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Abstract
This work proposes a protocol for Fermionic Hamiltonian learning. For the Hubbard model
defined on a bounded-degree graph, the Heisenberg-limited scaling is achieved while al-
lowing for state preparation and measurement errors. To achieve ε-accurate estimation for
all parameters, only Õ(ε−1) total evolution time is needed, and the constant factor is in-
dependent of the system size. Moreover, our method only involves simple one or two-site
Fermionic manipulations, which is desirable for experiment implementation.

Keywords Quantum algorithm · Hamiltonian learning · Fermi-Hubbard model ·
Heisenberg limit

Mathematics Subject Classification 81P68 · 68W20

1 Introduction

A fundamental task in quantum physics is to obtain the Hamiltonian of a given system from
its (noisy) time evolution and measurements. This problem is traceable at least as far back
as the spectroscopy analysis of a two-level system using Ramsey’s interferometry [24] and
has been extensively studied under the name spectroscopy [17, 37], quantum sensing [7],
quantum process tomography [1, 5, 22, 28], and Hamiltonian tomography [10, 27, 34] us-
ing various techniques including quantum state tomography, Bayesian analysis, compressed
sensing and machine learning. This paper adopts the relatively recent terminology “Hamil-
tonian learning” [11, 13, 18, 35, 36]. Hamiltonian learning has a variety of applications in
quantum algorithms and the generic study of quantum systems. For instance, in the context
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of using analog quantum algorithms for Hamiltonian simulation, Hamiltonian learning algo-
rithms play a crucial role in verifying and calibrating these analog computers [16, 35, 36]. In
particular, cold atoms have been employed for the analog simulation of the Fermi-Hubbard
model [31], showcasing a potential application in Fermion Hamiltonian learning.

Unlike the Hamiltonian learning problem of a two-level system [5, 6, 23, 26, 28, 37],
learning a many-body Hamiltonian [3, 29] is essentially more challenging since different
sites are arbitrarily coupled, and the exact eigenstates are intractable. A natural strategy is to
first reduce the original system to decoupled subsystems consisting of a single site or a pair
of sites and then apply single-body or two-body methods. A typical early example named
dynamical decoupling (DD) is introduced in [34] for Hamiltonian learning of many-body
systems, where carefully designed Pauli pulses are inserted between evolution operators of
the system to eliminate certain coupling terms in the Hamiltonian. Similar ideas have also
been used in earlier works [32, 33] to filter out unwanted terms in the Hamiltonian.

More recently, the authors of [11] proposed a novel decoupling method that essentially
introduces additional conservation law by inserting random unitaries that correspond to an
artificial symmetry group. This procedure is dubbed “reshaping” of the Hamiltonian. By
combining the reshaping technique with robust phase estimation (see [15, 21]), the au-
thors are able to solve the Hamiltonian learning problem of many-body spin systems while
achieving the Heisenberg limit, which is a fundamental complexity lower bound in quantum
metrology (see [8, 9, 38, 39]). A follow-up work [18] has extended this strategy to Bosonic
systems by carefully dealing with the unbounded Bosonic operators. The Heisenberg-limited
scaling is also obtained, though an additional system size factor is involved in the error
bound.

To the best of the authors’ knowledge, a Hamiltonian learning algorithm for many-body
Fermionic systems with Heisenberg-limited scaling is still missing. Though the renowned
Jordan-Wigner transformation can be used to convert Fermionic systems to spin systems (see
[25] for an example of one-dimensional Fermi-Hubbard models), the method in [11] cannot
be applied to Fermionic systems directly by combining with the Jordan-Wigner transfor-
mation due to the additional phase factors. The additional phase factors destroy the locality
of the Hamiltonian and result in a much more challenging learning problem. In this paper,
we aim to solve the Fermionic Hamiltonian learning problem with operations that are in-
trinsically Fermionic. In stark contrast to the Bosonic Hamiltonian learning algorithm [18],
the error bound obtained in this work does not depend on the size of the system since the
Fermion setting does not involve unbounded operators.

Most recently, during the revision of the current paper, [20] was proposed to address a
more general class of fermionic Hubbard Hamiltonians, including complex hopping ampli-
tudes and nonzero chemical potentials.

