
Natural Language Engineering ���� c� ���� Cambridge University Press �

Regular Expressions for Language Engineering

L� KARTTUNEN� J�P� CHANOD� G� GREFENSTETTE� A� SCHILLER

Rank Xerox Research Centre �RXRC�� � Chemin de Maupertuis� ����	 Meylan� France
fLauri�Karttunen�Jean�Pierre�Chanod�Gregory�Grefenstette�Anne�Schillerg

�grenoble�rxrc�xerox�com

�Received � February���� �

Abstract

Many of the processing steps in natural language engineering can be performed using
�nite state transducers� An optimal way to create such transducers is to compile them
from regular expressions� This paper is an introduction to the regular expression calculus�
extended with certain operators that have proved very useful in natural language appli�
cations ranging from tokenization to light parsing� The examples in the paper illustrate
in concrete detail some of these applications�

� Introduction

The use of �nite state transducers for morphological analysis and generation �Kart�

tunen et al� ����� Karttunen ���	� Beesley and Karttunen ���
� is by now well es�

tablished� It is less well known how far the techniques of �nite state transformation

of text can succeed in solving other natural language engineering problems beyond

morphology� In this paper� we will present a number of applications of �nite state

technology to other language engineering problems� and describe part of the regular

expression calculus that we have developed that make these applications possible�

Although large eorts have been made to build local grammars �Silberztein �����

without the help of a �nite state calculus� the expressive power of a well�designed

calculus makes it possible to create modular rule sets and lexical descriptions that

are easy to update and maintain� accelerating the production of diverse engineering

applications�

Our paper is structured in the following way� After a general introduction to the

�nite state calculus� special attention will be given to three �nite state operators�

restriction� replacement� and left to right� longest match replacement� These con�

ceptually simple regular expression operators express in a concise way conditions

whose explicit formulation would otherwise be complicated and unwieldy� Their

introduction into the Xerox �nite state calculus has spurred a number of language

engineering applications� some of which are described below� A graded set of exam�

ples using these operators will be presented as a concrete illustration of their power

and simplicity�

After this overview of the Xerox �nite state calculus� we will present a number of

� Lauri Karttunen and others

applications using this calculus over textual structures larger than individual words�

In Section 	��� we present tokenization applications� Subsection 	���� presents a de�

terministic tokenizer used in our part of speech tagging suite� Nondeterministic

tokenization� presented in subsection 	����� maintains alternative tokenizations of

the same input stream in a �nite state structure to which further linguistic treat�

ments� e�g� parsing� can be applied�

Subsection 	�� presents two applications of light parsing over tagged text� Just

as tokenization applies �nite state rules and constraints over strings involving more

than one word� these applications apply to units� here sentences� recognized by the

part of speech tagger� which include more than one word� And just as transducers

compiled from morphological rules insert or delete characters in words� these light

parsers introduce syntactic markings within a tagged sentence� around sequences

that ful�ll the conditions speci�ed in the �nite state rules�

� Introduction to the Finite�State Calculus

Finite state transducers that encode phonological and morphographical alterna�

tions are generally not created directly but are compiled from rules of some sort�

The two�level rule formalism �Koskenniemi ����� as well as classical phonological

rewrite rules can be viewed as special kinds of regular expressions �Kaplan and

Kay ���	� that extend the basic language with new operators and new types of

expressions� These extensions make the formalism more suitable for particular ap�

plications but they do not aect its generative power� In this section we will discuss

recent extensions to the regular expression calculus that enable us to create �nite

state transducers for syntactic processing from high level rules�

We start with a brief review of the basic regular expression calculus and proceed

with the discussion of two special operators that were originally introduced for

phonological and morphographical alternations but which have since proved useful

in writing syntactic rules as well� These are the restriction operator �� and the

replace operator ��� We will then describe in more detail a variant of the latter�

the left to right� longest match replacement ��� recently introduced in �Karttunen

������ and illustrate its application to syntactic description�

��� Simple regular expressions

The language of regular expressions is a formal language similar to formulas of

Boolean logic� It has a simple syntax but the expressions can be arbitrarily com�

plex� Like formulas of Boolean logic� regular expressions denote sets� We need to

distinguish two kinds of sets� sets of strings and sets consisting of pairs of strings�

We use the term language to refer to a set of simple strings and the term relation in

talking about sets of string pairs� The terms regular language and regular relation

refer to sets than can be described by a regular expression�

Regular languages and relations may be encoded as �nite state networks� Lan�

guages are represented by simple automata� relations by transducers� Any regular

expression can be compiled into a network that represents the corresponding lan�

Regular Expressions for Language Engineering �

guage or relation�� Because of the close connection between regular expressions and

�nite state networks� we often use the terms regular and �nite state interchangeably

in this paper�

Regular expressions contains two kinds of symbols� unary symbols and symbol

pairs� Unary symbols �a� b� etc� denote strings� symbol pairs �a�b� a��� ��b� etc��

represent pairs of strings� The simplest kind of regular expression contains a single

symbol� For example� a denotes the set f�a�g� Similarly� the regular expression

a�b denotes the singleton relation f��a�� �b��g� A regular relation may always

be viewed as a mapping between two regular languages� The a�b relation is simply

the crossproduct of the languages denoted by the expressions a and b�

In order to distinguish the two languages that are involved in a regular relation�

we can call the �rst one the upper and the second one the lower language of the

relation� Correspondingly� in the pair a�b� the �rst symbol� a� can be called the

upper symbol and the second one� b� the lower symbol� The two components of a

symbol pair are separated in our notation by a colon� �� without any whitespace

before or after� To make the notation less cumbersome� we systematically ignore

the distinction between the language A and the identity relation that maps every

string of A to itself� Therefore� we also write a�a simply as a�

A transducer that encodes a regular relation can be applied in two ways� to map

a string in the upper language to the corresponding string�s� in the lower language�

or vice versa� There is no privileged direction of application� In the examples in

later sections� the intended input language is always on the upper side and the

output on the lower side of the relation�

Two regular expression symbols have a special interpretation� � �epsilon� and �

�any�� The epsilon symbol � denotes the empty string� � stands for any symbol

that occurs in the same regular expression and for any unknown symbol� In a later

section we introduce one more special symbol� the boundary marker �	�� to refer

to the beginning or the end of a string in certain expressions�

The special meaning of any symbol may be turned o by pre�xing it with the

escape character
 or by enclosing the symbol in double quotes�
�� and ��� are

interpreted as ordinary zero digits and not as the special character epsilon� On the

other hand� certain other strings receive a special interpretation within a doubly

quoted string� For example� ��n� is interpreted as the newline character� ��t� as

a tab following the C programming language conventions� Because whitespace is

generally ignored� a space as a regular symbol must be pre�xed with
 or enclosed

in double quotes�
 � � ��

Complex regular expressions can be built up from simpler ones by means of

regular expression operators� Because both regular languages and regular relations

are closed under concatenation and union� the following basic operators can be

combined with any kind of regular expression�

� See http���www�rxrc�xerox�com�research�mltt�fst� for a demonstration of the Xe�
rox regular expression compiler and for a more comprehensive description of the syntax
and semantics of regular expressions�

	 Lauri Karttunen and others

A B Union�

A B Concatenation�

�A� Optionality� union with the empty string�

A� Iteration� one or more concatenations of A�

A� Kleene star� equivalent to �A���

Square brackets� ��� are used for grouping expressions� Thus �A� is equivalent to

A while �A� is not� Note the following simple expressions�

�� The empty�string language�identity relation

�� The universal language�identity relation�

Although regular languages are closed under complementation and intersection�

regular relations are not �see Kaplan and Kay ���	�� thus the following operators

can be combined only with expressions that denote a regular language�

�A Complement �negation�

A � B Intersection

A � B Relative complement �minus�

Regular relations can be constructed by means of two basic operators�

A �x� B Crossproduct

A �o� B Composition

The crossproduct operator� �x�� is used only with expressions that denote a

regular language� it constructs a relation between them� �A �x� B� designates the

relation that maps every string of A to every string of B� If A contains x and B

contains y� the pair �x� y� is included in the crossproduct�

Composition is an operation on relations that yields a new relation� �A �o� B�

maps strings that are in the upper language of A to strings that are in the lower

language of B� If A contains the pair �x�y� and B contains the pair �y� z�� the pair

�x� z� is in the composite relation�

��� De�ning New Operators

The syntax �though not the descriptive power� of regular expressions can be ex�

tended by de�ning new operators that allow commonly used constructions to be

expressed more concisely� A simple example of a trivial but convenient extension is

the containment operator ��

�A �def ��� A ���

For example� ��a b� denotes all strings that contain at least one �a� or �b�

somewhere�

The addition of new operators can be more than just a notational convenience� A

case in point is Koskenniemi�s ������ restriction operator ��� originally introduced

for two�level phonological rules�

A �� B � C Restriction� A only in the context of B � C�

Regular Expressions for Language Engineering �

Here A� B and C may denote any regular language� This expression designates

the language of strings that have the property that any string of A that occurs

in them is immediately preceded by some string from B and immediately followed

by some string from C� For example� a �� b � c includes all strings that contain

no occurrence of �a�� strings like �bac�bac� that completely satisfy the condition�

but no strings like �ab�� Reductionist �nite state parsers �Koskenniemi et al� �����

Voutilainen and Tapanainen ����� Chanod and Tapanainen ���
� make frequent

use of such constraints to exclude unwanted analyses�

The advantage of the restriction operator is that it encodes in a compact way a

useful condition that is di�cult to express in terms of the more primitive operators�

The de�nition of �A �� B � C� is shown below�

A �� B � C �def ��� ����� B� A ��� ��� A ��C ���� ��

Clearly� high level abstractions like �A �� B � C� are conceptually easier to op�

erate with than the logically equivalent but very complex primitive formulas� just

as it is easier to write complex computer programs in a high level language rather

than in a logically equivalent assembly language�

Note that the de�nition of the restriction operator �� given above contains three

negations� Because regular relations are not closed under complementation� all the

component expressions in �A �� B � C�must denote regular languages rather than

relations� In the general regular expression calculus we do not allow expressions such

as a�� �� b � c that are well�formed two�level rules in Koskenniemi�s formalism�

In our two�level calculus all pair symbols are treated as atomic symbols and con�

verted to real symbol pairs only after the compilation is �nished �Karttunen and

Beesley ������

Another example of a useful high level abstraction is the replace operator� ���

that plays much the same role in the general regular expression calculus as ��

and �� in two�level rules� This simplest type of replacement is unconstrained by

contexts�

A �� B Replacement of A by B�

The component expressions� A and B� must denote regular languages but the

expression as a whole denotes a relation� The �A �� B� relation maps any string

to itself if the string contains no instance of A� Strings that contain instances of A

are paired with copies that are otherwise identical except that each A segment is

replaced by some B string� The exact de�nition of A �� B is shown below�

A �� B �def � ����A � ��� �A �x� B��� ���A � ����

This relatively simple idea would be also rather cumbersome to express without

the explicit replace �� operator� The same is true of the other types of replace

expressions �Kaplan and Kay ���	� Karttunen ����� that constrain the operation

by left and right contexts�

A �� B L � R Replacement of A by B in the context L � R�

� Lauri Karttunen and others

The two vertical bars� in the above contexted replacement indicate that both

contexts L and R pertain to the upper language of the relation� �See Karttunen

����� Kempe and Karttunen ���� for other variations��

Another way of generalizing the replace operator is to make two or more replace�

ments in parallel�

A� �� B�� A� �� B�

This is de�ned like the single �A �� B� replacement above except that we replace

���A � ��� by ����A� A�� � ��� and �A �x� B� by the union of multiple

crossproducts� ��A� �x� B�� �A� �x� B����

��� Left to right� Longest match Replacement

The transducers compiled from the simple replacement expression� A �� B are in

general ambiguous in the sense that a string in the upper language of the relation

may become paired with more than one string� This can happen even if the B

language consists of a single string� For example �a b b b a a b a� �� x

maps the string �aba� into four dierent strings� as shown below�

a b a a b a a b a a b a

��� � ��� �����

x a a x a a x x

The reason is that the simple replacement relation does not constrain the selection

of the alternate substrings for replacement� Here we get dierent results for �aba�

depending on whether the replacement starts at the beginning or in the middle of

the string� At both sites there are two alternative replacements to be made� Starting

at the beginning� we may relace either �ab� or �aba�� Starting in the middle� we can

replace either �b� or �ba�� The underlining show the four alternate factorizations

of the input string�

For many applications� it is useful to de�ne another version of replacement that

in all such cases yields a unique outcome� The longest match� left to right replace

operator� ���� de�ned in Karttunen ������� imposes a unique factorization on ev�

ery input� The replacement sites are selected from left to right� not allowing any

overlaps� If there are alternate candidate strings starting at the same location� only

the longest one is replaced� Thus the ��� operator allows only the last factorization

in the �gure above� mapping �aba� unambiguously to �x��

The eect of the left to right� longest match constraints is that every string in

the upper language of A ��� B is uniquely parsed into a sequence of substrings

that either belong or do not belong to A� We can take advantage of the unique

factorization in more than one way� Instead of replacing the instances of A by a

string from some other language� we may insert markers or brackets around the A

strings to mark them as such�

To implement this idea� Karttunen ������ introduced a special symbol � � � on

the right�hand side of the replacement expression to mark the place around which

the insertions are to be made� The general form of these marking expressions is

Regular Expressions for Language Engineering

shown below� For the sake of generality we allow B and C to denote any regular

language�

A ��� B ��� C Left to right� longest match markup�

The corresponding transducer locates instances of A in the input string under the

left to right� longest match regimen� copies the entire string unchanged except that

the B and C strings are inserted around the selected A strings as markers� In eect�

this transducer can be viewed as a parser that picks out maximal instances of the

regular language A�

Just like simple replacement� the left to right longest match replacement can also

be constrained by context and generalized for parallel replacement� For example

A� ��� B� ��� C�� A	 ��� B	 ��� C	

picks out the maximal instances of the union �A� A�� and marks them dierently

depending on whether they belong to A� or A�� We will make use of this speci�c

possibility below in Section ���� The contexted version of ��� makes its appearance

in Section 	�����

To start with a simpler example� let us assume that noun phrases consist of an

optional determiner� �d�� any number of adjectives� a�� and one or more nouns� n��

The expression �d� a� n� ���
� ���
� compiles into a transducer that inserts

brackets around maximal instances of the noun phrase pattern� For instance� it

maps �dannvaan� into ��dann�v�aan���

d a n n v a a n

������� �����

 d a n n � v
 a a n �

Although the input string �dannvaan� contains many other instances of the noun

phrase pattern� �n�� �an�� �nn�� etc�� the left to right and longest match constraints

pick out just the two maximal ones�

This simple example demonstrates that �nite state parsers can be compiled di�

rectly from regular expressions� In the next section we will present a more sophis�

ticated example illustrating this technique�

� A Grammar and a Parser for Date Expressions

It is well�known among linguists that the syntax of a natural language cannot in

general be described by a �nite state� or even a context free grammar� Nevertheless�

there are many subsets of natural language that can be correctly described by very

simple means� for example� names and titles� addresses� prices� dates� etc� For some

of these kinds of expressions� a �nite state grammar may be more appropriate and

easier to construct than an ordinary phrase structure or feature based grammar�

In this section� we examine one such case in detail� a grammar for dates� As we

demonstrated in the previous section� from the regular expression that de�nes the

syntax of well�formed date strings we can directly derive a �nite state transducer

that marks them in a text�

� Lauri Karttunen and others

For the sake of illustration� let us consider here only one of several common date

formats� expressions that are of the type

Sunday
August ��

Sunday� August ��
August ��� ����

Sunday� August ��� ����

In the following we assume that a date expression consists of a day of the week�

a month and a date with or without a year� or a combination of the two� Note

that this description of the syntax of date expressions leads to the same problem

we encountered in the previous example� Long date expressions� such as �Sunday�

August ��� ������ contain smaller well�formed date expressions� e�g� �August ����

that should be ignored in the context of a larger date� In order to simplify the

presentation� we stipulate that date expressions are contiguous strings� including

the internal spaces and commas�

To facilitate the speci�cation of the date language we �rst de�ne some auxiliary

terms and then use them to de�ne larger phrases� The complete set of de�nitions

is shown below�

�To�
 � � 	 � � � � � � � � � � � � � � �

�To�
 �� � �To� �

SP
 �� � �

Day
 Monday � Tuesday � ������ � Saturday � Sunday �

Month
 January � February � ������ � November � December �

Date
 �To� �
� � 	� �To� � �
�� � �� �

Year �To� ��To� ��To� ��To����

DateExpression Day � �Day SP� Month � � Date �SP Year�

�From these de�nitions we can compile a small �nite state automaton ��� states�

�� arcs� that describes a language of about �� million date expressions for the

period from January �� � to December ��� �����

A parser for the language can be compiled from the following simple regular

expression�

DateExpression ��� �
 ��� ��

It yields a transducer of �� states and ��� arcs that marks maximal date expressions

in the manner illustrated by the following text�

Today is
Wednesday� August 	�� ����� because yesterday was
Tuesday�

and it was
August 	�� so tomorrow must be
Thursday� August 	�� and

not
August ��� ����� as it says on the program�

Because of the left to right� longest match constraints associated with the ���

operator� the transducer brackets only the maximal date expressions�

However� as to correctness� this regular expression grammar suers from a serious

problem of overgeneration� The actual number of days in ���� years is much smaller

than the number of expressions in the language �� �� million�� A large majority of

the date expressions generated by the grammar refer to dates that do not exist� For

example� expressions like �April ��� ����� are similar to examples like �the present

Regular Expressions for Language Engineering �

king of France� that do not refer to anything real� It is an interesting challenge for

�nite state syntactic description to try to specify a sublanguage that contains all

and only the semantically valid date expressions�

��� Eliminating Invalid Date Expressions

In this section we eliminate step by step all the dierent types of invalid date ex�

pressions using the operations of the regular expression calculus introduced earlier�

The easiest problem to correct is that the original date grammar allows expres�

sions like �February ��� and �April ��� that exceed the maximum number of days

for the month� Somewhat more challenging is the case of leap days� �February ���

����� and �February ��� ����� are valid dates but �February ��� ���	� and �Febru�

ary ��� ����� do not exist� The hardest problem is the dependency between the

day of the week and the date� Because September ��� ���� is in fact a Monday�

the expressions �Tuesday� September ��� ������ �Wednesday� September ��� ������

etc� are invalid even if they occasionally occur in real texts�

Our solution is to construct a suitable constraint for each of these three kinds

of invalid types of dates� MaxDaysInMonth� LeapDays� and WeekDayDates� Each of

these constraint expressions denotes a language that excludes a particular type of

invalid date but admits all other strings� We obtain the desired eect by intersect�

ing the constraint languages with the original language of date expressions� The

intersection of the four languages contains all and only the valid dates�

ValidDate

DateExpression � MaxDaysInMonth � LeapDays � WeekDayDates

The MaxDaysInMonth constraint is a language that includes all strings except the

ones which contain a month name followed by an inappropriate number of days�

MaxDaysInMonth

��
 February � � � �� �

February � April � June � September � November� � � � � �

Note that ���A� denotes the complement �negation� of the set of strings that

contain at least one instance of A somewhere�

In order to restrict �February ��� to leap years we need to do a little more work�

Not all years divisible by four are leap years� Full centuries are not leap years unless

they are divisible by 	��� Consequently� year ���� is not a leap year but year ����

is� We need the following de�nitions�

Even
 �� � 	 � � � � � � �

Odd
 � � � � � � � � � �

N �To� �To��

Div�
��N� Even�
�� � � � ��� �
�N� Odd
	 � ���

LeapYear Div� �

N � Div�� �� ���

Here we �rst de�ne Div� as the in�nite set of natural numbers that are divisible

by four� This set consists of two parts� numbers that end in �� 	� or � possibly

preceded by an even number and numbers that end in � or � preceded by an

�� Lauri Karttunen and others

odd number� Finally� we de�ne LeapYear as the set of numbers divisible by 	

subtracting centuries that are not multiples of 	��� Note that the expression ��N �

Div��
�
�� denotes numbers with two �nal zeros that are preceded by a number

that is not divisible by four� For example� it includes ���� but not ����� Because

LeapYear is de�ned as Div� minus this set� it follows that ���� is a leap year but

