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Introduction

The website for this class can be found here (note: link now redirects to the set of all past semesters) – we should

check it from time to time, because there will be some links to additional readings. Problem sets will also be posted

there. There will be no exams in this class; 18.212 is graded entirely on four or five problem sets (assigned every two

or three weeks). Overall, there are two conflicting goals for this class: everyone should understand everything, so we

shouldn’t go too fast, but the class shouldn’t be too slow and boring. (So we should let Professor Postnikov know if

we feel one way or the other!)

As the title suggests, this is a class on combinatorics. Combinatorics is the area of mathematics that studies

discrete objects, like graphs, permutations, and various diagrams, looking at objects that we can count or list. These

days, there are two main flavors: Stanley-style and Erdős-style. Stanley-style (also enumerative, algebraic, or
geometric) combinatorics deals with counting objects or their connections with algebra and geometry, and that’s what

we’ll see in this class. On the other hand, there is also Erdős-style (also extremal or probabilistic) combinatorics,

which is explored in a class like 18.218.

Fact 1

In our class, we’ll often show results of the form A = B, saying that some number of objects is equal to some

other number. For example, Cayley’s formula states that the number of labeled trees on n vertices is nn−2, and

the proof of this result gets us to that exact value. On the other hand, Erdős-style combinatorics cares about

things like “what is the probability a random graph is connected?”, which involves stating and proving statements

like A ∼ n log n instead.

No textbooks are required for this class. The recommended textbooks for this class are the following (which can

be located on the class website):

• Richard Stanley’s Algebraic Combinatorics,

• Richard Stanley’s Enumerative Combinatorics, volumes 1 and 2 (graduate-level book with lots of material),

• van Lint and Wilson’s A Course in Combinatorics (a very nice book but a bit outdated).

Remark 2. These notes were edited during December 2021 for clarity and corrections; apologies for any additional

typos that have come up.
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1 February 6, 2019
We’re going to start by studying Catalan numbers, which are not actually part of Stanley’s Algebraic Combinatorics.

On the other hand, Professor Stanley did compile hundreds of Catalan number interpretations separately from his

book, so he “has an excuse.”

Definition 3

The nth Catalan number Cn is the number of sequences (ε1, ε2, · · · , ε2n), where all εi ∈ {−1, 1}, there are

exactly n 1s and n −1s, and the partial sums ε1 + · · ·+ εi are nonnegative for all 1 ≤ i ≤ 2n.

Such sequences are often represented by Dyck paths, which contain up and down edges. Each up step corresponds

to a vector (1, 1), and each down step corresponds to (1,−1). Lining up all of the vectors, we have a path from (0, 0)

to (2n, 0), where the entire path is contained in the upper-half plane (including the x-axis).

It is easy to count the number of paths directly for small n with casework, and we get the following numbers:

n 0 1 2 3 4 5

Cn 1 1 2 5 14 42

There is an explicit formula that we will get to, but we’ll give an example to illustrate the use of objects like this.

This is getting at the question of “what is mathematics” – if objects have no real-world applications, they might be

meaningless, so here’s a “real-world” application of Catalan numbers.

Example 4 (Drunk man problem)

A drunk man is on a (one-dimensional) road, and he cannot tell left from right, so he has a 12 chance of going to

the left by 1 and a 12 chance of going to the right by 1 at each step. (This is the simplest example of a random
walk.) The man starts at x = 1, and there is a cliff starting at x = 0. What is the probability he survives forever?

One way to compute this is to instead calculate the probability that the man falls – he can immediately take one

step to the left, or one step to the right and two steps to the left, and so on. And the key observation is that these
kind of paths correspond exactly to Dyck paths. Specifically, if the drunk guy falls, he takes 2n steps (for some n)

and then has a 12 chance of taking that last 2n+ 1th step, and those first 2n steps must stay within the region x > 0.

So the probability that we’re looking for is

P =
1

2

∑
n≥0

Cn
22n

.

As a slight generalization, we can assume the road is tilted at some slope, so that the drunk man goes left and right

with different probabilities 1− p and p, respectively. This gives instead

P = p
∑
n≥0

Cnp
n(1− p)n,

and the setting is called a biased random walk – we are essentially interested in seeing whether it’s possible to evaluate
this explicitly.

But before we dive into calculations, we should note that the solution to this problem doesn’t require Catalan

numbers. Here’s an elementary method:

Solution. As before, let’s say the cliff is at x = 0, and the man starts at x = 1. Let’s imagine that there is a house

where the drunk man lives at x = N, and he is safe if he reaches it before falling. Let P (i , N) denote the probability
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that the man survives if he starts at position i and his house is at position N. (Our goal is actually to calculate the

probability when N →∞.)

First of all, notice that P (N,N) = 1 and P (0, N) = 0. We also have the relation (for all 0 < i < N)

Pi =
1

2
(Pi−1 + Pi+1),

since from position i , there’s a one-half chance of going to position i − 1 and a one-half chance of going to position

i + 1. So we actually have an arithmetic progression, and P (i , N) = i
N . But in our initial problem, there is no house,

so we can take the limit as N → ∞, and this yields P (1, N) → 0. Thus, the man will always fall off the cliff with

probability 1.

(One potential moral of this story is “don’t drink if you are at the edge of a cliff, especially if you’re under 21 years

old.”) But this proof isn’t so easy to generalize to the biased walk, and we can also learn more about the structure of

the generalized problem if we use Catalan numbers. So let’s start by finding a way to express each Catalan number in

terms of the previous ones:

Proposition 5 (Recurrence relation for the Catalan numbers)

We have the base case C0 = 1, and for all n ≥ 1,

Cn =

n∑
k=1

Ck−1Cn−k .

Proof. The base case is clear. For the inductive step, we want to somehow break a Dyck path into smaller Dyck paths.

Dyck paths are allowed to touch (but not cross) the x-axis before (2n, 0), so we find the first place after x = 0 where

the path touches the x-axis and call it (2k, 0). (It will be an even x-coordinate, because we need an equal number of

up and down moves.)

The part of the path from 0 to 2k is strictly above the x-axis, so it is an up move, a Dyck path on 2k − 2 moves

(Ck−1), and then a down move, followed by a Dyck path on 2n − 2k moves (multiply by Cn−k). Furthermore, this

decomposition of a given Dyck path is unique, because we specified that we took the first point of contact with the

x-axis. Since k can be anything from 1 to n inclusive, this gives our recurrence relation as desired.

We can actually write this relation as a generating function: given any sequence (c0, c1, · · · ), we can construct a

generating function

f (x) = c0 + c1x + c2x
2 + · · · .

We can ask questions of convergence or divergence, but in combinatorics we avoid these questions by treating these

as formal power series, which are essentially infinite sequences of coefficients, so that we can add and multiply the

series in a well-defined way.

Proposition 6 (Generating function for the Catalan numbers)

Let f (x) be the generating function for the Catalan numbers. The recurrence relation in Proposition 5 is equivalent

to

f (x) = xf (x)2 − 1.

Proof. We’ll extract coefficients on the left and right side and see that they are the same: on one side, we have

[xn]f (x) = Cn
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(where this notation means the xn coefficient of f ). For the other side, first note that

[xn]xf (x) = Cn−1,

since we’re shifting our coefficients Ck−1xk−1 → Ck−1x
k . This means that

[xn]f (x)2 = Cn · C0 + Cn−1 · C1 + · · ·+ C0 · Cn

by expanding out our coefficients, and

[xn]xf (x)2 = Cn−1 · C0 + Cn−2 · C1 + · · ·+ C0 · Cn−1 = Cn

by our recurrence relation. So all coefficients n ≥ 1 match up, and finally we just check our constant term (which is

1 on both sides). Since all coefficients are the same, the power series are indeed equal.

And now we can solve our functional equation f (x) = xf (x)2 + 1 by treating it as a quadratic in f . We find, by

the quadratic formula, that

xf 2 − f + 1 = 0 =⇒ f =
1±
√

1− 4x

2x
.

There may appear to be some ambiguity about the ± sign, but f (x) is a power series with constant term 1, so f (x)

can’t diverge. Thus, we need to make sure the numerator is equal to 0 at x = 0 as well, and we have our final

generating function

f (x) =
1−
√

1− 4x

2x
.

We’ll explore this more next time!

2 February 8, 2019
Last time, we defined the Catalan numbers and bijected them to Dyck paths. We discovered a recurrence relation for

these Catalan numbers, and from that, we found our generating function

f (x) =
1−
√

1− 4x

2x
.

Let’s see an application of this generating function to the biased random walk problem (again, in which we are at the

very edge of a cliff, and we have a probability p of walking to the right and 1− p of walking to the left).

Proposition 7

The probability that the man falls down the cliff in the biased random walk is

(1− p)f (p(1− p)) =

1 p ≤ 1
2 ,

1−p
p p > 1

2 .

(In other words, “if we’re going to drink at the edge of a cliff, make sure it slopes down to the right.”) We’ll start

with a fact that many of us probably know well:
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Proposition 8 (Binomial theorem)

For any real number y and nonnegative integer a, we have

(1 + y)a = 1 +

(
a

1

)
y +

(
a

2

)
y2 +

(
a

3

)
y3 + · · · .

(This can be proved by Pascal’s identity and induction.) In fact, the binomial theorem is actually true for any value

of a (not just integers), so Pascal’s triangle is part of the picture, but it doesn’t tell us the whole story. We just need

to redefine (for a nonnegative integer k) the binomial coefficient(
a

k

)
≡
a(a − 1)(a − 2) · · · (a − k + 1)

k!
.

The binomial theorem then follows by writing out a Taylor expansion of the left hand side: the a(a − 1)(a − 2) · · ·
comes from the power rule. So we can apply this to our generating function by setting y = −4x, a = 1

2 : we ignore

the constant term, and for all n ≥ 1,

f (x) =
1− (1− 4x)−1/2

2x
=⇒ [xn]f (x) = −

1

2
[xn+1](1− 4x)1/2,

which is (by the binomial theorem)

[xn]f (x) = −
1

2

(
1/2

n + 1

)
(−4)n+1.

After expanding out the binomial coefficient, this finally gives us a nice formula:

Theorem 9 (Closed form for the Catalan numbers)

The nth Catalan number is

Cn =

(
2n
n

)
n + 1

.

But this is a very nice expression, so we may want to ask if there is a combinatorial proof instead.

Proof by reflection principle. Recall that Cn counts the number of Dyck paths that are above the x-axis from (0, 0)

to (2n, 0). First of all, if we remove the “above the x-axis” condition, we just want the number of paths that have n

ups and n downs: this is just
(
2n
n

)
. We now want to remove all paths that were overcounted, which is the same as

counting the number of non-Dyck paths from (0, 0) to (2n, 0). Each of these paths must intersect the line y = −1 at

least once – pick the first intersection, and take the portion of the path from that intersection to the end (2n, 0).

We then reflect that portion over y = −1, and now the endpoint of our path is (2n,−2).

This new path has n − 1 up steps and n + 1 down steps, and set of all such paths (up-down paths from (0, 0) to

(2n,−2) are in bijection with the non-Dyck paths! This is because paths from (0, 0) to (2n,−2) always cross y = −1,

so we can find the first intersection and do the reflection again to get to our non-Dyck path from (0, 0) to (2n, 0).

Since there are
(
2n
n−1
)
such paths, the number of Dyck paths is

Cn =

(
2n

n

)
−
(

2n

n − 1

)
=

1

n + 1

(
2n

n

)
.

However, as a combinatorialist, Professor Postnikov doesn’t like subtraction, so here’s a proof that doesn’t even

require that:
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Proof by necklaces. Start with the binomial coefficient
(
2n+1
n

)
, which counts the number of sequences (ε1, · · · , ε2n+1)

with n +1s and n + 1 -1s.

For illustration, consider the sequence (+,−,−,+,−) for n = 2. For each of the
(
2n+1
n

)
sequences, consider

all (2n + 1) different cyclic shifts of it (that is, moving the first term of the sequence to the end repeatedly): we

get (−,−,+,−,+), (−,+,−,+,−), (+,−,+,−,−), and (−,+,−,−,+) in addition to the original sequence. For

another perspective, think about arranging +s and −s on a necklace (as black and white beads, respectively). Then

the necklace has n black beads and n+ 1 white beads, and each of the cyclic shifts corresponds to cutting the necklace

a different spot.

Claim 10. All cyclic shifts are different.

The idea is that if two different cyclic shifts were the same, we’d be able to decompose the necklace into multiple

copies of a subsequence, which is bad because the difference in the number of +s and −s is 1. But the details are left
as an exercise for us, and this means the number of total necklaces that exists is (2n+1n )

2n+1 .

Claim 11. For each necklace, there is a unique sequence (ε1, ε2, · · · , ε2n+1) among all 2n+1 ways to cut the necklace,

such that ε1, · · · , ε2n form a Catalan sequence and ε2n+1 = −1.

This is also left as an exercise, but the idea is to find the “lowest point” on the Dyck path. And once both of the

claims above are resolved, notice that the number of Catalan sequences is therefore also equal to(
2n+1
n

)
2n + 1

=
1

n + 1

(
2n

n

)
,

as desired.

This is a “good” combinatorial proof, because we’re actually doing some kind of natural division, where the cyclic

shifts explain how the binomial coefficient is reduced. And now we’ll get to see how the Catalan numbers pop up

basically everywhere:

Fact 12

Cn is the number of triangulations of an (n + 2)-gon.

For example, given a hexagon, there are C4 = 14 ways to cut it into 4 triangles. Indeed, there are 6 of them where

all three diagonals drawn come from one vertex, 6 where they form a zig-zag pattern, and 2 by drawing an equilateral

triangle.

Fact 13

Cn is the number of valid parenthesizations of n + 1 letters.

For illustration, take n = 4: the idea is that we want to put some parentheses in the expression

a b c d e.

One such way is ((a(bc))(de)),

Fact 14

Cn is the number of plane binary trees with n non-leaf vertices and n + 1 leaves.
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Basically, we start with the root of a tree, and repeatedly take an existing leaf and draw a left and right child for it.

We can show that the number of leaves and non-leaves will always differ by 1, and that this is the only way to create

such plane binary trees.

Proposition 15

There is a bijection between the three countings of Cn above.

Proof. Starting with an (n+ 2)-gon, the binary tree will be the dual graph to the triangulation: pick one of the sides

of our polygon to start constructing our tree. Non-leaf vertices will correspond to triangles, and the triangle starting

to the edge is our root. This means we can convert any triangulation to a tree and vice versa. Then we can take

our binary tree and use “common neighbor” as a set of parentheses, where we take leaves from left to right, and this

completes the bijection between trees and parenthesizations.

The bijection from these three constructions to Dyck paths is less obvious, so that will be an exercise for us.

3 February 11, 2019
Remark 16. As MIT students, many of us may know a lot about computer science. The Bible of computer science

is “The Art of Computer Programming” by Knuth, and a lot of the material of this class comes from it.

We’ll continue to see connections to Catalan numbers today through other mathematical objects:

Definition 17

A queue is a data structure that is “first-in-first-out,” while a stack is “last-in-first out.”

In words, a queue contains one or several entries, and it’s like a line: if a person enters the line first, it will exit

first. Meanwhile, a stack is like a pile of papers, so the paper that was most recently added to the pile will be removed

first. It turns out that we can use these data structures to sort permutations, and Catalan numbers will appear again.

Definition 18

A permutation is queue-sortable (resp. stack-sortable) if we can read it from beginning to end, either putting

numbers in the queue (resp. stack) or directly into a final list, and also popping elements out of the queue (resp.

stack) whenever we’d like, and ending up with a sorted list.

Proposition 19

The number of queue-sortable permutations of (1, 2, · · · , n) is equal to Cn.

For example, for n = 4, (2, 4, 1, 3) is queue-sortable with the following procedure: put 2, then 4 in the queue, then

put 1 in our list directly. After that, take 2 out of the queue, put 3 in the list directly, and finally take 4 out of the

queue. On the other hand, an example of something not queue-sortable is (3, 2, 1), since we would have to put 3 in

the queue and then 2, and that’s bad because 3 must come out first.2

Proposition 20

The number of stack-sortable permutations of (1, 2, · · · , n) is also equal to Cn.
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For example, (4, 1, 3, 2) is stack-sortable, since we put 4 in the stack, put 1 in the list directly, then put 3 and 2

in the stack and pop everything back out. But (2, 3, 1) is not stack-sortable.

In the above situation, (3, 2, 1) and (2, 3, 1) are essentially fundamental “patterns” of the numbers, and the idea of

sortability is related to the more general concept in combinatorics of pattern avoidance:

Definition 21

Given a permutation w = (w1, w2, · · · , wn) of size n (so w is an element of the symmetric group Sn, which we’ll

discuss later in the class), and given a permutation π = (π1, π2, · · · , πk) of size k ≤ n, we say that w contains
pattern π if there exists a (not-necessarily-consecutive) subsequence of entries (wi1 , wi2 , · · · , wik ) whose values

are in the same relative order as π. Meanwhile, w is π-avoiding if it does not contain the pattern π.

Example 22

The permutation w = (3, 5, 2, 4, 1, 6). does contain the pattern π = (2, 1, 3) (consider indices 2, 3, 6 with values

5, 2, 6, for example), but it is (1, 2, 3, 4)-avoiding (there is no subsequence of four increasing values).

Proposition 23

Queue-sortable permutations are exactly those permutations that are 321-avoiding, and stack-sortable permuta-

tions are those that are 231-avoiding. In fact, for any pattern π of size 3, the number of π-avoiding permutations

is Cn.

This is once again left as an exercise for us!

Remark 24. Note that we will not be required to solve all problems in a problem set, so some will be easier and some

will be harder. The goal is for there to be something interesting for all of us.

With this, it’s time to move to the next topic – we’re going to talk about partitions, Young diagrams, and Young
tableaux.

Remark 25. Since the word “tableau” is French, we add an “x” to the end to make it plural.

Definition 26

A partition of n is a list of integers λ = (λ1, · · · , λe), such that n = λ1 + · · ·+ λe , the λis are weakly decreasing

(meaning λ1 ≥ λ2 ≥ · · · ≥ λe), and all λi are positive integers.

Because we’re discussing partitions of n, rather than compositions of n, the order of elements in our list doesn’t

matter. So it’s just by convention that people write them this way from largest to smallest.

Example 27

There are 5 partitions of 4, corresponding to writing 4 = 1 + 1 + 1 + 1 = 2 + 1 + 1 = 2 + 2 = 3 + 1 = 4.

Definition 28

A Young diagram is a shape corresponding to the partition (λ1, · · · , λk), where there are k left-justified rows of

λ1, λ2, · · · , λk boxes, respectively. A similar term, Ferrers shapes, refers to similar diagrams with dots instead of

boxes.

8



Here’s what the Young diagrams look like for the partitions of 4:

, , , , .

Definition 29

A standard Young tableau (SYT) is a way to fill in the n boxes of a Young diagram with the numbers 1, 2, · · · , n
(without repetition), such that the numbers are increasing across rows and down the columns.

For example, if λ = (4, 2, 2, 1), our tableau looks like . By abuse of notation, we’ll use λ for its corre-

sponding Young diagram as well, and here’s an example of a standard Young tableau for that partition:

1 3 4 7

2 6

5 9

8

Definition 30

Let f λ denote the number of standard Young tableaux of shape λ.

Lemma 31

For λ = (n, n), the number of standard Young tableaux is f (n,n) = Cn.

Proof. Given a standard Young tableau, construct a corresponding sequence (ε1, · · · , ε2n) via

εi =

+ if i is in the first row

− if it is in the second row
.

These are exactly the sequences that correspond to Dyck paths! For example, the following Young tableau corresponds

to the Dyck path (+,+,−,+,−,−,+,+,−,−):

1 2 4 7 8

3 5 6 9 10

Any Young tableau will correspond to a Dyck path, since we always have at least as many integers in the top row

as the bottom up to some k ≤ 2n. And any Dyck path will correspond to a Young tableau (by adding numbers in the

top or bottom row, respectively). Thus the number of standard Young tableaux of shape (n, n) is indeed the number

of Dyck paths, which is Cn.

This formula therefore means that we can think of counting Young tableaux as giving extensions of the Catalan

numbers. And in fact, there turns out to be a nice formula for general λ

9



Theorem 32 (Hook length formula (Frame–Robinson–Thrall))

The number of standard Young tableaux for a partition λ is

f λ =
n!∏

x∈λ h(x)
,

where h(x) are the hook lengths of the squares x ; that is, the number of squares in a hook that goes to the right

and down from square x . The arm is the length of the horizontal component not including x , and the leg is the

length of the vertical component not including x .

For example, the hook below has length 6, arm length 2, and leg length 3: x

Example 33

Take the partition λ = (3, 2), so the Young diagram looks like .

The possible Young tableaux for this shape are

1 2 3

4 5
,

1 2 4

3 5
,

1 2 5

3 4
,

1 3 4

2 5
,

1 3 5

2 4
.

Meanwhile, towards applying the hook-length formula, here are the hook lengths for each square in the tableau:

4 3 1

2 1

The number of possible standard Young tableaux is indeed f λ = 5!
4·3·1·2·1 = 5, as expected. There are many proofs

of the hook length formula, and the result initially comes from representation theory. However, there is a recent

probabilistic proof using random walks, which we will cover later in this class.

4 February 13, 2019
Remark 34. A few students asked about the problem set – it will be assigned sometime in the near future, and it’ll

probably due around the end of February or beginning of March.

Remember that we defined f λ to be the number of standard Young tableaux of shape λ. It turns out that these

numbers are related to the symmetric group, but we’ll discuss that later. The magic is that f λ has a closed form,

given by the hook length formula; as it turns out, exploring this path will lead us to some other cool results too.

Proposition 35 (Frobenius-Young identity)

For any integer n, we have ∑
λ:|λ|=n

(f λ)2 = n!.
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This result also comes from representation theory, though we won’t need that for the proof that we present. As

an example, if we take n = 4, the possible Young diagrams are

, , , , .

The number of ways to fill in those Young diagrams with Young tableaux are 1, 3, 2, 3, 1 respectively, and indeed

12 + 32 + 22 + 32 + 12 = 24 = 4!.

To work towards a proof, we must first interpret this identity – the right hand side of the equation is the number

of permutations in Sn (on n elements). Meanwhile, the left hand side counts pairs of Young tableaux p, q, such that

p and q are both SYTs of the same shape λ. So it’s natural to ask whether there’s a bijection that we can set up

between the two sets.

The tool we’ll use is the Schensted correspondence from 1961, which was generalized later by Knuth to the

Robinson-Schensted-Knuth correspondence (which is about semi-standard Young tableaux)! This is a pretty central

construction in algebraic combinatorics, and for more details, we can see the papers on the course webpage.

Proof. Given a standard Young tableau T filled with some positive integers in S, suppose we want to add another

positive integer x . The Schensted’s insertion algorithm goes as follows: let T ← x be the standard Young tableau

with an extra box added to T , given by the following procedure:

1. Initialize x1 = x and i = 1.

2. If xi is greater than all entries in the ith row of T , then add a new box at the end of the ith row containing xi
and stop.

3. Otherwise, find the smallest entry y in the ith row that is greater than xi . Replace y by xi , increment i by one,

and go back to step 2.

The idea is that when we insert x , we may bump the entry x2 down to the next row. Then we insert x2, which

may bump something else, and we keep doing this until no bump occurs.

With this algorithm, given some permutation w ∈ Sn, let’s construct a pair (P,Q) of Young tableaux. P is called

the insertion tableau, and Q is the recording tableau.
To construct P , start with the empty tableau and add w1, w2, · · · , wn one at a time, in that order, using the

algorithm above. At the same time, we construct Q (of the same shape as P ) by having i placed in the box that was

added at the ith step of constructing P (that is, we record which box is added).

Example 36

Take the permutation w = (3, 5, 2, 4, 7, 1, 6); we’ll work through the corresponding (P,Q) that is created.

After we insert 3 and 5, we get

P0 = ∅ =⇒ P1 = 3 =⇒ P2 = 3 5 .

Trying to insert 2 kicks 3 out into the next row:

P3 = 2 5

3
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Now 4 bumps 5 to get

P4 = 2 4

3 5
,

and then adding 7, 1, 6 in that order give us

P5 = 2 4 7

3 5
=⇒ P6 = 1 4 7

2 5

3

=⇒ P7 = P = 1 4 6

2 5 7

3

.

To find the corresponding Q-tableau, we scan over the process and see when each box was added:

Q = 1 2 5

3 4 7

6

.

Theorem 37

The construction w 7→ (P,Q) is a bijection between the symmetric group Sn and the set of all pairs (P,Q) of

Young tableaux with identical shapes and n boxes.

Proof by illustration. To show that w 7→ (P,Q) is a bijection, we want to show that given a pair of tableau P and Q,

we can reconstruct the original permutation. Here’s the reverse procedure: start with, for example,

P = 1 4 6

2 5 7

3

, Q = 1 2 5

3 4 7

6

.

The position of the 7 in Q tells us that that box was added last in our algorithm. Because this box is in the second

row, we must have had exactly one “bump” take place, and that bump displaced 7. And the entry that bumped 7 must

have been 6, the maximal entry of the previous row smaller than 7. In other words, 6 was just added at the end of

the process, and that means w ended with 6. Removing its contribution to P and Q gives us the intermediate step

P ′ = 1 4 7

2 5

3

, Q′ = 1 2 5

3 4

6

.

Now keep repeating this logic: the bottom left corner has the next maximal entry of Q, so 3 in the third row was

bumped in the previous step. Looking above, it must have been bumped by 2, and that must have been bumped from

1, so w ’s second-to-last entry is 1. Continuing this procedure, we can recover w by peeling off the sequence from the

end! So given any pair of tableaux, we can uniquely reconstruct w , showing the bijection.

This correspondence has other special applications as well – one such application is for studying increasing and

decreasing subsequences of permutations.

Definition 38

Given a permutation w that corresponds to a pair (P,Q) under the Schensted correspondence, the shape λ of P

(and Q) is called the Schensted shape of w .

The first entry λ1, which is the number of boxes in λ’s first row, has a special significance:
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Theorem 39 (Schensted)

The length of the first row of λ is the length of the longest increasing subsequence in w . Also, as a dual statement,

the length of the first column of λ is the length of the longest decreasing subsequence in w .

For example, the first row has 3 boxes in the example above, so the longest increasing subsequence has length 3.

Similarly, the first column has 3 boxes, so the longest decreasing subsequence also has length 3.

We’ll wait until next lecture to do this proof. Instead, we’ll show evidence of a special case Proposition 23 with

another proof:

Corollary 40

The number of 123-avoiding permutations in Sn is the Catalan number Cn.

Proof. A permutation w is 123-avoiding if and only if the length of the longest increasing subsequence is at most

2. Thus, the Schensted correspondence sends any such permutation to a pair of tableaux with at most 2 columns,

where both P and Q have n boxes. We want to biject this to a single tableau of shape (2, 2, · · · , 2), since we already

know that there are Cn ways to construct Young tableaux of that shape by Lemma 31 (since the shape (n, n) and

(2, 2, · · · , 2) can be filled in identical ways by reflection).

To construct that bijection, rotate Q by 180 degrees and stick it in place with P , except replacing any entry k

with (2n + 1)− k . For example,
1 3

2 4

5

+ 1 2

3 5

4

= 1 3

2 4

5 7

6 8

9 10

.

We may check ourselves that this is a valid construction (and thus the number of 123-avoiding permutations is indeed

the number of Dyck paths Cn).

Finally, here’s a generalization of the Schensted theorem. We have discussed an interpretation of λ1, but we can

figure out the whole shape of λ by looking at just certain properties of w :

Theorem 41 (Greene)

For any permutation and corresponding Schensted shape λ, λ1 + λ2 is the maximal subsequence that can be

covered by two increasing subsequences, λ1+λ2+λ3 is the maximal subsequence covered by three subsequences,

and so on. Furthermore, the same statement also holds for columns and decreasing subsequences.

(If we’re curious about this, we can read more by searching things up in the literature!)

5 February 15, 2019

Recall the Schensted correspondence between permutations w ∈ Sn and pairs of Young tableaux (P,Q): for example,

we found that w = (3, 5, 2, 4, 7, 1, 6) corresponds to

P = 1 4 6

2 5 7

3

, Q = 1 2 5

3 4 7

6

,

13



through the insertion process

3 → 3 5 → 2 5

3
→ 2 4

3 5
→ 2 4 7

3 5
→ 1 4 7

2 5

3

→ P.

As mentioned, according to Schensted’s theorem, the shape λ = (3, 3, 1) tells how many boxes are in each row, and

λ1, the number of boxes in the first row, is the size of the longest increasing subsequence in w . Similarly, the shape

λ′ = (3, 2, 2) (the “transpose” of λ) tells us how many boxes are in each column, and λ′1, the number of boxes in the

first column, is the size of the longest decreasing subsequence in w .

We’re going to prove the first half of this (increasing subsequence) and leave the other half as an exercise!

Definition 42

The jth basic subsequence Bj in a permutation w (for any 1 ≤ j ≤ λ1) consisting of all entries of w , in order,

that were inserted initially into the jth column during the insertion algorithm. In other words, Bj contains the set

of entries that occupied the jth box in the first row after some insertion T ← x .

For example, we have 3 basic subsequences in the example above: for B1, we inserted 3, 2, and 1, so B1 = (3, 2, 1).

Similarly, B2 = (5, 4), and B3 = (7, 6). (Note that the permutations do not necessarily need to cover disjoint intervals

of integers – that’s just what happened in this particular case.)

Lemma 43

Each Bj is a decreasing sequence.

Proof. The basic subsequence Bj contains the numbers that occupy the jth box in the first row, so to be added to

the jth basic subsequence after the first element of it, we must bump the number in that spot. But bumping can only

occur if we have a smaller number, so Bj is indeed decreasing.

Lemma 44

For all j ≥ 2, given any x ∈ Bj , we can find y ∈ Bj−1 such that y < x and y is located to the left of x in the

permutation w .

Proof. Consider the moment of insertion of x , and take y to be the entry that was located to the left of x . It must

be less than x (by the rules of our algorithm), and it appears before x in the permutation because it was already

inserted.

Combining these two facts gives us the desired result:

Proof of Theorem 39, part 1. λ1 is the number of basic subsequences by definition. Note that for any increasing

subsequence x1 < x2 < · · · < xr , we can only have at most 1 entry from each Bj (because the Bjs are decreasing

by Lemma 43), so we must have r ≤ λ1. It suffices to show that an increasing subsequence of length λ1 exists. For

this, pick the last basic subsequence Bλ1 , and pick any xλ1 ∈ Bλ1 . By Lemma 44, there is some xλ1−1 ∈ Bλ1−1 that
comes before xλ1 , and thus some xλ1−2 in Bλ1−2 that comes before xλ1−1, and so on. Repeating this process gives us

an increasing subsequence of length λ1, as desired.
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We’ll take the remaining time in this lecture to prove the hook length formula (Theorem 32). The original proof

was pretty complicated and relied on some other formulas. But later on, simpler proofs were found – we’ll discuss one

that uses a random walk.

Hook walk proof by Greene–Nijenhuis–Wilf (1979). There is a recurrence relation for the number of standard Young

tableaux. Given a tableau with n boxes, n must appear in one of the bottom-right corner boxes, and removing this

corner gives us a standard Young tableau of size n − 1. For instance, consider the following Young diagram for

λ = (5, 4, 4, 1):
O

O

O

Since the O’s are the spots that the largest number can be in, we have the recurrence relation

f 5441 = f 4441 + f 5431 + f 544.

Thus, to prove the hook length formula, it suffices to establish the recurrence relation

f λ =
∑

v corner of λ

f λ−v .

Induct on the number of boxes. The base case is easy (just consider n = 0 or 1 and check that the hook-length

formula works in those cases). For the inductive step, assume that the hook length formula holds up to (n− 1) boxes.

Then we wish to show that
n!

H(λ)
=

∑
v corner of x

(n − 1)!

H(λ− v)
,

where H(λ) denotes the product of the hook lengths in the Young diagram λ. This is the same as wanting to show

that (dividing through by the left-hand side)

1 =
∑

v corner

1

n

H(λ)

H(λ− v)
.

We now have a 1 on the left side, and we have a bunch of nonnegative values on the right side. So we can think of

this as a probability distribution, and we wish to construct a random process so that the terms in the sum are disjoint

probabilities.

For this, consider the following process: first pick any box of λ uniformly at random; call it u. At each subsequent

step, jump from u to any other square in the hook of u with equal probability. Repeat this process repeatedly, and

stop once we reach a corner v . Define p(v) to be the probability that a hook-walk does end at corner v .

Claim 45. We have p(v) = 1
n

H(λ)
H(λ−v) .

This would give us the desired result, because the random walk must stop at exactly one of the corner vertices.

To show this claim, let P (u, v) be the probability that a hook walk (u, u′, u′′, · · · , v) starting at box u ends at corner

v . This is just summing over all hook walks:

P (u, v) =
∑

hook walk
u→u′→···→v

P (hook walk) =
∑

u→u′→···→v

(
1

h(u)− 1
·

1

h(u′)− 1
· · ·
)
.

Here’s the key observation: when we fix v , the whole hook-walk stays within the rectangle between the top-left corner

u and the bottom-right corner v . Whenever we have a rectangle with corners a, b, c, d (a in the top left and d a
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corner), h(a) + h(d) = h(b) + h(c), and similarly

(h(a)− 1) + (h(d)− 1) = (h(b)− 1) + (h(c)− 1).

The idea is that each hook walk comes with a product of weights 1
h(u)−1) on vertices, and we have a nice additive

identity with inverse weights, so there is lots of potential for simplification. In particular, if d is a corner, h(d)−1 = 0.

