaning one or more iterations, can be postfixed to an
expression, e.g. X+.

� The notation Xˆn, where n is an integer, denotes n iterations: e.g. Xˆ3 is
equivalent to [X X X].

� The notation Xˆn,m, where n and m are integers, denotes n to m iterations.9

� The notation X/Y denotes the language X, ignoring any intervening strings
from language Y.

��� X denotes the union of all the symbol pairs in the alphabet excluding pairs
that belong to X. E.g. � s:zwill match any single symbol pair in the alphabet
except s:z.

9In xfst regular expressions, the notation is slightly different: Xˆ � n,m � .
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Automatic Context Extensions

a:b <=>        LeftContext  _  RightContext  ;

a:b <=>   :*  LeftContext  _  RightContext   :*  ;

Figure 18: The Left and Right Contexts are Automatically Expanded by the
Compiler with :*, the Universal Language over the Alphabet

� $X denotes the relation of all string pairs containing X. $a:b is equivalent
to [?* a:b ?*].

� Punctuation symbols normally interpreted as regular-expression operators can
be unspecialized by preceding them with a percent sign; e.g. %+ denotes the
literal plus sign rather than the Kleene Plus operator. The notation %0 de-
notes the literal digit symbol zero (parallel to 1, 2, 3, etc.) rather than the
hard zero.

� The notation .#. denotes the absolute beginning or absolute end of a string.
This notation can appear in rule contexts, but it is not a symbol per se.

Alphabets and contexts in twolc grammars are always two-level.

In twolc rules, contexts are always two-level, matching strings on both the lex-
ical (upper) and surface (lower) sides. Although two-level regular expressions de-
note relations, and although relations cannot usually be intersected, complemented
or subtracted, twolc relations are a special case that do allow these operations. The
following notations are therefore valid in twolc regular expressions.

� Where X and Y denote twolc relations, X - Y denotes the relation X not in-
cluding any relation in Y.

� Where X and Y denote twolc relations, X & Y denotes the intersection of X
and Y.

� Where X denotes a twolc relation, ˜X denotes the complement of that rela-
tion.
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These operations are legal in the twolc regular-expression language because the
hard zero in pairs such as e:0 is treated as an ordinary symbol. Consequently twolc
rules always denote regular equal-length relations, which are closed even under com-
plementation, intersection, and subtraction.

2.3 Thinking in twolc

The way to go about writing twolc rules is to

1. Write out a lexical string. This will typically be a string from the lower side
of a lexicon transducer created with lexc. In our kaNpat example, the lexical
string is “kaNpat” itself (see Beesley&Karttunen (2003), Section 3.5.3).

kaNpat

2. Then write out, under the lexical string, the ultimate surface string that you
want to generate using the entire grammar of rules.

Lexical: kaNpat
Surface: kammat

3. Align the two strings, symbol by symbol. Pad out the strings with hard ze-
ros if necessary until they are of exactly the same length. Where you put the
zeros is ultimately up to you, but be consistent and maximize the linguistic
motivations for your choices. You will end up with a pair of strings consist-
ing of a sequence of symbol pairs. These are the two levels of a twolc or any
two-level morphology. The following lineup might be appropriate for a lan-
guage where an underlying “banay+at” string is realized as “banat” on
the surface.

Lexical: banay+at
Surface: ban000at

4. Identify the ALTERNATIONS or discrepancies between the two strings. Write
twolc rules as necessary to allow and constrain the symbol pairs that account
for the alternations. The banay+at example just above would require rules to
constrain where a:0, y:0 and +:0 can and must occur. The kaNpat example
will require two rules to constrain where N:m and p:m can and must occur.

Of course, for most real natural languages, there are many alternations between
the lexical and surface strings, and you will have to write out and align many pairs
of strings as part of your grammar planning. If you don’t write out and line up your
lexical and surface strings, identify your symbol pairs, and then write suitable twolc
rules, in that order, you’re doing it wrong.
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There are often several reasonable ways to line up the strings, with hard zeros
in different places, that lead to equivalent results. For example, the “banay+at”
string might be aligned as

Lexical: banay+at
Surface: bana000t

However, any grammar of compatible rules will depend on the examples being lined
up consistently. It is highly recommended that you document your rules with com-
ments showing some sample pairs of lexical and surface strings to remind your-
self how you originally decided to line up the symbol pairs. Changing the lineup
conventions in the middle of development may require changes to multiple rules—
remember that all the rules apply in parallel and must agree in how the two levels
line up.

Plan and document the lexical-surface lineup of all symbol pairs in your
examples. This lineup must be motivated and consistent so that a coherent
set of two-level rules can be written.

twolc comments are preceded by an exclamation mark and continue to the end
of the line.

! twolc comments extend to the End of Line

! banay+at comment alignments for future reference
! ban000at

! kaNpat
! kammat

! Comments are Good Things, use lots of them

Use plenty of comments in your twolc files, including examples that show
how the lexical and surface strings are lined up symbol by symbol.

twolc rules differ from replace rules both in their syntax and semantics, and this
is a common source of confusion. The following points need to be emphasized:

1. Basic twolc rules constrain a single pair of symbols. The left side of a twolc
rule consists of a single symbol pair u:d, with one single symbol u on the up-
per side and another single symbol d on the lower side. Multicharacter sym-
bols are possible, and as in xfst they are declared implicitly by writing several
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symbols together: e.g. %+Noun:o. As the plus sign is a special character in
twolc rules, literalize it where necessary by preceding it with a percent sign
(%).10

2. twolc contexts are always interpreted to be two-level. That is, in twolc rules,
the contexts always refer to both the upper and lower sides of the relation.
You can leave the lower side unspecified by leaving the right (lower) side of
a pair empty, as in the u: notation. You can leave the upper side unspecified,
as in the :l notation. A colon by itself, i.e. :, refers to any single symbol
pair in the alphabet.

3. twolc grammars always work relative to an alphabet of symbol pairs. The
alphabet for a twolc rule transducer is the collection of overtly and implicitly
declared symbol pairs.

4. Within twolc rules, the 0 (hard zero) character is a real character and should
be treated as such when aligning examples and writing rule contexts. The
hard zeros of twolc are therefore different from the zeros in xfst and lexc,
where 0 simply denotes an epsilon or empty string.

5. twolc rule arrows have their own semantics, as shown in Table 1. The left-
arrow and right-arrow restrictions are not symmetrical, and both are quite dif-
ferent from the semantics of xfst replace rules.

2.4 Basic twolc Interface Commands

In order to attempt the first exercise below, you will need to know the basic com-
mands in the twolc interface to read and compile your twolc source file. The twolc
interface is invoked by entering twolc at the command line.

unix � twolc

10In twolc regular expressions, special characters cannot be literalized by surrounding them in dou-
ble quotes, as in xfst.
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twolc will respond with a welcome banner, a menu of commands, and a twolc prompt.

**********************************************************
* Two-Level Compiler 3.2.1 (8.0.0) *
* created by *
* Lauri Karttunen, Todd Yampol, *
* Kenneth R. Beesley, and Ronald M. Kaplan. *
* Copyright (c) 1991-2002 by the Xerox Corporation. *
* All Rights Reserved. *
**********************************************************

Input/Output -----------------------------------------------
Rules: read-grammar.
Transducers: install-binary, save-binary, save-tabular.
Lexicon: install-lexicon, uninstall-lexicon.

Operations -------------------------------------------------
Compilation: compile, redo.
Intersection: intersect.
Testing: lex-test, lex-test-file, pair-test,

pair-test-file.
Switches: closed-sigma, quit-on-fail, resolve, time,

trace.
Display ----------------------------------------------------

Result: labels, list-rules, show, show-rules.
Misc: banner, storage, switches.
Help: completion, help, history, ?.

Type ’quit’ to exit.
twolc>

You can cause the menu of commands to be redisplayed at any time by entering a
question mark. You will need to know just a few utilities from the twolc interface
to get started.

� read-grammar filename reads in your source filename and checks for purely
syntactic errors.

� compile causes a successfully read-in twolc source file to be compiled into
finite-state transducers, one transducer for each rule. Compilation is therefore
a two-step process of read-grammar followed by compile.

� lex-test allows you to test your compiled rules immediately by manually in-
putting lexical strings for generation.

� save-binary saves the compiled rule transducers to file. Each individual trans-
ducer is written into the file separately, they are not automatically combined
into a single network by intersection.

� save-tabular is used to save compiled twolc rules in the tabular format re-
quired by TwoL and PC-KIMMO.

� quit exits from twolc.
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2.5 Exercises

2.5.1 The kaNpat Exercise

The first exercise, just to get used to using basic twolc commands, is to redo the kaN-
pat example using twolc rules. The first step, as usual, is to write out the relevant
examples as string pairs, with the lexical string on the upper side and the surface
string on the lower side.

Lexical: kaNpat kampat kammat
Surface: kammat kammat kammat

That is, we want lexical “kaNpat” to map to surface “kammat”, lexical “kampat”
also to map to surface “kammat”, and in addition lexical “kammat” will map to
itself. A little study of these examples will show that in some precise environments
a lexical N has to map to a surface m, and in other precise environments a lexical
p must map to a surface m. In addition we want to allow m:m and p:p in other
environments.

Type in the following twolc source file using a text editor and save it to file as
kaNpat-twolc.txt.

! This is a comment. Use lots of them.

Alphabet m p ;

Rules

"N:m rule"
N:m <=> _ p: ;

"p:m rule"
p:m <=> :m _ ;

Enter twolc and use read-grammar and compile to compile the rules.

twolc � read-grammar kaNpat-twolc.txt
twolc � compile

If read-grammar reports syntax errors, re-edit the source file until it reads in cleanly.
During compilation, ignore any warning messages about the left-arrow restriction
of the N:m rule being redundant. Any genuine error message indicates a typing
error that you should correct before proceeding. Test the grammar using lex-test,
inputting the lexical strings “kaNpat”, “kampat” and “kammat”.

twolc � lex-test kaNpat
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They should all have the same surface output “kammat”. Input other strings like
“book” and “monkey” that are not affected by the rules; they should all be mapped
to themselves.