���� is not�

Once the set of leap years is de�ned� the distribution of �February ��� in date

expressions can be constrained with the following simple restriction� �As de�ned

above� SP is a separator consisting of a comma and a space��

LeapDays February � � 	 � SP � � LeapYear ���

In other words� a date expression containing �February ��� � must terminate

with a leap year� Note that the boundary symbol� �	�� is necessary here to mark

the end of the year string in order to rule out expressions like �February ��� �����

which would qualify if we were allowed to take into account only the �rst three

digits since year ��� is a leap year in the Gregorian calendar�

The last problem� synchronization between the days of the week and the dates

takes a little more work� In eect� we need to construct a complete calendar to

determine the validity of any arbitrary date expression� say� �Friday� October ���

������ the day the Gregorian calendar was introduced in Catholic countries�

The task is easier than it �rst appears because the Gregorian calendar includes

a perfect 	�� year double cycle� after each 	�� years we start the year on the same

day and we are at the same point in the leap year sequence� Starting from that

observation� it is simple to partition years into equivalence classes so that the years

in each class begin on the same day of the week� Furthermore� we need to distinguish

ordinary years from leap years that have one extra day� Thus we can de�ne fourteen

equivalence classes�

MonY ���� � ���� � ���� � ���� � 	��� � ����

TueY ���� � ���� � ���� � ���� � 	��	 � ����

����

MonLY ���� � ���	 � ���� � ���� � ���� � ����

TueLY ���� � ��	� � ���	 � ���� � 	��� � ����

����

where MonY� TueY� etc� are ordinary years beginning with Monday� Tuesday� etc�

respectively� MonLY� TueLY� etc� denote the corresponding classes for leap years�

The year classes can be constructed using the same sort of �nite state arithmetic

that we employed above to de�ne the in�nite set of leap years� but we will skip the

mechanics here except for one interesting detail� In order to avoid listing years one

by one� it is convenient to derive subclasses from other subclasses by addition� This

can be achieved by an auxiliary transducer that maps any set of numbers x� y� z�

��� to another set containing x��� y��� z��� etc� Applied in the opposite direction�

the same transducer subtracts ���

� A binary version of the adder�subtracter transducer is one of the examples discussed
in http���www�rxrc�xerox�com�research�mltt�fst�fsexamples�html�

Regular Expressions for Language Engineering ��

Another simple observation that greatly facilitates the calendar construction is

that the weekday of the �rst day of the year determines the weekday of all the other

days of the year� Again� we need fourteen equivalence classes�

D� January � � January � � ���� � December ��

D	 January 	 � January � � ���� � December 	�

����

D�L January � � January � � ���� � December ��

D	L January 	 � January � � ���� � December ��

����

where D� includes all the dates that fall on the same weekday as the �rst day of

an ordinary year� D� contains all the dates that share the weekday with the second

day� and so on� The D�L� D�L� etc� are the corresponding classes for leap years�

To construct the �nal �lter for the perfect Gregorian calendar we just need to

combine the information about what weekday begins what year with the equivalence

classes for the dates within a year� For example� for an ordinary Monday year

�MonY�� Mondays fall on January �� January �� ���� and December ��� But if the

year begins on Sunday �SunY�� then Mondays fall on January �� January �� etc��

up to December ��� Similarly for all the fourteen equivalence classes for years�

The complete constraint for Mondays� MondayDates is expressed by the following

regular expression�

MondayDates

 Monday � � �SP
 D� �SP MonY� � D�L �SP MonLY� �

D	 �SP SunY� � D	L �SP SunLY� �

D� �SP SatY� � D�L �SP SatLY� �

D� �SP FriY� � D�L �SP FriLY� �

D� �SP ThuY� � D�L �SP ThuLY� �

D� �SP WedY� � D�L �SP WedLY� �

D� �SP TueY� � D�L �SP TueLY� �� ��� �

The language denoted by the expression above includes all strings that do not

contain any instance of �Monday� and all strings that contain �Monday� in an

environment that conforms to the restriction� the end of the string ��Monday���

any month and a date without a year ��Monday� December ���� or a month and

a date followed by an appropriate year ��Monday� January �� ������� If a month

and a date are followed by a year� the month and date class� D�� D�L� D�� etc�� must

correlate with the year class� MonY� MonLY� SunY� etc�

The complete WeekDayDates constraint is simply the intersection of the similar

constraints for all the seven weekdays�

WeekDayDates MondayDates � TuesdayDates � WednesdayDates �

ThursdayDates � FridayDates � SaturdayDates �

SundayDates

We have now completed the task of extracting the language of valid dates from

the set of all date expressions� it is the intersection of the four languages we have

de�ned�

ValidDate DateExpression � MaxDaysInMonth �

LeapDays � WeekDayDates

�� Lauri Karttunen and others

If we consider the �nite state network that encodes the language� we can see

that the number of expressions is considerably reduced since there are only about

about ��
 million days in between year � and year ����� On the other hand� the

network itself is much larger than the unconstrained DateExpression automaton�

��	� states� ����� arcs�

In any case� we can now easily derive a transducer that marks all and only the

valid dates�

ValidDate ��� �
 ��� ��

With the Xerox regular expression compiler� the entire computation creating the

date�parsing �nite state transducer takes about �� seconds on a powerful worksta�

tion �Sun Ultra ���

��� Discriminating Date Parser

Although it is desirable to distinguish valid dates from invalid dates� it may not be

useful in practice to recognize only the valid dates� Because of errors and misprints�

real text corpora contain a fair number of invalid dates� Instead of ignoring all but

the valid ones� it may be more practical to accept all date expressions and simply

use dierent tags to mark the distinction between valid and invalid dates�

Once we have de�ned both the language of all date expressions� DateExpression�

and the set of valid ones� ValidDate� it is simple to pick out the set of invalid dates�

�DateExpression � ValidDate�� Using the notion of parallel replacement intro�

duced earlier� we can easily construct a parser that recognizes maximal instances

of the general class of date expressions but tags them in two ways depending on

which subclass the expression belongs to� The discriminating date parser is de�ned

by the regular expression below�

DateExpression � ValidDate� ��� �
ID � ��� �� �

ValidDate ��� �
VD � ��� �� �

This parallel replacement expression compiles into a ���� state� ����� arc trans�

ducer in about �� seconds on a Sun Ultra �� The time includes the compilation of all

the auxiliary expressions and constraints discussed above� The following example

illustrates the eect of the transducer on a sample text�

The correct date for today is
VD Monday� September ��� ������ There

is an error in the program� Today is not
ID Tuesday� September ���

������

The string �Monday� September ��� ����� gets marked with the ��VD � tag

because it is a valid date� Replacing �Monday� by �Tuesday� makes the date invalid

but the parser still recognizes the expression �Tuesday� September ��� ����� as a

date expression� albeit as an invalid one� Because the longest match constraint is

calculated with respect to the language of all date expressions� the invalid date