So now (restricting to the rectangle of interest) consider a rectangular grid of length k + 1 by ` + 1. Let’s say

the weights of the last row are 1
x1
, 1x2 , · · · ,

1
xk
, and B, and the weights in the last column are 1

y1
, 1y2 , · · · ,

1
y`
, B. (These

denominators are hook lengths minus one, and the 10 weight doesn’t matter because the bottom-right corner is a vertex

and that weight will never be counted in a hook-walk.) Specifying this last row and last column is enough to fill in all

of the weights in the rectangle using the relation (h(a)− 1) + (h(d)− 1) = (h(b)− 1) + (h(c)− 1) from above, and

call the vertex in the top left corner A:

1
x1+y1

1
x2+y1

1
x3+y1

1
x4+y1

1
y1

1
x1+y2

1
x2+y2

1
x3+y2

1
x4+y2

1
y2

1
x1

1
x2

1
x3

1
x4

B

We claim that if we sum the weights of lattice paths from A to B (so that we must move by exactly one step

each time), the sum of weights is 1
x1x2···xky1···y` . For example, for a 2 by 2 rectangle, the weights in the boxes will be

1
x1+y1

, 1y1 ,
1
x1
, and 1, so the total sum of hook-walk weights is

1

x1 + y1
·

1

y1
+

1

x1 + y1
·

1

x1
=

1

x1y1
.

We’ll prove this and show the final steps of the main proof next time!

6 February 19, 2019
Last time, we were proving the hook length formula – recall that we had variables x1, · · · , xk , · · · , y1, y` that gave us

weights on various boxes, and we constructed a k + 1 by `+ 1 grid such that every vertex has a weight w(v) with the

following rules:

• The bottom row has weights 1x1 ,
1
x2
, · · · , 1xk , ?.

• The right column has weights 1y1 ,
1
y2
, · · · , 1y` , ?.

• Any other grid square in the ith column and jth row has weight 1
xi+yj

, where i ≤ k and j ≤ `.

We wanted to consider all lattice paths from A (top left corner) to B (bottom right corner), where each path P

has a weight

w(P ) =
∏
v∈P

w(v).

The following lemma is what we stated last lecture and what we’ll need for the proof:
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Lemma 46

The sum of all lattice paths with the setup above is∑
P :A→B

w(P ) =
1

x1x2 · · · xky1y2 · · · y`
.

Proof. We induct on k + `. Base case is k + ` = 2: clearly the vertices have weights 1
x1+y1

, 1y1 ,
1
x1
, 1, and

1

x1 + y1
·

1

x1
+

1

x1 + y1
·

1

y1
=

1

x1y1
.

Now any path either goes down from A (to A′) by one step, or right from A (to A′′) by one step. Thus the sum over

all paths of w(P ) is
1

x1 + y1

( ∑
P ′:A′→B

w(P ′) +
∑

P ′′:A′′→B
w(P ′′)

)
,

and by the inductive hypothesis, this is

=
1

x1 + y1

(
1

x1x2 · · · xky2 · · · y`
+

1

x2 · · · xky1y2 · · · y`

)
,

which simplifies, as desired, to

1

x2 · · · xky2 · · · y`
·

1

x1 + y1

(
1

x1
+

1

y1

)
=

1

x1 · · · xky1 · · · y`
.

Remember that in our hook-walks, we’re allowed to skip over rows and columns (as long as we still jump to a spot

in our hook), so this is not exactly what we need. So we must modify our proof slightly:

Lemma 47

When we have hook-walks P , the sum of all hook-walks with the setup above (starting at any vertex in the

rectangle) is ∑
P hook-walk

w(P ) =

(
1 +

1

x1

)(
1 +

1

x2

)
· · ·
(

1 +
1

xk

)(
1 +

1

y1

)
· · ·
(

1 +
1

y`

)
.

Proof. Imagine expanding out the product fully. Each term corresponds to a subgrid: we skip certain rows and columns

if we use a 1 instead of the corresponding 1
xi
or 1yj . (Recall that we do not need to start at the top left corner, so we

do not need to necessarily include 1
x1

and 1
y1
.) Since any hook-walk is a lattice path on a particular subgrid, this shows

the result by Lemma 46. In particular, the factor of 1 · 1 · · · · · 1 just starts at B and finishes immediately.

We’re now ready to finish the proof of the hook length formula from last lecture:

Proof of Theorem 32, continued. Recall that we denote P (u, v) to be the probability that a hook-walk ends up at the

corner box v of the Young diagram if we start at u. Any path that ends up at v stays in the rectangular grid between

the top left corner and v , so we have

P (u, v) =
∑
p:u→v

1

h(u)− 1

1

h(u′)− 1

1

h(u′′)− 1
· · · .
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Remember that these weights work out the same way as our grid, so we can apply Lemma 47 (but we need to sum

over the allowed starting vertices u just as the lemma does). Fix a corner box v , and call the set of boxes above or to

the left of v the “co-hook at v .” These boxes correspond to the xis and yjs in our lemma, so we find that

∑
u

P (u, v) =
∏

t box in the cohook of v

(
1 +

1

h(t)− 1

)
=
∏
t

h(t)

h(t)− 1
.

But this product can be rewritten in a suggestive way – if we remove v from the Young diagram, the product of hook

lengths H(λ) is very similar to before, but now all hook lengths in the co-hook decrease by one! We therefore arrive

at the relation ∑
u

P (u, v) =
H(λ)

H(λ− v)
.

The hard work has now been done. To finish, notice that for any fixed box u of λ,∑
v corner

P (u, v) = 1,

since any hook walk ends at some corner. So now adding over all u ∈ λ and v corner boxes,∑
u∈λ

∑
v corner

P (u, v) = n,

since there are n boxes. But now switch the order of summation:∑
v corner

∑
u∈λ

P (u, v) = n,

and by the calculation above, we can plug in the value of
∑

u P (u, v) to find that∑
v corner

H(λ)

H(λ− v)
= n.

Finally, multiplying both sides by (n − 1)! and rearranging gives us

n!

H(λ)
=

∑
v corner

(n − 1)!

H(λ− v)
,

which is exactly the recurrence relation we were trying to prove, and we’re done.

Apparently we can think of everything we’re doing as a “linear extension of a poset,” so we’ll change topics and up

the abstraction a bit.

Definition 48

A poset or partially ordered set P is a set of objects with a binary operation ≤, satisfying the following axioms:

• a ≤ a for all a ∈ P.

• If a ≤ b and b ≤ a, then a = b.

• If a ≤ b and b ≤ c , then a ≤ c .

Also, say that a < b if a ≤ b and a 6= b.

Note that it is not necessary for either of a ≤ b or b ≤ a to be true (in other words, unlike something like the real

numbers, we don’t need to be able to compare any two elements).
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Definition 49

For a, b, c in a poset P, a is covered by b (denoted a l b) if a < b and there is no c such that a < c < b.

If we’re talking about finite posets, this relation is all we need to know to specify our poset (which elements cover

other ones). But infinite posets don’t quite work in the same way: there are no covering relations for the real numbers

because there is always a real number between any two distinct reals.

Definition 50

The Hasse diagram is the graph formed by covering relations, where larger vertices are on the top and smaller

vertices are on the bottom.

For example, in the diagram here, we have al b, al c, bl d, c l d, c l e, and two elements x, y satisfy x ≤ y if

there is a path from x to y consisting of upward edges.

b c

d e

a

Definition 51

A linear extension of a finite poset P with n elements is a bijective map f : P → {1, 2, · · · , n} such that

a ≤ b =⇒ f (a) ≤ f (b).

For example, one potential linear extension of the poset above assigns the following values to the corresponding

elements:

3 2

5 4

1

Definition 52

The number of linear extensions of P is denoted ext(P).
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It turns out that we can convert Young tableaux into linear extensions by replacing boxes with dots, connecting

two dots if they came from adjacent boxes, and rotating the top left corner to the bottom (135◦ counterclockwise).

Thus, SYTs are special cases of linear extensions. While we do have an expression for the number of SYTs, there isn’t

a similarly nice one for posets or linear extensions. However, here is an example of a hook-length-type formula that

does exist for certain posets:

Theorem 53 (“Baby” hook length formula for rooted trees)

Given a rooted tree T with n nodes, we can correspond it to a poset PT . Then

ext(PT ) =
n!∏

a∈T h(a)
,

where h(a) is the number of nodes including and above a vertex a.

This is an exercise left for us, but it’s easier to prove than the other hook length formula.

7 February 20, 2019

Last time, we introduced Hasse diagrams of posets, and we found that the number of such labeled diagrams (corre-

sponding to linear extensions) for rooted trees is

ext(T ) =
n!∏

a∈T h(a)
,

where h(a) is the number of nodes in or downstream of a. We’ll start today by introducing one more “hook-length-type

formula,” corresponding to shifted Young diagrams, which are like Young diagrams but look like

instead of being left-justified. Counting the number of boxes, this corresponds to a partition λ = (10, 9, 5, 3, 2), and

it now gives the number of ways to partition a number n into distinct parts! To get a shifted Young tableau, we fill

in the shifted Young diagram in the same way, with numbers increasing by row and by column.

1 2 4 5
3 6 8

7

Theorem 54 (Thrall, 1952)

The number of shifted Young tableaux with shifted shape λ with n boxes is similarly

n!∏
a∈λ h(a)

where h(a), the hook length, now includes a “broken leg” as shown below.
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For example, here’s a hook with a broken leg for the square x :

x

Basically, if the hook reaches the left staircase (not the bottom or the right part), it bends over and continues. A

proof of this, given by Sagan in 1980, also uses a similar idea of a “hook-walk,” and we can search that up as well. But

the point is that there is a nice number for the number of linear extensions in some posets, and the proofs are nice as

well.

It’s time to move on to q-analogs, our next topic. The q here serves as a variable but also stands for “quantum;”

the idea is that we can have classical and quantum versions of a mathematical object, but as we take q = 1 in

the quantum version, we get the classical limit. For example, statistical mechanics sometimes has expressions like

q = e~ω/(kBT ), and as we take ~ → 0 or T →∞, we basically get q = 1.

Here are some more generic examples of q-analogs:

Classical Quantum

n [n]q = [n] = 1 + q + q2 + · · ·+ qn−1 = 1−qn
1−q

n! = 1 · 2 · · · · n [n]q! = [n]! = [1] · [2] · · · · · [n]

This q-factorial gives us a corresponding q-binomial coefficient as well:

Classical Quantum(
n

k

) [
n

k

]
q

≡

[
n

k

]
=

[n]q!

[k ]q![n − k ]q!

Example 55

If we use ordinary numbers, we have that
(
4
2

)
= 6. But if we use the q-factorial instead, we find that[

4

2

]
q

=
[4] · [3]

[1] · [2]
=

(1 + q + q2 + q3)(1 + q + q2)

(1 + q)
= (1 + q2)(1 + q + q2) = 1 + q + 2q2 + q3 + q4.

We can make a few observations about these q-binomial coefficients, which we’ll list below

•

[
n

k

]
q

is a polynomial in q (of the form a0 + a1q + · · ·+ amq
m).

• The coefficients ai are all positive integers, called the Gaussian coefficients.

• The coefficients are symmetric or palindromic: writing them out backwards gives back the same sequence.

• The coefficients first increase and then decrease: a0 ≤ a1 ≤ · · · ≤ abm/2c ≥ · · · ≥ am.

Since ordinary binomial coefficients form a Pascal’s triangle, it’s natural to ask whether something similar occurs

here. The first few q-binomial coefficients are listed below:
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n = 0: 1

n = 1: 1 1

n = 2: 1 1 + q 1

n = 3: 1 1 + q + q2 1 + q + q2 1

n = 4: 1 1 + q + q2 + q3 1 + q + 2q2 + q3 + q4 1 + q + q2 + q3 1

In the ordinary Pascal’s triangle, we have the recurrence relation(
n

r

)
+

(
n

r + 1

)
=

(
n + 1

r + 1

)
.

A similar relation can be observed in the q-analog (which reduces to the ordinary statement if we take q → 1):

Proposition 56 (q-Pascal’s recurrence relation)

For any n, k , [
n

k

]
q

=

[
n − 1

k

]
q

+ qn−k

[
n − 1

k − 1

]
q

.

Proof. Write out all expressions as factorials:[
n − 1

k

]
q

+ qn−k

[
n − 1

k − 1

]
q

=
[n − 1]!

[k ]![n − k − 1]!
+ qn−k

[n − 1]!

[k − 1]![n − k ]!
.

Combining common terms in the numerator and denominator yield

=
[n − 1]!

[k!][n − k ]!
([n − k ] + qn−k [k ]),

and now note that [n− k ] = 1 + q + q2 + · · ·+ qn−k−1, and qn−k [k ] = qn−k(1 + · · ·+ qk−1) = qn−k + · · ·+ qn−1. So

summing these up together yields 1 + q + · · ·+ qn−1 = [n], and thus we simplify to

=
[n − 1]!

[k!][n − k ]!
[n] =

[
n

k

]
q

,

as desired.

While our calculations so far have been algebraic, it’s now time to formulate their combinatorial interpretation. Let

λ be a Young diagram, and let the notation λ ⊆ k × (n − k) indicate that the standard (straight) Young diagram fits

inside a k by n − k rectangle. In other words, there are at most k nonzero parts in the partition λ, and each part is

at most n − k :
n − k ≥ λ1 ≥ λ2 ≥ · · ·λk ≥ 0.

Note that the number of standard Young diagrams that fit within this rectangle is
(
n
k

)
, because the interface between

boxes and empty spaces is a lattice walk from the bottom left to top right corner. It turns out there is a q-analog of

this counting statement:
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Theorem 57

For any 0 ≤ k ≤ n, we have the recurrence relation[
n

k

]
q

=
∑

λ⊆k×(n−k)

q|λ|.

For example, for n = 4, k = 2, there are 6 possible Young diagrams that fit within a 2 × 2 box: 1 of them has 0

squares, 1 of them has 1 square, 2 of them have 2 squares, 1 of them has 3 squares, and 1 of them has 4 squares.

And indeed,

[
4

2

]
q

= 1 + q + 2q2 + q3 + q4.

Note that this immediately implies the first three observations about q-binomial coefficients that we had above! In

particular, the degree of

[
n

k

]
q

is k(n − k), and palindromicity of the coefficients comes by taking the complement of

the shape formed by a Young diagram of x boxes to get a Young diagram of k(n − k)− x boxes.

There’s an interesting way to prove the theorem, but we’ll instead present the brute-force method:

Proof. Induct on the value of n; the base case is not hard to prove. We have already established the q-Pascal relation

in Proposition 56, so it suffices to show that the same recurrence relation holds for
∑
q|λ|, the right-hand side of this

theorem. To do so, consider the first row of the Young diagram – we know λ1 ≤ n − k by our constraints.

• If λ1 < n − k , meaning λ1 ≤ n − k − 1, then λ fits inside a k by n − k − 1 rectangle (because all future rows

must also have at most n − k − 1 elements). This case gives the

[
n − 1

k

]
q

term.

• Otherwise, λ1 = n − k , which means the first row is completely filled. Deleting this first row, we get a Young

diagram λ contained inside a k − 1 by n − k rectangle, and each of these contributes to the right-hand sum

like an original Young diagram, but with an additional n− k squares. That’s why those terms gain an additional

factor of qn−k
(
n−1
k−1
)
.

Adding these together shows the q-Pascal relation and thus the stated recurrence relation, as desired.

While this proof is short, it does not really explain where the Young diagrams come up or how the algebraic structure

arises. So we’ll discuss that more next time!

8 February 22, 2019
Our first problem set is posted, and it is due on March 4th. There are 15 problems, but we only have to do about 6 of

them to complete the assignment. Later on in the class, we will have one lecture to discuss the problem set solutions.

Today, let’s talk more about q-binomial coefficients. Recall that we have the ordinary binomial theorem

(x + y)n =

n∑
k=0

(
n

k

)
xkyn−k .

Unfortunately, q-binomial coefficients are less nice, especially since in a “quantum world,” x and y may not always

commute. Treating q as a constant that commutes with both x and y , but setting yx and xy to be different by a

factor of q, yields the following q-binomial theorem:
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Proposition 58

Suppose that yx = qxy , qx = xq, and qy = yq. Then for any n ≥ 0, we have

(x + y)n =

n∑
k=0

[
n

k

]
q

xkyn−k .

For example, taking n = 2,

(x + y)2 = (x + y)(x + y) = x2 + yx + xy + y2 = x2 + (1 + q)xy + y2,

and 1, 1 + q, 1 are indeed the q-binomial coefficients for n = 2. This is not too difficult to prove with the q-Pascal

relation and induction directly.

One less-clearly-seen relation is Theorem 57 from last lecture, for which we’ll try to find a more conceptual proof

today. Since the class is called algebraic combinatorics, we’ll bring in some linear algebra here:

Definition 59

The Grassmannian Grkn is the space of k-dimensional linear subspaces of an n-dimensional space.

More concretely, elements of the Grassmannian can be defined by matrices in the following way. First, pick some

reference basis of our ambient n-dimensional space, and pick k linearly independent basis elements for our subspace.

Those k basis elements can be written down as n-component vectors, and we can encode those k vectors in a k × n
matrix. However, performing row operations on this matrix performs a change of basis for our vectors without changing

the subspace, so that yields the following result:

Proposition 60

The Grassmannian Grkn is the set of k × n matrices of rank k , modulo row operations.

It makes sense to ask about the size of this Grassmannian, which is not a well-formed question yet because the

entries of the matrix can be real, complex, or values of any finite field. We’ll think about the last of these three cases

for our purpose:

Fact 61

For any prime p and any natural number r , there is a unique finite field (up to isomorphism) of order q = pr ,

which we denote Fq.

We can now restate our problem more concretely:

Problem 62

What is the number of entries in Grkn(Fq)?

We’ll count this in two different ways, and in both cases we’ll see the q-binomial coefficient pop up:

Solution 1. Note that row operations correspond to multiplication by k × k invertible matrices, so we can calculate

the number of k × n matrices of rank k , divided by the number of k × k invertible matrices, to get our answer.
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Any such matrix A ∈ Grkn(Fq) has rows v1, v2, · · · , vk , where vi are all vectors in Fnq. To make sure A is invertible,

all vk must be independent, and we can guarantee this by picking the vectors successively. First, the number of ways

to pick v1 is qn − 1 (it can be anything except the zero vector). Next, v2 can be anything except multiples of v1, so

there are qn − q ways to pick v2. Similarly, there are qn − q2 ways to pick v3, and so on. Overall, the total number of

k × n matrices of rank k is

(qn − 1)(qn − q) · · · (qn − qk−1).

But we need to divide by the number of k × k invertible matrices (for which we can do the same thing but replace n

with k), so our total expression is just

(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1) .

Performing a tiny bit of simplification, this is exactly the definition of the q-binomial coefficient

[
n

k

]
q

! While this

argument only works when q is a prime power, we’ll see later that this is enough for our purposes.

For our second proof, we’ll use another idea from linear algebra:

Solution 2. We transform A into reduced row-echelon form with Gaussian elimination.

Remark 63. Row reduction was developed by Newton in 1670, then also Gauss in 1810, and also Jordan in 1888, but

also it was known to Chinese mathematicians in 179 AD or even potentially 150 BC. So this is not a new technique

in mathematics – it’s been around for a long time.

As a review, the general idea of row reduction (when a matrix has at least as many columns as rows) is as follows:

find the first nonzero column of the matrix, and use row operations until this column has a 1 in the first row and 0s

everywhere else. (We can do this by swapping the rows until the top one has a nonzero entry c , then multiplying that

first row by the inverse c−1, and then subtracting off multiples of the top row from the other rows.) Once this is done,

we move on to the next column, either clearing all entries in the lower rows or starting the simplification process from

the next row. For example, for k = 5, n = 10, an example of a reduced form matrix is shown below:

1 ∗ 0 ∗ ∗ 0 0 ∗ 0 ∗
0 0 1 ∗ ∗ 0 0 ∗ 0 ∗
0 0 0 0 0 1 0 ∗ 0 ∗
0 0 0 0 0 0 1 ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗


In row reduction language, the 1s are called pivots. Those pivot columns are always look the same, and their locations

dictate the number of ∗s that are allowed in subsequent columns. So we can just remove them from consideration

without losing any information, and that yields a matrix of the following form:

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗


One student once said that this looks like an American flag, but it is really meant to look like a Young diagram instead.

The point is that summing over all pivots gives us a sum over all Young diagram shapes, which is a sum over tableaux
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(not Young tableaux) that fit in an k × (n − k) rectangle! Since each of the ∗s can be any of the q values in our

matrices, we have the following result:

Theorem 64

The number of elements in the Grassmannian Grkn(Fq) is∑
λ⊆k×(n−k)

q|λ|.

Combining the answers from our two solutions, we’ve showed the identity Theorem 57 that we want for any power

of a prime q. To finish, we go back to Euclid:

Fact 65 (300 BC, Euclid)

There are infinitely many prime numbers.

(Proof: assume finitely many, multiply all together and add 1. This new number is not divisible by any primes,

contradiction.) We also use a fact from algebra:

Fact 66

If two rational expressions with integer coefficients f (q) and g(q) are identical on infinitely many values, they are

the same on all values of q.

Together, these facts show that Theorem 57 can really be viewed as a statement about elements of the Grass-

mannian over a finite field, and we now have a more intuitive way to explain the origin of the Gaussian coefficients.

The only observation from last lecture left for us to prove is unimodality, but we’ll do that later.

For now, we’ll continue to explore q-analogs and identities we can write for them, moving towards statistics of

permutations. The following fun fact shows a potentially unexpected connection:

Definition 67

For a permutation w = (w1, · · · , wn) ∈ Sn, (i , j) is an inversion of w if i < j and wi > wj . Let inv(w) be the

number of inversions of w .

Example 68

inv(312675) = 4, because we have the inversions 31, 32, 65, 75.

Theorem 69

For any n, we have

[n]q! =
∑
w∈Sn

qinv(w).

Comparing this to Theorem 57, we see that the size of the Young diagram |λ| plays the same role as the number

of inversions in w ! But we’ll see that there’s something more general going on in the future.
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Proof. This can be quickly shown by induction on n. The base case is routine as usual, and for the inductive step,

we consider how to grow a permutation from a smaller one. Start with any permutation u ∈ Sn−1. To get to a

permutation in Sn, we can add n in n different places. If it goes at the end, it adds no inversions; if we add it

second-to-last, we get 1 inversion; and so on. So we gain a factor of (1 + q + · · ·+ qn−1) = [n] for each element of

Sn−1, so the total sum for n becomes [n] · [n − 1]q! = [n]q!, as desired.

9 February 25, 2019
Remark 70. If we have questions about the problem set, we can ask Professor Postnikov! The official office hours

are right after lectures on Mondays, but we can also schedule other times if necessary. Also, a few bonus problems

will also be added to make the problem set more interesting.

Last week, we talked about q-binomial coefficients and q-factorials, which are special cases of a more general

object:

Definition 71

For any n = n1 + · · ·+ nr with ni ≥ 0, the q-multinomial coefficients are[
n

n1, n2, · · · , nr

]
q

=
[n]q!

[n1]q![n2]q! · · · [nr ]q!
.

Notice that (just like for ordinary multinomial coefficients)

[
n

1, 1, · · · , 1

]
q

is just [n]q!, and

[
n

r, n − r

]
q

is just

[
n

r

]
q

.

Definition 72

A multiset is like a regular set, but where entries are allowed to appear multiple times. If the numbers 1 through

r appear in S with multiplicities n1 through nr , respectively, then we write

S = {1n1 , 2n2 , · · · , rnr }.

Our first result today will generalize Theorem 69 by now considering permutations w = (w1, · · · , wn) on the

multiset S:

Definition 73

An inversion for a permutation on a multiset w is a pair of indices (i , j), where 1 ≤ i < j ≤ n and wi > wj . (Like

before, let inv(w) be the number of inversions in w .)

Then the main theorem is very similar:

Theorem 74

For any q-multinomial coefficient, we have [
n

n1, · · · , nr

]
q

=
∑
w

qinvw ,

where the sum is taken over all permutations of {1n1 , 2n2 , · · · , rnr }.
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This proof can be similarly done by induction, and this is one of the problems we may attempt on our problem set.

And as a corollary, we know that

[
n

n1, · · · , nr

]
q

is always a polynomial in q with positive integer coefficients (because

the right-hand side of our theorem is). The degree d of this polynomial is the maximum number of inversions in any

permutation of {1n1 , 2n2 , · · · , rnr }, which happens when we write the elements of S in weakly decreasing order. Thus,

d =
∑

1≤a<b≤r
nanb.

Additionally, we also know that the coefficients of the polynomial are symmetric (meaning ai = ad−i), just like in the

binomial coefficient case. This is because

inv(w1, · · · , wn) = d − inv(wn, wn−1, · · · , w1),

since any pair of distinct entries (wi 6= wj) is an inversion in either (w1, · · · , wn) or (wn, · · · , w1), and d is the total

number of pairs of distinct entries.
Finally, to discuss one more special situation, consider the case where our multiset only contains 1s and 2s, so

S = {1k2n−k}. Then there is a correspondence between permutations of S and Young diagrams λ ⊆ k × (n − k),

which we can see illustrated by example:

Example 75

Let w = (2, 1, 1, 2, 2, 1, 2, 2, 1), which is a permutation of the set {1425}. We may transform this into a lattice

path on a 4 × 5 rectangle of squares, going up when we see a 1 and right when we see a 2. The path is traced

out below, and the yellow region is our Young diagram:

Under this visualization, the number of squares |λ| corresponds to the number of inversions, since each yellow

square corresponds to a 2 showing up before a 1! (And if we try to tell the same story for r = 3, we can think of

a permutation as a lattice path in a 3-dimensional box, where we go up, right, or into the page each time we see a

1, 2, 3 respectively. But things don’t work out quite as nicely.)

That’s all we’ll say about q-analogs for now, so we’ll move on to our next topic. Let [n] denote the set {1, 2, · · · , n},
and let w be a permutation of that set (which we can more abstractly think of as a bijective map w : [n] → [n]).

We can compose two such bijective maps, which is the way we’ll define multiplication of permutations. Under this

multiplication, these permutations form a group Sn, called the symmetric group. (Note that Stanley’s book uses the

notation Sn instead of Sn.)

There’s several different ways we can notate permutations. The first three can be compared as shown below:

Name Notation Example

1-line notation (w1, · · · , wn) (2, 5, 7, 3, 1, 6, 8, 4)

2-line notation

(
1 2 · · · n

w1 w2 · · · wn

) (
1 2 3 4 5 6 7 8

2 5 7 3 1 6 8 4

)
cycle notation (a1a2a3) · · · (125)(3784)(6)

The first two types of notation here basically notate a bijective map sending i to the ith number that shows up

in the permutation. But the third type of notation, cycle notation, is the most important: the idea is that we keep
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following the permutation map until we arrive back to a point we’ve already been at, and that closes off a “cycle”

traced out by the map. (Trivial cycles like (6) are sometimes omitted, and they’re fixed points of the bijective map

w .)

There are two other common ways to notate permutations which we’ll mention as well. One of them is graphical
notation, where we draw n nodes containing the numbers {1, 2, · · · , n} and draw an edge from i to the ith element

of the permutation (so that the cycles in cycle notation form closed polygons). Finally, in the vein of multiplying

different bijective maps (or thinking about representation theory), we have matrix notation. Matrix notation encodes

a permutation in an n × n matrix a = (ai j)
n
i,j=1, where

ai j =

1, j = w(i)

0, otherwise.

For the permutation (2, 5, 7, 3, 1, 6, 8, 4), the matrix is “either this one or its transpose:”

w =



0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0


(As an exercise, it’s good for us to check whether this one or the other one is correct.) Notice that with matrix

notation, permutations correspond to rook placements on a chessboard (we place rooks where there are 1s, in a way

so that there are no rooks attacking each other). There are interesting problems we can pose about non-attacking

rook placements, and we’ll talk about them later in this class.

But for now, we’re going to discuss the elements of the symmetric group in more detail by analyzing statistics on
permutations. Basically, all of these statistics can be thought of as some function

A : Sn → {0, 1, 2, · · · , }

counting some property of the permutation, and we can then form a generating function for the statistic A:

FA(x) =
∑
w∈Sn

xA(w).

Definition 76

Two statistics A and B are equidistributed if they have the same generating function.

An example of a statistic is the number of inversions inv(w) of a permutation w that we’ve already mentioned.

We’ll spend today’s lecture and part of next lecture listing some other ones:

Definition 77

The length of w , denoted `(w), is the minimum number of adjacent transpositions (of the form si , switching i

and i + 1 for any 1 ≤ i ≤ n − 1) that we must compose to be equivalent to w .
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It’s easy to check that we can write any permutation as a composition of adjacent transpositions: induct on n by

switching n into the last spot.

Example 78

We can perform the adjacent transpositions 123→ 213→ 231→ 321, so `(321) is at most 3. A bit more brute-

force work verifies that the permutation (3, 2, 1) indeed has length 3, and this is also the number of inversions of

(3, 2, 1).

It turns out that this is a more general phenomenon:

Theorem 79

For any permutation w , the length of w is also the number of inversions of w .

So those two statistics aren’t just equidistributed – they’re actually the same statistic. (Indeed, since each adjacent

transposition can only add 1 to the number of inversions, and equality is achieved by induction, performing the adjacent

transpositions for n last.)

Definition 80

For any permutation w , the number of cycles in w (including fixed points) is denoted cyc(w).

For example, w = (2, 5, 7, 3, 1, 6, 8, 4) in cycle notation is (125)(3784)(6), so cyc(w) = 3. Note that by “degree

arguments,” this can’t be equidistributed with the number of inversions (since we can only have at most n cycles but

far more inversions). In fact, we can write out the generating function explicitly:

Theorem 81

For any n, ∑
w∈Sn

xcyc(w) = x(1 + x)(2 + x) · · · (n − 1 + x).

Proof. We induct on n (the base case n = 1 is clear). Write the permutations of Sn−1 in cycle notation, and let’s say

we insert n into any of those permutations. Then n can either form its own cycle or join an existing one.

Since there are k places to insert n into a cycle of length k (each leading to a different final cycle), there are n− 1

ways to insert into an existing cycle and keep the number of cycles the same, and 1 way to add a new cycle. That

gives us the additional ((n − 1) + x) factor to multiply into our generating function, as desired.

10 February 27, 2019
Remark 82. As a reminder, our first problem set is due on Monday, so we should start it soon if we haven’t already

done so. A few bonus problems were also added which are a bit more challenging than the original ones.

Next Wednesday, we will discuss the problem set in class. Professor Postnikov is pretty lenient with late problem

sets, but we (obviously) can’t turn them in after we discuss the solutions.

Last time, we started discussing statistics on permutations. Specifically, we defined inv(w) to be the number of

inversions and cyc(w) to be the number of cycles, and we found the generating functions∑
w∈Sn

qinv(w) = [n]q!,
∑
w∈Sn

xcycw = x(x + 1) · · · (x + n − 1).
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Definition 83

A descent of a permutation w = (w1, · · · , wn) is an index 1 ≤ i ≤ n − 1 such that wi > wi+1. We denote the

number of descents by des(w).

For example, des(2, 5, 7, 3, 1, 6, 8, 4) = 3 (corresponding to indices 3, 4, 7). It turns out that the generating function

for the number of descents is a bit less clean than the one for inversions or cycles but is still interesting

Definition 84

The generating function
∑

w∈Sn x
des(w) is the Eulerian polynomial.

A meta-mathematical claim is that interesting permutation statistics are likely equidistributed with one of these

classes (inversions, cycles, or descents), meaning that their generating function is one of the forms that we’ve already

seen. (Statistics related to inversions are called “Mahonian statistics;” cycles are related to Stirling numbers, but

there’s no common name for the associated statistics; and descent-related statistics are called “Eulerian statistics.”)

Definition 85

The major index of a permutation w ∈ Sn is

maj(w) =
∑

i descent
of w

i .

For example, the permutation w = (2, 5, 7, 3, 1, 6, 8, 4) with descents in positions 3, 4, and 7 has maj(w) =

3 + 4 + 7 = 14.

Theorem 86

The statistics inv(w) and maj(w) are equidistributed.

Proving this is one of the bonus problems on our first problem set!

Remark 87. Both the major index and the “Mahonian statistics” for inversions are named after Major Percy MacMahon,

who wrote a famous book on combinatorics (so in other words, the “major” in “major index” refers to the military rank).

Definition 88

A record of a permutation w is an entry greater than all entries to the left of it (in one-line notation). We denote

the number of records of w by rec(w).

For example, w = (2, 5, 7, 3, 1, 6, 8, 4) has the records 2, 5, 7, 8, so rec(w) = 4.

Theorem 89

The statistics rec(w) and cyc(w) are equidistributed.

This can be proved by induction, for example by showing that the generating functions satisfy the same recurrence

relation. But we prefer combinatorial proofs, so we’ll show a bijective argument here:
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Proof. We construct a bijection f : Sn → Sn sending w → w̃ , such that cyc(w) = rec(w̃). To do this, write a

permutation w in cycle notation as

w = (a1 · · · )(a2 · · · )(a3 · · · ) · · · ,

where we fix the convention that each ai is the maximal element in its cycle, and sort them such that a1 < a2 < · · · .
Then the corresponding w̃ is w but viewed in one-line notation without the parentheses. For example,

w = (125)(3784)(6) =⇒ w = (512)(6)(8437) =⇒ w̃ = (5, 1, 2, 6, 8, 4, 3, 7).

Notice that the first elements a1, a2, · · · in the cycles of w will be the records of w̃ , so the number of cycles of w is the

number of records of w̃ , as desired. And this map is indeed bijective (because we can find the records in w̃ , mark them

as starting points of cycles, and put the parentheses back). Thus, rec(w) and cyc(w) are indeed equidistributed.

Definition 90

An exceedance of a permutation w is an index 1 ≤ i ≤ n such that wi > i . Denote the number of exceedances

of w by exc(w).

For example, in the permutation (2, 5, 7, 3, 1, 6, 8, 4), we have 4 exceedances (not counting 6, which is a “weak

exceedance”), so exc(w) = 4.