Edit the source file, reverse the order of the rules, recompile and retest. Such
reordering has no effect in a twolc grammar because the rules are applied in parallel.

In this example, m and p are declared in the Alphabet section; this is equivalent
to declaring m:m and p:p. These declarations are required because we “mention”
the symbols p and m in the pairs p:m and N:m in the rules. Unless we go back and
explicitly declare m:m and p:p, twolc will assume that p can appear only on the
lexical side and that m can appear only on the surface side. We don’t declare N:N,
in this case, because N stands for an abstract underspecified morphophoneme that
should never reach the surface as N. In a more complete grammar, N:n and N:NG
(where NG is the name of a single symbol) may also be possible realizations in other
environments, but N itself should never reach the surface level. Any UNKNOWN

symbol that does not appear anywhere in the rules is treated as an identity pair. If
you try the input “hello” in lex-test on your grammar, you will see that the output
string is “hello”. Because the symbols h, e, l, and o are not affected by any rule
in the kaNpat grammar, the compiler does not impose any constraints on them.

Note that the N:m rule has a right context p: which matches all symbol pairs in
the alphabet that have p on the upper side. Because the parallel p:m rule is relating
this same upper-side p to a lower-side m, why is it important for the N:m rule to
specify a right context of p: rather than p:p or p?

Similarly, the p:m rule has a left context :m, which matches all symbol pairs in
the alphabet having m on the lower-side. Why is it important in this case to specify
a left context of :m rather than m:m or m?

Try editing the source file to make the contexts more specific and see if the rules
still produce the correct output. You will find in writing twolc rules that making
contexts too specific is just as dangerous as not making them specific enough.

2.5.2 Brazilian Portuguese Pronunciation

The next exercise is to redo the Brazilian-Portuguese Pronunciation exercise using
twolc rules. Refer to Beesley&Karttunen (2003), page 147, for the facts to be cap-
tured.

The first step, as always with twolc rules, is to line up many examples as lexi-
cal/surface string pairs. Match the lexical and surface symbols one-to-one as eco-
nomically, consistently and beautifully as possible. Use hard zeros to pad out the
lexical and surface strings so that each pair of strings has the same length. Use ze-
ros consistently in parallel examples. Table 2 shows our recommended way to line
up the Portuguese-pronunciation examples, but it is ultimately up to each linguist
to define how the levels line up. Another way of saying this is that it is up to the
linguist to decide where the zeros are. It is also up to the linguist to be consistent in
placing the zeros.

The fully lined-up string pairs will identify the symbol alternations between the



2.5 Exercises 27

me disse tarde partes verdade
mi Jis0i tarJi parCis verdaJi
do tio filho ninho carro
du Ciu fiL0u niN0u kaR0u
caro camisa vez zebra casa
karu kamiza ves zebra kaza
peruca braço chato chatinho interesse
piruka brasu $0atu $0aCiN0u interes0i
homem rápido peru braços hostil
0omem Rápidu piru brasus 0osCil
antes paredes livros cada cedilha
anCis pareJis livrus kada seJiL0a
pedaço parte parede sabe simpático
pedasu parCi pareJi sabi simpáCiku
filhos case ninhos cantar bicho
fiL0us kazi niN0us kantar bi$0u
time fortes usar dente tempo
Cimi forCis uzar denCi tempu
dia rato cimento cases luz
Jia Ratu simentu kazis lus
cachorro vermelho diferentes sonho e
ka$0oR0u vermeL0u JiferenCis soN0u i

Table 2: Pairs of Strings for the Portuguese Pronunciation Example. The twolc
rules should accept the upper-side strings as input and produce the lower-side
strings as output.
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lexical and surface levels. Write the necessary twolc rules to constrain the relation
between lexical and surface strings. Keep the semantics of twolc rules constantly in
mind. Remember that you are writing rules that will apply in parallel, and remember
also to treat zeros as real symbols inside twolc rules.

Here are a few hints:

� There should be only one rule to constrain each symbol pair such as d:J and
r:R.

� A rule may have multiple contexts, each context terminated with a semicolon.

� The dollar sign ($) is a special character in twolc, as in other Xerox regu-
lar expressions. To use it as a literal character representing the phoneme /� /,
it must be made un-special by preceding it with the literalizing percent sign
(%).

� Remember not to make your contexts overly specific. In several rules you
will need to specify a context only on the upper side, e.g. h:. In others, you
will need to specify only a lower-side context, e.g. :i.

� Once the rules have been successfully compiled, try testing a few examples
manually using the command lex-text.

� For batch testing, type the upper-side strings into a file, one word to a line,
and use the command lex-test-file to generate all of them. Edit and retest your
rules until all the examples are generated correctly.

3 Full twolc Syntax

3.1 Header Sections

Each twolc source file must start with an Alphabet section and include a Rules sec-
tion as described above. In addition, the following optional sections may appear
between the Alphabet and Rules sections.

3.1.1 Sets

To aid in writing rules, you can optionally define sets of characters. The keyword
Sets is followed by assignment entries:

Sets
Vowels = a e i o u ;
Conson = b c d f g h j k l m n p q r s t v w x y z ;

Each entry consists of a set name on the left side, an equal sign, and a list of symbols;
and each entry is terminated with a semicolon. Because the semicolon indicates the
end of each set, you can continue the listing over multiple lines.

Set definitions can include previous Set definitions.
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Sets
Vowels = a e i o u ;
Conson = b c d f g h j k l m n p q r s t v w x y z ;
ExtendedVowels = Vowels w y ;

These defined set names can then be used in rule contexts and in rule-scoped vari-
ables (to be presented below). A bug (or “feature”) of sets is that all the symbols
mentioned in a set must be listed explicitly in the Alphabet section.

3.1.2 Definitions

If multiple rules require the same left or right context (or a significant part of a con-
text) it may be wise and convenient to define the context in the optional Definitions
section. The syntax is similar to that in the Sets section, but the right side of each
assignment is a twolc regular expression. Definitions can make use of previously
declared definitions.

Definitions
XContext = [ p | t | k | g:k ] ;
YContext = [ m | n | n g ] ;
ZContext = [ a | e | i | o | u ]* XContext ;

3.1.3 Diacritics

Diacritics, explained below, are a deprecated feature of twolc. Do not confuse twolc
Diacritics with the very different Flag Diacritics explained in Beesley&Karttunen
(2003), Chapter 7.

3.2 Full twolc Rule Syntax

3.2.1 Multiple Contexts

A single rule can have multiple contexts, e.g.

"Rule 1"
s:z <=> Vowel _ Vowel ;

Vowel _ [ m | n ] ;

Each context must end with a semicolon. Left-arrow restrictions are interpreted
conjunctively, imposing the constraint that a lexical s must be realized as z in all of
the indicated contexts. Right-arrow restrictions are interpreted disjunctively, limit-
ing the symbol pair, here s:z, to appearing in any of the indicated contexts (but in
no other contexts).
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3.2.2 Rule-Scoped Variables

A twolc rule may contain any number of local VARIABLES that range over a set of
simple symbols. Variables and the assignment of values to them are specified in a
where clause that follows the last context of the rule. A where clause consists
of (1) the keyword where followed by (2) one or more variable declarations, and
(3) an optional keyword (matched or mixed) that specifies the mode of value
assignment. A variable declaration contains (1) a local-variable name chosen by
the programmer (2) the keyword in, and (3) a range of values. The range may be
either a defined set name or a list enclosed in parentheses containing symbols or set
names, for example.

"foo rule"
Cx:Cy <=> _ .#. ;

where Cx in (b d c g)
Cy in (p t c2 k)

matched ;

In this rule, the two local variables, Cx and Cy, have four possible values. The key-
word matched means that the assignment of values to the two variables is done
in tandem so that when Cx takes its nth value, Cy has its nth value as well. The
compiler interprets this type of rule as an intersection of four independent subrules:

b:p <=> _ .#. ;
d:t <=> _ .#. ;
c:c2 <=> _ .#. ;
g:k <=> _ .#. ;

If the keyword matched is not present at the end of a where clause, the assign-
ment of values to variables is not coordinated. In this case, assigning values freely
to the two variables would create 16 subrules with all possible pairings of values
from the two sets. The keyword mixed indicates such a free assignment overtly.

Matched variables are also convenient when there is a dependency between the
correspondence and context parts of the rule. A case of that sort is a rule that creates
a geminate consonant at a morpheme boundary:

"gemination"
%+:Cx <=> Cy _ Vowel ;

where Cy in (b c d f g k l m n p r s t v z)
Cx in (b k d f g k l m n p r s t v z)

matched ;

For example, the rule would realize lexical forms such as “big+er”, “picnic+ed”
and “yak+ing” as the appropriate English surface forms “bigger”, “picnicked”
and “yakking”.

Variables can also be used to encode dependencies between the left and right
parts of the context. For example, if HighLabial is defined as
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HighLabial = u y ;

the following rule realizes k as v in two contexts. (Assume that ClosedOffset is a
regular expression defined in the Definitions section.)

"Gradation of k between u/y" ! k weakens to v between
! u’s and y’s

k:v <=> Cons Vx _ Vx ClosedOffset ;
where Vx in HighLabial ;

In this case no variable occurs in the correspondence part of the rule; the compiler
only needs to expand the context part as follows:

k:v <=> Cons u _ u ClosedOffset ;
Cons y _ y ClosedOffset ;

Because the rule contains only one variable, the interpretation of the “Gradation of
k between u/y” rule is the same regardless of whether the keyword matched is
present or absent.