2 Main Results

2.1 Preliminaries and Notations

In this paper, we are specifically concerned with the Fermi-Hubbard model with spins. Here,
we provide a brief review of the basics of the Fock space that describes such a system and
the operators on it. One can refer to [19] or other textbooks on the quantum field theory for a
more detailed discussion. For Fermions with spin on N sites, the Hilbert space that describes
a single Fermion is a 2N -dimensional complex linear space H with orthogonal basis vectors
{|↑〉1, |↓〉1, |↑〉2, |↓〉2, . . . , |↑〉N, |↓〉N }, where the subscripts are indices for the sites. The
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Fock space F for a many-body system is defined by exterior algebra ⊕∞
n=0

∧n
(H). Here we

further define
∧0

(H) as the 1-dimensional space spanned by |−〉 called the “vacuum state”.
It satisfies |−〉 ∧ |α〉 = |α〉 ∧ |−〉 = |α〉 for any |α〉 ∈ F . Since the dimension of H is 2N ,
we also have ⊕∞

n=0

∧n
(H) = ⊕2N

n=0

∧n
(H).

We introduce the notation |↑↓〉i := |↑〉i ∧ |↓〉i . We denote by ciσ (c†
iσ ) the annihilation

(creation) operator on site i of spin σ (σ ∈ {↑,↓}). The creation operator c
†
iσ is defined by

c
†
iσ |α〉 = |σ 〉i ∧ |α〉 for any |α〉 ∈ F . For example, c

†
i↓|↓〉i = |↓〉i ∧ |↓〉i = 0, and c

†
i↓|↑〉i =

|↓〉i ∧ |↑〉i = −|↑↓〉i . The annihilation operator ciσ is the Hermitian transpose of c
†
iσ . It is

straightforward to show the anti-commutation relations {c†
iσ , cjσ ′ } = δij δσσ ′ and {c†

iσ , c
†
jσ ′ } =

{ciσ , cjσ ′ } = 0. We further denote by niσ = c
†
iσ ciσ the number operator at site i.

The Fermi-Hubbard model [12] stands as one of the simplest yet most extensively studied
models for Fermionic systems, successfully explaining the superconductive and magnetic
effects of solid materials via the interaction of electrons. The Hamiltonian of a spinful Fermi-
Hubbard model

H = −
∑

i∼j,σ∈{↑,↓}
hij c

†
iσ cjσ +

∑

i

ξini↑ni↓, (1)

is an operator on Fork space, where i ∼ j denotes that the sites i and j are neighbors.
Typically hij = hji . We also assume |hij | ≤ 1 and |ξi | ≤ 1. Otherwise, we can scale down H

by changing the simulation time. The number of sites is denoted by N . The goal is to learn
the coefficients hij and ξi of the Hamiltonian (1) for 1 ≤ i, j ≤ N . The following notations
are used for the products of operators:

→∏

1≤l≤L

Ol = O1O2 · · ·OL,

←∏

1≤l≤L

Ol = OL · · ·O2O1.

An important ingredient of our approach is the robust phase estimation (RPE) routine.
RPE is a technique that gives approximate values of phase from signals with O(1) error
and achieves the Heisenberg limit scaling [15, 21], using the idea of iterative refinement for
the estimation of the phase from noisy signals. One can refer to Theorem 2 and the remark
following the theorem for more details.

2.2 Main Algorithm and Theoretical Results

Assume that the Fermionic sites are located on a graph G = (V ,E). Each vertex i ∈ V

represents a Fermionic site, and the interaction between two Fermions exists if and only if
two edges join them in graph G. Therefore, the objective Hamiltonian is

H = −
∑

(i,j)∈E,σ∈{↑,↓}
hij c

†
iσ cjσ +

∑

i

ξini↑ni↓, (hij = hji). (2)

As mentioned earlier, our main strategy is to divide the edge set E into different colors
and use the reshaping technique to reduce the Hamiltonian H into an effective Hamiltonian
(Heff)c that only contains the interactions within a certain color c, then learn the parameters
for the pairs of sites belonging to this color using single-site and two-site methods since they
are decoupled. An outline for the algorithm is provided in Algorithm 1.
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Algorithm 1 Fermionic Hamiltonian learning for Hubbard models (outline)
1: Input: The graph G = (V ,E) for the Fermi-Hubbard Hamiltonian H of the form

Eq. (2).
2: Generate the coloring partition of E with χ colors (see Sect. 3.4 for details).
3: for c = 1,2, . . . , χ do
4: Prepare initial state |�c〉 based on the chosen color c (see Sect. 3.4 for details).
5: Reshape the Hamiltonian to get a state that approximates ei(Heff)ctj |�c〉 for a set of

different simulation time {tj }J
j=0 with O(1) reshaping error (see Sect. 3.2 for more

details).
6: Perform measurements using observable Oc that depends on the chosen color c (see

Sect. 3.4 for details).
7: Repeat the process sufficiently many times and extract signals from the measure-

ments.
8: Apply RPE to get estimations for the parameters corresponding to sites in the consid-

ered color c (see Sect. 3.1 and Sect. 3.3 for more details).
9: end for

10: Output: ĥij and ξ̂i .

