MEMORANDUM TO P. M. MORSE
PROPOSING TIME SHARING

John McCarthy, Stanford University

January 1, 1959

To: Professor P.M. Morse
From: John McCarthy

Subject: A Time Sharing Operator Program for our Pro-
jected IBM 709

1 INTRODUCTION

This memorandum is based on the assumption that MIT
will be given a transistorized IBM 709 about July 1960. I
want to propose an operating system for it that will sub-
stantially reduce the time required to get a problem solved
on the machine. Any guess as to how much of a reduc-
tion would be achieved is just a guess, but a factor of five
seems conservative. A smaller factor of improvement in

1



the amount of machine time used would also be achieved.

The proposal requires a complete revision in the way the
machine is used, will require a long period of preparation,
the development of some new equipment, and a great deal
of cooperation and even collaboration from IBM. There-
fore, if the proposal is to be con- sidered seriously, it should
be considered immediately. I think the proposal points to
the way all computers will be operated in the future, and
we have a chance to pioneer a big step forward in the way
computers are used. The ideas expressed in the following
sections are not especially new, but they have formerly
been con- sidered impractical with the computers previ-
ously available. They are not easy for computer designers
to develop independently since they involve programming
system design much more than machine design.

2 A QUICK SERVICE COMPUTER

Computers were originally developed with the idea that
programs would be written to solve general classes of prob-
lems and that after an initial period most of the computer
time would be spent in running these standard programs
with new sets of data. This view completely underesti-
mated the variety of uses to which computers would be
put. The actual situation is much closer to the opposite

2



extreme, wherein each user of the machine has to write his
own program and that once this program is debugged, one
run solves the problem. This means that the time required
to solve the problem consists mainly of time required to
debug the program. This time is substantially reduced by
the use of better programming languages such as Fortran,
LISP (the language the Artificial Intelligence Group is de-
veloping for symbolic manipulations) and COMIT (Yn-
gve’s language). However, a further large reduction can
be achieved by reducing the response time of the compu-
tation center.

The response time of the MIT Computation Center to
a performance request presently varies from 3 hours to 36
hours depending on the state of the machine, the efficiency
of the operator, and the backlog of work. We propose by
time sharing, to reduce this response time to the order of
1 second for certain purposes. Let us first consider how
the proposed system looks to the user before we consider
how it is to be achieved.

Suppose the average program to be debugged consists
of 500 instructions plus standard subroutines and that the
time required under the present system for an average de-
bugging run is 3 minutes. This is time enough to execute
7,000,000 704 instructions or to execute each instruction
in the program 14,000 times.

3



Most of the errors in programs could be found by single-
stepping or multiple-stepping the program as used to be
done. If the program is debugged in this way, the pro-
gram will usually execute each instruction not more than
10 times, 1/1400 as many executions as at present. Of
course, because of slow human re- actions the old system
was even more wasteful of computer time than the present
one. Where, however, does all the computer time go?

At present most of the computer time is spent in conver-
sion (SAP-binary, decimal-binary, binary-decimal, binary-
octal) and in writing tape and reading tape and cards.

Why is so much time spent in conversion and input
output.

1. Every trial run requires a fresh set of conversions.

2. Because of the slow response time of the system it is
necessary to take large dumps for fear of not being able
to find the error. The large dumps are mainly unread,
but nevertheless, they are necessary. To see why this
is so, consider the behavior of a programmer reading
his dump. He looks at where the program stopped.
Then he looks at the registers containing the partial
results so far computed. This suggests looking at a
certain point in the program. The programmer may
find his mistake after looking at not more than 20 reg-

4



isters out of say 1000 dumped, but to have predicted
which 20 would have been impossible in advance and
to have reduced the 1000 substantially would have re-
quired cleverness as subject to error as his program.
The programmer could have taken a run to get the
first register looked at, then another run for the sec-
ond, etc., but this would have required 60 hours at
least of elapsed time to find the bug according to our
assumptions and a large amount of computer time for
repeated loading and re-runnings. The response time
of the sheet paper containing the dump for any regis-
ter is only a few seconds which is O except that one
dump does not usually contain information enough to
get the entire program correct.