3.3 Full twolc Interface

3.3.1 Command-Line Flags

If you launch twolc from the command line with the -h flag, it prints a short usage
message:

unix � twolc -h

usage: twolc [-h | -help | -q | -v]

The command twolc -help gives more verbose information:

TWOLC COMMAND-LINE OPTIONS:
-h print a cryptic ’usage’ message and exit.
-help print this help message and exit.
-q operate quietly. Don’t print unnecessary messages.
-v print twolc version number and exit.

3.3.2 Utilities for Rule Testing and Intersection

In addition to the basic twolc operations described above, there are also the follow-
ing utilities that may prove useful. Use help for more information.

install-binary

install-binary is a command to read a binary file from disk for use in the
twolc interface. A binary file is one that has already been compiled, typically
by previous invocations of read-grammar, compile and then save-binary.
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intersect

When twolc compiles a set of rules, each rule is stored as a transducer, and
the transducers are kept separate by default. To force twolc to intersect the
various transducers into a single transducer, invoke intersect after invoking
compile.

twolc � read-grammar yourlang-twolc.txt
twolc � compile
twolc � intersect
twolc � save-binary yourlang-twolc.fst

Keeping the transducers separate by default is important for rule testing with
pair-test (see below). If all the rule transducers were automatically inter-
sected into a single transducer, then pair-test could not identify which of the
component rules was responsible for blocking a mapping between two strings.

lex-test

The lex-test utility allows the linguist to test a set of compiled rules by manu-
ally typing in lexical strings for generation. lex-test outputs the surface form
or forms dictated by the rules.

Note that lex-test applies the rule transducers in a downward direction, per-
forming generation on the input strings. Testing bare rules in the opposite
direction, i.e. analysis, is not generally possible because most practical rule
sets produce an infinite number of analyses when those analyses are not con-
strained by a lexicon.

lex-test-file

lex-test-file is like lex-test except that you specify an input file (consisting of
a list of strings, written one to a line, to be generated from) and an output file
for the results. The interface prompts you for the filenames.

pair-test

pair-test is a useful utility that allows you to identify which rule in your rule
set is blocking a desired mapping. Suppose that you have written a set of 50
rules, and that one of the desired and expected mappings is the following:

Lexical: simpático
Surface: simpáCiku

If, in fact, you input “simpático” to lex-test and there is no output, or if the
output is not the desired “simpáCiku”, then identifying the villain in a set
of 50 rules may be anything but trivial. The solution is to invoke pair-test,
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which will prompt you for the lexical string and the surface string that you
think should be generated from it. Then pair-test will run the two strings,
symbol pair by symbol pair, through the rule set and identify by which rule,
and at which position in the string, the desired mapping is being blocked.

Note that for pair-test the lexical string and the surface string must contain
exactly the same number of symbols, including hard zeros positioned in ex-
actly the right places. It’s at times like this, testing for blocked derivations,
that you will be especially grateful for your own documentation showing how
lexical and surface strings are supposed to line up.

pair-test-file

The pair-test-file utility is like pair-test except that it takes its input (pairs
of strings) from a file you specify and outputs its result to another file that
you specify. The input file should be formatted as follows, with a blank line
between the pairs of strings:

simpático
simpáCiku

partes
parCis

vermelho
vermeL0u

ninho
niN0u

carro
kaR0u

If you maintain a file of valid lexical-surface pairs, i.e. mappings that the
rules should perform, then re-running that file periodically through pair-test-
file is a valuable form of regression testing.

install-lexicon

install-lexicon allows you to load a lexicon (or pseudo lexicon) into the twolc
interface for filtering out conflict reports. When compiling two-level rules,
twolc is extremely good (sometimes dismayingly good) at identifying and
reporting possible conflicts between rules. But twolc assumes that any pos-
sible string, i.e. the universal language, could be applied for generation—if
the conflicts occur only for input strings that cannot, in fact, occur in the nat-
ural language in question, then the rule writer may find the conflict hard to
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understand, and fixing the rules may seem pointless or at least a profound
nuisance.

Consider the following two rules.

"Rule 1"
x:y <=> _ a ;

"Rule 2"
x:z <=> i _ ;

During compilation, twolc will dutifully report a left-arrow conflict between
the two rules, recognizing that when generating from a possible input string
like “ixa”, Rule 1 would insist on realizing the x as y, yielding “iya”; whereas
the second rule would insist on realizing the same x as z, yielding “iza”.
This is a fatal left-arrow conflict, assuming that a string containing “ixa”
might indeed be input for generation.

However, it may be the case in the language in question that the sequence
“ixa” simply never occurs; and therefore the potential conflict between the
two rules just doesn’t matter. It is in such cases that install-lexicon can prove
useful. Let us assume that the linguist has already built a lexicon transducer,
perhaps using lexc, and that this transducer has been saved to file aslex.fst.
Let us also assume that the lower-side language of lex.fst naturally con-
tains no strings containing “ixa”. After install-lexicon has been invoked to
read this lex.fst into twolc’s lexicon buffer, twolc will subsequently con-
sult the lower side of the lexicon to filter out rule-conflict messages that just
don’t matter. For the two rules above, the potential conflict will be ignored,
and no conflict message will be reported, when twolc finds that the lower-side
language of the lexicon includes no string containing the problematic “ixa”
sequence.

The lexicon loaded using install-lexicon need not be a real lexicon, and it
need not even be two-level. In the case above, the linguist could compile,
using xfst, a simple regular expression

˜$[ i x a ] ;

denoting the language of all strings that do not contain “ixa”. Installing this
pseudo-lexicon will be sufficient to suppress the left-arrow conflict report for
the cited rules. install-lexicon can therefore use either a real lexicon or a
pseudo-lexicon, and the pseudo-lexicon could of course be arbitrarily com-
plex, tailored to filter out all kinds of error messages that are not relevant for
the language being modeled.
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uninstall-lexicon

The uninstall-lexicon utility removes and discards a lexicon previously in-
stalled using install-lexicon. Once uninstalled, the lexicon will no longer be
used for filtering out conflict messages.

3.3.3 Miscellaneous twolc Utilities

In addition, twolc provides more utilities for timing, tracing, examining compiled
rules, etc. Most of these utilities are more useful to twolc maintainers and debuggers
than to the average user.

You can cause the full menu of twolc utilities to be displayed at any time by
entering a question mark (?) at the prompt. Use the help utility to see some short
documentation for each command.

3.4 Exercises

3.4.1 Monish Vowel Harmony

Review the facts of the mythical Monish language starting on page 162 in Beesley&Karttunen
(2003). Then redo the exercise using lexc and twolc.

� Create a lexc file called monish-lex.txt, compile it using lexc, and save
the result to file as monish-lex.fst.

� Create a twolc file for Monish vowel-harmony called monish-rul.txt, com-
pile it using twolc, and save the result as monish-rul.twol. The trick is
to write a grammar that realizes each underspecified vowel as front or back
depending on the frontness or backness of the previous vowel.

� Compose the lexicon and rules using the lexc interface, and save the result to
file as monish.fst, i.e.

lexc � read-source monish-lex.fst
lexc � read-rules monish-rul.twol
lexc � compose-result
lexc � save-result monish.fst

� Test the resulting system using lookup and lookdown in lexc. It should an-
alyze and generate examples like the following.
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yääqin+Perf+2P+Pl
yääqinenémerä

fesééng+Opt+False+1P+Pl+Incl
fesééngiddéqääbigä

bunoots+Int+Perf+2P+Sg
bunootsuukonóma

tsarlók+Opt+False+1P+Sg
tsarlókuddóqaaba

ntonól+Imperf+1P+Pl+Excl
ntonólómbaabora

� Test for bad data as well. Your system should not be able to analyze the fol-
lowing ill-spelled Monish words.

yääqinenémorä [contains ’o’ in a front-harmony word]

tsarlókuddóqaabe [contains ’e’ in a back-harmony word]

3.5 Understanding twolc and Networks

When you compile a two-level rule grammar with twolc and save the result as a
binary file using save-binary, the transducers are saved into the file one-by-one.
They are not intersected into a single network, unless you have explicitly already
done so by invoking the intersect command.

A file that contains several compiled two-level rules can be loaded back into
twolc and lexc, but in general it is not advisable to load such a file into xfst. In xfst,
the multiple rule networks are pushed onto The Stack as usual; but any subsequent
stack operation on them, such as composition, is not likely to produce the intended
result. Intersection of two-level networks in xfst works correctly but prints a flurry
of warning messages if the rules contain one-sided epsilon pairs because intersec-
tion is not in general applicable to such networks.

xfst is a general tool for computing with finite-state networks, and the trans-
ducers that represent compiled two-level rules have no special status within xfst.
Let us recall, for example, that the apply up and apply down commands in xfst
apply only the top network on The Stack to the input. If the stack contains several
rule transducers that were intended to be applied in parallel, the result will not be
as expected.

In lexc, you use the command compile-source or read-source to put a network
in the lexc SOURCE register, and you use read-rules to read one or more rule net-
works, compiled previously by twolc, into the RULES register; when you then in-
voke compose-result, lexc uses a special INTERSECTING COMPOSITION11 algo-
rithm that composes the SOURCE with the RULES and puts the resulting single net-
work into the RESULT register. For example, if you have a lexicon my-lex.fst

11As its name suggests, the intersecting composition algorithm performs the intersection and com-
position of the rules simultaneously.
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previously compiled and saved in lexc, and if you have a file my-rul.twol that
you compiled and saved in twolc, the following series of lexc commands will com-
pose them and write out the single result to the file result.fst.

lexc � read-source my-lex.fst
lexc � read-rules my-rul.twol
lexc � compose-result
lexc � save-result result.fst

Note here that read-source is used to read in an already compiled transducer
from file. If all you have is the my-lex.txt source file, do the following instead
to compile the lexc source file and put the lexicon network in the SOURCE register.
Note that the rule filemy-rul.twolmust always be compiled separately by twolc
and stored using save-binary; you cannot compile a source file of twolc rules from
inside lexc.

lexc � compile-source my-lex.txt
lexc � read-rules my-rul.twol
lexc � compose-result
lexc � save-result result.fst

There are good practical reasons for storing the results twolc by default as a set
of separate rule networks. These rule transducers are not intersected, unless you
specifically tell twolc to do so using intersect, for four reasons.