�Tuesday� September ��� ����� gets selected over �Tuesday� September ��� ���

which happens to be valid� although the Gregorian calendar of course was not yet

in use in the year �� AD�

Regular Expressions for Language Engineering ��

To conclude this section� let us recapitulate the main points� The purpose of this

exercise was to demonstrate that

� Finite state parsers can be constructed directly from regular expressions for

nontrivial languages�

� There are regular subsets of natural language� such as the language of dates�

for which �nite state description is not only feasible but more appropriate

and easier to construct than the equivalent phrase structure grammar�

� Regular languages and relations can be modi�ed directly with the �nite state

calculus to obtain new languages and relations without rewriting the gram�

mars that describe them�

It is of course possible to use phrase structure rules� attribute�value matrices�

type hierarchies� categorial grammar� and other powerful formalisms to represent

leap years� years starting on a Monday� and dates that fall on the same weekday as

January �� However it is not apparent that these powerful formalisms give us any

advantage over the simple �nite state techniques we have used� On the contrary� it

seems that the manipulations required to accomplish such tasks with more powerful

formalisms would be at least as complicated and ad hoc as the simple �nite state

techniques employed here� Note that a phrase structure grammar of valid dates

requires cross�classi�cation� which leads to a large number of rules and nonterminal

categories�

If the language to be described is in fact regular� there may be a signi�cant

advantage in describing it by means of a regular grammar instead of using a more

powerful grammar formalism� In the example just discussed� we were able to obtain

the language of invalid dates by subtracting one regular language from another one�

There would be no straightforward method to achieve a similar result starting with

a phrase structure grammar since context free languages in general are not closed

under complementation�

The next sections will add more examples supporting this general line of argu�

ment and present other applications of the �nite state calculus to natural language

processing�

� Applications of the �nite state calculus

��� Tokenization

One of the very �rst steps in any natural language processing system is applying a

tokenizer to the input text� A tokenizer is a device that segments an input stream

into an ordered sequence of tokens� each token corresponding to an in�ected word

form� a number� a punctuation mark� or other kind of unit to be passed on to sub�

sequent processing� If the output never contains alternative segmentations for any

part of the input� the tokenizer is called deterministic� Deterministic tokenization

is commonly seen as an independent preprocessing step unambiguously producing

items for subsequent morphological analysis�

In our approach� tokenization is an integral part of language processing� which can

�	 Lauri Karttunen and others

be adapted to the needs of the subsequent analysis steps� Depending on the following

steps� one might want to invoke dierent tokenization algorithms� In section 	�����

we describe a deterministic tokenizer which is useful for stochastic part of speech

disambiguation� Then in Section 	���� we sketch a situation in which we might need

nondeterministic tokenization and describe how that is achieved�

����� Deterministic Tokenization

The simplest kind of deterministic tokenizer is an unambiguous� transducer that

splits the input stream into a unique sequence of tokens� one per line� taking into

account some general character classes but not using any language�speci�c infor�

mation�

Letter
 A � B � C � ������ � x � y � z �

WhiteSpace � � � � t� � � n�

Other ! � Letter � WhiteSpace

With these de�nitions� we can compile a simple tokenizing transducer that in�

serts newlines to mark token boundaries from the following regular expression� It

represents the composition of three simple replace relations� as explained below�

WhiteSpace" ��� � �

�o�

Letter" ��� ��� � n�� Other" ��� ��� � n�

�o�

� � ��
� �� ��� � � n� �

The �rst relation reduces strings of whitespace characters into a single blank

using longest match replacement� The second inserts a newline as a token boundary

after longest matches of letter sequences and other non�whitespace sequences� The

third formula� a contexted replace expression� denotes a relation that eliminates

any initial space and all spaces that follow a token boundary� The composite single

transducer consists of � states and �
� arcs� It is unambiguous� every sequence of

input characters is mapped into a unique sequence of tokens�

Exactly the same tokenization can also be obtained by compiling the three re�

placements separately and applying the resulting transducers in a sequence� each

modifying the output of the previous one� This step by step approach� a cascade of

transductions� will be discussed in section 	�����

Extending this simple tokenizer� we can create more sophisticated tokenizer trans�

ducers which are language�speci�c� In order to divide the input text into sentences

and words recognized by subsequent processing steps� these tokenizers need to know

about abbreviations� conjoined clitics� and multiword expressions that contain in�

ternal spaces� hyphens� and other special symbols� A lexicon compiled as a �nite

� The most e	cient transducer is not only unambiguous but sequential as well� A se�
quential transducer produces a unique mapping without ever exploring any alternatives

Mohri ������ An unambiguous transducer can be sequentialized if all local ambiguities
can be resolved with the help of a limited amount of lookahead� Tokenizing transducers
are in general of this type�

Regular Expressions for Language Engineering ��

state language �TokenLexicon below� containing such exceptional tokens can be

included in the middle line of the preceding formula�

Letter" � TokenLexicon � ��� ��� � n�� Other" ��� ��� � n�

Because we use the longest match operator� any spaces and punctuation charac�

ters in the entries of TokenLexicon are mapped to themselves and do not count

as token boundaries� For example� if the lexicon includes the strings ��tu�� �l� ��

and ��a c�ot e de�� a French tokenizer would split the string �Vois�tu l�arbre �a c�ot e

de la maison!� �Do you see the tree next to the house�� into the following tokens

�token�bounding newlines are written as k��

Voisk�tukl�karbrek�a c�ot�e deklakmaisonk�k

Multiword tokens are of several types�

� adverbial expressions ��all of a sudden�� �a priori�� �to and fro��

� prepositions ��in front of�� �in spite of�� �with respect to��

� dates ��January �nd��� time expressions ������ am��

� proper names ��New York�� �Rank Xerox��

� and other units

A word of warning is in order� An unambiguous tokenizer analyzes every multi�

word expression consistently as a single token� even if the component words should

be separated in a given context� For example� if �in general� is included in the

multiword lexicon� then it will be tokenized as a unit in both of the examples� �in

general� he ���� and �in general meetings�� Therefore� multiword lexicons used for

unambiguous tokenization must be carefully and conservatively designed�

����	 Tokenization by step by step transduction

If the multiword lexicons are very large� their compilation into a single transducer

may lead to time and space problems� Moreover� dierent NLP applications may

require dierent multiword lexicons� For these reasons� it may be advantageous to

use another approach� based on multiple transducers that apply in a sequence to

yield exactly the same end result as the single tokenizer just described� In general�

such a sequence consists of

� a basic tokenizer which segments any sequence of input characters into simple

tokens �i�e� no multiword units� and

� one or several multiword staplers which identify multiwords and group them

together as single units�

The basic tokenizer is compiled as described in the previous section� The multi�

word staplers are built in the following way� We �rst de�ne a multiword language�

MWL� containing the units to be recognized� The de�nition assumes the basic tok�

enization has already been done� the internal word separator is a newline instead

of a space� For example� if the multiword expressions consist of �ad hoc� and �and

so on�� we de�ne the language as follows�

�� Lauri Karttunen and others

MWL
a d � n� h o c � a n d � n� s o � n� o n �

In order to de�ne a relation that staples together the MWL expressions� it is

useful to start with some auxiliary de�nitions�

BEG
�##�� END
����� BND
BEG � END� LIM
� n� � ����

The BEG and END brackets are markers for the multiword string� The LIM expres�

sion is used to check the surrounding context making sure that the beginning and

the end of the candidate multiword expression are not part of some other token�

The stapler is composed from the three auxiliary relations below�

Identify
��
BND� �o�
MWL ��� BEG ��� END �� LIM � LIM ��

Staple
� n� �� � � �� BEG ��
BND� � ��
BND� END�

Cleanup
BND ��
��

The Identify relation wraps the multiword expressions in MWL inside a pair of

auxiliary brackets� �� ��� under the left to right� longest match regimen imposed by

��� and under the constraint that the multiword string is properly delimited�� The

Staple relation converts every internal newline in a marked region into a space

leaving the �nal one unchanged� The Cleanup relation eliminates the auxiliary

brackets�

The multiword stapler for the MWL expressions is the composition of the three

relations de�ned above�

Stapler � �Identify �o� Staple �o� Cleanup�

The sequential application of the basic tokenizer and the multiword stapler is

illustrated in the �gure below� As before� we use k to represent the newline symbol

in order to save space�

one� two� and so on�

�

basic tokenizer
�

onek�ktwok�kandksokonk�k
�

multiword stapler

�
onek�ktwok�kand so onk�k

The basic tokenizer can of course be composed with the multiword staplers to

form a single� larger transducer if increasing the speed of application is more im�

portant than the size of the network�

If the stapling of some multiword expressions is made optional� the tokenization

becomes nondeterministic because the multiword interpretation of the MWL string

is an alternative to the sequence of single word tokens produced by the basic tok�

enizer� The next section discusses some cases where it is advantageous not to use

deterministic tokenization�

� The same logic could be encoded without the contexted version of the ��� operator but
the details would be quite a bit more complicated� The problem is to avoid errors such
as picking out �ad hoc as a multiword in the middle of �bad hock�

Regular Expressions for Language Engineering �

����
 Nondeterministic Tokenization

The deterministic treatment of multiword expressions as single tokens is problem�

atic because many such expressions have alternate analyses in dierent contexts�

For instance� the string �de m�eme� in French can be treated as a single token�

meaning similarly � or a sequence of two independent tokens� the preposition �de�

of followed by the adjective �m�eme� same� If the unambiguous tokenizer makes a

wrong choice� it may lead to a parse failure or incorrect semantic interpretation� In

such cases� a cautious tokenizer produces alternative segmentations postponing the

decision to a later processing stage�

With the techniques just introduced� it is easy to make a tokenizer that produces

alternative segmentations for some strings� We start by creating a special multi�

word lexicon for strings such as �de m�eme� that should be analyzed either as a

single token or as a sequence of tokens� If we are using the step by step approach

in the previous section� we introduce into the cascade a second� ambiguous stapler

transducer that optionally adjusts the output of the basic tokenizer for these poten�

tial multiword items� This optional stapler is de�ned exactly like the unambiguous

stapler except that we include the universal identity relation� ��� to allow for any

string to be mapped to itself�

OptionalStapler

Identify �o� Staple �o� Cleanup� � !��

This optional stapler maps the output of the basic tokenizer� �dekm�emek�� into

both �dekm�emek� �identity� and �de m�emek� �stapled��

Making tokenization nondeterministic solves one problem but introduces another

one� The subsequent stages of processing have to deal with the ambiguous represen�

tations of the input� This problem was �rst addressed in the context of a constraint�

based �nite state parser for French �Chanod and Tapanainen ����� Chanod and

Tapanainen ���
� that builds a �nite state network for the input sentence that

represents not only the alternative tokenizations but also all the additional ambi�

guities arising from the morphosyntactic analysis of the tokens� Each path through

the network represents one possible tokenization and one possible morphosyntactic

analysis for each token� Because of alternative tokenizations� the paths in general

do not have the same number of tokens�

At this level� some of these paths can be quickly eliminated by syntactic con�

straints� Syntactic constraints are expressed as regular expressions� typically con�

taining the restriction operator� and compiled to networks� These automata are

intersected with the sentence network to prune out unwanted readings� In par�

ticular� they remove unacceptable tokenization schemes� unless the ambiguity is

syntactically acceptable�

For instance� the sentence� �De m�eme les bo�"tes de m�eme format sont class ees

ensemble� �Similarly the boxes of same format are classi�ed together�� is ambiguous

at the tokenization level� because of the ambiguous string �de m�eme�� This leads

to four dierent paths in the input network� as far as tokenization is concerned��

� There are actually many more paths� as the input network represents not only tokeniza�
tion ambiguity but also syntactic ambiguity�

�� Lauri Karttunen and others

de

de même

même

les

mêmeDe

De même

ensembleclasséessont formatboîtes

However� after syntactic analysis� there remains only one analysis where the �rst

�de m�eme� is recognized as a multiword adverbial� while the second one is decom�

posed into two independent tokens�

de m�eme �Adv �Cap �MWE �Adverbial

le �InvGen �PL �Def �Det �NounPrMod

bo� te �Fem �PL �Noun �Subject

de �Prep

m�eme �InvGen �SG �Adj �NounPrMod

format �Masc �SG �Noun �PPObj

�etre �IndP �PL �P! �Verb �Copl �Auxi �MainV

classer �PaPrt �Fem �PL �Verb �PastPart

ensemble �Adv �Adverbial �

This is due to the syntactic constraints that reject unwanted analyses� including

incorrect tokenizations� For instance� the path where the two occurrences of �de

m�eme� are split into two tokens is rejected by several constraints� among which is

the following constraint�

Prep �� �

Coord Prep �a�

"�� NounHead VerbHead Prep � PPObj �b�

"�� NounHead VerbHead Prep � � Inf PresPart � �c�

Adverbial �d�

NounPsMod �e�

This constraint allows the Prep symbol to appear only in the given �ve contexts

that describe the possible continuations for a preposition in a French sentence�

�a� before a coordinated preposition

�b� before a PPOBj without prior head nouns or head verb

�c� before an in�nitival or participial verb

�d� before an adverbial

�e� before an adjective on the condition that it is a noun postmodi�er�

None of these contextual constraints accepts the sequence �Prep NounPrMod Det

Subject� on the path corresponding to �Dekm�emekleskbo� tes�� This path is then

eliminated from the input sentence network�

If� for a given sentence� two ambiguous tokenization paths are syntactically ac�

ceptable� they are both preserved after intersection with the constraint networks�

This is what happens with the sentence� �Je pense bien qu�il parle� where �bien

que� is ambiguous �meaning although as a multiword token�� The sentence can be

Regular Expressions for Language Engineering ��

read either as lit�� �I think well that he speaks�� i�e� I do think that he speaks or