Suppose that the programmer has a keyboard at the
computer and is equipped with a substantial improve-
ment on the TXO interro- gation and intervention program
(UT3). (The improvements are in the direction of express-
ing input and output in a good programming language.)
Then he can try his program, interrogate individual pieces
of data or program to find an error, make a change in the
source language and try again.

If he can write program in source language directly into
the computer and have it checked as he writes it, he can



save additional time. The ability to check out a program
immediately after writing it saves still more time by using
the fresh memory of the programmer. I think a factor of
5 can be gained in the speed of getting pro- grams written
and working over present practice if the above- mentioned
facilities are provided. There is another way of using these
facilities which was discussed by S. Ulam a couple of years
ago. This is to use the computer for trial and error proce-
dures where the error correction is performed by a human
adjusting parameter.

The only way quick response can be provided at a bear-
able cost is by time-sharing. That is, the computer must
attend to other customers while one customer is reacting
to some output.

3 THE PROBLEM OF A TIME-SHARING
OPERATOR SYSTEM

I have not seen any comprehensive written treatment of
the time-sharing problem and have not discussed the prob-
lem with anyone who had a complete idea of the problem.
This treatment is certainly incomplete and is somewhat
off the cuff. The equipment required for time-sharing is
the following:

a. Interrogation and display devices (flexowriters are

6



possible but there may be better and cheaper).

b. An interrupt feature on the computer—we’ll have it.

c. An exchange to mediate between the computer and
the external devices. This is the most substantial engi-
neering problem, but IBM may have solved it.

In general the equipment required for time-sharing is
well understood, is being developed for various advanced
computers, e.g., Stretch TX2, Metrovich 1010, Edsac 3.
I would not be surprised if almost all of it is available
with the transistorized 709. However, the time-sharing
has been worked out mainly in connection with real-time
devices. The programs sharing the computer during any
run are assumed to occupy prescribed areas of storage, to
be debugged already, and to have been written together
as a system. We shall have to deal with a continuously
changing population of programs, most of which are erro-
neous.

The major problems connected with time-sharing dur-
ing pro- gram development seem to be as follows:

1. Allocating memory automatically between the pro-
grams. This requires that programs be assembled in a
relocatable form and have a preface that enables the
operator program to organize the program, its data,
and its use of common subroutines.



2. Recovery from stops and loops. The best solutions to
these problems require

Changing the stop instructions to trap instructions.
This is a minor modification to the machine. (At least
it will be minor for the 704.)

Providing a real time alarm clock as an external
device.

3. Preventing a bad program from destroying other pro-
egrams. This could be solved fairly readily with a mem-
ory range trap which might not be a feasible modifi-
cation. Without it, there are pro- gramming solutions
which are less satisfactory but should be good enough.
These include:

Translations can be written so that the programs
they produce cannot get outside their assigned storage
areas. A very minor modification would do this to
Fortran.

Checksums can be used for machine language pro-
grams.

Programming techniques can be encouraged which
make destruction of other programs unlikely.

There is an excessive tendency to worry about this
point. The risk can be brought down to the present

8



risk of having a program ruined by operator or ma-
chine error.

4 SUMMARY

1. We may be able to make a major advance in the art of
using a computer by adopting a time-sharing operator
program for our hoped-for 709.

2. Such a system will require a lot of advance preparation
starting right away.

3. Experiments with using the flexo connection to the
real-time package on the 704 will help but we cannot
wait for the results if we want a time-sharing operator
program in July 1960.

4. The cooperation of IBM is very important but it should
be to their advantage to develop this new way of using
a computer.

5. I think other people at MIT than the Computation
Center staff can be interested in the systems and other
engineering problems involved.

/@steam.stanford.edu:/u/ftp/pub/jmc/timesharing-memo.tex: begun 1994 Dec 29, latexed 1996 Sep 9 at 4:15 p.m.

9