1. twolc allows you to show the transducer corresponding to an individual rule,
which can be useful for debugging. The command show is followed by the
name of a rule.

twolc � show unique_rule_name

2. The pair-test utility applies the rules individually to a pair of strings and tells
you which rule is preventing the mapping; it can’t identify the individual rule
blocking the mapping if all the rule transducers are intersected into a single
transducer.

3. twolc also offers save-tabular output, which outputs the rule transducers in a
state-table format suitable for use by PC-KIMMO and the TwoL implemen-
tation of Lingsoft.12 Here again, separate rule transducers are needed for de-
bugging, and an intersected rule transducer might grow too big for practical
use on small machines.

12If you hand-compile your two-level rules for PC-KIMMO they must be typed in this same state-
table format.
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4. The intersection of large rule systems may be impossible or impractical be-
cause the size of the resulting network may be very large. In the worst case,
the intersection of two networks, one with k states, other with n states, may
produce a network with the product k � n states.

The recipe to compile and intersect the rules within twolc looks like this:

twolc � read-grammar yourlang-rul.txt
twolc � compile
twolc � intersect
twolc � save-binary yourlang-rul.fst

If the rule networks can be intersected into a single network, all further processing,
such as the composition with an already compiled source lexicon, can be done with
the generic xfst interface. The intersection should be done within twolc because it
will be done more efficiently and without provoking the warning messages that xfst
would generate.

The composition of an entire lexicon transducer with a full set of twolc rules
can blow up in size, at least temporarily during the computation. The intersecting-
composition algorithm in lexc was once the only way to handle such large composi-
tions, and it may still be the only way in certain cases. In the meantime, the general
composition algorithm, as found in xfst, has become more efficient and may be used
directly in most or all cases in which the intersection of the rules is practical.

4 The Art and Craft of Writing twolc Grammars

4.1 Using Left-Arrow and Right-Arrow Rules

In most practical twolc rule systems, the vast majority of the rules are, and should
be, double-arrow (<=>) rules. Attempts by beginners to use left-arrow (<=) and
right-arrow (=>) rules are usually mistakes, revealing a poor grasp of the semantics
of the rule operators (see Table 1, page 18).

One case in which the use of single-arrow rules is justified and necessary is
when the realization of a lexical symbol, e.g. e, is obligatorily one thing, e.g. i,
in context A, but either e or i in a different context B.

Modifying the Portuguese Pronunciation data, let us assume a dialect in which
the pair e:i can appear at the end of a word, and in this context, a lexical e must be
realized as i. That would normally be expressed with a double-arrow rule as in Rule
1.

"Rule 1"
e:i <=> _ .#.
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Let us further assume that the pair e:i is also possible in the context .#. p _ r,
but that the realization of lexical e in this context is not obligatory: it could be re-
alized as either i or as e. If the Alphabet supports only e:e and e:i as possible real-
ization of e, then we would notate these phenomena with a right arrow (=>) as in
Rule 2.

"Rule 2"
e:i => .#. p _ r ;

The problem here is that Rule 1 and Rule 2 are in right-arrow conflict; Rule 1
states that the pair e:i can occur only in the context _ .#., and Rule 2 states that
the same pair can occur only in the context .#. p _ r. The solution that avoids
all conflicts is the following pair of rules, one using the left arrow, and one the right
arrow.

"Rule 1’"
e:i <= _ .#.

"Rule 2’"
e:i => .#. p _ r ;

_ .#. ;

Rule 1’ now indicates that if a lexical e appears at the end of a word, it must be re-
alized as i, but this left-arrow rule places no constraints on where the pair e:i can
appear. Rule 2’ now indicates that the pair e:i can appear only in the two contexts
indicated, without forcing lexical e to be realized as i in either of them. By combin-
ing the left-arrow and right-arrow constraints of the two rules, the desired behavior
is achieved. The lexical input “sabe” will be generated as “sabi”, and the lexical
input “peru” will be generated as both “peru” and “piru”.

Such alternations that are obligatory in one context but optional in another are
fairly rare, at least in standard orthographies. The single-arrow rules might be more
useful when modeling phonological alternations.

4.2 Multiples Levels of Two-Level Rules

Koskenniemi-style Two-Level Morphology and the general two-level OT approaches
to phonology and morphology claim that it is not only possible but virtuous to have
a single level of simultaneous rules that directly constrain lexical-surface mappings.
Proponents insist that the intermediate languages suggested by sequential (cascaded)
rules do not exist and have no place in the notation.

However, given that sets of two-level rules compile into transducers, there is
no formal restriction against writing a system that includes multiple levels of two-
level rules, or even mixtures of sets of two-level rules with sequential replace rules.
The multi-level system outline shown in Figure 19, including two sets of two-level
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rules, Set A and Set B, is not only possible but is typical of some commercial mor-
phological analyzers that were built at Xerox in the early 1990s, before replace rules
became available.

R1 & R2 & R3 & R4 ... Rn Set B of twolc rules

R1 & R2 & R3 & R4 ... Rn Set A of twolc rules

.o.

.o.

Lexicon FST

Figure 19: A System with Multiple Levels of twolc Rules. Here Set A of rules is
compiled, intersected and then composed on the lower side of the lexicon trans-
ducer. Then Set B is compiled, intersected and composed on the bottom of the
previous result. There might be any number of levels, even using two-level rule
notation.

In such a system, the upper side of the Set A rules matches the lower side of the
LexiconFst; and the lower-side of the Set A rules is not the final surface language
but an intermediate language I. Similarly, the upper side of the Set B rules matches
I, and the lower side is, finally, the real surface language. So in practice, there may
be any number of levels and intermediate languages in a system, even when using
the twolc rule notation. Of course, once the composition is performed, the result is
a single transducer, and all the intermediate languages disappear. To computational
linguists who are more impressed by formal power than by the superficial expres-
sion of the grammar, the prohibition against multiple levels seems more than a bit
religious.

It is often convenient to compose filtering or modifying transducers on the upper
side of a lexicon, and in the days before replace rules this was done with twolc rules
as well. However, twolc rules assume a downward orientation, with the input on
the upper side; so to write rules that map upward from the upper side of the lexicon
transducer to a modified upper-side language, the trick is to write the rules (we’ll
call them Set C) upside down, compile them into a transducer, and then invert the
transducer before composition. Again, there may be any number of transducers,
compiled from twolc rules and inverted, to be composed on the upper side of the
lexicon. Such inversions and compositions are easily performed in xfst, as shown
in Figure 20.
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R1 & R2 & R3 & R4 ... Rn

.o.

Set A of twolc rules

.o.

R1 & R2 & R3 & R4 ... Rn
(inverted)

Lexicon FST

.o.

R1 & R2 & R3 & R4 ... Rn Set B of twolc rules

Set C of twolc rules

Figure 20: A System with Inverted twolc Rules Composed on the Upper Side of
the Lexicon Transducer. There might be any number of levels of rules composed
on the upper side, even using a two-level rule notation.

Using the lexc interface instead of xfst, the composition of multiple rule trans-
ducers on the lower side of a lexicon, and the composition of inverted transducers
on the top of a lexicon, are a bit more difficult. The lexc interface has built into it
the KIMMO-like assumption that there is but one lexicon, stored in the SOURCE
register, and one set of rules, read into the RULES register; and the lexc command
compose-result composes the rules on the lower side of the lexicon and stores the
result in the RESULT register.

However, there are some lexc interface tricks that allow inversions and multi-
ple compositions. Assuming that Sets A, B, and C of twolc rules have been pre-
compiled and saved in files A.fst, B.fst and C.fst, and assuming that the
lexicon is stored in lexicon.fst, the lexc-interface idiom for performing the
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various inversions and compositions shown in Figure 20 is

lexc � read-source lexicon.fst

lexc � read-rules A.fst
lexc � compose-result
lexc � result-to-source

lexc � read-rules B.fst
lexc � compose-result
lexc � result-to-source

lexc � invert-source

lexc � read-rules C.fst
lexc � compose-result
lexc � invert-result

Notice here that to compose rules on the upper side of the lexicon, the lexicon is
first inverted so that the upper side and lower side are switched. The twolc interface
can then compose C.fst on the new lower side (old upper side) of the lexicon
to create a result that is upside down. The result is then inverted to get the final
transducer. This is obviously a bit awkward, and most Xerox developers now avoid
the lexc interface, and very often twolc rules themselves, in favor of xfst and replace
rules.

4.3 Moving Tags

Occasionally linguists feel a need to “move” a tag that was most naturally put in an
undesirable position by a lexc grammar. Such moving is accomplished by introduc-
ing a new tag via an epenthesis rule in the desired new location, and then deleting
the original tag, mapping it to the empty string.

Such “moving” of tags is not always recommendable, as it may result in the
copying of large portions of your networks. The following little lexc grammar (adj-
lexc.txt) illustrates the problem:

! adj-lexc.txt

Multichar_Symbols Neg+ +Adj

LEXICON Root
Adjectives ;

LEXICON Adjectives
NegPrefix ;
AdjRoots ;
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LEXICON NegPrefix
Neg+:un AdjRoots ;

LEXICON AdjRoots
healthy Adj ;
worthy Adj ;
likely Adj ;

LEXICON Adj
+Adj:0 # ;

In the lexc grammar, the un- prefix is naturally paired with the Neg+ tag on the
lexical side, yielding string pairs like the following (showing epsilons overtly as
zeros).