I think although he speaks� which leads to two remaining analyses �paths� in the

output sentence network�

��� Light Parsing by Marking and Filtering Transducers

The preceding subsections have shown applications of the �nite state calculus to

parts of natural language processing such as tokenization and morphological analy�

sis used by part of speech tagging� Earlier� Section � showed that �nite state parsers

can be created for some subsets of natural language� such as correct and incorrect

dates� Here we present a full scale light parser built from the �nite state calculus

described in Section ��

For some large scale text applications� such as terminology extraction� lexicog�

raphy� or information retrieval� a parser must recognize recurring lexical syntactic

patterns and their variants� The parser need be no more powerful than is necessary

to recognize these patterns� Many such parsers �Joshi ����� Debili ����� Grefen�

stette ����� Abney ����� Appelt et al� ����� employ recognizers over part of speech

tagged text by �rst marking contiguous patterns such as noun and verb groups�

then marking heads within groups� and then extracting patterns between noncon�

tiguous heads� Some of these parsers mix non��nite�state procedures with �nite

state recognizers� but we show here that the entire parser can be built within a

�nite state framework�

A �nite state transducer that introduces extra symbols into an input string can

be considered as a �nite state marker� As seen in Section ���� the longest match

operator can be used to introduce marks around nominal groups and verbal groups�

and simple transducers can be used to mark head words within these groups� A �nite

state �lter is a transducer which outputs only certain parts of the input string�

setting all the other parts of the string to epsilon and possibly introducing a �lter�

indicating label� Schematically a �ltering transducer has the following structure� �

��RelationLabel
 LEFTCONTEXT �x�
� �

token
 MIDDLE �x�
� �

token
 RIGHTCONTEXT �x�
� �

Transducers implementing �nite state markers can be composed with transducers

implementing �lters to create a �nite state parser which can extract and label a

wide variety of n�ary syntactic dependency relations between words�

We have created a �nite state light parser in the following way� ��� using the

longest match and replacement operators� transducers are created which identify

contiguous noun group and verbal group boundaries� ��� labeling transducers are

described which mark the nominal or verbal heads within each group� and ���

� First described in a di�erent notation in
Debili ����� p� ���� Recall that � represents the
empty string� Therefore� ��a introduces �a into the lower�side string� and B �x�
��
the cross�product of the language B with the empty�string language� eliminates the B
strings from the output�

�� Lauri Karttunen and others

�ltering transducers are de�ned which extract and label the syntactic relations

between words within and across group boundaries�

��	�� Phrasal Mark�up

Rule�based descriptions of phrase contours can be done in a variety of ways� the light

parser described here uses a �nite state calculus representation of part of speech

precedence matrix �Debili ����� phrasal descriptions� Here is a simple example� a

regular expression describing a French nominal phrase using the restriction operator

to implement the rows and columns of such a precedence matrix�

NominalPhrase

 Art � �
 Noun �� �

 Noun � �
 PAdj � Prep � ��� �� �

 PAdj � �
 PAdj � Prep � ��� �� �

 Prep � �
 Art � Noun �� �

 Art � Noun �
 Art � Noun � Padj � Prep �� � �

The expression states that a nominal phrase can contain an article followed by

a noun� a noun followed by a postposed adjective or by a preposition or nothing

��	� means the end of an expression�� a postposed adjective followed by another

adjective or by a preposition� etc� The nominal group must begin with an article

or a noun� We can derive from such a de�nition a phrase marking transducer using

the directed replace operator ��� and the three dots ����� symbol to mark the

insertion points around the longest instances of these groups in each tagged sentence

present in input�

MarkNGroup
NominalPhrase ��� �
NG � ��� � NG���

Such phrasal patterns can easily be written for dierent languages or dierent

tagsets or with dierent noun�phrase de�nitions in a given language� e�g� for termi�

nology extraction the determiners might be omitted in the de�nition of the noun

phrase pattern� Schiller ������ describes a language�independent architecture for

�nite state noun phrase extraction built on our �nite state tools and taggers�

The phrasal markup� however� can also be used as a step towards further analysis

leading to syntactic function extraction� as shown below�

��	�	 Head Marking

Once the group markers are inserted by the transducers described above into the

tagged text� another transducer places head labels before certain classes of words

within the groups� These additional labels indicate that the words appear in spec�

i�ed contexts and make the task of writing syntactic function �lters easier and

shorter�

Supposing that NOUN matches words tagged as nouns� PREP prepositions and CC

conjunctions� nominal heads are marked as being modi�ed by prepositions ��P� or as

independent noun phrase heads ��N� by the transducers produced by the following

regular expression�

Regular Expressions for Language Engineering ��

� �� ��N� �� �
NG� � NOUN
 ��
 NOUN � �NG�� � �
 �NG�� � CC �

�o� ��N� �� ��P� ��

� PREP� � ��
 PREP � �NG�� � �

These expressions state that the empty string � � is replaced with the symbol �N

in front of a noun that is not followed by another noun in the same noun group� This

transducer is composed with another which replaces the �N label with a �P when

the label is preceded by a preposition in the same noun group with no intervening

prepositions�

Verbal heads are similarly marked with aspect labels inside verbal groups� For

example� �PasV marks verb heads in passive constructions�

Applying the phrasal marking transducers and the head markers over tagged text

inserts the following markings into an example sentence �hiding the part of speech

tags for legibility��

NG Significant �N correlations NG�
VG were �PasV obtained VG�
NG

between the maternal and fetal glucose �P levels and the maternal and

fetal ffa �P levels NG� �

��	�
 Syntactic Function Extraction

Having introduced nominal and verbal group delimiters and labeled heads within

these nominal and verbal groups makes writing regular expression �lters easier� For

example� a �lter that extracts passive subjects can be written as

���PassiveSubj��
 !� �x�
� � ��N� NOUN

 � �
 �
NG� � �VG�� � �x�
� � ��PasV� VERB
 !� �x�
� �

Applying this �lter to the following examples� extracts

PassiveSubj� correlations obtained

A �nite state light parser is constructed by aligning the phrase marking trans�

ducer� the head marker transducer� and a union of �ltering transducers into one

cascade� We constructed �Grefenstette ���
� and ran such a light �nite state parser

�which included �� other �lters describing other syntactic patterns� over the �rst

megabyte of AP news from ����� and randomly chose one hundred output sentences�

On a SPARC���� tagging the ��	���� words took about �� seconds of real time�

inserting noun and verb phrase boundaries via nonoptimized marking transducers

took about � minutes� marking heads inside boundaries took about � minutes ��

seconds� and applying the union of �
 dierent �lters took about �� minutes� In

all� this is about ������ words per minute� Manual evaluation showed that ��#

of �� randomly chosen PassiveSubj relations from these ���� sentences were cor�

rect� These numbers can be improved by introducing more complicated �lters� but

already they provide useful indications of subcategorizations� see for example the

passive subjects extracted for the word �killed�� �people� �� times�� �seaman� ����

�villagers�� �vendors�� �teen�agers�� �soldiers�� �rebels�� �pilot�� �patient� etc�

� Conclusion

We have presented numerous examples illustrating the application of the regu�

lar expression calculus to language engineering tasks ranging from tokenization to

