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This note considers the unstructured sparse recovery problems in a general form. Examples 
include rational approximation, spectral function estimation, Fourier inversion, Laplace inversion, 
and sparse deconvolution. The main challenges are the noise in the sample values and the 
unstructured nature of the sample locations. This note proposes the eigenmatrix, a data-driven 
construction with desired approximate eigenvalues and eigenvectors. The eigenmatrix offers a 
new way for these sparse recovery problems. Numerical results are provided to demonstrate the 
efficiency of the proposed method.

1. Introduction

This note considers the unstructured sparse recovery problems of a general form. Let 𝑋 be the parameter space, typically a subset 
of ℝ or ℂ, and 𝑆 be the sampling space. 𝐺(𝑠, 𝑥) is the kernel function for 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑋, and is assumed to be analytic in 𝑥. 
Suppose that

𝑓 (𝑥) =
𝑛𝑥∑
𝑘=1

𝑤𝑘𝛿(𝑥− 𝑥𝑘)

is the unknown sparse signal, where 𝑛𝑥 is the number of spikes, {𝑥𝑘} are the spike locations, and {𝑤𝑘} are the spike weights. The 
observable of the problem is

𝑢(𝑠) ∶= ∫
𝑋

𝐺(𝑠, 𝑥)𝑓 (𝑥)𝑑𝑥 =
𝑛𝑥∑
𝑘=1

𝐺(𝑠, 𝑥𝑘)𝑤𝑘

for 𝑠 ∈ 𝑆 .
Let {𝑠𝑗} be a set of 𝑛𝑠 unstructured sample locations in 𝑆 and 𝑢𝑗 ∶= 𝑢(𝑠𝑗 ) be the exact values. Suppose that we are only given the 

noisy observations 𝑢̃𝑗 ∶= 𝑢𝑗 (1 + 𝜎𝑍𝑗 ), where 𝑍𝑗 are independently identically distributed (i.i.d.) random variables with zero mean 
and unit variance, and 𝜎 is the noise magnitude. The task is to recover the spike locations {𝑥𝑘} and weights {𝑤𝑘}.

Quite a few sparse recovery problems can be cast into this general form. Below is a partial list.
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• Rational approximation. 𝐺(𝑠, 𝑥) = 1
𝑠−𝑥 , 𝑋 is typically a set in ℂ, and {𝑠𝑗} are locations separated from 𝑋. Two common cases of 

𝑋 are the unit disk and the half-plane.
• Spectral function estimation of many-body quantum systems. 𝐺(𝑠, 𝑥) = 1

𝑠−𝑥 , 𝑋 is a real interval [−𝑏, 𝑏] of the complex plane, 
and {𝑠𝑗} is the Matsubara grid on the imaginary axis.

• Fourier inversion. For example 𝐺(𝑠, 𝑥) = exp(𝜋𝑖𝑠𝑥), 𝑋 is the interval [−1, 1], and {𝑠𝑗} is a set of real numbers.
• Laplace inversion. 𝐺(𝑠, 𝑥) = 𝑥 exp(−𝑠𝑥), 𝑋 is an interval [𝑐1, 𝑐2] of the positive real axis, and {𝑠𝑗} is a set of positive real numbers.

• Sparse deconvolution. 𝐺(𝑠, 𝑥) is a translational invariant kernel, such as 𝐺(𝑠, 𝑥) = 1
1+𝛾(𝑠−𝑥)2 , 𝑋 is a real interval, and {𝑠𝑗} is a set 

of real numbers.

The primary challenges of the current setup come from two sources. First, the kernel 𝐺(𝑠, 𝑥) can be quite general. Second, the 
sample locations {𝑠𝑗} are unstructured, which excludes many existing algorithms that exploit special structures. Third, the sample 
values {𝑢̃𝑗} are noisy, which raises stability issues when the recovery problem is quite ill-posed.

1.1. Contribution

This note introduces the eigenmatrix for these unstructured sparse recovery problems. By defining the vector-valued function 
𝐠(𝑥) = [𝐺(𝑠𝑗 , 𝑥)]1≤𝑗≤𝑛𝑠 for 𝑥 ∈𝑋, we introduce the eigenmatrix as an 𝑛𝑠 × 𝑛𝑠 matrix 𝑀 that satisfies, for any 𝑥 ∈𝑋

𝑀𝐠(𝑥) ≈ 𝑥𝐠(𝑥).

This is a data-driven object that depends on 𝐺(⋅, ⋅), 𝑋, and the sample locations {𝑠𝑗}. The main features of the eigenmatrix are

• It assumes no special structure of the sample locations {𝑠𝑗}.
• It offers a rather unified approach to these sparse recovery problems.
• As the numerical results suggest, even when the recovery problem is ill-conditioned, the reconstruction can be quite robust with 

respect to noise.