Upper: healthy+Adj Neg+0healthy+Adj
Lower: healthy0 u nhealthy0

Now suppose that we really want to have lexical strings that always begin with a
root, with all the tags concatenated after it. That is, in the negative case we might
want something more like

Upper: 00healthy+Adj+Neg
Lower: unhealthy0 0

with all the tags, including the +Neg, on the end. This will almost double the size
of the transducer, because it creates a separated dependency (see Sections 4.4.2 and
7.3 in Beesley&Karttunen (2003)), but it makes an instructive exercise.

4.3.1 Tag-Moving Exercise 1

Take the lexc grammar as shown above, compile it using lexc, and store the binary
result as adj-lexc.fst. Then “move” the tags by composing xfst replace rules
on the top. One rule should map a single empty string [..] upwards to +Neg at the
very end of the word, if the string is currently marked with a Neg+; and the other
should map the original tag Neg+ upwards to epsilon. In essence, the moving of
tags will involve the insertion of one tag and the deletion of another. Do the com-
position on the xfst stack, or using regular expressions, arranging the order of the
networks carefully.

4.3.2 Tag-Moving Exercise 2

Do the same using twolc rules and composing the lexicon with the rules inside lexc.
This will be a bit tricky. twolc rules have a built-in downward orientation, and the
usual assumption is that they will be composed on the lower side of a source lexicon
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inside lexc. To modify the upper side of a transducer, as in this case, the trick is to
write the twolc rules upside-down. Then, inside lexc, read the lexicon network and
invert it before composing the twolc rules (which were written upside-down). Then
invert the result. The lexc interface includes the necessary inversion commands.

lexc � read-source adj-lexc.fst
lexc � invert-source
lexc � read-rules my-rul.twol
lexc � compose-result
lexc � invert-result

4.3.3 Tag-Moving Exercise 3

Do the same exercise using twolc rules, but doing the composition on the xfst stack.
Compile and intersect the rules in twolc, save the resulting network into a file, and
load the file into xfst. Next, invert the rule network and compose it on upper side
of the lexicon using compose net utility of xfst.

The problem with all of these solutions is that the size of the transducer jumps
from 17 states, 21 arcs and 6 paths to 31 states, 35 arcs for the same 6 paths. That’s
a high price to pay for a cosmetic change in the spelling of the lexical strings.

5 Debugging twolc Rules

5.1 Rule Clashes

Because all the rules in a twolc grammar apply in parallel, simultaneously, there
are abundant opportunities for rules to get in each other’s way and conflict. Rule
conflicts are discovered and reported by the rule compiler, and some of them are
even resolved automatically, with appropriate warning messages. However, all rule
conflicts are technically errors, and some of them cannot be resolved automatically,
so every twolc user needs to understand rule conflicts and learn the idioms for re-
solving them. As a practical matter, always read the error and warning messages
carefully.

There are two basic kinds of rule conflict:

1. Right-Arrow Conflicts

2. Left-Arrow Conflicts

The key to understanding rule conflicts is understanding the semantics of the twolc
left and right arrows. Review the semantics on page 18 as necessary.
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5.1.1 Right-Arrow Conflicts

It is possible for two rules to be in a right-arrow conflict. Right-arrow conflicts are
usually benign. Here is a simple example.

"Rule 1"
a:b <=> l _ r ;

"Rule 2"
a:b <=> x _ y ;

From the right-arrow point of view, Rule 1 states that the pair a:b can occur only in
the environment l r; and at the same time, Rule 2 states that the same pair a:b
can occur only in a different environment x y. Wherever one rule succeeds, the
other will fail; they are in mortal conflict.

Fortunately, such conflicts are resolved quite easily. If both contexts are in fact
valid, then simply collapse the two rules into one rule with two contexts.

"Rule 3"
a:b <=> l _ r ;

x _ y ;

The twolc compiler will then constrain a:b to appear either in the first context l r or
in the second context x y.

The rule writer may prefer to leave the resolution of right-arrow conflicts to the
compiler itself. The twolc interface has a special switch that can be toggled off and
on with the command resolve. The default position is ON. When the resolve switch
is ON, the compiler looks for and tries to resolve rule conflicts. In the case of a
right-arrow conflict, it assumes that the rule writer intends to allow the particular
realization in all of the contexts that are mentioned in the rules. In the case at hand,
the effect is that both Rule 1 and Rule 2 are in fact compiled as Rule 3, and the
compiler prints the message:

>>> Resolving a => conflict with respect to ’a:b’
between "Rule 1"

and "Rule 2"

If the resolve flag is OFF and a right arrow conflict is not resolved manually,
the effect is that lexical a cannot be realized as b in either of the two environments.

Right-arrow conflicts occur when two right-arrow or double-arrow rules
constrain the same feasible pair to occur in different environments. The
conflict is usually resolvable by collapsing the two rules into one rule with
two contexts. The compiler will do this automatically by default.
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5.1.2 Left-Arrow Rule Conflicts

Left-arrow conflicts are more difficult to detect and resolve correctly. Consider the
grammar in Figure 21. According to the semantics of twolc rule operators, the left-
arrow constraint of Rule 4 states that if lexical a is between a left context that ends
with l and a right context that begins with r, it must be realized as b. Simultane-
ously, the left-arrow constraint of Rule 5 states that a lexical a in this same envi-
ronment must be realized as c. The two rules impose contradictory requirements:
wherever Rule 4 matches and succeeds, Rule 5 will fail, and vice versa. Because
of the conflict, a lexical a has no valid realization in the context l r.

Two rules are in left-arrow conflict when they each impose a left-arrow re-
striction, have overlapping contexts, and try to realize the same lexical sym-
bol in two different ways.

Alphabet a a:b a:c b c ;

Rules

"Rule 4"
a:b <=> l _ r ;

"Rule 5"
a:c <=> l _ r ;

Figure 21: Rule 4 and Rule 5 are in Left-Arrow Conflict

If the resolve switch is ON, the compiler looks for and tries to resolve left-arrow
conflicts as best it can. It tries to determine which of the rules has a more specific
context. In the case of Rules 4 and 5, there is no difference; the contexts are iden-
tical. In that case, the compiler will arbitrarily give precedence to whichever rule
comes first. Here Rule 4 will prevail over Rule 5. The compiler reports:

>>> Resolving a <= conflict with respect to ’a:b’ vs. ’a:c’
between "Rule 4"

and "Rule 5"
by giving precedence to "Rule 4"

In effect, Rule 5 becomes completely irrelevant. In the context l r, the preferred
Rule 4 requires a to be realized as b. Because the right-arrow restriction of Rule 5
does not allow the c realization in any other contexts, the result is that a can never
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be realized as c. In a case such as this one, automatic conflict resolution is as good
as no resolution at all. There is a logical error that has to be corrected by the rule
writer. The only real benefit is that the conflict is noticed and reported.

Alphabet a a:b a:c b c ;

Rules
"Rule 6"
a:b <=> _ r ;

"Rule 7"
a:c <=> l _ r ;

Figure 22: Rule 6 and Rule 7 are in Left-Arrow Conflict

A more interesting case of a left-arrow conflict is demonstrated by Rules 6 and
7 in Figure 22. Rule 6 and Rule 7 have the same right context. Because the left
context of Rule 6 is empty, the rule requires that a lexical a be realized as b in front
of a following r regardless of what precedes it on the left. Rule 7 is more specific.
It requires a to be realized as c only when it is both preceded by l and followed by
r. Note that every instance of the context l r is also an instance of the context
r. Formally speaking, the context of Rule 7 is SUBSUMED by the more general

context of Rule 6. Figure 23 illustrates the relationship between the contexts of the
two conflicting rules.

l _ r

a:b

a:c
_ r

Figure 23: An Automatically Resolvable Left-Arrow Conflict Between a Gen-
eral and a More Specific Rule

In such cases, the compiler resolves the conflict by giving precedence to the
more specific rule. It interprets the <= part of Rule 6 as if the rule writer had written
it as a:b | a:c <= r. This does no harm because in a two-level grammar
all the rules work together. Rule 6 can be relaxed to allow a to have either realization
in its context because Rule 7 will prevent the c realization outside its own specific
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context. The combined effect is that a is realized as c between l and r and as b in
all other cases when r follows.

In a system of replace rules, there are no conflicts between rules, but the rule
writer has to order the rules in a proper way. In particular, a specific rule always
has to be ordered before a more general rule. In phonological literature (Chomsky
and Halle, 1968) this is called DISJUNCTIVE ORDERING. The way in which the
twolc compiler resolves left-arrow conflicts is motivated by this tradition.

There are, however, left-arrow conflicts that cannot be resolved in a principled
way. When twolc discovers and reports an unresolvable left-arrow conflict, read the
error message carefully, identify the rules involved, review the semantics of twolc
left arrows if necessary, and make sure that you understand why the rules are in con-
flict. DO NOT start making changes until you understand the conflict completely.
Beginners too often start changing arrows, fiddling with contexts, and flailing about
aimlessly. Take the time to understand first.

After you understand what each rule is intended to do, and why they are in con-
flict, then one of them will need to be changed intelligently to resolve the conflict.
If one of the rules is simply in gross error, then fixing it should be easy. Where both
of the rules seem right, then the usual problem is that one needs to be made more
specific in its contextual requirements. Consider this simple case:

"Rule 8"
a:b <=> l _ ;

"Rule 9"
a:c <=> _ r ;

Rule 8 and Rule 9 are in left-arrow conflict because both left contexts can match a
string ending with l, and both right contexts can match a string beginning with r.
The rules are in mortal conflict with respect to how strings such as “lar” should
be realized, and the compiler cannot resolve the conflict for you. Very often in such
cases, one of the rules is the general case and the other is a more specific exception.
If so, the error can be fixed by simply making one of the rules more specific than the
other. That is, the context of the more specific rule should be completely subsumed
by the context of the more general rule instead of just partially overlapping with it.
As we showed above, the compiler then resolves such conflicts automatically.