Theorem 91

The statistics exc(w) and des(w) are equidistributed (another way to say this is that “the number of exceedances

is an Eulerian statistic”).

Proof. Define an anti-exceedance to be an index i such that wi < i . This is equidistributed with the number of

exceedances, because we can pair up w and w−1 – if w(i) > i , then w−1(w(i)) < w(i). Thus, if i is an exceedance in

w , then w(i) is an anti-exceedance in w−1, and thus the number of exceedances in w is the number of anti-exceedances

in w−1. Showing equidistribution of exc(w) and des(w) follows from the following fact:

Claim 92. If w → w̃ is a map that converts cycle notation to one-line notation, then the number of anti-exceedances

in w is the number of descents in w̃ .

To verify this, note that if i is a descent (index) in w̃ , then the (i+1)st entry in w̃ (in one-line notation) is not larger

than w̃ , meaning that the ith and (i + 1)th indices are in the same cycle of w (because we fixed the notation so that

each new cycle starts with a record.) The index i being a descent therefore means that (reading the cycle notation)

the ith entry of w is mapped to the (i + 1)th entry of w , a smaller element, which makes it an anti-exceedance. This

finishes the proof.

This is all we’ll say about permutation statistics for now, and we’ll turn our attention to another set of special

numbers:
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Definition 93

For 0 ≤ k ≤ n, define the Stirling numbers of the first kind

s(n, k) = (−1)n−kc(n, k),

where c(n, k) are the signless Stirling numbers of the first kind

c(n, k) = the number of permutations in Sn with k cycles.

By convention, let s(0, 0) = 1 and s(n, 0) = 0 for all n ≥ 1.

Note that in the above definition, fixed points count as cycles (of length 1).

Theorem 94

The generating functions for the (signless and signed) Stirling numbers are

n∑
k=0

c(n, k)xk = x(x + 1) · · · (x + n − 1),

n∑
k=0

s(n, k)xk = x(x − 1) · · · (x − n + 1).

The former of these two generating functions is called the raising power of x , while the latter is called the falling
power of x , sometimes denoted (x)n.

Definition 95

For 0 ≤ k ≤ n, define the Stirling number of the second kind

S(n, k) = number of set-partitions of [n] into k non-empty blocks.

We also use the convention S(0, 0) = 1 and S(n, 0) = 0 for n ≥ 1.

Unlike the Stirling numbers of the first kind, there are no negative signs (S(n, k) is always positive).

Example 96

An example of a set-partition for n = 8, k = 3 is π = (125|3478|6); the main difference between this set-partition

and cycle notation for permutations is that the order within each group doesn’t matter.

Theorem 97

We have the relation (similar to a generating function)

n∑
k=0

S(n, k)(x)k = xn.

We may compare this to the generating function for Stirling numbers of the first kind in Theorem 94: there, we

input powers of x , and get falling powers of x , but in this one, we input falling powers of x , and get powers of x . This

is a kind of duality that we will explore more next time!
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11 March 1, 2019

We will continue our discussion of Stirling numbers today. Recall that s(n, k), the Stirling numbers of the first kind, are

(−1)n−k times the number of permutations of Sn with exactly k cycles (including fixed points). Meanwhile, S(n, k),

the Stirling numbers of the second kind, count the number of set-partitions of [n] into k blocks, where order doesn’t

matter within each block.

Example 98

Take n = 4, k = 2. There are 8 elements of Sn which consist of a 3-cycle and a fixed point, and 3 elements

consisting of two transpositions. Thus,

s(4, 2) = (−1)4−2 · (8 + 3) = 11.

The computation for S(4, 2) is similar, but we don’t care which orientation the 3-cycle goes in (only which elements

it contains). So we have 4 3-cycles and 3 pairs of transpositions, and this means

S(4, 2) = 4 + 3 = 7.

Last lecture, we stated Theorem 94 and Theorem 97, which encoded the two different types of Stirling numbers

in generating-function-like equations. We’ll take another perspective on those results today, thinking about the vector

space of polynomials R[x ].

Fact 99

The infinite set {1, x, x2, · · · , xn, · · · } is a basis for R[x ], and so is {1, x, x(x − 1), · · · , (x)n, · · · }. Because the

generating function results write elements of each basis in terms of the others, Stirling numbers are a “change
of basis.”

In particular, we can construct matrices for both changes of bases:

Corollary 100

If we construct change-of-basis (infinite) matrices (s(n, k))n,k≥0 and (S(n, k))n,k≥0, then the matrices are inverses

of each other.

Example 101

If we restrict the matrices to 0 ≤ n, k ≤ 3, then

(s(n, k)) =


1 0 0 0

0 1 0 0

0 −1 1 0

0 2 −3 1

 , (S(n, k)) =


1 0 0 0

0 1 0 0

0 1 1 0

0 1 3 1

 .

Both of these change-of-basis matrices are lower triangular, since s(n, k) = S(n, k) = 0 for k > n, and we can

check that these two 4× 4 matrices are indeed inverses.

The generating function results of both Theorem 94 and Theorem 97 can be proven by induction, but we’ll now

show a combinatorial proof of the latter:
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Proof of Theorem 97. It is enough to prove that this identity holds for all positive integers x , since both sides are

polynomials. Consider the set of all functions F = {f : [n]→ [x ]} – each of 1, 2, · · · , n has x options, so there are a

total of xn functions in F .

On the other hand, given a function f , we can construct a set-partition π of [n], putting i and j in the same block

if and only if f (i) = f (j). So we group elements of our set based on their output, and we’ll count the number of

functions that produce a given set-partition by casework. If we fix a set-partition π with k blocks B1, B2, · · · , Bk , then
the number of functions that produce this specific set-partition is x(x − 1) · · · (x − (k − 1)) = (x)k , since B1 has x

options for its corresponding f -value, then B2 has (x − 1) options (since it can’t be equal to the value on B1), and so

on. But now we’re done: the number of such functions over all set-partitions is

|F | =

n∑
k=0

S(n, k)(x)k ,

since we just pick a set-partition and then assign values to it, and setting this equal to the total size of xn yields the

result.

We’ll now see another combinatorial application of Stirling numbers of the second kind, rook placements (in which

rooks are placed on a grid or a subset of a grid, with the constraint that they cannot attack each other). Specifically,

consider the number of rook placements on a triangle board of Young tableau shape ((n − 1), (n − 2), · · · , 1). An

example rook placement for n = 7 is shown below:

x
x

x

Now, add boxes in the immediately adjacent squares (below and to the right) with numbers from 1 to n, and for each

rook, place a hook that connects two of the bottom-right corners.

x 7
x 6

5
x 4

3
2

1

We can then correspond a rook placement with a set-partition by having all numbers connected by hooks in a given

part of the partition! In the above picture, 2, 4, 6 are connected, 1 and 7 are connected, and 3 and 5 are lonely, so

this is the set-partition

π = (1, 7 | 2, 4, 6 | 3 | 5) .

Since adding each new rook essentially combines two parts of a set-partition together, we get the following result:

Theorem 102

S(n, k) is the number of non-attacking rook placements on the triangle board above with n − k rooks.

For instance, S(n, n) = 1, and this is indeed the number of ways to place n − n = 0 rooks down on our triangular

board.
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Definition 103

The Bell number Bn =
∑n

k=0 S(n, k) is the total number of set-partitions of n (or equivalently the total number

of rook placements on ((n − 1), (n − 2), · · · , 1)).

Example 104

For n = 4, there is 1 way to place no rooks, 6 ways to place 1 rook, 7 ways to place 2 rooks (do casework on one

rook’s placement), and 1 way to place 3 rooks. Adding these together yields B4 = 15.

There are other useful ways to categorize set-partitions as well, and one such way comes from drawing arc diagrams.
To create these, first place the numbers 1 through n on a line segment, and draw an arc between adjacent entries in

a partition block (where “adjacent” means that there is no number between them in the partition block). Note that

we can connect this back to the rook placement diagram by corresponding an arc from a to b with a rook on the ath

column and bth row.

Courtesy of Agustin Garcia, here’s the arc diagram for (1, 4, 6 | 2, 3 | 5):

1 2 3 4 5 6

Definition 105

A set-partition is non-crossing if no two arcs intersect each other. In other words, if i < j < k < l , we can’t

have an arc between i and k and also between j and l for a non-crossing partition. Similarly, a set-partition is

non-nesting if there is no arc “inside” another one. In other words, we can’t have an arc between i and l and also

between j and k for a non-nesting partition.

For instance, the arc diagram above corresponds to a non-crossing but not non-nesting partition. There is an

interesting duality between these two definitions:

Theorem 106

The number of non-crossing set-partitions of [n] is equal to the number of non-nesting set-partitions of [n], and

both of these are equal to the Catalan number Cn.

Proof for non-nesting set-partitions. We’ll use the rook placements description of set-partitions. Notice that a set-

partition π is non-nesting if and only if there is no rook in the southeast corner of another one. For example, the

diagram below shows an example of a valid rook placement:

x

x
x

x
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To obtain a connection to Catalan numbers, we can imagine placing a sun on the top-left corner of our picture, so

that every rook casts a shadow below and to its right:

x

x
x

x

For non-nesting set-partitions, the shadow shape uniquely determines the positions of the rooks (the top-left corner

of the shadow). And now following the border of the shadow gives us a Dyck path (with up corresponding to +1 and

right corresponding to −1), so the number of non-nesting set-partitions is indeed Cn, the number of Dyck paths.

Figuring out the analogous argument for non-crossing set-partitions is one of our bonus problems for our problem

set. And we’ll mention one last fact about these Stirling numbers:

Fact 107

It turns out that there is also a Pascal’s triangle-like object for S(n, k). Closely related, there is a Pascal-like

recurrence relation for both S(n, k) and s(n, k), and we’ll discuss this more next time.

12 March 4, 2019
We’ll discuss the Eulerian numbers today:

Definition 108

The Eulerian numbers An,k are the number of permutations w ∈ Sn with exactly k descents.

(We should also be careful not to confuse these with Euler numbers, another important sequence of integers!)

We’re going to find a combinatorial connection with these by constructing a nice bijection between permutations in
Sn and increasing binary trees on n nodes. We used Catalan numbers earlier in the class to characterize certain

binary trees, but this time we’re doing something a bit different: we’ll label the vertices by numbers from 1 to n such

that they increase as we go away from the root.

Example 109

Consider the tree formed by the permutation w = (4, 2, 8, 5, 1, 3, 9, 10, 6, 7).

At the root of this tree, we must use 1, so we’ll have the left branch of the tree contain (4, 2, 8, 5) and the right

branch contain everything else. Now within each of those groups, the rootmost node will be the smallest element, and

we can continue to iterate this process!

So each node has at most 1 left child (the smallest element on its left, if there are elements to its left) and at

most 1 right child (the smallest element on its right, again if one exists), which means it is indeed a binary tree. The

nodes are labeled 1 through n, and they indeed increase downwards. And this is a bijection, since we can just reverse

the process by placing 1 in our permutation, putting the left elements to its left and right elements to its right, and

so on.
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Theorem 110

An,k is the number of increasing binary trees on n nodes with k left edges.

Proof. When we construct a tree Tw from a permutation w , any left edge pointing from i to j corresponds to the

permutation reading (in one-line notation)

w = ([· · · , j, · · · ], i , · · · ),

where j is the minimal element within the bracketed part. So the left edge originating from i corresponds to a descent

ending at i . Since every descent also corresponds to a left edge (we must split up the two elements in the descent at

some point), descents and left edges correspond to each other, as desired.

In a sense, Eulerian numbers look a lot like binomial coefficients:

Definition 111

The Eulerian triangle is constructed such that the bth entry in the ath row is Aa,b−1. The first few rows are

shown below:

1

1 1

1 4 1

1 11 11 1

1 26 66 26 1.

This is a lot like Pascal’s triangle, but the weights are different. For example, notice that 26 = 11 · 2 + 1 · 4 and

that can be understood by the fact that 11 is in the second left-slanting diagonal, while 1 is in the fourth right-slanting

diagonal. That’s what this next result says:

Theorem 112 (Recurrence relation for Eulerian numbers)

For all n, k , we have

An+1,k = (n − k + 1)An,k−1 + (k + 1)An,k .

Proof. We’ll prove this result with both perspectives of the Eulerian numbers. First of all, suppose we have a binary

tree with n nodes and we want to add an extra node. To do this, we must add an extra leaf with label n + 1; it can

be checked that if we already have k left edges, then the number of ways to add a left edge is (n − k + 1), and the

number of ways to add a right edge is (k + 1) (because each left edge creates a new location to add a right edge, and

vice versa).

Alternatively, we can analyze the permutations; suppose we have a permutation w ∈ Sn and we want to add n+ 1

to it. Adding it in one of the k descent slots or at the beginning does not add a descent (k + 1 ways), while adding it

in an ascent slot or at the end adds a descent (the remaining n − k + 1 ways, assuming that we started with (k − 1)

descents to get to a final of k).

Now that we’ve constructed one Pascal-like traingle, we’ll return to the Stirling numbers again and understand

their recurrence relations in the same way. First, recall that c(n, k), the signless Stirling numbers of the first kind, are
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the number of permutations w ∈ Sn with k cycles (including fixed points). Below is the beginning of the Pascal-like

triangle where the bth entry in the ath row is c(a, b).

1

1 1

2 3 1

6 11 6 1

We no longer have the same symmetry across the vertical axis, but we still have a recurrence relation with weights

which looks relatively simple:

Proposition 113 (Recurrence relation for c(n, k))

For all n, k , we have

c(n + 1, k) = c(n, k − 1) + nc(n, k).

Meanwhile, S(n, k), the Stirling numbers of the second kind, are the number of set-partitions of [n] into k groups.

If we construct a similar triangle, it looks like

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

We again have a recurrence relation, now dependent on k rather than n (such that it is slightly harder to infer

directly from the Pascal’s triangle):

Proposition 114 (Recurrence relation for S(n, k))

For all n, k , we have

S(n + 1, k) = S(n, k − 1) + kS(n, k).

Proving these relations are left as exercises for us. There are many more permutation statistics that we could

continue to discuss, but we’ll move on to the next topic for now: posets and lattices.

Definition 115 (Poset definition of a lattice)

A lattice L is a special kind of poset with two binary operations, meet ∧ and join ∨. For any x, y ∈ L, x ∧ y is

the unique maximal element of L which is less than or equal to both x and y , and x ∨ y is the unique minimal

element of L such that it is greater than or equal to both x and y .

Below is a simple example of a lattice:
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x y

x ∨ y

x ∧ y

However, here’s an example of a poset that is not a lattice, since x and y have no x ∧ y and two different potential

x ∨ ys (both of which are not allowed):

x y

We would like to encode all of the properties of lattices together in a more formal and abstract way, and that’s

what we’ll do now.

Definition 116 (Axiomatic definition of a lattice)

A lattice is a set L with two binary operations ∧ and ∨ satisfying the following properties:

• ∧ and ∨ are commutative and associative – in other words, for any x, y , z ∈ L, x ∧ y = y ∧ x , x ∨ y = y ∨ x ,
x ∧ (y ∧ z) = (x ∧ y) ∧ z , and x ∨ (y ∨ z) = (x ∨ y) ∨ z ,

• for any x ∈ L, x ∧ x = x ∨ x = x ,

• (absorption law) for any x, y ∈ L, x ∧ (x ∨ y) = x = x ∨ (x ∧ y),

• for any x, y ∈ L, x ∧ y = x if and only if x ∨ y = y .

Note that addition and multiplication do not follow these laws, so our binary operations are doing something

completely different.

Fact 117

Given the axiomatic operations ∧ and ∨ on a set L, we can always reconstruct a poset. On the flip side, given

any lattice poset, it and its operations ∧ and ∨ will always satisfy the axioms of a lattice. In particular, x ≤ y if

and only if x ∧ y = x (or equivalently x ∨ y = y).

Our next few lectures will be devoted to student presentations of problems, and then we’ll return to discussing

special types of lattices.

13 March 6, 2019
We got our problem sets back in class today, and students are presenting selected solutions to those problems.
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Problem 118

Prove a permutation is queue-sortable if and only if it is 321-avoiding.

Solution by Fadi Atieh. First, we prove that if a permutation w1, · · · , wn has a 321-pattern, then it is not queue-

sortable. In this case, there are some indices i < j < k such that wi > wj > wk . When we get to index i , we can’t

put wi in the list yet (because wj is smaller than it) so wi is pushed in the queue. However, wj also cannot be pushed

immediately, so it must go in the queue as well. Thus, wi will exit the queue before wj , which is a contradiction..

Now, suppose that w is not queue-sortable. We claim that for any queue-sortable permutation w , there is a unique
way to queue-sort it. This is our sorting process involves a sorting pointer (which tells us which step we’re at), a queue,

and a partially filled list. Whenever we get to an element a, if there is something smaller than it that still hasn’t been

put in the list, we must put a in the queue, and otherwise it goes in the list (or goes in the queue and immediately

comes out). Thus, if we get stuck not being able to do either of these things, we must be trying to put some element

wi in the partially-filled list which currently ends in wk , but wi > wj > wk for some wj in the queue. This means

wi > wj > wk , but wk was in the permutation before wj , which was before wi . Thus, we’ve found a 321-pattern with

the indices (i , j, k) as desired.

Problem 119

Prove the identity [
2n

n

]
q

=

n∑
k=0

qk
2

[
n

k

]2
q

.

Solution by Agustin Garcia. The left hand side is the q-generating function for the set of Young diagrams that fit

inside n× n rectangles (recall Example 75). For any such diagram, there is exactly one maximal k × k box that fits in

the upper left hand corner (this is called the Durfee square of the Young diagram). This means we can uniquely split

our Young diagram into a k × k square and then two Young diagrams inside k × (n − k) rectangles, which are each

generated by the function

[
n

k

]
q

. Tack on a qk
2
for the k × k square, and we have the desired result.

Problem 120

Show that the number of set-partitions of [n] such that i and i + 1 are not in the same set (for all 1 ≤ i ≤ n− 1)

is equal to the number of set-partitions of [n − 1].

We’ll present two solutions:

Solution by Christina Meng. We’ll think about set-partitions as rook placements, as we did in lecture. The left-hand

side then tells us that we want to place rooks in a board with rows of n − 1, n − 2, · · · , 1 squares, but if we can’t

have i and i + 1 in the same partition, then we can’t have any rooks in any of the bottom-right corners (since those

would connect two adjacent numbers). Thus, this is equivalent to just having a rook placement on a board with rows

n − 2, n − 3, · · · , 1, which is what the right-hand side counts.

Solution by Sophia Xia. We construct a bijection between the two sets – given a partition π of [n − 1], we want to

map this to a partition of [n] with no two consecutive integers in the same block. For this, look at each block in the
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partition; for every maximal sequence i , i + 1, · · · , j of consecutive integers in a block of π, remove j − 1, j − 3, · · · ,
until we reach either i or i + 1, and place all of them in a block with n. This yields a partition of [n] with no two

consecutive integers in the same block, since an element j can only get placed in the partition with n if j + 1 is not.

To construct the inverse map, place each element k in the partition with n into the partition that contains (k + 1)

(which was not moved by the logic above). Thus these two sets have the same number of elements.

Problem 121

Show the identity

(x + y)n =

n∑
k=0

[
n

k

]
q

xkyn−k ,

where yx = qxy , qx = xq, qy = yq.

Solution by Mathew Ganatra. Let

[
0

0

]
q

= 1, and define

[
n

k

]
q

= 0 for n ∈ N and k > n or k < 0. We will make use

of the identity (from class) [
n

k

]
q

=

[
n − 1

k

]
q

+ qn−k

[
n − 1

k − 1

]
q

.

We proceed by induction. The base case n = 0 is clear, and for the inductive step, assume the identity holds for all

integers m ≤ n. Then the left-hand side is equal to

(x + y)n+1 = (x + y)n(x + y) =

n∑
k=0

[
n

k

]
q

xkyn−k(x + y) .

On the other hand, the right-hand side is equal to

n+1∑
k=0

[
n + 1

k

]
q

xkyn+1−k =

n+1∑
k=0

[n
k

]
q

+ qn+1−k

[
n

k − 1

]
q

 xkyn+1−k
by our identity, and expanding (and removing the k = 0 term from the second sum) yields

n∑
k=0

[
n

k

]
q

xkyn+1−k +

n+1∑
k=1

qn+1−k

[
n

k − 1

]
q

xkyn+1−k .

Now shifting the index of summation, this is

n∑
k=0

[
n

k

]
q

xkyn+1−k +

n∑
k=0

qn−k

[
n

k

]
q

xk+1yn−k =

n∑
k=0

[
n

k

]
q

(xkyn+1−k + qn−kxk+1yn−k).

Finally, because qn−kxy n−k = yn−kx (by moving the x past the ys one at a time), we can move a y and an x to the

end of the two terms, respectively:

=

n∑
k=0

[
n

k

]
q

(xkyn−ky + xkyn−kx) =

n∑
k=0

[
n

k

]
q

xkyn−k(x + y),

which is the same as the boxed expression above, concluding induction and proof.
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14 March 8, 2019
We will continue with presentations today:

Problem 122

Prove that the major index (that is, the sum of the indices of the descents) is equidistributed with the number of

inversions.

Solution by Yogeshwar Velingker. We’re trying to show that∑
w∈Sn

qmaj(w) =
∑
w∈Sn

qinv(w).

The right hand side, as proved in class by induction, is

1(1 + q)(1 + q2) · · · (1 + q + · · ·+ qn−1) = [n]q!.

We’ll show that the generating function for the major index is also this same polynomial. The base case n = 1

is clear, because there are no descents and no inversions. For the inductive step, suppose we have a permutation

w = (w1, · · · , wn). If we insert n + 1 into w , there are several cases:

• Case 1: if we insert n + 1 at the end, the major index stays the same.

• Case 2: Otherwise, we insert n + 1 somewhere in the middle. Appending 0 to the beginning of the sequence,

(so that w0 = 0), n + 1 must be inserted between wi and wi+1 for some i .

– Case 2a: If wi < wi+1 (ascent case), then inserting (n + 1) adds a descent at spot i + 1 and then shifts

all descents after it by 1 spot. So in this case, the major index increases by i + 1 + d(i), where d(i) is the

number of descents in w at or after i .

– Case 2b: If wi > wi+1 (descent case), then the descent moves from spot i to spot i + 1, and we also shift

all later descents by 1. In this case, the major index just increases by d(i).

Our goal is to show that the set of increments over all cases give us the integers 0 through n in some order. Notice

that d(i) + i + 1 (in case 2a) is at most n, because the descents in d(i) can occur at spots i + 1, · · · , n− 1, and also

d(i) < n in case 2b. So the (n+ 1) different increments all take on values between 0 and n inclusive, and we just need

to show that they are all different.

Clearly d(i) + i + 1 is always positive, and an increase of d(i) (from case 2b) only occurs if we already have an

existing descent at i , so the case-2 insertion increments are all positive. It remains to check that we can’t get the same

number twice. We can’t have d(i) = d(j) for two different descent indices i , j , because one descent occurs before the

other. Meanwhile, i and j are both ascent indices, then d(i) + i + 1 = d(j) + j + 1 =⇒ d(i)− d(j) = j − i . But that
would mean we need descents at all spots between i and j , which is not possible since i is an ascent. Finally, suppose

that i is a descent and j is an ascent. Then the only way the increments can be equal is if

d(i) = d(j) + j + 1 =⇒ d(i)− d(j) = j + 1,

but d(i)− d(j) must always be less than j , so this cannot occur. This means that the increases in major index from

inserting (n + 1) are {0, 1, · · · , n} in some order, so the generating function gets multiplied by (q0 + q1 + · · · + qn),

completing the induction and proof.
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Problem 123

Find the number of permutations w ∈ Sn that are 231-avoiding and 4321-avoiding.

Solution by Congyue Deng. Denote the number of permutations that are both 231- and k(k − 1) · · · 21-avoiding

T (n, k). We claim that

T (n + 1, k) =

n∑
i=0

T (i , k)T (n − i , k − 1).

To show this, write an arbitrary permutation w ∈ Sn+1 in one-line notation as (σ, n+1, τ), where σ contains i elements

and τ contains the remaining n − i elements. Since w is 231-avoiding, the elements in σ must all be smaller than

the elements in τ (meaning that τ contains the integers from 1 through n − i , and σ contains the integers from

n + 1− i through n). Other than that, σ and τ must each be 231 and k(k − 1) · · · 1-avoiding, and in fact τ must be

(k−1)(k−2) · · · 1-avoiding (because (n+1) always contributes to a decreasing sequence), so we obtain the recurrence

relation above by summing over the possible values of i .

We can now just repeatedly compute starting from small values of k . For k = 2, we want a permutation which is

21-avoiding, and there is only one such permutation for all n (the identity permutation). Thus,

T (n + 1, 3) =

n∑
i=0

T (i , 3)

with the initial conditions T (0, 3) = T (1, 3) = 1, T (2, 3) = 2, and by induction this implies that T (n, 3) = 2n−1 for all

n ≥ 1 (and T (0, 3) = 1). Finally, we can plug in k = 4 into our recurrence relation to obtain

T (n + 1, 4) = 2n−1T (0, 4) + 2n−2T (1, 4) + · · ·+ T (n − 1, 4) + T (n, 4).

Subtracting the equations for T (n + 1, 4) and T (n, 4), we find that this is equivalent to the linear recurrence

T (n + 1, 4) = 3T (n, 4)− T (n − 1, 4),

and plugging in the initial condition T (1, 4) = 1, T (2, 4) = 2 allows us to verify that our recurrence is satisfied by the

alternating Fibonacci numbers T (n, 4) = F2n−1 , which is our desired answer.

We’ll present a third solution of Problem 120 next:

Solution by Wanlin Li. Draw the semicircle arc-diagram corresponding to a set-partition; for example, (1, 3, 5) in the

same partition would correspond to semicircular arcs between 1 and 3 and between 3 and 5. If we have a set-partition

of [n] where i and i+1 are never in the same partition, this is equivalent to having no arcs of diameter 1. Now consider

shrinking every arc by 0.5 in each direction (so that an arc with diameter i to j now has diameter i + 0.5 to j − 0.5);

this creates an arc-diagram on the (n − 1) points 1.5, 2.5, · · · , n − 0.5, so it can be associated with a set-partition

of [n − 1]. Because this operation is bijective (inverse map expands each arc), we obtain a bijection between the two

desired sets and thus they have equal size. The only detail to check is that shrinking and expanding indeed give us

valid arc diagrams, but because the set of arcs with i as the original right endpoint is the same as the set of shrunk

arcs with i − 0.5 as the original right endpoint (and similar but with i + 0.5 for left endpoints), we will never have two

arcs that have the same right-endpoint or left-endpoint, which is the only constraint that we have.
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Problem 124

Consider the biased drunk-walk. Find the probability that if the man starts at position i0 and moves right with

probability p at each step, he falls off after exactly m steps.

Solution by Sarah Wang. The drunk man needs to take a total of k steps to the right and k + i0 steps to the left to

end up falling off after m steps, so k + (k + i0) = m =⇒ k = m−i0
2 . (We assume m ≥ i0 and that m, i0 have the

same parity, because otherwise the probability is zero.)

Draw the path that the drunk man takes as a Dyck path; we want to count the number of paths from (0, i0) to

(m − 1, 1) (and then go down to (m, 0)). Much like with the Catalan numbers, we can do a reflection argument and

instead count the number of bad paths. All of the bad paths hit the line y = 0 in the xy -plane; pick the first point

(k, 0) where this happens, and reflect the path from (k, 0) to (m−1, 1) over the y -axis to end at (m−1,−1) instead.

This is a bijection, so the total number of bad paths is
(
m−1
k−1
)
, meaning the number of good paths is

(
m−1
k

)
−
(
m−1
k−1
)
.

Each path occurs with probability pk(1− p)k+i0 , so our final answer is the probability of these two terms.

Problem 125

Prove the baby hook-length formula from Theorem 53, namely that the number of linear extensions of a poset

whose Hasse diagram is a rooted tree is n!∏
v∈T h(v)

.

Solution by Sanzeed Anwar. We proceed by strong induction – the base case n = 1 is easy to show. For the inductive

step, consider a poset whose Hasse diagram is a rooted tree of n vertices. If we remove the root and its adjacent edges

from the tree, we have a collection of subtrees T1, T2, · · · , Tk , with m1, · · · , mk vertices, where m1+ · · ·+mk = n−1.

By strong induction, the number of linear extensions of Ti is just mi !∏
v∈Ti

h(v) (removing the root does not change the

hook length h(v)), so if we want a rooted tree on all n vertices, we can do this in

m1!m2! · · ·mk !∏
v 6=root h(v)

(
n − 1

m1, m2, · · · , mk

)
total ways, since we pick which m1 nodes to use for T1, which m2 nodes to use for T2, and so on, and then apply the

baby hook-length formula on each Ti . Expanding the multinomial coefficient, this simplifies to

=
(n − 1)!∏
v 6=root h(v)

=
n!∏
v h(v)

,

as desired, finishing induction and proof.

Problem 126

Show that a permutation of length mn+1 has an increasing subsequence of length m+1 or decreasing subsequence

of length n + 1.

Solution (student did not identify themselves). For each element in the permutation, assign to it an ordered pair (i , j),

where i is the length of the longest increasing subsequence ending at that element and j is the length of the longest

decreasing subsequence ending at that element. These ordered pairs are all distinct (if we have any two indices a < b,

then either the longest increasing or longest decreasing subsequence ending at a can be extended by tacking on the

element at b). Thus, we can’t have 1 ≤ i ≤ m and 1 ≤ j ≤ n for all i , j by the pigeonhole principle (since there are

only mn such pairs).
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15 March 11, 2019
We have one more presentation today:

Problem 127

Let k ≤ n
2 . Find a bijection f from k-element subsets to (n − k)-element subsets of [n], satisfying f (I) ⊃ I for

any k-element subset I.

Solution by Chiu Yu Cheng. Note that the complement of a k-element subset has n − k elements. Thus, it suffices

to find a bijection f ′ : I → f ′(I) from k-element subsets to k-element subsets, such that f ′(I) ∩ I = ∅ for all I.

Our function f ′ is constructed as follows: put the numbers 1, 2, · · · , n in a circle in order. Initialize f ′(I) to the

empty set, and for each x ∈ I, move clockwise until we meet the first element not in I and f ′(I) already, and put that

in f ′(I). Repeat this process until all elements of I have been accounted for.

We just need to show this is a bijection – because we’re mapping the set of k-element subsets to itself, it suffices

to show that f ′(I) is well-defined regardless of the order in which we pick elements of I, and that an inverse map exists.

To show the former, assign labels of +1s to the elements of [n] if they are in I and −1s otherwise. Then an element

x 6∈ I is in f ′(I) if and only if there is a counterclockwise partial sum starting from x − 1 that is positive, and this is

independent of the order of I chosen. Thus f ′ is well-defined. For the latter, if we are given f ′(I), we can recover the

original I by going counterclockwise instead of clockwise and doing the same operation (initialize I to the empty set;

for each element in f ′(I), move counterclockwise until we reach something not yet in I or f ′(I), and add it). Because

the roles of 1 and −1 just swap, this map is also well-defined and gives us back our original set.

The above problem was a Google interview question a while ago. As we move into our next topics for this class,

we’ll soon see another solution to this problem!

Recall the concepts of posets and lattices from a few lectures ago, in which we have a set L with operations ∧
(meet) and ∨ (join). (See, for example, Fact 117.) We will now construct certain lattices, sometimes using the order

relation ≤ and sometimes using ∧ and ∨:

Definition 128

The Boolean lattice Bn contains the subsets of {1, · · · , n}, with the order relation S1 ≤ S2 ⇐⇒ S1 ⊂ S2.

In particular, ∧ and ∨ have nice interpretations in the Boolean lattice:

S1 ∧ S2 = S1 ∩ S2, S1 ∨ S2 = S1 ∪ S2.

This may give some insight into why ∧ and ∨ look the way they do!

Example 129

The Boolean lattice B3 is shown below. Here, 0̂ denotes the smallest element of the lattice, while 1̂ denotes the

largest element:
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0̂ = {}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

1̂ = {1, 2, 3}

One observation we may have is that the l relations in this lattice trace out a 3-dimensional cube.

Definition 130

The partition lattice Πn contains the set-partitions of {1, · · · , n}. They are ordered by refinement: in other

words, π ≤ σ (equivalently, π refines σ or σ coarsens π) if each block of π is contained in some block of σ.

Here, the meet operation σ ∧ π is the common refinement of σ and π, where we take all intersections of blocks.

(For example, (145|26|378)∧(146|2357|8) = (14|2|37|5|6|8).) On the other hand, the join operation σ∨π is the finest
common coarsening of σ and π, but this is slightly harder to define. Basically, a sequence of elements a, a′, a′′, a′′′, · · ·
are all in the same block of σ ∨ π if a and a′ are in the same block of π, a′ and a′′ are in the same block of σ, a′′ and

a′′′ are in the same block of π, and so on. (For example, (145|26|378) ∨ (146|2357|8) = (12345678).)

Example 131

The partition lattice Π3 is shown below:

0̂ = {1|2|3}

{12|3} {13|2} {23|1}

1̂ = {123}

Definition 132

Young’s lattice Y is an infinite lattice of all Young diagrams ordered by containment (that is, λ ≤ µ if the boxes

of λ fit inside the boxes of µ).

The minimal element 0̂ of Y is the empty Young diagram. From there, we can recursively build up the next layer

of Young’s lattice by adding a box to any of the Young diagrams in the current layer, so we have 1, 2, 3, 5 Young

diagrams in the subsequent layers. Notice that for any given Young diagram, there will always be 1 more Young

diagram connected above it than below it (if a Young diagram has c corners, then there are (c + 1) places to add a

box).
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We can also define finite sublattices of Y: for example, we can fix m, n, and define L(m, n) to be the sublattice of

Young diagrams that fit inside an m × n box (which we may recall are generated by the generating function

[
n

k

]
q

).