The main theoretical result of this work is the following theorem:

Theorem 1 (Informal) Assume H is a Hamiltonian in the form (2). For a given failure prob-
ability η, we can generate estimations ĥij and ξ̂i with precision ε for all i, j at the cost
of

• Õ
(
ε−1 log

(
η−1

))
total evolution time;

• Õ
(
log

(
ε−1

)
log

(
η−1

))
number of experiments;

• Õ
(
Nε−2 log

(
η−1

))
single-site random unitaries insertions.

Here we use the notation Õ to hide the higher order log terms for conciseness.

The readers can refer to Theorem 4 for a formal version of this theorem. It is clear from
the theorem that the Heisenberg limit can be obtained.

3 Method Description

We first discuss the simple case of single-site Fermionic learning, which can be solved by
preparing proper initial states and performing an RPE-type algorithm for certain observ-
ables. This is followed by a discussion of the two-site case and many-site case, where we
use the reshaping technique to decouple the Hamiltonian by inserting random unitaries dur-
ing the simulation. This process will be demonstrated in detail in Sect. 3.2.

3.1 Single-Site Case

For the single site case (i.e., when N = 1), the Hamiltonian is reduced to

H = ξn↓n↑, (3)

where the only parameter to be learned is the coefficient ξ . It is clear that one of its eigenval-
ues is ξ with the corresponding eigenstate |↑↓〉, and the vacuum state |−〉 is an eigenstate
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with eigenvalue 0. It is worth noticing that extracting knowledge about ξ from experiments
requires more than simply initializing the system with its eigenstates since merely using the
eigenstates as initial states of the simulation of H will only result in a change in the global
phase, which is unobservable. Therefore, the initial states of the experiments need to be a
nontrivial linear combination of the eigenstates. For the sake of simplicity, we assume access
to the state

|ψ〉 = 1√
2
(|−〉 + |↑↓〉). (4)

This state can be prepared as follows. Since |ψ〉 is a Fermionic state with even parity, it is
a Gaussian state (see [30]). Then, one can apply the method in [14] for Fermionic Gaussian
state preparation. We also assume we have access to its corresponding observable

O = |ψ〉〈ψ |. (5)

This can also be fulfilled using the method in [14], where the Gaussian state |ψ〉 is obtained
by constructing a unitary U that maps |−〉 to |ψ〉. With this unitary, we then have |ψ〉〈ψ | =
U |−〉〈−|U †, which means O can be performed by applying U † to the state to be observed,
and then observe it under the canonical basis. Using the initial state |ψ〉 and evolve under
the Hamiltonian H for time t , the expectation value of observable O is

〈O〉ψ,t = 〈ψ |eiHtOe−iHt |ψ〉 = 1 + eiξ t

2
· 1 + e−iξ t

2
= 1

2
(1 + cos(tξ)). (6)

We also assume access to

|ψ̃〉 = 1√
2
(|−〉 + i|↑↓〉). (7)

This state also has even parity and is thus a Gaussian state, which can be prepared using the
method in [14]. By using |ψ̃〉 as the initial state and perform measurement using O , we get

〈O〉ψ̃,t = 〈ψ̃ |eiHtOe−iHt |ψ̃〉 = 1 − ieiξ t

2
· 1 + ie−iξ t

2
= 1

2
(1 + sin(tξ)). (8)

Hence, by conducting multiple measurements, we can derive estimations for both cos(tξ)

and sin(tξ). The accuracy is inversely proportional to the square of the number of measure-
ments due to the Monte Carlo error estimation. Recall that |↑↓〉 is the eigenstate of eitH ,
and 〈↑↓|eitH |↑↓〉 = eitH = cos(tξ) + i sin(tξ), we can conclude that the aforementioned
estimations are equivalent to the estimating the value of 〈↑↓|eitH |↑↓〉.

One can then apply robust phase estimation (RPE) [15, 21] to obtain a noise-robust algo-
rithm. Since the setting here is different to some extent, we reproduce the phase estimation
results in [21] for the sake of completeness.

Theorem 2 Given target accuracy ε and admissible failure probability η, the output of Al-
gorithm 2 satisfies

Prob (|θJ − ξ | < ε) > 1 − η. (9)

In addition, the total evolution time of the Hamiltonian H is

O
(
ε−1

(
log(η−1) + log log(ε−1)

))
. (10)
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Algorithm 2 RPE algorithm
1: Input: ε: target accuracy, η: upper bound of the failure probability.

2: Let J = �log2(
3

πε
)� and calculate Ns = 2

⌈
9
(

log 4
η

+ log
(⌈

log2
3

πε

⌉ + 1
))⌉

.

3: θ−1 = 0.
4: for j = 0,1, . . . , J do
5: For t = 2j , perform Ns

2 times measurements for both Eq. (6) and Eq. (8) to generate
Xj and Yj as estimations of cos(2j ξ ) and sin(2j ξ ) respectively. Let Zj = Xj + iYj

be an estimation of 〈↑↓|ei2j H |↑↓〉 = ei2j ξ .

6: Define a candidate set Sj =
{

2kπ+argZj

2j

}

k=0,1,...,2j −1
.

7: θj = argminθ∈Sj

∣
∣θ − θj−1

∣
∣.

8: end for
9: Output: θJ as an approximation to ξ .

Proof We will sketch the proof here, and the detailed proof can be found in [21, Theorem
2] for the case δ = 0 and U = eiH , which is the case corresponding to the exact eigenstate
|↑↓〉. Notice that this algorithm aligns precisely with the RPE algorithm presented there,
with the only distinction lying in the generation process of Zj , which does not affect the
proof. We also substitute all the ε with πε

3 to make the conventions align with this paper.
Using Hoeffding’s inequality, the choice of Ns guarantees that

∣
∣
∣Zj − 〈↑↓|ei2j H |↑↓〉

∣
∣
∣ =

∣
∣
∣Zj − ei2j ξ

∣
∣
∣ <

2

3
<

√
3

2
(11)

holds for each j = 0,1, . . . , J with probability at least 1 − η

J+1 , therefore it holds for all j ’s
with probability at least 1−η. Once Eq. (11) holds for all j ’s, then one can inductively prove
that ξ ∈ (

θj − π

3·2j , θj + π

3·2j

)
, where θj is the generated in the j -th step in Algorithm 2.

Therefore, |ξ − θJ | < π

3·2J ≤ ε. �

Remark 1 In practice, the operators and initial states may be imperfect, which can still be
dealt with by this RPE algorithm. Especially we want to highlight the scenarios where an
O(1) error is involved in the Hamiltonian simulation eiHt , resulting in the estimation of ei2j ξ

with an additional O(1) error. This case can be handled since there is still a gap between
√

3
2

and 2
3 in Eq. (11). This feature will be leveraged in the following sections when estimating

the multiple-site Hamiltonian, where a reshaping error will be introduced.

3.2 Hamiltonian Reshaping

When learning the multiple-site model, there are interaction terms with unknown coeffi-
cients in the Hamiltonian. Under this circumstance, it is unlikely to know the eigenstates
of the Hamiltonian and take a similar approach as in the single-site case. The Hamiltonian
reshaping technique aims to eliminate some of the coupling terms and reduce the objective
Hamiltonian to several separate subsystems with known eigenstates by randomized inser-
tion of unitaries during the Hamiltonian simulation. Note that we are not able to learn the
coefficients of the eliminated terms by doing this reshaping. Nevertheless, through multiple
experiments, each involving the elimination of different terms, one can collect estimations
for all coefficients.
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Given a distribution D of unitary matrices, the reshaped Hamiltonian is defined as

Heff = EU∼DU †HU. (12)

The proper choice of the distribution D will make Heff a simpler Hamiltonian than H and
facilitate the learning of the coefficients, which will be demonstrated in the following sec-
tions.

Given this reshaped Hamiltonian, we use the following method, similar to qDRIFT [4],
to approximately simulate Heff as

e−itHeff ≈ e−iτU
†
r HUr · · · e−iτU

†
1 HU1 , (13)

where r is an integer and τ = t/r is the time stepsize. Each Uj is randomly sampled from
the distribution D. By leveraging the identity

e
−iτU

†
j
HUj = U

†
j e−iτHUj , (14)

it is clear that each term in Eq. (13) can be implemented in experiments by inserting unitaries
when simulating the original Hamiltonian H .

For a fixed t , if r → ∞, then the approximation in Eq. (13) will be exact. In practice,
we can choose an appropriate r to get the desired accuracy. We refer to this error caused by
using a finite r as the reshaping error. As an analogy of the first-order Trotter formula error
estimation, we would expect r = O(t2), which is a quadratic dependence on the simulation
time. The rigorous discussions of the reshaping error and the choice of r will be given in the
following sections.

3.3 Two-Site Case

In this section, we address the problem of learning a two-site model, in which the Hamilto-
nian can be written as

H = −h12(c
†
1↑c2↑ + c

†
2↑c1↑ + c

†
1↓c2↓ + c

†
2↓c1↓) +

∑

i=1,2

ξini↑ni↓, (15)

and the goal is to learn the coefficients ξ1, ξ2, and h12.
First, we focus on learning the coupling coefficient h12. If we prepare initial states that

only have spin ↑, then the terms containing spin ↓ in the Hamiltonian will be eliminated.
Under this setting, the system is reduced to a two-mode system, and the effective Hamilto-
nian becomes

Heff = −h12(c
†
1↑c2↑ + c

†
2↑c1↑). (16)

Notice that the states

1√
2
(|↑〉1 ± |↑〉2)

are the eigenstate of c
†
1↑c2↑ + c

†
2↑c1↑ with eigenvalues ±1 respectively. Then, the problem is

again a phase estimation problem, and one can apply RPE. Similar to the single-site case,
one needs to prepare the superposition of the eigenstates

|φ〉 = 1√
2

(
1√
2
(|↑〉1 + |↑〉2) + 1√

2
(|↑〉1 − |↑〉2)

)

= |↑〉1 (17)
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and

|φ̃〉 = 1√
2

(
1√
2
(|↑〉1 + |↑〉2) + i

1√
2
(|↑〉1 − |↑〉2)

)

= 1 + i

2
|↑〉1 + 1 − i

2
|↑〉2 (18)

as the initial states of the Hamiltonian simulation of H . These states are again Gaussian
Fermionic states since they are two-mode states with odd parity (one can refer to [30]),
which can thus be prepared by the algorithms from [14]. We also assume access to the
observable

O(2) = |φ〉〈φ|. (19)

Remark 2 This method can be easily extended to the case that the coefficients of spin up and
down are different, which is

H = −h12↑(c
†
1↑c2↑ + c

†
2↑c1↑) − h12↓(c

†
1↓c2↓ + c

†
2↓c1↓) +

∑

i=1,2

ξini↑ni↓.

One can use the eigenstates

1√
2
(|↑〉1 ± |↑〉2)

to learn h12↑, and eigenstates

1√
2
(|↓〉1 ± |↓〉2)

to learn h12↓.

Remark 3 In Hamiltonian (15), we can also use the symmetrized eigenstates

1√
2
(|↑〉1 + |↓〉1) ± (|↑〉2 + |↓〉2)

to learn h12, which would be preferable on certain experiment platforms.

Next, we aim to learn the coefficients ξi . In order to do this, one can insert a random
unitary matrix of form

U = e−iθ(n1↑+n1↓), θ ∼ U([0,2π]) (20)

where U([0,2π]) denotes the uniform distribution on [0,2π]. The effective Hamiltonian is
then

Heff = 1

2π

∫ 2π

0
eiθ(n1↑+n1↓)He−iθ(n1↑+n1↓)dθ

=
∑

i=1,2

ξini↑ni↓

− h12

2π

∫ 2π

0
eiθ(n1↑+n1↓)(c

†
1↑c2↑ + c

†
2↑c1↑ + c

†
1↓c2↓ + c

†
2↓c1↓)e−iθ(n1↑+n1↓)dθ (21)
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=
∑

i=1,2

ξini↑ni↓ − h12

2π

∫ 2π

0
(eiθ c

†
1↑c2↑ + e−iθ c

†
2↑c1↑ + eiθ c

†
1↓c2↓ + e−iθ c

†
2↓c1↓)dθ

=
∑

i=1,2

ξini↑ni↓,

where we have used the identities

eiθnσ cσ e−iθnσ = e−iθ cσ , eiθnσ c†
σ e−iθnσ = eiθ c†

σ , σ ∈ {↑,↓},
which can be proved by applying them to the basis {|−〉, |↑〉, |↓〉, |↑↓〉}. This effective
Hamiltonian is decoupled, and we can apply the method for the single-site case. The re-
shaping error estimation will be postponed to the end of Sect. 3.4, as it can be combined
into the discussion of the many-site reshaping error.

3.4 Multiple-Site Case

To learn the coefficients of a many-site Hubbard Hamiltonian, we adopt a divide-and-
conquer approach, which involves the Hamiltonian reshaping technique as well. To illus-
trate the main idea, we first consider a one-dimensional chain of N sites, characterized by
the Hamiltonian

H = −
∑

|i−j |=1,σ∈{↑,↓}
hij c

†
iσ cjσ +

N∑

i=1

ξini↑ni↓, (hij = hji). (22)

One can insert random unitaries

U =
∏

i=3,6,9,...

e−iθi (ni↑+ni↓),

where θi ’s are random numbers uniformly drawn from [0,2π]. This will eliminate the terms
hopping from and to sites i = 3,6,9, . . ., which can be derived using the same calculation
as in Eq. (21). The resulting effective Hamiltonian will, therefore, be

Heff = H12 + H45 + H78 + · · · , (23)

where Hj,j+1 is the Hamiltonian

Hj,j+1 = −hj,j+1

∑

σ∈{↑,↓}
(c

†
j,σ cj+1,σ + c

†
j+1,σ cj,σ ) + ξjnj,↑nj,↓ + ξj+1nj+1,↑nj+1,↓ (24)

for j = 1,4,7, . . ., which is the restriction of H on edge (j, j + 1). This means the effective
Hamiltonian Heff is now decoupled into several two-site Hamiltonians, and we can use the
method in Sect. 3.3 to learn the coefficients ξj , ξj+1, and hj,j+1 for j = 1,4,7, . . .. Using a
similar method as above, if we insert the random unitaries

U =
∏

i=1,4,7,...

e−iθi (ni↑+ni↓) or U =
∏

i=2,5,8,...

e−iθi (ni↑+ni↓)

instead, then the effective Hamiltonian will be

Heff = H23 + H56 + H89 + · · · or Heff = ξ1n1↑n1↓ + H34 + H67 + · · · , (25)
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respectively. Combining the results of these three experiments, we can learn all the coeffi-
cients ξi and hi,i+1.

Recall that, in the general setting, we assume the Fermionic sites are located on a graph
G = (V ,E). Each vertex i ∈ V denotes a Fermionic site, and each edge in E denotes a pair
of sites that have interactions between them. The Hamiltonian is

H = −
∑

i∼j,σ∈{↑,↓}
hij c

†
iσ cjσ +

∑

i

ξini↑ni↓, (hij = hji),

where i ∼ j means edge (i, j) ∈ E. Since we only consider the local interaction in the
Hubbard model, we may assume the maximum degree of graph G is

d = max
i∈V

deg(i) = O(1). (26)

Our strategy is to classify the edges of the graph with a small number of colors, and the
edges of the same color can be viewed as separate two-site Hubbard models. When learning
the coefficients hij (and the corresponding ξi and ξj ) of a certain color, we only need to block
out the interference from other sites using the Hamiltonian reshaping technique mentioned
above. After this reshaping, these separate two-site Hubbard models can be dealt with by
the method in Sect. 3.3. Next, we will specify how to do this coloring.

Consider another graph G = (E,E), whose vertex set is exactly the edge set of graph G.
The edge set E is defined as follows. For C and C ′ in E, there is an edge (C,C ′) in E if one
of the following two conditions is satisfied.

• C and C ′ share a vertex in graph G.
• There exists a C ′′ in E such that C and C ′′ share a vertex in G, and C ′ and C ′′ also share

a vertex in G.

Under this definition, one can see that the maximal degree of G is at most 4d2 since each
edge C can only have at most 2d adjacent edges in graph G. Therefore, the vertex set of
graph G can be colored using χ = 4d2 + 1 = O(1) different colors, such that for every
(C,C ′) ∈ E , the colors of C and C ′ are different. Such coloring can be obtained by a simple
greedy algorithm that colors the vertices one by one and introduces a new color only if
all existing color is repeated with the already-colored neighbor vertices. Therefore, we can
partition the set E as

E =
χ⊔

c=1

Ec, (27)

where Ec is the subset with color c. We also define Vc as all the vertices that are contained
in some edges in Ec . For each C ∈ Ec , denote its two vertices as kC

1 and kC
2 . Let

Vc1 = {kC
1 : C ∈ Ec}, and Vc2 = {kC

2 : C ∈ Ec}. (28)

Therefore, we have Vc = Vc1 ∪Vc2 . For illustration, we point out that in the Fermionic chain
example above, we have χ = 3, and Ec contains all the edges of the form (3k+c,3k+c+1),
where k ≥ 0, c = 1,2,3. The strategy of the general case is similar. When we want to learn
the coefficients associated with a certain color c, we can apply the random unitaries

U =
∏

i∈V \Vc

e−iθi (ni↑+ni↓) (29)
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to reshape the Hamiltonian. Due to the coloring rules, one can check that the resulting ef-
fective Hamiltonian is

Heff =
∑

C∈Ec

HC
eff (30)

where HC
eff is the two-site restriction of H on edge C. To control the reshaping error, we

have the following theorem. It is noteworthy that the reshaping error bound is independent of
system size N . This can be understood intuitively, as the underlying graph G has a bounded
degree, making it challenging for most of the sites to significantly influence the subsystem
C.

Theorem 3 We assume random unitary operators Ul,1 ≤ l ≤ r , are generated independently
and are identically distributed as U , which satisfies

E[U †HU ] = HC
eff + Henv,

where HC
eff is supported on a subsystem C(|C| = O(1)) and Henv is supported on the rest of

the system. Then
∥
∥
∥
∥
∥
E

[ →∏

1≤l≤r

(
U

†
l eiHτUl

)
(OC ⊗ I )

←∏

1≤l≤r

(
U

†
l e−iHτUl

)
]

− eiHC
efftOCe−iHC

efft ⊗ I

∥
∥
∥
∥
∥

= O
(
t2/r

)

(31)
for any OC supported on C satisfying ‖OC‖ ≤ 1. In particular, the constant in O

(
t2/r

)

does not depend on the system size N .

This theorem is slightly modified from the [11, Appendix D, Theorem 16], and the proof
is almost the same. Though [11] only discussed the case of each Ul being the tensor product
of Pauli matrices, the method of proof there applies to general unitary matrices.

Now, we have collected the ingredients for analyzing the estimation of coefficients hij ’s.
However, when estimating the coefficients ξi ’s, another reshaping is needed as described in
Sect. 3.3. Notice that the two reshaping processes are inserting unitaries with non-intersect
supports. Therefore, they can be combined into a single reshaping process, i.e., inserting
random unitaries sampled from the product distribution of the two distributions. To be more
concrete, assume that the task is to learn ξk0

1
, where k0

1 ∈ Vc1 is an index belonging to an

edge C0 = (k0
1, k

0
2) of color c1. Then, the two steps of reshaping are equivalent to directly

inserting random unitaries of the form

U =
∏

i∈(V \Vc1 )

e−iθi (ni↑+ni↓). (32)

After reshaping, the effective Hamiltonian becomes

Heff = H
{k0

1 }
eff + Henv.

By viewing {k0
1} as the subsystem C in Theorem 3, we conclude the same reshaping error

estimation applies to ξk0
1
. By inserting random unitaries

U =
∏

i∈(V \Vc2 )

e−iθi (ni↑+ni↓). (33)

we can also learn ξk0
2
.
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Algorithm 3 Fermionic Hamiltonian learning for Hubbard models
1: Input: The Hamiltonian H of the form Eq. (1), and the corresponding graph G =

(V ,E).
2: Generate the coloring partition E = ⊔χ

c=1 Ec .
3: Calculate J and Ns according to Algorithm 2.
4: for c = 1,2, . . . , χ do
5: Determine Vc1 , Vc2 , and Vc according to Eq. (28).
6: for j = 0,1, . . . , J do
7: Prepare initial state |�c〉 = ∧

C∈Ec
|φC〉, where |φC〉 is the state defined in Eq. (17)

corresponding to edge C.
8: Let t = 2j . Insert the random unitaries of the form Eq. (29) every τ time while

evolving the Hamiltonian H , where the time step τ is chosen such that the reshap-
ing error (31) is no more than (

√
3

2 − 2
3 )/4.

9: Perform measurement using Oc = ⊗
C∈Ec

O
(2)
C , where O

(2)
C is the observable de-

fined in Eq. (19).
10: Perform this observation for Ns/2 times and take the average to get XC

j as an
estimation of cos(2j hkC

1 kC
2
). (This is simultaneously for all C ∈ Ec.)

11: Similarly, use initial state |�̃c〉 = ∧
C∈Ec

|φ̃C〉 to get Y C
j as an estimate of

sin(2j hkC
1 kC

2
).

12: Use RPE to get ĥkC
1 kC

2
as an estimation of hkC

1 kC
2

.
13: for m = 1,2 do
14: Prepare initial state |�cm〉 = ∧

i∈Vcm
|ψi〉, where |ψi〉 is the state defined in

Eq. (4) corresponding to site i.
15: Let t = 2j . Insert the random unitaries of the form Eq. (32) or Eq. (33) every τ

time while evolving the Hamiltonian H , where the time step τ is chosen such
that the reshaping error (31) is no more than (

√
3

2 − 2
3 )/4.

16: Perform measurement using Ocm = ⊗
i∈Vcm

Oi , where Oi is the observable de-
fined in Eq. (5).

17: Perform this observation for Ns/2 times and take the average to get X
{i}
j as an

estimation of cos(2j ξi) for i ∈ Vcm.
18: Similarly, use initial state |�̃cm〉 = ∧

i∈Vcm
|ψ̃i〉 to get Y

{i}
j as an estimate of

sin(2j ξi).
19: Use RPE to get ξ̂i as an estimation of ξi .
20: end for
21: end for
22: end for
23: Output: ĥij and ξ̂i .

The algorithm for learning the Hamiltonian Eq. (2) is outlined in Algorithm 3. We sum-
marize the necessary operations on an experimental platform:

• preparing the vacuum state |−〉;
• the fermion Gaussian state on at most two sites, together with its preparing operator [14,

30];
• measurement of spin-orbital occupation;
• implementing eiθn↑ and eiθn↓ for a single site, which is less demanding than in [2].
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The following theorem summarizes the complexity bounds for this algorithm under
Eq. (26).

Theorem 4 Assume H is a Hamiltonian in the form Eq. (2) satisfying Eq. (26). For a given
failure probability η, we can generate estimations ĥij and ξ̂i from Algorithm 3 such that

Prob(|ĥij − hij | < ε) > 1 − η and Prob(|ξ̂i − ξi | < ε) > 1 − η (34)

for all i, j at the cost of

• Õ
(
ε−1 log

(
η−1

))
total evolution time;

• Õ
(
log

(
ε−1

)
log

(
η−1

))
number of experiments;

• Õ
(
Nε−2 log

(
η−1

))
single-site random unitaries insertions.

Proof We first prove Eq. (34). For a site i, we may assume i ∈ Vc1 without loss of generality.

Since we chose the time step τ such that the reshaping error is no more than (
√

3
2 − 2

3 )/4,
which means the difference between

E
1

2
(1 + X

{i}
j ) = E〈�c1 |

[ →∏

1≤l≤r

(
U

†
l eiHτUl

)
(Oi ⊗ I )

←∏

1≤l≤r

(
U

†
l e−iHτUl

)
]

|�c1〉

and

〈�c1 |eiHi
efftOie

−iHi
efft ⊗ I |�c1〉 = 1

2
(1 + cos(tξi))

is at most (
√

3
2 − 2

3 )/4, where t = 2j . Therefore,

∣
∣
∣EX

{i}
j − cos(tξi)

∣
∣
∣ ≤ (

√
3

2
− 2

3
)/2.

We also have the same estimation for EY
{i}
j , therefore we have

∣
∣
∣E(X

{i}
j + iY {i}

j ) − etξi

∣
∣
∣ ≤

√
3

2
− 2

3
. (35)

We also have to consider the Monte Carlo error. It can be bounded by 2
3 using Hoeffding’s

inequality as the same reason in Eq. (11), which is

∣
∣
∣(X

{i}
j + iY {i}

j ) −E(X
{i}
j + iY {i}

j )

∣
∣
∣ ≤ 2

3
, (36)

for all j = 0,1, . . . , J + 1 with probability 1 − η. Therefore, we conclude that with proba-
bility 1 − η, we have

∣
∣
∣(X

{i}
j + iY {i}

j ) − etξi

∣
∣
∣ ≤

√
3

2
, (37)

for all j = 0,1, . . . , J + 1. These bounds guarantee the RPE algorithm to give an ε accurate
estimation of ξi .
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It remains to analyze the cost. Since the number of colors χ = O(1) as demonstrated
above, the number of experiments is of order J · Ns = Õ

(
log

(
ε−1

)
log

(
η−1

))
. In each

experiment, the longest evolution time of H is 2J = O(ε−1), which makes the total evo-
lution time O(JNsε

−1) = Õ
(
ε−1 log

(
η−1

))
. For each experiment, we have to insert the

r = O(t2) random unitaries of the form Eq. (29), Eq. (32), or Eq. (32), according to Eq. (31)
as we have to achieve (

√
3

2 − 2
3 )/4 = O(1) accuracy. At the maximal time t = 2J , we need

r = O((2J )2) = O(ε−2) random unitaries, and each random unitary contains O(N) single-
site unitaries. Therefore, we conclude that the total number of single unitary insertions is

O(ε−2NNsJ ) = Õ
(
Nε−2 log

(
η−1

))
. �

4 Conclusion and Discussion

This work proposed a method for learning an unknown Fermionic Hamiltonian of Hubbard
models. Our method achieves the Õ(ε−1) scaling of total evolution time, which matches the
Heisenberg limit. Notably, it relies only on elementary manipulations applicable to single-
site or two-site Fermionic systems, which is desirable in the experimental platforms.

On the theoretical aspect, several open problems are worth further exploration. One prob-
lem is the extension of our method to deal with more general Fermionic Hamiltonians be-
yond the Hubbard model. For example, whether it is feasible to learn Hamiltonians featuring
long-range interactions within a total evolution time of Õ(ε−1) while simultaneously min-
imizing dependence on the system size N is an interesting question to consider. Another
problem is whether the quadratic Õ(ε−2) term in the number of single-site random unitary
insertion can be reduced by substituting the Hamiltonian reshaping method used here by
some analogs of higher order trotter formulas, similar to the considerations in [11] under the
spin setting.

Regarding the experimental aspects, several problems can be further investigated. For
instance, the states and observables we discussed may not be perfectly prepared due to the
limitations of experimental platforms. However, an O(1) amount of noise is allowed, which
is a notable feature of the RPE algorithm. One may also be able to modify our method
to accommodate initial states with a certain degree of randomness while still attaining the
desired results. Another possible improvement is to replace the discrete random unitary
insertion with some continuous random unitary evolution, which may be more desirable to
experimental implementations.
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