If this is truly a case of partial overlap between two rules, the rule writer has
to decide which of the two rules should apply in the context where they are in con-
flict. The general idiom for fixing such left-arrow conflicts is called CONTEXT SUB-
TRACTION. In the case above, if we want to give Rule 8 precedence over Rule 9,
with respect to strings such as “lar”, we must subtract the left context of Rule 8,
here any string ending in l, from the left context of Rule 9, which is the univeral
relation. Recall that the rule compiler automatically extends each context with the
universal relation over the feasible pairs of the alphabet, as shown in Figure 24.
The new non-conflicting version, Rule 9’ in Figure 25, has the same right context
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"Rule 8"
a:b <=> :* l _ :* ;

"Rule 9"
a:c <=> :* _ r :* ;

Figure 24: Automatic Context Extension. The twolc rule compiler automati-
cally extends the left context to the left, and the right context to the right, with
the universal relation over the alphabet of feasible pairs.

"Rule 8"
a:b <=> l _ ;

"Rule 9’"
a:c <=> .#. [:* - [:* l]] _ r ;

Figure 25: Resolving a Left-Arrow Conflict, Giving Precedence to Rule 8, by
Context Subtraction. Whereas Rule 9 matches anything for the left context, Rule
9’ matches any left context, except (minus) left contexts that end with l. The sub-
tracted left context, here l, might be an arbitrarily complex regular expression.

as the original rule, but the left context is modified by removing, i.e. subtracting, all
strings that match the left context of the competing rule. Because the complement
of language L, written � L, is equivalent to :* - L, i.e. to the universal relation
minus the strings in L, Rule 9’ could be written equivalently as in Figure 26.

While context subtraction and the equivalent context complementation make
perfect sense, they are notoriously difficult for students to grasp. Indeed, even ex-
perienced developers have had to reinvent the idiom several times. The key to un-
derstanding context subtraction is to remember that rules are compiled automati-
cally with :* added on the left of the left context and :* on the right of the right
context, as shown in Figure 24 and in Figure 18 on page 20. The full left context
of Rule 8 is therefore [:* l] and the full left context of the original Rule 9 is :*,
the Kleene-star relation on the pair alphabet. The expression [:* - [:* l]] in the left
context of Rule 9’ subtracts the full left context of Rule 8 from the full left context
of the original Rule 9.

Note that the initial a in strings such as “ar” should be mapped to c by these
rules; Rule 9’ must be written to allow the possibility of an empty-string left con-
text. The subtraction would not have the intended effect without indicating the ex-
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"Rule 8"
a:b <=> l _ ;

"Rule 9’"
a:c <=> .#. � [:* l] _ r ;

Figure 26: Resolving a Left-Arrow Conflict, Giving Precedence to Rule 8, by
Context Complementation. Whereas Rule 9 matched anything for the left con-
text, Rule 9’ matches any left context that does not end in l.

plicit word-boundary marker .#. in the left context of 9’ because the relation [:*
- [:* l]] includes the empty string. Of course, the equivalent � [:* l] also
includes the empty string. As we have seen, the compiler always concatenates the
relation :* to the left side of whatever the rule writer has specified. The concate-
nation of a Kleene-star relation to anything that contains the empty string is equiv-
alent to the Kleene-star relation itself.13 That is, :* [:* - [:* - l]] and
:* � [:* l] denote the same relation as :*. Without the initial word boundary
.#. explicitly specified, the left context of Rule 9’ would be exactly equivalent to
the left context of the original rule. The intent of Rule 9’ is to restrict the left context
to “all sequences of symbol pairs that do not end with l”. Because this includes the
empty context, there is no way to formally express the idea without the boundary
symbol.

The boundary symbol .#. is necessary in all cases where a specific
context (some subset of :*) includes the empty string. Without the
initial .#., a rule such as a:c <=> .#. :* - [:* l] or
a:c <=> .#. � [:* l] is vacuous. Without the final .#., the
optional right context in a rule like a:b <=> (r :*) .#. has no
effect.

In the example at hand, where the original context consists of just one symbol,
it might seem that there is a simpler solution using � , the symbol-complement oper-
ator. If, as in Rule 9 Not-Quite-Right, we change the left context of Rule 9 to be � l,
that is any single symbol or symbol pair except for l, then the conflict is resolved
favoring Rule 8.

"Rule 8"
a:b <=> l _ ;

13See the discussion of the Restriction operator in Section 2.4.1 in Beesley&Karttunen (2003).
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"Rule 9 Not-Quite-Right"
a:c <=> � l _ r ;

However, whereas the original Rule 9 maps the initial a in strings such as “ar” to
c, the Not-Quite-Right modified version does not; it requires at least one symbol of
left context. To get the correct result, we must specifically handle the case of the
empty context as shown below.

"Rule 9’’"
a:c <=> [.#. | � l] _ r ;

All the versions of Rule 9’ and 9” are equivalent. They all require a to be real-
ized as c at the beginning of a string or after any symbol or symbol pair other than l.
Note that the backslash idiom, even with the left word-boundary specified, cannot
resolve clashes where the left context is over one symbol long. Context subtraction,
or context complementation, is the general idiom for such conflict resolution.

Let’s look now at the opposite case: If we want to resolve the conflict between
Rule 8 and Rule 9 in favor of the latter one, we must subtract the right context of
Rule 9 from the right context of Rule 8 as shown in Figure 27. The new right context
[:* - [r :*]] denotes any string, except those beginning with r. The trailing
.#. in the modified Rule 8’ is necessary for the reasons discussed above.

"Rule 8’"
a:b <=> l _ [:* - [r :*]] .#. ;

"Rule 9"
a:c <=> _ r ;

Figure 27: Resolving a Left-Arrow Conflict, Giving Precedence to Rule 9, by
Context Subtraction of the Right Context. The right context of Rule 8’ now
matches all possible strings, including the empty string, except for those strings
that begin with r.

An equivalent result is obtained via context complementation, shown in Rule
8” in Figure 28.

The context-subtraction idiom also works where the overlapping contexts are
more complex, as in Figure 29. Let us assume that the intent of the rule writer is that
the more general Rule 11 is to apply whenever the left context ends in a consonant,
except when the left context ends with the more specific context [ l e f t ].
That is, Rule 10 expresses an exception to the more general rule. The context sub-
traction idiom works perfectly in this case too, but it is not necessary to use it be-
cause the compiler will automatically resolve the conflict in the desired way. That
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"Rule 8’’"
a:b <=> l _ � [r :*] .#. ;

"Rule 9"
a:c <=> _ r ;

Figure 28: Resolving a Left-Arrow Conflict, Giving Precedence to Rule 9, by
Context Complementation of the Right Context. The right context shown here as
r could be an arbitrarily complex regular expression. The right word-boundary
.#. must be explicitly indicated as shown.

is, it automatically relaxes the left-arrow restriction of Rule 10 to allow a lexical a
to be realized as either b or c.

Alphabet a b c d f g h j k l
m n p q r s t v y;

Sets
Conson = b c d f g h j k l

m n p q r s t v y ;
Rules

"Rule 10"
a:b <=> l e f t _ r ;

"Rule 11"
a:c <=> Conson _ r ;

Figure 29: Complex Overlapping Contexts

If the rule writer opts for the manual solution by context subtraction, the left
context of Rule 11 should be modified as shown below in Rule 11’.

"Rule 11’"
a:c <=> .#. [[ :* Conson] - [:* l e f t ]] _ r ;

The automatic resolution of the conflict will produce a transducer for Rule 11 that is
different from the transducer compiled from the manually modified Rule 11’. How-
ever, the intersection of the “relaxed” version of Rule 11 with Rule 10 is identical to
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the transducer resulting from the intersection of Rule 10 and Rule 11’. That is, con-
sidering the rule system as a whole, the automatic resolution of left-arrow conflicts
and the manual method of context subtraction produce exactly the same result.

5.1.3 Spurious Compiler Warnings

Although the compiler correctly detects most left-arrow conflicts, it is not perfect.
In some cases the compiler issues spurious warnings. A simple example is shown
in Figure 30. The two rules in Figure 30 allow a lexical a to be realized as either b
or c but require that whichever way is chosen in a particular case, it must be chosen
consistently. That is, “aa” can be realized as “bb” or as “cc” but not as “ac” or
“ca”.

Alphabet a:b a:c;

Rules

"Rule 12"
a:b <=> $[a:b] _ ;

"Rule 13"
a:c <=> $[a:c] _ ;

Figure 30: twolc is Not Perfect. In spite of warnings from the compiler, there is
no real <= conflict between these two rules.

The compiler compiles the rules correctly but gives a spurious warning about a
left-arrow conflict.

*** Warning: Unresolved <= conflict with respect to
’a:b’ vs. ’a:c’

between "Rule 12"
and "Rule 13"

**** Conflicting pair(s) of contexts:
$a:b _ ;
$a:c _ ;
Left context example: a:c a:b

The reason is that the compiler cannot “see ahead” what effects the rule or rules
it is working on are going to have at the end. At the point where the compiler is
comparing the context where a must be realized as b and the context where a must
be realized as c, it sees a potential conflict in the case where a string containing two
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as has been seen and one of the as has been realized as b and the other as c. At the
point where the compiler is comparing the two rules, it cannot yet deduce that the
combined effect of the two rules is to disallow the problematic case.

In real life, examples of this sort are very rare. Because the message includes
an example of the problematic context, the rule writer can decide whether to take
the warning seriously or to ignore it. In our experience, if the compiler warns about
an unresolved left-arrow conflict, it is nearly always right.

5.1.4 Why Context Subtraction Works

The context-subtraction and context-complementation idioms perform subtraction
and complementation on relations, which is not generally possible. As pointed out
above on page 20, the equal-length relations denoted by twolc rules are a special
case.

From another point of view, the transducers of twolc and two-level morphology
in general are reduced to simple FSMs denoting languages that consist of strings
that in turn consist of letters like a:a, b:b, y:0, 0:i, etc. The basic alphabet always
consists of such feasible pairs. The zeros in such pairs are the “hard zeros” of twolc,
as real as b and c, and not equal (inside rules) to the empty string. The transducers
of twolc and two-level morphology are therefore really one-level networks that are
cleverly interpreted as if they were transducers.

5.2 Epenthesis Rules

Epenthesis or insertion rules are a challenge for any grammar, and they are surpris-
ingly hard to get right in a finite-state system (where your rules are compiled and
performed literally by a computer). Consider the following bad twolc rule:

Alphabet 0:h %+Neg:0 ;

Rules

! this is a bad epenthesis rule

"Lenition"
0:h <=> .#. [ b | t | s ] _ :* %+Neg: ;

The intent of this rule is to perform the following mapping:

Lexical: b0riseann+Neg
Surface: bhriseann0

where “briseann+Neg” is a string from the lexicon. As usual, twolc rules will
match and impose their constraints everywhere they can. The problem is that the
colon (:) matches any feasible pair in the alphabet, including 0:h, so the left-arrow
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portion of the rule continues to match and tries to insert an infinite number of 0:h
pairs.

Lexical: b0000...0000riseann+Neg
Surface: bhhhh...hhhhriseann0

However, the right-arrow restriction of the same rule prohibits any 0:h insertions
that are not immediately after an initial consonant, and so the rule is in conflict with
itself.

One way to fix this particular rule is to specify something more specific than
just :* as the start of the right context, e.g.

"Lenition"
0:h <=> .#. [ b | t | s ] _ � 0:h* %+Neg: ;

This new rule specifies that 0:h is inserted after a b, t or s at the beginning of a word,
where the right context consists of any number of symbols that are not 0:h and then
a lexical +Neg. This prevents the infinite insertion and allows the intended insertion
of a single 0:h.

A similar problem occurs whenever a left or right context is left out entirely,
e.g.

"bad epenthesis rule"
0:i <=> c k _ ;

This rule is written so that any right context will match, so if the intent is to do the
following

Upper: rack0
Lower: racki

0:i is also a valid right context for the rule, and it will match and require another
insertion.

Upper: rack00
Lower: rackii

And in fact it will match repeatedly and require an infinite number of insertions, but
once again the rule will be in conflict with itself.

Upper: rack000...00000
Lower: rackiii...iiiii

The way to fix the rule is the specify a right context that blocks the infinite in-
sertion.
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"good epenthesis rule"
0:i <=> c k _ [ � 0:i | .#. ] ;

A similar problem is found in xfst replace rules (see Beesley&Karttunen (2003),
Section 3.5.5, page 175), where the bad epenthesis rule

! this is a bad xfst epenthesis rule

[] -> i || l _ r ;

would try to insert an infinite number of is in between l and r in the following ex-
ample:

Lexical: l000...0000r
Surface: liii...iiiir

An infinite number of empty strings exist between l and r on the lexical side, and
the rule tries to map them all into i.

For replace rules, the solution is provided in the [..] or “dotted-bracket” oper-
ator, which constrains strings to be interpreted as having exactly one empty string
between each symbol. The following replace rule has exactly one output.

[..] -> i || l _ r

Lexical: l0r
Surface: lir

5.3 Diacritics

In a twolc file, an optional section allows you to declare diacritical characters, e.g.

Diacritics %ˆFOO %ˆDOUBLE %ˆDEL ;

Of all the features of twolc, the Diacritics have always been the worst documented
and the most poorly understood. They also complicate the methods described above
to resolve rule clashes. Diacritics are now a deprecated feature of twolc, but they
are described here for completeness.

twolc Diacritics should not be confused with the Flag Diacritics described
in Beesley&Karttunen (2003), Chapter 7.
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5.3.1 The Raw Facts about Diacritics

When a twolc grammar has Diacritics declared, the rules in the grammar are com-
piled in such a way that

� The Diacritics are always mapped to epsilon (zero) on the lower side, and

� The rules, by default, simply ignore the presence of the Diacritics in the lex-
ical strings

However, if a rule explicitly “mentions” or refers to a Diacritic in its context, then
that rule is compiled in such a way that it “notices” that Diacritic symbol.

The notion of Diacritics applies only in twolc files, and a declaration of Diacrit-
ics only affects the way in which the rules of the file are compiled into transducers.
Inside the grammar as a whole, the Diacritic symbols are just symbols, typically
multicharacter symbols, like any other.

5.3.2 The Motivation for Diacritics

To understand twolc diacritics, recall that the classical approach to finite-state mor-
phology is to build a lexicon, typically using the lexc language, and to write a sep-
arate grammar of rules, typically using twolc, to map the abstract strings from the
lexicon into surface strings. The rules are traditionally composed on the lower side
of the lexicon such that the lower-side language of the lexicon is the upper-side lan-
guage of the twolc rules.

In a lexicon, there is often a need to inject a feature symbol into certain strings
which eventually, when the twolc rules are applied, either triggers the firing of a
particular rule or blocks the firing of a particular rule. Such a symbol automatically
becomes part of the alphabet of the lexicon, and normally all twolc rules would have
to be written to use or at least allow the presence of such feature symbols in the
strings.

However, writing all the rules to be aware of all the features is often not desir-
able, especially if only a couple of rules need to be aware of the feature symbols.
The problem is especially acute in a relatively mature lexicon where the linguist
feels a need to inject some new feature characters to capture behaviors that were
not anticipated at the beginning. The injection of new feature symbols in certain
strings may require the review and rewriting of all the rules in the grammar to al-
low the presence of the new symbols.

The motivation behind Diacritics was to let linguists inject feature symbols freely
into their lexical strings (typically in a lexc program), but to allow them, in twolc,
to declare such characters as Diacritics so that they would be ignored by all rules
except those rules that overtly refer to them.
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5.3.3 Noticing and Ignoring Diacritics

twolc rules are compiled, by default, in such a way that they ignore the symbols
declared to be Diacritics. There are in fact two ways to override the default:

� Any rule that specifically mentions a Diacritic symbol in its context will be
compiled in such a way that it notices (i.e. does not ignore) that symbol.

� Another overt way to force a particular rule to notice or pay attention to a
Diacritic is to include an Attention statement immediately after the rule name.

The following example shows the use of the Attention statement, where the word
Attention is followed by an equal sign and a list of Diacritic symbols (one or more)
to be noticed.

Diacritics %ˆMF %ˆSG %ˆPL ;

Rules

"my rule"
Attention = ( %ˆMF )

0:x <=> l _ r ;

Such a rule would normally be compiled in such a way that it ignores completely the
symbol ˆMF, declared in the same file to be a Diacritic; but with the overt Attention
statement, the default is overridden and the rule will be compiled so that it treats
ˆMF like any other symbol.

5.3.4 Diacritics and Rule Conflicts

Although the automatic resolution of left-arrow conflicts usually works correctly
even when diacritics are involved, they present difficult problems if the conflict has
to be resolved by the brute-force context-subtraction method. This is one of the
major reasons why Diacritics are currently deprecated.

Most twolc writers eventually need context subtraction (see Section 5.1.2, page
48) to clean up rule conflicts in their grammars. If you feel a strong need to use
context subtraction and Diacritics at the same time, you can often get away with it
by overtly forcing the rules in conflict to notice all the declared Diacritics, as in the
following example.

Alphabet A:0 ; ! a token alphabet declaration

Diacritics %ˆFOO ; ! rules will ignore ˆFOO by default

Rules
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"Rule 1"
Attention = ( %ˆFOO )
a:e <=> .#. ˜[:* y] _ z ; ! with Diacritics declared,

! and the rules forced to
"Rule 2" ! pay attention to them,
Attention = ( %ˆFOO ) ! the rules are no longer
a:o <=> y _ z ; ! in conflict.

5.4 Classic twolc Errors

When writing twolc grammars, beginners often fall victim to some classic errors.
The following points are worth reviewing.

1. You should always start a twolc analysis by writing out numerous two-level
examples with the lexical string above the surface string, and with twolc hard
zeros inserted at appropriate places to pad out the strings to the same length.
The failure to “line up your strings”, to document the lineup, and to be con-
sistent in the lining up of your examples is a fundamental methodological er-
ror. Two-level rules constrain the appearance of feasible pairs in two-level
strings, and you cannot write a workable set of rules unless you know what
you’re trying to accomplish.

2. twolc rules map strings from an upper level to a lower level, and the up-
per level of the rules is typically the lower level of the lexicon. Sometimes,
linguists write multiple levels of twolc rules, mapping through a cascade of
levels. The failure to plan and understand your own levels is a fundamental
methodological error. You should think of each level of intermediate strings
as a language and be able to characterize what the strings look like at each
level.

3. The twolc compiler prints out error messages and warnings when it compiles
a source file. Beginners tend to ignore the messages; experts study them care-
fully, fixing syntactic errors and rewriting rules to resolve conflicts that are
not resolved automatically by the compiler.

4. twolc rules are deontic statements of fact that constrain where particular fea-
sible pairs can appear in a pair of lexical/surface strings. A simple rule states
constraints on a single feasible pair like x:y, while a compound rule with
where clauses is just an abbreviation for multiple single rules that constrain
a single feasible pair.

"unique rule name"
r:l <=> i _ .#. ;

! A typical rule constrains where a feasible pair
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! like r:l can appear in a valid pair of lexical-
! surface strings

Attempts to make twolc rules map strings of symbols into strings of symbols,
which is possible in replace rules, is a common error that betrays a poor grasp
of the syntax and semantics of twolc rules. The following twolc rule, which
might appear to map +Participle into the symbols i, n and g, will in fact
implicitly declare a single multicharacter symbol named ing and constrain
where the feasible pair %+Participle:ing can appear.

! declaring multicharacter symbols like ing is
! almost always an error

"bad ing rule"
%+Participle:ing <=> l _ r ;

In twolc, multiple letters written together, such as %+Noun or %+Pl or ing,
are automatically interpreted, and implicitly declared, as single symbols with
multicharacter print names. Where these names contain special characters
like the plus sign or the circumflex, the special characters must be literalized
with the preceding percent sign.14 When the intent is to represent a genuine
string of concatenated alphabetical characters such as i concatenated to n con-
catenated to g, it is almost always a mistake to use a single multicharacter
symbol such as ing in twolc.

5. twolc always works within a fixed alphabet of feasible pairs, and in the earli-
est versions of the language the linguist was forced to declare all the feasible
pairs overtly in the Alphabet section. This was tedious and led to mysterious
errors when the linguist forgot to declare simple identity pairs such as t:t or
u:u.

In an attempt to remedy this problem, the current versions of twolc automat-
ically assume that identity pairs such as a:a, b:b, t:t, etc. are in the alphabet,
unless the overtly “mentioned” symbols suggest otherwise. For example, if
the user overtly declares the pair a:e or writes a rule to control a:e, or even
writes a rule where a:e appears in the context, then the compiler will assume
that a can appear only on the lexical side and that e can appear only on the
surface side. That is, “mentioning” a:e will override the default assumption
that a:a and e:e are in the alphabet; if the linguist wants to retain a:a and e:e
after declaring a:e, then they will have to be declared overtly in the Alphabet
section.

14Note that special characters in twolc cannot be literalized by surrounding them in double quotes,
which is possible in xfst regular expressions.
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It is an open question whether the new alphabetic assumptions are any better
than the old ones. In any case, the failure to understand what the alphabet
is leads to many mysterious errors for beginners. Be aware that alphabetic
symbols can be declared overtly, in the Alphabet section, or implicitly via
their use in rules.

6. Often a linguist will declare feasible pairs like %+Pl:s and s:s, intending to
limit %+Pl only to the upper-side rule language. Then, unwittingly, the lin-
guist will write a rule like the following,

0:e <=> z: _ %+Pl ;

intending to insert a surface e into plurals like the Spanish “vez+Pl:veces”.
However, the right context of the rule, written simply as %+Pl, is automat-
ically interpreted as %+Pl:%+Pl, and this feasible pair is then added auto-
matically to the alphabet. What the linguist should have written is one of the
following:

0:e <=> z: _ %+Pl: ;

! or

0:e <=> z: _ %+Pl:s ;

This common error does not show up in error messages because the compiler
has no way of knowing whether you really mean to declare %+Pl:%+Pl or
not. The typical sign of this problem is when you generate, via lex-test, a
string like “vez+Pl” and you get multiple output strings like “vece+Pl”,
“vezs” and “vez+Pl” instead of the single solution “veces” that was ex-
pected. Experts learn to expect and check for problems in the twolc alphabet.

7. Finally, the little where clauses that define rule-scoped variables cause their
share of problems. Linguists often write a rule like the following

"rule with a where clause"
XX:YY <=> l _ r ;

where XX in ( i e )
YY in ( u o ) matched;

and then try to add a new context on the end of the rule, e.g.

! a where clause must appear after
! all the contexts for a rule
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"rule with a where clause"
XX:YY <=> l _ r ;

where XX in ( i e )
YY in ( u o ) matched;

m _ n ; ! ERROR, ERROR

However, if a where clause appears, it must be after the very last context.
Unfortunately, the twolc rule compiler does not give an error message but
simply stops parsing at the end of the where clause and ignores the mis-
placed new context and the remainder of the file. Once again, it is important
to look carefully at the messages returned by the compiler, including the list-
ing of the rules that were successfully compiled.

6 Final Reflections on Two-Level Rules

6.1 Upward-Oriented Two-Level Rules

It will be noticed (see Table 1, page 18), that the right-arrow and left-arrow restric-
tions of two-level rules are not symmetrical. The right-arrow => restriction, as in

a:b => l _ r ;

states that the symbol pair a:b is restricted to appear in the indicated context; the
rule will therefore block the appearance of the pair a:b in any other context. Notice
that there is no directionality in the right-arrow restriction—it is the pair a:b that is
restricted to appear in a certain context or contexts.

In contrast, the left-arrow <= restriction has a clear downward orientation.

a:b <= l _ r ;

It states that if the lexical symbol a occurs in the indicated context, then this a must
be realized on the surface as b. Any other realization of lexical a in the indicated
context or contexts is blocked by the rule. Significantly, the rule does not say that a
surface b in the indicated context must be a realization of lexical a; the twolc left-
arrow restriction is downward oriented, from lexical to surface.

The double arrow <=> straightforwardly combines the non-directional right-
arrow constraints and the downward-oriented left-arrow constraints.

The downward-orientation of the <= restriction suggests that one might define
a new kind of two-level rule with an upward-oriented semantics. Let the left arrow
with a single bar <- be a new operator such that the rule

a:b <- l _ r
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states that if the surface symbol b appears in the indicated context, then it must be
mapped to a on the lexical side; the rule would therefore block any other lexical
source for surface b in the indicated context.

Such upward-oriented rules can certainly be compiled by hand and included in
a set of two-level rules, but to our knowledge such upward-oriented two-level rules
have never been supported by automatic rule compilers or seriously investigated for
their usefulness.

6.2 Comparing Sequential and Parallel Approaches

The application of a set of replace rules to an input string involves a cascade of
transductions, that is, a sequence of compositions that yields a relation mapping the
input string to one or more surface realizations. The application of a set of twolc
rules involves a combination of intersection and composition.

A set of rules of either type can in principle always be combined into an equiv-
alent single transducer. Replace rules are merged by composition, twolc rules by
intersection. The final outcome can be the same, as the following example shows.

Yokuts vowels (Kisseberth, 1969) are subject to three types of alternations. (The
period, ., is used here to indicate that the preceding vowel is long.)

� Underspecified suffix vowels are rounded in the presence of a round stem
vowel of the same height: dub+hIn � dubhun, bok’+Al � bok’ol.

� Long high vowels are lowered: ?u.t+It � ?o.tut, mi.k+It � me.kit.

� Vowels are shortened in closed syllables: sa.p � sap, go.b+hIn � gobhin.

Because of examples such as ?u.t+hIn � ?othun, the rules must be applied in the or-
der shown. Rounding must precede lowering because the suffix vowel in ?u.t+hIn
emerges as u. Shortening must follow lowering because the stem vowel in ?u.t+hIn
would otherwise remain high giving ?uthun rather than ?othun as the final output.

Kisseberth’s analysis of this data can be formalized straightforwardly as regular
replace expressions in xfst.

define Cons [b|d|f|g|h|k|k’|l|m|n|p|q|r|s|t|v|w|%?];
define Rounding [I -> u || u $%+ _ ,,

A -> o || o $%+ _ ];
define Lowering [i -> e, u -> o || _ %. ];
define Shortening [%. -> 0 || _ Cons [Cons | .#.]] ;
define Defaults A -> a, I -> i, %+ -> 0;

The composition [Rounding .o. Lowering .o. Shortening .o.
Defaults] yields a 63-state single transducer that maps Yakut lexical forms to
surface forms, and vice versa.

The same data can also be analyzed in twolc terms. The twolc Shortening and
Lowering rules are simple notational variants of their xfst counterparts. The twolc
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Rounding rule, however, is different from its xfst counterpart in one crucial respect:
the left context of the alternation [Vz: $%+: ] requires a rounded lexical vowel
without specifying its surface realization. Thus the lowering of the stem vowel in
?u.t+hIn does not prevent it from triggering the rounding of the suffix vowel. This
is one of the many cases in which under-specification in two-level rules does the
same work as rule ordering in the old Chomsky-Halle phonological model.

Alphabet
%+:0 %.:0 %. i i:e u u:o o e i I:u I:i A:a A:o a
b d f g h k k’ l m n p q r s t v w %? ;

Sets
Cons = b d f g h k k’ l m n p q r s t v w %? ;

Rules
"Rounding"

Vx:Vy <=> Vz: $%+: _ ; where Vx in (I A)
Vy in (u o)
Vz in (u o)

matched;
"Lowering"

i:e | u:o <=> _ %.: ;
"Shortening"

%.:0 <=> _ Cons [Cons | .#.];

The intersection of the twolc rules for Yakut also yields a 63-state transducer
that is virtually identical to its xfst counterpart. The only difference is that the two
rule systems make a different prediction about the realization of hypothetical Yakut
forms such as ?u.t+hI.n in which the underspecified suffix vowel is long. In this
case, the xfst Yakut rules predict that it would undergo all three processes yield-
ing ?othon as the final output whereas the twolc Yakut rules produce ?othun in this
case. With a little tinkering, it would be easy to make two rule systems completely
equivalent, if one knew what the right outcome would be in that unattested case.

From a mathematical and computational point of view, twolc and xfst rule sys-
tems are equivalent in the sense that they describe regular relations. The sequential
replace rules and the parallel twolc rules decompose, in a different way, a complex
relation between lexical and surface forms into smaller subrelations that we can un-
derstand and manipulate. They represent different intuitions of what the best way
is to accomplish the task. In practice, the two approaches are often combined, for
example, by composing a set of intersected twolc rules with networks that represent
constraints, replace rules, or another set of intersected twolc rules.

Depending on the application, one approach may have an advantage over the
other. A cascade of replace rules is well-suited for cases in which an upper language
string is typically very different from its lower language counterpart. In such cases
we are often interested only in string-to-string mappings and do not care about how
the strings are exactly aligned with respect to each other. But if it is important to de-
scribe the relation in terms of exact symbol-to-symbol correspondences, twolc rules
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may be a more natural choice because that is precisely what they were designed to
do.
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