1.2. Related work

There has been a long list of works devoted to the sparse recovery problems mentioned above.
Rational approximation has a long history in numerical analysis. Some of the well-known methods are the RKFIT algorithm [5], 

barycentric interpolation [6], Pade approximation [16], vector fitting [18], and AAA [26].
Spectral function approximation is a key computational task for many-body quantum systems. Well-known methods include Pade 

approximation [4,34,37], maximum entropy methods [3,21,22,24,31], and stochastic analytic continuation [17,23,32,36]. Several 
most recent algorithms are [13,14,20,41,42].

Fourier inversion is a vast field with many different problem setups. When 𝑋 and 𝑆 are dual discrete grids with {𝑠𝑗} chosen 
randomly, this is the compressive sensing problem [9,12,15], and there is a vast literature on methods based on the 𝓁1 convex relax-
ation. When 𝑋 is an interval and {𝑠𝑗} are equally spaced grid points, this becomes the line spectrum estimation or superresolution 
problem [11]. Both Prony-type methods [19,29,30,33] and optimization-based approaches [8,10,25] are well-studied for this field.

Laplace inversion is a longstanding computational problem. Most established algorithms [1,38–40] assume the capability of 
accessing the sample values at any arbitrary locations. For the case of equally-spaced sample locations, Prony-type methods have 
been proposed in [7,28]. The work in [27,35] further extends the Prony-type methods to the kernels associated with more general 
first-order and second-order differential operators.

For sparse deconvolution, when {𝑠𝑗} forms a uniform grid, it is closely related to the superresolution problem. However, when 
{𝑠𝑗} are unstructured, the literature is surprisingly limited.

The rest of the note is organized as follows. Section 2 reviews Prony’s method and the ESPRIT algorithms for the special case 
of the exponential kernel with the uniform sampling grid. Section 3 describes the eigenmatrix approach for the general kernels and 
unstructured grids. Section 4 presents the numerical experiments of the applications mentioned above. Section 5 concludes with a 
discussion for future work.

2. Prony and ESPRIT

To motivate the eigenmatrix construction, we first briefly review Prony’s method and the ESPRIT algorithm. Consider the recovery 
problem with 𝑋 = 𝕊 ≡ {𝑧 ∶ |𝑧| = 1} ⊂ℂ, 𝑆 =ℝ, 𝐺(𝑠, 𝑥) = 𝑥𝑠 (with the branch cut at 𝑥 = −1), and 𝑠𝑗 = 𝑗 for 𝑗 ∈ℤ. Here, we make the 
simplifying assumption that {𝑠𝑗} is the whole integer lattice, though only a finite chunk is required in the actual implementations. 
Most presentations of Prony’s method and the ESPRIT algorithm start with the Hankel matrix. However, our presentation emphasizes 
the role of the shifting operator in order to motivate the eigenmatrix approach in Section 3.

Introduce the infinitely-long vector-valued function 𝐠(𝑥) = [𝐺(𝑠𝑗 , 𝑥)]𝑗∈ℤ = [𝑥𝑗 ]𝑗∈ℤ. Let 𝑀 be the shifting operator that moves 
each entry up by one slot, i.e., (𝑀𝐯)𝑗 = 𝐯𝑗+1 for any vector 𝐯. Then
2

𝑀𝐠(𝑥) = 𝑥𝐠(𝑥).
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Define the vector 𝐮 = [𝑢𝑗 ]𝑗∈ℤ of the exact observations 𝑢𝑗 = 𝑢(𝑠𝑗 ) =
∑

𝑘 𝐺(𝑠𝑗 , 𝑥𝑘)𝑤𝑘 =
∑

𝑘 𝑤𝑘𝑥
𝑗

𝑘
. Since 𝐮 =

∑
𝑘 𝐠(𝑥𝑘)𝑤𝑘, we have for 

any 𝑡 ≥ 0

𝑀𝑡𝐮 =
∑
𝑘

𝐠(𝑥𝑘)𝑤𝑘𝑥
𝑡
𝑘
.

For the Prony’s method, consider the matrix

[
𝐮 𝑀𝐮 … 𝑀𝑛𝑥𝐮

]
=
[
𝐠(𝑥1) … 𝐠(𝑥𝑛𝑥 )

] ⎡⎢⎢⎣
𝑤1

⋱
𝑤𝑛𝑥

⎤⎥⎥⎦
⎡⎢⎢⎣
1 𝑥1 … 𝑥

𝑛𝑥
1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥
𝑛𝑥
𝑛𝑥

⎤⎥⎥⎦
Let 𝐩 be a non-zero vector in its null space, i.e.,

[
𝐮 𝑀𝐮 … 𝑀𝑛𝑥𝐮

]
𝐩 = 0 with 𝐩 =

⎡⎢⎢⎣
𝑝0
⋮
𝑝𝑛𝑥

⎤⎥⎥⎦ . (1)

Therefore,

⎡⎢⎢⎣
1 𝑥1 … 𝑥

𝑛𝑥
1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥
𝑛𝑥
𝑛𝑥

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑝0
⋮
𝑝𝑛𝑥

⎤⎥⎥⎦ = 0.

This implies that {𝑥𝑘} are the roots of 𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + … 𝑝𝑛𝑥𝑥
𝑛𝑥 . Therefore, one can identify {𝑥𝑘} via rootfinding once 𝐩 is 

computed.
For the ESPRIT algorithm, consider the matrix

[
𝐮 𝑀𝐮 … 𝑀𝓁𝐮

]
=
[
𝐠(𝑥1) … 𝐠(𝑥𝑛𝑥 )

] ⎡⎢⎢⎣
𝑤1

⋱
𝑤𝑛𝑥

⎤⎥⎥⎦
⎡⎢⎢⎣
1 𝑥1 … 𝑥𝓁1
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥𝓁
𝑛𝑥

⎤⎥⎥⎦
with 𝓁 > 𝑛𝑥. Let 𝑈𝑆𝑉 ∗ be the rank-𝑛𝑥 singular value decomposition (SVD) of this matrix. The matrix 𝑉 ∗ takes the form

𝑉 ∗ = 𝑃

⎡⎢⎢⎣
1 𝑥1 … 𝑥𝓁1
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥𝓁
𝑛𝑥

⎤⎥⎥⎦
where 𝑃 is an unknown non-degenerate 𝑛𝑥 × 𝑛𝑥 matrix. Let 𝑍0 and 𝑍1 be the submatrices of 𝑉 ∗ by excluding the first column and 
the last column, respectively, i.e.,

𝑍0 = 𝑃

⎡⎢⎢⎣
1 … 𝑥𝓁−11
⋮ ⋱ ⋮
1 … 𝑥𝓁−1

𝑛𝑥

⎤⎥⎥⎦ , 𝑍1 = 𝑃

⎡⎢⎢⎣
𝑥1 … 𝑥𝓁1
⋮ ⋱ ⋮
𝑥𝑛𝑥

… 𝑥𝓁
𝑛𝑥

⎤⎥⎥⎦ .
By introducing

𝑍1(𝑍0)+ = 𝑃

⎡⎢⎢⎣
𝑥1

⋱
𝑥𝑛𝑥

⎤⎥⎥⎦𝑃−1,

one can identify {𝑥𝑘} by computing the eigenvalues of 𝑍1(𝑍0)+.
For both methods, given {𝑥𝑘}, the sample weights {𝑤𝑘} can be computed via, for example, the least square solve.

Remark 1. For most problems, the sample values {𝑢̃𝑗} have noise. As a result, the sample locations and weights obtained above are 
only approximations. Many implementations of the Prony and ESPRIT methods have a postprocessing step, where these approxima-
tions are used as the initial guesses of the following optimization problem

min
𝑥̃𝑘,𝑤̃𝑘

∑
𝑗

|||||
∑
𝑘

𝑥̃
𝑗

𝑘
𝑤̃𝑘 − 𝑢̃𝑗

|||||
2

. (2)

Remark 2. For an actual problem, the number of spikes 𝑛𝑥 is not known a priori. An important question is how to pick the right 
degree of the polynomial 𝑝(𝑥) (for Prony’s method) or the rank of the truncated SVD (for the ESPRIT algorithm). The general criteria 
are that the objective value of (2) (after postprocessing) should be within the noise level, and the degree 𝑑 should be as small as 
3

possible. Commonly used criteria include AIC [2] and BIC [33].
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3. Eigenmatrix

3.1. Main idea

The discussion above uses two special features of the problem: (a) the kernel is of the exponential form, and (b) {𝑠𝑗} forms an 
equally spaced grid. These two features together allow one to write down the shifting operator 𝑀 explicitly. However, these two 
features no longer hold for sparse recovery problems with a general kernel 𝐺(⋅, ⋅) or unstructured sample locations {𝑠𝑗}.

To address this challenge, we take a data-driven approach. Let 𝐠(𝑥) now be the 𝑛𝑠-dimensional vector [𝐺(𝑠𝑗 , 𝑥)]1≤𝑗≤𝑛𝑠 . The main 
idea is to introduce an eigenmatrix 𝑀 of size 𝑛𝑠 × 𝑛𝑠 such that for all 𝑥 ∈𝑋

𝑀𝐠(𝑥) ≈ 𝑥𝐠(𝑥).

The reason why 𝑀 is called the eigenmatrix is because it is designed to have the desired approximate eigenvalues and eigenvectors.
Below, we detail how to apply the eigenmatrix idea to complex and real cases. Since the choice of degree (in Prony’s algorithm) 

and the rank of truncated SVD (in the ESPRIT algorithm) remain unchanged, we present the algorithm for fixed 𝑛𝑥 in order to 
simplify the discussion.

3.2. Complex analytic case

To simplify the discussion, assume first that 𝑋 is the unit disc 𝔻, and we will comment on the general case at the end. Define for 
each 𝑥 the vector 𝐠(𝑥) ∶= [𝐺(𝑠𝑗 , 𝑥)]1≤𝑗≤𝑛𝑠 . The first step is to construct 𝑀 such that 𝑀𝐠(𝑥) ≈ 𝑥𝐠(𝑥) for 𝑥 ∈𝔻. Numerically, it is more 
robust to use the normalized vector 𝐠̂(𝑥) = 𝐠(𝑥)∕‖𝐠(𝑥)‖ since the norm of 𝐠(𝑥) can vary significantly depending on 𝑥. The condition 
then becomes

𝑀 𝐠̂(𝑥) ≈ 𝑥𝐠̂(𝑥), 𝑥 ∈𝔻.

We enforce this condition on a uniform grid {𝑎𝑡}1≤𝑡≤𝑛𝑎 of size 𝑛𝑎 on the boundary of the unit disk

𝑀 𝐠̂(𝑎𝑡) ≈ 𝑎𝑡𝐠̂(𝑎𝑡).

Define an 𝑛𝑠×𝑛𝑎 matrix 𝐺̂ = [𝐠̂(𝑎𝑡)]1≤𝑡≤𝑛𝑎 with 𝐠̂(𝑎𝑡) as columns and also an 𝑛𝑎×𝑛𝑎 diagonal matrix Λ = diag(𝑎𝑡). The above condition 
can be written in a matrix form as

𝑀𝐺̂ ≈ 𝐺̂Λ. (3)

Remark 3. The main guideline for the choice of 𝑛𝑎 is that the columns of 𝐺̂ are numerically linearly independent. To see why this is 
essential, let us consider the extreme case of a kernel 𝐺(𝑠, 𝑥) constant in 𝑥. Here, the columns are linearly dependent, and there is no 
way to recover individual {𝑥𝑘}. In practice, different sampling locations {𝑠𝑗} lead to different choices of 𝑛𝑎. In practice, 𝑛𝑎 is chosen 
such that the condition number of 𝐺̂ is bounded below 107.

When the columns of 𝐺̂ are numerically linearly independent, (3) suggests the following choice of the eigenmatrix

𝑀 ∶= 𝐺̂Λ𝐺̂†, (4)

where the pseudoinverse 𝐺̂† is computed by thresholding the singular values of 𝐺̂. Since 𝑀 is to be applied repetitively as in (1), 
the threshold is set so that the norm of 𝑀 is bounded by a small constant such as 3.

Remark 4. A key question is why enforcing the condition on the uniform grid {𝑎𝑡} is enough. The following calculation shows why. 
𝑀𝐠(𝑎𝑡) ≈ 𝑎𝑡𝐠(𝑎𝑡) implies 𝑀𝐠(𝑥) ≈ 𝑥𝐠(𝑥) for all 𝑥 ∈𝔻:

𝑀𝐠(𝑥) = 1
2𝜋𝑖 ∫

𝜕𝔻

𝑀𝐠(𝑧)
𝑧− 𝑥

𝑑𝑧 ≈ 1
2𝜋𝑖

∑
𝑡

𝑀𝐠(𝑎𝑡)
𝑎𝑡 − 𝑥

(𝑖𝑎𝑡
2𝜋
𝑛𝑎

)

≈ 1
2𝜋𝑖

∑
𝑡

𝑎𝑡𝐠(𝑎𝑡)
𝑎𝑡 − 𝑥

(𝑖𝑎𝑡
2𝜋
𝑛𝑎

) ≈ 1
2𝜋𝑖 ∫

𝜕𝔻

𝑧𝐠(𝑧)
𝑧− 𝑥

𝑑𝑧 = 𝑥𝐠(𝑥),

where the first and third approximations use the exponential convergence of the trapezoidal rule for analytic functions 𝐠(𝑥) and 
𝑥𝐠(𝑥), and the second approximation directly comes from 𝑀𝐠(𝑎𝑡) ≈ 𝑎𝑡𝐠(𝑎𝑡). The equalities are applications of the Cauchy integral 
theorem.

Remark 5. The second question is, what if 𝑋 is not 𝔻? For a general connected domain 𝑋 with smooth boundary, let 𝜙(𝑡) ∶𝔻 →𝑋

be the one-to-one map between 𝔻 and 𝑋 from the Riemann mapping theorem. We then consider the new kernel 𝐺(𝑠, 𝑡) =𝐺(𝑠, 𝜙(𝑡))
4

between 𝑆 and 𝔻 and use the above algorithm to recover the locations {𝑡𝑘} in 𝔻. Once {𝑡𝑘} are available, we set 𝑥̃𝑘 = 𝜙(𝑡𝑘).
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Fig. 1. The eigenmatrix for the example in Section 2. 𝑋 = 𝕊 ≡ {𝑧 ∶ |𝑧| = 1} ⊂ℂ, 𝑆 =ℝ, 𝐺(𝑠, 𝑥) = 𝑥𝑠 (with the branch cut at 𝑥 = −1). 𝑛𝑠 = 32. Left: 𝑀 when 𝑠𝑗 = 𝑗 for 
0 ≤ 𝑗 < 𝑛𝑠 . Middle: 𝑀 when 𝑠𝑗 is a random perturbation of the integer lattice. Right: 𝑀 when {𝑠𝑗} are chosen uniformly in [0, 𝑛𝑠]. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

To provide an idea about the eigenmatrix, we apply the above construction to the problem given in Section 2 with 𝑛𝑠 = 32. Fig. 1
plots the eigenmatrix for three cases: (a) {𝑠𝑗 = 𝑗} is a integer lattice (the classical case); (b) {𝑠𝑗} is a random perturbation of the 
integer lattice; (c) {𝑠𝑗} are chosen uniformly in [0, 𝑛𝑠]. In the integer lattice case, the eigenmatrix approach reproduces the shifting 
matrix. In the perturbative case, the eigenmatrix is quite close to the shifting matrix, as expected. In the fully random case, the 
eigenmatrix is quite different but still keeps the overall trend.

3.3. Real analytic case

To simplify the discussion, assume that 𝑋 is the interval [−1, 1], and we will comment on the general case later. Let us define for 
each 𝑥 the vector 𝐠(𝑥) = [𝐺(𝑠𝑗 , 𝑥)]1≤𝑗≤𝑛𝑠 . The first step is to construct 𝑀 such that 𝑀𝐠(𝑥) ≈ 𝑥𝐠(𝑥) for 𝑥 ∈ [−1, 1]. Numerically, it is 
again more robust to use the normalized vector 𝐠̂(𝑥) = 𝐠(𝑥)∕‖𝐠(𝑥)‖ and consider the modified condition

𝑀 𝐠̂(𝑥) ≈ 𝑥𝐠̂(𝑥), 𝑥 ∈ [−1,1].

We enforce this condition on a Chebyshev grid {𝑎𝑡}1≤𝑡≤𝑛𝑎 of size 𝑛𝑎 on the interval [−1, 1]:

𝑀 𝐠̂(𝑎𝑡) ≈ 𝑎𝑡𝐠̂(𝑎𝑡).

Introduce the 𝑛𝑠 × 𝑛𝑠 matrix 𝐺̂ = [𝐠̂(𝑎𝑡)]1≤𝑡≤𝑛𝑎 with columns 𝐠̂(𝑎𝑡) as well as the 𝑛𝑎 × 𝑛𝑎 diagonal matrix Λ = diag(𝑎𝑡). The condition 
now reads

𝑀𝐺̂ ≈ 𝐺̂Λ.

When the columns of 𝐺̂ are numerically linearly independent, this again suggests the following choice of the eigenmatrix for the real 
analytic case

𝑀 ∶= 𝐺̂Λ𝐺̂†,

where the pseudoinverse 𝐺̂† is computed by thresholding the singular values of 𝐺̂.

Remark 6. We claim that, for real analytic kernels 𝐺(𝑠, 𝑥), enforcing the condition at the Chebyshev grid {𝑎𝑡} is sufficient. To see 
this,

𝑀𝐠(𝑥) ≈𝑀

(∑
𝑘

𝑐𝑡(𝑥)𝐠(𝑎𝑡)
)

=
∑
𝑡

𝑐𝑡(𝑥)𝑀𝐠(𝑎𝑡) ≈
∑
𝑡

𝑐𝑡(𝑥)(𝑎𝑡𝐠(𝑎𝑡)) ≈ 𝑥𝐠(𝑥),

where 𝑐𝑡(𝑥) is the Chebyshev quadrature for 𝑥 associated with grid {𝑎𝑡}. Here, the first and third approximations use the convergence 
property of the Chebyshev quadrature for analytic functions 𝐠(𝑥) and 𝑥𝐠(𝑥), and the second approximation directly comes from 
𝑀𝐠(𝑎𝑡) ≈ 𝑎𝑡𝐠(𝑎𝑡).

Remark 7. The next question is, what if 𝑋 is not the interval [−1, 1]? For a general interval or analytic segment 𝑋, let 𝜙 ∶ [−1, 1] →𝑋

be a smooth one-to-one map between [−1, 1] and 𝑋. By considering the kernel 𝐺(𝑠, 𝑡) = 𝐺(𝑠, 𝜙(𝑡)) instead and applying the above 
5

algorithm, we can recover the locations {𝑡𝑘} in [−1, 1]. Finally, set 𝑥̃𝑘 = 𝜙(𝑡𝑘).
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3.4. Putting together

With the eigenmatrix 𝑀 available, the rest is similar to Prony’s method and the ESPRIT algorithm. Define the vector 𝐮̃ ∶=
[𝑢̃𝑗 ]1≤𝑗≤𝑛𝑠 from the noisy sample values.

For Prony’s method, consider

[
𝐮̃ 𝑀 𝐮̃ … 𝑀𝑛𝑥 𝐮̃

]
≈
[
𝐠(𝑥1) … 𝐠(𝑥𝑛𝑥 )

] ⎡⎢⎢⎣
𝑤1

⋱
𝑤𝑛𝑥

⎤⎥⎥⎦
⎡⎢⎢⎣
1 𝑥1 … 𝑥

𝑛𝑥
1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥
𝑛𝑥
𝑛𝑥

⎤⎥⎥⎦ .
Let 𝐩̃ be a non-zero vector in its null-space

[
𝐮̃ 𝑀 𝐮̃ … 𝑀𝑛𝑥 𝐮̃

]
𝐩̃ = 0 with 𝐩̃ =

⎡⎢⎢⎣
𝑝̃0
⋮
𝑝̃𝑛𝑥

⎤⎥⎥⎦
Therefore,

⎡⎢⎢⎣
1 𝑥1 … 𝑥

𝑛𝑥
1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥
𝑛𝑥
𝑛𝑥

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑝̃0
⋮
𝑝̃𝑛𝑥

⎤⎥⎥⎦ ≈ 0.

The roots of the polynomial 𝑝̃(𝑥) ∶= 𝑝̃0 + 𝑝̃1𝑥 +⋯ + 𝑝̃𝑛𝑥
𝑥𝑛𝑥 provide the estimators {𝑥̃𝑘} for {𝑥𝑘}.

For the ESPRIT algorithm, consider the matrix

[
𝐮̃ 𝑀 𝐮̃ … 𝑀𝓁 𝐮̃

]
≈
[
𝐠(𝑥1) … 𝐠(𝑥𝑛𝑥 )

] ⎡⎢⎢⎣
𝑤1

⋱
𝑤𝑛𝑥

⎤⎥⎥⎦
⎡⎢⎢⎣
1 𝑥1 … 𝑥𝓁1
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥𝓁
𝑛𝑥

⎤⎥⎥⎦
with 𝓁 > 𝑛𝑥. Let 𝑈̃ 𝑆̃𝑉 ∗ be the rank-𝑛𝑥 truncated SVD of this matrix. The matrix 𝑉 ∗ satisfies

𝑉 ∗ ≈ 𝑃

⎡⎢⎢⎣
1 𝑥1 … 𝑥𝓁1
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑥

… 𝑥𝓁
𝑛𝑥

⎤⎥⎥⎦
where 𝑃 is an unknown non-degenerate 𝑛𝑥 × 𝑛𝑥 matrix. Let 𝑍̃0 and 𝑍̃1 be the submatrices of 𝑍̃ by excluding the first column and 
the last column, respectively, i.e.,

𝑍̃0 ≈ 𝑃

⎡⎢⎢⎣
1 … 𝑥𝓁−11
⋮ ⋱ ⋮
1 … 𝑥𝓁−1

𝑛𝑥

⎤⎥⎥⎦ , 𝑍̃1 ≈ 𝑃

⎡⎢⎢⎣
𝑥1 … 𝑥𝓁1
⋮ ⋱ ⋮
𝑥𝑛𝑥

… 𝑥𝓁
𝑛𝑥

⎤⎥⎥⎦ .
By introducing

𝑍̃1(𝑍̃0)+ ≈ 𝑃

⎡⎢⎢⎣
𝑥1

⋱
𝑥𝑛𝑥

⎤⎥⎥⎦𝑃−1,

one can get estimates {𝑥̃𝑘} for {𝑥𝑘} by computing the eigenvalues of 𝑍̃1(𝑍̃0)+.
With {𝑥̃𝑘} available, the least square solve

min
𝑤̃𝑘

∑
𝑗

|||||
∑
𝑘

𝐺(𝑠𝑗 , 𝑥̃𝑘)𝑤̃𝑘 − 𝑢̃𝑗

|||||
2

gives the estimators {𝑤̃𝑘} for {𝑤𝑘} for both methods.

4. Numerical results

This section applies the eigenmatrix approach to the unstructured sparse recovery problems mentioned in Section 1. In all 
examples, the spike weights {𝑤𝑘} are set to be 1 and the noises {𝑍𝑗} are Gaussian.

Once the eigenmatrix 𝑀 is constructed, the reported numerical results are obtained using ESPRIT. The results of Prony’s method 
are similar but slightly less robust. In each plot, blue, green, and red stand for the exact solution, the result before postprocessing, 
and the one after postprocessing.

Example 1 (Rational approximation). The problem setup is
6

• 𝐺(𝑠, 𝑥) = 1
𝑠−𝑥 .
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Fig. 2. Rational approximation. 𝐺(𝑠, 𝑥) = 1
𝑠−𝑥

. 𝑋 = 𝔻. {𝑠𝑗} are random points outside the unit disk, each with a modulus between 1.2 and 2.2. 𝑛𝑠 = 40. Columns: 𝜎
equals to 10−2 , 10−3 , and 10−4 . Rows: the easy test (well-separated) and the hard test (with two nearby spikes).

• 𝑋 =𝔻.
• {𝑠𝑗} are random points outside the disk, each with a modulus between 1.2 and 2.2. 𝑛𝑠 = 40.

Fig. 2 summarizes the experimental results. 𝑛𝑎 = 32. The three columns correspond to noise levels 𝜎 equal to 10−2, 10−3, and 
10−4. Two tests are performed. In the first one (top row), {𝑥𝑘} are well-separated from each other. The plots show accurate recovery 
of the spike locations from all 𝜎 values. In the second one (bottom row), two of the spike locations are close to each other: the 
reconstruction at 𝜎 = 10−2 shows a noticeable error, while the results for 𝜎 = 10−3 and 𝜎 = 10−4 are accurate. The plots also suggest 
that the eigenmatrix approach results in fairly accurate (green) initial guesses for the postprocessing step.

Example 2 (Spectral function approximation). The problem setup is

• 𝐺(𝑠, 𝑥) = 1
𝑠−𝑥 .

• 𝑋 = [−1, 1].
• {𝑠𝑗} is the Matsubara grid from − (2𝑁−1)𝜋

𝛽
𝑖 to (2𝑁−1)𝜋

𝛽
𝑖 with 𝛽 = 100 and 𝑁 = 128. Hence, 𝑛𝑠 = 256.

Fig. 3 summarizes the experimental results. 𝑛𝑎 = 32. The three columns correspond to 𝜎 equal to 10−2, 10−3, and 10−4, re-
spectively. Two tests are performed. In the first one (top row), {𝑥𝑘} are well-separated. The reconstructions are accurate for all 𝜎
values. In the second one (bottom row), two of the spike locations are within 0.1 distance from each other. In this harder case, the 
reconstructions also remain accurate for all 𝜎 values. Notice that the eigenmatrix provides a sufficiently accurate initial guess for 
postprocessing.

Example 3 (Fourier inversion). The problem setup is

• 𝐺(𝑠, 𝑥) = exp(𝜋𝑖𝑠𝑥).
• 𝑋 = [−1, 1].
• {𝑠𝑗} are randomly chosen points in [−5, 5]. 𝑛𝑠 = 128.

Fig. 4 summarizes the experimental results. 𝑛𝑎 = 32. The three columns correspond to 𝜎 equal to 10−2, 10−3, and 10−4. Two tests 
are performed. In the first one (top row), {𝑥𝑘} are well-separated. The reconstructions are accurate for all 𝜎 values. In the second 
one (bottom row), two of the spike locations are within 0.1 distance from each other. The reconstructions are also accurate for all 𝜎
values. The eigenmatrix is again able to provide sufficient accurate initial guesses for the postprocessing step.
7

Example 4 (Laplace inversion). The problem setup is
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Fig. 3. Spectral function approximation. 𝐺(𝑠, 𝑥) = 1
𝑠−𝑥

. 𝑋 = [−1, 1]. {𝑠𝑗} is the Matsubara grid from − (2𝑁−1)𝜋
𝛽

𝑖 to (2𝑁−1)𝜋
𝛽

𝑖 with 𝛽 = 100 and 𝑁 = 128. Columns: 𝜎
equals to 10−2 , 10−3 , and 10−4 . Rows: the easy test (well-separated) and the hard test (with two nearby spikes).

Fig. 4. Fourier inversion. 𝐺(𝑠, 𝑥) = exp(𝜋𝑖𝑠𝑥). 𝑋 = [−1, 1]. {𝑠𝑗} are randomly chosen points in [−5, 5]. 𝑛𝑠 = 128. Columns: 𝜎 equals to 10−2 , 10−3 , and 10−4 , respec-
tively. Rows: the easy test (well-separated) and the hard test (with two nearby spikes).

• 𝐺(𝑠, 𝑥) = 𝑥 exp(−𝑠𝑥).
• 𝑋 = [0.1, 2.1].
• {𝑠𝑗} are random samples in [0, 10]. 𝑛𝑠 = 100.

Fig. 5 summarizes the experimental results. 𝑛𝑎 = 32. The inverse Laplace transform is well-known for its sensitivity to noise. As a 
8

result, significantly smaller noise magnitudes are used in this example: the three columns correspond to 𝜎 equal to 10−5, 10−6, and 
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Fig. 5. Laplace inversion. 𝐺(𝑠, 𝑥) = exp(−𝑠𝑥). 𝑋 = [0.1, 2.1]. {𝑠𝑗} are random samples in [0, 10]. 𝑛𝑠 = 100. Columns: 𝜎 equals to 10−5 , 10−6 , and 10−7 , respectively. 
Rows: the easy test (well-separated) and the hard test (with two nearby spikes).

10−7. Two tests are performed. In the first one (top row), {𝑥𝑘} are well-separated. The reconstructions are acceptable for 𝜎 = 10−6
and accurate for 𝜎 = 10−7. In the second harder test (bottom row), two of the spike locations are within 0.25 distance from each 
other. The reconstructions provide reasonable reconstructions at 𝜎 = 10−7, but significant errors for larger 𝜎 values.

Example 5 (Sparse deconvolution). The problem setup is

• 𝐺(𝑠, 𝑥) = 1
1+𝛾(𝑠−𝑥)2 with 𝛾 = 4.

• 𝑋 = [−1, 1].
• {𝑠𝑗} are random samples from [−5, 5]. 𝑛𝑠 = 100.

Fig. 6 summarizes the experimental results. 𝑛𝑎 = 32. The three columns correspond to 𝜎 equal to 10−2, 10−3, and 10−4. Two tests 
are performed. In the first one (top row), {𝑥𝑘} are well-separated. The reconstructions are reasonable for 𝜎 = 10−2 and accurate 
for the smaller 𝜎 values. In the second one (bottom row), two of the spike locations are within 0.1 distance from each other. The 
reconstructions are accurate for 𝜎 equal to 10−3 and 10−4.

Remark 8. The numerical experience suggests two lessons important for accurate reconstruction. First, it is important to fully exploit 
the prior information about the support of the spikes, i.e., making the candidate parameter set 𝑋 as compact as possible. Second, 
using the Chebyshev grid (for the real case) and the uniform grid (for the complex case) ensures that 𝑀𝐠(𝑥) ≈ 𝑥𝐠(𝑥) up to a high 
accuracy numerically.

5. Discussions

This note introduces the eigenmatrix construction for unstructured sparse recovery problems. It assumes no structure on the 
sample locations and offers a rather unified framework for such sparse recovery problems. This note is only an exploratory study of 
the data-driven approach for unstructured sparse recovery, and there are several clear directions for future work.

• Providing a more principled way of choosing the size of the grid {𝑎𝑡} and the thresholding value for computing 𝑀 .
• Providing the error estimates of the eigenmatrix approach for the problems mentioned in Section 1.
• Once the eigenmatrix is constructed, the recovery algorithm presented above follows Prony’s method and the ESPRIT algorithm. 

An immediate extension is to combine the eigenmatrix with other algorithms, such as MUSIC and the matrix pencil method.

Data availability
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No data was used for the research described in the article.
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Fig. 6. Sparse deconvolution. 𝐺(𝑠, 𝑥) = 1
1+𝛾(𝑠−𝑥)2

with 𝛾 = 4. 𝑋 = [−1, 1]. {𝑠𝑗} are random samples from [−5, 5]. 𝑛𝑠 = 100. Columns: 𝜎 equals to 10−2 , 10−3 , and 10−4 , 
respectively. Rows: the easy test (well-separated) and the hard test (with two nearby spikes).
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