Example 133

The lattice L(2, 2) is a finite lattice with a unique maximal and minimal element. It is shown below:

0̂ = ∅

1̂ =

Switching to the meet and join operations, the situation is very similar to the Boolean lattice: for any λ, µ ∈ Y,
λ ∧ µ is the set-theoretic intersection, and λ ∨ µ is the union. (We can indeed check that these are indeed always

Young diagrams.)

Definition 134

A lattice (L,∧,∨) is distributive if it satisfies the two distributive laws

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

(Notice that multiplication and addition satisfy one of the two distributive laws but not the other one.)

Lemma 135

The Boolean lattice Bn is distributive, and so are Young’s lattice Y and its finite sublattices L(m, n).

Proof. For Bn, this is just a set theoretic result: it is easy to check (by drawing a Venn diagram) that for any sets

X, Y, Z, X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z), and similarly X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z). For Y and L(m, n), the

meet and join operations are still unions and intersections (just boxwise), so the same proof works.

Example 136

However, not all lattices are distributive: the partition lattice Πn for n ≥ 3 is not a distributive lattice. For example,

take n = 3, and let x = (12|3), y = (13|2), and z = (23|1). Then

x ∨ (y ∧ z) = x 6= 1̂ = (x ∧ y) ∨ (x ∧ z).

It turns out there is a very simple description of finite distributive lattices:
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Definition 137

A subset I of a poset P is an order ideal if for any x ∈ I and y ≤ x , we also have y ∈ I.

In other words, order ideals are closed downward, so that they contain some “bottom part” of the poset’s Hasse

diagram.

Definition 138

For any poset P , let J(P ) be the poset of all order ideals in P , ordered by containment.

Theorem 139 (Birkhoff’s fundamental theorem of finite distributive lattices)

The map P → J(P ) is a one-to-one correspondence between finite posets and finite distributive lattices.

As an illustrative example, if our poset has elements a, b, c satisfying a ≤ b and a ≤ c , then the order ideals are

{}, {a}, {a, b}, {a, c}, and {a, b, c}. In other words, here’s the poset J(P ) corresponding to P = a

b c

:

0̂ = ∅

{a}

{a, b} {a, c}

{a, b, c}

We’ll look more into the proof of this result next time!

16 March 13, 2019

Recall from last lecture that if we have a poset P , then J(P ) is the poset of order ideals in P , ordered by inclusion.

Lemma 140

For any poset P , J(P ) is a distributive lattice.

Proof. To define a lattice, we need to define the meet and join operations. If we have two order ideals I and J, we

set I ∧ J = I ∩ J and I ∨ J = I ∪ J – it can be routinely checked that the intersection and union of two order ideals

is also an order ideal. Since the usual union and intersection satisfy the distributive laws, J(P ) is indeed a distributive

lattice.

The idea behind Birkhoff’s fundamental theorem of finite distributive lattices (Theorem 139) is that the converse

is also true (specifically, every finite distributive lattice is of the form J(P ) for some P ). We’ll go through the main

idea of this result now:
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Key idea of the proof. We already know how to get from P → J(P ), so our goal is to reconstruct a poset from a

finite distributive lattice L.

Definition 141

An element x ∈ L is join-irreducible if it is not the minimal element of L (which always exists by repeatedly

applying ∧) and we cannot express it as x = y ∨ z for y , z < x .

For example, in the lattice J(P ) in the diagram above, all elements except ∅ and {a, b, c} join-irreducible. Notice
that if we remove those elements, we get a poset isomorphic to the original P – it turns out in general, we construct

P to be the subposet of L of all join-irreducible elements! Showing that these are isomorphic is left as an exercise

to us.

Definition 142

A poset P is ranked if there is a function ρ : P → {0, 1, 2, · · · }, such that ρ(x) = 0 for any minimal element x of

P and ρ(y) = ρ(x) + 1 if x l y .

So far, all the posets that we’ve been discussing have been ranked, with the idea being that all elements live on

different “levels.” In the diagram (with numbers representing values of ρ), the left poset is ranked, but the right poset

is not.

0

1

2

1

2

3

0

1

1

2

?

ranked not ranked

Proposition 143

Any finite distributive lattice is ranked and has the modularity property ρ(x ∨ y) + ρ(x ∧ y) = ρ(x) + ρ(y).

Proof. Write our finite distributive lattice L as J(P ). Then for any arbitrary element I ∈ L, which we can view as an

order ideal of P , we can assign it a rank of ρ(I) = |I|. To check that this is the case, we just need to show that if

I l J, they only differ in one element: this is true because I < J means I is strictly contained in J, and we can always

remove one “upper” element from a nonempty order ideal and still have an order ideal. The result then follows from

the fact that |A ∪ B|+ |A ∩ B| = |A|+ |B| for any sets A,B.

Definition 144

Let P be a finite ranked poset. The rank numbers ri of P are the number of elements in P of rank i . These

rank numbers form a vector (r0, r1, · · · , rN), where N is the maximal rank of any element in P . Then P is

rank-symmetric if ri = rN−i for all i , and it is unimodal if r0 ≤ r1 ≤ · · · ≤ rj ≥ rj+1 ≥ · · · ≥ rN for some j .
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For example, in our most recent example of a ranked poset, we have rank numbers (1, 2, 2, 1), so the poset is both

unimodal and rank-symmetric.

Definition 145

Let P and Q be two posets. The product poset P ×Q is the poset whose elements are pairs (p, q), p ∈ P, q ∈ Q,
with order relation

(p, q) ≤ (p′, q′) ⇐⇒ p ≤ p′ and q ≤ q′.

Notice that even if all pairs of elements in P and Q are comparable, this does not need to be the case in P ×Q.

Example 146

Let [n] denote the poset whose Hasse diagram is an increasing chain of n elements. (This is clearly rank-symmetric

and unimodular.) Then [m]× [n] is a 45-degree-rotated grid, where the element (x, y) has rank x + y .

Below is an illustration of the poset [4]× [6], where each horizontal level consists of elements of the same rank:

In general, the rank numbers for [m] × [n] are (1, 2, · · · , k − 1, k, · · · , k, k − 1, · · · , 2, 1), where k = min(m, n).

Thus this poset is also rank-symmetric and unimodular.

We now want to see what happens if we apply the function J to these simple posets. J([n]) is just [n + 1] (the

order ideals are the n chains containing the bottom element, plus the empty ideal), but J([m]× [n]) is more interesting.

The idea is that order ideals correspond to Young diagrams if we replace elements with boxes, so the order ideals

are exactly the Young diagrams that fit inside our grid:

J([m]× [n]) = L(m, n)

is the poset of Young diagrams that fit inside an m × n rectangle. Thus, the rank numbers ri of J([m]× [n]) are the

counts of Young diagrams with a fixed number of squares, and thus these are the Gaussian coefficients which show up

like in Theorem 57: [
m + n

n

]
q

= r0 + r1q + · · ·+ rmnq
mn.

After some more work (which we will do later in the course), we arrive at the following result:

Theorem 147

L(m, n) is rank-symmetric and unimodular.
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Looking at a special case (m = 2 will provide even more insight). If we want to visualize J([2]× [n]), then we want

to draw the poset of Young diagrams that fit inside a 2× n rectangle. The corresponding Hasse diagram looks like a

triangle:

And now if we look at the order ideals of this triangular Hasse diagram (so we’re trying to analyze J(J([2]× [n))),

we can observe that the order ideals here correspond to shifted Young diagrams! So J(J([2]× [n])) is the poset of

shifted Young diagrams (ordered by inclusion) which fit inside a shifted Young diagram with n, n − 1, · · · , 1 boxes in

the first n rows. Showing that this is also rank-symmetric and unimodular is left as an exercise to us.

Theorem 148 (Sperner (1928))

Let S1, · · · , SM be different subsets of {1, 2, · · · , n}, such that for all i , j , Si 6⊆ Sj . Then M ≤
(
n
n/2

)
.

To understand why this is related to posets, we’ll need to look at multiple elements of our posets at once:

Definition 149

A chain C in a poset P is a set of elements such that any two elements are comparable (for any a, b ∈ P , either
a ≤ b or b ≤ a), meaning that we have a total ordering on C. On the other hand, an antichain A in P is a set

where no two elements are comparable.

Definition 150

Let P be a finite ranked poset with rank numbers r0, r1, · · · , rN . Then P is Sperner if the maximal size M of any

antichain in P satisfies M = max(r0, · · · , rN).

Note that we always have M ≥ max(r0, r1, · · · , rN), because we can always take all of the elements of a given rank

and they will not be comparable. A Sperner poset is one where equality holds, and Sperner’s theorem really says that

the Boolean lattice is Sperner, because the central binomial coefficient is the maximal rank number of the Boolean

lattice! We’ll do the proof next time, but for reference, below is an example Hasse diagram of a non-Sperner poset,
because the rank numbers are 3, 3 but there is an antichain of length 4.
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17 March 15, 2019
Last time, we discussed ranked posets, studying properties of their rank numbers ri . In particular, a ranked poset P is

rank-symmetric if ri = rN−i for all i , unimodal if the rank numbers increase and then decrease, and Sperner if the
maximal size of an antichain is the maximal rank number. It turns out that there’s a property of posets that implies

all three properties, which we’ll work towards now.

Definition 151

Let C be a chain of a ranked poset P . Then C is saturated if its elements are {x0lx1lx2 · · ·lxm} (in particular,

ρ(xi) = ρ(x0) + i for all i). A symmetric chain decomposition is a decomposition of P ’s elements into a disjoint

union of saturated chains Ci , such that for all chains Ci = {x0 l · · ·l x`i}, we have ρ(x`i ) + ρ(x0) = N.

For example, below is a poset with its symmetric chain decomposition:

Lemma 152

If P has a symmetric chain decomposition, then it is rank-symmetric, unimodal, and Sperner.

Proof. Each chain contributes 1 to some set of rank numbers which is symmetric about N
2 , so the rank numbers will

be symmetric (because the sum of palindromic vectors is palindromic). Unimodality is also clear, because the sum of

vectors that are each unimodal and symmetric about a fixed mean is also unimodal.

To show that P is Sperner, note that the middle rank number bN2 c (also true for dN2 e) is exactly the number of

symmetric chains we have in our symmetric chain decomposition. After all, we can write P = C1 ∪C2 ∪ · · · ∪Cm, and
each chain intersects the middle level exactly once (because each Ci is saturated and symmetric about the middle).

By unimodality, this middle rank number is maximal, and any antichain cannot contain two elements in the same chain

Ci . Thus, because there are m chains, any antichain can only contain at most m elements, as desired.

To understand why this is relevant, we’ll now work towards the proof of Theorem 148.

Proposition 153

Let [n] denote the poset with n elements in a single chain. Then the Boolean lattice can be written as Bn =

[2]× [2]× · · · × [2] (with n terms in the product).

53



For example, [2] × [2] is a square, [2] × [2] × [2] is a 1-skeleton of a cube, and so on. (This can be shown by

induction, having each [2] denote whether a given element of {1, 2, · · · , n} is included or not.)

Theorem 154 (de Bruijn (1948) and generalization)

Bn has a symmetric chain decomposition. More generally, for any integers a1, a2, · · · , an, any product [a1]× [a2]×
· · · × [an] has a symmetric chain decomposition.

We can show this result by combining two lemmas:

Lemma 155

For any a, b, [a]× [b] has a symmetric chain decomposition.

We’ll do a proof by picture:

Lemma 156

If posets P and Q have symmetric chain decompositions, then P ×Q has a symmetric chain decomposition.

Proof. Write out the symmetric chain decompositions as P = C1 ∪C2 ∪ · · · ∪Ck and Q = C′1 ∪ · · · ∪C′`. Then we can

write P as a disjoint union of products of chains

P ×Q =
⋃
(i ,j)

Ci × C′j .

But each saturated chain Ci × C′j is of the form [a] × [b], so we can pick a symmetric chain decomposition for each

Ci × C′j as we did in Lemma 155. This gives a symmetric chain decomposition for the whole poset, as desired.

With that, we’ve now proved Sperner’s theorem, and let’s now go back to looking at finite posets in general. Given

any poset P , recall that we defined M(P ) to be the maximum number of elements in any antichain of P .
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Theorem 157 (Dilworth (1950))

Let m(P ) be the minimum number of disjoint chains needed to cover all elements of P . Then for any finite poset

P , M(P ) = m(P ).

There’s also a dual version of this theorem:

Theorem 158 (Minsky (1971))

If we flip the words “chain” and “antichain” (in the definition of M(P ) and m(P )) in Dilworth’s theorem, then the

statement still holds.

In fact, this duality manifests even more generally in a way that will connect to previous material:

Definition 159

Given a poset P , let `k be the maximum number of elements in a union of k (not necessarily disjoint, not necessarily

saturated) antichains in P . Similarly, define mk to be the maximum size of a union of k chains in P .

For example, `1 is M(P ), the maximum number of elements in an anti-chain.

Theorem 160 (Greene (1976))

Define λ(P ) = (`1, `2 − `1, · · · ) and µ(P ) = (m1, m2 −m1, · · · ). Then λ and µ are both partitions of n that are

weakly decreasing, and they are conjugates (that is, their Young diagrams are transposes of each other).

For example, consider the following poset:

Here, we can cover at most 2, 4, and 5 elements with 1, 2, and 3 antichains, so

λ = (2, 4− 2, 5− 4) = (2, 2, 1) = .

Meanwhile, we can cover 3, 5 elements with 1, 2 chains, so

µ = (3, 5− 3) = (3, 2) = .

In this language, Dilworth’s theorem says that the first row of λ has the same number of boxes as the first column

of µ, and Minsky says the same thing with row and column swapped. But recall the Schensted correspondence (and

the previous result by Greene, which we discussed in Theorem 41), which explained that the shape λ of a Young

diagram tells us about increasing subsequences in permutations. That previous result can be explained by the fact that

we can make a poset out of a permutation, such that increasing subsequences are chains and decreasing subsequences

are antichains! We’ll see this in action next time.
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18 March 18, 2019
Last time, we discussed a duality between chains and antichains of a poset, in which the Young diagrams formed were

transposes of each other. Prior to that, we had discussed the Schensted correspondence: every permutation w ∈ Sn
could be associated to a pair (P,Q) of SYTs of shape λ, in which the rows and columns encode information about

increasing and decreasing subsequences. We’ll start today by showing the relationship between these ideas. Given any

w ∈ Sn, we can construct a poset P with elements {1, 2, · · · , n}, with relation ≤p dictated by

i <p j ⇐⇒ i < j and wi < wj .

Example 161

Let’s take w = (3, 5, 2, 4, 7, 1, 6), for which the Schensted correspondence gives us a Young diagram of shape

.

The Hasse diagram for the associated poset is shown below:

5

6 24

3 1

7

Notice that in any such permutation, increasing subsequences correspond to chains (because the increasing numbers

must follow each other), and decreasing subsequences correspond to antichains (because no smaller number comes

before a larger number)! So Greene’s theorem gives chain numbers of (3, 6 − 3, 7 − 1) = (3, 3, 1), and antichain

numbers of (3, 5− 3, 7− 5) = (3, 2, 2), as we expect.

We’ll now turn back to other properties that we analyzed earlier in the class and look at them with a new perspective.

Recall that we used the Schensted correspondence to prove the identity∑
λ:|λ|=n

(f λ)2 = n!,

where f λ is the number of standard Young tableaux of a shape λ. Today, we’re going to do a simpler proof of this

result that is more general. Consider Young’s lattice Y, which is isomorphic to J(Z≥0 × Z≥0), the lattice of order

ideals in a quadrant of Z2. Let Yn be the set of all Young diagrams with exactly n boxes (which is the nth level of the

lattice). Then we can define the partition number

p(n) = |Yn|,

which is the number of ways to write n as a sum (disregarding order).

Proposition 162

A standard Young tableau of shape λ corresponds to a path (that is, a saturated chain) in the Hasse diagram of

Y from ∅ to λ.
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(To see this, notice that we add a box to our Young diagram each time we traverse an edge in our Hasse diagram.

So for a given path, we can place a 1 in the first box added, then place a 2 in the next one tacked on, repeating until

we get to λ.) In the Frobenius-Young identity and also in the Schensted correspondence, we have pairs of Young

tableaux, which correspond to having two paths from the empty Young diagram to λ. So if we reverse the second

path, we can think of (P,Q) as a path in Y from the empty shape back to itself with n up steps followed by n
down steps. Our goal is then to count the number of ways to draw this path!

To formalize this algebraically, let R[Yn] be the linear space of formal linear combinations of Young diagrams with

n boxes, containing elements that look like

+ e · − π · .

So R[Yn] is isomorphic to Rp(n), and R[Y] =
⊕

n≥0R[Yn]. Next, define up and down operators: the up operator U

acts on Young diagrams via

U = λ→
∑
µ:λlµ

µ

(in other words, we take λ to the sum of all Young diagrams with one box appended to λ), and similarly, the down

operator D acts on Young diagrams via

µ→
∑
λ:λlµ

λ.

For example,

U


 = +

and

D


 = + .

We can now rephrase our question: the number of pairs (P,Q) of Young tableaux of n boxes is the coefficient of ∅
(the bottom element in the poset – not zero!) in the expression DnUn∅, and we wish to show that this is n!. We

need the following key identity:

Proposition 163

Let U and D be the up and down operators defined above. If I is the identity operator, then

[D,U] = DU − UD = I.

Proof. Since D and U remove and add a box to λ, respectively, all nonzero terms in (DU − UD)λ will involve Young

diagrams with the same number of boxes as λ. Consider the coefficient of µ in (DU − UD)λ – first of all, if λ 6= µ,

and we want to get from λ to µ using the operations D and U once, we must add a box a and remove a box r , and

a 6= r because λ 6= µ. But these operations can always be done in either order, so any contribution to µ would cancel

out between the DU and UD terms.

However, if λ = µ, then the contribution to (DU − UD)λ comes from adding a box and then removing that same

box, or first removing a box and then adding that same box back. The number of boxes we can remove is the number

of inner corners, and the number of boxes we can add is the number of outer corners. Since these always differ by 1,

57



we get a coefficient of 1, and (DU − UD)λ = λ, meaning DU − UD = I, as desired.

This next concept was introduced by Stanley:

Definition 164

A differential poset is a ranked (infinite) poset with a unique minimally ranked element 0̂, such that if we define

U and D in the same way as for Y (where U of an element is the sum of the elements directly above it, and D of

that element is the sum of the elements directly below it), we have [U,D] = I.

Combinatorially, this means that for any x 6= y on the same level of a differential poset, there are the same number

of ways to go up and then down, or down and then up, from x to y :

#{u : u m x and u m y} = #{v : v l x and v l y}

On the other hand, for any element x , there is one more “upper neighbor” than “lower neighbor” of x in the Hasse

diagram:

#{u : u m x} = 1 + #{v : v l x}

Fact 165

Differential posets get their name from the related operators u multiplying a polynomial f (x) by x , and d taking

its derivative:

(du − ud)f (x) = (xf (x))′ − xf ′(x) = f (x).

It turns out that this structure of a differential poset is actually what is needed to prove the Frobenius-Young

identity:

Theorem 166 (Stanley)

For any differential poset and any n ∈ Z≥0, we have

DnUn0̂ = n!0̂.

Proof. We use the following lemma, which can be proved by just algebraic manipulation:

Lemma 167

For any n ∈ Z≥0, we have DUn = nUn−1 + UnD.

Proof. Induct on n; the base cases n = 0, 1 are clear. For the inductive step, notice that

DUn+1 = (DUn)U = (nUn−1 + UnD)U = nUn + Un(UD + I) = (n + 1)Un + Un+1D,

which is the desired result.

Our theorem then follows by induction on n. The base case n = 0 is clear, and for the inductive step, we apply the

lemma:

DnUn(0̂) = Dn−1(DUn)0̂ = Dn−1
(
nUn−1 + UnD

)
0̂,
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and now the second term contributes nothing because D0̂ = 0. So we’re just left with

Dn−1nUn−10̂ = nDn−1Un−10̂ = n(n − 1)!0̂ = n!0̂

by the inductive hypothesis, completing induction and proof.

Next time, we’ll think about other differential posets and their combinatorial interpretations!

19 March 20, 2019

Recall that a differential poset is a ranked poset with a minimal element 0̂, where we define up and down operators

such that [D,U] = DU − UD = I, where I is the identity operator. Combinatorially, this is equivalent to the following

two conditions:

• For any x 6= y in the same level, if there are a elements that cover both x and y , there are a elements covered

by x and y .

• For any x , there is one more element covering x than elements covered by x .

We found an example last time – Young’s lattice is a differential poset. It’s natural to ask whether there are any

other differential posets, and we’ll take a constructive approach here. We must start with a unique minimal element

0̂, and there must be exactly 1 element above 0̂, and then 2 elements above that. Now, for the two elements x and y

we just constructed, we need one element to cover both x and y , and then each of x and y need to have an additional

edge to another element.

More generally, here’s how we can construct the (n+ 1)th level of a differential poset: to satisfy the first condition,

reflect the previous level’s edges up. In other words, take the bipartite graph between the nth and (n−1)th levels, and

flip it over the nth level to create new vertices on the (n + 1)th level. Now, each vertex needs an extra edge, so we

will connect each vertex on the nth level to a (different) additional vertex on the (n+ 1)th level. (This is not the only

way to construct a differential poset’s next level, because we don’t necessarily need to do the “reflection” procedure,

but it does give us an interesting object.)

The rank numbers of this differential poset are 1, 1, 2, 3, 5, 8, · · · (the Fibonacci numbers), because when we

construct the (n+ 1)th level, we add one vertex for every vertex in the (n− 1)th level, as well as one vertex for every

vertex in the nth level.

Theorem 168

The process above gives a valid lattice (known as the Fibonacci lattice). In other words, any two elements of

the Fibonacci lattice have a well-defined meet and join.

(The proof of this result can be seen by assigning each element a sequence of 1s and 2s, where 1 and 2 correspond

to adding from the nth and (n− 1)th layer, respectively.) Comparing this lattice to Young’s lattice, in which the rank

numbers start off 1, 1, 2, 3, 5, 7, we see that the rank numbers (and structures) will be different. However, the two

lattices have very similar properties – for example, if we find the number of walks from 0̂ that go up n steps and then

down n steps for the Fibonacci lattice, it will be n! as well (since we only need the identity DU − UD = I).

We’ll take a second look at where this n! term is actually coming from, though – consider the expression DnUn0̂,

written out as

DD · · ·DDUU · · ·UU0̂.

59



Think of the operators D and U as particles and antiparticles, where any D and U can collide (and cancel out) or go

past each other, because DU = UD + I. But each D must collide with one of the Us before reaching the 0̂, because

D0̂ = 0. So each D is matched with a U, and that means we really have a permutation of n Ds.

More generally, we can pick any word with n U’s and n D’s, and we’ll get an identity that looks something like

DDUDUU0̂ = c 0̂.

The number c is then the number of paths that go (up, up, down, up, down, down) in a differential poset (in this case

it’s 4, and we are trying to find a more systematic way of evaluating it). Basically, we have to find the total number

of ways to match all Ds with Us, having each D matches with a U to its right.

The key insight is that we can describe this setup with a rook placement! First, we trace out a path from the

bottom left to top right of an n× n board, going right when we see a D and going up when we see a U, and draw the

Young diagram in the upper left corner. For example, DDUDUU gives the shape

.

Then any rook placement gives us a valid pairing of the corresponding Ds and Us! Specifically, we have a Young

diagram of form ν = (ν1, · · · , νn), where the number of boxes in the ith row is the number of Ds that appear before

the n + 1 − ith U in our sequence. Each rook then corresponds to a pairing between a U and a D (the ith row, jth

column corresponds to pairing the (n + 1− i)th D with the jth U).

Theorem 169

Let W be a word of n Ds and n Us, corresponding to a Young diagram ν = (ν1, · · · , νn). Then the constant c in

the equation W 0̂ = c 0̂ is the number of placement of n non-attacking rooks in the shape ν, which is

νn(νn−1 − 1)(νn−2 − 2) · · · (ν1 − n + 1).

Proof. We’ve already explained the combinatorial connection between rook placements and the coefficient c ; to get

the formula, we add rooks from bottom to top. For the first rook, we have νn choices, so the second rook has all νn−1
choices available except the column that the first rook is in, and in general the ith rook has all of its νn+1−i choices

available except the (i − 1) columns that are already taken. Multiplying these terms gives us the result.

With that, we’ll turn our attention back to the unimodality of Gaussian coefficients (which we stated but never

proved). Recall that the Gaussian coefficients an come up in the expression[
k + `

`

]
q

=

k∑̀
n=0

anq
n,

where an is the number of Young diagrams that fit within a k × ` box. We’ve already shown previously that these

coefficients are symmetric (by taking the complement), and the result of unimodality was first formulated by Cayley

in 1856 and proved by Sylvester in 1878:

Theorem 170 (Unimodality of the Gaussian coefficients)

The Gaussian coefficients in the equation

[
k + `

`

]
q

=
∑k`

n=0 anq
n satisfy a0 ≤ a1 ≤ · · · ≤ ab k`

2
c ≥ · · · ≥ ak`.
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Proof. We’ll state our problem in terms of Young diagrams: let P be the product poset [k ]× [`], which we’ll identify

with a k × ` rectangle. As we’ve previously discussed, the lattice of order ideals of P is the lattice of Young diagrams

that fit inside a k by ` rectangle:

J(P ) ∼ L(k, `).

Let J(P )n to be the set of all Young diagrams in J(P ) on the nth level (containing n boxes). It suffices to show (by

symmetry of the coefficients) that |J(P )n+1| ≥ |J(P )n| for all n < k`
2 .

For a given Young diagram λ ∈ J(P )n, let Add(λ) denote the set of all boxes x ∈ P such that λ ∪ {x} m λ.
Similarly, define Remove(λ) to be the set of boxes y ∈ P such that λ \ {y} l λ. Recall that in Young’s lattice, the

number of addable boxes is always one more than the number of removable boxes, but this is no longer true in our

setting because we can’t add boxes outside of our k × ` rectangle.

Lemma 171

Fix P = [k ] × [`] and n < k`
2 . Suppose there is a weight function w : P → R>0, such that for any λ ∈ J(P )n,

we have ∑
x∈Add(λ)

w(x) >
∑

y∈Remove(λ)

w(y).

Then the number of elements in J(P )n+1 is at least the number of elements in J(P )n.

Here’s an example of a weight function for P = [3]× [4] (we’ll explain where it comes from later):

12 12 10 6

10 12 12 10

6 10 12 12

We can check that for any Young diagram with n < 6 boxes, the set of addable boxes has total weight larger than

the set of removable boxes. To prove this lemma, we’ll introduce the weighted up and down operators

U : λ→
∑

µ=λ∪{x},
x∈Add(λ)

√
w(x) · µ, D : λ→

∑
µ=λ\{y},

y∈Remove(λ)

√
w(y) · µ.

We can think of these as linear operators on RJ(P ), and under the natural basis (of Young diagrams), it is clear that

D = UT are transpose matrices (with nonzero entries equal to
√
w(x) for various boxes x).

Lemma 172

H = [D,U] = DU − UD is a diagonal matrix, and for any Young diagram λ ∈ J(P ), we have

Hλ =

 ∑
x∈Add(λ)

w(x)−
∑

y∈Remove(λ)

w(y)

λ.

Proof. The matrix H is diagonal because (just like in the unweighted case) adding a box and removing another box

can be done in either order, so the contributions cancel out in DU−UD. On the other hand, to compute the diagonal

entries of DU −UD, we can add any box and remove it, each of which gives
√
w(x)

2
= w(x), or remove any box and

add it back, each of which contributes −w(y).

Furthermore, because D and U are transposes of each other, we can write

DU = UD +H = UUT +H.
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Then UUT is positive semi-definite, and H is a positive definite matrix (because it is diagonal and the diagonal entries

are positive by Lemma 171), so this means DU must be positive definite as well, meaning that it has a positive

determinant. We’ll continue this argument next time!

20 March 22, 2019
We’ll start today by finishing the proof of unimodality of the Gaussian coefficients – despite the setting in which the

problem was introduced, it’s easier to use linear algebra instead of a combinatorial proof.

Proof, continued. We’ll do a quick review and set up our notation more carefully today: Gaussian coefficients are the

coefficients of the q-binomial coefficient

[
k + `

k

]
q

, and we wish to show that they are increasing and then decreasing.

The idea is to consider the linear space Vn of formal linear combinations of Young diagrams λ in a k by ` rectangle

with n squares and to prove that dim Vn ≤ dim Vn+1 for n < k`
2 . We do this by defining a weight function w : P → R>0

and then defining the weighted up and down operators Un : Vn → Vn+1, Dn : Vn+1 → Vn

Unλ =
∑

µ=λ∪{x}
µmλ

√
w(x)µ, Dnλ =

∑
µ=λ\{x}
µlλ

√
w(x)µ.

(Here, µ = λ ∪ {x}, µ m λ is equivalent to x ∈ Add(λ), and similar for Remove(λ).) Below is a diagram, where λ is

highlighted in yellow, the As are part of Add(λ), and the Rs are part of Remove(λ):

R A

A

R

The commutator Hn = DnUn − Un−1Dn−1 then takes any element in Vn to another element in Vn. We can represent

Un with an an+1 by an matrix, and we can represent Dn = UTn (because all nonzero entries in Un have
√
x in the entry

(a, b), where a and b differ by the box x , and entries in Dn have
√
x in the entry (b, a)). Last time, we showed that

Hn is diagonal and has entries given by Lemma 172.

So now let’s assume we can find a weight function w so that the matrix Hn has positive diagonal entries, meaning

the eigenvalues are all positive. Then

DnUn = Un−1Dn−1 +Hn = Un−1U
T
n−1 +Hn.

Un−1U
T
n−1 is positive semi-definite (since for any matrix A, xAAT x is the square of the standard dot product of AT x

with itself), and Hn is positive definite, so their sum is positive definite (this is a fact from linear algebra!) This means

DnUn has nonzero determinant, and therefore the rank of DnUn is an for any n. We can finish with the following fact

from linear algebra:

Fact 173

Let A be an m × n matrix and let B be an n × k matrix. Then rank(AB) ≤ min(m, n, k) (because the rank of a

matrix is always smaller than both dimensions, and rank(AB) ≤ rank(A), rank(B)).

In particular, the rank of DnUn is an, but Dn is an an × an+1 matrix and Un is an+1 × an, so

an ≤ min(an, an+1) =⇒ an ≤ an+1,
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which is what we have been aiming to show! So it suffices to find a weight function w , and we can now explain how

we constructed the one last lecture. One such function w : [k ]× [`]→ R>0 that works is

w(i , j) = (i − j + `)(j − i + k), 1 ≤ i ≤ k, 1 ≤ j ≤ `.

For example, the weight function for (k, `) = (3, 4) that we saw last lecture,

12 12 10 6

10 12 12 10

6 10 12 12

,

has all weights of the form n(7− n) for some positive integer n, and it has larger values closer to the center diagonal.

To see why this weight function is valid, we can prove the following result:

Lemma 174

For all λ contained in a k × ` box,

wλ =
∑

x∈Add(λ)

w(x)−
∑

y∈Remove(λ)

w(y) = k`− 2|λ|,

which is positive as long as n = |λ| < k`
2 .

This final part of the proof is left as an exercise to us!

Let’s shift gears now and talk more about partitions – recall that p(n) is the number of partitions of n, which is

also the number of Young diagrams with n boxes.

Proposition 175

The generating function for p(n) can be written as∑
n≥0

p(n)qn =
1

(1− q)(1− q2)(1− q3) · · · .

Expanding out each term on the right-hand side as 1
1−qk = 1 + qk + q2k + · · · , we can compute the partition

number p(n) as the coefficient of qn in

(1 + q + q2 + · · · )(1 + q2 + q4 + · · · )(1 + qn + · · · ).

In particular, it’s okay to only consider the first n terms, since all other terms will either contribute 1 or a power of q

larger than n.

A handwavy proof. We know that [
k + l

k

]
q

=
∑
λ⊆k×l

q|λ|

computes the generating function for the set of Young diagrams constrained to a k×` box. Take the limit as k, l →∞,

so that we’re summing over all Young diagrams, and expand out the q-binomial coefficient.

A better proof. We can encode our partition λ = (λ1 ≥ λ2 ≥ · · · ) with a different set of integers. Let mi be the

number of times i appears in λ (known as the multiplicity of i) – that is, the number of js such that λj = i . Then
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we can encode the multiplicities as λ = (1m12m2 · · · ). For example, the partition (6, 4, 4, 3, 1, 1) is now encoded as

(122031425061), which corresponds to picking out the q2 term in (1 +q+q2+ · · · ), the 1 term in (1 +q2+q4+ · · · ),
the q3 term in (1 + q3 + q6 + · · · ), and so on. In general, we can write the sum as∑

n≥0
p(n)qn =

∑
m1,m2,···≥0

qm1+2m2+3m3+···,

which can then be factored as ∑
m1

qm1 ·
∑
m2

q2m2 ·
∑
m3

q3m3 · · · =
1

1− q ·
1

1− q2 · · · ,

as desired.

There are also some special classes of partitions that we can analyze using generating functions:

Definition 176

Let podd(n) be the number of partitions of n into odd parts (meaning that our partition λ = (λ1 ≥ λ2 ≥ · · · ),
where all λi are odd).

Switching to the point of view of multiplicities, we are constrained to mi = 0 for all even i , so the generating

function is ∑
n≥0

podd(n)qn =
1

1− q ·
1

1− q3 ·
1

1− q5 · · · .

Definition 177

Let pdist(n) be the number of partitions of n into distinct parts (meaning that our partition satisfies λ = (λ1 >

λ2 > · · · )).

Again thinking about multiplicities, we now constrain ourselves to have mi ≤ 1 for all i , so the generating function

is ∑
n≥0

pdist(n)qn = (1 + q)(1 + q2)(1 + q3) · · · .

Theorem 178 (Euler (1748))

For any n, we have podd(n) = pdist(n). In other words, the number of ways to partition n into odd parts is the

same as the number of ways to partition n into distinct parts.

For example, we can write 5 as a sum of odd parts as 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1, and we can write it as a sum

of distinct parts as 4 + 1 = 3 + 2.

Proof. It suffices to check that the generating functions above are equal. We start with the generating function for

pdist and do some algebraic manipulation:

(1 + q)(1 + q2)(1 + q3) · · · =
(1 + q)(1− q)

1− q ·
(1 + q2)(1− q2)

1− q2 ·
(1 + q3)(1− q3)

1− q3 · · ·

=
(1− q2)(1− q4)(1− q6) · · ·
(1− q)(1− q2)(1− q3) · · · =

1

(1− q)(1− q3)(1− q5) · · · ,

which is the generating function for podd as desired.
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There is also a combinatorial proof (constructing a bijection between the two sets), but that’s left as an exercise

to us. We’ll finish today with another look at the generating function for p(n) from the perspective of odd and even

parts:

Theorem 179 (Euler’s pentagonal number theorem (conjectured 1741, proved 1750))

We can write
1∑

n≥0 p(n)qn
= (1− q)(1− q2)(1− q3) · · · =

∞∑
m=−∞

(−1)mqm(3m−1)/2.

We’ll discuss this more next time (after spring break), but the qn-coefficient of this equation basically counts the

number of distinct-part partitions of n with an even and odd number of parts and finds their difference; it turns out

that this is 0 for almost all values of n. The numbers of the form m(3m − 1)/2 are called pentagonal numbers,
because they’re the number of dots in successive dilations of a pentagon!

21 April 1, 2019

We started talking about partition theory last time: letting p(n) be the number of partitions of n, we can write down

the generating function
∑

n≥0 p(n)qn = 1
(1−q)(1−q2)(1−q3)··· . We stated Theorem 179 last time, which analyzes the

reciprocal of that generating function and claims that it is equal to

f (q) =

∞∑
m=−∞

(−1)mqm(3m−1)/2 = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 + · · · .

This result may be surprising, because a priori we may expect that there are many different possible coefficients when

we expand out the infinite product. Instead, it turns out that most terms end up having complete cancellation, and a

few others have ±1s! (Note that the first few pentagonal numbers for positive m are 1, 5, 12, 22; half of the terms in

the infinite polynomial above come from negative m.)

Some other powers of the generating function of p(n) also look nice:

Theorem 180 (Gauss)

We have

(f (q))3 =

∞∑
m=−∞

(−1)m ·m · qm(m+1)/2.

Remark 181. Unfortunately, trying to expand out f (q)2 is a total mess. There isn’t such a simple expression for

f (q)2, and there’s a deep representation theoretic reason for that.

When setting up these generating functions last lecture, we also discussed different ways to represent a partition:

we can either write λ = (λ1, λ2, · · · ) with parts in non-increasing order, or we can write λ = (1m12m2 · · · ) in terms of

its multiplicities, where mi is the number of parts of λ equal to i . Thus, if we expand out f (q), we find that

f (q) = (1− q)(1− q2) · · · =
∑

m1,m2,···∈{0,1}

(−1)
∑
miqm1+2m2+3m3+···,

where mi ∈ {0, 1} means that each i can only be included at most once in the partition, mi = 0 (not including i)

corresponds to picking 1 in the product, and mi = 1 (including i) corresponds to picking qmi . This allows us to rewrite
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as

=
∑

partitions λ
with distinct parts

(−1)parts in λq|λ|.

This lets us write Euler’s pentagonal number theorem slightly differently:

Theorem 182 (Euler’s pentagonal number theorem, restated)

Let pevendist (n) (resp. podddist(n)) be the number of partitions of n with distinct parts and an even (resp. odd) number

of parts. Then we have the identity

pevendist (n)− podddist(n) =

(−1)n n = m(3m−1)
2 ,

0 otherwise.

To prove this, we wish to set up a matching between partitions with an even and odd number of parts, and (almost

always) perfectly pair them.

Proof by Franklin, 1881. We’ll construct an involution, which is a function f that squares to the identity. (In other

words, f is its own inverse.) Specifically, we will construct an involution σ on almost all partitions of n with distinct

parts, such that σ sends a partition with an odd number of parts to an even number of parts and vice versa. Rigorously,

if µ = σ(λ), then the number of parts in µ and λ should have different parity.

To do this, we’ll define σ so that it always either adds or removes a part to λ. For example, consider the partition

λ below for illustration:

λ =

Label the yellow part (the last row) as A, and label the blue part (the longest diagonal segment starting from the top

right corner) as B, and define a = |A|, b = |B| (in this case, a = 4, b = 3). Remember that the diagonal segment

from the top right corner is the rightmost part of the partition, because all parts of λ are distinct. Here’s how we’ll

construct σ:

• If a > b, like in the example above, we remove the diagonal segment B and add its boxes as a new row with b

boxes:

λ′ =

• If a ≤ b, remove the last row and add a new diagonal segment to the right of B. For example, the map from λ′

back to λ will work.

For illustration, we’ll show a few more examples. For λ = (7, 6, 3), the involution maps the following two Young

diagrams to each other:
σ⇐⇒ .
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Meanwhile, for λ = (7, 6, 5, 4, 2), we map the following two Young diagrams to each other:

σ⇐⇒

However, there are a few special cases where our involution does not work (and this accounts for the ±1 terms that

we have in the generating function). Specifically, we have a problem if the yellow and blue segments, A and B, overlap

with each other. It turns out that we can actually still construct an involution even in these cases, except when a = b

or a = b + 1. The cases (a, b) = (4, 4) and (4, 3) are shown below:

,

We can check that moving either A or B does not give us a valid partition with distinct parts, and we can call

these the “pentagonal cases.” Counting the number of squares indeed gives us the pentagonal numbers m(3m−1)
2 , as

desired.

We can actually generalize Euler’s pentagonal number formula and Gauss’ formula into a single identity:

Theorem 183 (Jacobi’s triple product identity (1829))

We have the equation ∏
n≥1

(1− q2n)(1 + q2n−1z)(1 + q2n−1z−1) =

∞∑
r=−∞

qr
2

z r .

Corollary 184

Theorem 183 has many special cases:

• If we set z = −x1/2 and q = x3/2, then the left hand side becomes the left side of Euler’s theorem, and we

recover Euler’s pentagonal number formula.

• If we set z = −x, q = x1/2, we recover Gauss’ formula.

• If we set z = −1, we find that ∏
m≥1

1− qm

1 + qm
=

∞∑
r=−∞

(−1)rqr
2

.

Proof sketch. Substitute q → q1/2 and z → qz . Then the triple product identity can be equivalently written as

(moving the
∏

(1− q2n) to the other side)

∏
n≥1

(1 + zqn)
∏
n≥1

(1 + z−1qn−1) =

( ∞∑
r=−∞

z rqr(r+1)/2

)
·

1∏
n≥1(1− qn)

.

We will interpret this identity combinatorially. The first term on the left side counts partitions with distinct parts, with

z keeping track of the number of parts. So the coefficient of za for the first term on the left side is the generating

function
∑

µ partition with
a distinct parts

q|µ|, and similarly, the coefficient of z−b for the second part is
∑

ν partition with
b distinct parts

q|ν|−b, with the
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−b coming from the fact that our product has qn−1 instead of qn. Next time, we’ll see how we can relate these two

partitions λ, ν to a more general partition λ.

22 April 3, 2019
Recall that last lecture, we formulated the Jacobi triple product identity, which can be written equivalently in the

following form: ∏
n≥1

(1 + zqn)
∏
n≥1

(1 + z−1qn−1) =

∞∑
r=−∞

z rqr(r+1)/2
∏
n≥1

1

1− qn .

We’ll continue the combinatorial proof of this identity today, coming up with a combinatorial interpretation of each

term in terms of certain partitions.

Proof, continued. We analyze the z-coefficients. On the left-hand side, the first product’s coefficient of za is∑
µ partition

with a distinct parts
q|µ|, and the second product’s coefficient of z−b is

∑
ν partition

with b distinct parts
q|ν|−b|. Meanwhile, the product

on the right is the usual generating function for all partitions, so we want to somehow we want to combine partitions

together – that is, we want to find a bijection

(a, b, µ, ν)→ (r, λ),

where µ has a distinct parts and ν has b distinct parts. We also need to make sure the monomials (powers of z and

q) match up when we construct this bijection: looking at powers of z , we need a − b = r , and looking at powers of

q, we need |µ|+ |ν| − b =
r(r + 1)

2
+ |λ| .

For this bijection, since µ and ν have distinct parts, we can represent them with shifted Young diagrams instead
of standard ones. For example, if µ = (7, 6, 4, 3, 1) and ν = (6, 5, 3), then our Young diagrams look like

µ̃ = ·
·
·
·
·

, ν̃ = ·
·
·

.

The construction is to transpose ν̃ and remove its b = 3 diagonal boxes:

ν̃ ′ =

Now, take µ̃ and ν̃ ′ and glue them together, so that the removed boxes of ν̃ ′ would have overlapped with the last dots

of µ̃:
·
·
·
·
·

.

With this, we can now chop off the first a − b = 2 columns off, so that we have a standard Young diagram again.
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This gives us a final Young diagram

λ = = (5, 5, 4, 4, 3, 3, 3, 2).

We claim that this is the bijection that we want whenever a ≥ b. Indeed, the number of columns we chop off is always

a − b = r (the difference between the number of dotted boxes in µ̃ and ν̃). Counting the total number of boxes on

both sides, we started with |µ| + |ν| boxes, but then we removed all b diagonal boxes from ν when gluing the two

shapes together. That left us with |λ| + (1 + 2 + · · · + r) boxes (where (1 + 2 + · · · + r) is the remaining triangular

chunk that we remove at the end). Thus |µ|+ |ν| − b = |λ|+ r(r+1)
2 , so our powers of q do match up.

Before we explain why this is a bijection, first we address the a < b case. We then have to make a small edit to

our procedure, and we’ll do that by construction. If µ = (5, 4, 2) and ν = (9, 8, 7, 4, 3, 1), then our shifted Young

diagrams look like

µ̃ = ·
·
·

, ν̃ = ·
·
·
·
·
·

.

Transposing and removing the diagonal boxes from ν̃, we have

ν̃ ′ = ,

and after gluing (again making sure that the last dots line up, so this time µ̃ is the one that must come forward), we

have a combined shape

.

Since ν̃ is the longer shape this time, we need to cut off the first b − a − 1 = 2 rows, which gives us our final Young

diagram

λ = = (8, 8, 7, 5, 3, 3).

We need to make sure the identity still holds: the total number of boxes here is still |µ| + |ν| − b, but this time the
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chopped-off triangle has 1 + 2 + · · · + (b − a − 1) boxes. Thus the glued shape has |λ| + (−r−1)(−r)
2 = |λ| + r(r+1)

2

squares, and the identity indeed still holds.

Finally, we explain why this construction (a, b, µ, ν)→ (r, λ) is a bijection. If we’re given r and λ: attach a small

triangle to either the left or top of λ (depending on the sign of r), and then chop the shape along the diagonal. This

gives us µ̃ and ν̃ ′, from which we can recover µ and ν (add back the diagonal by putting as many boxes as possible),

which tells us our original partitions and a and b as well. This finishes the proof and gives a combinatorial explanation

for the Jacobi triple product identity.

With that, we’ll move on to the next topic of this class. We’ve been talking about Young diagrams and partitions

a lot so far, so in the second half of 18.212, we’ll start to discuss graphs, networks, and trees.

Definition 185

Graphs are objects with vertices (also nodes) and edges that connect pairs of vertices. A labeled tree is a

connected graph on n nodes with no cycles, where the nodes are labeled 1, 2, · · · , n. An unlabeled tree is the

analogous object but where nodes are not labeled.

Example 186

There are 3 labeled trees on 3 vertices – place the numbers 1, 2, 3 at the vertices of an equilateral triangle, and

remove one of the edges. However, all of these labeled trees correspond to the same unlabeled tree (a path on

three vertices).

We actually have an explicit formula for counting trees:

Theorem 187 (Cayley’s formula)

The number of labeled trees on n nodes is nn−2.

This quantity nn−2 actually appears in mathematics fairly often – they are probably the next most famous set of

numbers after Catalan numbers, and there are many combinatorial interpretations attached to them.

Remark 188. In mathematics, there’s a “law” that mathematical formulas are never named after the people who

actually discover them. Cayley wrote a paper on this result in 1889, but the same result was previously given by

Borchord in 1860 and Sylvester in 1857.

Cayley didn’t actually give a complete proof in his paper. Instead of presenting the older proofs, Professor Postnikov

will show his favorite proof, which is probably the shortest one.

Proof by Rényi, 1967. We’re going to use induction (!), proving a more general result (because it’s hard to get nn−2

from other terms of the form kk−2):

Definition 189

For any tree T , define the weight of T to be the monomial xT = x
deg(1)−1
1 x

deg(2)−1
2 · · · xdeg(n)−1n (where the degree

deg(i) of i is the number of edges that have i as an endpoint).

The claim that we will prove is the following:
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Claim 190. We have the identity

Fn(x1, · · · , xn) =
∑

labeled trees T
on n vertices

xT = (x1 + · · · xn)n−2.

Cayley’s formula directly follows by setting all xi = 1. The idea is that this inductive hypothesis is stronger than

what we had before, so the result will be easier to show.

To show the identity, we induct on n. Define Rn = Fn − (x1 + · · ·+ xn)n−2; our goal is to show that Rn = 0. The

base cases n = 1, 2 are easy, and for the inductive step, we make the following observations:

• Rn is a polynomial in x1, · · · , xn of degree at most n − 2. This is because the second term has degree n − 2,

and every monomial xT has degree n− 2. Indeed, there are n− 1 edges in any tree of n vertices, each of which

adds 2 to the degree of the weight (one for each endpoint), but the −1s in the definition of xT bring down the

degree by n, for a total degree of 2(n − 1)− n = n − 2.

• For any 1 ≤ i ≤ n, if we set xi = 0, Rn evaluates to 0. To prove this, we can assume i = n by symmetry.

Because the degree of xn is deg(n)− 1 in any tree T , when we set xn = 0, the only terms that remain are from

trees where n is a leaf (a vertex of degree 1). In other words, Fn evaluated at xn = 0 is

Fn(x1, · · · , xn−1, 0) =
∑

T :n leaf

xT =
∑

T ′ with n−1 nodes
xT

′ · (x1 + x2 + · · ·+ xn−1)

since for any tree T ′, we can connect n to any of the other vertices, which keeps the exponent of xn at 0 but

adds 1 to the exponent of some xi . But by the induction hypothesis, this sum is Fn−1(x1 + · · ·+ xn−1), so

Rn|xn=0 = Fn−1(x1 + · · ·+ xn−1)(x1 + x2 + · · ·+ xn−1)− (x1 + x2 + · · ·+ xn−1 + 0)n−2

= (x1 + x2 + · · ·+ xn−1)
n−2 − (x1 + x2 + · · ·+ xn−1)

n−2

= 0.

• But now we’re done: since Rn(x1, · · · , xn) is a polynomial on n variables of degree less than n, and x1, x2, · · · , xn
are all factors, then the polynomial must be 0.

This may almost feel like cheating, because we’ve used essentially no properties of trees at all in the proof. We’ll

talk a bit more about this next time!

23 April 5, 2019

Recall that we started talking about the Cayley formula last week (which states that the number of labeled trees on

n vertices is nn−2). In last lecture’s proof, we considered the polynomial

Fn(x1, · · · , xn) =
∑

T tree on [n]

n∏
i=1

x
deg(i)−1
i ,

and we showed that Rn = Fn − (x1 + · · ·+ xn)n−2 is identically zero. Let’s review the argument again: we induct on

n (the base case n = 1, 2 is easy). First, Rn is either a homogeneous polynomial in our variables x1, · · · , xn of degree
n − 2 or zero (because each monomial in the sum has total degree

∑
(deg(i))− n = 2(n − 1)− n = n − 2). Then, if
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we pick any 1 ≤ i ≤ n and evaluate Rn at xi = 0, then the result is

Rn−1(x1, · · · , xi−1, xi+1, · · · , n)(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn),

because all terms disappear except those where i is a leaf (a vertex of degree 1), and then in those cases we can attach

i to any vertex of a labeled tree on the remaining vertices. The right hand side is 0 by induction, so that means that

f when evaluated at (any) xi = 0 is always 0. So xi is a factor for all i , meaning Rn is a multiple of x1x2 · · · xn, which
can only occur if Rn = 0. Setting all xi = 1, we indeed find that the number of trees on n vertices is nn−2.

We barely used any properties of trees here, so this proof alone may be difficult to parse! In combinatorics, we

like bijective proofs, so it would be nice to construct a bijection between labeled trees and some other set of nn−2

elements. We’ll go through two of them in today’s class.

Proof by Prufer (1918). We’ll set up a bijection between trees T on n vertices and sequences (c1, · · · , cn−2), where
all ci ∈ [n], known as the Prufer code. (Clearly, the latter set has nn−2 total elements, so this would show the desired

result.) We’ll write out the procedure and then do an example.

1. Any tree with at least 1 vertex contains a leaf. Find the vertex v with the minimal label,

2. Record (in our code) the vertex in our tree that v is attached to (by its adjacent edge),

3. Remove v (and the adjacent edge) from T .

4. Repeat steps 1–3 a total of n − 2 times.

As an example, consider the tree below:

1
2

3

7 8

4
5

6

Initially, the smallest leaf has label 2, and it is attached to 8, so we write down 8 and erase label 2.

1 3

7 8

4
5

6

Now, the minimal leaf is 3, and it is attached to 1, so we write down 1 .

1

7 8

4
5

6
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After that, the minimal leaf is 4, and it is attached to 5 :

1

7 8

5
6

6 is attached to 5 :

1

7 8

5

5 is attached to 1 :

1

7 8

Finally, 1 is attached to 8 :

7 8

That completes our algorithm, and our final Prufer code is (8, 1, 5, 5, 1, 8) . To show this is actually a bijection,

we need to be able to invert our construction. Notice that every vertex v of the tree appears deg(v)− 1 times in the

final Prufer code (for example, 5 appears twice in the code and started with degree 3). After all, we record i in the

Prufer code every time an edge to it is erased, except for the last edge (at which point it is removed and its neighbor

is recorded instead, or the algorithm has terminated).

In particular, the labels that don’t show up in the Prufer code are exactly the original leaves in our tree! With that,

we can now describe the decoding process:

1. Initially, we are given a Code (c1, · · · , cn−2). Initialize a set of Labels as {1, 2, · · · , n}.

2. Find the minimal leaf by finding the smallest element ` of Labels that is not in Code. Connect a node containing
` to the first element c of Code (this was the first step of our coding process, removing the smallest leaf and

recording down its neighbor).

3. Remove ` from Labels and c from Code.

4. Repeat steps 1–3 a total of n − 2 times until Code is empty.

5. Finally, there should be two elements left in Labels, and we connect them.

Let’s verify that this works by example: start with the Prufer Code (8, 1, 5, 5, 1, 8) and Labels {1, 2, 3, 4, 5, 6, 7, 8}.
The minimal element that doesn’t appear is 2, so first we connect 2 to 8.
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1
2

3

7 8

4
5

6

After removing 8 from Code and 2 from Labels, Code is (1, 5, 5, 1, 8) and Labels is {1, 3, 4, 5, 6, 7, 8}. Then the

smallest element of Labels not in Code is 3, so we should connect 3 to 1:

1
2

3

7 8

4
5

6

Continuing this process, we indeed add the edges that were removed during the forward algorithm one by one, in

the order that they were removed: the next steps are to connect 4 to 5, then 6 to 5, then 5 to 1, and 1 to 8. Finally,

Labels still contains {7, 8}, so we connect those two nodes to finish the tree.

The Prufer code encoding tells us some additional information about the structure of our trees:

Proposition 191

Fix d1, · · · , dn ≥ 1. Then the number of labeled trees on n vertices with degrees d1, · · · , dn for vertices 1, 2, · · · , n
(where d1 + · · ·+ dn = 2n − 2) is the multinomial coefficient

(
n−2

d1−1,d2−1,··· ,dn−1
)
.

Finally, we’ll show a more recent bijective proof:

Proof by Eĝecioĝlu-Remmel (1986) based on Joyal (1981). Start with a labeled tree, and “root the tree at 1” – in

other words, orient all edges of our graph towards the root. For illustration, we’ll consider the tree below:

1 7 3 8 13 4 10 15

9 12 2 11

5

14 6

Consider the path from the maximal element n = 15 to 1, and note down the elements along the way:

P = (15, 10, 4, 13, 8, 3, 7, 1).

We mark the set of left-to-right minima (that is, the elements that are the smallest so far in P – in this case, it’s

15, 10, 4, 3, and 1). We then rewrite P as a permutation on the path elements by starting a new cycle at each

left-to-right minimum:

P ′ = (15)(10)(4, 13, 8)(3, 7)(1).
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The bijective step is now to replace the path from n to 1 with the collection of cycles P ′. In particular, our example

tree from above now looks as shown below:

1 7 3 8 13 4 10 15

9 12 2 11

5

14 6

Notice that the new graph will always have a loop at 1 and a loop at 15. After we do this process, there will be

exactly one edge coming out of each vertex (because this was true for all vertices except 1 to start, and then rewriting

the path as a combination of cycles creates a permutation on those path vertices), so we can define a function f by

setting f (i) = j if i points to j . This is a map from [n] to [n] that fixes 1 and n, so there are exactly nn−2 such

functions. To recover the original tree, we find the set of cycles in our function, cyclically orient them so that the

smallest element comes first, and then concatenate them from largest first element to smallest – that gives us the

original path in our tree, and we recover the tree by replacing the set of cycles with our path.

24 April 8, 2019
Our second problem sets were returned to us today, so we’ll be doing some more student presentations.

Problem 192

Show that the number of noncrossing partitions of {1, 2, · · · , n} is the Catalan number Cn.

We’ll show two solutions for this problem:

Solution by Vanshika Jain. We construct a bijection between a Dyck path of length 2n and a noncrossing partition

of [n]. As an example, consider the partition (13|2|478|56) for n = 8. The idea is that we want every element to

correspond to 2 letters in our Dyck path, so for each part of the partition with more than 1 element, draw an extra

line from the first to last number in the partition (so now we have closed cycles):

1 2 3 4 5 6 7 8

Now, we construct our Dyck path by looking at the elements i ∈ {1, 2, · · · , n} in order:

• If there are two arcs from i that go to the right, we write UU,

• if there are two arcs from i to the left, we write DD,

• if there are no arcs from i , we write UD, and

• if there is one arc in each direction from i , we write DU.

For example, in the above diagram, we get the Dyck path UUUDDDUUUUDDDUDD. This is a Dyck path on

Us and Ds, because Ds correspond to ending arcs and Us to starting them (if we think of “no arc” as a self-loop).

This is a bijection because we can break up any Dyck path of length 2n into n two-character sequences, and then we

draw arcs by taking Ds from left to right and connecting them to the nearest U before them. Then deleting the long

edges from cycles and removing self-loops gives us the original set-partition.
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Solution by Sanzeed Anwar. We’ll construct a bijection in the opposite direction. Start with a Dyck path of length

2n, and mark all of the “up” steps in order from 1 to n. Then we can label the “down” steps by matching steps at the

same level – for example, here is the labeling corresponding to the Dyck path UUDUDUUDDD:

1

2 3 4

5

2 3

5

4

1

Our partition then consists of the maximal continual sequences of down steps – in this case, we have the

partition (145|2|3). This partition will always be noncrossing, because if we have two indices i , j that are adjacent in a

part of the partition, then all up steps between i and j must also be matched before j to avoid “blocking” i . So there

is no way to connect an element k ∈ (i , j) to an element ` > j , meaning no crossing i < j < k < ` exists.

To reverse this map, arrange the parts of a partition in descending order of largest element, and so that the

elements decrease within each part. Then insert the part of the partition {a1 > a2 > · · · } immediately after the a1th

up step. This always yields a valid Dyck path because only down steps labeled k or less can show up before the kth

up step.

Problem 193

Find a closed formula for the number of saturated chains from the minimal element 0̂ = (1|2| · · · |n) to the maximal

element 1̂ = (1 · · · n) in the partition lattice Πn.

Solution by Congyue Deng. Following the path from 0̂ to 1̂ along the saturated chain corresponds to repeated merging

of two parts into one: for example, we can go from (1|2|3|4|5) to (12|3|4|5) to (124|3|5) to (124|35) to (12345).

This process always takes (n − 1) steps, because we decrease the number of parts from n to 1. Furthermore, on the

kth step, there are
(
n−k+1
2

)
ways to merge blocks, since we have n − k + 1 blocks. Thus, our answer is

n−1∏
k=1

(
n − k + 1

2

)
=

(n − 1)!n!

2n−1

(by expanding out the binomial coefficients and multiplying each term across all k).

Problem 194

Find a bijection between partitions with odd distinct parts and self-conjugate partitions.

Solution by Sophia Xia. Consider the Young diagram representation of a partition, and bend each odd/distinct partition

at the middle and join them together along the diagonal, as shown below by example:

(6, 4, 4, 4, 1, 1) = ⇐⇒ (11, 5, 3, 1) =
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Since partitions with odd distinct parts differ by at least 2, the lengths of the left “arms” of each color will differ by at

least 1, meaning that later arms will not extend farther than earlier ones and that we do have a valid Young diagram.

This procedure is reversible, so we do have a bijection, showing the desired result.

Problem 195

Find the number of paths in Young’s lattice of length 2n from 0̂ back to itself (in any sequence of up and down

steps).

Solution by Yogeshwar Velingker. We wish to consider the set of words of length 2n with n Us and n Ds and compute

the coefficient of 0̂ in
∑

W wordW 0̂. Recall that for a sequence of Us and Ds, such as DDUDUU0̂, each U needs to

be matched with a D on its left: But if we have an arbitrary word, that just means we can match any pair of indices

that we want; in addition, any matching of n pairs corresponds to a specific word, because the smaller elements of the

pairs are the Ds and the larger elements are the Us. So this problem reduces to finding the number of ways to pair

{1, 2, · · · , 2n} into n pairs: there’s (2n − 1) ways to match 1, then (2n − 3) ways to match the next number in the

list that hasn’t been matched, then (2n − 5), and so on, which yields a final answer of (2n − 1)!! .

Problem 196

Show that the Bell number (that is, the number of partitions of n into sets) is given by

B(n) =
1

e

∞∑
k=0

kn

k!
.

Solution by Wanlin Li. Recall that B(n) =
∑n

m=0 S(n,m), where S(n,m) is the number of ways to partition n into m

subsets. From class, we know that

xn =

n∑
m=0

S(n,m)(x)m,

where (x)m denotes the falling power of x . Replacing x by k and taking constraints on S and the binomial coefficient

into account, we find that

kn =

n∑
m=0

S(n,m)

(
k

m

)
m! =

k∑
m=0

S(n,m)

(
k

m

)
m!,

Plugging this into the right-hand side, we have

1

e

∞∑
k=0

kn

k!
=

1

e

∞∑
k=0

k∑
m=0

S(n,m)
(
k
m

)
m!

k!
.

Expanding the binomial coefficient and switching the order of summation yields

=
1

e

∞∑
k=0

k∑
m=0

S(n,m)

(k −m)!
=

1

e

∞∑
m=0

∞∑
k=m

S(n,m)

(k −m)!
=

∞∑
m=0

S(n,m) =

n∑
m=0

S(n,m),

which is exactly the Bell number B(n), as desired.

Problem 197

Find a bijection between distinct partitions of n and odd partitions of n.
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Solution by Sarah Wang. Suppose we start with a partition n = λ1+ · · ·+λn with all distinct parts, and factor out the

powers of 2 from each part, writing λi = λoddi 2mi . Then the corresponding partition of n with odd parts includes each

λoddi with multiplicity 2mi (preserving the sum, since the 2mi copies of λoddi add up to λi). For example, 13 = 5+4+3+1

becomes 13 = 5 + 3 + 1 + 1 + 1 + 1 + 1.

For the reverse procedure, start with an odd partition n = λa11 λ
a2
2 · · · , where ai is the multiplicity of each λi . Now

expand each ai (uniquely, using the base-2 representation) as a sum of powers of 2, and replace λa11 with
∑
λ1 · 2m,

where
∑

2m = a1. For example, 22 = 5 + 5 + 5 + 3 + 3 + 1 becomes 22 = 10 + 6 + 5 + 1.

Problem 198

Construct a non-recursive description of the Fibonacci lattice.

Solution by Chiu Yu Cheng. First of all, note that the number of compositions of n (partitions of n, but where order

matters) with all parts equal to 1 or 2 is the Fibonacci number Fn+1, because we either start a composition with 1 or

2 and then fill in the rest in one of Fn or Fn−1 ways (respectively) by induction. (The base cases n = 1, 2 are clear.)

Consider a graph where every vertex is a composition of some nonnegative integer n with only 1s and 2s, where two

vertices v1, v2 are connected (in poset language, v1 l v2) if v2 is obtained by v1 by either (1) inserting a 1 anywhere

to the left of the leftmost 1 in v1, or (2) changing the leftmost 1 to a 2. In other words, v1 is obtained from v2 by

either (1*) removing the leftmost 1 or (2*) changing a 2 to a 1, when 2 is on the left of the leftmost 1.

We claim this graph is isomorphic to the Fibonacci lattice. Two vertices are only connected if the sum of the

composition parts differ by 1, so we can define the rank to be that sum. From here, we just need to check that

the recursive definition of the Fibonacci lattice is satisfied (in which we flip the elements from rank (n − 1) up, and

then add a new edge from each element of rank n). Indeed, the elements that start with 1 of rank (n + 1) are only

connected to the corresponding elements of rank n with that 1 removed (because we couldn’t have used operation

(2) to get to them), and the elements that start with a 2 correspond to the elements of rank (n− 1) with that initial

2 removed. This latter claim is a bit harder to verify: if we have a composition w of (n − 1) and the corresponding

composition 2 +w of (n+ 1), notice that w is connected to a composition w ′ of n through operation (1) (resp. (2))

if and only if applying operation (2) (resp. (1)) to n can give us 2 + w .

Finally, we define the meet and join operators more explicitly. Note that a ≤ b if and only if there is a sequence

of (1) and (2) steps from a to b. We define the “join” operation as follows: if either of x and y start with 1, then

it has a unique lower neighbor, meaning that (1 + x) ∨ y = x ∨ y (and similarly x ∨ (1 + y) = x ∨ y). Meanwhile, if

both x and y start with a 2, the subgraph with all compositions starting with 2 is isomorphic to the initial graph, so

(2 + x) ∨ (2 + y) = x ∨ y . The join operation is therefore defined with these recursive relations and x ∨ x = x . On

the other hand, for “meet,” notice that every composition of n terms sits below 2n = 2 + · · · + 2, so a composition

with n terms and a composition with m terms have a common upper neighbor 2 max(m, n) = 2 + 2 + · · ·+ 2. We can

then look at the finitely many elements of the Fibonacci lattice below it and find the one that is minimal to obtain

x ∧ y .

25 April 10, 2019
We’ll start today with a few more problem presentations before moving on to the next topic.
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Problem 199

Show that the Bell numbers B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, B(5) = 52, · · · can be

calculated as the first (and also last) entries in rows of the following triangle:

1

1 2

2 3 5

5 7 10 15

15 20 27 37 52

...
...

...
...

...
...

In this triangle, the first number in each row (except the first row) equals the last number in the previous row,

and any other number equals the sum of the two numbers to the left and above it.

Solution by Fadi Atieh. We’ll prove this by induction; the base case is easy because B0 = B1 = 1. For the induction

step, assume that we have already built k rows of this triangle. We know that the leftmost entry of the kth row is

Bk−1, and the rightmost entry is Bk , so the k + 1th row begins with Bk . The next entry is Bk +Bk−1, and in general

we can use the Bell triangle definition to recursively push any entry up and to the left until we reach a sum of terms

on the left diagonal.

we just need to figure out the actual recurrence relation. Notice that Bk+1, the rightmost entry in the (k + 1)th

row, is the sum of the term above it and to its left, each of which is the sum of the terms above them and to their

lefts, repeating until we get to one of the leftmost diagonal entries Bi . The total number of ways we can reach Bi is

the number of ways to go up (k − i) times and left i times, so we arrive at

Bk+1 =

k∑
i=0

(
k

i

)
Bi .

This is indeed the recursive formula for Bell numbers: we pick k − i elements out of {1, · · · , k} to be in the same

partition as (k + 1) in one of
(
k
k−i
)

=
(
k
i

)
ways, and then we partition the remaining numbers in one of Bi ways. Thus

by induction, Bk+1 is indeed the next Bell number, as desired.

Problem 200

Show that the Stirling numbers satisfy the recurrence relations

S(n + 1, k) = kS(n, k) + S(n, k − 1), c(n + 1, k) = nc(n, k) + c(n, k − 1).

Solution by Ramya Durvasula. Recall that S(n, k) counts the number of ways to place n numbers into a set-partition

with k groups. If we want to partition [n + 1] into k groups, we can place (n + 1) into its own partition. Then the

remaining integers must be partitioned into (k−1) groups, which can be done in S(n, k−1) ways. On the other hand,

(n + 1) may not be on its own, in which case we first partition the numbers 1 through n into k sets. Then we put

(n + 1) into one of the k sets in one of k ways, so this process has kS(n, k) possible choices. Adding these together

yields S(n + 1, k) = kS(n, k) + S(n, k − 1), as desired.

Similarly, c(n, k) counts the number of permutation of n numbers with k cycles. If we are trying to compute

c(n + 1, k), again we think about where (n + 1) goes: if it goes in its own cycle, we have (k − 1) cycles left and

thus c(n, k − 1) ways to finish. On the other hand, if (n + 1) is in a cycle, first create k cycles with the numbers 1
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through n in one of c(n, k) ways. Then we can add n + 1 to one of the n spots in existing cycles (since a cycle of

length ` has ` possible insertion points), accounting for the remaining nc(n, k) ways. Putting these together yields

c(n + 1, k) = nc(n, k) + c(n, k − 1), as desired.

Problem 201

Define the operators X : f (x) → xf (x) and D : f (x) → f ′(x). Define fn(x) = (X + D)n(1) (for example,

f0(x) = 1, f1(x) = x, f2(x) = x2+ 1, f3(x) = x3+ 3x). Find a closed-form expression for the constant term fn(0).

Solution by Mathew Ganatra. The recursive formula for these polynomials is fn(x) = xfn−1(x)+f ′n−1(x) – in particular,

plugging in x = 0, fn(0) = f ′n−1(0). For sake of finding patterns, we write out some more values of fn(x):

f4(x) = x4 + 6x2 + 3, f5(x) = x5 + 10x3 + 15x, f6(x) = x5 + 15x4 + 45x2 + 15,

f7(x) = x7 + 21x5 + 105x3 + 105x, f8(x) = x8 + 28x6 + 210x4 + 420x2 + 105.

From those expressions, we can extrapolate to the formula

fn(x) =

bn/2c∑
k=0

xn−2k
(n)2k
k!2k

.

We prove this formula by induction: the base case can be observed from our examples above, and for the inductive

step, notice that

fn+1(x) = (X +D)

bn/2c∑
k=0

xn−2k
(n)2k
k!2k

=

bn/2c∑
k=0

xn+1−2k
(n)2k
k!2k

+

bn/2c∑
k=0

(n − 2k)xn−1−2k
(n)2k
k!2k

=

bn/2c+1∑
k=0

xn+1−2k
(

(n)2k
k!2k

+ (n + 2− 2k)
(n)2k−2

(k − 1)!2k−1

)
.

The bounds of the sum are correct, because if n is even, then plugging in k = n
2 + 1 makes the coefficient zero, so

we can indeed just sum up to b(n + 1)/2c. Thus we just need to verify that this coefficient is correct for generic k :

(n)2k
k!2k

+ (n + 2− 2k)
(n)2k−2

(k − 1)!2k−1
=

(n)2k−2
k!2k

((n − 2k + 2)(n − 2k + 1) + (n − 2k + 2)(2k))

=
(n)2k−2
k!2k

· (n − 2k + 2)(n + 1)

=
(n + 1)2k
k!2k

,

completing the induction and proof. To extract the answer, we’re only concerned with the last term of our formula

for fn: if n is odd, the constant term is 0 , and if n is even, our expression simplifies to

fn(0) =
(n)n

(n/2)!2n/2
=

n!

2 · 4 · · · · n = (n − 1)!! .

It turns out there is a connection between this problem and the Problem 195 – the key relations in both cases are
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that the up and down operators satisfy DU−UD = I, D(∅) = 0. In addition, the coefficients (n)2k
k!2k

in fn(x) that we’ve

just arrived count the number of ways to take 2n steps in Young’s lattice and end up on the kth level.

But now it’s time to move on to a new topic – we’ll next discuss spanning trees of graphs. From here on, the

notation G = (V, E) means that we have a graph with a set of vertices V and edges E between them. Until otherwise

specified, we will not allow loops (edges where both endpoints are the same vertex), but we will allow multiple edges

between the same two vertices.

Definition 202

Let G = (V, E) be a graph. A spanning tree of G is a connected subgraph T = (V, E′) which is also a tree. Let

T (G) denote the number of spanning trees of G.

In other words, to get a spanning tree T , we take a subset of the edges E such that the vertices V remain

connected. Notably, T has no cycles, and repeated edges aren’t allowed either (because they would form a cycle).

Thus, we pick some |V | − 1 edges that “span” or connect all vertices of the original graph.

Example 203

Consider the graph G below:

3 4

1 2
a

e

f

b d
c

We can check that T (G) = 12, because there are 4 ways to form a tree without the double edge and 2 · 2 · 2 ways

to form a tree that does use it.

One other case we’ve already studied is T (Kn) = nn−2 (there are nn−2 spanning trees for the complete graph on n

vertices), because any labeled tree will work. Counting spanning trees may look difficult from what we’ve done so far,

but it turns out there is a general formula for doing this, which we’ll discuss next time!

26 April 12, 2019

Today, we’re going to start talking about the matrix tree theorem. Recall, that if we have a graph G = (V, E) with

no loops but potentially multiple edges, we define a spanning tree to be a subgraph T = (V, E′) (for some subset

E′ ⊂ E) which is a tree on the vertices V . Our goal is to find a systematic way to count these spanning trees.

For that, we’ll turn to linear algebra – our first step is to associate certain matrices with graphs. For notational

purposes, number the vertices V from 1 to n, and also label the edges E from 1 to m = |E|.

Definition 204

The incidence matrix of a graph G = (V, E) is the n × m matrix C = (cie), where cie = 1 if i is incident to e

and 0 otherwise.

For example, letting the columns correspond to the edges a, b, c, d, e, f , respectively, the incidence matrix of the
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graph in Example 203 can be written as

C =


1 1 0 0 0 0

1 0 1 1 1 0

0 1 1 1 0 0

0 0 0 0 1 1

 .

Definition 205

The adjacency matrix of a graph G is the n× n matrix A = (ai j), where ai j is the number of edges connecting i

to j .

Notice that the diagonal entries of A are always 0, because we’re assuming we have no self-loops. For our example,

we have

A =


0 1 1 0

1 0 2 1

1 2 0 1

0 1 1 0

 .
The next definition is the one we really care about:

Definition 206

The Laplacian matrix of a graph G is the n× n matrix L = D−A, where D is the diagonal matrix with diagonal

entries di = degG(i).

For our example, this gives us the Laplacian matrix

L =


2 −1 −1 0

−1 4 −2 0

−1 −2 4 1

0 −1 −1 2

 .
Since we’re using undirected graphs in this discussion, both the Laplacian and adjacency matrices are symmetric. Also,

all row sums of L are 0 (since for a given vertex, each adjacent edge contributes +1 towards the diagonal entry in D

but also contributes −1 to an off-diagonal entry in −A), meaning that the determinant of L is 0. We’re now ready to

formulate the main result:

Theorem 207 (Matrix tree theorem)

Fix i ∈ {1, · · · , n}, and define the reduced Laplacian matrix

L̃ = Li = L with the ith row and column removed.

Then the number of spanning trees of G is equal to det L̃.

In particular, this determinant does not depend on the choice of i , because of the following more general fact:
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Fact 208

For any symmetric matrix n×n matrix B with row sums 0, the determinants of Bi (known as principal cofactors
of B) are all equal. Moreover, if B’s eigenvalues are µ1, · · · , µn−1, µn = 0 (there is always a zero eigenvalue

because of the zero row sum), those determinants are equal to µ1···µn−1
n .

The matrix tree theorem is also called Kirchhoff’s theorem, and it is related to Kirchhoff’s laws of electricity

(which were described in the 1840s). But the theorem was first proved by Borcherdt in 1860, and it’s also closely

related to Sylvester’s work from 1857. Before diving into the proof, we’ll show some applications of the result:

Example 209

Continuing to follow Example 203, let’s compute the number of spanning trees using the matrix tree theorem.

We’ll set i = 2 for ease of computation (since vertex 2 has lots of edges coming out of it, and we want to keep our

determinant calculation easy); the second principal cofactor (removing the second row and column) of the Laplacian

matrix is

L̃ =


2 −1 0

−1 4 −1

0 −1 2

 =⇒ det L̃ = 16− 2− 2 = 12,

which is the answer that we’ve previously derived! And we can check that other principal cofactors of L also gives us

a determinant of 12.

Remark 210. The eigenvalues of the adjacency matrix A(G) form the spectrum of the graph G, and spectral graph
theory studies properties of graphs in terms of this spectrum. However, it’s important for us not to confuse the

eigenvalues λi of the adjacency matrix with the eigenvalues µi of the Laplacian matrix. There’s only one specific case

where it’s easy to relate them – if G is d-regular, all vertices have the same degree. Then L = dI −A, so µi = d − λi
for all i .

Example 211

Next, let’s derive Cayley’s formula for the number of labeled trees on n vertices (equivalently, the number of

spanning trees of Kn).

If G is the complete graph on n vertices, then the Laplacian matrix has all degrees n − 1 and adjacency matrix all

non-diagonal entries 1, so

L =


n − 1 −1 · · · −1

−1
. . .

...
...

. . .
...

−1 −1 · · · n − 1

 .

To find the number of spanning trees, we must compute det L̃ – regardless of which principal cofactor we compute,

we want the determinant of an (n− 1)× (n− 1) matrix with (n− 1)s on the diagonal and −1s everywhere else. The

key observation is that all entries of L̃ − nIn−1 are −1, so L̃ − nIn−1 has rank 1. Thus all eigenvalues of the matrix

except one are equal to 0, and the trace of the matrix is 1− n, so the last eigenvalue is 1− n.
Therefore, if L̃− nIn−1 has eigenvalues 0, 0, · · · , 0,−n+ 1, then the (n− 1) eigenvalues of L̃ (adding back nIn−1)

are n, n, · · · , n, 1. Thus the determinant of L̃, the product of the eigenvalues, is nn−2, as desired.
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In general, the matrix tree theorem doesn’t tell us that there will be a nice formula for the number of spanning

trees, but we actually get a nice closed form pretty often. To see one way in which this manifests, let G be a graph on n

vertices without any multiple edges. We’ll relate spanning trees of G to that of its complementary graph G = (V, E)

(in which we include an edge between two vertices in G if and only if there is no edge between those vertices in G).

To do that, define a new graph G+ from a graph G by adding an extra vertex 0 (thinking of this as a root) which

is connected to all of the other vertices of G. (Notice that G+ is connected, even if G isn’t.) Then assign a monomial

weight to each spanning tree of G+ to get a graph polynomial

FG(x) =
∑

T spanning
tree of G+

xdegT (0)−1.

(The xn coefficient of FG essentially tells us about how many connections to the root are needed to make T ; smaller

exponents resemble spanning trees of G more.) Then the number of spanning trees of G is FG(0)
n , because plugging in

x = 0 into the graph polynomial only keeps the trees T where 0 is a leaf, and then there are n ways to attach 0 (we

may notice that this has many similarities to our proof of the Cayley formula).

Theorem 212 (Reciprocity Theorem (Bedrosian, 1964))

If G is the complementary graph to G (as defined above), then the graph polynomials satisfy

FG(x) = (−1)n−1FG(−x − n).

The proof is left as an exercise to us – there’s a combinatorial proof, or we can express FG in terms of the matrix

tree theorem and show that two determinants are equal.

Example 213

Let’s demonstrate the power of the reciprocity theorem by finding the number of spanning trees of the complete
graph Kn (recovering Cayley’s formula) and of the complete bipartite graph Km,n (a graph on (m+ n) vertices

where there are mn edges between m vertices on one side and n vertices on the other, and no other edges).

• For the complete graph Kn, let On be the empty graph on n vertices. It has no spanning trees (or even edges),

but O+n has an extra vertex 0 connected to each of 1, 2, · · · , n, so it has a single spanning tree which uses all n

edges to the vertex 0. Thus, the graph polynomial for the empty graph is FOn(x) = xn−1, and by the reciprocity

theorem, that means that

FKn(x) = (−1)n−1(−x − n)n−1 = (x + n)n−1.

Plugging in x = 0, we indeed find that

# spanning trees of Kn =
nn−1

n
= nn−2.

• Next, for the complete bipartite graph, start with the disjoint union of two cliques Km ∪Kn (in which we have a

set of m vertices all connected, and another set of n vertices all connected, with no edges between the two sets).

To compute the graph polynomial of Km ∪ Kn, notice that once we add a vertex 0, we get a spanning tree of

(Km∪Kn)+ by picking a spanning tree of (Km)+ and also a spanning tree of (Kn)+. Thus, the graph polynomials

almost multiply directly, except that we only want to subtract off the −1 in the exponent once instead of twice:

FKm∪Kn(x) = FKm(x) · FKn(x) · x = x(x +m)m−1(x + n)n−1.
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The complement of this graph is the complete bipartite graph Km,n, so by the reciprocity theorem (noting that

Km,n and Km ∪Kn both have m + n vertices)

FKm,n(x) = (−1)m+n−1(−x −m − n)(−x − n)m−1(−x −m)n−1 = (x +m + n)(x + n)m−1(x +m)n−1

Calculating the constant term FKm,n(0) and dividing by the total number of vertices, we arrive at our result:

Proposition 214

The complete bipartite graph Km,n has mn−1nm−1 spanning trees.

As an exercise, we can try to prove this combinatorially as well. We’ll discuss more examples next lecture!

27 April 17, 2019
We’ll continue our discussion of the matrix tree theorem today. Recall that if we have a graph G with n vertices, we

define the Laplacian matrix L = (Li j) whose entries are

Li j =

degG(i) i = j,

−number of edges from i to j i 6= j.

We can alternatively write L = D−A, where D is the diagonal matrix of degrees and A is the adjacency matrix of G.

Last time, we defined the reduced Laplacian L̃ = Li , which is the Laplacian matrix without row and column i . Then

the matrix-tree theorem says that the number of spanning trees in G is just the determinant of L̃.

We’ll go through a proof of this theorem today, and we’ll even generalize the result later. But first we’ll discuss

some more applications and examples:

Definition 215

Let G = (V1, E1) and H = (V2, E2) be two graphs. Define the direct product G ×H of G and H to be the graph

(V1 × V2, E3), where edges are of the form

E3 = {(i , j), (i ′, j ′) : i = i ′, (j, j ′) ∈ E2 or j = j ′, (i , i ′) ∈ E1}.

For example, the product of two line graphs is a grid graph.

Lemma 216

Suppose the adjacency matrix A(G) of G has eigenvalues {α1, · · · , αm}, and the adjacency matrix A(H) of H has

eigenvalues {β1, · · · , βn}. Then the adjacency matrix A(G×H) has eigenvalues {αi +βj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

This is an exercise in linear algebra – the idea is to notice that the adjacency matrix A(G×H) is a tensor product

A(G ×H) = A(G)⊗ I + I ⊗ A(H),

so the tensor product of an eigenvector of A(G) and A(H) will be an eigenvector of A(G×H). It turns out this lemma

doesn’t help us very much with the matrix tree theorem except when our graphs are regular:
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Proposition 217

Let G be a d1-regular graph with eigenvalues {αi}, and let H be a d2-regular graph with eigenvalues {βj}. Then
G ×H is (d1 + d2)-regular, and its eigenvalues are {d1 + d2−αi − βj}. Thus, number of spanning trees of G ×H
can be found by multiplying all eigenvalues (except the one at 0) and dividing by the number of vertices.

This allows us to find the number of spanning trees of some more complicated graphs:

Definition 218

The hypercube graph Hd is the 1-skeleton of a d-dimensional cube

In other words, we get Hd by taking the product of d copies of a 2-verterx chain (for example, the vertices of H3
are the 8 vertices of a cube). Because Hd is a d-regular graph for any d , Proposition 217 applies to the hypercube

graph. The adjacency matrix of a 2-vertex chain is

A =

[
0 1

1 0

]
=⇒ λ = ±1.

Thus, repeatedly applying Lemma 216, the adjacency matrix of the hypercube graph A(Hd) has 2d total eigenvalues

of the form

{ε1 + ε2 + · · ·+ εd , εi ∈ {−1, 1}}.

The smallest eigenvalue is −d , and the largest eigenvalue is d ; in general, the eigenvalue −d + 2k shows up with

multiplicity
(
d
k

)
, meaning that (because Hd is d-regular), the Laplacian has eigenvalue 2k of multiplicity

(
d
k

)
(for any

0 ≤ k ≤ d). Applying the matrix-tree theorem yields the following result:

Corollary 219

The hypercube graph Hd has
1

2d

d∏
k=1

(2k)(dk) = 22
d−d−1

d∏
k=1

k(dk)

total spanning trees.

For example, taking d = 3, the number of spanning trees for the skeleton of a cube is

28−3−1 · 13 · 23 · 31 = 384.

As a sidenote, generalizing this result by taking the product of arbitrary chains (so that we have the skeleton of an

arbitrary d-dimensional box instead of the hypercube) does not work very cleanly because our graph is no longer regular.

But if we take the product of cycles instead (so that we have a torus), a similar product formula can be obtained.

Remark 220. Some time ago, Richard Stanley proposed the problem of finding a combinatorial proof for Corollary 219.

This is pretty difficult, but it was recently solved (around 2012) by Bernardi, though an explicit bijective construction

still hasn’t been found.

In the rest of this lecture, we’ll start on a proof of the matrix tree theorem.

Proof of Theorem 207. Our first step is to modify our adjacency matrix slightly. Direct each edge of the graph

arbitrarily – for example, we can orient the edges of the graph in Example 203 as shown:
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3 4

1 2
a

e

f

b d
c

If G has n vertices and m edges, define the oriented incidence matrix of G to be the n ×m matrix B = (Bie),

where (for any i ∈ V and e ∈ E) we have

Bie =


1 i is the source of edge e,

−1 i is the target of edge e,

0 otherwise.

For example, the oriented adjacency matrix for the graph above looks like

B =


1 −1 0 0 0 0

−1 0 −1 −1 1 0

0 1 1 1 0 1

0 0 0 0 −1 −1

 .

Lemma 221

If B is the oriented adjacency matrix of G, then the Laplacian of G is L = BBT .

Proof. By definition, (BBT )i j is the dot product of the ith and jth rows of B. When i = j , we get a contribution

of (±1)2 = 1 from each adjacent edge, which totals to the degree of the corresponding vertex. On the other hand,

when i 6= j , we get ±1 · ∓1 = −1 each time an edge is directed from i to j or vice versa, so the off-diagonal entries

indeed count the (negative) number of edges between i and j . (We can see now why the orientation of our edges is

arbitrary.)

In particular, if B̃ is the oriented incidence matrix with row i removed, the same argument also tells us that

L̃ = B̃B̃T .

To compute the determinant of the left-hand side (which is our goal), we can use the following result:

Theorem 222 (Cauchy-Binet formula)

Let A be a k ×m matrix and B be an m × k matrix, where k ≤ m. Then

det(AB) =
∑

S⊆{1,2,··· ,m}
|S|=k

det(AS) det(BS),

where AS is the k × k submatrix of A with columns in S and BS is the k × k submatrix of B with rows in S.
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Proof. Consider the following block matrix product (which we can verify by direct computation):[
Ik A

0 Im

][
A 0

−Im B

]
=

[
0 AB

−Im B

]
.

Since all terms in this product are square matrices, we can take determinants of each term. The determinant of the

first one is 1 (because it is an upper triangular matrix with diagonal entries 1), and the determinant of the right matrix

is ± det(AB). The claim is that the determinant of the middle matrix is exactly the right hand side of Cauchy-Binet

up to that same ± sign. We can illustrate this claim by example – for example, consider k = 2, m = 4, shown below:

a11 a12 a13 a14 0 0

a21 a22 a23 a24 0 0

−1 0 0 0 b11 b12

0 −1 0 0 b21 b22

0 0 −1 0 b31 b32

0 0 0 −1 b41 b42


.

Apply the usual definition of the determinant as a sum over permutations of products, and recall that permutations

correspond to rook placements with a rook on each row and column. In particular, we should have one rook in each of

the last k = 2 columns, after which we must pick the m− k = 2 −1s in the bottom m rows that don’t yet have rooks,

and then we finish by placing rooks in the top k = 2 rows in the remaining columns. Another way to say this is that we

pick some 2× 2 submatrix of A and B, and in fact in order to get a nonzero contribution with the −1s, we must pick

the same set of indices S in A’s columns and B’s rows. Finally, we can check that the signs all “magically work out”

(so that the sign on each product det(AS) det(BS) is the same as the sign of ± detAB in the matrix

[
0 AB

−Im B

]
),

which proves the result.

We’re almost done, and we’ll see how to use Cauchy-Binet to prove the matrix tree theorem next time.

28 April 19, 2019

Last lecture, we found that we could write the reduced Laplacian matrix of a graph G as L̃ = B̃ · B̃T , where B̃ is the

oriented incidence matrix of G with one row removed. We proved the Cauchy-Binet theorem last time, which allows

us to write det(L̃) as a sum involving B̃ and B̃T . If G has n vertices and m edges, then B̃ is an (n − 1)×m matrix,

and Cauchy-Binet tells us that

det(L̃) = det(B̃ · B̃T ) =
∑
S⊂E
|S|=n−1

(
det B̃S

)2
,

where we’ve used the fact that detA = detAT for a square matrix A. To finish the proof, we just need to show that

this is indeed the number of spanning trees of G, and we can make the promising observation that subsets of the edges

of size n − 1 can correspond to trees.
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Lemma 223

Let G = (V, E) be a graph, and let S ⊂ E be a subset of the edges with |S| = n − 1. Then

det B̃S =

±1 S is the edges of a spanning tree,

0 otherwise.

This lemma implies the matrix tree theorem, because each spanning tree contributes (±1)2 = 1 to the Cauchy-Binet

sum, and all other subsets S give 0.

Proof. For illustration, consider the graph that we’ve been using as an example throughout these past few lectures:

3 4

1 2
a

e

f

b d
c

Recall that the oriented incidence matrix (with columns a, b, c, d, e, f in that order) is

B =


1 −1 0 0 0 0

−1 0 −1 −1 1 0

0 1 1 1 0 1

0 0 0 0 −1 −1

 .

First, we show that if S is not the set of edges in a spanning tree, then det B̃S = 0. Indeed, notice that the column

vectors in B corresponding to edges a, b, and c in our example are linearly dependent (namely, ~a+~b− ~c = 0), so the

same is true about the corresponding column vectors in B̃ (since we are just removing a row). Because the columns

are linearly dependent, our matrix is singular and has determinant zero. More generally, if our subset of edges contains

some cycle C of edges e1, · · · , ek , then there is some linear relation where

±~e1 ± ~e2 · · · ± ~ek = 0,

where the ±s are + if the edges agree with C’s orientation and − otherwise. Since any subset S of (n − 1) edges

which is not a spanning tree contains some cycle, any such subset will have det B̃S = 0, as desired.

Now let’s try to investigate the other case (where the edges of S form a spanning tree). We can check that if we

remove any row of our example B and then take the determinant formed by columns a, c, f , we always get ±1. The

way we’ll explain this is that in a spanning tree, there is always some vertex which is a leaf, so the corresponding B̃S

matrix (as long as we don’t remove that row) will only have one nonzero entry (which is ±1).

Formally, let S be the set of edges that form a spanning tree. All trees on at least two vertices have at least two

leaves, so pick any leaf ` such that ` is not the index of the removed row. Then the `th row of the matrix B̃S has only

one nonzero entry, and it is a ±1. Expanding out the determinant along this row, we find that

det(B̃S) = ± detB′,

where B′ is an (n−2)× (n−2) matrix corresponding to a spanning tree on the remaining (n−1) vertices. Inductively,

we can simplify this until we get to a tree on 2 vertices, which always has determinant ±1, so det(B̃S) = ±1, as
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desired.

With that, we’ve proved the matrix tree theorem, and we’ll next think about some generalizations. First, we’ll state

a weighted version of the matrix tree theorem. Suppose that for every edge e of our graph G, we assign a weight

xe , and define the weight of a spanning tree to be

wt(T ) =
∏

e edge of T

xe .

Note that unlike the Cayley formula (which involves a product over vertex weights), this is a product over edge

weights. Analogously to Cayley, though, we can define a polynomial

FG =
∑

T spanning tree

wt(T ),

and our goal is to determine this polynomial FG .

Definition 224

Given a weighted graph (G, {xe}), the weighted Laplacian L = (Li j) of the graph is defined via

Li j =


∑

e incident to
vertex i

xe i = j,

−xe e = (i , j), i 6= j,

0 otherwise

.

With this generalization, a similar result to the ordinary matrix tree theorem holds:

Theorem 225 (Weighted matrix tree theorem)

For any weighted graph G with weighted Laplacian L, we have FG = det(L̃), where L̃ is the determinant of L with

ith row and column removed for any i .

For example, consider the weighted version of the graph we’ve been using in the unweighted case, shown below:

3 4

1 2
x

t

u

y z

Our weighted Laplacian matrix is then given by

L =


x + y −x −y 0

−x x + z + t −z −t
−y −z y + z + u −u
0 −t −u u + t

 ,
and the weighted matrix tree theorem says that any 3× 3 minor gives us the sum of the weights of all spanning trees.

Proof. One way to think of a weighted graph is as a network, where edge weights are conductances. But for the

purposes of our proof, notice that if the edge weights are all nonnegative integers, then a weight of k is equivalent
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to having k edges between the relevant vertices (by linearity of the determinant). Thus in this case, the polynomial

FG is just the number of spanning trees of Gm, the graph where each weighted edge e is replaced by xe unweighted

copies of the edge.

Therefore, the matrix tree theorem implies the weighted matrix tree theorem whenever all edge weights are non-

negative. But that means the more general result must also hold in all cases: we have two polynomials that agree on

infinitely many points, so they must be the same polynomial.

Now that we’ve understood arbitrary edge weights, we’ll add another layer of complexity by considering directed
graphs. Let G be a digraph (directed graph) with no loops, but where multiple edges are allowed.

Definition 226

Let G be a digraph (directed graph), where multiple edges are allowed but not self-loops. An out-tree oriented

at a vertex r is a spanning tree of G in the usual undirected sense, except that for every vertex i , all edges in the

shortest path from r to i are directed away from the root. An in-tree has the same definition, except that all

edges in the path from r to i must be directed towards the root instead.

Note that the number of out-trees and in-trees may not be equal (especially rooted at a given vertex r), but we

claim that both of these counts can still be written as determinants, as long as we redefine our Laplacian matrix yet

again:

Definition 227

For a directed graph G, the outdegree of a vertex v is the number of edges leaving v , and the indegree is the

number of edges entering v . Define the matrices Lin = (Lin)i j and Lout = (Lout)i j via

(Lin)i j =

indegree(i) i = j,

−number of directed edges i → j i 6= j,

(Lout)i j =

outdegree(i) i = j,

−number of directed edges i → j i 6= j.

In other words, we can write Lout = Dout −A and Lin = Din −A, where A is the directed adjacency matrix. These

matrices may not be symmetric anymore, but they still have some important properties – for example, the column

sums of Lin are zero, but not necessarily the row sums, and the row sums of Lout are zero, but not necessarily the

column sums.

Definition 228

For a square matrix L, define the cofactor Li j = (−1)i j det(L∗), where L∗ is the matrix L with the ith row and

jth column removed.

Theorem 229 (Directed matrix tree theorem)

For any i ∈ {1, 2, · · · , n}, the number of out-trees rooted at r is the cofactor (Lin)i r , and the number of in-trees

rooted at r is (Lout)r i .

It turns out that even though this result is more general than our previous one, the proof is actually easier – we’ll

see it next time!
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29 April 22, 2019
Last time, we stated the directed version of the matrix tree theorem, and we’ll prove that result today. We’ll review the

setup today: given a directed graph G on n vertices (with no loops), A = (ai j) is the adjacency matrix which encodes

the number of edges from i to j (which is a matrix with nonnegative integer entries and zeros on the diagonal). Define

two diagonal matrices Din and Dout, which are the diagonal matrices with diagonal entries equal to the indegrees and

outdegrees of the corresponding vertices, respectively. This gives us the two Laplacian matrices

Lin = Din − A, Lout = Dout − A.

We also defined the cofactors of a matrix L

Li j = (−1)i+j det(L without the ith row and jth column).

These cofactors then tell us about the in-trees and out-trees of G: specifically, Theorem 229 states that the number

of out-trees rooted at r is the cofactor (Lin)i r , and the number of in-trees rooted at r is (Lout)r i , for any 1 ≤ i ≤ n.
Notice that the directed matrix tree theorem implies the undirected matrix tree theorem, since in the latter case

in-degrees and out-degrees are equal, so Lin = Lout are both the usual Laplacian matrix.

Example 230

Consider the directed graph G below:

1 2

3

The adjacency matrix of G is

A =


0 2 1

0 0 1

0 1 0

 ,
and we have the Laplacian matrices

Lout =


3 −2 −1

0 1 −1

0 −1 1

 , Lin =


0 −2 −1

0 3 −1

0 −1 2

 .
Now we can verify the directed matrix tree theorem for a few choices of r and i . First of all,

(Lout)1,1 = det

[
1 −1

−1 1

]
= 0,

which tells us that there are no in-trees rooted at 1 (indeed, no edges enter 1 at all). Similarly,

(Lout)2,1 = − det

[
−2 −1

−1 1

]
= 3,

and indeed there are 3 in-trees rooted at 2 in G (use the edge from 3 to 2 and one of the edges coming out from 1).
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Finally,

(Lin)2,1 = − det

[
−2 −1

−1 2

]
= 5,

and indeed we can do the casework to see that there are 5 out-trees rooted at 1 in G.

It turns out the proof of the directed matrix tree theorem is easier than the undirected matrix tree theorem, because

just like in the proof of Cayley’s formula, having a strong induction hypothesis makes the argument more doable.

Proof of Theorem 229. The two statements (about in-trees and out-trees) map to each other by reversing all orien-

tations of our graph edges, so it suffices to prove the statement about in-trees. In other words, let Inr (G) be the

number of in-trees of G rooted at r ; our goal is to show that this is equal to the cofactor (Lout)rk . We induct on the

number of edges i → j of G where i 6= r (that is, the number of edges not originating from the root).

The base case is where G is a graph where there are no edges out of non-root vertices; in this case, there are no

in-trees because nothing goes into r . Then all entries of Lout that are not in the r th row are zero, so any cofactor

(Lout)rk is zero because the r th row is removed.

For the inductive step, pick any edge e from i to j , where i 6= r . Construct two graphs G1 and G2, where G1 is the

graph G with edge e removed, and G2 is G with all other edges (besides e) originating from i removed. Notice that

any in-tree must use exactly one of the edges originating i (because all in-trees have root outdegree 0 and all other

outdegrees 1), so

Inr (G) = Inr (G1) + Inr (G2).

There are now two cases. If there is only one edge originating from i (which is the edge e : i → j that we’ve

picked out), we contract the vertices i and j . This preserves the number of in-trees (since i must connect to j in any

in-tree), and we must check that the contraction also preserves the cofactor (Lout)rk . Indeed, the ith row of Lout

only contains a 1 in the ith column and a −1 in the jth column, and contracting in this case means that we add the

ith column to the jth column of Lout and then remove the ith row and column. But this contraction process (adding

the two columns together) is the same as expanding the original determinant by minors along the ith row (which only

contains a 1 and a −1) and combining the two resulting terms by swapping columns i and j in one of them. So in this

case, both the number of in-trees and (Lout)rk remain the same, and we’ve decreased the number of edges, so the

result follows by induction.

In the other case, if we look at the Laplacian matrix, the ith row of Lout(G) has some entries (a1, · · · , an). Lout(G1)

looks almost identical to Lout(G), except that one edge is removed, so that in row i we decrease ai by one and increase
aj by one. On the other hand, Lout(G2) also looks identical to Lout(G) except in row i , in which we have 0s except a

1 in the ith column and a −1 in the jth column. In particular, the sum of the ith rows of Lout(G1) and Lout(G2) add

up to the ith row of Lout(G). By linearity of determinants, this just means that whenever we don’t remove the ith
row,

(Lout(G))rk = (Lout(G1))rk + (Lout(G2))rk .

Since the right hand side counts the number of in-trees for graph G1 and G2 separately (by induction, since G1 and

G2 both have fewer edges than G), and i 6= r by assumption, this proves the desired result, concluding the proof.

But often it’s better to do a combinatorial proof – in this case, such a proof will help us understand why the direct

matrix tree theorem looks at Lout for in-trees and vice versa.

Setup of the proof (which we’ll do next time). Let’s see another proof based on the involution principle – we’ll only
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show the result for the principal cofactors k = r , so we just wish to prove that

(Lout)r r =
∑

in-trees rooted at r

weight(T ).

Assign a weight xi j to each pair of vertices (i , j), so that our adjacency matrix contains off-diagonal entries xi j . (Much

like in the proof of the weighted matrix tree theorem, we may think of xi j as the multiplicity of the directed edges from

i to j .) As we should expect, the diagonal entries of our Laplacian matrix Lout are then
∑

j 6=i xi j .

We’ll do the full proof next time, but we’ll illustrate the main point by example: for n = 3, the Laplacian matrix

looks like

Lout =


x12 + x13 −x12 −x13
−x21 x21 + x23 −x23
−x31 −x32 x31 + x32

 .
If we set r = 3, removing the last row and last column yields a cofactor of

(x12 + x13)(x21 + x23)− x12x21 = x12x23 + x13x21 + x13x23 .

Notice that this algebraic expression encodes all ways that we can make an in-tree rooted at vertex 3 (where xi j being

included means that our in-tree contains the edge i → j). The way we show this result in general is essentially to

write the determinant as a sum over all permutations, getting collection of monomials that correspond to graphs. We

can then construct a sign-reversing involution which preserves weights but changes + signs to − signs, so the only

remaining terms are those coming from trees. But all of that will wait until next lecture!

In addition to having direct applications, the directed matrix tree theorem can also be used to prove algebraic

identities. In particular, the following result is on our problem set:

Proposition 231 (Abel’s identity)

For any real number z , we have

(x + y)n =

n∑
k=0

(
n

k

)
y(y + kz)k−1(x − kz)n−k .

In particular, this identity is the ordinary binomial theorem for z = 0.

30 April 24, 2019
We finished last class by discussing a “weighted directed matrix tree theorem,” in which we assign a weight xi j to each

pair of indices i 6= j , defining a Laplacian matrix

(Lout)i j =


∑

k 6=i xik i = j,

−xi j i 6= j.

Our general result that we started formulating last time is as follows:
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Theorem 232

The cofactor (Lout)r r can be written as

(Lout)r r =
∑

T in-tree
rooted at r

weight(T ),

where the weight of an in-tree is the product of its edge weights xi j (for each i → j in T ).

By Cayley’s formula, note that there are always nn−2 terms on the right hand side, because we can take any

undirected tree on n vertices and then direct every edge towards the root.

Proof. Without loss of generality, let r = n. By definition of the determinant, the cofactor (Lout)nn can be written as

a sum over permutations

(Lout)nn =
∑

w∈Sn−1

(−1)`(w)
n−1∏
i=1

(Lout)iwi ,

where `(w) is the length of the permutation w , meaning that (−1)`(w) is the sign of w . Permutations break into

cycles, so we’ll write the product over the cycles (and fixed points, which correspond to diagonal entries): by the

definition of the Laplacian matrix, we have an expression of the form

=
∑

subdivision of [n−1]
into disjoint cycles

C1∪···∪Cm∪{fixed points}

±

 ∏
i→j edge of
some Cj

xi j

 ·
 ∏
f fixed
point

∑
j 6=f

xf j

 ,

To figure out the ± sign for each term, notice that for a permutation σ with a single cycle of size c , we have

(−1)`(σ) = (−1)c−1 (because `(σ) is also the number of inversions). But when we write out our determinant as a

polynomial in the xi js, we also get an additional contribution of (−1)c from each cycle, because the off-diagonal entries

of our Laplacian matrix are −xi j . This means that every cycle contributes a −1, and therefore we get a factor of

(−1)m for a term with m cycles:

(Lout)nn =
∑

subdivision of [n−1]
into disjoint cycles

C1∪···∪Cm∪{fixed points}

(−1)m

 ∏
i→j edge of
some Cj

xi j

 ·
 ∏
f fixed
point

∑
j 6=f

xf j

 .

To interpret this combinatorially, we’ll color the edges of our graph. For each subdivision of [n−1], color the edges

of the cycles red (but not the fixed points). Then to represent the
∑

j 6=f xf j term for each fixed point f , we pick an

arbitrary green edge out from f into another vertex, which could potentially include vertex n. Thus, the expression

above sums over all directed graphs H on the vertices {1, 2, · · · , n} with n−1 edges colored in red or green, satisfying

the following two conditions:

1. For all vertices 1 ≤ i ≤ n − 1, the outdegree is 1,

2. The red edges form a disjoint union of cycles.

Thus, we can rewrite our sum as

(Lout)nn =
∑

graphs H

(−1)number of red cycles
∏

i→j edge
xi j ,
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which is starting to look more like what we want. The key point is that, in-trees rooted at n are exactly the digraphs

without cycles with n − 1 edges, where the outdegree of every non-root vertex is 1 (that’s condition (1) above). So

the sum we’re after is the sum over graphs H with zero cycles (and in particular zero red cycles); to show that the

other contributions cancel out, we will now show a weight-preserving, sign-reversing involution ω on graphs H with

at least one cycle.

But now that we know this is our goal, we can finish the proof quickly. We construct ω in the following way:

fix a total ordering of edges i → j (e.g. lexicographically), so that we can also order the set of all cycles (also

lexicographically). Then ω takes the first cycle in H and switch its color between green and red. To check that this is

a valid involution, notice that the number of edges stays (n−1) and the outdegrees remain the same (because none of

the edge positions have changed). Also, every cycle in H is always entirely red or entirely green because all outdegrees

are 1 (meaning the path we can take from a given vertex is always determined), so we do not need to worry about

violating condition (2) when swapping the color of a cycle, and this also shows that ω is its own inverse.

Because ω(H) and H have the same edges but different parities for the number of red cycles, their contribu-

tions always cancel out. Thus our sum for (Lout)nn only leaves the contributions from in-trees, each of which has

(−1)number of red cycles = (−1)0 = 1, concluding the proof.

With that, we’re ready to move on to our next topic, electrical networks. This new topic is still related to the

matrix tree theorem, but we’ll start by discussing something we may have learned in physics class.

Given a graph G, we may think of its edges as resistors (which are the only circuit element that we’ll use today). If

we select two vertices A and B to be connected to some source of electricity, then a current will be generated through

the edges. Our goal is to find the voltages and currents associated to the vertices and edges of G. We’ll put this in a

rigorous mathematical framework now:

Definition 233

Fix the orientation of edges in a graph G = (V, E). Then for any edge e from vertices u to v , we have a current
Ie through e, a potential difference or voltage Ve across e, and a positive real resistance Re .

Note that the current through an edge is negated if we flip its orientation, so the actual choice is not too important.

(If we were physicists, we’d talk about units for the current, voltage, and resistance, but we don’t need them for

mathematics.)

Theorem 234 (Ohm’s law)

For any edge e, we have Ve = IeRe .

(This statement is really meant to define what resistance means, so it doesn’t really warrant a proof.) Our main

tools of reasoning about these electrical networks are the following two laws of physics:

Theorem 235 (First Kirchhoff’s law)

The sum of the in-currents of any vertex v is the same as the sum of the out-currents:∑
e:u→v

Ie =
∑

e ′:v→w
Ie ′ .

The first Kirchhoff’s law is essentially a statement about conservation of charge (in the usual physical sense).
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Theorem 236 (Second Kirchhoff’s law)

The sum of the voltages along any cycle C of our graph is zero. Specifically, if C contains the edges e1, · · · , em,
then

∑m
i=1±Vei = 0 (where we fix an orientation of C, and we have a − exactly when an edge disagrees with that

orientation).

Fact 237

The second Kirchhoff’s law is equivalent to the existence of a potential function U : {vertices} → R satisfying

Ve = U(v)− U(u) for any edge e : u → v . In other words, suppose that we cn “ground” one vertex by setting its

voltage 0, and then we iteratively figure out the voltages of the whole graph by following edges arbitrarily. The

second law then tells us that we will not run into any contradictions when we follow these edges, since two paths

will always have the same voltage.

A typical problem in this framework is of the form “given all resistances of edges, find all of the currents and

voltages.” Doing so involves solving a system of linear equations – it turns out we can represent this system in terms

of a Kirchhoff matrix, which is actually a Laplacian matrix with edge weights inversely proportional to resistances. But

we’ll talk about this in more detail next time!

31 April 26, 2019
Today, we will continue with “high school physics.” To set up the problem more explicitly, let G be a connected

digraph (the directions don’t actually matter but they are used for convenience), and select two vertices A and B

to be connected to a battery. Assume that we have some current I running through the battery, and there are two

potential problems we might want to solve: (1) find all the relevant currents and voltages Ie , Ve for each edge e given

the resistances Re , or (2) find the resistance of the whole electrical network RAB.

Last time, we mentioned three physics laws that govern the flow of electricity. We’ll write them out as matrix laws

now:

1. Kirchhoff’s second law says that we can define a potential function U on the vertices of our graph such that

Ve = Uv − Uu

for any edge e : u → v .

2. Ohm’s law gives us a proportionality relationship between Ve and Ie , which we can write as

Ie =
Ve
Re

=
Uv − Uu
Re

.

3. Kirchhoff’s first law states that for any vertex v , the in-current is equal to the out-current. For example, if

e1 : v1 → v and e2 : v2 → v lead into v , and e3 : v → v3, e4 : v → v4, e5 : v → v5 lead out of v , then

Uv − Uv1
R1

+
Uv − Uv2
R2

=
Uv3 − Uv
R3

+
Uv4 − Uv
R4

+
Uv5 − Uv
R5

.

Moving all terms to the left gives us a more symmetric expression of the form∑
i neighbor

Uv − Uvi
Ri

= 0.
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But because the nodes A and B are connected to a battery, there is an additional current term that we must

consider. Rearranging and taking that into account gives us our final relation:

(
1

R1
+ · · ·+

1

Rd

)
Uv −

d∑
i=1

1

Ri
Uvi =


0 v 6= A,B,

−I v = A,

I v = B.

Now we’re ready to solve the problem: label the vertices of G from 1 to n, in particular setting A = 1 and B = n.

If Ri j is the resistance of the edge connecting i and j , define the conductance of an edge

Ci j =


1
Ri j

(i, j) is an edge of our graph G,

0 otherwise.

(The motivation for this definition is that resistances show up as reciprocals in our laws above.)

Definition 238

The Kirchhoff matrix K is an n × n matrix with entries

Ki j =


∑

` 6=i ci` i = j,

−ci j i 6= j.

Notice that the Kirchhoff matrix is really just the Laplacian matrix for a graph whose edge-weights are conductances.

We can now write all three electrical laws in terms of this matrix! Specifically, if ~U =


U1
...

UN

 is the vector of potentials,

then we wish to solve the linear system of equations

K~U =



−I
0
...

0

I


.

Because all rows of the Kirchhoff matrix add to 0, this system has infinitely many solutions. But this makes

sense, because our potential function can be shifted by a constant without changing the voltages and currents. More

concretely, our Kirchhoff matrix K has rank n − 1 if G is connected (because we have at least one spanning tree, so

all cofactors have to be nonzero by the matrix tree theorem).

Fact 239

More generally, if a graph G has k connected components, then its Laplacian matrix has rank (n − k).

We’ll now try to solve problem (2) with this linear algebra setup, meaning that we will try to find the total effective
resistance RAB(G) = Un−U1

I explicitly. First of all, we can rescale ~U and I without changing K, so we’ll assume I = 1,

and we’ll also shift ~U by a constant to set U1 = 0 (“grounding the first vertex”). Then the resistance of the whole
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circuit is Un−U1
I = Un, and our linear system of equations simplifies to

K(1)


U2
...

Un

 =


0
...

1

 ,
where K(1) denotes the (n − 1) × (n − 1) matrix obtained by removing the first row and column of K. This is a

situation where we want to use Cramer’s rule (despite Professor Strang saying to never do so in 18.06)! In particular,

since we’re trying to solve for RAB(G) = Un, Cramer’s rule tells us that

RAB(G) = Un =
det K̃(1)

detK(1)
,

where K̃(1) is obtained by replacing the last column of K(1) with the vector


0
...

1

 (the right-hand side of our matrix

equation). But if we expand the determinant in the denominator along the last column, we just obtain the determinant

of the upper left (n − 2) × (n − 2) square of K(1), which is the determinant of K(1,n) (that is, the Kirchhoff matrix

with the first and last rows and column removed). With that, we’ve arrived at the following result:

Theorem 240

The overall resistance of our graph G is

RAB(G) =
detK(1,n)

detK(1)
=

∑
T̃ spanning
tree of G̃

weight(T̃ )∑
T spanning
tree of G

weight(T )
,

where the weight of a tree is the product of the conductances

weight(T ) =
∏

e edge of T

1

Re
,

and G̃ is obtained from G by gluing vertices A and B together (or equivalently connecting the two with an edge

of infinite conductance).

Another way to think about this numerator is that a spanning tree T̃ of G̃ is a forest of two components, with A

and B in different components, so that when A and B are glued together, the two components also merge.

Example 241

Consider a graph G on three vertices A,B, C, with resistances of R1 between A and C, R2 between B and C, and

R3 between A and B.

Then Theorem 240 says that the total resistance between A and B is governed by spanning trees. To calculate

the numerator, notice that G̃ glues A and B together, so it only contains the edges R1 and R2, either of which is a

spanning tree. On the other hand, any two edges of G form a spanning tree of the original graph. Thus, we obtain

the effective resistance

RAB(G) =
(R1)

−1 + (R2)
−1

(R1R2)−1 + (R1R3)−1 + (R2R3)−1
.

We could have also arrived at this result by using the concepts of series and parallel connections from physics:
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Proposition 242 (Series connection)

Let G1 and G2 be two graphs which only share a single vertex C (the combined graph is denoted G1 +G2). Then

R(G1 + G2) = R(G1) + R(G2); in other words, for any A ∈ G1, B ∈ G2, we have RAB = RAC + RBC .

Proposition 243 (Parallel connection)

Let G1 and G2 be two graphs which share exactly two vertices A and B and no edges (the combined graph is

denoted G1 ‖ G2). Then R(G1 ‖ G2)−1 = R(G1)
−1 + R(G2)

−1 (where all resistances are taken between A and

B).

Many graphs can be generated by combining smaller graphs with the + and ‖ operations, but not all of them:

Fact 244

The smallest graph for which the effective resistance cannot be found directly with series and parallel connections

is the Wheatstone bridge, shown below:

A

B

However, the general formula in Theorem 240 still works for this graph.

We’ll now look at electrical networks with another perspective. This time, instead of rescaling our current to 1,

rescale the current and shift the potential vector so that UA = 0 and UB = 1. Then all vertices have potentials between

0 and 1, and we can in fact view those potentials as probabilities:

Proposition 245

Consider a random walk on the vertices of G, where at each step, the probability of jumping to an adjacent edge

is proportional to the conductance:

Pr(u, v) =

1
Ruv∑

w 6=u
1
Ruw

.

Then the probability that a random walk starting at vertex v hits B before it hits A is Uv .

This result may remind us of the “drunk man problem” from our first lecture! In that setting, our graph G is a

single line segment, A is the point x = 0, B is the house at x = N, and U(x) is the probability that the man survives

if starting at point x .

Proof sketch. If we let Pv be the probability of survival starting at vertex v , then Pv is a weighted average of the

survival probabilities at the neighbors of v . Writing out the set of linear equations in matrix form, and also noting that

PA = 0 and PB = 1, gives us exactly the same equations that we obtain with Kirchhoff’s law and the potential vector
~U.

That’s all we will say about electrical networks in this class, and we’ll continue with the best theorem next time.
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32 April 29, 2019
Today we’re going to talk about Eulerian cycles in graphs:

Definition 246

An Eulerian cycle (also an Eulerian circuit, Eulerian tour, or Eulerian walk) in a digraph G is a closed directed

walk on G, where every edge is visited exactly once and the walk returns to its starting point.

We have the following famous result (historically, this is connected to the Seven Bridges of Königsberg problem,

in which the goal was to cross each bridge exactly once):

Theorem 247 (Euler (1736))

A digraph G contains an Eulerian cycle if and only if G is connected as an undirected graph and all vertices of G

have equal indegree and outdegree.

We can also say something similar for undirected graphs:

Corollary 248

An undirected graph G contains an (undirected) Eulerian cycle if and only if G is connected and all vertices have

even degree.

Basically, if all vertices of an undirected graph have even degree, we can direct the edges in a way that satisfies

Theorem 247.

Proof of Theorem 247. It is clear that the conditions are necessary, because an Eulerian cycle is connected, and we

always enter and exit each vertex an equal number of times. To show that they are sufficient, we will construct an

Eulerian cycle for the diagraph. Start at an arbitary vertex, pick some arbitrary edge out of it, and keep following

arbitrary edges until we are stuck. Notice that for any vertex besides our starting one, if we enter it a times, we can

exit it a times, so we can only get stuck at the starting vertex. At this point, we are either done, or there are some

edges that we haven’t yet used. In the latter case, there is some vertex for which an edge hasn’t been used, so we

can start the process from there again, repeating (finitely many times because we have finitely many edges) until our

graph’s edges are partitioned into a collection of cycles. Then because G is connected, we can combine those cycles

together into a single Eulerian cycle (by repeatedly inserting one cycle into another).

We’re interested in the next natural question, which is to count the number of Eulerian cycles for a given
diagraph G. To avoid overcounting, notice that every Eulerian cycle uses every edge once, we can fix a root r and an

edge e out of r , and we’ll require that all Eulerian cycles start from r and traverse e first.

Theorem 249 (B.E.S.T. Theorem (1951))

Let G be a connected digraph, where the indegree of each vertex is equal to its outdegree, and fix a root r . Let

Inr (G) be the number of in-trees rooted at r . Then

number of Eulerian cycles in G = Inr (G) ·
∏

v vertex

(outdegree(v)− 1)!.
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The acronym B.E.S.T. stands for the names “de Bruijn, von Aardenne-Ehrenfest, Smith, and Tutte.” Because we

can calculate Inr (G) using the directed matrix tree theorem, this theorem tells us that we can count the number of

Eulerian cycles in terms of the Laplacian matrix of G.

Example 250

Let’s use the B.E.S.T. theorem to calculate the number of Eulerian cycles in the graph below:

r
e

We can verify that there are two in-trees rooted at r , and the outdegrees for the four vertices of the graph are

2, 1, 2, 1, so we should have 2 · 1!0!1!0! = 2 Eulerian cycles, which is indeed the case (there are two cases for which

outgoing edge we take after the first two edges).

Proof of Theorem 249. Since our graph G is Eulerian (it satisfies the two requirements of Theorem 247), the two

Laplacian matrices Lin and Lout are equal, and all row and column sums of our Laplacian matrix are zero. Thus, all

cofactors of L are the same, and therefore the number of in-trees rooted at r is the same as the number of out-trees

rooted at r , and that number is the same for all r .

Thus, it is indeed valid to fix a starting root r and starting edge e. For any Eulerian cycle C, list the edges of G in

the order in which they appear, starting from e. This gives us a total ordering on the edges, denoted by <C .

Now for any vertex v 6= r , mark the edge from v which is maximal (in <C) among all outgoing edges – in other

words, color the outgoing edge that occurs last in our Eulerian cycle. Let T be the subgraph formed by those colored

edges. Notice that T is an in-tree rooted at r , because of the following observations:

• If G has n vertices, then T has (n − 1) vertices.

• There is no fork in T (because there is only one outgoing edge from any vertex).

• There are no edges out of the root vertex r .

• There are no directed cycles.

This last claim requires more justification: suppose there were some cycle C̃ in T . Because the root has no outgoing

edges, C̃ does not visit r ; let f be the maximal edge in C̃ under the ordering <C . We know that f is not the last edge

in our Eulerian walk (because it doesn’t go to the root), so let f ′ be the next edge in our Eulerian cycle C, and let

f ′′ to be the edge that follows f in the cycle C̃. Because f is the maximal edge in C̃ and f <C f ′, we have f ′ 6= f ′′.

But f ′′ <C f by maximality of f , meaning that f ′ > f ′′. This is a contradiction, because f ′ and f ′′ originate from the

same vertex of v , meaning we should have picked f ′ instead of f ′′ in our construction of T ! Thus no directed cycle C̃

exists.

Therefore, our graph T indeed has outdegree 1 everywhere except at the root, which is enough to make it an

in-tree. To finish the proof, for any vertex v , let wv be the ordering of the edges outgoing from v , except for e and

the edges in T , inherited from the order <C . Notice that T and e together remove 1 from each outdegree, so each wv
corresponds to a permutation of size outdegree(v)− 1. We claim that specifying T and wv tell us the entire ordering

of edges, meaning that the map

C (Eulerian cycle)→ (T, {wv}v vertex)
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is a bijection! Indeed, to construct an Eulerian cycle from C, always pick the smallest edge from a vertex wv when

possible, only using a marked edge from T if required. This process will indeed give us an Eulerian cycle because we

only use the last edge from a vertex when all other outgoing edges have already been traversed.

33 May 1, 2019
We’ll move to another combinatorial object today and discuss parking functions. Here’s the setup:

Problem 251

Suppose we have a one-way road with n cars. All n cars are trying to park, and there are n parking spots along

the road. However, the drivers have favorite parking spots, encoded by a function f : [n]→ [n] (meaning that the

ith car prefers to park in the f (i)th spot). The parking process goes as follows: each car (from 1 to n in order)

tries to park in its favorite spot. If that spot is already taken, the car keeps driving and parks in the next available

spot.

Example 252

If (f (1), f (2), f (3), f (4)) = (2, 3, 1, 2), then the first car parks in spot 2, the second car parks in spot 3, the third

parks in spot 1, and the fourth parks in spot 4. On the other hand, if (f (1), f (2), f (3), f (4)) = (2, 3, 3, 2), the

first car parks in spot 2, the second parks in spot 3, the third parks in spot 4, and the fourth car is out of luck.

Definition 253

A function f : [n]→ [n] is a parking function if all n cars are able to park in the setup of Problem 251.

All permutations are parking functions (because there are no conflicts), but some other functions (like the first

example of Example 252) work as well. The reason that the second example of Example 252 is not a parking function

is that there are 4 cars that all want spots 2, 3, or 4, which is not satisfiable. It turns out this type of situation fully

characterizes parking functions:

Lemma 254

A function f : [n]→ [n] is a parking function if and only if for any 1 ≤ k ≤ n, there are at most k values of i for

which f (i) ≥ n + 1− k .

Intuitively, permutations are good parking functions, and it’s also okay for us to decrease some entries of a

permutation! For example, (2, 3, 1, 2) is obtained by decreasing some entries of the permutation (2, 3, 1, 4).

Lemma 255

A function f : [n]→ [n] is a parking function if and only if there exists a permutation w ∈ Sn such that f (i) ≤ w(i)

for all i .

The proofs of these lemmas will be left as exercises for us. Putting that aside, let’s try to find the number of

parking functions as a function of n. One thing that makes our life easier is that Lemma 255 shows that the order
in which the cars arrive does not actually matter. Looking at some small examples, there are 3 parking functions
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for n = 2 ((1, 1), (1, 2), and (2, 1)). For n = 3, we look at all ways to decrease a permutation: we have 6 parking

functions that are permutations of (1, 2, 3), 3 of (1, 2, 2), 3 of (1, 1, 3), 3 of (1, 1, 2), and 1 of (1, 1, 1), for a total of

16. These numbers may remind us of Cayley’s formula, and that’s not a coincidence:

Theorem 256 (Pyke (1959), Konheim-Weiss (1966))

The number of parking functions f : [n]→ [n] is (n + 1)n−1.

One way to prove this result is to construct a bijection between spanning trees on (n + 1) vertices and parking

functions f : [n]→ [n], but instead we’ll show a short proof that doesn’t use this strategy.

Proof. Modify our problem so that our road has (n + 1) parking spots that are actually arranged in a circle (with

cars driving counterclockwise around the circle.) The functions that dictate the cars’ preferences is now a map

f : [n]→ [n + 1]. Notice that in this setup, all cars will be able to park, and there is always one empty spot i .

We claim that the number of functions f : [n]→ [n + 1] leading to the ith spot being empty is the same for all i .

This is because the problem is entirely symmetric: if we have a function that leaves the ith spot empty, adding 1 to

all values of f mod (n + 1) yields a function that leaves the (i + 1)th spot empty. But the functions f that result in

spot (n + 1) staying empty are exactly the parking functions, because n + 1 staying empty means both that no cars

prefer spot (n + 1), and no cars need to pass by the first n spots (because then they would take spot (n + 1)).

Thus, because there are (n + 1)n total functions from [n] to [n + 1], and a fraction 1
n+1 of them are parking

functions, we have (n + 1)n−1 parking functions from [n]→ [n], as desired.

This proof doesn’t explain the connection between spanning trees and parking functions, but it does prove our

result, which is good enough for now. Let’s now go back to our original set-up and understand the implication of this

theorem: if we pick a random uniform function f : [n]→ [n], then the probability it is a parking function is

Pn =
(n + 1)n−1

nn
=

1

n

(
1 +

1

n

)n−1
.

In the limit where we have many cars, notice that

lim
n→∞

Pn ≈
1

n
· e =

e

n
,

so the probability that all cars are able to park is proportional to 1n for large n. (“Perhaps this explains why it is so hard

to park in real life?”)

Turning our attention now to statistics on parking functions, we’ll first analyze the sum of the entries

s(f ) =

n∑
i=1

f (i).

We know that f is always dominated by a permutation, so s(f ) ≤
(
n+1
2

)
, with equality obtained for the n! permutations.

On the other hand, the minimum value s(f ) = n is only obtained by the single parking function (1, 1, · · · , 1) – our

question is to compute the number of parking functions with some given sum. It turns out that a natural way to

interpret this statistic is in terms of trees:

Definition 257

Let T be a labeled tree on (n+1) vertices, where we label the vertices 0, 1, · · · , n. A pair (i , j), where 1 ≤ i < j ≤ n,
is an inversion if j belongs to the shortest path from vertex i to the root 0. Let inv(T ) denote the number of

inversions of T .
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Then we have an equidistribution-type result:

Theorem 258 (Kreweras (1980))

We have ∑
f :[n]→[n]

parking function

x(n+12 )−s(f ) =
∑

T tree on
{0,··· ,n}

x inv(T ).

This polynomial is called the inversion polynomial for trees and is denoted In(x).

For example, In(1) = (n + 1)n−1, because each parking function contributes 1 to the sum on the left-hand side.

Also, In(0) = n! (where we set 00 = 1), because we only count the n! permutations which have maximal s(f ) =
(
n+1
2

)
.

Remark 259. The trees with no inversions are called increasing trees, and we see by equating constant coefficients

that there are n! of them. This is because an increasing tree can be constructed by connecting 1 to the root (since

nothing can be between it and 0), then connecting 2 to either of the two existing vertices, then connecting 3 to one

of the three existing vertices, and so on.

There are some other interesting values that we can plug into Theorem 258 as well. If we set x = −1, then the

right-hand side counts the difference between the number of trees with an even versus odd number of inversions. This

turns out to be equal to the number of alternating permutations w ∈ Sn satisfying w1 < w2 > w3 < · · · , which are

related to the Euler and Bernoulli numbers. We’ll study this in more detail next time!

34 May 3, 2019

Our third problem set is now posted, and it will be due in a week. (Solving six problems completely is generally enough.)

We’ll discuss some concepts today that will be helpful for the problem set. Last time, we considered the tree inversion

polynomial

In(x) =
∑

T spanning
trees of Kn+1

x inv(T) =
∑

f :[n]→[n]
parking function

x(n+12 )−
∑

i f (i).

Three of the problems from our problem set are related to the alternating permutations w ∈ Sn satisfying the

condition w1 < w2 > w3 · · · .

Definition 260

Let An be the number of alternating permutations of Sn; these are also known as Euler, Andre, and zigzag
numbers, among other names.

These numbers show up in a variety of contexts:

Fact 261

Plugging in x = −1 into the tree-inversion polynomial yields In(−1) = An.
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Fact 262

Consider the exponential generating function of An given by A(x) =
∑

n≥0 An
xn

n! (this ensures that the series is

not divergent). Then A(x) = tan(x) + sec(x); in fact,∑
n≥1 odd

An
xn

n!
= tan x,

∑
n≥0 even

An
xn

n!
= sec x.

Fact 263

Consider the following Pascal-like triangle, in which we alternate from left to right, adding the entries directly

above each step:

1

0 1

1 1 0

0 1 2 2

5 5 4 2 0

Then the nonzero numbers on the sides of the triangle are the Euler numbers An. The right side is called the

“Bernoulli side,” corresponding to the coefficients in the series expansion of tan x , while the left side is called the

“Euler side,” corresponding to the coefficients of sec x .

These Euler numbers An are closely related to another sequence of numbers that come up in combinatorics and

number theory:

Definition 264

The Bernoulli numbers Bn are given by the series expansion∑
n≥0

Bn
xn

n!
=

x

ex − 1
.

The first few terms of the right-hand side look like

x

ex − 1
= 1 +

(
−

1

2

)
x +

1

6
·
x2

2!
+

(
−

1

30

)
x4

4!
+

1

42
·
x6

6!
+ · · · ;

in particular, the Bn are only nonzero for n = 1 or n even, and in fact we can relate them to the Euler numbers (via

the tan x expansion) with the identity

B2n = (−1)n−1
2n

42n − 22n
A2n−1.

In other words, the Ans are still the heart of the combinatorics in our setting.
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Fact 265

The Bernoulli numbers are related to the Riemann zeta function, which can written in integral form as

ζ(x) =
1

Γ(x)

∫ ∞
0

ux−1

eu − 1
du.

Using the definition of the Bernoulli numbers and plugging in integer values of x , we find that

B2n =
(−1)n−1 · 2(2n)!

(2π)2n
ζ(2n),

which allows us to find exact formulas for ζ(2), ζ(4), and so on.

Euler and Bernoulli numbers are difficult to obtain by direct series expansion or counting permutations by casework,

but there is a recurrence relation that makes them more easy to calculate:

Proposition 266

The Euler numbers satisfy A0 = A1 = 1, and for all n ≥ 1,

2An+1 =

n∑
k=0

(
n

k

)
AkAn−k .

In a sense, the Euler numbers are “labeled” Catalan numbers – if we remove the 2 and the
(
n
k

)
coefficients, then

we get the recurrence relation for Cn.

Proof. The base cases A0 = A1 = 1 are clear. For the recurrence relation, the left hand side counts the number of

ways to have alternating permutations on (n+ 1) elements that are either up-down or down-up: w1 < w2 > w3 · · · or
w1 > w2 < w3 · · · . We’ll show that the right hand side also counts the same quantity.

Indeed, for any alternating permutation w , the element (n+ 1) must be in the (k + 1)th spot for some 0 ≤ k ≤ n.
Then the k elements before it, as well as the (n − k) elements after it, must form some alternating sequence, and

because (n+ 1) is the largest element, the orientation (up-down or down-up) of both sequences are fixed. Thus, there

are
(
n
k

)
ways to pick which k elements appear before (n + 1), followed by Ak · An−k ways to arrange those k elements

in alternating pattern and the other (n − k) elements in another alternating pattern, and summing over all k gives us

the desired recurrence relation.

It’s a good exercise for us to check that this recurrence relation can be rewritten as a differential equation for the

exponential generating function A(x):

2A′(x) = A2(x) + 1.

In particular, we shift indices of an exponential generating function by taking a derivative (as opposed to dividing by

x for the ordinary generating function). But other than that, this does still generally resemble the quadratic equation

that we obtained for the Catalan number generating function.

To understand our next connection, we will need to discuss binary trees.
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Definition 267

A binary tree is a rooted tree where each vertex has at most two children (where a vertex w is the child of a

neighboring vertex v if v is on the shortest path from w to the root), known as the vertex’s left child and right
child. A full binary tree is a binary tree where every vertex either has no children (meaning that it is a leaf) or

both a left and a right child.

Notice that a full binary tree can be constructed by repeatedly adding both a left and a right child to an existing

leaf, so in particular all full binary trees have an odd number of vertices. It turns out both kinds of binary trees are

related to Catalan numbers:

Proposition 268

The Catalan number Cn is the number of (ordinary) binary trees on n vertices, and it’s also the number of full

binary trees on 2n + 1 vertices.

Proof. Constructing a bijection between these two sets is pretty straighforward. If we are given a binary tree on n

vertices, we can add all missing children to the tree (so for each leaf, add both children, and for each vertex with only

one child, add the other one). Since the original tree has n vertices, (n − 1) of which serve as a child to another

vertex, this process adds 2n − (n − 1) = n + 1 vertices to our tree and gives us a full binary tree on 2n + 1 vertices.

For the reverse operation, removing all leaves from this tree gives us back the original tree, so these sets are indeed in

bijection.

To show that both sets have Cn elements, we find a bijection between Dyck paths of length 2n and full binary trees

with 2n + 1 vertices. Given any Dyck path of length 2n, we can break it up into sequences of consecutive up-steps,

and we let a1, a2, · · · , ak be the lengths of those groups. (Note that we can have ai = 0 if there are two consecutive

down-steps in the Dyck path; another way to say this is that ai counts the number of up-steps on the line y = x−2n.)

We can then construct our full binary tree by creating a left chain of a1 vertices (including all of their children), starting

from the root. Next, we create a left chain of a2 vertices starting from the bottom-most right child of the a1-chain,

followed by a left chain of a3 vertices starting from the bottom-most right child of the a2-chain, and so on. And in

the special case where we have ai = 0, we move one step up our tree and continue the process from there. This

will always yield a valid full binary tree because the Dyck path property guarantees
∑k

i=1(ai − 1) = 0, and ai − 1 is

the number of left edges down the tree that we traverse when putting down a chain of ai vertices. And we have a

bijection, because we can recover the values of ai by performing the same process (of depth-first search) and noting

down the lengths of the various chains.

Next lecture, we’ll discuss what happens when we label the vertices of our binary trees with positive integers. It will

turn out that the number of increasing-labeled binary trees on n nodes is n!, while the number of increasing-labeled

full binary trees on 2n + 1 nodes is equal to An, which will explain our earlier thought about the Euler numbers being

“labeled Catalan numbers.”

35 May 6, 2019

Last lecture, we started discussing binary trees. Specifically, we found that the number of (unlabeled) binary trees

on n vertices and the number of (unlabeled) full binary trees on 2n + 1 vertices are both equal to Cn. Today, we’ll

formulate the labeled versions of those statements.

108



Theorem 269

A labeled binary tree is a binary tree where the n vertices are marked with the numbers 1 through n. Then the

following are true:

1. The number of labeled binary trees on n vertices is n!Cn.

2. The number of increasing binary trees (for which the labels increase as we move away from the root) is n!.

3. The number of left-increasing binary trees (for which the left child’s label is always larger than the parent’s)

is (n + 1)n−1.

4. The number of increasing full binary trees on 2n+1 vertices is A2n+1, the number of alternating permutations

on 2n + 1 numbers.

Partial proof. The first point follows from Proposition 268 and the fact that we can label the n vertices arbitrarily

in n! ways. To prove the second and fourth points, we construct a bijection between increasing binary trees on n

vertices and permutations in Sn. We’ve seen similar bijections in the past – we repeatedly “fold” an increasing binary

tree by placing the root 1 in our permutation, placing everything on its left to the left of 1 in the permutation, placing

everything on its right to the right of 1, and repeating the process with the roots of the sub-trees. To reverse the

process, we find 1 and make it the root of our large tree, and for each of the left and right parts, find the smallest

number in that subsequence and make those the roots of the smaller trees.

Since there are n! permutations, there are also n! increasing binary trees, as desired. And if our tree is full, we

can verify by induction that we will always have a down-up permutation of size 2n + 1, of which there are the same

number as up-down (alternating) permutations, A2n+1. The last bijection and other details are left for us to work out

ourselves.

We’ll now switch topics and discuss non-crossing paths, which might help us with the remaining problems on the

problem set. We know that if we have two vertices A and B in a square grid, where B is a steps above and b steps

to the right of A, then the number of up-right lattice paths from A to B is
(
a+b
a

)
. Let’s consider a more complicated

setup:

Problem 270

Let A1, A2 be two starting points and B1, B2 be two target points in a square grid, where we want to connect A1
to B1 and A2 to B2. Compute the number of ways to pick two such up-right non-crossing paths (which share

no vertices).

We can actually write a formula to count such pairs of paths, which we’ll now describe. Let G be an acyclic digraph

(meaning that it has no directed loops) – for example, the one we’re using in the problem above is the grid Z2, with all

edges directed up or to the right. Select vertices A1, · · · , Ak , B1, · · · , Bk of G, and define N(A1, · · · , Ak , B1, · · · , Bk)

to be the number of ways to connect each Ai with its corresponding Bi using pairwise non-crossing paths, such that

the paths do not share any vertices.

Theorem 271 (Lindstrom-Gessel-Viennot lemma, simple case)

With the setup above, suppose that N(A1, · · · , Ak , Bw(1), · · · , Bw(k)) = 0 unless w is the identity permutation.

Then N(A1, . . . , Ak , B1, · · · , Bk) is the determinant of the matrix C = (Ci j)
k
i,j=1, where Ci j = N(Ai , Bj).
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Fact 272

In other words, suppose that the only way to connect the set of Ais and Bjs with noncrossing paths is if we match

Ai with Bi . Then we can compute the total number of paths by taking a single determinant.

Example 273

Let A1 = (0, 1), A2 = (1, 0), B1 = (2, 3) and B2 = (3, 3). How many noncrossing paths are there from A1 to B1
and A2 to B2?

The diagram is shown below:

A1

A2

B1 B2

Notice that there is no way to draw up-right lattice paths from A1 to B2 and A2 to B1 without having the paths

share at least one vertex. Thus, Theorem 271 applies, and we can compute N(Ai , Bj) by evaluating the appropriate

binomial coefficient. Our answer is then

number of noncrossing paths = det

[(
4
2

) (
5
2

)(
4
1

) (
5
2

)] = 20.

The more general result can be stated as well:

Theorem 274 (Lindstrom-Gessel-Viennot lemma, general case)

Suppose we have the same setup as Theorem 271 but without any assumptions on N(A1, · · · , Ak , Bw(1), · · · , Bw(k)).
Then with the same definition of C = (Ci j)

k
i,j=1 (where Ci j = N(Ai , Bj)), we have

detC =
∑
w∈Sn

(−1)`(w)N(A1, · · · , Ak , Bw(1), · · · , Bw(k)).

We’ll start the proof today and finish it next time:

Proof. We use the involution principle. Let P (A1, · · · , Ak , B1, · · · , Bk) be the number of ways to connect the Ais with

Bis using any paths; in particular,

P (A1, · · · , Ak , B1, · · · , Bk) = N(A1, B1) · N(A2, B2) · · ·N(Ak , Bk),

where we recall that N(Ai , Bi) counts the number of ways to get from Ai to Bi with no restrictions. By definition of

the determinant,

detC =
∑
w∈Sk

(−1)`(w)C1,w(1)C2,w(2) · · ·Ck,w(k) =
∑
w∈Sk

(−1)`(w)P (A1, · · · , Ak , Bw(1), · · · , Bw(k)).
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This is the result we want but with P instead of N (meaning that we’ve written out all possible paths from the As to

the Bs, without taking into consideration whether they cross or not). To get to the desired result, we must show that

the contributions from crossing paths always cancel out.

The idea that we’ll discuss in more detail next lecture is that our involution will find a crossing of two paths Pi and

Pj , swapping them after that crossing (so that a section of Pj becomes part of Pi and vice versa). Such a crossing

introduces an extra transposition (i j) to the permutation w , so the sign reverses and thus the contributions to detC

cancel out. But we have to be careful in our choice of (i , j) to ensure that we do define an involution, and that’s what

we’ll explain next time.

36 May 8, 2019

We’ll start today’s lecture by finishing the proof of the Lindstrom-Gessel-Viennot lemma proof (Theorem 274).

Proof of Theorem 274, continued. First, expand out detC as we did last time. We want to construct a sign-reversing

involution σ on all “bad” collections of paths to show that their contributions cancel out. This involution σ is defined

as follows: for any collection of paths where some of the paths share a vertex, find the “first intersection” (Pi , Pj , X)

(where X is a vertex on both Pi and Pj), and swap Pi and Pj after the point X.

However, we can’t just take the lexicographic minimum (i , j) to be the “first intersection,” because that lexicographic

minimum may not be preserved under σ. For example, consider the three paths below. if we swap paths (1, 3) on the

left, then the lexicographic minimum on the right becomes (1, 2), so we would not recover the original collection of

paths by applying σ again and would not get an involution.

1

2

3

→ 1

2

3

Instead, we must be slightly more careful, and we pick (i , j) as follows: first, find the minimal index i such that

Pi has an intersection with another path, and let the first intersection along that path (with another Pj) be point X.

Among all of the paths that intersect Pi at X, pick the path Pj with smallest j . Under this choice, after applying

σ, we’ll still see the intersection of Pj and Pi at point X as our “first intersection.” Since σ reverses the sign of our

permutation w (as paths i and j ’s final targets are swapped), the contribution of a configuration of paths P and its

swap σ(P) contribute a total of zero to the sum detC, showing the desired result.

This result also generalizes to a weighted version:
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Theorem 275

Suppose all edges in our acyclic digraph G are assigned a positive weight xe > 0, and define

N(A1, · · · , Ak , B1, · · · , Bk) =
∑

noncrossing paths
P1,P2,··· ,Pk

∏
i

∏
e∈Pi

xe .

Then defining a matrix C = (Ci j)
k
i,j=1 like in Theorem 271 and Theorem 274, where Ci j = N(Ai , Bj), we again

have

detC =
∑
w∈Sn

(−1)`(w)N(A1, · · · , Ak , Bw(1), · · · , Bw(k))

The same proof actually works again – we just need to observe that the sign-reversing involution σ also preserves

the weights of the corresponding terms, because swapping the paths preserves the multiset of all edges.

In general, it is much easier to work with the “simple case” in Theorem 271 (where there is only one way to choose

the targets and have non-crossing paths), so we’ll analyze that case a bit more.

Fact 276

Suppose G is a planar graph that can be drawn in a square, so that the source vertices A1, · · · , Ak are on the left

side (from bottom to top), and the target vertices B1, · · · , Bk are on the right side (from bottom to top). Then

the only way to draw non-crossing paths from the Ais to the Bjs is by matching up each Ai with the corresponding

Bi .

The matrix C that we obtain from such a setup, even in the weighted case, satisfies

detC = N(A1, · · · , An, B1, · · · , Bn) ≥ 0,

because we’re taking a sum of nonnegative-valued path weights. In fact, much more is true, as we’ll see in the following

discussion.

Definition 277

A matrix C with real entries is totally positive (resp. totally nonnegative) if all minors (determinants of square

submatrices) are positive (resp. nonnegative).

This condition is much stronger than having a matrix that is positive definite, which only requires that the principal
minors are positive.

Example 278

If we want a 3 × 3 matrix A to be totally positive, then all entries Ai j and detA must be positive, and we also

have conditions like A21A33 > A31A23 – there are many different conditions that must all be satisfied.

However, we do have one way to generate totally nonnegative matrices from the Lindstrom-Gessel-Viennot lemma.

In particular, if we are in the setting of Fact 276, we can remove any set of k source vertices and k target vertices, and

there will still be only one unique way to choose our path endpoints (meaning that any minor of C will be nonnegative),

meaning that C is totally nonnegative. In fact, the converse is also true:
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Fact 279

A matrix is totally nonnegative if and only if it can be represented as the matrix C in Theorem 275 for some planar

graph as described in Fact 276.

In other words, there is a deep connection between the ideas of planarity and total nonnegativity, and we’ll explore

this more by explicitly explaining how to construct a general m × n totally positive matrix. Start by drawing an m by

n grid, with all vertical edges directed upward and all horizontal edges directed to the right. It suffices to weight all

vertical edges with 1s, and we place weights of xi j on the horizontal edges coming out from the m× n grid. We place

our Ais from left to right on the bottom row, and we’ll place our Bis from top to bottom on the right column (by

deforming the planar graph, this does indeed fall under the setting of Fact 276). For example, here is the setup for

m = n = 2:

A1 A2

B2

B1

x21

x11

x22

x12

Theorem 280

With the setup above, construct a matrix C with entries Ci j = N(Ai , Bj). Then any m× n totally positive matrix

can be represented by choosing some positive real values for the xi js.

Corollary 281

The space of all totally positive m × n matrices is isomorphic to (R>0)mn.

We won’t prove this result in lecture; instead, we’ll now turn to another application of the Lindstrom-Gessel-Viennot

lemma, studying plane partitions. Consider an m × n rectangle broken up into 1 by 1 grid squares, where we fill the

grid with positive integers just like for Young tableaux, but where we are allowed to repeat numbers and our entries

are required to be weakly decreasing. Here’s an example of a plane partition:

7 7 6 6 4

7 6 5 4 3

5 5 3 3 3

3 3 3 2 1

2 2 2 1 1

One natural question is to count the number of plane partitions where each entry must lie in {1, · · · , k}. For example,

the full list of plane partitions for m = n = k = 2 is shown below:

1 1

1 1
, 2 1

1 1
, 2 2

1 1
, 2 1

2 1
, 2 2

2 1
, 2 2

2 2

Proposition 282

The number of plane partitions for k = 2 is
(
n+m
n

)
, because the path that separates the 1s and 2s in the m × n

square is an up-right lattice path.
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Motivated by this simple case, if we want to consider the general-k case, we draw paths Pj for each 1 ≤ j ≤ k − 1,

separating the entries larger than j from the entries at most j . This creates (k − 1) weakly noncrossing paths in an

m×n grid, which are allowed to intersect but not cross over each other. We may now translate our paths so that they

can no longer intersect – specifically, we have the path Pk−1 starting at Ak−1 = (0, 0) and ending at Bk−1 = (m, n),

the path Pk−2 starting at (1,−1) and ending at (m + 1, n − 1), and so on. So our paths are non-crossing, and we

can apply Lindstrom-Gessel-Viennot – we have a (k − 1) by (k − 1) matrix C with entries Ci j =
(
m+n
m+i−j

)
(the number

of ways to get from Ai to Bj), and the total number of plane partitions is detC. There’s actually an explicit product

formula that we can extract, but we’ll skip over it for now.

The shift in perspective is that we can think of our plane partitions as three-dimensional Young diagrams, where the

entry c represents a tower of c cubes stacked on top of each other! Additionally, if we rotate those three-dimensional

Young diagrams appropriately, we can biject plane partitions to rhombus tilings of an equiangular hexagon with side

lengths m, n, k . This will tell us that there is a symmetry between m, n, k , and we’ll look more at the explicit formula

next lecture.

37 May 10, 2019
Last lecture, we started talking about plane partitions, which are m × n arrays of integers that are weakly decreasing

across rows and columns. Let’s now assume that the numbers that appear are in the set {0, 1, 2, · · · , k} instead of

{1, 2, · · · , k}, and let P (m, n, k) denote the number of such plane partitions. We presented several ways to think

about these plane partitions. First of all, we can represent plane partitions as a collection of k weakly noncrossing

paths, which we can then translate to turn into noncrossing paths. The Lindstrom-Gessel-Viennot lemma then tells

us that P (m, n, k) = detC, where C is a k × k matrix with entries

Ci j =

[
m + n

m + i − j

]
.

Here, we still have to calculate a determinant, but it’s a bit of work.

Proposition 283 (MacMahon (1895))

The determinant of the matrix C above, and thus the number of plane partitions of an m × n box with all parts

at most k , is

P (m, n, k) =

m∏
i=1

n∏
j=1

k∏
`=1

i + j + `− 1

i + j + `− 2
.

Notice that this formula is symmetric in m, n, k , which may not be obvious from the determinant formula. For

example, if (m, n, k) = (5, 4, 3), then Lindstrom-Gessel-Viennot tells us that

P (5, 4, 3) = det

[(
9
5

) (
9
4

)(
9
6

) (
9
5

)] =
2(9!)2

(5!)2 · 3!4!
,

and we can check that this is indeed equal to the triple product obtained from Proposition 283.

Last class, we also mentioned that plane partitions can also be viewed as a set of cubes, where the labels on each

grid square represent the number of stacked cubes (for example, 2 2

2 1
is a 2× 2× 2 cube with one cube removed).

This is essentially a “three-dimensional Young diagram,” where we place a bunch of cubes in a k ×m × n box so that
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they are justified towards a specific corner. And by deforming the shape slightly, we can arrive at another combinatorial

interpretation:

Proposition 284

P (m, n, k) is the number of ways to tile an equiangular hexagon with sides of length m, n, k,m, n, k with tiles of

the following shape (of side length 1):

, , .

We’ll explain this result by illustration. By default (if there are no cubes in the corresponding plane partition), our

hexagon is tiled as shown:

.

The center of the hexagon then serves as a “justified corner” for our cubes. For example, the plane partition 2 2

2 1
,

which we can think of as a collection of seven cubes inside the larger 3 × 3 × 3 cube, yields the following rhombus

tiling:

.

Yet another way to think of these rhombus tilings is to start with an equilateral triangle tiling of our hexagon, as shown

below:

Rhombi are then formed by connecting two adjacent triangles with an edge. In other words, we consider the planar
dual graph of our equilateral triangle grid (where dual vertices are faces of the original grid, and dual edges are drawn

between adjacent faces), which is a heaxgonal tiling. Then a rhombus tiling is a perfect matching of the vertices of

the dual hexagonal tiling – this setting is also called a dimer model by physicists.

We’ll return to rhombus tilings in the last lecture of the class, but for now we’ll look at tilings of a similar grid:
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Definition 285

A domino tiling of an m×n rectangular grid is a covering of the mn squares with 1×2 dominoes (with no holes).

Let N(m, n) denote the number of such domino tilings.

It is clear that if m and n are both odd, then N(m, n) = 0, because there are an odd number of squares but each

domino takes up an even number of spots. Otherwise, we can color our m × n rectangle in the usual chessboard way,

so that the black and white vertices form a bipartite graph. A domino tiling is then a perfect matching on this graph.

It turns out calculating N(m, n) is related to computing the permanent of a matrix, which is like the determinant

but without any negative signs in the sum over permutations. Unfortunately, permanents are much harder to calculate

than determinants in general, because we don’t have tools like eigenvalues to help us out! Kasteleyn figured out how

to deal with this: instead of using the usual adjacency matrix, we replace some 1s with is.

Theorem 286 (Kasteleyn (1961))

Without loss of generality, let n be even. Then the number of ways to tile an m × n rectangle is

N(m, n) =

n/2∏
k=1

bm/2c∏
`=1

(
4 cos2

πk

n + 1
+ 4 cos2

π`

m + 1

)
,

times another (2 cos πbm/2+1cm+1 ) factor when m is odd.

This problem has applications to statistical physics, where computing the asymptotic number of matchings for

large grids is important. While we’re here, we’ll also look at another domino-tiling result which can help us get such

approximate asymptotics:

Theorem 287 (Temperley (1974))

Suppose m = 2k + 1 and n = 2`+ 1 are both odd. Then the number of ways to domino tile an m×n grid without

a corner square is the number of spanning trees of a k × ` grid.

Proof. We will use Temperley’s bijection. Given a domino tiling, color the underlying (2k + 1) by (2`+ 1) grid black

and white so that the corners are black, and then take the black entries (i , j) where i , j are both odd and color them

red. We show m = n = 5 below for illustration:

Now we can form a spanning tree on the red k × ` grid in the following way: if there is a domino that points

along the line connecting two adjacent red nodes, then draw a line connecting them. Showing that this always yields

a spanning tree (and that every spanning tree corresponds to a domino tiling) is left as an exercise for us.
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As a sidenote, we do not need to remove a corner square – removing any other box which is of the same checkerboard

color as the corners also gives us the same number of domino tilings. If we’d like, we can try to find a bijection ourselves

to prove this!

38 May 13, 2019
Today is our second-to-last class, and we’ll go over some selected problem set solutions.

Problem 288

Find a bijective proof that the number of spanning trees in a complete bipartite graph Km,n is mn−1nm−1.

Solution by Sanzeed Anwar. Number the vertices 1 through n on one side and (n+ 1) through (n+m) on the other.

We will construct a sequence of vertices of length m + n − 2 from a spanning tree. Notice that if one side of the

bipartition has at least as many vertices as the other, then there will be at least one vertex with degree 1 on that side.

(If there are a ≥ b vertices on the two sides, then there are a+ b− 1 ≤ 2a− 1 edges in the graph, so it’s not possible

for all vertices to have degree 2 or higher.) Thus, we can perform a procedure similar to the one for a complete

graph: pick the vertex of degree 1 with smallest index on that side (if both sides work, default to the left one), add

its neighbor to our sequence, and delete the leaf and attached edge from the graph. If we do this (m + n − 2) times,

we’ll be left with a final edge between two remaining vertices.

Just like in the Prufer code, we can recover our original tree from this sequence (keeping track of Code, Labels,
and also which side of the bipartition we’re removing from). In particular, notice that the choice of bipartition side is

fixed across all sequences – we must pick from the larger side until m = n, and then we alternate between the two

sides. Since we start with m and n vertices, we’ll get respective sequences of n − 1 and m − 1 vertices from the two

parts of our bipartition. There are indeed mn−1nm−1 sequences, as desired.

Problem 289

Prove the equivalence of the following parking function conditions:

1. f is a parking function,

2. the number of f (i)s that are at least n − k + 1 is at most k for all i ,

3. there is a permutation w(i) such that f (i) ≤ w(i) for all i .
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Solution by Fadi Atieh. To show that (1) implies (2), we prove the contrapositive – if there are more than k cars

that want to park in the last k spots (corresponding to having parking function values at least n − k + 1), then by

Pigeonhole there will not be locations for all of the cars to park. Similarly, to show that (2) implies (1), again prove

the contrapositive. Assume that f is not a parking function, so there exists some first car i that is unable to park.

This means that the n − f (i) + 1 parking spots in the set S = {f (i), f (i) + 1, · · · , n} are all occupied. If all of these

parking spots are occupied by previous cars that wanted to park in spots f (i) or higher, then we have proved (2) false

with the value k = f (i) (because we have the cars that are parked in the spots S, plus car i). Otherwise, the parking

spot f (i) − 1 must have also been occupied (so that some car was pushed from numbers below f (i) to spot f (i) or

higher), so repeat the argument by adding f (i) − 1 to S. This process must stop at some point because we have

finitely many cars, and the only possibility is that some value of k proves (2) false.

The rest of the proof is simpler: to show that (1) implies (3), take a parking function f and construct the

permutation where car i goes to its eventual parking spot w(i). Since a car’s parking spot is at least as large as its

favorite spot, we indeed have f (i) ≤ w(i) for all i . And to show that (3) implies (1), we start with the parking function

given by w(i) (which satisfies (2)), and we decrease entries one by one. Making entries of a parking function smaller

can never cause us to violate condition (2), so the eventual function f is indeed a parking function, concluding the

proof.

Problem 290

Give a proof of Abel’s identity (Proposition 231).

Solution by Congyue Deng. Consider a weighted digraph on (n+ 2) vertices labeled A, B, and {1, 2, · · · , n}, where we
have an edge from A to B of weight 1, from A to each of {1, 2, · · · , n} with weight x , from B to each of {1, 2, · · · , n}
with weight y , and between any two elements of {1, 2, · · · , n} of weight z (in both directions). We will calculate the

total weight of out-trees rooted at vertex A.

First, we’ll calculate the contributions directly. All out-trees rooted at A must include the edge A→ B, and then

k of the vertices of [n] have paths that come from A without going through B, while the other n − k vertices lie on

paths that do pass through B. Because the edges to the two groups of vertices can be independently chosen, we

can calculate the weight contributions separately and multiply them together. If we want to connect a given set of

k vertices to A, we can form a forest of i + 1 connected components in the complete graph Kk , each of which must

be connected to an edge originating from A. There are
(
k−1
i

)
kk−1−i such configurations (

(
k
i+1

)
ways to choose the

vertices receiving outgoing edges from A, and then (i + 1)kk−i−2 ways to form (i + 1) components on Kk with those

vertices all in distinct components – see this stackexchange post, where k is replaced with k − i and n is replaced with

k + 1), and because each of these configurations uses i + 1 edges to A and k − i − 1 edges between the elements of

[n], summing over all possible i yields

k−1∑
i=0

(
k − 1

i

)
kk−1−ix i+1zk−i−1 = x(x + kz)k−1.

Similarly, the other n − k vertices can be connected with a total weight contribution of y(y + (n − k)z)n−k−1. Thus,

the total sum of weights across all out-trees of our digraph rooted at A is

n∑
k=0

(
n

k

)
x(x + kz)k−1y(y + (n − k)z)n−k−1.

But on the other hand, we can use the directed matrix tree theorem to compute the total sum of out-tree weights.

Letting the rows correspond to A,B, 1, · · · , n, we find that the Laplacian has first row (1 + nx,−1,−x, · · · ,−x),
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second row (0, ny ,−y , · · · ,−y), bottom n × n matrix having diagonal entries x + y + (n − 1)z and all other entries

−z , and all other entries zero. Taking the first principal cofactor, our determinant is (x + y)(x + y +nz)n−1 (by taking

the product of eigenvalues and using a similar strategy as we did when rederiving Cayley’s formula). This yields the

identity

(x + y)(x + y + nz)n−1 =

n∑
k=0

(
n

k

)
x(x + kz)k−1y(y + (n − k)z)n−k−1.

If we then replace y with y − nz , the result follows by induction on n.

Alternative solution by Mathew Ganatra. We’ll induct on n directly. The base case n = 0 is clear, and the case n = 1

can also be directly verified:

1∑
k=0

(
1

k

)
y(y + kz)k−1(x − kz)1−k = x + y = (x + y)1.

Now for the inductive step, assume that we know (from the inductive hypothesis) that

(x + y)n−1 =

n−1∑
k=0

(
n − 1

k

)
y(y + kz)k−1(x − kz)n−k−1.

We can show the result for (x+y)n by checking that the x- and y -derivatives of both sides of Abel’s identity are equal.

Indeed, the left-hand side has

d

dx
((x + y)n) = n(x + y)n−1,

d

dy
((x + y)n) = n(x + y)n−1

while the right-hand side has

d

dx

[
n∑
k=0

(
n

k

)
y(y + kz)k−1(x − kz)n−k

]
=

n∑
k=0

(
n

k

)
y(y + kz)k−1(n − k)(x − kz)n−k−1

(where we’ve used the product rule). Since
(
n
k

)
(n − k) = n

(
n−1
k

)
, this now simplifies (by the induction hypothesis) to

n

n−1∑
k=0

(
n − 1

k

)
y(y + kz)k−1(x − kz)n−k−1 = n(x + y)n−1,

which matches with the left-hand side. Meanwhile, by the product rule,

d

dy

[
n∑
k=0

(
n

k

)
y(y + kz)k−1(x − kz)n−k

]
=

n∑
k=0

(
n

k

)
((k − 1)y + y)(y + kz)k−2(x − kz)n−k

= n

n∑
k=0

(
n − 1

k − 1

)
y(y + kz)k−2(x − kz)n−k

because
(
n
k

)
k = n

(
n−1
k−1
)
. Shifting indices here again (k 7→ k + 1) allows us to use the inductive hypothesis and find

that this is also equal to n(x + y)n−1. Thus, the derivatives of the two sides of Abel’s identity are indeed equal, and

it remains to check that the constant terms are also equal. Indeed, if we set x = −y , the left side becomes 0, and

the the right hand side also vanishes because we have alternating binomial coefficients. This concludes induction and

proof.

Problem 291

Compute the number of Eulerian cycles in a bidirected n-cube graph.
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Solution by Sophia Xia. By the B.E.S.T. theorem, we want to compute the number of intrees rooted at some vertex

r , multiplied by (outdeg(v)−1)! for all v . An n-cube has 2n vertices, each with outdegree n, so the vertex contribution

is ((n − 1)!)2
n

.

We also know that the number of spanning trees on an n-cube is equal to the number of in-trees, because we

can direct all edges of a spanning tree towards the root. Corollary 219 gives us a factor of 22
n−n−1

n∏
k=1

k(nk) , and

multiplying these together yields our answer.

Problem 292

Prove that the exponential generating function for the Euler numbers is∑ An
n!
xn = tan x + sec x.

Solution by Song Wenzhu. We rewrite the recurrence relation (from lecture)

2An+1 =

n∑
k=0

(
n

k

)
AkAn−k

in the more suggestive form

2(n + 1)
An+1

(n + 1)!
=

n∑
k=0

Ak
k!

An−k
(n − k)!

.

Define ck = Ak
k! , and notice that the exponential generating function G(x) =

∑
k ckx

k satisfies

G(x)2 = c20 +

1∑
k=0

(ckc1−k)x + · · ·+
n∑
k=0

(ckcn−k)xn.

Plugging in our rewritten recurrence relation, this simplifies to

= c20 +

∞∑
n=2

2ncnx
n−1 = 2G′(x)− 1

(since c20 = 1, but if we had included n = 1 in our sum we would have a constant term of 2 instead). This is a

differential equation:
G′

G2 + 1
=

1

2
=⇒ arctanG =

1

2
x + C,

and the initial condition G(0) = 1 yields

G = tan

(
1

2
x +

π

4

)
= tan x + sec x

(after some verification with trig identities).
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Problem 293

Find bijections between the following sets:

1. the set of labeled trees on n + 1 vertices,

2. the set of plane binary trees on n vertices labeled by [n] such that the left child of a vertex always has a

bigger label than its parent,

3. the set of Dyck paths of length 2n with up steps labeled by [n] (and unlabeled down steps) such that, for

any two consecutive up steps, the label of the second step is greater than the label of the first step,

4. the set of parking functions of size n.

Proof by Vanshika Jain. We’ll do just one of the bijections for time (between (2) and (3)). Given a plane binary tree,

perform a “depth-first search,” where we traverse the tree by taking the leftmost edges, turning back around whenever

we run out of space. Then every time we move left on the tree, we go up on the Dyck path, and every time we move

right, we go down on the Dyck path. (Additionally, start the Dyck path with an up step and end it with a down step.)

The ith up step in the Dyck path then lands on the vertex labeled i in our tree.

This bijection works because consecutive sequences of up steps are always increasing (and correspond to the left

child always has a bigger label), and we never go below the x-axis in our Dyck path because the tree depth is equal

to the Dyck path height. For the inverse map, we just look at our up and down steps and travel in the corresponding

direction when making our tree (after an up step, another up step means a left child, a down and then up step means

a right child, and more down steps mean that we retrace our tree.)

39 May 15, 2019
In our last lecture, we’ll talk some more about plane partitions. Recall that plane partitions can be thought of as a

grid of m×n numbers in the range {0, k} that are weakly decreasing downward and to the right. By Lindstrom-Gessel-

Viennot, the number of such plane partitions is the determinant of the k×k matrix C whose entries are Ci j =
(
m+n
m+i−j

)
,

and MacMahon derived that this determinant is the product
∏m
i=1

∏n
j=1

∏k
`=1

i+j+`−1
i+j+`−2 .

But there are also several geometric ways to think about plane partitions – they correspond to rhombus tilings of

equiangular hexagons with side lengths m, n, k,m, n, k , as well as perfect matchings in a honeycomb graph. Today,

we’ll describe yet another interpretation: plane partitions can be viewed as pseudo-line arrangements.
Pseudo-lines are like lines, but they don’t have to be straight. Here’s the process for converting a rhombus tiling

into a pseudo-line: for each pair of opposite sides of our hexagon, draw pseudo-lines by following the common edges of

rhombi with parallel sides. For example, pseudo-lines from top to bottom must start from a rhombus with a horizontal

edge along the top edge of the hexagon, and they must connect this rhombus to the neighboring rhombus on its

bottom edge. (We then repeat until we reach the bottom edge of our hexagon.) Here’s an example of a pseudo-line:
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Because the set of all pseudo-lines (across all three pairs of sides of our hexagon) intersect once per rhombus,

the configurations of psuedo-lines that we draw are in one-to-one correspondence with our rhombus tilings. And if

we study this topic a little more, we’ll see connections to the theory of symmetric polynomials, which are related

to Young diagrams and the Schensted correspondence, among many other things we’ve discussed in this class. We’ll

explore this a bit now:

Definition 294

A polynomial f (x1, · · · , xn) is symmetric if it is invariant under the permutations of the variables (in other words,

f (x1, · · · , xn) = f (xw(1), · · · , xw(n)) for all permutations w ∈ Sn).

The simplest polynomials are the elementary symmetric polynomials e1, · · · , en, where xk is the sum of all

square-free monomials in the variables {x1, · · · , xn} of degree k . For example,

e1 = x1 + · · ·+ xn, e2 = x1x2 + x1x3 + · · ·+ xn−1xn.

These polynomials are important because of the following algebraic fact:

Theorem 295

Any symmetric polynomial f (x1, · · · , xn) can be written uniquely as a polynomial in the elementary symmetric

polynomials e1, · · · , en.

To show why this is useful, we’ll introduce a new combinatorial object:

Definition 296

A semi-standard Young tableau (SSYT) for a Young diagram λ is a filling of λ with the numbers 1, 2, · · · , such
that the entries increase strictly in columns and weakly in rows.

While standard Young tableaux require us to use each number exactly once, there is no such requirement for

semi-standard Young tableaux. Below is an example:

1 1 1 1 2 2 2 3

2 2 2 3 3 4 4

3 3 3 4 4

4 4 6 6

Definition 297

Let λ be a Young diagram with at most n rows. The Schur polynomial associated to λ is

sλ(x1, · · · , xn) =
∑

SSYT of
shape λ
filled with
{1,2,··· ,n}

x#1’s1 · · · x#n’sn

Notice that λ cannot have more than n rows, because the first entry of row i is always at least i .
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Example 298

The Schur polynomial for a single box is just x1 + x2 + · · · + xn = e1. More generally, the Schur polynomial

for a column of k boxes is the kth symmetric polynomial, since we pick some k of the n numbers to put in our

semi-standard Young tableau (and place them in sorted order).

Example 299

Because adjacent entries can be equal in rows of a semi-standard Young tableau, the Schur polynomial for a

horizontal domino is
∑

i≤j xixj = x21 + x1x2 + x22 + · · · = e21 − e2.

Theorem 300

Any symmetric polynomial f (x1, · · · , xn) can be written uniquely as a linear combination of Schur polynomials

f (x1, · · · , xn) =
∑
λ

cλsλ(x1, · · · , xn).

In other words, Theorem 300 tells us that the Schur polynomials form a linear basis, while Theorem 295 tells us

that the elementary polynomials form an algebraic basis. We can actually relate the two results by writing the Schur

polynomials in terms of the elementary polynomials:

Theorem 301 (Jacobi-Trudi)

Let λ = (λ1, · · · , λe) be a partition, where e ≤ n, and let λ′ = (λ′1, · · · , λ′m) be its conjugate partition (recall

that this means we take the “transpose Young diagram”). Then

sλ(x1, · · · , xn) = det


eλ′1 eλ′1+1 · · · eλ′1+(m−1)

eλ′2−1 eλ′2 · · · eλ′2+(m−2)
...

...
. . .

...

eλ′m−(m−1) eλ′m−(m−2) · · · eλ′m

 ,

where we assume e0 = 1 and e−k = 0 for all k < 0.

For example, the Schur polynomial of the horizontal domino, where λ = (2) and λ′ = (1, 1), is indeed

s(2) = det

[
e1 e2

e0 e1

]
= e21 − e2.

Fact 302

The form of this determinant may remind us of the determinant of binomial coefficients we obtained when counting

the number of plane partitions with Lindstrom-Gessel-Viennot, and in fact it’s possible to connect these ideas.

Specifically, if we think of semi-standard Young tableaux using noncrossing lattice paths, we can indeed prove

Jacobi-Trudi in this way (for example, see this paper).

Because the Schur polynomial is a sum over semi-standard Young tableaux, we can plug in x1 = · · · = xn = 1 into

Jacobi-Trudi, which yields the following result:
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Theorem 303

The number of semi-standard Young tableaux of shape λ filled with numbers in {1, 2, · · · , n} is detC, where

C = (Ci j)
|λ′|
i ,j=1 has entries

Ci j =

(
n

λ′i + j − i

)
.

It turns out that there are two ways to write this determinant as a product:

detC =
∏

1≤i<j≤n

λi − λj + j − i
j − i =

∏
a∈λ

n + c(a)

h(a)
.

Here, the latter expression gives us the hook-content formula for counting semi-standard Young tableaux, where h(a)

is the usual Young diagram hook length, and c(a) is the content of the box a (defined as j − i for a box in the ith

row and jth column).

But we’ve moved away from our original discussion, and we’ll now finish by connecting semi-standard Young tableaux

back to reverse plane partitions, which are those where the entries are increasing in rows and columns rather than

decreasing. It may seem curious that (when we restrict the set of numbers for our entries) we have an exact product

formula for counting any shape for Young tableaux, but only really for rectangular plane partitions. Here’s why that

is:

Lemma 304

Reverse plane partitions of rectangular shape n ×m, filled with numbers in the set {0, 1, · · · , k}, are in bijection

with semi-standard Young tableaux of shape n ×m filled with 1, 2, · · · , k + n.

This bijection is easy to describe – we start with a reverse plane partition and add i to all entries in the ith row.

However, such a bijection doesn’t work for any other shapes! The key fact is that rectangles only have one outer

corner, and it’s enough to force that the bottom right corner is at most k to force all numbers to be between 0 and k .

Unfortunately, with non-rectangles, the multiple corners mess things up, and that means we don’t actually have nice

explicit formulas for other shapes of reverse plane partitions.

That’s all we’ll discuss in this course, but there are many books we can read and many other classes in which we

can learn more algebraic combinatorics!
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