�� Lauri Karttunen and others

lightweight syntactic analysis� There are many other types of applications that we

have not discussed� because of space or because they are already well known� such

as morphological analysis by lexical transducers� In particular� we would have liked

to include a fuller discussion of rule�based disambiguation to illustrate the use of re�

place expressions in systems such as the Brill tagger �Brill ����� Roche and Schabes

����� and the constraint grammar parser �Karlsson et al� ������

Although regular expressions and the algorithms for converting them into �nite

state automata have been part of elementary computer science for decades� the

restriction and replacement expressions we have focused on are recent� They have

turned out to be very useful for linguistic applications� Descriptions consisting of

regular expressions can be e�ciently compiled into �nite state networks� which in

turn can be determinized� minimized� sequentialized� compressed� and optimized in

other ways to reduce the size of the network or to increase the application speed�

Many years of engineering eort have produced e�cient runtime algorithms for

applying networks to strings�

Regular expressions have a clean� declarative semantics� At the same time they

constitute a kind of high level programming language for manipulating strings� lan�

guages� and relations� Although regular grammars can cover only limited subsets

of a natural language� there can be an important practical advantage in describ�

ing such sublanguages by means of regular expressions rather than by some more

powerful formalism� Because regular languages and relations can be encoded as ��

nite automata� they can be more easily manipulated than context free and more

complex languages� With regular expression operators� new regular languages and

relations can be derived directly without rewriting the grammars for the sets that

are being modi�ed� This is a well�established practice in �nite state morphology�

Our examples in this paper provide ample evidence of its utility in other areas of

language engineering�

� Acknowledgements

We would like to thank Kenneth R� Beesley and Annie Zaenen for their editorial

advice� We also thank Annie Zaenen for many discussions about the feasibility of

a regular grammar for valid date expressions and Pasi Tapanainen for his con�

tributions to the sections on �nite state disambiguation� We acknowledge Ronald

M� Kaplan and Martin Kay� our Xerox colleagues� for the pioneering work on the

approach we are taking in this paper�

Regular Expressions for Language Engineering ��

References

Abney� Steven� ����� Parsing by chunks� In Abney� Steven et al�
eds��� Principle�Based
Parsing� Kluwer Academic Publishers� Dordrecht�

Appelt� Douglas E�� Hobbs� Jerry R�� Bear� John� Israel� David� and Tyson� Mabry� �����
FASTUS� A �nite�state processor for information extraction from real�word text� Pro�
ceedings of IJCAI���� Chambery� France�

Beesley� Kenneth R� and Karttunen� Lauri� ����� Finite�State Morphology� Technical Re�
port
forthcoming�� RXRC Grenoble�

Brill� Eric� ����� A simple rule�based part�of�speech tagger� Proceedings of ANLP����
Trento� Italy�

Chanod� Jean�Pierre and Tapanainen� Pasi� ����� A Non�Deterministic Tokenizer for
Finite�State Parsing� ECAI��	 workshop on Extended Finite State Models of Language�
Budapest�

Chanod� Jean�Pierre and Tapanainen� Pasi� ����� Finite�State Based Reductionist Parsing
for French� Kornai� Andr�as
ed��� Extended Finite State Models of Language�Cambridge
University Press� forthcoming

Debili� Fathi� ����� Analyse Syntaxico�Semantique Fond
ee sur une Acquisition Automa�

tique de Relations Lexicales�Semantiques� Ph�D� dissertation� University of Paris XI�
France�

Grefenstette� Gregory� ����� Use of syntactic context to produce term association lists for
text retrieval� Proceedings of SIGIR���� Copenhagen� Denmark� ACM�

Grefenstette� Gregory� ����� Light Parsing as Finite�State Filtering� In Kornai� Andr�as

ed��� Extended Finite State Models of Language� Cambridge University Press� forth�
coming

Grefenstette� Gregory and Tapanainen� Pasi� ����� What is a word� what is a sentence�
Problems of tokenization� Proceedings of COMPLEX���� pp� ������ Budapest�

Joshi� Aravind� ���� Computation of Syntactic Structure� In Advances in Documentation

and Library Science� vol� III� part �� Interscience Publishers�
Kaplan� Ronald M� and Kay� Martin� ����� Regular Models of Phonological Rule Systems�
Computational Linguistics� ��� ��������

Karlsson� Fred� Voutilainen� Atro� Heikkil�a� Juha and Anttila� Arto�
eds��� ����� Con�
straint Grammar a language�independent system for parsing unrestricted text� Mouton
de Gruyter� Berlin and New York�

Karttunen� Lauri and Beesley� Kenneth R� ����� Two�Level Rule Compiler� Technical Re�
port� ISTL������ October ����� Xerox Palo Alto Research Center� Palo Alto� California�

Karttunen� Lauri� ����� Constructing Lexical Transducers� Proceedings of COLING��� I�
pp� �������� Kyoto� Japan�

Karttunen� Lauri� ����� The Replace Operator� Proceedings of ACL���� pp� ������ Boston�
Massachusetts�

Karttunen� Lauri� ����� Directed Replacement� Proceedings of ACL��	� Santa Cruz� Cal�
ifornia�

Karttunen� Lauri� Kaplan� Ronald M�� and Zaenen� Annie� ����� Two�level morphology
with composition� Proceedings of COLING���� I� pp� �������� Nantes� France�

Kempe� Andr�e and Karttunen� Lauri� ����� Parallel Replacement in the Finite�State Cal�
culus� Proceedings of COLING��	� � pp� �������� Copenhagen� Denmark�

Koskenniemi� Kimmo� ����� Two�level Morphology� A General Computational Model for
Word�Form Recognition and Production� Department of General Linguistics� University
of Helsinki� Finland�

Koskenniemi� Kimmo� Tapanainen� Pasi� and Voutilainen� Atro� ����� Compiling and using
�nite�state syntactic rules� Proceedings of COLING���� I� pp� �������� Nantes� France�

Mohri� Mehryar� ����� On Some Applications of Finite�State Automata Theory to Natural
Language Processing� Natural Language Engineering� ���

�	 Lauri Karttunen and others

Palmer� David D� and Hearst� Marti A� ����� Adaptive sentence boundary disambiguation�
Proceedings of ANLP���� pp� ������ Stuttgart� Germany�

Roche� Emmanuel and Schabes� Yves� ����� Deterministic Part�of�Speech Tagging� Com�
putational Linguistics� ��
��� ��������

Salton� Gerald� Zhao� Zhongnan� and Buckley� Chris� ����� A simple syntactic approach for
the generation of indexing phrases� Technical Report �������� Department of Computer
Science� Cornell University�

Schiller� Anne� ����� Multilingual Finite�State Noun Phrase Extraction� ECAI��	 Work�

shop on Extended Finite State Models of Language Budapest�
Silberztein� Max� ����� Dictionnaires
electroniques et analyse automatique de textes� Le

syst�eme INTEX� Masson� Paris� �����
Voutilainen� Atro and Tapanainen� Pasi� ����� Ambiguity resolution in a reductionistic
parser� Proceedings of EACL���� pp� �������� Utrecht�

