
18.675: Theory of Probability

Lecturer: Professor Nike Sun
Notes by: Andrew Lin

Fall 2019

Introduction

The course website for this class can be found at the URL in [10]. That page notably contains a summary of topics

covered, as well as some additional references and brief lecture notes from other similar classes.

18.675 is the new numbering for 18.175; the material covered will be similar to previous years. The primary goal of

the class is to cover basic objects and laws in probability in a formal mathematical framework, so some background

in analysis and probability is strongly recommended. (In particular, if we are missing 18.100, we should talk to Professor

Sun after class.) The main readings for this class will come from chapters 1–4 of our textbook [4], and readings for

each chapter are included in the above summary of topics. There is some overlap with 18.125 (measure theory),

particularly near the beginning, but most of the content will be significantly different.

Grades are calculated mostly from homework (25%), exam 1 (35%), and exam 2 (35%). Class participation is the

remaining 5% of the grade; while this is a graduate class, we are expected to attend. This is a large class that will

probably get smaller over time, so attendance may be just checked manually. Alternatively, a short quiz may be given

occasionally in class which won’t be graded and is mostly to check whether we’re all following the material (and also

to have a formal record of who showed up). Realistically, attending class is highly correlated with doing well, so we

should definitely do so!

Remark 1. Notes for this class have been edited to include some details not covered in class.

1 September 4, 2019
We’ll begin the class with some measure theory, which gives us a formal language for probability. On its own, measure

theory is a bit dry, so we’ll try to motivate why it’s an important thing to study, starting with some elementary examples

of probability and random variables. We should be familiar with these concepts from 18.600 or some other similar

course:

• Consider a p-biased coin, where each flip comes up heads with probability p and tails with probability (1 − p).

Then the probability that six independent p-biased coin flips come up (H,H, T,H, T,H) in that order is just the

product of the probabilities, which is p4(1 − p)2. And since there are
(

6
4

)
ways to pick 4 heads among 6 coin

tosses, the probability of having four heads when we flip six p-coins is
(

6
4

)
p4(1− p)2.

• Suppose Un is a random variable distributed uniformly over the finite set { 1
n ,

2
n , · · · ,

n−1
n , 1},and Vn is an inde-
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pendent copy of Un. Then for any 1 ≤ i , j ≤ n, we have statements of independence like

P
(
Un =

j

n
, Vn =

k

n

)
= P

(
Un =

j

n

)
P
(
Vn =

k

n

)
=

1

n2
.

But trying to compute probabilities like this becomes more complicated if the set of allowed states is infinite. For

example, we might want to write down a formal definition for a random variable U which is uniform on [0, 1], but we

can’t have a positive probability that U is equal to any particular value. And we might also want to ask if Un converges

to U as n →∞ in some sense (since we seem to be populating [0, 1] uniformly).

We’ll now see an example that illustrates that this kind of problem is trickier than it might initially seem:

Problem 2

Alice and Bob play a game with an infinite sequence of boxes. Alice puts a real number in each box, and Bob can

reveal the number she put in every box except for one (which he can choose). “Show” that Bob can then guess

the unseen number with 90 percent probability.

“Solution”. Let S be the set of infinite sequences of real numbers, which can also be denoted RN. For two sequences

x, y ∈ S, say that x ∼ y (in other words, x and y are equivalent) if they eventually agree, so xn = yn for all n > N

for some finite index N. This is an equivalence relation on S, so there is a quotient space S/ ∼ of equivalence classes.

Pick one representative z from each equivalence class, so that for any sequence x ∈ S, there is a unique representative
sequence z = z(x) such that z is equivalent to x . And since z and x are equivalent by definition, we can let n(x) be

the first index for which x and z agree for all indices n(x) and onward.

We can now describe Bob’s strategy for guessing the unseen number. He splits the boxes into ten rows, where row

k contains the boxes originally in spots congruent to k mod 10. We now have ten real-valued sequences x (1), · · · , x (10)

corresponding to our ten rows – Bob picks one of these rows, uniformly at random (say row 10 without loss of

generality). He then reveals the numbers in all nine other rows and computes

N = max
{
n(x (1)), n(x (2)), · · · , n(x (9))

}
+ 1.

(In other words, he looks at the first nine rows, and he finds the first index where each row agrees with its representative

sequence. Then he finds the place N after which all rows agree.) If Bob then reveals every box in row 10 except for

box N, he has enough information to deduce z (10), the representative sequence for x (10). Bob can then guess that the

last box contains the representative sequence’s Nth element. z (10)
N .

But x (10)
N only disagrees with z (10)

N if the value of n(x (10)) was the largest out of all of the n(x (i))s. Because the

row Bob chose was selected uniformly at random, and there’s at most a 10 percent chance that he got the largest of

the n(x (i))s, his chance of guessing the correct number is at least 90 percent.

This is a strange example – we can clearly get the probability to be arbitrarily close to 1 by replacing 10 with a

larger number – so we’ve violated some laws of probability to get to this point. But we’ve constructed the problem in

a way such that we don’t really know where we’ve messed up! That’s why we’ll start with the axioms and use measure

theory to help us understand more clearly where we stand (and the issue will end up having to do with measurability).

Example 3

We’ll start with a seemingly basic problem, defining the uniform random variable U ∼ Unif[0, 1] from above.

One way to formalize this random variable is to construct a function (which we call a measure) µ on subsets of

[0, 1], such that for any subset A, µ(A) is the probability that U ∈ A. For example, for any 0 ≤ a ≤ b ≤ 1, it’s natural
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to want

µ([a, b]) = b − a

if we require U to be uniform. We also want to have some form of additivity, meaning that if A,B ⊆ [0, 1] are disjoint,

then their disjoint union A t B should have measure

µ(A t B) = µ(A) + µ(B).

By induction, this means that for any positive integer n,

µ

(
n⊔
i=1

Ai

)
=

n∑
i=1

µ(Ai).

Generalizing this further, if we take the limiting disjoint union
⊔n
i=1 Ai →

⊔∞
i=1 Ai , it’s also natural that we may want

countable additivity

µ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Remark 4. On the other hand, note that µ([0, 1]) = 1, but [0, 1] is an uncountable union of points, and each point

has measure µ({p}) = µ([p, p]) = 0. So we can’t ask our measure to have uncountable addivity, because 1 is not

the sum of a bunch of zeros.

So to summarize, our measure µ(A) = P(U ∈ A) (which is meant to define the uniform random variable U) should

have the following properties:

• It should respect lengths of intervals, meaning thatµ([a, b]) = b − a for all 0 ≤ a ≤ b ≤ 1.

• It should satisfy countable additivity (as defined above).

• It should also be translation-invariant, meaning that if A ⊆ [0, 1], and we define Ax = A + x to be A shifted

rightward by x (mod 1), then µ(A) = µ(Ax).

These properties may not seem like much, so we might ask if this is enough to characterize U – in other words, if

we’re given any subset A, we want to use these three equations to determine µ(A). Let’s try a slightly complicated

example to see this in action:

Example 5

Consider the Cantor set C =
⋂∞
i=1 Cn, where the Cn are iteratively defined as

C0 = [0, 1], Cn+1 = Cn \ (“middle third” of each interval of Cn).

(Because the Cis are nested, their intersection is indeed well-defined.) To find the measure of C, we know that

µ(C0) = 1, and we also know that Cn is the disjoint union of Cn+1 and the middle third of Cn, so

µ(Cn+1) = µ(Cn)− µ(middle third of Cn) =
2

3
µ(Cn).

This means that µ(Cn) =
(

2
3

)n
for all n, and taking the limit, the measure of the Cantor set is µ(C) = 0. So this

seems like encouraging evidence towards an answer of “yes, we can determine µ(A) in general,” but it turns out the

Cantor set is actually pretty well-behaved compared to some other subsets of [0, 1]. In fact, we’ve actually been asking

the wrong question – this function µ isn’t even well-defined for all subsets:
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Proposition 6

There is no function µ : P([0, 1])→ [0, 1] that satisfies all three of the properties we want in a measure.

Proof (the Vitali construction). Define an equivalence relation on the real numbers by setting x ∼ y if x − y ∈ Q.
This partitions the real line into equivalence classes (cosets of the form [x ] = x +Q), where each one is a shift of Q by

some real number. Similarly to Problem 2, we pick a representative z from each equivalence class, and for simplicity,

we can pick all z to be in [0, 1] (since a number is always in the same class as its fractional part).

Let A be the set of all representatives, which is a subset of [0, 1] (this is sometimes called the Vitali set). Since

Aq is A translated by q units, every real number in [0, 1] is in Aq for some rational number q. Now for any rational

q ∈ [0, 1], we have Aq ⊂ [0, 2], so we can write

Aq = (Aq ∩ [0, 1])t (Aq ∩ [1, 2]) =⇒ µ(Aq) = µ(Aq ∩ [0, 1]) + µ(Aq ∩ [1, 2]) = µ(Aq ∩ [0, 1]) + µ(Aq−1 ∩ [0, 1]) .

(Basically, think of taking the part of Aq that lies in [1, 2] and translating it to the left by 1 unit.) Now for any rational

number q ∈ [0, 1), Aq+n only intersects the interval [0, 1] if n = 0 or n = −1. Thus, we can split up the interval [0, 1]

into contributions from different rational numbers q and use countable additivity:

1 = µ([0, 1]) = µ

 ⋃
q∈Q,q∈[0,1)

(Aq−1 ∩ [0, 1]) ∪ (Aq ∩ [0, 1])


=

∑
q∈Q,q∈[0,1)

µ(Aq−1 ∩ [0, 1]) + µ(Aq ∩ [0, 1])

=
∑

q∈Q,q∈[0,1)

µ(Aq).

But now all Aqs have equal measure by translation invariance, so 1 =
∑

q∈Q,q∈[0,1) µ(A), which is impossible because

1 cannot be the sum of countably many equal numbers.

The way measure theory deals with this problem is to not require that µ be defined on all subsets of our space.
As a historical note, this was a pretty surprising idea when it was first proposed, but it’s really the only thing we can

do if we try to write formal definitions down. (We don’t really want to relax the conditions on our measure, so it’s

better to just not define the measure on some pathological subsets.)

Definition 7

A measure space is a triple (Ω,F , µ) satisfying the following axioms:

• Ω, the state space or outcome space, is a nonempty set.

• F , a set of measurable subsets or events, is a σ-field or σ-algebra over Ω (those terms will be used

interchangeably). In other words, F is a nonempty collection of subsets of Ω which is closed under comple-

mentation and countable union, so if A ∈ F , then Ac = Ω \ A is also in F , and if Ai ∈ F , then
⋃∞
i=1 Ai is

also in F .

• µ, the measure, is a map F → [0,∞] which is not infinite everywhere and is countably additive. In other

words, if Ai ∈ F are disjoint, then µ
(⊔∞

i=1 Ai
)

=
∑∞

i=1 µ(Ai).

The goal of our next two lectures will basically be to construct a uniform measure on [0, 1]: we’ll define a measure

space ([0, 1],L, µ), where L will be defined later, and similarly this will also allow us to define the measure space
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(R,LR, µ).

Definition 8

A measure µ is a probability measure (which we will denote P) if µ(Ω) = 1.

Just working with the definitions, we can gather a few immediate consequences about measure spaces:

Proposition 9

Given a measure space (Ω,F , µ), the following must hold:

1. ∅ and Ω are in F ,

2. µ(∅) = 0,

3. (continuity from below) if Ai ↑ A – that is, A1 ⊆ A2 ⊆ · · · and A =
⋃∞
i=1 Ai – then µ(Ai) ↑ µ(A),

4. (continuity from above) if Ai ↓ A – that is, A1 ⊇ A2 ⊇ · · · and A =
⋂∞
i=1 Ai – and also µ(A1) < ∞, then

µ(Ai) ↓ µ(A),

5. for any Ω, F = {∅,Ω} is a valid σ-field, and so is P(Ω).

Proof. For (1), because F is nonempty, there is some event A in F . Then Ac ∈ F , so A∪Ac = Ω must be in F , and
so must Ωc = ∅. For (2), there is some A such that µ(A) < ∞, so by additivity µ(A ∪ ∅) = µ(A) = µ(A) + µ(∅),

meaning µ(∅) = 0.

For (3), we use countable additivity on A =
⊔∞
i=1Bi , where B1 = A1, B2 = A2 \A1, B3 = A3 \A2, and so on. Then

µ(A) =

∞∑
n=1

µ(Bn),

and since µ(An) =
∑n

i=1 µ(Bi) are the partial sums of our infinite sum, µ(Ai) indeed converges to µ(A). Similarly,

for (4), define B1 = ∅, B2 = A1 \ A2, B3 = A1 \ A3, and so on. All Bis have finite measure since µ(A1) is finite, and

B1 ⊆ B2 ⊆ · · · ⊆ A1 \ A, so we can apply (3) on the Bis to find that µ(A1 \ Ai) ↑ µ(A1 \ A), so µ(Ai) ↓ µ(A) by

additivity. (The assumption that µ(A1) <∞ is necessary – a counterexample with µ(A1) =∞ is Ai = [i ,∞).)

Finally, the two examples in (5) are both σ-fields because they satisfy both closure axioms (complementation and

countable union).

If Ω is a finite set, and we wanted to define a probability space in 18.600, we would define a probability mass

function P(ω) = aω for every ω ∈ Ω, such that
∑

ω∈Ω aω = 1. In our new notation, F = P(Ω) is the set of all

possible events, and P(A) =
∑

w∈A aω for A. (We can check that this is a valid probability space from the axioms.)

But our discussion above shows that if we have a set like Ω = [0, 1] or R, and we take F = P(Ω), then we do have a

valid σ-field, but the Vitali set shows that we can’t define a measure µ on it. So next week, we’ll basically ask how to

restrict our set F to get a useful measure.

Definition 10

The Borel σ-field BR is the smallest σ-field over R that contains I, the set of all open intervals on R.

Importantly, whenever we see the word “smallest” in a definition, we should ask whether we have a well-defined

object (since there can be multiple “minimal” objects in general). But in this case, if {Fα : α ∈ I} is a collection

of σ-fields over Ω, then the intersection of the Fαs is also a σ-field. (Indeed, if a set A is the intersection of some
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σ-fields, then both A and Ac are in all of the σ-fields, so Ac is in the intersection. The same argument works for

countable union.) So we can just let BR be the intersection of all σ-fields, and thus the Borel σ-field is well-defined.

2 September 9, 2019

Fact 11

The next two lectures in this class were given by Professor Subhabrata Sen.

Our central question today is how to define the uniform measure on [0, 1]. Basically, we will define a function µ

on (some) subsets of [0, 1] with the requirements that

• µ ((a, b ]) = b − a (choosing half-open intervals is just a matter of convention),

• given disjoint subsets {Ai : i ≥ 1}, we have µ
(⊔

i Ai
)

=
∑

i µ(Ai), and

• if we define Ax = (A+ x mod 1), then µ(Ax) = µ(A) (translation invariance).

Vitali’s construction tells us that we can’t do this with all subsets of [0, 1], or in other words that there is no

function µ : 2[0,1] → [0, 1] that satisfies all three conditions above. (Here 2A is the powerset of A.) So we have to

compromise and try to define µ on just a subcollection of the subsets of [0, 1]. Last time, we defined a measure space
(Ω,F , µ), consisting of a nonempty state space, a σ-field, and a measure. We also defined the Borel σ-field to be

the smallest σ-field containing the open intervals (which are the sets where we really want the measure to be defined

in a particular way). Notationally, this can be written as

B = σ(I), I = {(a, b ] ∩ R : a ≤ b}.

With this, we will try to construct the Lebesgue measure on [0, 1]. Our hope is that because we already know how

to assign a measure to intervals, we can keep assigning measures to subsets of [0, 1] by building them from intervals.

Unfortunately, this is not rigorous, because there’s no closed form for an arbitrary element of BR, and in fact it’s not

true that every set in the Borel σ-algebra can be written as a countable union and/or intersection of open intervals!

Instead, we do define µ((a, b ]) = b−a, and we do define µ
(⊔

i(ai , bi ]
)

=
∑

i(bi−ai) for unions of disjoint intervals
(ai , bi ], but we’re not quite done. Instead, we then need to know whether there is a consistent extension of our

function µ to all sets in BR. Since this idea will come up again later in the course, we’ll make a slight generalization,

defining the function F (x) = µ((0, x ]). (So we’re primarily working with the case F (x) = x , but this works for a

general measure µ.)

Remark 12. Remember that measures in general do not need to be translation-invariant (it’s not part of Definition 7) –

we just want translation invariance when we are trying to define a uniform measure. In particular, translation invariance

will not hold if F (x) is nonlinear.

From the properties of measures we’ve been studying, we can notice the following properties of F :

• For any x1 > x2, we have µ((0, x1]) ≥ µ((0, x2]) =⇒ F (x1) ≥ F (x2), so F must be monotone.

• If xn ↓ x , then the intervals (0, xn] ↓ (0, x ], meaning µ((0, xn]) ↓ µ((0, x ]) by continuity from above. Thus, we

also have F (xn) ↓ F (x) – in other words, F is right-continuous.

We’ll see soon why the function F is not required to be left-continuous, and we’ll give functions F (x) of this form

a name:
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Definition 13

A Stieltjes measure function on R is a function F : R→ R which is non-decreasing and right-continuous.

Theorem 14 (Lebesgue-Stieltjes)

For any Stieltjes measure function F , there is a unique measure µ = µF on (R,BR) satisfying µ((a, b ]) =

F (b)− F (a) for all a, b ∈ R.

We’ll do the proof in two steps (noting that we start off with the definition of µ on the set of open intervals (a, b ]:

1. Show that there exists a unique extension from µ : I → [0,∞] to µ : A → [0,∞], where

A = {A ⊆ R : A is a finite disjoint union of sets in I.}

(In other words, we define µ for any finite disjoint union of intervals.)

2. Show that we can extend our measure from being defined on A to being defined on BR.

Remark 15. Notice that A is closed under complements and finite unions (exercise), while the Borel σ-algebra is

closed under complements and countable unions. So by using A as an intermediate step, we’re not quite at the

σ-algebra yet, but we’re kind of close.

Proof of step 1. The construction itself is pretty intuitive: given any subset A ∈ A, we can write it as A =
⊔n
i=1 Ej

for some intervals Ejs in A, so we define

µ(A) =

n∑
j=1

µ(Ej)

by additivity. But there are many different ways to write an element of A as a finite disjoint union of intervals, so we

need to check that

A =

n⊔
j=1

Ej =

m⊔
k=1

Fk =⇒
n∑
j=1

µ(Ej)
?
=

m∑
k=1

µ(Fk).

Indeed, because all Ejs and Fks are half-open intervals, we can take the common refinement of the partitions and

notice that
n∑
j=1

µ(Ej) =

n∑
j=1

µ(Ej ∩ A) =

n∑
j=1

µ

(
Ej ∩

(
m⊔
k=1

Fk

))
=

n∑
j=1

m∑
k=1

µ(Ej ∩ Fk).

Importantly, the last equality µ(Ej ∩
⊔m
k=1 Fk) =

∑m
k=1 µ(Ej ∩ Fk) comes not from additivity (because we don’t know

that yet) but from the fact that the Fks form a disjoint union of A and thus must cover Ej . This can only be done

with a finite set of half-open intervals if they line up back-to-back, and then the lengths will indeed add up to the

total length of Ej . But then starting this calculation from
∑

k µ(Fk) also yields this result (after swapping the order

of summation, which is okay because we have finite sums), so the two ways of computing the measure are the same,

and µ(A) is consistently defined. Thus we have indeed extended µ from I to A.

We will now record a few properties of the measure which will be useful for next lecture:
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Proposition 16

Our measure µ = µF has the following properties on A:

1. µ is monotone and finitely additive over A, meaning that for any disjoint A1, · · · , An ∈ A, µ
(⊔

i Ai
)

=∑n
i=1 µ(Ai).

2. µ is finitely subadditive over A, meaning that for any A1, · · · , An ∈ A, µ
(⋃

i Ai
)
≤
∑n

i=1 µ(Ai).

3. µ is countably subadditive over I: if A,Ai ∈ I (where i ranges over the positive integers) and A ⊆
⋃
i Ai ,

then µ(A) ≤
∑

i µ(Ai).

4. µ is countably additive on A.

Property (4) is really what we care about most, because we want countable additivity on the final space BR that

we’re defining µF on.

Proof. It suffices to show (1) and (2) for n = 2 by induction. For (1), write A1 = E1t· · ·tEx and A2 = F1t· · ·tFy ,
where all Eis and Fis are half-open intervals. By definition of µ on A, we then have

µ(A1 t A2) = µ(E1 t · · · t Ex t F1 t · · · t Fy ) =

x∑
i=1

µ(Ei) +

y∑
i=1

µ(Fi)

because the Eis and Fis are all disjoint intervals, and then the two sums on the right-hand side are µ(A1) and µ(A2),

proving additivity. Monotonicity then also follows because all terms here are nonnegative (lengths of intervals), so if

A ⊂ B, then µ(B) = µ(A) +µ(B \A) ≥ µ(A). For (2), write A1 ∪A2 as the disjoint union of A1 and A2 \A1, so then

by additivity and monotonicity from (1) and using the fact that A2 \ A1 ⊆ A2,

µ(A1 ∪ A2) = µ(A1 ∪ (A2 \ A1)) = µ(A1) + µ(A2 \ A1) ≤ µ(A1) + µ(A2).

For (3), we’re working over I, so write A = (a, b ] and Ai = (ai , bi ], and we’re given that (a, b ] ⊆
⋃∞
i=1(ai , bi ]. (By

definition, we have µ(A) = F (b) − F (a) and µ(Ai) = F (bi) − F (ai).) Since F is right-continuous, there exist real

numbers x > a, ci > bi such that F (x)− F (a) ≤ ε and F (ci)− F (bi) ≤ ε
2i
. (Intuitively, this now lets us work with A

as a closed interval and the Ais as open intervals.) We still have a covering

[x, b] ⊆
∞⋃
i=1

(ai , ci)

because we’ve only made A smaller and the Ais bigger. Since [x, b] is compact, and the right hand side is an open

covering, there exists a finite subcover by the Heine-Borel theorem, which we will denote (with some abuse of notation)

[x, b] ⊆
n⋃
i=1

(ai , ci)
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Now by (1) and (2), because µ is finitely subadditive and monotone,

µ((a, b ]) ≤ µ((a, x ]) +

n∑
i=1

µ((ai , ci ])

= (F (x)− F (a)) +

n∑
i=1

(F (ci)− F (ai))

= (F (x)− F (a)) +

n∑
i=1

(F (ci)− F (bi)) +

n∑
i=1

(F (bi)− F (ai)) ≤ 2ε+

∞∑
i=1

(F (bi)− F (ai))

(one ε factor comes from F (x) − F (a), and the other comes from the sum of the geometric series
∑

ε
2i
). But now

taking ε→ 0, we indeed get countable subadditivity

µ((a, b ]) ≤
∞∑
i=1

µ((ai , bi ])

as desired. Finally, for (4), we are trying to prove that given A,Ai ∈ A, where A =
⊔∞
i=1 Ai , we have µ(A) =∑∞

i=1 µ(Ai). Write

A =

n⊔
i=1

Ai t

( ∞⊔
i=n+1

Ai

)
=

n⊔
i=1

Ai t Cn+1,

where Cn+1 =
⊔∞
i=n+1 Ai is actually a finite disjoint union of intervals as well (because it is the intervals of A, with the

intervals in A1, · · · , An removed). Thus, we can apply (1) to say that

µ(A) =

n∑
i=1

µ(Ai) + µ(Cn+1) ≥
n∑
i=1

µ(Ai).

Taking n to infinity, we find that

µ(A) ≥
∞∑
i=1

µ(Ai),

which gives one direction of the inequality. To show the upper bound, without loss of generality, we can assume that

all Ai ∈ I, because each Ai is originally a finite disjoint union of intervals (so the whole disjoint union is a countable

disjoint union of intervals). Also, because A is an element of A, we can separately write A =
⊔n
j=1 Ej with all Ej ∈ I.

So now because A is entirely contained in (
⋃
i Ai), we may write

µ(A) =

n∑
j=1

µ(Ej) =

n∑
j=1

µ

(
Ej ∩

(⋃
i

Ai

))
=

n∑
j=1

µ

(⋃
i

(Ej ∩ Ai)

)
.

Since Ej and Ai are both intervals, so is Ej ∩ Ai , and thus by (3) we have

µ(A) ≤
n∑
j=1

∞∑
i=1

µ(Ej ∩ Ai) =

∞∑
i=1

n∑
j=1

µ(Ej ∩ Ai)

by swapping the order of summation (okay because we have a nonnegative sum), and finally by (1) this yields

µ(A) ≤
∞∑
i=1

µ(A ∩ Ai) =

∞∑
i=1

µ(Ai),

proving the other direction of the inequality and verifying (4).

Our next step is to extend µ from A to the actual σ-field BR. For now, let’s assume the measure we want to

define is a finite measure (meaning that it never takes on the value of ∞). We’ll show the following result next time:

9



Theorem 17 (Carathéodory extension theorem)

Let A be an algebra over Ω (meaning that it is closed under complements and finite unions), and let µ : A →
[0,∞) be a countably additive finite measure. Then there exists a unique measure on the generated σ-algebra

µ : σ(A)→ [0,∞) which extends µ.

3 September 11, 2019
Recall that the central object we’re studying is the Borel σ-field BR, which is the smallest σ-algebra generated by the

intervals I = {(a, b ] ∩ R : a ≤ b}. Last time, we started working towards a proof that given any Stieltjes measure

function (monotone, right-continuous) F , there exists a unique µF on (R,BR) such that µ ((a, b ]) = F (b)− F (a). In

particular, we extended the measure from I to the algebra A consisting of finite disjoint unions of intervals in I, and
today, we’ll further extend this to BR = σ(A).

Remark 18. A quick follow-up from last lecture – if we define F (x) = µ((0, x ]), then it is not true that F needs to

be left-continuous. After all, when xn ↑ x , (0, xn ] ↑ (0, x), while F (x) uses the interval (0, x ] instead:

µ((0, xn ]) ↑ µ((0, x)) 6= µ((0, x ]) = F (x).

The example to keep in mind is that if we have a step function F (x) with a point mass, then (0, x) and (0, x ] differ

by the mass at point x , but this is a valid Stieltjes measure function.

The extension of the measure µF (and thus one way to construct a uniform measure) will be done by proving the

Carathéodory extension theorem, Theorem 17, today. We’ll go through the proof in a slightly nonlinear way; we want

to prove (1) that an extension exists and (2) that it is unique, but we’ll do the latter first by introducing the π-λ

theorem.

Definition 19

A π-system P on a set Ω is a nonempty collection of subsets of Ω, such that for any A,B ∈ P, A ∩ B ∈ P.

For example, the collection of half-open intervals I is a π-system.

Definition 20

A λ-system L on a set Ω is a collection of subsets of Ω satisfying the following conditions:

• Ω ∈ L.

• For any A,B ∈ L where B ⊆ A, A \ B ∈ L.

• If we have a sequence An ∈ L, and An ↑ A, then A ∈ L.

All σ-algebras are both π-systems (we have closure under intersections by definition) and λ-systems (in any σ-

algebra, we have Ω by taking any A ∪ Ac , we have A \ B because it is also A ∩ Bc , and we have A =
⋃
n An = A

whenever An ↑ A by countable union). And the converse also holds:

Proposition 21

If a λ-system L is also a π-system, then L is a σ-algebra.

10



Proof. Because L contains the whole set Ω (by definition of a λ-system), it is nonempty. And because Ω ∈ L,
Ω \ A = Ac ∈ L for any A ∈ L, so it is also closed under complementation. Finally, for countable union, if L contains

A1, A2, then it also contains A1 ∪ A2 (the complement of Ac1 ∩ Ac2), and more generally it contains A1 ∪ · · · ∪ An for

any n, so it must also contain the limit
⋃
n An.

In other words, the definition of a σ-algebra can be split into the verifying the intersections part (π-system) and

the rest (λ-system), and this turns out to be very helpful:

Theorem 22 (Dynkin’s π-λ theorem)

If P is a π-system, L is a λ-system, and P ⊆ L, then σ(P) ⊆ L.

This theorem will have applications in various different contexts, so we should try to understand how it works.

Proof. Without loss of generality, we can let L be the smallest λ-system containing P (this only makes σ(P) ⊆ L
harder to achieve). This is well-defined, because there is at least one λ-system – the powerset of Ω – and intersections

L1 ∩ L2 of λ-systems are λ-systems as well:

• Ω is in both L1 and L2, so it’s also in L1 ∩ L2.

• If A and B are both in L1 ∩ L2, they’re both in L1 and L2, so A \ B is in both λ-systems, meaning it’s also in

their intersection.

• If all Ans (with An ↑ A) are in L1 ∩ L2, then they’re in both λ-systems, so A is in both λ-systems and therefore

the intersection as well.

Thus, the smallest L is the intersection of all λ-systems containing P . It suffices to show that L is also a π-system,

because that would mean L is a σ-field (by Proposition 21) containing P, so it must contain σ(P ), the smallest σ-field

containing P. In other words, we need to show that given any A,B ∈ L, A ∩ B ∈ L. Fix any A ∈ P, and define

LA = {B ∈ L : A ∩ B ∈ L} ⊆ L,

the subset of L whose intersections with A are also in L. We can can check that LA is a λ-system:

• A ∩Ω = A ∈ L, so Ω ∈ LA.

• If B2 ⊆ B1 are in LA, meaning A ∩ B1, A ∩ B2 ∈ L, then (A ∩ B1) \ (A ∩ B2) = A ∩ (B1 \ B2) is also in L, so
B1 \ B2 is also in LA.

• If we have an increasing sequence Bn ↑ B ∈ L, and all Bn ∈ LA (that is, A ∩ Bn ∈ L for all n), then A ∩ B ∈ L
because (A ∩ Bn) ↑ A ∩ B, so B is also in LA.

In addition, because A ∈ P and P is a π-system, any element B ∈ P also has A ∩ B ∈ P ⊆ L. Thus LA contains

P. But L is the smallest λ-system containing P, so L ⊆ LA ⊆ L and the two sets are equal. Therefore, for all A ∈ P
and B ∈ L, A ∩ B ∈ L. Now fix any B ∈ L, and define

LB = {A ∈ L : A ∩ B ∈ L}.

By the argument we just made, P ⊂ LB (any intersection between an element of P and L is in L). In addition, the

exact same argument as for LA shows that LB must be a λ-system, so LB = L. So the intersection of any two

elements of L is in L, meaning that L is a π-system, which is what sufficed to prove our result.
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The important takeaway from this proof is that measure-theoretic proofs are difficult because we don’t have a

closed form for all measurable subsets. Instead, the right way is to first verify that a certain subset P has the property

we want, and then this theorem is powerful because it can bootstrap results from P to its σ-algebra. In particular, we

can now prove the uniqueness part of the Carathéodory extension theorem:

Proof of uniqueness for Theorem 17. Suppose that there were two distinct extensions µ1 and µ2 of our measure µ

from A to σ(A). Then µ(A) = µ1(A) = µ2(A) for all A ∈ A by definition, and we can define

L = {B ∈ σ(A) : µ1(B) = µ2(B)}

to be the subsets in σ(A) where the extensions agree. (We want to show that L is the σ-algebra σ(A) itself.) We’ve

established that A ⊆ L, and we know that A is a π-system (intersections of finite collections of intervals are a finite

collection of intervals). Now L is a λ-system, as we can verify directly:

• The whole space Ω is in L, because an algebra always contains A ∪ Ac = Ω.

Remark 23. There are actually some small technicalities here depending on the space Ω we choose – for example,

[0, 1] is not a finite union of half-open intervals because of the closed lower bound, so it’s easiest to define a

uniform measure on the real line first and restrict to [0, 1] afterward. But we’re also assuming that our measure

only takes on finite values, so the way we actually need to set up our construction is to make this argument on

(for example) (−n, n] for each positive integer n and take the union over all n.

• If µ1(A) = µ2(A), µ1(B) = µ2(B), and B ⊆ A, then µ1(A \B) = µ2(A \B) by additivity, so A \B is also in L.

• If µ1(An) = µ2(An) for all n in an increasing sequence {An}, we can define B1 = A1, B2 = A2 \ A1, and so on.

From the previous point, µ1(Bi) = µ2(Bi) for all i , so by countable additivity we have µ1(
⋃
Bi) = µ2(

⋃
Bi).

Since µ1(
⋃
Bi) = µ1(

⋃
Ai) = µ1(A) (and same for µ2), µ1(A) = µ2(A) as desired.

Thus the π-λ theorem tells us that σ(A) = L, so µ1 = µ2 and the measures are the same.

This proof technique is quite powerful – we only had to verify that µ1(A) = µ2(A) for a small subset of all

measurable subsets, and L helped us bootstrap that to a more general statement (even though there isn’t an easy

way to write down what an arbitrary element of σ(A) even looks like). Now, we’ll actually construct a measure that

works:

Proof of existence for Theorem 17. We begin with a definition:

Definition 24

An outer measure on Ω is a map ν : 2Ω → [0,∞) which is monotone and countably subadditive.

An outer measure is basically a “crude” measure which has certain desirable characteristics of a measure but not

all of them, and the example we’ll use is the following:

Definition 25

Let µ be a measure on an algebra A. Then for all E ⊆ Ω, define

µ∗(E) = inf

{ ∞∑
i=1

µ(Ai) : Ai ∈ A, E ⊆
⋃
i

Ai

}
.

12



In other words, µ∗(E) is the minimum measure we need to cover E using sets in A. We can verify that µ∗ is indeed

an outer measure:

• It is monotone, because any covering of B ⊇ A also covers A, meaning that µ∗(B) ≥ µ∗(A).

• It is also countably subadditive, because the union of coverings of Ai also covers
⋃
i Ai , and we’re still using a

countable number of sets in A to do so.

Lemma 26

The outer measure µ∗ extends µ on A (the set of finite disjoint unions of half-open intervals) – in other words,

µ∗(A) = µ(A) for all A ∈ A.

Proof. First of all, we know that µ∗(A) ≤ µ(A), since A covers itself. Suppose for the sake of contradiction that

µ∗(A) < µ(A). Then there is some countable union of half-open intervals that covers A with measure less than µ(A)

(since the infimum over all covering is less than µ(A)), and we can choose the covering so that each interval I in the

covering is contained within one of the intervals of A (if I covers multiple intervals, then split it up, and then cut off

the endpoints, which only decreases
∑
µ∗A). Since A is made up of finitely many intervals (say N of them), by the

pigeonhole principle, there is some interval I ∈ A covered by intervals In ∈ I such that
∑

n µ
∗(In) < µ(I). Pick the

interval I with the largest deviation, and we know that∑
n

µ∗(In) = µ(I)− ε

for some ε > µ(A)−µ∗(A)
N > 0. However, µ∗(In) = µ(In) (this can be checked very similarly to part (3) of Proposition 16,

covering a compact interval with an open covering), and then again by part (3) of Proposition 16 we have subadditivity

of µ over intervals, meaning

µ(I) ≤
∑
n

µ(In),

a contradiction. Thus we cannot have µ∗(A) < µ(A), and µ∗(A) = µ(A) as desired.

In other words, the outer measure assigns a value to every subset of our space Ω, and it does so correctly on A.
We’ve already seen that doing this assignment naively won’t give us a valid measure, so to refine this argument, we

need to find a suitable subcollection A∗ ⊆ 2Ω such that A∗ is a σ-algebra and µ∗|A∗ is a measure. If we can find such

a set, then A ⊆ A∗ implies that σ(A) ⊆ σ(A∗), which means we will have successfully defined our extension on σ(A).

Definition 27

A subset E ⊆ Ω is measurable with respect to µ∗ if for all F ⊆ Ω, we have

µ∗(F ) = µ∗(F ∩ E) + µ∗(F ∩ Ec).

Measurability will turn out to be the “niceness” property that we want, and the set on which we will define our

measure is

A∗ = {E ⊂ Ω : E is measurable with respect to µ∗}.

First of all, we need to make sure that we are working with a large enough subcollection:

Lemma 28

With the definition of A∗ above (and the algebra A in the theorem statement), A ⊆ A∗.

13



Proof of lemma. We wish to show that any element of A is measureable with respect to µ∗, or in other words that

for any A in A, we have

µ∗(F ) = µ∗(F ∩ A) + µ∗(F ∩ Ac).

One direction is clear: we have

µ∗(F ) ≤ µ∗(F ∩ A) + µ∗(F ∩ Ac)

because the union of the coverings of F ∩ A and F ∩ Ac always covers the left side. Now, suppose the left side is

covered by some countable union of intervals I1, I2, · · · . We will show that we can cover the right side with at most

4ε more measure for any ε > 0 (which will prove that the infimum on the right-hand side is at most 4ε the infimum

on the left-hand side).

Since A is a finite collection of intervals, each interval Ik in the covering of F can only have finitely many transitions

between the parts contained in A and Ac , so there are a countable number of changes between A and Ac overall.

Break up the intervals at those changes, which doesn’t change the total µ of the covering. We can now cover F ∩ A
and F ∩ Ac as follows: F ∩ A is a subset of (

⋃
k≥1 Ik) ∩ A (since the Iks cover F ), which is a countable union of

intervals (each possibly closed or open). Similarly, F ∩Ac is a subset of (
⋃
Ik)∩Ac , which is another countable union

of intervals. Extend both sides of the ith interval in (
⋃
Ik)∩A (which has countably many intervals) by ε

2i
, and similarly

extend both sides of the jth interval in (
⋃
Ik) ∩ Ac by ε

2j
. (Also, use this extra length to turn all of the intervals into

half-open ones.) We’ve then used 4ε more µ than in our covering of A, but we’ve covered both F ∩ A and F ∩ Ac .
Because this argument works for any covering of F ,

µ∗(F ) + 4ε ≥ µ∗(F ∩ A) + µ∗(F ∩ Ac),

and taking ε→ 0 shows the other direction of the inequality, completing the proof.

To finish our construction, we just need to show that A∗ is a σ-algebra and that µ∗ is countably additive on A∗.
First of all, A∗ is closed under complementation, because E and Ec are symmetric in Definition 27 (so if E satisfies

the condition, so does Ec). Towards showing closure under countable union, we will first prove that it’s closed under

finite union. By induction, it suffices to show that if E1, E2 ∈ A∗, then E1 ∪E2 ∈ A∗. By definition, this is equivalent
to plugging E1 ∪ E2 in Definition 27, and it suffices to just show the inequality

µ∗(F ) ≥ µ∗(F ∩ (E1 ∪ E2)) + µ∗(F ∩ (E ∪ E2)c),

because the reverse inequality is true by subadditivity of µ∗ (one of the properties of outer measure). To show this,

note that

µ∗(F ∩ (E1 ∪ E2)) ≤ µ∗(F ∩ E1) + µ∗((F \ E1) ∩ E2)

by subadditivity (the two sets on the right-hand side are disjoint and their union is F ∩ (E1 ∪ E2)), and we also have

µ∗((F \ E1) ∩ E2) = µ∗(F ∩ Ec1 )− µ∗(F \ (E1 ∪ E2))

by the measurability of E2 applied to the set F ∩ Ec1 = F \ E1. Adding the two equations, the blue terms cancel, so

µ∗(F ∩ (E1 ∪ E2)) + µ∗(F \ (E1 ∪ E2)) ≤ µ∗(F ∩ E1) + µ∗(F ∩ Ec1 ) = µ∗(F ),

where the last step comes from E1 being measurable. So A∗ is indeed closed under finite unions – to prove that A∗

is also closed under countable unions, we need to show that for any Ei ∈ A∗, we also have
⋃∞
i=1 Ei ∈ A∗. First of all,
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for any disjoint E1, E2 ∈ A∗, by the measurability of E1 applied to the set F ∩ (E1 ∪ E2), we have (for any set F )

µ∗(F ∩ (E1 ∪ E2)) = µ∗(F ∩ (E1 ∪ E2) ∩ E1) + µ∗(F ∩ (E1 ∪ E2) \ E1) = µ∗(F ∩ E1) + µ∗(F ∩ E2),

and thus by induction we see that µ∗

(
F ∩

(
n⋃
i=1

Ei

))
=

n∑
i=1

µ∗(F ∩ Ei) . To now actually prove our claim, first

assume without loss of generality that the Eis are disjoint – because we already have closure under complementation,

we can instead use the sets M1 = E1,M2 = E2 \ E1 = E2 ∪ Ec1 , and so on, without changing the overall union of the

Eis. Now define

An =

n⋃
i=1

Ei , A =

∞⋃
i=1

Ei .

Since we have just proved closure for finite unions, we know that An ∈ A∗ for all n, and therefore

µ∗(F ) = µ∗(F ∩ An) + µ∗(F \ An)

by the definition of measurability. So now applying the boxed equality to the first term and monotonicity to the second

term, we have

µ∗(F ) ≥
n∑
i=1

µ∗(F ∩ Ei) + µ∗(F \ A),

and taking n →∞ yields

µ∗(F ) ≥
∞∑
i=1

µ∗(F ∩ Ei) + µ∗(F \ A) ≥ µ∗(F ∩ A) + µ∗(F \ A)

by countable subadditivity of µ∗. The reverse inequality is true by subadditivity of outer measure, so we’ve verified the

measurability of the countable union A, meaning that A∗ is indeed a σ-algebra.

Finally, to prove that µ∗ is indeed a measure on A∗, we need to show countable additivity, and we can do this by

showing inequalities in both directions. For any measurable sets Ai , we have

µ∗

( ∞⊔
i=1

Ai

)
≤
∞∑
i=1

µ∗(Ai)

by countable subadditivity of the outer measure µ∗, meaning that

µ∗

( ∞⊔
i=1

Ai

)
≥ µ∗

(
n⊔
i=1

Ai

)
=

n∑
i=1

µ∗(Ai),

where in the last step we apply measurability of An to the set
⊔n
i=1 Ai , then apply measurability of An−1 to the set⊔n−1

i=1 Ai , and so on. Taking n → ∞, we obtain the other direction of inequality, proving countable additivity of µ∗.

Since µ∗ extends µ and is defined on the σ-algebra A∗ containing A, we have successfully defined a measure on

σ(A).

Putting the proofs of existence and uniqueness together, we have finally extended our measure to σ(I), as desired.

And in particular, using the Stieltjes measure function F (x) = x , we have finally (after two lectures of work) successfully

defined the uniform (Lebesgue) measure on [0, 1].
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4 September 16, 2019

Our first homework assignment will be posted later today (after lecture); it will be due in class next Wednesday. There

will be four or five problem sets in this class, and this first one will have us work a little more with properties of

measures.

We’ll start with a restatement of the material covered in the last two lectures. We proved Theorem 14, which

states that for any nondecreasing right-continuous function F : R → R, we have a unique measure µF on (R,BR)

satisfying µ((a, b ]) = F (b)−F (a). The proof has two parts – first, we extend µ from I (the set of half-open intervals

of the form (a, b ]) to A (the set of finite disjoint union of such intervals). Then, we extend µ from A to its Borel

σ-algebra using the Carathéodory extension theorem; uniqueness follows from the π-λ theorem, and existence comes

from the construction of the outer measure.

This is a class about probability, so we’ll start to introduce random variables and their properties today. We’ll see

soon that these variables are specific examples of measurable functions, and that their properties (like expected value

and variance) are specific examples of Lebesgue integrals.

Definition 29

A probability space is a measure space (Ω,F , µ) such that µ(Ω) = 1.

We will often denote µ as P for a probability space. A way to interpret this definition is that Ω is a space of

possible outcomes, F is the set of possible events that can be assigned measures (some sets of outcomes are not

“well-behaved” enough to be assigned a probability measure), and P is the measure itself.

Example 30

If we have a sequence of n independent fair coin tosses, we can write down its probability space as

Ω = {heads, tails}n = {0, 1}n, F = P(Ω), P(A) =
|A|
|Ω| ∀A ⊆ Ω.

In this case, the set of possible events F can just be the full powerset of Ω because we have a finite set. And the

way we’ve defined the space, our probability measure is uniform on the 2n possible sequences: for any individual event

(that is, any set of size |A| = 1), we have P(A) = 1
2n .

In order to study properties of more general probability spaces, we’ll need to be more abstract. From here, let

(Ω,F , µ) be any measure space, in particular allowing for µ(Ω) =∞.

Definition 31

The indicator function for the set A ∈ F , denoted 1A(ω) or 1{ω ∈ A}, is defined to be

1A(ω) =

1 ω ∈ A,

0 ω ∈ Ω \ A.

Definition 32

A simple function f : Ω→ R is a function that can be written in the form f =
∑n

i=1 ci1Ai , where ci ∈ R and Ai
are disjoint sets in F .
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Definition 33

A measurable function f is one that can be pointwise approximated by simple functions, meaning that there

exists a sequence of simple functions {fn} such that f (ω) = limn→∞ fn(ω) for all ω ∈ Ω.

(One way to phrase this is that the “nicely-behaved” functions are those which can be built up from indicator

functions using pointwise limits of linear combinations.)

Definition 34

Let (Ω,F) and (S,G) be two measurable spaces. A measurable mapping is a function f : Ω→ S such that for

every G ∈ G, the preimage f −1(G) is an element of F .

In other words, if we take any “well-behaved” set in S, its preimage is also well-behaved in Ω.

Proposition 35

A measurable function f on (Ω,F) (as defined in Definition 33) is equivalent to a measurable mapping (Ω,F)→
(R,BR) as defined in Definition 34.

Proof. This is an exercise left for our homework (we must show that being measurable in each definition also means

being measurable in the other sense).

The definition of a measurable function is more concrete, while the mapping is a bit more abstract, but the latter

is particularly useful because a measure µ on the domain space Ω naturally induces a measure on the target space S:

Proposition 36

If µ is a measure on (Ω,F), and we have a mapping f : (Ω,F) → (S,G), then we have a measure ν on (S,G)

called the pushforward measure, defined as

ν(G) = µ(f −1(G)) ∀G ∈ G.

This is typically written as ν = f∗µ or f#µ.

(Soon in this lecture, we’ll connect this abstract idea to the idea of a “distribution” from undergraduate probability.)

Proposition 37

If f , g are measurable, then af + bg is measurable for all a, b ∈ R, and so is f · g.

Proof sketch. Write f and g as pointwise limits of simple functions and do some bookkeeping. Alternatively, we can

check using the other definition of measurability, verifying that the preimage of sets of the form (a, b ] (it suffices to

check (a,∞]) are measurable.

Definition 38

A random variable is a (real-valued) measurable function defined on a probability space (Ω,F ,P). (We often use

the variables X or Y rather than f .) More generally, an (S,G)-valued random variable is a measurable mapping

(ω,F)→ (S,G).
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Random variables will usually be real-valued in this class, but we may occasionally specify a different target space.

Fact 39 (Helpful notation)

Since f is a function from Ω to R, we will often consider the pre-image X−1(B) = {ω ∈ Ω : X(ω) ∈ B} of a set

of real numbers B. We will denote this set {X ∈ B}, so for example, {X ≥ 1
2} = {ω ∈ Ω : X(ω) ≥ 1

2}.

To see why this is good notation, remember that X is a mapping from some space (Ω,F ,P) to the real line (R,B),

so if we take the pushforward measure X∗P, we get the distribution or law of the random variable X, often denoted

LX . We’ll go through the symbol-pushing to make sure we understand how it behaves: LX is a measure on our target

space (R,B), meaning that it takes in a measurable subset B ∈ B and outputs

LX(B) = (X∗(P))B = P(X−1(B)) = P({ω ∈ Ω : X(ω) ∈ B}),

the “probability” of X mapping to B. So measure theory gives a more rigorous meaning to P(X ∈ B), which is notation

that we like to use.

Example 40

Looking back at the coin-tossing example, where we have F = P(Ω) and P a uniform measure on Ω, consider

the two random variables X(ω) = ω1 = 1{first toss is head} and Y (ω) =
∑n

i=1 ωi = number of heads.

We can visualize Ω as the vertices of a hypercube {0, 1}n, where the map Y sends a vertex (x1, · · · , xn) to

x1 + · · · + xn. (So random variables often “condense information” and are not one-to-one.) Then the law LY is a

measure on (R,B) supported on {0, 1, · · · , n}, so we just need to find the weight assigned to each integer to describe

the distribution. In formal notation, we have

LY ({k}) = P
(
Y −1({k})

)
= P ({ω ∈ {0, 1}n : Y (ω) = k}) =

(
n
k

)
2n
,

and this is the familiar binomial distribution with parameters (n, 1
2).

Now that we have a more explicit description of our random variables, we’ll move on to Lebesgue integration.
For this part, assume that (Ω,F , µ) is a σ-finite measure space, meaning that there exists a sequence Ωn ↑ Ω such

that µ(Ωn) < ∞ for all n. (For example, the real line with the (uniform) Lebesgue measure would work by taking

Ωn = [−n, n].) Suppose that we have a measurable function f : (Ω,F)→ (R,B); our goal is to define the quantity∫
Ω

f dµ =

∫
Ω

f (ω)dµ(ω),

such that in the case where µ is a probability measure P, we get the mean of f . Since we build up measurable functions

from simple functions, it makes sense to do the same for integrals:

1. For any simple function f =
∑n

i=1 ci1Ai , define∫
f dµ =

n∑
i=1

ciµ(Ai).

It’s bookkeeping to check that this integral doesn’t depend on the representation f as a simple function. Specifically,

if we can write f as
∑n

i=1 ci1Ai =
∑m

j=1 dj1Bj ), then each Ai must be contained within the region where f is nonzero,

18



which is contained within B1 ∪ · · · ∪ Bn. Thus,

n∑
i=1

ciµ(Ai) =

n∑
i=1

ciµ

 m⋃
j=1

Ai ∩ Bj

 =

n∑
i=1

m∑
j=1

ciµ (Ai ∩ Bj) .

Similarly,
∑m

j=1 djµ(Bj) =
∑

i

∑
j djµ (Ai ∩ Bj). But because the Ais are disjoint and so are the Bjs we must have

ci = dj (equal to the value that f takes in the region) whenever Ai ∩ Bj . Thus the two expressions are indeed equal.

2. Next, we define the integral for bounded measurable functions. For any measurable function f : (Ω,F) →
(R,B) with supω∈Ω |f (ω)| < ∞ and µ({f 6= 0}) < ∞ (the latter meaning that the function has bounded
support), define ∫

f dµ = sup

{∫
φdµ : φ ≤ f , φ simple function

}
= S.

It may seem arbitrary to approach f from below, so we might ask whether it also makes sense to approximate from

above. It turns out both methods yield the same answer:

Proposition 41

Let I = inf
{∫

φdµ : φ ≥ f , φ simple function
}
and take the definition of S from above. Then I = S.

Proof. We clearly have S ≤ I, because any φ ≤ f in the definition of S is pointwise smaller than any φ ≥ f in the

definition of I (and thus the integral
∫
φdµ is also smaller). To show that I ≤ S, we will sandwich our function

between simple functions. We have

f lower
m ≤ f ≤ f upper

m , where f upper
m =

dmf e
m

, f lower
m =

(
dmf e − 1

m

)
· 1{f 6= 0},

where the idea is that f upper
m and f lower

m sift the function f in increments of 1
m , and the 1{f 6= 0} term ensures that

both of these functions are zero whenever f = 0. Additionally, if sup |f | = M (finite by assumption here), then

f upper
m ≤ M + 1 and f lower

m ≥ −M − 1. So both f lower
m and f upper

m are bounded and only take on values that are integer

multiples of 1
m , so they are simple. We can thus write

I − S ≤
∫
f upper
m dµ−

∫
f lower
m dµ =

1

m
· µ({f 6= 0}),

because those two integrals only differ by 1
m and only on the region (of finite measure) where f 6= 0. Taking m to

infinity, we find that I − S ≤ 0, establishing the other inequality and proving that I = S.

3. Next, we define the integral on nonnegative (but not necessarily bounded) measurable functions f by approxi-

mating with bounded functions from below:∫
f dµ = sup

{∫
hdµ : 0 ≤ h ≤ f , h bounded with µ({h 6= 0}) <∞

}
.

Proposition 42

The above definition is equivalent to setting
∫
f dµ = limm→∞

∫
Ωm

min(f ,m)dµ, where we integrate over sets

Ωm ↑ Ω of finite measure (meaning µ(Ωm) <∞ for each m).

This gives us a more explicit formula for the integral, since we don’t need to actually compute the supremum over

all possible h and can just take the “truncated” functions min(f ,m).
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Proof. Let Im =
∫

Ωm
min{f ,m}dµ and I =

∫
f dµ; we wish to show that Im ↑ I. The sequence {Im} is increasing as a

function of m, because we’re integrating over a larger set and integrating a larger nonnegative function as m grows.

And we know that I ≥ limm→∞ Im, because each Im is an example of a function h in the definition above, so we just

need to show the other inequality.

By definition, for any ε > 0, we can find a bounded function h such that
∫

Ω hdµ ≥ I − ε. Because h is bounded,

we can find some L such that |h| ≤ L, and then for all m ≥ L (and thus m ≥ h everywhere),∫
Ω

hdµ =

∫
Ω

min{h,m}dµ

=

∫
Ωm

min{h,m}dµ+

∫
Ω\Ωm

min{h,m}dµ

≤ Im + L · µ ((Ω \Ωm) ∩ {h 6= 0}) ,

where we use that h ≤ f in the first term and h ≤ L in the second. Now L is a constant, and as m →∞, Ω \Ωm ↓ ∅,
so (Ω \Ωm)∩ {h 6= 0} ↓ ∅. Also, the measure of any set (Ω \Ωm)∩ {h 6= 0} is finite, because µ({h 6= 0}) is finite by

definition. So by part (4) of Proposition 9, µ ((Ω \Ωm) ∩ {h 6= 0}) gets arbitrarily small, and in particular there will

be some sufficiently large m such that ∫
Ω

hdµ ≤ Im + ε.

Putting our inequalities together, we thus find that for any ε > 0,

I − ε ≤
∫

Ω

hdµ ≤ Im + ε,

so taking ε→ 0 yields I ≤ Im, giving us the other direction of the inequality and thus Im ↑ I.

4. For the last step, we want to extend from nonnegative measurable functions to all measurable functions

f : (Ω,F)→ (R,B). To do this, set

f = f+ − f−, where f+ = max(f , 0), f− = max(−f , 0)

(we can check that f+ and f− are both measurable if f is measurable) and define∫
f dµ =

∫
f+dµ−

∫
f−dµ,

where we compute the two integrals on the right-hand side using the previous step. There are a few cases here:

if both integrals are finite, then
∫
f dµ is finite (in fact,

∫
|f |dµ <∞, and we say that f is integrable). Also, if

only one of the integrals is infinite, then we get ∞ or −∞. But if we have ∞−∞ on the right-hand side, we

say that
∫
f dµ is undefined.

Definition 43

The expectation of a random variable X is

E[X] =

∫
Ω

X(ω)dP(Ω) =

∫
Ω

XdP.

Defining this integral is useful because any function f : (R,B)→ (R,B) that is Riemann-integrable is measurable,

and the Riemann integral is the same as the Lebesgue integral with respect to the Lebesgue measure. On the

other hand, the function 1Q is not Riemann integrable (because it is very “spiky”), but the Lebesgue integral is perfectly
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well-defined – the Lebesgue measure of a countable set is 0, so we have
∫
R f = 0. Additionally, we can also interpret

discrete sums as Lebesgue integrals by saying that

n∑
i=1

f (i) =

∫
R
f dn,

where n is the counting measure n(A) = |A ∩ N|. So Lebesgue integration can cover both very “smooth” and very

discrete cases, and even some in between (which we’ll see on the homework), which is useful because we have both

discrete and continuous random variables in probability. And finally, we’ll also soon see that Lebesgue integrals have

nice convergence properties, which will be important for many of the results we show in this class!

5 September 18, 2019

Last time, we defined the Lebesgue integral. There are some problems about measurability on our homework (we

should redownload the document because some typos have been fixed), so we’ll start with a review of last lecture.

(The homework is due next Wednesday during class, and Professor Sun says that it takes a while, so we should not

leave it until the last minute.)

Recall that a function f is simple if it can be written as a linear combination f =
∑n

i=1 ci1Ai of indicator functions

(where the Ais may have infinite measure). A measurable function is then the pointwise limit of simple functions

(remember that on our homework, we show that this is equivalent to having f −1(B) ∈ F for all B ∈ BR). So to define

the Lebesgue integral, we suppose that (Ω,F , µ) is σ-finite, meaning that there exist sets Ωm ↑ Ω with µ(Ωm) <∞
for each m. Then we can define our integral first over simple functions as

f =

n∑
i=1

ci1Ai =⇒ µ(Ai) <∞ =⇒
∫

Ω

f dµ =

n∑
i=1

ciµ(Ai)

and using this to define the integral of any nonnegative function f :∫
f dµ = sup

{∫
hdµ : 0 ≤ h ≤ f , h simple function, µ({h > 0}) <∞

}
.

(We did this in two steps last time by defining the integral for bounded functions first, but this definition is equivalent.)

Then we define the integral of any real-valued f to be the integral of f+ (the positive part) minus the integral of f− (the

negative part), and
∫

Ω f dµ =
∫

Ω f (ω)dµ(ω) is then called the Lebesgue integral of f . Importantly, this construction

works for any σ-finite measure, not just the Lebesgue measure.

Last lecture, we also started talking about random variables: given a measurable function X on a probability space

(Ω,F ,P), we define its law to be the pushforward measure LX = X#P. (This is a useful in connecting the mean of a

random variable E[X] to the Lebesgue integral
∫
XdP.)

Remark 44. We can think of computing the Riemann integral as summing the area of a bunch of rectangles, obtained

by partitioning the domain into small steps. In contrast, because the Lebesgue integral is built up by simple functions,

we can think of the Lebesgue integral as summing rectangles coming from partitioning the target space into small

steps.

It can be proved that a function f : [a, b] → R which is Riemann integrable is also Lebesgue integrable, and the

two integrals both agree. (Basically, we can show this for simple functions and then approximate a Riemann integrable

function from above and below with simple functions.) But as we mentioned last time, Lebesgue integration is more

powerful because it can encode discrete sums (which Riemann integration cannot); additionally, we can also define
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the Lebesgue integral in more abstract spaces (Ω,F , µ), while the Riemann integral requires some sort of Euclidean

structure. And today, we’ll talk about a third advantage of the Lebesgue integral, which is that it is well-suited for

convergence theorems.

Remark 45. In practice, the Lebesgue integral is rarely directly computed from the definition. Instead, we try to write

down more explicit expressions – for example, if we can write f = h + 1Q for a continuous function h, then we can

Riemann integrate h and deal with 1Q with a discrete summation. And even if the Lebesgue integral is defined on a

more abstract space, we can often push forward onto the real line to get a more explicit expression, but we often need

convergence properties for that.

Convergence theorems answer questions like “if fn → f converges pointwise, does
∫
fndµ→

∫
f dµ?” The answer

turns out to be no in general:

Example 46

If we define the functions fn = n · 1(0, 1
n

), the integral of each fn (over the real line) is 1, but the sequence fn
converges pointwise to 0, so the limit has integral 0.

Our goal is thus to show conditions under which the integrals do converge. For the rest of this lecture, we’ll assume

that (Ω,F , µ) is a σ-finite measure space, and that fn, f , gn, g are all measurable functions on (Ω,F). We’ll also let

Ωk ↑ Ω be a sequence of spaces with µ(Ωk) <∞ for all k .

Definition 47

A sequence of functions fn converges to f with respect to µ almost everywhere if the numbers fn(ω) → f (ω)

converge except for ω in a set of µ-measure zero. Similarly, fn → f converges in µ-measure if for all ε > 0,

limn→∞ µ ({ω : |fn(ω)− f (ω)| ≥ ε}) = 0.

It will be a future homework problem to show that pointwise convergence implies µ-almost-everywhere convergence,

which implies convergence in measure, but that the converses are not true. Our first convergence theorem will be the

easiest to prove but unfortunately the least useful:

Theorem 48 (Bounded convergence theorem)

Suppose that a sequence of random variables fn are uniformly bounded, meaning that there is some M <∞ such

that |fn| ≤ M for all n. Also suppose that µ ({ω : fn(ω) 6= 0 for any n}) <∞. Then if fn → f in µ-measure, then∫
fndµ→

∫
f dµ.

In other words, we have convergence of integrals if the functions are uniformly bounded in value and also in support.

Proof. Define E = {ω : fn(ω) 6= 0 for some n}. By assumption, notice that the limit f satisfies |f | ≤ M everywhere

except a set of measure zero, and the set {f 6= 0} is contained in E (because outside of E all of the fns are zero,

so their limit is also zero). Thus, the only contributions to any of the integrals will come from E, and we can ignore

Ω \ E. Fix some ε > 0, and define Bn = {|fn − f | ≥ ε} (this is a subset of E). We can now bound the difference
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between our integrals as ∣∣∣∣∫
Ω

f dµ−
∫

Ω

fndµ

∣∣∣∣ =

∣∣∣∣∫
E

(fn − f )dµ

∣∣∣∣
=

∣∣∣∣∫
E\Bn

(fn − f )dµ

∣∣∣∣+

∣∣∣∣∫
Bn

(fn − f )dµ

∣∣∣∣
≤ εµ(E \ Bn) + 2Mµ(Bn)

≤ εµ(E) + 2Mµ(Bn),

where we use the fact that |fn − f | ≤ 2M everywhere and that |fn − f | ≤ ε in E \Bn. But µ(Bn)→ 0 by definition of

convergence in µ-measure, so we have

lim sup
n→∞

∣∣∣∣∫ (fn − f )dµ

∣∣∣∣ ≤ εµ(E).

Because µ(E) is finite, sending ε→ 0 shows that
∫

Ω fndµ does indeed converge to
∫

Ω f dµ, as desired.

Theorem 49 (Fatou’s lemma)

Let fn be a sequence of nonnegative functions. Then∫ (
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

(∫
fndµ

)
.

For this result to make sense, we’re assuming that if fn are all measurable, then lim inf fn is also measurable – that’s

an exercise we can check ourselves. And as a note, lim infn→∞ fn is only the pointwise liminf of the fns µ-almost-
everywhere, but that’s okay because we’re integrating over it anyway and a measure-zero set does not change the

integral.

Proof. Let f = lim inf fn. By definition,

lim inf
n→∞

fn = sup
n≥1

(
inf
`≥n

f`

)
(recall that we can use sup instead of lim because the inner term (inf`≥n f`) is nondecreasing with n). Let the inner

term be gn = inf`≥n f`; notice that 0 ≤ gn ≤ fn for any n and gn ↑ f . Because gn converges pointwise to f , it also

converges in µ-measure, so by the bounded convergence theorem (Theorem 48 above) we have∫
Ωk

min{f , k} = lim
n→∞

∫
Ωk

min{gn, k}dµ.

(Here we are importantly using that Ωk has finite measure by definition.) However, we have

lim
n→∞

∫
Ωk

min{gn, k}dµ ≤ lim
n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ ,

where the first step comes from removing the upper cap on the function and also expanding the space Ωk , and the

second step comes from gn ≤ fn. By Proposition 42, if we take k → ∞,
∫

Ωk
min{f , k} converges to

∫
f dµ (because

all functions here are nonnegative), and thus the inequality between the two boxed terms yields the desired result.

(If we look back at Example 46 and we plug in the functions fn = n · 1(0, 1
n

) into Fatou’s lemma, we see that

0 =
∫

lim infn→∞ fndµ is indeed at most 1 = lim infn→∞
∫
fndµ.) Fatou’s lemma may look unmotivated, but it is

useful because of its applications to some powerful results:
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Theorem 50 (Monotone convergence theorem)

Let fn ≥ 0 be a sequence of nonnegative functions, and suppose that fn ↑ f . Then
∫
fndµ ↑

∫
f dµ, where integrals

are allowed to be infinite.

Proof. Since the Lebesgue integral is monotone (if f ≤ g, then
∫
f dµ ≤

∫
gdµ),

∫
fndµ is a nondecreasing sequence

of extended real numbers, and it converges to some limit I ≤
∫
f dµ (here using monotonicity from fn ≤ f ). For the

other inequality, Fatou’s lemma tells us that∫
f dµ =

∫
lim
n→∞

fndµ ≤ lim inf
n→∞

(∫
fndµ

)
= lim

n→∞

(∫
fndµ

)
= I.

Thus the
∫
fndµs indeed increase to

∫
f dµ, as desired.

Theorem 51 (Dominated convergence theorem)

Let fn be a sequence of functions, and suppose there is some integrable function g (that is,
∫
|g|dµ <∞) such

that |fn| ≤ g for all n. If fn → f µ-almost-everywhere, then
∫
fndµ→

∫
f dµ.

Proof. By assumption, −g ≤ fn ≤ g for all n, so fn + g ≥ 0 and g − fn ≥ 0. Since f is the limit of the fns, it is also

their lim inf, so by Fatou’s lemma, ∫
(g ± f )dµ ≤ lim inf

n→∞

∫
(g ± fn)dµ.

Cancelling out the gs and then rewriting this inequality with both +f and −f , we find that

lim sup
n→∞

∫
fndµ ≤

∫
f dµ ≤ lim inf

n→∞

∫
fndµ,

but both the left and right terms are limn→∞
∫
fndµ, so we have our desired equality.

(With these last two theorems, it’s also useful to see how Example 46 fails each of the theorem assumptions.)

We’ll now turn to an application of these results in probability: suppose we’re working on a probability space (Ω,F ,P),

and we have a random variable Y with mean E[Y ] =
∫

Ω Y dP. Additionally, suppose that Y can be written as f (X),

where X is another random variable. In other words, we can describe the random variables with the following diagram:

(Ω,F ,P) (S,G, µ) (R,B, ν)
X

Y

f

Since µ is the pushforward measure under X of P, meaning that µ = X#P = P ◦X−1, and ν is the pushforward of

µ under f and also of P under Y , meaning that ν = f#µ = Y#P, it’s natural to ask if we can compute the expected

value of Y in both ways, giving us the change of variables formula∫
Ω

Y dP ?
=

∫
S

f dµ.

Such a result would be useful if X is a real-valued random variable, because S would be R and the integral
∫
S f dµ

could be computed more explicitly. We’ll start with a simple case to see that this does make sense:
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Example 52 (Change of variables formula on a finite state space)

Suppose Ω is finite, so we can describe P with a function p satisfying
∑

ω∈Ω p(ω) = 1. Any function Y is then a

simple function, since Y =
∑

ω∈Ω Y (ω)1{ω} =
∑

ω∈Ω f (X(ω))1{ω}, so the expectation of Y is (by definition)

E[Y ] =

∫
Ω

Y dP =
∑
ω∈Ω

f (X(ω))p(ω) .

But f is also a simple function (because it takes on only finitely many values, which are the values of Y (ω)), so

(here we only care about the values of f on the finitely many points X(Ω))

f =
∑
x∈S

f (x)1{x} =⇒
∫
S

f dµ =
∑
x∈S

f (x)µ({x}) .

And now for any x ∈ X(Ω),µ({x}) = (X#P)({x}) = P(X−1({x})), which is the measure of the set of ωs sent

to x under X (and thus is the sum of the p(ω)s). So the two sums both add up f (X(ω))p(ω) over all ω ∈ Ω,

proving that the two integrals are equal.

However, it turns out that the more general formula does require more work and is not just symbol pushing – we’ll

see our convergence theorems in action:

Theorem 53 (Change of variables formula)

Suppose we have maps (Ω,F ,P)
X−→ (S,G, µ)

f−→ (R,B, ν), and let Y = f (X). If either f ≥ 0 (f is nonnegative)

or
∫
|f (X)|dP <∞ (Y is integrable), then

E[Y ] =

∫
Ω

f (X(ω))dP(ω) =

∫
S

f dµ =

∫
S

f (x)d(P ◦X−1)(x).

(Here, the first and last equalities are definitions of E[Y ] and
∫
S f dµ, but including them explains the name “change

of variables:” the first and last integral change the variable of integration from ω to x .)

Proof. This is a pretty standard proof method, so we should make a note of it: whenever we want to show a result

about Lebesgue integrals, first prove it for indicators, and then built it up for more and more general functions.

• First, assume f = 1B for some set B ∈ G. Since f is simple on S,∫
S

f dµ = µ(B) = P(X−1(B)).

But then Y = f (X) = 1B(X) is a simple function on Ω, specifically 1X−1(B), and thus
∫

Ω Y dP = P(X−1(B)) as

well. Thus the formula holds when f is an indicator function.

• Since simple functions are finite linear combinations of indicator functions, it follows by linearity of the Lebesgue

integral that
∫
S f dµ =

∫
Ω f (X)dP for all simple functions.

• Next, we’ll prove the formula for general nonnegative functions f ≥ 0 (this is one of the conditions in the theorem

statement). The useful trick here is to define the functions fn = min
{
bf 2nc

2n , 2n
}
. (This wouldn’t work with n

in place of 2n – we want to define these fns to be nondecreasing.) Each fn is a simple function, and fn ↑ f
pointwise. From the previous step, we know that

∫
fndµ =

∫
fn(X)dP for all n, so by the monotone convergence

theorem (because fn(X)→ f (X) pointwise) those integrals converge to
∫
f (X)dP =

∫
Y dP, as desired.
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• Finally, for a general measurable function f , we prove the result by splitting f into its positive and negative parts,

and this only works if Y is integrable.

As we mentioned, this formula is most commonly used when we’re trying to compute a Lebesgue integral. If we

want to find EX for some random variable X on a complicated space (Ω,F ,P), we can set up the change of variables

formula as

(Ω,F ,P)
X−→ (R,B,LX)

id−→ (R,B,LX),

where this time we have Y = X. Theorem 53 then tells us that

E[X] =

∫
R
id(x)dLX(x),

which is what we expect – the expected value of X only depends on its properties on the real line, and we compute it

as an integral of x with respect to the law of X.

6 September 23, 2019

This is a final reminder that our first homework assignment (which should be printed and submitted in class) is due on

Wednesday. Two TAs will be reading and grading, so if we are handwriting our solutions, we should make sure to be

neat. (Writing more is not generally helpful, and solutions should be aim to be “correct in some minimal way.”) Also,

because of a seminar this week, office hours have been changed to Monday 2–3 and Tuesday 11–12.

So far in this class, we’ve been considering measures on the one-dimensional space R. Today, we’ll be generalizing
to higher dimensions – to do so, we’ll actually need to study our construction on R in more detail. Recall that we

started with the collection of half-open intervals equipped with a Lebesgue-Stieltjes function F , and we made the

definitions

I = {(a, b ]}, µ((a, b ]) = F (b)− F (a).

To get to a measure on BR, we first extended µ to A, which contained finite disjoint unions of elements of I, and
we had to check that µ was indeed countably additive on A. Once we did this, we used the Caratheodory extension

theorem to obtain a measure on σ(A). This second step holds in an abstract setting, as long as A is an algebra

(meaning it is closed under complementation and finite union) and µ is countably additive on A. However, the first

step (where we extend from I to A) used some topological properties of R. So if we want to do this step in general,

we need to explain what properties of I are actually required:

Definition 54

A semialgebra S is a set of subsets closed under finite intersection and semiclosed under complementation

(meaning that if E ∈ S, then Ω \ E is a finite disjoint union of elements of S).

For example, the set of half-open intervals I is a semialgebra because

R \ (a, b ] = (−∞, a ] t (b,∞),

and the two terms on the right-hand side are both in I. (If we’re concerned about the open upper bracket on (b,∞),

recall that we actually defined I to be elements of the form (a, b ]∩R.) And once we have our semialgebra S, our goal
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is to extend µ from S to the set A of finite disjoint unions of elements in S (in other words, the algebra generated by

S). We can verify the following fact:

Lemma 55

Let S be a semialgebra over Ω, and let µ : S → [0,∞] be countably additive over S (so for any Ei , E ∈ S such

that E =
⊔∞
i=1 Ei , we have µ(E) =

∑∞
i=1 µ(Ei). Then there is a unique µ : A → [0,∞] which extends µ on S

and is countably additive over A.

(This was essentially proved during lectures 2 and 3, and checking that the proof carries over is a bit of bookkeeping.

The details will be on our homework.) We’ll now apply this result to product measures. The idea is that if we have

(for instance) a Lebesgue measure defined on two different axes, then the measure of a rectangle should just be the

product of the Lebesgue measures of the two side lengths. To formalize that, for the rest of this lecture, consider two

measurable spaces (S,G) and (T,H). The product space will just be Ω = S × T , but it’s a bit harder to write down

what the measurable subsets of Ω need to look like:

Definition 56

The product σ-field F of (S,G) and (T,H) is the σ-field σ(S), where S is the set of “rectangles”

S = {A× B : A ∈ G, B ∈ H}.

In particular, Lemma 55 will be useful now if we verify that S. We should draw some pictures to convince ourselves

of this: the intersection of two rectangles is a rectangle, and we can decompose Ω \ (A × B) into rectangles in a

picture too. But if we want to be more formal (for example, if we were writing this on a test), we would write that

(A× B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

(and indeed both sets on the right side are in S), and similarly

Ω \ (A× B) = (A× (T \ B)) t ((S \ A)× T ).

So the (product) measurable space that we’ll be trying to work with here is (Ω,F) = (S×T,G ⊗H) – all that’s left is

for us to actually put a measure on it. Suppose that our original measurable spaces (S,G, λ) and (T,H, ρ) are equipped

with measures, and assume here that we have finite measures λ(S), ρ(T ) < ∞ (though σ-finite is sufficient). Our

goal is to define a product measure µ = λ⊗ ρ on (Ω,F) using Lemma 55, which motivates the following verification:

Lemma 57

Given the measures λ and ρ above, define µ : S → [0,∞) by setting µ(A × B) = λ(A) · ρ(B) for all A ∈ G and

B ∈ H. Then µ is countably additive over S: that is, if we can write a rectangle A × B as a disjoint countable

union of rectangles A× B =
⊔∞
i=1(Ai × Bi), then λ(A)ρ(B) =

∑∞
i=1 λ(Ai)ρ(Bi).

Proof. Assume without loss of generality that all sets are nonempty. (Otherwise, discard them.) Consider the

coordinate projection map π defined by π(x, y) = x . If we apply π to both sides of A × B =
⊔∞
i=1(Ai × Bi),

we get

A = π(A× B) = π

( ∞⊔
i=1

(Ai × Bi)

)
=

∞⋃
i=1

Ai

27



because all sets are nonempty (though we no longer need to have a disjoint union on the right). Thus, A is the union

of the Ais, and similarly B is the union of the Bis. Now by definition, (x, y) belongs to A×B if and only if there exists

some unique index i such that (x, y) ∈ Ai ×Bi . Thus, for any x ∈ A, we can look at the cross-section x ×B along B

and break it up into disjoint pieces, meaning that

B =
⊔
i :x∈Ai

Bi .

Since we know that ρ is a measure on B, countable additivity then tells us that

ρ(B) =
∑
i :x∈Ai

ρ(Bi)

for any x ∈ A. If we then define the function f (x) to be ρ(B) inside A and 0 otherwise (this is where we use our “area”

intuition), we have

f (x) = 1{x ∈ A} · ρ(B) = 1{x ∈ A}
∑
i :x∈Ai

ρ(Bi) =

∞∑
i=1

1{x ∈ Ai}ρ(Bi).

Since f is a number ρ(B) times an indicator function 1A, f is a simplee function on S. Similarly, the right-hand side is

a pointwise limit of simple functions (taking the partial sums). Thus we can integrate both sides over S (with respect

to λ) to get

λ(A)ρ(B) =

∫ [ ∞∑
i=1

1{x ∈ Ai}ρ(Bi)

]
λ(dx).

Since all functions are nonnegative, the partial sums are monotone, and we can apply the monotone convergence

theorem, which tells us that the right-hand side is
∫ [∑∞

i=1 1{x ∈ Ai}ρ(Bi)
]
λ(dx) =

∑∞
i=1

∫
[1{x ∈ Ai}ρ(Bi)]λ(dx) =

∞∑
i=1

λ(Ai)ρ(Bi) , as desired. (So in other words, “we can interchange the sum and the integral” in this case.)

With this, we can apply Lemma 55, we’ve found a unique µ = λ ⊗ ρ that extends our definition on S and is

countably additive over A, so then applying the Caratheodory extension theorem gives us a measure µ on the product

space (Ω,F). It is also natural to generalize to a product measure of the form µ1⊗µ2⊗· · ·⊗µn – we can check that

the order of operations doesn’t matter, so such a product measure can also be defined. (And beyond that, it’s also

very common to work with infinite product spaces and define
⊗∞

i=1(Ωi ,Fi , µi), but these are more tricky and we’ll

talk about them next lecture.)

For now, we’ll turn to discussing the generalization of the Lebesgue integral to product spaces. Recall that we’re

not just working with Riemann double integrals – because Lebesgue integral can also deal with summations, we’re also

in the setting of double sums of the form
∑

i ,j ai j . There is some trickiness here, because while we can always swap

the order of summation for finite sums, like

N∑
i=1

M∑
j=1

ai j =

M∑
j=1

N∑
i=1

ai j ,

we can run into issues with infinite sums:
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Example 58

Define a doubly-indexed sequence

ai j =


1 i = j,

−1 i = j + 1,

0 otherwise.

Then the order of summation changes the final answer
∑

i ,j ai j : we have

∞∑
i=1

 ∞∑
j=1

ai j

 = 1 + 0 + · · · = 1,

∞∑
j=1

( ∞∑
i=1

ai j

)
= 0 + 0 + · · · = 0.

In cases like in this example, we’ll say that the double sum
∑

i ,j ai j is undefined (and we can’t freely change the

order). But there are conditions where swapping the order of summation (or more generally, integration) is allowed,

and those are also the situations where we can define the Lebesgue double integral:

Theorem 59 (Fubini-Tonelli)

Let (S,G, λ) and (T,H, ρ) be finite measure spaces, and define (Ω,F , µ) = (S × T,G ⊗ H, λ ⊗ ρ). Let f be a

measurable function defined on (Ω,F). If f ≥ 0 or
∫
|f |dµ <∞, then∫

S

[∫
T

f (x, y)dρ(y)

]
dλ(x) =

∫
Ω

f dµ =

∫
T

[∫
S

f (x, y)dλ(x)

]
dρ(y).

(More specifically, Tonelli’s theorem covers the f ≥ 0 case, and Fubini’s theorem covers the
∫
|f |dµ <∞ case.).

In particular, the middle integral is defined by the construction of the Lebesgue integral, but it’s not clear a priori that

the left and right double integrals actually exist.

Proof. We’ll prove the first equality – the other one follows by symmetry – and we’ll do so with the “start with

indicators” method. First, suppose that f = 1E for a measurable E ∈ F = G ⊗ H. Fix some x ∈ S, and define

fx(y) = f (x, y) to emphasize that f is just a function of y for now. Then

(1E)x(y) = 1{(x, y) ∈ E} = 1{y ∈ Ex},

where Ex is the cross-section of x across E in the space T .

Lemma 60

The cross-section Ex , as defined above, is a measurable set (in T ) for any x ∈ S.

Proof of lemma. A slick trick here is to define

Fx = {E ∈ F : Ex measurable} ⊆ F .

Our goal is to show that Fx = F . We can check that Fx is a σ-field:

• If E ∈ Fx , then Ex is measurable in T , and thus (because H is a σ-field) so is its complement T \Ex = (Ω \E)x

(the complement of the cross-section of E is the cross-section of the complement of E). Thus Ω \ E ∈ Fx as

well.
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• If Ei ∈ Fx for all i , then each (Ei)x is measurable in T , so the countable union
⋃∞
i=1(Ei)x =

(⋃∞
i=1 Ei

)
x
by the

same logic (here we use that the countable union of the cross-section of E is the cross-section of the countable

union of E), so
⋃∞
i=1 Ei is also in Fx .

Additionally, the cross-section of any rectangle A× B is always B or the empty set (depending on whether x is in

A or not), which are both measurable, so Fx contains S. But this means that σ(Fx) = Fx contains σ(S) (the whole

σ-field), so Fx = F , as desired.

Thus fx(y) = 1{y ∈ Ex} is a measurable function of y on (T,H), meaning that the inner integral
∫
T f (x, y)dρ(y)

is indeed well-defined and satisfies∫
T

f (x, y)dρ(y) =

∫
T

1E(x, y)dρ(y) =

∫
T

1{y ∈ Ex}dρ(y) = ρ(Ex).

We now need to evaluate the outer integral, and to do so, we first need to show that the map x → ρ(Ex) is a

measurable function on (S,G). (The picture we should have in mind is that we slide x along the S-axis, outputting

the measure of its cross-section in E, and we want to verify that this is a measurable function.) To do this, we use a

similar trick as before, defining

Fρ =

{
E ∈ F : x → ρ(Ex) is measurable on (S,G) and

∫
S

ρ(Ex)dλ(x) = µ(E)

}
⊆ F .

(This final condition is included because it is the eventual result we want to show, which is that this double integral is

indeed equal to
∫

Ω 1Edµ =
∫

Ω f dµ.) We want to show that Fρ = F , and we’ll do so with a pi-lambda argument. Like

before, Fρ contains all rectangles in S, because for any E = A× B, ρ(Ex) is equal to ρ(B) if x ∈ A and 0 otherwise,

so ρ(Ex) = ρ(B) · 1{x ∈ A}, which is indeed a measurable function integrating to
∫
ρ(Ex)dλ(x) = ρ(B)λ(A) = µ(E).

Also, S is a π-system (semialgebras are closed under intersection by definition), and Fρ is a λ-system:

• The whole space Ω = S × T is an element of Fρ, because it is a rectangle.

• For any two sets E1, E2 ∈ Fρ with E1 ⊇ E2, notice that

ρ((E1 \ E2)x) = ρ((E1)x \ (E2)x) = ρ((E1)x)− ρ((E2)x),

because the cross-section of the difference of E1 and E2 is the difference of the cross-sections and because

(E1)x ⊇ (E2)x . Since both terms are measurable functions of x and the difference of measurable functions

is measurable, ρ((E1 \ E2)x) is indeed a measurable function. Additionally, the integral of ρ((E1 \ E2)x) is

ρ(E1)− ρ(E2) = ρ(E1 \ E2) by linearity of the integral. Thus E1 \ E2 ∈ Fρ as well.

• Finally, we want to show that if Ei ∈ Fρ for all i and Ei ↑ E, then the limit E is also in Fρ. Since (Ei)x ↑ Ex ,
ρ((Ei)x) ↑ ρ(Ex) for all x by continuity from below. So Ex is measurable (as the countable union of the Eis),

and
∫
ρ(Ex)dλ(x) is the limit of the

∫
ρ((Ei)x)dλ(x)s by monotone convergence theorem, which is indeed

limi→∞ ρ(Ei) = ρ(E). Thus E ∈ Fρ.

So now by the π-λ theorem, because Fρ is a λ-system containing S, it also contains σ(S). Thus Fρ = F ,
meaning that for any E ∈ F = G ⊗ H, the indicator function 1E satisfies Fubini-Tonelli. From here, we perform the

usual machinery: the result is also true for simple functions by linearity, so it’s also true for nonnegative functions by

approximating from below with the monotone convergence theorem, and thus it’s also true for all integrable functions

by splitting into the positive and negative parts.
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7 September 25, 2019
Last time, we constructed the product measure on the product of two σ-finite measure spaces. Specifically, given

(S,G, λ) and T,H, ρ), we explained how to define Ω = S × T , F = G ⊗ H, and µ = λ ⊗ ρ. Note that we can also

define non-product measures, such as the uniform measure on a triangle in our space: some examples of these will

be on our homework for next time. (And as mentioned, we can always extend this to arbitrary finite product spaces(∏n
i=1 Ωi ,

⊗n
i=1 Fi ,

⊗n
i=1 µi

)
by induction.)

We also mentioned during our discussion that infinite products are more subtle, and that’s what we’ll be going

into today. For example, consider the percolation model on the infinite integer lattice grid, where at every point

(x, y) ∈ Z2, we flip a coin to decide whether we have a 0 or a 1. The percolation problem then asks us about

the large-scale structure of this model. And we can also build more complicated models off of this (for example in

statistical physics), where perhaps we have some nearest-neighbor interaction between the sites. Our first instinct

might be to avoid infinite products completely and only consider a finite large subset of the lattice, but often the

boundary conditions of such a system are annoying to deal with. So here are the two main results we’re going to prove

today:

• a special case of the Ionescu-Tulcea theorem, which says that we can define an infinite product of probability
spaces with no further conditions, and

• the Kolmogorov extension theorem, which says that we can define a non-product measure on an infinite product

space, with a mild regularity condition.

We’re using a product sigma-algebra in both cases, so we’ll start by defining what that means for an infinite product:

Definition 61

Let (Ωα,Fα) be measurable spaces, indexed by α ∈ I (so there can be an uncountable set of αs). The product
σ-field F =

⊗
α∈I Fα is the minimal σ-field over Ω =

∏
α∈I Ωα such that all single-coordinate projections πα are

measurable. In other words, we require that (πα)−1(Eα) ∈ F for all Eα ∈ Fα.

(This definition may look familiar if we’ve heard of a product topology.) The preimage of Eα can also be written

(πα)−1(Eα) = Eα ×
∏

γ∈I\{α}

Ωγ ,

and because I can be uncountable, this is not the same as just taking arbitrary Cartesian products of measurable sets

Eα in each Fα. Specifically, we are only allowed to take countable unions of these sets, so at most countably many of

the sets in our product are allowed to be not the whole set Ωα.

Definition 62 (Notation)

For any subset J ⊆ I of the index set, we will define the partial products

ΩJ =
∏
α∈J

Ωα, FJ =
⊗
α∈J
Fα.

To understand why this is a useful definition, we’ll bring in the probability intuition: we often care about the

finite-dimensional distributions of a probability measure, also called its marginals. Specifically, suppose we have a

product measure on an infinite product probability space (Ω,F ,P), where the index set I is countable. Then any set
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E =
∏
α∈I Eα is measurable, so we would guess that

P(E)
?
=
∏
α∈I
Pα(Eα).

(This turns out to not quite be true, but we’re just talking about intuition for now.) In order for this probability to be

positive (nonzero), most of the probabilities Pα(Eα) need to be pretty close to 1, meaning that most of the dimensions

basically need to include the whole space. That motivates only looking at distributions along finitely many dimensions:

Definition 63

Let J be a finite subset of our index set I, and let P be a measure on the infinite product space Ω. The finite-
dimensional marginal (or finite-dimensional distribution) of P on J is the pushforward measure on (ΩJ ,FJ),

where for any EJ ∈ FJ ,
[(πJ)#(P)] (EJ) = P(π−1

J (EJ)) = P(EJ ×ΩI\J).

If we want these marginals to make sense, then we should get consistent distributions no matter how we “project

down.” In other words, if we have two finite subsets J ′ ⊆ J ⊆ I, then the marginal PJ ′ of P on J ′ should be the

same whether we’re projecting directly from I to J ′, or from I to J and then J ′. (And the point of the measurability

condition in the definition of the product σ-field is necessary to make sure everything in this consistency statement is

well-defined.)

So when we construct a measure P on an infinite product space, there are already some consistency conditions

that P must satisfy – a natural question is to ask whether we can just use these conditions to construct P. And in the

results we’ll show today, we’ll start with the family of PJs (also called a family of finite-dimensional distributions),
and we’ll get a measure P consistent with those marginals.

Before we get to the main results, we’ll go over a useful alternate version of the Carathéodory extension theorem

to apply in the infinite-dimensional case (which doesn’t require us to check countable additivity directly):

Lemma 64 (Variant of Carathéodory)

Let A be an algebra over Ω, and let µ : A → [0,∞) be a finite measure which is finitely additive. Suppose that

for any sequence Bn ∈ A with Bn ↓ ∅, we have µ(Bn) ↓ 0. Then µ is also countably additive over A (so the

Carathéodory extension theorem applies).

Proof. We need to prove countable additivity – let An ∈ A be disjoint sets such that A =
⊔∞
n=1 An is also in A. For

each positive integer n, the set Bn = A \
⊔n
i=1 Ai is also in A (because it can be constructed with just finite unions

and complementations of Ais and A). By finite additivity, we thus have

µ(A) =

n∑
i=1

µ(Ai) + µ(Bn).

But Bn decreases to the empty set, meaning that µ(Bn) → 0 by assumption. Thus taking n → ∞ shows countable

additivity, as desired.

We now want to specialize this lemma to our infinite product space (Ω,F) = (
∏

Ωα,⊗Fα), and we’ll set up the

notation now. As an exercise, we can check that

A =
{

(πJ)−1(EJ) = EJ ×ΩI\J : J finite set, EJ ∈ FJ
}
.
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is an algebra (we just need to check complementation and finite union, both of which are pretty easy). If we now

consider an arbitrary sequence Bn ∈ A with Bn ↓ ∅, each Bi only involves finitely many coordinates, so the total

number of coordinates that can be involved in any of the Bis is countable. So we’ll renumber the relevant coordinates

to Q = {1, 2, 3, · · · } for convenience, and we may assume without loss of generality that B1 depends on the first

coordinate, B2 depends on the first two, and so on (we can check that both of the following proofs work whether each

coordinate in Q represents a single Ωα or a product of them). This means that our sequence of Bns can be written

more explicitly as

Bn = Bn ×ΩQ\[n] ×Ωrest ,

where [n] = {1, 2, · · · , n}, Bn ∈ F[n], and Ωrest is the full probability space Ω on the index set I \Q. (Here, the subset
Q can depend on the Bn but is always countable.) Then to apply Lemma 64 in our theorems, we just need to show

that µ(Bn) ↓ 0.

Theorem 65 (Ionescu–Tulcea theorem, special case)

Let (Ωα,Fα,Pα) be probability spaces indexed by α ∈ I. There is a unique probability measure P on the product

space
(∏

α∈I Ωα,
⊗

α∈I Fα
)
, where the family of finite-dimensional distributions is given by PJ =

⊗
α∈J Pα for any

finite J.

This is essentially us creating a “product measure” on our infinite-dimensional space, since we are requiring product

measures on all finite-dimensional ΩJs.

Proof. As discussed above, we will be applying Lemma 64 using the algebra A =
{
EJ ×ΩI\J , J finite, EJ ∈ FJ

}
. To

have the correct finite-dimensional marginals, we should define

P(EJ ×ΩI\J) =

(⊗
α∈J
Pα

)
(EJ)

for each EJ ∈ FJ (note that EJ may not be the product of Eαs, so we need to write the right-hand side in terms

of the product measure PJ =
(⊗

α∈J Pα
)
). It’s a bookkeeping exercise to show that P is well-defined and finitely

additive over A, so we’ll be done by Lemma 64 if we can show that P(Bn) ↓ 0 for any Bn of the boxed form above.

By definition, because Bn is of the form EJ ×ΩI\J for J = [n] and Ej = Bn,

P(Bn) = P[n]

(
Bn
)

= P[n+1]

(
Bn ×Ωn+1

)
≥ P[n+1]

(
Bn+1

)
= P(Bn+1).

(where the second equality comes from consistency of the marginals, and the inequality comes from the Bns being

decreasing and thus decreasing within E[n+1]). Thus, the P(Bn) form a nonincreasing sequence of numbers, and we

just need to show that its limit is zero. By Fubini’s theorem, we can write out our integral as

P(Bn) = P[n](Bn) =

∫
· · ·
[∫

1{Bn}dPn
]
· · · dP1.

To visualize the next step, consider the following doubly infinite array:

P(B1) 1{B1} 1{B1} ×Ω2 1{B1} ×Ω2 ×Ω3 · · ·

P(B2)
∫

1{B2}dP2 1{B2} 1{B2} ×Ω3 · · ·

P(B3)
∫∫

1{B3}dP1dP2

∫
1{B3}dP2 1{B3} · · ·

...
...

...
...

. . .
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In other words, if ai j is the entry in the ith row and jth column, (and we start the array from the first row and zeroth

column), then ai i = 1{Bi} for any i . Additionally, we multiply by Ωn+1 when we move from column n to column n+ 1,

and we integrate with respect to Pn+1 when we move from column n + 1 to column n.

We then notice that the kth column consists of functions on the first k coordinates (the leftmost column is a

sequence of numbers, the next column is a sequence of measurable functions on (Ω1,F1), the following column is

a sequence of measurable functions on (Ω1 ⊗ Ω2,F1 ⊗ F2), and so on). Additionally, each column is nonincreasing,

so they all have (pointwise) limits. Let gn be the pointwise limit of the nth column, and suppose for the sake of

contradiction that g0 > 0. By the bounded convergence theorem (which we can use because probability spaces are

finite and our functions are bounded from above by 1), we can interchange the limit and the integration with respect

to Pn+1, meaning that

gn =

∫
gn+1dPn+1 for all n.

Now because g0 is positive, there is some ω1 ∈ Ω1 such that g1(ω1) is positive. But then g1(ω1) =
∫
g2(ω1, ω2)dP2(ω2),

meaning there is some ω2 ∈ Ω2 such that g2(ω1, ω2) is positive. Repeating this, we have an infinite sequence

(ω1, ω2, · · · ) such that gn(ω1, · · · , ωn) > 0 for all n. Remembering that the columns are nonincreasing, we can only

have gn(ω1, · · · , ωn) > 0 if 1{Bn}(ω1, · · · , ωn) > 0, meaning that (ω1, · · · , ωn) ∈ Bn, so (ω1, ω2, · · · ) ∈ Bn ×ΩQ\[n].

Putting this together across all n, we find that

(ω1, ω2, · · · ) ∈
⋂
n

Bn ×ΩQ\[n].

But this is impossible: if the sets Bn = Bn × ΩQ\[n] × Ωrest decrease to zero, then the intersection on the right-hand

side must be empty. Thus we have a contradiction, meaning that we really have g0 = 0, so we can apply Lemma 64

to finish the construction of the measure.

Theorem 66 (Kolmogorov extension theorem)

Let Ωα be metric spaces with Borel σ-fields Fα. Suppose we have a (not necessarily product) consistent family

of finite-dimensional distributions {PJ}, such that PJ is inner-regular for all J (meaning that the measure of any

set can be approximated from within by compact subsets). Then there is a probability measure P on the whole

space (Ω,F) with these finite-dimensional distributions {PJ}.

Proof. Use the same A as in the previous proof, and again define P : A → [0, 1] by setting P(EJ × ΩI\J) = PJ(EJ).

(Again, it is a bookkeeping exercise for us to show that P is well-defined and finitely additive over A.) Then we again

need to check the condition of Lemma 64: given sets of the form Bn = Bn×ΩQ\[n]×Ωrest decreasing to the emptyset,

we wish to prove that P(Bn) ↓ 0.

Suppose for the sake of contradiction that P(Bn) ↓ ε > 0. The key step is to replace each Bn with a compact set

Kn sitting inside it such that the same hypotheses still hold. By assumption, P[n] is in our family of finite dimensional

distributions, so it is inner-regular, meaning we can find a compact Cn ⊆ Bn such that

P[n](Cn) ≥ P[n](Bn)−
ε

2n+1
.

The sets Cn = Cn ×ΩI\[n] are now no longer necessarily decreasing, but we can define

Kn =

n⋂
`=1

C` ×Ω[n]\[`]

for each n – these are closed subsets of compact sets (because the nth term of the intersection is the compact set
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Cn) and are thus compact, and Kn+1 is contained within Kn ×Ωn+1. So the sets

Kn = Kn ×ΩI\[n]

are decreasing and contained in the Bns, so they decrease to the empty set. (At this point, it’s important to note that

the Kns are not necessarily compact – if they were, we’d already have a contradiction, because a nested sequence of

compact sets has a nonempty intersection.) But now we can check (left as an exercise to us) that using the compact

subsets does not lose us much measure, and we have

P(Kn) ≥ P(Bn)−
ε

2
.

Thus, P(Kn) ↓ δ ≥ ε
2 decreases to some positive value. But Kn is contained in Bn, and the latter decrease to the

empty set, so Kn ↓ ∅ as well. Now Kn is nonempty for all n (because it has a positive measure), so we can find some

ω(n) ∈ Kn. Let ω0,n = ω(n), and for every ` ≥ 1, consider the sequence(
π[`]

(
ω`−1,n

))
n≥1

,

meaning that we only consider the first ` components of each ω in the sequence. Since this is a sequence contained

in the compact set K`, it has a convergent subsequence – let those elements form the next sequence ω`,1, ω`,2, · · · .
(In other words, the {ω`,n}n≥1 sequence converges in the first ` coordinates.)

But we can now take the diagonal entries ωn,n and form a new sequence out of them – because we defined our

sequence to converge in the first ` coordinates for any `, we know that {π`(ωn,n)}n≥1 converges to some x` ∈ Ω` for

all `. But this means that there is some point (x1, x2, · · · ) which is in all of the Kns:

(x1, x2, · · · ) ∈
∞⋂
n=1

Kn ×ΩQ\[n].

And much like in our previous proof, this is a contradiction: the sets Kn = Kn×ΩQ\[n]×Ωrest decrease to zero, so the

intersection on the right-hand side must be empty. Thus P(Bn) must actually decrease to 0, so we can again apply

Lemma 64 and get a valid measure P, as desired.

8 September 30, 2019
Last week, we did a lot of work to construct product measure spaces, especially in the case where we have an uncount-

able product of the form (Ω,F ,P) =
(∏

α∈I Ωα,
⊗

α∈I Fα,
⊗

α∈I Pα
)
. Today, we’ll mostly talk about “easier things”

motivated by undergraduated probability – we have likely seen concepts like variance, correlation, and independence

before, and we’ll basically review them now in a more formalized setting. Note that we’re now considering arbitrary

probability spaces (and are no longer assuming any kind of product structure).

Definition 67

Let X be a random variable on (Ω,F ,P) (in other words, let X : Ω→ R be a measurable function). The σ-field
generated by X, denoted σ(X), is the minimal σ-field over Ω such that X is measurable. In other words,

σ(X) =
{
X−1(B) : B ∈ BR

}
.

We can check that this is a σ-field (for example, the preimage of the complement is the complement of the

preimage). Intuitively, σ(X) tells us about the events in Ω that we can describe just based on how X maps the space
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into R. For example, if X just sends everything to 0, we can’t distinguish very much – the preimage of any Borel set

B is Ω if it contains 0 and ∅ otherwise, so σ(X) = {∅,Ω} and our random variable can’t tell us very much about Ω.

In other words, “the larger σ(X) is, the more helpful X is for giving us information.”

Definition 68

Two events A,B ∈ F are independent (denoted A⊥⊥B) if and only if P(A ∩ B) = P(A)P(B).

In particular, we also have that

P(A ∩ Bc) = P(A)− P(A ∩ B) = P(A)− P(A)P(B) = P(A)P(Bc),

so A⊥⊥B ⇐⇒ A⊥⊥Bc , and similar with Bc instead of B. We can also generalize independence to more events:

Definition 69

The events {Aα : α ∈ I} are mutually independent if for all finite subsets J ⊆ I,

P

(⋂
α∈J

Aα

)
=
∏
α∈J
P(Aα).

Extending this definition, if {Cα : α ∈ I} are each a collection of events, then the collections are independent if
the above equality holds for all finite J ⊆ I and for each Aα ∈ Cα (for all corresponding α).

Definition 70

A set of random variables {Xα : α ∈ I} defined on the same probability space (Ω,F ,P) are mutually independent
random variables if and only if their σ-algebras {σ(Xα) : α ∈ I} are independent.

In particular, for any finite set J ⊆ I and any measurable subsets Bα ∈ BR, we have

P(Xα ∈ Bα for all α ∈ J) = P

(⋂
α∈J

X−1
α (Bα)

)
=
∏
α∈J
P
(
X−1
α (Bα)

)
=
∏
α∈J
P(Xα ∈ Bα) .

by mutual independence (because the sets X−1
α (Bα)s are each in the respective σ-algebras σ(Xα)). And this proba-

bilistic statement is what we may have seen in an undergraduate probability class as the definition of independence!

Example 71

By definition, a collection of events {Eα} are independent if and only if the corresponding indicator variables

1Eα : α ∈ I are independent random variables.

Example 72

Consider the special case where we have a product probability space (Ω,F ,P) =
(∏

α∈I Ωα,
⊗

α∈I Fα,
⊗

α∈I Pα
)

(as we’ve previously constructed). Then we can define random variables Xα(ω) = fα(ωα) for each α, which are

measurable functions that only depend on the α-coordinate.

The preimage of any B ∈ BR is then

X−1
α (B) = f −1

α (B)×
∏

γ∈I\{α}

Ωγ
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(because only the α-coordinate matters for Xα), so the σ-field for the random variable Xα is

σ(Xα) = σ(fα)⊗
⊗

γ∈I\{α}

Tγ ,

where Tγ is the trivial σ-field (∅,Ωγ) (since we don’t have any “information” about the other coordinates from Xα,

and it’s okay to include ∅ in any coordinate γ because that just gives us the emptyset overall, which is the preimage

of the emptyset). We can then easily see (by applying the definition and writing out the preimages) that these σ-fields

σ(Xα)s are independent, meaning that all of the (Xα : α ∈ I) will be independent random variables on (Ω,F ,P).

The example above may seem like a special case for independence, but it turns out to be basically the only one!

In general, suppose we have some probability space, and suppose that {Xα : α ∈ I} are independent random variables

on that space. Then define a new random variable X which is basically a tuple of the Xαs, setting

X(ω) = (Xα(ω))α∈I ∈
∏
α∈I
R.

Then X is a map (Ω,F ,P) →
(∏

α∈I R,
⊗

α∈I BR,LX
)
, where the law of X is LX = X#P = P ◦ X−1. But then

we can check that the Xαs are independent random variables if and only if the law LX is a product measure (by our

discussion of product measure constructions from last lecture) – in other words, we should treat “independence of

random variables” and “law is a product measure” as one and the same.

We’ve now reached (basically) the end of measure theory in this class – we now have enough theory developed

to talk about more interesting aspects of probability.

Definition 73

Let X be a random variable in (Ω,F ,P). The pth moment of X is the value of E(|X|p) (which may be infinite),

and the Lp norm of X is ||X||p = ||X||Lp(Ω,F ,P) = E(|X|p)1/p. We say that X belongs to Lp if ||X||p is finite.

The following is a useful fact about integrals that we won’t prove here:

Theorem 74 (Jensen’s inequality)

Let G ⊆ R be an open interval, and let g : G → R be a convex function, meaning that g(λx + (1 − λ)y) ≤
λg(x) + (1− λ)g(y) for all λ ∈ [0, 1] and x, y ∈ G. Then if X is a random variable with P(X ∈ G) = 1 and E|X|
and E|g(X)| both finite, then E(g(X)) ≥ g(E(X)).

In particular, this tells us a useful inequality for the Lp norms of a random variable:

Corollary 75 (Lp monotonicity)

Let 0 < r ≤ p <∞, and let X be a random variable such that ||X||r , ||X||p are both finite. Then Jensen’s inequality
applied to the convex function g(y) = |y |p/r yields E(|X|p) = E((|X|r )p/r ) ≥ (E|X|r )p/r , so ||X||r ≤ ||X||p when

r ≤ p.

Since an infinite Lp norm is “larger” than any finite Lp norm, we should expect that it is not possible for ||X||r to
be infinite but ||X||p to be finite. This is indeed the case, but we have to deal with infinite expectations with a bit

more care:
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Proposition 76

Let 0 < r ≤ p <∞. If X is a random variable with ||X||p <∞, then ||X||r <∞; in other words, Lr (Ω,F ,P) ⊇
Lp(Ω,F ,P) when r ≤ p.

Proof. We split up the expectation into two terms

E(|X|r ) = E(|X|r1{|X| ≤ 1}) + E(|X|r1{|X| > 1}),

which we’ll rewrite (from here on, this will be standard notation in this class) as

= E(|X|r ; |X| ≤ 1) + E(|X|r ; |X| > 1).

The first term is bounded by E(1) = 1 (because |X|r ≤ 1 whenever |X| ≤ 1), so finiteness of the Lr norm only depends

on the second term. But E(|X|r ; |X| > 1) ≤ E(|X|p; |X| > 1) (because |X|p ≥ |X|r whenever p ≥ r and |X| ≥ 1).

Thus, if ||X||p is finite, then E(|X|p; |X| > 1) is finite, so E(|X|r ; |X| > 1) is finite, so E(|X|r ) is finite and thus ||X||r
is finite.

However, it’s important to note that this Lp monotonicity only holds for probability spaces – we’ll verify the

following claims on our homework:

• Consider the sequence spaces `p, which contain elements of the form x = (x1, x2, · · · , ). The `p norm of such

a sequence is defined as

||x ||p =

( ∞∑
i=1

|xi |p
)1/p

.

In these cases, if r < p, then ||x ||r ≥ ||x |p (this inequality goes in the opposite direction as Corollary 75, and its

proof does not come from Jensen’s inequality), meaning that we actually have `r ⊆ `p when r ≤ p. One way to

remember this is that the unit ball in `r is nested in the unit ball for `p – for example, the unit ball in `1 is the

set of points such that |x1| + |x2| + · · · ≤ 1 (which is a “diamond”), while the unit ball in `2 is an actual “ball.”

And as p increases, this pattern continues – we can check that the `∞ unit ball is a cube of side length 2.

• On the other hand, consider the classical function spaces Lp(R,B, λ) under the Lebesgue measure, where the

norm of a function is

||f ||p =

(∫
|f (x)|pdx

)1/p

.

In this case, it turns out that the Lp and Lr function spaces are not nested in either direction.

If we now turn back to our random variables X on (Ω,F ,P), Proposition 76 tells us that

E(|X|2) <∞ =⇒ E|X| <∞,

and when these moments are finite, we have E|X| ≤ E(X2)1/2 by Jensen’s inequality. Thus, we can define the following

nonnegative quantity (which we should be familiar with):

Definition 77

Let X be a random variable with finite second moment. The variance of X is

Var(X) = E(X − E[X])2 = E(X2)− E(X)2
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Theorem 78 (Cauchy-Schwarz)

For any two random variables X, Y ∈ L2, we have E(|XY |) ≤ ||X||2||Y ||2.

Proof. If ||X||2 = 0 or ||Y ||2 = 0, then either X = 0 or Y = 0 (almost everywhere), so E(|XY |) = 0 and the equality

holds. Otherwise, both ||X||2 and ||Y ||2 are positive. First, consider the special case where ||X|2 = ||Y |2 = 1 and we

assume that E(|XY |) <∞. We know that

E(|X|2) + E(|Y |2)− 2E(|XY |) = E(|X| − |Y |)2 ≥ 0,

so E(|XY |) ≤ 1 and the equality holds. In the more general case whenever E(|XY |) < ∞, we can scale X and Y to

have norm 1 (by dividing by ||X||2 and

||Y |2

respectively), so that the special case implies

E
∣∣∣∣ X

||X||2
Y

||Y ||2

∣∣∣∣ ≤ 1 =⇒ E(|XY |) ≤ ||X||2||Y ||2.

Finally, if we do not know that E(|XY |) is finite to start with, we can use the previous case with capped random

variables (so that we have finite expectation):

E (|min{|X|, n},min{|Y |, n}|) ≤ ||min{|X|, n}||2||min{|Y |, n}||2 ≤ ||X||2||Y ||2 .

We can now send n → ∞ and use the monotone convergence theorem on the left-hand side to get the desired

result.

This allows us to also define another familiar quantity that we use to study random variables:

Definition 79

Let X, Y ∈ L2 be two random variables. The covariance of X and Y is given by

Cov(X, Y ) = E((X − E[X])(Y − E[Y ])) = E(XY )− E[X]E[Y ],

and X, Y are uncorrelated if Cov(X, Y ) = 0.

In particular, any two random variables X, Y ∈ L2 that are independent (X⊥⊥ Y ) are also uncorrelated, but the

converse is false (random variables can be uncorrelated but not independent).

Now that we have all of our definitions set up, we’re going to start to work towards proving the laws of large
numbers. (As a joke, a “standard” example of such a law is that if someone goes to prison and they flip lots of coins

in their free time, they should expect close to half of them to be heads.) We’ll see that many of these laws will turn

out to be applications of the Pythagorean theorem (like the proof of Cauchy-Schwarz secretly was).

Today, we’ll start with the simplest case. Suppose X1, · · · , Xn are pairwise uncorrelated random variables, and

consider their sample mean or empirical mean Xn = 1
n

∑n
i=1Xi . Because covariance is linear in each argument

(because the Lebesgue integral is), we have

VarXn =
1

n2
Cov

(
n∑
i=1

Xi ,

n∑
i=1

Xi

)
.
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Because the Xis are uncorrelated, all cross-terms disappear and this simplifies to

VarXn =
1

n2

n∑
i=1

Var(Xi).

Remark 80. Another way to think of this (in the “Pythagorean theorem” sense) is that we can think of vi = Xi−E(Xi)

as vectors and note that all scalar products (vi , vj) for i 6= j are zero by assumption. Thus, the Pythagorean theorem

tells us that the variance is

Var

(
1

n

n∑
i=1

Xi

)
=

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

vi

∣∣∣∣∣
∣∣∣∣∣
2

2

=
1

n2

n∑
i=1

||vi ||2

by the Pythagorean theorem.

If we now assume that all Xis have the same law (that is, they are all identically distributed) as some particular

random variable X ∈ L2, then

Var
(
Xn
)

=
1

n2
· nVar(X) =

Var(X)

n
,

which gets smaller and smaller as n gets larger, meaning that we expect the average to converge to the mean E[X]. To

prove that, we need to make use of some inequalities we may have seen before (which basically bound the probability

of having deviations far from the mean):

Theorem 81 (Markov’s inequality)

Let X be a nonnegative random variable. Then for any t > 0, we have the inequality

P(X ≥ t) = E [1{X ≥ t}] ≤ E
[
X

t

]
=
E[X]

t
.

Corollary 82 (Chebyshev’s inequality)

Let X ∈ L2 be a (not necessarily nonnegative) random variable. Then for any t > 0 (by Markov’s inequality),

P(|X − E[X]| ≥ t) = P((X − E[X])2 ≥ t2) ≤ E
[

(X − E[X])2

t2

]
=

Var(X)

t2
.

If we now apply Chebyshev’s inequality to our expression for Var
(
Xn
)
, then we get the following result:

Theorem 83 (L2 weak law of large numbers)

Let X,Xi are uncorrelated and identically distributed. Then the empirical mean Xn = 1
n

∑n
i=1Xi converges to

E[X], in L2 and in probability, as n →∞.

(Note that on probability spaces, convergence in µ-measure becomes convergence in probability.) For complete-

ness, we’ll write out the proof in full:

Proof. From our above calculation, we have

∣∣∣∣Xn − EX∣∣∣∣22 = E

(1

n

n∑
i=1

(Xi − E[X])

)2
 =

Var(X)

n
.
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Because this goes to 0 as n → ∞, we do indeed have Xn
L2

→ E[X]. For convergence in probability, note that for any

ε > 0, we have

lim
n→∞

P(|Xn − E[X]| ≥ ε) ≤ lim
n→∞

VarXn
ε2

= 0,

which is the condition we wish to prove.

This proves the simplest version of the law of large numbers, and the main idea is the geometric fact that if we

are given a bunch of orthogonal vectors v1, v2, · · · , their average will have small norm. And next time, we’ll see how

to extend these types of results beyond L2 geometry.

9 October 2, 2019

Last time, we started studying moments of random variables, leading us to define the variance VarX = E[(X−EX)2] ∈
[0,∞) for any random variable X ∈ L2 (meaning that the L2 norm ||X||2 = E[X2]1/2 is finite). We then proved the

L2 weak law of large numbers, which states that given pairwise uncorrelated, identical distributed random variables

X,Xi ∈ L2, we have Xn = 1
n

∑n
i=1Xi converging to E[X] in L2 and in probability. We’ll strengthen this result in a few

ways today, by relaxing the L2 assumption, showing almost-surely convergence under some conditions, and generalizing

to triangular arrays. For the rest of class, consider an array of random variables of the following form:

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3

...
...

...
. . .

.

Defining Sn =
∑n

k=1Xn,k to be the sum of the nth row of the array, our central question of study is whether Sn
bn

converges to a constant for some deterministic bn (usually we’ll have bn = n, but we’ll see some other examples as

well). We’ll first convert the proof from last time to this new notation:

Theorem 84 (L2 weak law for triangular arrays)

Suppose we have a triangular array Xi ,j as above, and assume that Var(Xn,k) ≤ C <∞ for all k, n. Then Sn−E[Sn]
n

converges to 0, in L2 and in probability, as n →∞.

Proof. By the Pythagorean theorem, because the Sis are uncorrelated, we can write∣∣∣∣∣∣∣∣Sn − E[Sn]

n

∣∣∣∣∣∣∣∣2
2

=
1

n2
||Sn − E[Sn]||22 ≤

1

n2

n∑
k=1

Var(Xn,k) ≤
C

n
,

which goes to 0 as n →∞, showing L2 convergence. Convergence in probability again follows from Chebyshev (much

like Theorem 83) because Var
(
Sn−E[Sn]

n

)
= 1

n2 Var(Sn) ≤ C
n .

Under the L2 assumption, it was okay for us to just assume that all of the vectors were pairwise orthogonal, but

we’re going to have to work with something stronger going forward. So from now on, we’ll assume independence of
the random variables in each row.
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Theorem 85 (Weak law for triangular arrays)

Take the same triangular array as above, and assume we have a sequence bn →∞ satisfying

n∑
k=1

P(|Xn,k | > bn)→ 0,

n∑
k=1

E(X2
n,k ; |Xn,k | ≤ bn)

b2
n

→ 0 as n →∞.

Under these assumptions, define the random variables

Yn,k = Xn,k · 1 {|Xn,k | ≤ bn} , Tn =

n∑
k=1

Yn,k .

Then
Sn − E[Tn]

bn
converges to 0 in probability.

This theorem is stated in an ugly way so that it is easier to prove – we are defining the random variables Tn because

the expectations E[Sn] may not be defined in general.

Proof. First, we show that Sn is generally close to Tn, and we can in fact show that Sn and Tn are equal with high

probability. Indeed,

P(Sn 6= Tn) ≤
n∑
k=1

P(Xn,k 6= Yn,k) =

n∑
k=1

P(|Xn,k | > bn)

because Tn is the sum of truncated Xn,ks, while Sn is just the sum of the original Xn,ks. This right-hand side goes to 0

by the first of our (convenient) assumptions, so Sn−Tn → 0 in probability, and therefore Sn−Tn
bn
→ 0 in probability as well

(since bn →∞). Thus, it suffices to prove the statement for Tn in place of Sn (because
Sn−E[Tn]

bn
= Tn−E[Tn]

bn
+ Sn−Tn

bn
).

But we’ve designed Tn so that it is nicely bounded: specifically, we have∣∣∣∣∣∣∣∣Tn − ETnbn

∣∣∣∣∣∣∣∣2
2

=
1

b2
n

n∑
k=1

Var(Yn,k)

since the Yn,ks are uncorrelated – they are functions of the Xn,ks, which are independent by assumption. (We do need

the Xn,ks to be independent, because just knowing that the Xn,ks are uncorrelated wouldn’t guarantee that the Yn,ks

are uncorrelated.) Then because Var(Yn,k)2 ≤ E[Yn,k ]2, we can further bound∣∣∣∣∣∣∣∣Tn − ETnbn

∣∣∣∣∣∣∣∣2
2

≤
1

b2
n

n∑
k=1

E(Yn,k)2,

which goes to zero by our second assumption. Thus we have convergence in L2 for Tn and thus convergence in

probability, proving the claim.

We can now use this “ugly” theorem to prove nicer results: the rest of our theorems today will involve iid variables,

specifically those in a triangular array as shown below:

X1

X1 X2

X1 X2 X3

...
...

...
. . .

.

In particular, our columns are now strongly dependent on each other, but the rows are independent if our Xis are

independent.

42



Theorem 86 (Weak law of large numbers for iid sequences)

Let X,Xk be independent and identically distributed random variables, such that g(x) = xP(|X| ≥ x) goes to 0

as x →∞. Then as n →∞,
Sn
n
− µn converges to 0 in probability, where µn = E(X; |X| ≤ n).

Notice that this condition does not require us to assume that E[X] is finite (which is equivalent to E|X| being
finite, because we need both the positive and negative integrals to be finite). In particular, E|X| =

∫∞
0 P(|X| ≥ x)dx

(as we proved on our homework), and the condition that g(x)→ 0 only means that P(|X| ≥ x) decays faster than 1
x

as x →∞. But there are functions that decay faster than 1
x that aren’t integrable – for instance,∫ b

a

dx

x log x
= log log x |ba

diverges as b →∞. So that’s why we define µn in the way that we do – the assumptions on our random variables are

slightly weaker than having a finite first moment.

Proof. We wish to apply Theorem 85 with bn = n (and having Xk take the role of Xn,k). To do so, we just need to

check the two conditions. For the first one, we can rewrite

n∑
k=1

P(|Xn,k | ≥ bn) = nP(|X| ≥ n) = g(n),

which goes to 0 by assumption as n → ∞. For the second condition, define Yn = Xn · 1{|X| ≤ n}, so that we must

prove that n · E(Y 2
n )

n2 =
E(Y 2

n )
n → 0 as n →∞. But again using that E[X] =

∫∞
0 P(X ≥ t)dt for a nonnegative random

variable X,
1

n
E(Y 2

n ) =
1

n

∫ ∞
0

P(Y 2
n ≥ t)dt =

1

n

∫ ∞
0

P(|Yn| ≥
√
t)dt.

Making the change of variables y =
√
t, dt = 2ydy , our integral becomes

1

n
E(Y 2

n ) =
1

n

∫ ∞
0

P(|Yn| ≥ y) · 2ydy .

We can then cap the upper limit of the integral at n, because Yn is always at most bn = n and thus P(Yn ≥ y) = 0

above that point, leading us to

1

n
E(Y 2

n ) =
1

n

∫ n

0

P(|Yn| ≥ y)2ydy =
1

n

∫ n

0

P(n ≥ |X| ≥ y)2ydy ≤
2

n

∫ n

0

g(y)dy.

But since this last expression is twice the average value of g on [0, n], and g decays to zero (and has a finite supremum),

the average will also go to zero as n →∞. Thus both conditions of Theorem 85 hold, and µn is the value of E[Tn]
n in

that theorem’s language, implying the result.

Corollary 87

Suppose X,Xk are iid random variables with finite mean E[X] = µ. Then Sn
n converges to µ in probability.

Proof. Similarly to Markov’s inequality, we can write

g(x) = xP(|X| ≥ x) = E[x ; |X| ≥ x ] ≤ E[|X|; |X| ≥ x ].

Now notice that the expression (|X|; |X| ≥ x) = |X|·1{|X| ≥ x} goes to 0 as x →∞ almost surely, and all |X|; |X| ≥ xs
are bounded from above by |X|, which is integrable by assumption. So because the expectations E[|X|; |X| ≥ x ] are
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Lebesgue integrals, we can apply the dominated convergence theorem to find that g(x) → 0 as x → ∞ (specifically,

we can apply it to the functions |X| · 1{|X| ≥ x} for integer x and notice that these functions are nonincreasing for all

real x). Therefore, Snn − µn goes to 0 in probability by Theorem 86. It remains to check that µn → µ, but we have

µ− µn = E[X]− E[X; |X| ≤ n] ≤ E [|X|; |X| > n] ,

which, just like before, goes to zero. Thus Sn
n − µ converges to 0 in probability, as desired.

We’ll now show a stronger form of convergence under these same conditions:

Theorem 88 (Strong law of large numbers)

Suppose X,Xk are iid random variables with finite mean E[X] = µ. Then Sn
n converges to µ almost surely.

Proof. We may assume without loss of generality that X ≥ 0, because we can write X = X+−X− and prove separately

that the average of the (Xk)+s (resp. (Xk)−s) converges to E[X+] (resp. E[X−]) almost surely. For this proof, we

need to use a different truncation than before, defining

Yk = Xk · 1{Xk ≤ k}.

In the previous proof, we truncated each row of our triangular array at the same level n, so the sum of a given row

would be
∑n

k=1Xk1{|Xk | ≤ n}. But this time, we instead have

Tn =

n∑
k=1

Xk1{Xk ≤ k}.

The first step of our proof is again to show that Sn and Tn are close. Notice that

∞∑
k=1

P(Xk 6= Yk) ≤
∞∑
k=1

P(Xk ≥ k) ≤
∞∑
k=1

P(X ≥ k)

because the Xks are all identically distributed as X, and now we can convert the right-hand side from a Riemann sum

to an integral (with overall error at most P(X ≥ 0) = 1) to get

∞∑
k=1

P(Xk 6= Yk) ≤ 1 +

∫ ∞
0

P(X ≥ t)dt = 1 + E[X] <∞.

By the Borel-Cantelli lemma (homework), this means that P(Xk 6= Yk i.o.) (infinitely often) must be zero, where the

event is defined as

{Xk 6= Yk i.o.} = {ω ∈ Ω : Xk(ω) 6= Yk(ω) for infinitely many k}.

This implies that
Sn − Tn

n
→ 0 almost surely, because with probability one, there are only finitely many indices where

Xk − Yk will be nonzero, so Sn − Tn converges to some finite value C. (Thus Sn−Tn
n is then bounded by C

n , which goes

to zero.)

Next, we can also show that
E[Tn]

n
→ µ almost surely, because

µ−
E[Tn]

n
=
E[Sn − Tn]

n
=

1

n

n∑
k=1

E [X;X ≥ k ] .

As we’ve shown before, E[X;X ≥ k ] → 0 as k → ∞ by the dominated convergence theorem, so the right-hand side
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(which is an average of these types of terms) also converges to 0, as desired. In other words, the two boxed statements

above allow us to replace Sn with Tn, and µ with E[Tn]
n , so it now suffices to show that Tn−E[Tn]

n → 0 almost surely. To

do so, we’ll start by calculating the L2 norm as usual. We have∣∣∣∣∣∣∣∣Tn − ETnn

∣∣∣∣∣∣∣∣2
2

=
1

n2

n∑
k=1

Var(Yk) ≤
1

n2

n∑
k=1

E[Y 2
k ].

However, this expression is more difficult to work with than the ones in previous proofs, because our Xks aren’t even

assumed to have finite variance. Suppose we knew that
∑∞

k=1

E[Y 2
k ]

k2
is finite and equal to some value A. Then we

could bound the L2 norm by breaking up the sum into parts:

1

n2

n∑
k=1

E[Y 2
k ] =

n∑
k=1

(
k

n

)2 E[Y 2
k ]

k2

≤
∑
k≤log n

(
log n

n

)2

·
E[Y 2

k ]

k2
+
∑
k>log n

E[Y 2
k ]

k2

≤
(

log n

n

)2

A+
∑
k>log n

E[Y 2
k ]

k2
.

The first term would then go to 0 as n →∞, and so would the second because we’d be taking the tail of a finite sum.

So we will calculate the expression in blue above, converting to an integral just like in Theorem 86, to get

∞∑
k=1

1

k2
E[Y 2

k ] =

∞∑
k=1

1

k2

∫ ∞
0

2yP(X ≥ y)dy.

Because the integrand is positive, we can swap the sum and the integral to get

∞∑
k=1

1

k2
E[Y 2

k ] =

∫ ∞
0

P(X ≥ y)

2y

∑
k≥y

1

k2

 dy.
Now the inner bracketed term is uniformly bounded over all y ≥ 0 by some finite constant c , because it is bounded by

2y times a constant for small y and the inner sum is proportional to 1
y for large y . Thus, we can write

∞∑
k=1

1

k2
E[Y 2

k ] ≤ c
∫ ∞

0

P(X ≥ y)dy = cE[X] <∞,

as desired. Thus the L2 norm of Tn−E[Tn]
n goes to zero and we have convergence in probability as usual, but that’s not

what we wanted to prove. Instead, notice that this calculation gives us a useful rate of decay. For any subsequence of

the integers n(`) (going to infinity), we have (by the same logic but now summing over the subsequence)

∑
`≥1

∣∣∣∣∣∣∣∣Tn(`) − ETn(`)

n(`)

∣∣∣∣∣∣∣∣2
2

≤
∑
`≥1

1

n(`)2

n(`)∑
k=1

E[Y 2
k ].

Swapping the order of summation (again allowed because everything is positive here), this simplifies to

=

∞∑
k=1

E[Yk ]2
∑
`≥1

1{n(`) ≥ k}
n(`)2

.

So if we can pick a sequence n(`) such that
∑

`≥1
1{n(`)≥k}
n(`)2 ≤ C

k2 , we will be in the case above (where the blue expression

is finite). Taking n(`) = α` for some α > 1, we do indeed find by a geometric series bound that
∑

`≥1
1{n(`)≥k}
n(`)2 ≤ C(α)

k2
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for some constant C(α) and for all k ≥ 1. So the argument above with the L2 norm tells us that

∑
`≥1

∣∣∣∣∣∣∣∣Tα` − ETα`α`

∣∣∣∣∣∣∣∣2
2

<∞.

Therefore, for any ε > 0,
∣∣∣Tα`−E[T

α`
]

α`

∣∣∣ > ε only occurs finitely many times almost surely (because the sum of the

probabilities of these events is finite by Chebyshev’s inequality, and then we can apply Borel-Cantelli). So T
α`
−E[T

α`
]

α`
→ 0

as `→∞ almost surely, and we’ve shown almost-sure convergence along a subsequence. Finally, for the full sequence,

we can use that the Xs are nonnegative. In particular, for any α` ≤ n ≤ α`+1, because Tα` ≤ Tn ≤ Tα`+1 and

α`+1 ≥ n ≥ α`, we also have
Tα`

α`+1
≤
Tn
n
≤
Tα`+1

α`
.

Taking `→∞ and using almost-sure convergence along a subsequence, we get

µ

α
≤ lim inf

Tn
n
≤ lim sup

Tn
n
≤ αµ.

Finally, taking α ↓ 1 shows that the lim inf and lim sup of Tnn are both µ, so Tn
n converges to µ almost surely. Combining

this with the fact that Sn−Tn
n → 0 almost surely (from above) finishes the proof.

10 October 7, 2019
Class today started with an attendance quiz “not intended to be difficult:”

Problem 89

Let X be a random variable satisfying

P(X ≤ x) =

0 x ≤ 1,

1− 1
x x ≥ 1.

Calculate E[Xp;X ≤ n] without explicitly finding the probability density of X.

Solution. We’re given the tail bound P(X ≥ x) = 1
x for all x ≥ 1, and we wish to compute

E[Xp;X ≤ n] = E[Y p], where Y = X · 1{X ≤ n}.

To do this, we can use the useful formula (like we used in last lecture)

E[Y p] =

∫ ∞
0

P(Y p ≥ t)dt.

If we now change variables by setting t = yp, dt = pyp−1dy , this simplifies to

E[Y p] =

∫ ∞
0

pyp−1P(Y ≥ y)dy =

∫ n

0

pyp−1P(Y ≥ y)dy =

∫ n

0

pyp−1P(y ≤ X ≤ n)dy,

at which point we can plug in P(y ≤ X ≤ n) = 1
y −

1
n and directly integrate to get the answer.

(The main takeaway is that this strategy gives us a way to bound E[Xp;X ≤ n] without needing an explicit density

function, as long as we know something like P(X ≥ x) ≤ c
x .)

46



Last lecture, we finished by proving the strong law of large numbers, which states that if X and Xi are iid and E[X]

is finite, then 1
n

∑n
i=1Xi converges to µ almost surely. Today, we’ll work “around that value” and find bounds on the

probability that Sn
n is approximately µ+ ε for some constant ε. We’ll start with a special case:

Example 90

Suppose X ∼ N(0, 1) is standard Gaussian with density φ(x) = 1√
2π

exp
(
− x2

2

)
dx .

In this case, Sn =
∑n

i=1Xi ∼ N(0, n) is also Gaussian with variance n, meaning that Sn√
n
∼ N(0, 1), Sn has

probability density φ
(
x√
n

)
dx√
n
, and the strong law of large numbers tells us that Sn

n → 0 almost surely as n →∞. But

we might be interested in behavior away from the mean as well – for example, we may want to calculate

P
(
Sn
n
≥ ε
)

= P
(
N(0, 1) ≥ ε

√
n
)

=

∫
z≥ε
√
n

φ(z)dz.

Since φ decays very fast, this is approximately on the order of φ(ε
√
n) = 1√

2π
exp

(
− nε2

2

)
. And we can show more

precisely that the integral is in fact exp
(
− nε2

2 + o(n)
)
, so the corrections are not leading order, and differing from

the mean by ε is exponentially unlikely in n.

Example 91

Suppose X ∼ Ber(p) is a Bernoulli random variable, meaning that X is 1 with probability p and 0 with probability

(1− p). Then Sn is Binomial ∼ Bin(n, p) with probability mass function P(Sn = k) =
(
n
k

)
pk(1− p)n−k .

Again by the strong law of large numbers, Snn approaches p almost surely, and the central limit theorem further

tells us that
Sn − µ
σ

=
Sn − np√
np(1− p)

≈ N(0, 1).

We haven’t proved the central limit theorem yet, but we can do a heuristic calculation to explain why we do get an

approximately normal distribution. Applying Stirling’s approximation n! ∼
√

2πn
(
n
e

)n
, we find that for any 0 < x < 1

where nx is an integer,

P(Sn = nx) =

(
n

nx

)
pnx(1− p)n(1−x) ∼

√
2πn

√
2πnx

√
2πn(1− x)

·
(n/e)n

(nx/e)nx(n(1− x)/e)n(1−x)
· pnx(1− p)n(1−x).

(This approximation is good when x is not too close to 0 or 1, because then the factorials in the binomial coefficient

are all large.) The (n/e)n factors cancel out in the top and bottom, leaving us with

P(Sn = nx) ∼
1√

2πnx(1− x)

(p
x

)nx (1− p
1− x

)n(1−x)

,

which can be rewritten in terms of an exponential as

P(Sn = nx) ∼
1√

2πnx(1− x)
exp

(
−n
[
x log

x

p
+ (1− x) log

1− x
1− p

])
.

This inner bracketed term is often denoted Ip(x) or H(x |p), and it is also called the binary relative entropy. Re-

membering that our goal is to make this look like a Gaussian, and specifically that z = Sn−np√
np(1−p)

= n(x−p)√
np(1−p)

should

be approximately standard Gaussian, we’re motivated to make a change of variables from x to z . Implicitly, we need

z to be bounded (O(1)) for the next calculation to be valid. Specifically, assuming that x = p ± O(1)√
n

(so Sn is pretty
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close to the mean), we can plug in x = p + 1
n

√
np(1− p)z to get

P
(
Sn = np +

√
np(1− p)z

)
∼

1√
2πnp(1− p)

exp

(
−nIp

(
p +

√
np(1− p)z

n

))
,

where we have replaced the xs in the denominator of the prefactor with p (which is allowed because x is close to p by

assumption). Additionally, because Ip is being evaluated close to its minimizer p, we can Taylor expand around that

minimum. The first two terms of the Taylor series are zero because Ip(p) = I ′p(p) = 0, and thus (after some calculus)

we have Ip(x) = z2

2n + O(1)
n3/2 . Plugging everything back in, we find that

P
(
Sn = np +

√
np(1− p)z

)
∼

1√
2πnp(1− p)

exp

(
−z2

2
+
O(1)√
n

)
,

at which point the error term here can be absorbed as a constant of proportionality. So we’ve recoverved the Gaussian

density – specifically, our random variable Sn−np√
np(1−p)

converges to the Gaussian in the sense that for any fixed a < b

P

(
a ≤

Sn − np√
np(1− p)

≤ b

)
∼
∑
z∈[a,b]

1√
2πnp(1− p)

exp

(
−
z2

2

)
,

where z sums over all points in the lattice Z−np√
np(1−p)

within [a, b] to guarantee that we only sum over integer values

of Sn (since we still actually have a discrete binomial distribution). So this hopefully gives a good sense of how the

central limit theorem statement will look in general.

Remark 92. It’s important to note that the calculation above does not actually tell us how to estimate P(Sn−np ≥ nε)

for some constant ε. We made the assumption in our argument that Sn − np is on the order of
√
n – because of the

extra
√
n term in our Taylor expansion, we can go a little farther out, but we can check that we get all the way to

Sn − np being linear in n and still expecting Gaussian behavior to hold.

To actually understand the tail behavior of a binomial random variable, we have to go back to

P (Sn − np ≥ nε) =
∑

k≥n(p+ε)

(
n

k

)
pk(1− p)n(1−k).

We can approximate this by Stirling’s formula – because we’re now summing over k larger than the mean, the sum

will be dominated by the smallest values of k . Skipping the calculations, we find that

P (Sn − np ≥ nε) ≈ exp (−n(Ip(p + ε)) + o(n)) .

(Here o(n) is not the best possible approximation, but it’s good enough for us because we only care about the leading

term.) And this is not the same as the naive guess we might have (of just plugging into the Gaussian density) because

this time we can’t Taylor expand Ip around p. In other words, we find that even if we have the central limit theorem

result above, we still have

P

(
Sn − np√
np(1− p)

≥
nε√

np(1− p)

)
6∼ exp

(
−

nε2

2p(1− p)

)
.

Our main goal for next lecture will thus be to find conditions for when iid random variables X,Xi with finite mean

satisfy a relation of the form

P (Sn − nµ ≥ nε) = exp (−nf (ε, µ) + o(n))

for some function f . This is a subject called large deviations theory, which is pretty deep, but we’ll only study it
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briefly in this class. We’ll finish today with a final example which has some important large deviations concepts:

Example 93

Consider a k × n table of bins, where we fix the number of rows k and study the limit as n →∞. Place nkp balls

into the bins of the table uniformly at random (where each bin can hold at most one ball). We wish to estimate

the probability of the event F = {every column has at least one ball}.

First of all, we must have nkp ≥ n (so that there are enough balls to have one per column). For simplicity, let’s

assume this inequality is strict so that we have kp > 1.

We’ll start with the simple case k = 2, in which the probability can be calculated exactly. In this case, we have a

2 × n table with 2np filled bins. If all columns have at least one ball (that is, if F occurs), then nx of them have a

single ball and the remaining n(1− x) have two balls, where nx + 2n(1− x) = 2np =⇒ x = 2(1− p). The probability

of this occurring if 2np of our 2n bins are randomly chosen to be filled is then

P(F ) =
1(
2n

2np

)( n
nx

)
2nx =

1(
2n

2np

)( n

2n(1− p)

)
22n(1−p),

because we pick which nx columns only get one ball and whether the top or bottom bin is filled. (And if we want

a nicer expression, we can always use Stirling’s approximation to get an asymptotic bound.) But even moving up to

k = 3 already complicates the problem – we could separate our columns into those with one, two, and three occupied

entries, but now the number of each is no longer uniquely determined just by the total number of balls (for example,

we could fill two adjacent columns with one and three balls, or with two and two). So combinatorial calculations won’t

be able to get us an immediate answer.

Instead, we’ll turn to probability to help us solve this problem. Let θ ∈ (0, 1) be a parameter (which is arbitrary for

now), and let X1, · · · , Xn be iid Bin(k, θ) random variables. We claim that regardless of the value of θ, we have (here

Pθ denotes the probability measure coming from the Xis)

P(F ) = Pθ

(
Xi ≥ 1 for all 1 ≤ i ≤ n

∣∣∣∣∣
n∑
i=1

Xi = nkp

)
.

To understand this, the idea is that Xi represents the number of balls in the kth column if we fill every bin independently

with probability θ. Then if we condition on the total number of balls
∑n

i=1Xi being nkp, we’re indeed placing nkp balls

into the bins uniformly at random, and we want each column to have at least one ball. For notational convenience,

define G = {Xi ≥ 1 for all 1 ≤ i ≤ n} and S =
∑n

i=1Xi = nkp. By Bayes’ rule, we can rewrite the probability that

we want as

P(F ) = Pθ(G|S) =
Pθ(G ∩ S)

Pθ(S)
=

Pθ(G)Pθ(S|G)

P(Bin(nk, θ) = nkp)
.

All of the terms on the right-hand side can now be dealt with relatively easily. The denominator can be calculated

using the work in Example 91, and Pθ(G) is much easier to calculate than Pθ(G|S) because the events in the various

columns are now independent (meaning that it is just P(Bin(k, θ) ≥ 1)n). Finally, the conditional probability Pθ(S|G)

can just be bounded from above by 1. This leaves us with

Pθ(G|S) ≤
P(Bin(k, θ) ≥ 1)n

P(Bin(nk, θ) = nkp)
,

and now we can get the best possible bound by optimizing the right-hand side over θ. And now we may want to know

whether the optimal θ actually gives us a bound on P(F ) – to see that, we can take a closer look at the term we
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bounded by 1 and write it out as

Pθ(S|G) = Pθ

(
n∑
i=1

Xi = nkp

∣∣∣∣∣Xi ≥ 1 for all 1 ≤ i ≤ n

)
= P

(
n∑
i=1

Yi = nkp

)
,

where Yi is distributed as Xi conditioned on {Xi ≥ 1}. For our bound to be good, we should try to make this probability

large, so it makes sense to choose θ so that EθY = kp. Explicitly, this means that we want to pick θ such that

Eθ(X|X ≥ 1) =
kθ

1− (1− θ)k
= kp.

Picking this value of θ, we know that
∑
Yi
n converges almost surely to kp as n → ∞, and with a bit more work

(specifically the local central limit theorem), it can be shown that P(
∑
Yi = knp) = exp(−o(n)), meaning that our

estimate of P(F ) is fairly good.

In summary, this example shows that a specific counting configuration problem can be made simpler with probability.

Next lecture, we’ll look at the more general question we’ve proposed about large deviations!

11 October 9, 2019

(Another homework assignment has been posted, and it will be due in a week.) Last lecture, we studied sums of

independent random variables. In particular, we’ve shown that if X,Xi are iid with finite mean, then their average

approaches µ, but we’re now curious about the probability that this average is more than µ + ε for some constant

ε > 0. Last time, we did a calculation to verify that when X is standard normal, we have

P(Sn ≥ nε) = exp

(
−
nε2

2
+ o(n)

)
,

and similarly when X is Bernoulli with probability p, we have

P(Sn − np ≥ nε) = exp(−nIp(p + ε) + o(n)).

Today, we’ll see that these formulas are part of a more general structure.

Definition 94

The moment generating function (also mgf) of a random variable X is the function m(θ) = E[eθX ].

Because eθX > 0 for all θ, we have m(θ) ∈ (0,∞] for any θ. Additionally, we always have m(0) = 1, but it’s

possible that this is the only finite value for the moment generating function.

Lemma 95

For any random variable X, let m(θ) = E[eθX ], and define

θ+ = sup{θ : m(θ) <∞}, θ− = inf{θ : m(θ) <∞}.

(Because m(0) < ∞, θ+ ∈ [0,∞] and θ− ∈ [−∞, 0].) Then on the open interval (θ−, θ+), m(θ) is a smooth

function with kth derivative m(k)(θ) = E[XkeθX ] <∞. Additionally, if θ+ > 0, then m(k)(θ)→ E[Xk ] as θ ↓ 0.

While we can’t generally exchange derivatives and expectation values, this lemma tells us that we can indeed do so

for the moment generating function. We won’t do the proof in full here, but to show that m(θ) is finite on the interval
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(θ−, θ+), notice that for any a < b < c , ebx ≤ eax + ecx , so E[ebX ] ≤ E[eaX ] + E[ecX ] (meaning that if the moment

generating function is finite at a and c , it is also finite in between). Smoothness follows by checking the definition

of the derivative (which also exists on (θ−, θ+) because E[eθX ] is a power series in θ), and the last statement follows

from the dominated convergence theorem.

Definition 96

The cumulant generating function (also cgf) of a random variable is the function κ(θ) = logm(θ).

We’re now almost ready to answer or question (about calculating P(Sn ≥ na) for some a > µ), and we just need

a bit more notation. Let xmax be the essential supremum of the random variable X, meaning that

xmax = sup(supp LX) = sup{x ∈ R : P(X > x) > 0}.

The idea is that nothing interesting happens above xmax, because for any a > xmax, P(X ≥ a) = 0, so P(Sn ≥ na) = 0

(each term in the sum Sn is less than a, so their sum must be less than na). And if a = xmax, then P(Sn ≥ na) = P(X =

a)n (because we must have all terms exactly a to have sum na), which can be positive if we have a point of positive

measure at a. So we already know the answer in those cases, and from here on we will assume EX < a < ess sup X.

(In particular, this also rules out the case where EX = ess sup X, in which case the distribution is concentrated entirely

at one value and nothing interesting happens.)

Theorem 97 (Cramér)

Let X,Xi be iid random variables. If m(θ) = E[eθX ] is finite for some θ > 0, then E[X] = µ ∈ [−∞,∞) is

well-defined (by Lemma 95). In addition, for any µ < a < xmax = ess sup X, the sum Sn =
∑n

i=1Xi satisfies the

“large deviations principle”

− lim
n→∞

1

n
log(P(Sn ≥ na)) = I(a) = sup

θ≥0
[θa − κ(θ)] = sup

θ∈R
[θa − κ(θ)] .

To explain the bounds µ ∈ [−∞,∞), E[eθX ] being finite for some θ > 0 rules out the case where X is really

big (since eθx > x for sufficiently large x), but it doesn’t prove that X cannot be really small (so we could have

EX+ − EX− = −∞). The function κ∗(a) = supθ∈R[θa − κ(θ)] is often called the Legendre dual of the function κ.

The actual statement of the large deviations principle is a bit more advanced, but we can read that on our own:

the central idea of our first equality is still that P(Sn ≥ na) = exp(−nI(a) + o(n)). Intuitively, this result says that

there may be many ways to have X1, · · · , Xn add up to an atypically large value na, but that it’s (intuitively) unlikely

to have a case like X1 = · · · = Xn−1 = 0 and Xn = na.

Proof. We’ll first prove an upper bound on P(Sn ≥ na). For any θ ≥ 0, we have

P(Sn ≥ na) ≤ P(eθSn ≥ enθa) ≤
E(eθSn)

enθa
=
m(θ)n

enθa
= exp [−n(θa − κ(θ))] ,

where we have inequality instead of equality in the first relation only because of θ = 0, and where we apply Markov’s

inequality in the second. Since this inequality holds for any θ ≥ 0, we thus have

P(Sn ≥ na) ≤ exp

[
−n sup

θ≥0
(θa − κ(θ))

]
.

Next, we’ll prove that the last two expressions are equal (so the supremum is the same whether we take θ ≥ 0 or
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θ ∈ R). For any θ ∈ (θ−, θ+), define a probability measure Pθ which assigns to any event A the probability

Pθ(A) = E
[

1A
eθX

m(θ)

]
,

where the expectation E is taken relative to the original probability measure. We’ll cover this kind of operation more

in a later lecture, but it is basically a reweighting of the original measure P (known as an exponential tilting), and it

is a probability measure because Pθ(Ω) = E
[
eθX

m(θ)

]
= 1

m(θ)E[eθX ] = 1. Thus for any measurable function f ,

Eθ[f (X)] = E
[
f (X)

eθX

m(θ)

]
(because this is true for simple functions by the definition and then we can approximate measurable functions by simple

functions). This also means (replacing f with f m(θ)
eθX

) that Eθ
[
f (X)m(θ)

eθX

]
= E[f (X)], and in particular

κ(θ) = logE[eθX ] =⇒ κ′(θ) =
m′(θ)

m(θ)
=
E[XeθX ]

E[eθX ]
= E

[
XeθX

m(θ)

]
= Eθ[X],

where we’ve applied Lemma 95 to m′(θ). We can also calculate the second derivative of κ to be

κ′′(θ) =
m′′(θ)

m(θ)
−
(
m′(θ)

m(θ)

)2

=
E[X2eθX ]

E[eθX ]
−
(
E[XeθX ]

E[eθX ]

)2

= Eθ[X2]− Eθ[X]2 = Varθ(X),

which is strictly positive for any θ because we assumed that µ < ess sup X and thus X is not concentrated at a single

point. In other words, κ(θ) is a strictly convex function on (θ−, θ+). And because κ′(θ) → µ as θ ↓ 0 (again by

Lemma 95), we may pick some sufficiently small θ = θ0 such that µ < κ′(θ0) < a. We then find that

d

dθ
(θa − κ(θ))θ=θ0 = a − κ′(θ0) > 0.

Additionally, θa − κ(θ) is strictly concave on (θ−, θ+) (because θa has zero second derivative, and then we subtract

κ(θ)), so κ is increasing on (θ−, θ0). In particular, this implies that we indeed have

sup
θ≥0

(θa − κ(θ)) = sup
θ∈R

(θa − κ(θ)) .

Finally, we can prove the lower bound – we’ll only do it in a nice case, assuming that the supremum supθ∈R(θa−κ(θ))

is actually attained at some value θa ∈ (θ−, θ+). This is an assumption which doesn’t always hold, and the theorem

is true without making it, but this will help us avoid some infinite behavior. We have just shown that θa > 0 – pick

some θ ∈ (θa, θ+). Since θa is a critical point of θa − κ(θ), convexity of κ tells us that

κ′(θ) > κ′(θa) = a.

We’ll now look at the change of measure applied to the Xis, defining

Pθ

(
n∏
i=1

1{Xi ∈ Ai}

)
= E

[
n∏
i=1

(
1{Xi ∈ Ai}

eθXi

m(θ)

)]

for any events Ai . (In particular, the Xis are also iid under Pθ because of the product form of this equation.) We may

then extend this to measurable functions in the same way as above, and in particular we can write (notice that we are

now changing measure on the right-hand side instead of the left)

P(Sn ≥ na) = Eθ
[
m(θ)n

eθSn
· 1{Sn ≥ na}

]
.
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We are trying to prove a lower bound, so it is okay to decrease the right-hand side: picking some b > κ′(θ), it is also

true that

P(Sn ≥ na) ≥ Eθ
[
m(θ)n

eθSn
· 1{Sn ∈ [na, nb]}

]
≥ Eθ

[
m(θ)n

eθnb
· 1{Sn ∈ [na, nb]}

]
,

because Sn ≥ nb within this event {Sn ∈ [na, nb]}. But here’s the magic: under our changed measure, Eθ[X] =

κ′(θ) ∈ (a, b), so Pθ(Sn ∈ [na, nb])→ 1 as n →∞ by the law of large numbers. In other words, doing our change of

measure has turned a rare event into a typical event! Thus, we indeed have

P(Sn ≥ na) ≥
m(θ)n

eθnb
(1− o(1)) = (1− o(1)) exp [−n(θb − κ(θ)]]

for any θ > θa and b > κ′(θ). Taking θ ↓ θa and b ↓ κ′(θa) = a and then sending n → ∞ gives us the desired lower

bound (because θa is where the supremum is achieved).

Something magical is happening here – the convenient exponentiation in the upper bound when we used Markov’s

inequality was a bit arbitrary, and we also performed a pretty arbitrary-looking change of measure to get the lower

bound, but they turn out to yield the same Legendre dual. So in some sense, exponentiating is optimal on both sides

of the inequality, and we now have another way to understand the theorem statement: “the most efficient (probable)

way to achieve a large deviation Sn ≥ na is to have X1, · · · , Xn all behave like a collection of samples from our tilted

measure Pθ, choosing θ such that Eθ[X] = a.”

Example 98

In some special cases, we can calculate these large deviations more explicitly, and we’ll finish this lecture by doing

so in the case where LX has finite support of size k . Suppose we have a random variable X which can only take

on the values x1, · · · , xk , with probabilities π1, · · · , πk respectively.

Definition 99

The empirical measure of the random variables X1, · · · , Xn (in general, not just in the case of finite support) is

LXn =
1

n

n∑
i=1

δXi .

(In other words, we sample the Xis and put a weight of 1
n at each achieved value.) LXn is a probability measure

on R, and it is a random variable that is σ(X1, · · · , Xn)-measurable. In our particular case where the support of X

is finite, we can express the empirical measure as a vector LXn ∈ [0, 1]k , with jth component equal to the empirical

fraction

(LXn )j =
1

n
{#1 ≤ i ≤ n : Xi = xj} .

Since there are only finitely many possibilities for LXn , we can explicitly calculate any particular probability

P(LXn = ν = (ν1, · · · , νk)) =
n!

(nν1)!(nν2)! · · · (n(νk)!
· πν1

1 π
ν2

2 · · ·π
νk
k .

(this is the probability that a νi fraction of the random variables land on πi). Expanding the factorials with Stirling’s

formula and simplifying, we find that

P(LXn = ν) = exp [−nH(ν|π) + o(n)] ,
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where

H(ν|π) =

k∑
j=1

= νj log
νj
πj

= DKL(ν|π)

is the relative entropy or Kullback-Leibler divergence between the two measures (though note that this expression

is not symmetric between ν and π.) This is just a combinatorical calculation, but we can now do something with

it. Suppose the support of P contains all k values x1, · · · , xk , so that H(ν|π) is strictly convex in ν. Notice that Sn
doesn’t depend on the ordering of Xis, and in fact it is a function of LXn because

Sn = n

k∑
j=1

xjL
X
n (xj) = n〈x, LXn 〉.

For any a such that E[X] < a < ess sup X, we thus have (summing over all values ν that LXn can take)

P(Sn ≥ na) =
∑
ν

P(LXn = ν) · 1{n〈x, ν〉 ≥ na} =
∑
ν

1{〈x, ν〉 ≥ a} exp(−nH(ν|π) + o(n)).

But the number of values ν is polynomial in n (by stars and bars), which can be absorbed into the o(n) term in the

exponential. In other words, we find that (taking the largest exponential across all νs)

P(Sn ≥ na) = exp
[
−n inf

ν
{H(ν|π) : 〈x, ν〉 ≥ a}+ o(n)

]
.

To find the optimal ν, we now have a constraint optimization problem with Lagrangian (remembering that we have

the constraint that our probability needs to sum to 1)

L = H(ν|π) + ρ(1−
∑
j

νj) + θ

a −∑
j

xjνj

 ,
and taking its derivative gives us the solution

∂L

∂νj
= 1 + log νj − logπj − ρ− θxj = 0 =⇒ νj =

πje
θxj

C
,

where we should choose the normalization constant to be C = m(θ) so probabilities do add to one. But this is the

same change of measure Pθ as we talked about in the proof of Theorem 97! (This time, it comes from the final

optimization problem rather than pulling them out of nowhere.) In other words, when we are trying to achieve this

large deviation event Sn ≥ na, the primary contribution (the slowest decaying exponential) comes from LXn ∼ ν = Pθ.
And as an exercise, we can also show that

P(Sn ≥ na) = exp

[
−n sup

θ:Eθ[X]≥a
H(Pθ|π) + o(n)

]
,

with optimal θ being achieved at equality Eθ[X] = a.

12 October 16, 2019

(Our first midterm is on Monday, so we should make sure to remember to show up to class.) Today, we’ll cover some

loose ends that have been mentioned but not in detail, and we’ll also introduce the Fourier transform (which is a topic

for after the exam). Part of this is fair game for the exam, but this will be communicated clearly. We’ll start with a

sample problem for the midterm:
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Problem 100

Prove that the law of a real-valued random variable X is uniquely determined by its cumulative distribution function

F (x) = P(X ≤ x).

This is the level of formality we should expect: we should understand, for example, that X is a random variable on

some probability space (Ω,F ,P), and its law is defined as LX = X#P = µ, which is a probability measure on (R,BR).

Solution. The cdf F (x) = P(X ≤ x) is also the measure µ((−∞, x ]), so knowing µ also determines F . For the

converse, suppose there are two measures µ, ν on R that both correspond to the same cumulative distribution function,

so F (x) = µ((−∞, x ]) = ν((−∞, x ]) for all x . This means that

µ((a, b]) = F (b)− F (a) = ν((a, b])

for all half-open intervals. Let F be the set of Borel sets such that µ(B) = ν(B) – we need to show that F = BR,
which we can do with a π-λ argument. Specifically, F contains the set of half-open intervals, which is a π-system,

and we can check that F is a λ-system as well (by properties of a measure). So by the π-λ theorem, F contains the

σ-algebra generated by the set of half-open intervals, which is BR. Therefore µ = ν and the measure µ is uniquely

determined by F as well.

Remark 101. We won’t be allowed to bring cheat sheets, but some useful things will be written on the cover page.

(However, it is reasonable for us to remember, for instance, the full weak law of large numbers.) If a result follows

directly from a theorem in class, we can cite the theorem and just check that all the conditions hold. But if we’re

instead being told to reproduce a very similar proof, that will be written out.

For today’s class, we’ll start by discussing a probabilistic concept which we haven’t talked about too formally:

Definition 102

Let X and Y be independent real-valued random variables with laws LX = µ and LY = ν, so that L(X,Y ) = µ⊗ ν.
Let their cdfs be F (x) = P(X ≥ x) and G(y) = P(Y ≥ y). Because µ and ν are in one-to-one correspondence

with F and G respectively (by Problem 100), we may define the convolution µ ∗ ν = ν ∗ µ to be the law of

Z = X + Y . We denote the corresponding cdf by F ∗ G = G ∗ F .

Note that µ, ν can be discrete, continuous, or anything in between, and this definition is still valid. To get a more

explicit expression for F ∗ G, notice that

(F ∗ G)(z) = P(X + Y ≤ z) =

∫ ∫
1{x + y ≤ z}dµ(x)dν(y),

where we’ve implicitly used the change of variables formula to write the integral in terms of µ and ν and Tonelli’s

theorem to break up the double integral. Then the inner integral is just the probability that x ≤ z − y , so we have

(F ∗ G)(z) =

∫
F (z − y)dν(y) =

∫
F (z − y)dG(y) ,

where the last equality is just saying that ν and G carry the same information. (And by symmetry, this is also equal

to
∫
G(z − x)dF (x).) We can say something even nicer in the case where µ and ν have densities – in particular,

µ ∗ ν also has a density. To see this, suppose µ and ν correspond to the density functions f and g. By definition, that

means that for all Borel sets B, µ(B) =
∫

1B(x)f (x)dx (where dx is the standard Lebesgue measure), where f is a
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nonnegative measurable function on R,BR. In particular, F (x) =
∫ x
−∞ f (t)dt (by plugging in the set (−∞, x ]), and

for any integrable random variable h(X), we have E[h(X)] =
∫∞
−∞ h(t)f (t)dt. So plugging in dG(y) = g(y)dy , we

find that

(F∗G)(z) =

∫ ∞
−∞

F (z−y)dG(y) =

∫ ∞
−∞

F (z−y)g(y)dy =

∫ ∞
−∞

∫ z

−∞
f (t−y)dt g(y)dy =

∫ z

−∞

∫ ∞
−∞

f (t−y)g(y)dydt

by Tonelli’s theorem. So we’ve now written the cdf F ∗ G as an integral
∫∞
−∞(f ∗ g)(t)dt, and therefore µ ∗ ν has

density

(f ∗ g)(z) =

∫ ∞
−∞

f (z − y)g(y)dy =

∫ ∞
−∞

g(z − x)f (x)dx .

We’ll now move on to our next topic, the Fourier transform. (This topic won’t be on the first exam, and not

everything mentioned today is necessary for us to know, but it may be useful intuition.)

Definition 103

The Fourier transform or characteristic function of a probability measure µ on (R,BR) is a function φµ = µ̂ :

R→ C defined by

φµ(t) =

∫
e itxdµ(x).

In particular, if X is a random variable with law µ, its characteristic function is φµ(t) = E
[
e itX

]
.

Because X is real-valued, e itX is always on the unit circle in C, so φµ(t) is inside the unit ball in C. Thus, φµ(t) is

well-defined for all t ∈ R, and it’s continuous in t (by the bounded convergence theorem). The reason this definition

is useful (and in particular good for proving something like the Central Limit Theorem) is that the Fourier transform
turns convolution into multiplication. Specifically, if X is a random variable with law µ and Y is a random variable

with law ν, and the two random variables are independent, then we have the useful identity

φµ∗ν(t) = E
[
e it(X+Y )

]
= E

[
e itX

]
E
[
e itY

]
= φµ(t)φν(t) .

Example 104

We will indeed eventually study the Fourier transform on R, and we’ll see that it captures a lot of properties of

the measure µ. But today, we’ll look at the Fourier transform on a finite space.

We’ll look at the space Ω = Z/nZ (the integers mod n), which will keep our story simple. Let V be the set of

functions f : Ω→ C, which is a finite-dimensional complex vector space isomorphic to C|Ω|. If we view these functions

as vectors, then V has a Hermitian inner product given by

〈f , g〉 =

n−1∑
x=0

f (x)g(x) = g∗f ,

where g∗ is the conjugate transpose of g. Then for any (nonzero) z ∈ Ω, we can consider the translation operator Tz
acting on functions via

(Tz f )(x) = f (x − z).

Tz is then essentially sending vectors to vectors, so we can think of it as a matrix – specifically, it is a circulant matrix

with shift depending on z . We can then calculate its eigenvectors and eigenvalues: f is an eigenvector of Tz with
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eigenvalue λ if and only if for all x ∈ Ω,

λf (x) = Tz f (x) = f (x − z) =⇒ λk f (x) = f (x − kz) = f (x) if kz ≡ 0 mod n.

In particular (plugging in k = n), this means that λn = 1, so any eigenvalue λ must be an nth root of unity. Now if

n is prime, then Tz has n distinct eigenvalues, which are exactly those nth roots of unity, and we can check that the

eigenvectors are of the form

χ`(x) =
1√
n

exp

(
2πi`x

n

)
with corresponding eigenvalues λz,` = exp

(
− 2πi`z

n

)
. On the other hand, if n is not prime, we no longer have a unique

eigenbasis. Luckily, it turns out that χ0, · · · , χn−1 still do form an eigenbasis of Tz for all z ∈ Ω, and χ` is still an

eigenvector of Tz with that same eigenvalue λz,` = exp
(
− 2πi`z

n

)
. In other words, because our finite space has a

periodic structure, the translation operators have a particularly nice form. We can also find that the scalar products

between two vectors in our eigenbasis is

〈χk , χ`〉 = (χ`)
∗χk =

∑
x

χk(x)χ`(x) =

n−1∑
x=0

1

n
exp

(
2πix(k − `)

n

)
.

This is 1 when k = ` and 0 otherwise, which means that with respect to the Hermitian inner product, the χis form an

orthonormal basis. Thus, the matrix

U =


| · · · |
χ0 · · · χn−1

| · · · |


is unitary (meaning that U∗U = UU∗ = I). We can call (χ0, · · · , χn−1) the Fourier basis for V , and the Fourier
transform is just the change-of-basis operation sending a function f to f̂ = U∗f (which basically tells us the coordinates

of f in the Fourier basis). In other words,

f = UU∗f = Uf̂ =
∑
`

f̂ (`)χ`

is how we write f as a linear combination of the eigenvectors χ`, and the coefficients f̂ (`) are given explicitly by

f̂ (`) = (U∗f )` = 〈f , χ`〉 =

n−1∑
x=0

f (x)χ`(x) =

n−1∑
x=0

1√
n
f (x) exp

(
−

2πi`x

n

)
.

Ignoring the constants, this expression should look very similar to how we multiply f by some complex exponential in

the regular Fourier transform in Definition 103. So the whole point is that the Fourier transform is a change-of-basis
operation which diagonalizes the translation operators, and the exponentials in the definitionare motivated by the

discrete case in which they pop out of the eigenvalue calculation.

But we can study convolution in this finite space as well, because we can think of the expression for f ∗ g in terms

of translations of one of the two functions:

(f ∗ g)(x) =
∑
z

g(z)f (x − z) =
∑
z

g(z)(Tz f )(x).

Thus, we can think of f ∗ g as applying an operator Cg, which is a linear combination of translation operators, to f :

Cg =
∑
z

g(z)Tz .
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But since the Fourier basis diagonalizes all of the Tzs simultaneously, we should expect that the Fourier basis is also

good for Cg. Specifically, we know that Tz = UΛzU
∗ (where Λz is the diagonal matrix with entries λz,0, · · · , λz,n−1)

for each z , or equivalently (expanding out the matrix multiplication)

Tz =

n−1∑
`=0

λz,`χ`χ
∗
` .

Plugging this into our expression for Cg, we thus find that

Cg =
∑
z

g(z)
∑
`

λz,`χ`χ
∗
` =

∑
`

(∑
z

λz,`g(z)

)
χ`χ

∗
` .

Now because λz,` = exp
(
− 2πi`z

n

)
is the zth entry in the `th row of the matrix U∗, the inner sum can also be thought

of as the `th coordinate of the vector U∗g. So we can write Cg in matrix form as the product of three terms,

Cg =


| · · · |
χ0 · · · χn−1

| · · · |




(U∗g)0

(U∗g)1

. . .

(U∗g)n−1




χ∗0
...

...
...

χ∗n−1

 = U diag(U∗g)U∗.

But this now allows us to understand how convolution and the Fourier transform interact: we have

̂f ∗ g = Ĉgf = U∗Cgf = U∗U diag(U∗g)U∗f = diag(U∗g)U∗f .

But now U∗g is the Fourier transform of ĝ, and U∗f is the Fourier transform of f . Thus this last expression is the

entry-wise product of f̂ and ĝ, and we do indeed see that ̂f ∗ g(x) = f̂ (x)ĝ(x), analogous to the identity φµ∗ν(t) =

φµ(t)φν(t) that we derived earlier! So the Fourier transform can also be thought of as the unique object behaving in

this particularly nice way under convolution, and as we mentioned before, it will play a role in some of the results we

will prove later in this class.

We’ll finish this lecture with one more sample problem:

Problem 105

Suppose X1, X2, · · · are random variables that are Cauchy in probability, meaning that that for all ε > 0,

P(|Xm − Xn| ≥ ε) goes to 0 as m, n → ∞. Prove there exists a random variable X such that Xn → X in

probability.

Solution. We proved in our homework that if a sequence of random variables converges in probability, it also converges

almost surely along some subsequence. Motivated by this, we’ll start by constructing that subsequence. Because the

Xis are Cauchy in probability, there is some sequence nk (which we can choose to go to infinity) such that for all

m, n ≥ nk ,

P
(
|Xm −Xn| ≥

1

2k

)
≤

1

2k
.

Now define the event Ak = {ω : |Xnk+1
(ω)− Xnk (ω)| ≥ 1

2k
}. By Borel-Cantelli, the probability that infinitely many of

A1, A2, · · · occur is 0, so on Ω \ {Ak i.o.} (an event of probability 1), these events eventually stop occurring and thus

the Xnk s converge (because their values are Cauchy) to some X. In other words, the subsequence Xnk converges to

some random variable X almost surely.
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It remains to show that the full sequence converges to X. By the triangle inequality and a union bound,

P(|Xn −X| ≥ ε) ≤ P(|Xn −Xnk |+ |Xnk −X| ≥ ε)

≤ P
(
|Xn −Xnk | ≥

ε

2

)
+ P

(
|Xnk −X| ≥

ε

2

)
.

Taking k →∞, the second term goes to 0 because Xnk converges to X almost surely. And if we also send n →∞
(so that n and nk both go to infinity), the first term also goes to zero because the Xis are Cauchy in probability. Thus

P(|Xn −X| ≥ ε)→ 0 as n →∞, which is the desired result.

In preparation for the midterm, Professor Sun’s office hours will be Friday 11-12, and the TAs will have office hours

as well.

s

13 October 23, 2019
Last time, we gave some motivation for the Fourier transform of a random variable by considering the discrete

case Ω = Z/nZ. Letting V be the set of functions from Ω → C, we have a finite-dimensional vector space iso-

morphic to CΩ with Hermitian inner product 〈f , g〉 = g∗f =
∑

x∈Ω f (x)g(x). Under this inner product, we found

an orthonormal basis (χ0, · · · , χn−1) for V , with χ`(x) = 1√
n

exp
(

2πi`x
n

)
. In particular, we found that the matrix

U =
[
χ0 χ1 · · · χn−1

]
∈ Cn×n is unitary and gives rise to Fourier transform as a change of basis-operation

f̂ = U−1f = U∗f .

In other words, the coefficient f̂ (`) of f in the Fourier basis is 〈f , χ`〉. It was particularly nice that Fourier inversion
could be easily performed (since f = Uf̂ ) and that 〈f , g〉 = 〈f̂ , ĝ〉 because U is unitary. Today’s class will now cover

the Fourier transform for functions on R, and we’ll see some of these properties come up again.

We’ll start by fixing the normalization. Recall that if µ is a probability measure on (R,BR), we defined the Fourier
transform or characteristic function of µ as

φµ(t) =

∫
e itxdµ(x) = E

[
e itX

]
,

for a random variable X ∼ µ. We discussed some basic properties of this function last time, and we’ll formalize them

now:

Proposition 106

For any probability measure µ on R, φµ is a uniformly continuous mapping from R to the closed unit disk

D = {z ∈ C : |z | ≤ 1}.

Proof. As mentioned previously, φµ indeed takes values on D because e itx is always on the unit circle in C. To prove

uniform continuity, we use that

|φµ(t + h)− φmu(t)| =
∣∣∣E[e i(t+h)X − e itX ]

∣∣∣ .
Applying Jensen’s inequality in the form |E[Y ]| ≤ E[|Y |] allows us to bring the absolute value into the expectation and

find that this is

≤ E
[∣∣e itX(e ihX − 1)

∣∣] = E
[∣∣e ihX − 1

∣∣] .
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But the right-hand side does not depend on the point t ∈ R we choose, and it tends to zero as h → 0 by applying the

bounded convergence theorem to any sequence hn → 0 (and remembering that the integral over a probability space is

indeed over a set of finite support).

In the special case where µ has a density function f (x), we can write the Fourier transform as an integral

φµ(t) =

∫
e itx f (x)dx = f̂ (t),

and we call this the L1 Fourier transform (because f integrates to 1, so it’s in L1). There is an important result from

Fourier analysis that we should keep in mind:

Theorem 107 (Planchard/Parseval)

Suppose we have two functions f , h ∈ L1(R) ∩ L2(R). Then f̂ , ĥ ∈ L∞(R) ∩ L2(R), and we have

〈f̂ , ĥ〉 = 2π〈f , h〉.

Thus, the mapping U : L1(R)∩L2(R)→ L∞(R)∩L2(R) defined by U(f ) = f̂√
2π

has a unique continuous extension

to a unitary map L2(R)→ L2(R).

The idea is that it is nice to be able to have U map a space to itself, but the integral
∫
e itx f (x)dx may not be

defined if f is not in L1. But instead, we can approximate f by functions in the space L1 ∩ L2, and it turns out that

the limit will make sense and live in L2. And having a unitary mapping means that we also have a simple inverse – for

any function h ∈ L1(R) ∩ L2(R), we can define

U∗(h(x)) =
1√
2π

∫
e−itxh(t)dt =

ĥ(−x)√
2π

(which is like U(f ) = f̂√
2π

but with an additional negative sign). The logic from Theorem 107 applies here as well,

so this map also extends to a map U∗ : L2(R) → L2(R). This gives us an important result: the Fourier inversion
theorem for functions tells us that

f (x) = U∗Uf = U∗

(
f̂√
2π

)
=

1

2π
ˆ̂f (−x),

meaning that up to a scaling factor and a change of sign, the Fourier transform is an involution. Unfortunately, the

Fourier transform for general probability measures (instead of functions) is not quite as nice:

Theorem 108 (Fourier inversion formula for probability measures on R)
Suppose µ is a probability measure on R and φµ(t) is its characteristic function. Then we have∫ T

−T
φµ(t)

(
e−ita − e−itb

2πit

)
dt

T→∞−−−→ µ̃(a, b) = µ((a, b)) +
µ({a, b})

2
.

The point of this result is that we use µ to define φµ, but we can also use φµ to determine µ (it’s left as an

exercise that even though µ̃ and µ are not exactly the same, we can use µ̃ to uniquely determine µ). By the way, we

do need to integrate from −T to T to ensure the integral actually exists, and it’s part of the content of the theorem

that those integrals converge as T →∞:
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Example 109

Consider the random variable X which takes on the values ±1 with probability 1
2 . Then

φµ(t) =
e it − e−it

2
= cos t.

This function does not decay as t → ∞, so plugging it into the integral on the left-hand side of Theorem 108

would not work.

Before we go into the proof, we’ll discuss the intuitive explanation for this result. We’re basically being given φµ,

and we want to recover the distribution by finding, for example, µ((a, b)) for some a < b. In other words, we wish to

compute µ((a, b)) =
∫
h(x)dµ(x), where h is the indicator function 1(a,b). Because h has bounded support, we can

compete the Fourier transform of this indicator function directly to be

ĥ(t) =

∫
e itxh(x)dx =

∫ b

a

e itxdx =
e itb − e ita

i t
.

So if we think of µ(a, b) =
∫
h dµ = 〈µ, h〉 as some kind of inner product (whatever that means, because µ is a

measure rather than a function), then Theorem 107 should yield

µ((a, b)) =
1

2π
〈µ̂, ĥ〉 =

1

2π
〈φµ, ĥ〉 =

∫ ∞
−∞

φ(t)
e−ita − e−itb

2πit
dt.

In reality, this integral may not even be defined, but we at least see why the integrand on the left-hand side takes

the form that it does. To understand this further, we can approximate φ by truncating in the Fourier domain by

integrating the last expression from −T to T only:∫ T

−T
φ(t)

e−ita − e−itb

2πit
dt =

∫ ∞
−∞

φ(t)ĥ(t)
kT (t)

2π
dt,

where kT is the truncation function 1{|t| ≤ T}. We can rewrite this as an inner product 1
2π 〈φ, ĥkT 〉 = 〈µ, hT 〉, where

hT is the function satisfying ĥT = ĥkT . We can solve for hT explicitly, but we don’t need to – the idea is that h is

a not-so-smooth function (the indicator of (a, b)) mapped into the Fourier domain, so removing the high-frequency

domain by multiplying by kT should mean that hT is essentially a “smooth version” of h. So if that smoothing goes

away as T →∞, it makes sense that we have

lim
T→∞

hT (x) = h̃(x) = 1{(a, b)}+
1

2
· 1{{a, b}},

because h is 0 on one side of a (and also b) and 1 on the other, so the hT s will have half of each contribution. This

completes the intuition for why we get only half of the measure on the endpoints, and we’re now almost ready to dive

into the proof. We’ll first figure out what hT should be so that it satisfies ĥT = ĥkT :

Proposition 110

The function sinc(t) = sin t
t is not in L1(R), because it decays like 1

t . However, the truncated version of that

function

S(T ) =

∫ T

−T
sinc(t)

converges to π as T →∞.
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Proof. There are various ways to do this, but we’ll calculate using complex analysis. We can first rewrite

S(T ) =

∫ T

−T

e it − e−it

2i t
dt =

∫ T

−T

e it

i t
dt

by symmetry. Now the function h(z) = e iz

iz is holomorphic on C \ {0}, so if we integrate around any closed contour

γ not containing or passing through the origin, then
∮
γ h(z)dz = 0. We will integrate over the following indented

semicircle once counterclockwise and take R→∞, ε→ 0:

y

x
ε−ε−R R

I II

III

IV

The integral of sinc(t) from −ε to ε vanishes as ε → 0 (because sin t
t → 1 as t → 0), so the integral we want to

compute is the contribution along parts II and IV of the contour. It suffices to show that (1) as ε → 0, the integral

along I goes to −π, and (2) as R→∞, the integral along III goes to 0. (2) can be done with some careful bounding

which we’ll skip (by parameterizing the semicircle and then bounding the resulting integral
∫ π

0 e
−R sin θ by breaking it

up into a region with small length and a region with small integrand). Meanwhile, (1) can be done by parametrizing z

as εe iθ for θ from π to 0, so that the integral along region I is∫
γε

h(z)dz =

∫ 0

π

e iεe
iθ

iεe iθ
iεe iθdθ =

∫ 0

π

e iεe
iθ

dθ.

But the numerator converges to 1, so this integral converges to
∫ 0

π 1dθ = −π as ε→ 0. So because the total contour

integral is 0, the integral we’re trying to find (along II and IV) is π, as desired.

We will use this function S(T ) to find hT by applying the Fourier inversion formula for functions. Inverting ĥkT ,

we have

hT (x) =
1

2π

∫ T

−T
e−itx ĥ(t)dt =

1

2π

∫ T

−T
e−itx ·

(
e itb − e ita

i t

)
dt.

If we average between the values at x and −x for each point in the integrand, the integral can be rewritten as

hT (x) =

∫ T

−T

[
sin(t(b − x))

2πt
−

sin(t(a − x))

2πt

]
dt,

where we use that sin θ = e iθ−e−iθ
2i . The two terms can now be integrated separately – the integral of sin(t(b−x))

2πt is zero

if b − x = 0, and in all other cases we can make a u-substitution (flipping the limits of integration if b − x, a − x are

negative) to write this in terms of the function S from above. We thus have

hT (x) =
sgn(b − x)S(|b − x | · T )− sgn(a − x)S(|a − x | · T )

2π
,

where we define sgn(0) = 0. Now if b− x, a− x are both positive or both negative, both terms converge to the same

value (because S converges to π as its argument goes to infinity), so this is only nonzero when x ∈ [a, b]. If x is

strictly between a and b, we have π−(−π)
2π = 1, and otherwise (when x = a or x = b) it goes to π

2π = 1
2 . Putting this

all together, we indeed find that hT converges pointwise to h̃(x) = 1(a,b) + 1
2 · 1{{a,b}}, as desired.
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Remark 111. Another way we can see that hT is smooth is that Fourier transforms take convolution to multiplication,

so ĥT = ĥkT =⇒ hT = h ∗ ST , where ŜT = kT . This function ST is “wavy” and becomes more oscillatory as T gets

larger, but it is smooth, and thus the convolution hT is also smooth.

With this, we’re finally ready to explain the Fourier inversion theorem:

Proof of Theorem 108. We start by manipulating the left-hand side in terms of the functions we’ve been describing:

we have

IT =

∫ T

−T
φµ(t)

(
e−ita − e−itb

2πit

)
dt =

1

2π

∫ T

−T
φµ(t)ĥ(t)dt =

1

2π

∫ T

−T

(∫ ∞
−∞

e itxdµ(x)

)
ĥ(t)dt.

Using that e itx = e−itx and swapping the order of integration (which is allowed by Fubini’s theorem because the inner

integral is bounded and the outer integral is a continuous function integrated over a finite domain),

IT =

∫ ∞
−∞

∫ T

−T

e−itx ĥ(t)

2π
dt µ(dx).

Applying the Fourier inversion formula for functions to the inner integral, we can simplify to

IT =

∫
hT (x)dµ(x) =

∫
hT (x)dµ(x)

(where the last step follows from hT being real by our previous computation). All of this holds for a fixed T , and to finish,

we need to show that IT =
∫
hT (x)dµ(x) converges to

∫
h̃(x)dµ(x) as T →∞ (where h̃ = 1{(a, b)}+ 1

2 · 1{{a, b}}
as defined above). We already know that hT → h̃ converges pointwise from earlier work, and we know that hT is

of the form 1
2π (±S(something)± S(something else)). But since S is bounded for both small and large values of

T , it must be uniformly bounded by some constant overall. Thus, hT is bounded uniformly as well (supT ||hT ||∞ is

finite), so the bounded convergence theorem applies. This means that the left-hand side IT does indeed converge to∫
h̃(x)dµ(x) = µ((a, b)) + 1

2µ({a, b}), as desired.

Example 112

For a concrete example of a Fourier transform, we’ll compute the characteristic function of a Gaussian with density

g(x) =
1√
2π
e−x

2/2.

Since we have an explicit density function, we can write

φ(t) = ĝ(t) =

∫ ∞
−∞

e itxg(x)dx =
1√
2π

∫ ∞
−∞

e itxe−x
2/2dx =

1√
2π

∫ ∞
−∞

exp

(
−

(x − i t)2

2

)
e−t

2/2dx,

which we can think of as an integral along a line in the complex plane as

φ(t) = e−t
2/2

∫
x∈R

1√
2π

exp

(
−

1

2
(x − i t)2

)
dx = e−t

2/2

∫
R−it

1√
2π
e−z

2/2dz.

We’ll now again appeal to complex analysis by integrating this normal density 1√
2π
e−z

2/2 once counterclockwise around

a rectangle (as shown below) as R→∞:
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y

x
−R R

R − i t−R − i t

I
II

III
IV

Since 1√
2π
e−z

2/2 is holomorphic everywhere, the integral around this closed loop is 0, and we can check that the

integrals along II and IV go to zero as R → ∞. Thus, the integrals along the real line R and the shifted real line

R− i t are the same, and they’re both equal to 1 because we’re integrating a probability density. Plugging this in, we

find that φ(t) = e−t
2/2. This is an important example because (ignoring factors of 2π) the Fourier transform of a

Gaussian is a Gaussian – in other words, the Gaussian is a sort of eigenvector for the Fourier transform.

To finish today’s lecture, we’ll do a weak form of the L2 isometry (basically proving a simple case of Theorem 107):

Proposition 113

Suppose f , h ∈ L1 ∩ L2 ∩ L∞ are continuous functions. Then 〈f̂ , ĥ〉 = 2π〈f , h〉.

Proof. We will assume the part of Theorem 107 that if f ∈ L1 ∩ L2, then f̂ ∈ L2 ∩ L∞ (this comes from Fourier

analysis). That means that f̂ and ĥ are in L2, so by Cauchy-Schwarz f̂ ĥ is integrable. By the dominated convergence

theorem, we can therefore write

〈f̂ , ĥ〉 = lim
ε→0

∫ ∞
−∞

f̂ (t)ĥ(t) exp

(
−
εt2

2

)
dt.

Expanding out the definitions of the Fourier transforms, we have

〈f̂ , ĥ〉 = lim
ε→0

∫ ∞
−∞

(∫ ∞
−∞

e itx f (x)dx

)(∫ ∞
−∞

e−ityh(y)dy

)
exp

(
−
εt2

2

)
dt.

By Fubini’s theorem, we can now swap the order of integration to get

〈f̂ , ĥ〉 = lim
ε→0

∫ ∞
−∞

∫ ∞
−∞

f (x)h(y)

∫ ∞
−∞

e it(x−y) exp

(
−
εt2

2

)
dtdxdy

= lim
ε→0

∫ ∞
−∞

∫ ∞
−∞

f (x)h(y)

√
2π

ε

∫ ∞
−∞

e it(x−y) 1√
2π/ε

exp

(
−
εt2

2

)
dtdxdy.

Since 1√
2π/ε

exp
(
− εt2

2

)
is the density of Z√

ε
, where Z is standard Gaussian, the blue inner integral is E[e i(x−y)·Z/

√
ε] =

e−(x−y)2/(2ε). This leaves us with

〈f̂ , ĥ〉 = lim
ε→0

∫ ∞
−∞

∫ ∞
−∞

f (x)h(y)

√
2π

ε
e(x−y)2/(2ε)dxdy.

(So we start off with a “spread out Gaussian” in the Fourier space, which has now become a very “peaked” Gaussian

in regular space.) Taking the limit ε → 0, the e(x−y)2/(2ε) will shift all of the weight of integral to the region around

x = y . Thus by continuity of f and h, we have

〈f̂ , ĥ〉 = 2π

∫
f (x)h(x)dx = 2π〈f , h〉,

as desired.
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14 October 28, 2019

(Our midterm exams will be brought to class on Wednesday.) Last time, we discussed the Fourier inversion theorem for

probability measures on R, which lets us recover the measure µ for a random variable X given its characteristic function.

(One key example was that the characteristic function for the standard Gaussian measure is φ(t) = exp
(
− t2

2

)
, which

will come up again.) The main goal of today will be to prove the central limit theorem for iid sequences. Basically, we’ll

show that if X,Xi are iid with E[X] = 0 and E[X2] = 1, then 1√
n

∑n
i=1Xi

d−→ N(0, 1) for some sense of convergence

(“in distribution”) which we’ll now formally define.

Definition 114

Let S be a metric space with Borel sigma-algebra B generated by the open sets in the metric topology, and
let µn, µ be probability measures on (S,B). We say that µn converges weakly to µ (written as µn =⇒ µ), if∫
f dµn →

∫
f dµ for all bounded continuous functions f : S → R. If Xn, X are random variables, then we say

that Xn
d−→ X converges in distribution if LXn =⇒ LX .

To understand why we require f to be continuous, consider the (deterministic) random variables Xn = 1
n . Then

Xn converge to X = 0 almost surely (so it also makes sense to have them converge in distribution), but the function

f (x) = 1{x > 0} does not satisfy f (Xn)→ f (X).

Fact 115

Every probability measure on a metric space (S,B) is regular, which means that for any A ∈ B, we can approximate

µ(A) from above and below:

µ(A) = sup{µ(F ) : F ⊆ A, F closed} = inf{µ(G) : G ⊇ A,G open}.

The proof in general is similar to the one we did on our homework for (R,BR). In particular, this implies that the

measure µ is determined by {µ(F ) : F closed}.

We can thus make the following claim:

Lemma 116

Suppose we have two measures µ and ν such that
∫
f dµ =

∫
f dν for all bounded continuous functions f : S → R.

Then µ = ν.

Proof. For any closed set F ⊂ S, we can approximate its indicator function with a continuous function, namely

f (x) = max

(
0, 1−

dist(x, F )

ε

)
.

In other words, f (x) = 1 if x ∈ F , f (x) = 0 if x is more than ε away from F , and we linearly interpolate in between.

If we let F ε denote the ε-neighborhood of F , we then have that for all ε > 0,

1F ≤ f ≤ 1F ε =⇒ µ(F ) ≤
∫
f dµ =

∫
f dν ≤ ν(F ε) ,

where the middle equality holds by assumption because f is a bounded continuous function. Since F is a closed set,

F ε ↓ F as ε ↓ 0, so ν(F ε) ↓ ν(F ) ≥ µ(F ) by continuity from above. Repeating the argument in the other direction,

we see that µ(F ) = ν(F ). Since this holds for all closed sets, we find that µ = ν by Fact 115, as desired.
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Corollary 117

A sequence of measures µn cannot converge weakly to two different limits.

With that fact, we can now think about how to study the space of probability measures. Let µ be any probability

measure on S, and for any ε > 0 and (finitely many) bounded continuous functions f1, · · · , fk , define the set

Uε,f1,··· ,fk (µ) =

{
ν probability measures on S :

∣∣∣∣∫ fidν −
∫
fidµ

∣∣∣∣ < ε for all 1 ≤ i ≤ k
}

to be a kind of neighborhood around the measure µ. We can check the following fact from the definition:

Proposition 118

Let P be the space of probability measures on (S,B), and let T be the topology on P generated by the neighbor-

hoods Uε,f1,··· ,fk (µ). Then weak convergence (as in Definition 114) is equivalent to convergence in the topology

T .

Because we have neighborhoods around measures, it’s natural to also define a distance between measures:

Definition 119

The Prohorov measure is defined via

π(µ, ν) = inf {ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε ∀A ∈ B}

for any µ, ν ∈ P, where Aε denotes the ε-neighborhood of the set A in the metric space S.

Fact 120

If S is a Polish space, meaning that it is complete (Cauchy sequences converge) and separable (it has a countable
dense subset), then weak convergence of measures is equivalent to convergence in π-measure.

In particular, if S is complete and separable, then P is also complete and separable and itself satisfies the conditions

above. We often want to pick a random probability measure from the set of probability measures, so having the Polish

space assumption is nice – this is why almost all of probability happens on Polish spaces, and we’ll always be in this

setting for this class.

With this, we can turn to the central limit theorem. In general, the main strategy for showing convergence in

distribution is to break the proof into two parts:

• First, show that the family of measures µn is confined in a compact subset of P, which implies that there are

subsequences of µn that converge. (This can usually be done with rough estimates.)

• Once we know that subsequences converge, leverage that fact to show that all subsequential limits coincide.

This might be a bit abstract, so it’s important for us to understand what compact spaces in P actually look like:

Definition 121

Let {µα : α ∈ I} ⊆ P be a set of probability measures. We say that {µα} is tight if for all ε > 0, there exists a

compact set Kε ⊆ S such that µα(Kε) ≥ 1− ε for all α ∈ I.
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Tightness of a set of measures basically means that the mass is mostly concentrated within a compact set – two

example families of probability measures that are not tight are {νn = N(0, n)} and {γn = N(n, 1)} (because significant
mass can be arbitrarily far away from the origin). It turns out that tightness and compactness are essentially equivalent

in the following way:

Theorem 122 (Prohorov)

Let µα be probability measures on a metric space (S,B). If {µα} is tight, then the family of measures is relatively
compact in P (that is, it has compact closure). Furthermore, if S is a Polish space, then the converse also holds

(though this is less useful).

It turns out the case S = R is easier to prove, and this leads to the Helly selection theorem. We should make sure

we understand the statement of Prohorov’s theorem, and we’re responsible for reading and understanding the proof

of the Helly selection theorem. (This can be found in the course textbook, but the main idea is to take the family of

cumulative distribution functions Fn, repeatedly take subsequences of this family that converge at each rational to get

limits at each q ∈ Q, and then define a function F on R by making F (x) the infimum of those limits across all q > x .

This function will be increasing and right-continuous but not necessarily a distribution function because the left and

right limits may not be 0 and 1, but they will be if and only if the measures are tight.)

Turning now to the central limit theorem, the key to the proof will be to relate weak convergence to characteristic

functions:

Lemma 123

Suppose µ is a probability measure on R with characteristic function φ. Then for any u ∈ R, we have

µ

({
x ∈ R : |x | ≥

2

u

})
≤

1

u

∫ u

−u
(1− φ(t))dt.

In other words, the tail behavior of the measure µ is related to the characteristic function’s values near 0.

Proof. Writing out the definition of the characteristic function and using Tonelli’s theorem to change the order of

integration, we have

1

u

∫ u

−u
(1− φ(t))dt =

1

u

∫ u

−u

∫ ∞
−∞

(1− e itx)dµ(x)dt =

∫ ∞
−∞

∫ u

−u

1

u
(1− e itx)dtdµ(x).

The inner integral can be directly computed, and we end up with

=

∫ ∞
−∞

2

(
1−

e ixu − e−ixu

2ixu

)
dµ(x) =

∫ ∞
−∞

2

(
1−

sin(ux)

ux

)
dµ(x).

The integrand is always nonnegative, so restricting the domain to the region where |ux | ≥ 2 only makes it smaller.

Additionally, because sin(ux) ≤ 1, the integrand here is at most 1 whenever |ux | ≥ 2. Thus we indeed have

1

u

∫ u

−u
(1− φ(t))dt ≥

∫
|ux |≥2

1dµ(x) = µ ({x : |ux | ≥ 2}) ,

as desired.

From this lemma, we can get the following important result:
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Theorem 124 (Continuity theorem)

Let µn be probability measures on R with characteristic functions φn. Then

• If µn converge weakly to some µ, then φn converge pointwise to the characteristic function φ of µ.

• Conversely, if φn converge pointwise to φ, and φ is continuous at t = 0, then φ is a valid characteristic

function of some probability measure µ with µn =⇒ µ.

Proof. For the forward direction, if µn =⇒ µ, then φn(t) =
∫∞
−∞ e

itxdµn(x) is the integral of the bounded continuous

function f (x) = e itx , so φn(t)→ φ(t) converges pointwise by the definition of weak convergence.

For the reverse direction, start with the equation µn
(
{|x | ≥ 2

u }
)
≤ 1

u

∫ u
−u(1 − φn(t))dt from Lemma 123. Fix u

and take n →∞; by the bounded convergence theorem (and the assumption that φn → φ pointwise), the right-hand

side converges to 1
u

∫ u
−u(1− φ(t)).

Additionally, since φ is continuous at t = 0 and φ(0) = 1, this integral converges to 0 as u → 0. This shows

that the µn are tight – indeed, f (u) = lim supn→∞ µn
(
|x | ≥ 2

u

)
goes to 0 as u ↓ 0, so for any ε > 0 we can take

an appropriately small u such that f (u) < ε. That implies that µn
(
{|x | ≥ 2

u }
)
< ε for all but finitely many n, and

then we can take the union of this compact set with the finitely many compact sets that include at least 1− ε of the
measures at the beginning of our sequence.

Thus, µn weakly converges along subsequences by Prohorov’s theorem, so for any subsequence where we have weak

convergence µnk =⇒ ν, we must also have φµnk → φν (by the forward direction argument). But we have φν = φ for

any subsequence (because the whole sequence φn converges too φ by assumption), so because φ is the limit of such a

weak convergence, it is a valid characteristic function. This argument applies for any subsequence, so all subsequential

limits exist and are identical. Therefore every subsequence of µn has a further subsequence converging to µ, and (as

a general property of topological spaces) this implies that µn converges to µ as desired.

Example 125 (A non-example)

Consider the wide Gaussians µn = N(0, n) from before (which are not tight). Then φn(t) = exp
(
−nt2

2

)
converges

to the indicator function 1{t = 0}, which is not continuous. Indeed, the measures µn do not converge weakly to

any probability measure µ.

Remark 126 (Joke). In response to “Does this imply CLT?”, the answer was “I don’t know, does it?”

Thus, the continuity theorem tells us that all we need is to show that the characteristic functions of the left and

right side are the same in our central limit theorem statement. We can check the following fact with a calculus bash

(which can also be found in the textbook):

Lemma 127

For all x ∈ R,
∣∣∣e ix − (1 + ix − x2

2

)∣∣∣ ≤ min
(
x2, |x |

3

6

)
.

We’re now ready to prove two versions of the central limit theorem:
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Theorem 128 (Central limit theorem for iid sequences)

Let X,Xi be iid random variables with E[X] = 0, and E[X2] = 1. (These values can always be rescaled, but we

do require a finite second moment, which is stronger than the assumption for the strong law of large numbers.)

Then
1√
n

n∑
i=1

Xi
d−→ N(0, 1).

Proof. By linearity of expectation, we know that

E
[
e itX −

(
1 + i tX −

t2X2

2

)]
= φX(t)− 1−

t2

2
.

But plugging in tx into both sides of Lemma 127, taking expectations (which is allowed because both sides are

nonnegative random variables), and then dividing by t2 yields

1

t2

∣∣∣∣φX(t)−
(

1−
t2

2

)∣∣∣∣ ≤ E [min
(
X2, t6 |X|

3
)]
.

The expression min
(
X2, t6 |X|

3
)
converges to zero pointwise almost surely as t → 0 (because t

6 |X|
3 goes to zero), and

it is dominated by the integrable X2. Thus, the right-hand side goes to zero as t → 0 by the dominated convergence

theorem, which implies that

φx(t) = 1−
t2

2
+ o(t2).

From here, the random variable Zn = 1√
n

∑n
i=1Xi has characteristic function

φZn(t) = φX

(
t√
n

)n
=

(
1−

t2

2n
+ o

(
t2

n

))n
.

For any fixed t, this converges to exp
(
− t2

2

)
as n →∞ (we can check this by taking a log first and using L’Hopital’s

rule), which is the characteristic function of the standard Gaussian. Thus φZn → φN(0,1) pointwise, so Theorem 124

yields the desired result.

Remark 129. If we had tried to produce a similar proof with the moment generating function instead of the charac-

teristic function, we would run into more problems. In particular, it’s possible to have finite second moment and not

have the moment generating function be defined anywhere but t = 0, and we also don’t have such a nice inversion

theorem in that case.

Finally, we’ll prove a more general central limit theorem:

Theorem 130 (Lindeberg-Feller central limit theorem)

Suppose that we have a triangular array of random variables such that for each n, {Xn,j : 1 ≤ j ≤ n} are mutually
independent with mean 0 but not necessarily iid. Also suppose that the functions are normalized such that

Var(Xn,1 + · · · + Xn,n) =
∑n

j=1 E
[
X2
n,j

]
converges to some σ2 > 0 as n → ∞, and (here is the key assumption)

for all ε > 0,

lim
n→∞

n∑
j=1

E
[
X2
n,j ; |Xn,j | > ε

]
= 0.

Then Sn =
∑n

i=1Xn converges in distribution to N(0, σ2).
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Theorem 128 is a special case of this – if Xi are our iid random variables, then we can plug in Xn,i = Xi√
n
and

check that the conditions hold. The reason we don’t have any
√
n factor here is that we are assuming we have already

done the normalization for the variance to work out, and the key condition says intuitively that each individual variable

cannot contribute significantly to the variance.

Proof. We’ll show again that the characteristic function of Sn converges to that of a Gaussian. Let φn,j be the

characteristic function for Xn,j and let σ2
n,j = E(X2

n,j). By the same inequality as in the previous proof (but this time

with variance σ2
n,j), we have ∣∣∣∣∣φn,j(t)−

(
1−

σ2
n,j t

2

2

)∣∣∣∣∣ ≤ E
[

min

(
t2X2

n,j ,
t3|Xn,j |3

6

)]
.

The second term is smaller when Xn,j is small, and otherwise the first term can be bounded with the theorem

assumption. So using one or the other inequality depending on whether |Xn,j | is larger than ε, we get the bound∣∣∣∣∣φn,j(t)−
(

1−
σ2
n,j t

2

2

)∣∣∣∣∣ ≤ t2

[
tεE(X2

n,j)

6
+ E(X2

n,j ; |Xn,j | > ε)

]

for any ε (where the first term comes from the |X|3 term and the second from the X2 term). We can now use the

fact that for any zi , wj ∈ C with modulus at most 1,

∣∣∣∣∣∣
n∏
i=1

zi −
n∏
j=1

wj

∣∣∣∣∣∣ ≤
n∑
j=1

|zj − wj | (by writing a telescoping sum

where we switch from z1 to w1, then z2 to w2, and so on). The characteristic function φn,j(t) always has modulus at

most 1, and

σ2
n,j = E(X2

n,j) = E(X2
n,j ; |Xn,j | < ε) + E(X2

n,j ; |Xn,j | ≥ ε) ≤ ε2 + E(X2
n,j ; |Xn,j | ≥ ε)

can be made arbitrarily small by taking ε→ 0 and n →∞ (by our key assumption). Thus, for sufficiently large n and

using sufficiently small ε, the term
∣∣∣σ2

n,j t
2

2

∣∣∣ is always at most 1. So applying the boxed identity above, we find that∣∣∣∣∣∣
n∏
j=1

φn,j(t)−
n∏
j=1

(
1−

σ2
n,j t

2

2

)∣∣∣∣∣∣ ≤
n∑
j=1

[
t2

[
tεE(X2

n,j)

6
+ E(X2

n,j ; |X| ≥ ε)

]]
.

For any fixed t, both terms tend to 0 as ε→ 0 and n →∞ (the first term does so because the
∑

n,j E[X2
n,j ] converges

to a finite value and then we multiply by ε, and the second term does so by our key assumption), so the left-hand side

converges to zero as well. In other words, for any t,

lim
n→∞

φSn = lim
n→∞

n∏
j=1

φn,j(t)→
n∏
j=1

(
1−

σ2
n,j t

2

2

)
.

We’ve shown that σ2
n,j can be made arbitrarily small for large enough n, which is enough to make the product on the

right-hand side converge to e−tσ
2/2 (again this can be checked by taking logs on both sides). This is the characteristic

function of the Gaussian N(0, σ2) as desired, so Theorem 124 again yields the desired result.

15 October 30, 2019

Office hours will run from 4–6 pm today, and we can come to see our midterms (for logistical reasons, we won’t get

them back during class). Our grades are on Stellar already – the average is fairly low and the distribution is very

interesting. The score is out of 40, and when we see our score, we should take it and divide it by 40, and then multiply
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it by 200 to think about how well we did. If we scored a 10 out of 40, this is problematic (and we should talk to

Professor Sun about whether we should stay in the class), but otherwise we should just interpret the score as how well

we’re doing. Moving forward, the class won’t change much – the pace and difficulty will be about the same as it has

been so far, but maybe the problem with the first exam is that we ran out of time. So there might be a time arranged

outside of class for us to take the exam (at night, for longer than an hour and a half).

Last time, we talked about the topology of weak convergence (for probability measures on a metric space). Notably,

we discussed Prohorov’s theorem, which was used to prove the Lindeberg-Feller central limit theorem. This last result

essentially states that if we have a triangular array of independent mean-zero random variables Xn,j , and we know that∑n
j=1 E[X2

n,j ] converges to a finite value σ2 and that the contribution from large values
∑n

j=1 E[X2
n,j ; |Xn,j | ≥ ε] goes

to zero as n →∞, then the row sums
∑n

j=1Xn,j converge in distribution to N(0, σ2). Let’s see an example of this in

action:

Example 131

Let π be a uniformly random permutation on [n] = {1, · · · , n} (there are n! such possibilities). We’ll study the

behavior of the number of cycles in π as n grows large.

We’ll write the permutations in (sorted) cycle notation. For example, having π = (136)(2975)(48) indicates that

1 maps to 3 maps to 6 maps to 1, and so on. To ensure uniqueness of representation, we make sure that the smallest

number in each cycle appears at the beginning, and we sort the cycles from left to right by minimum element (as we’ve

done above). This is useful because we can now sample π sequentially from left to right: start by writing down “(1”,

and then pick a random integer (uniformly from 1 to n) for 1 to go to, say 3. (If it’s 1, we instead immediately close

the parentheses.) Next, pick another random integer that is not 3 (for example 6) – if it’s 1, close the parentheses,

and otherwise, pick another random integer which is not 3 or 6. Once we return to 1, we close that cycle and start

again with the next smallest integer not yet picked, ignoring all of the numbers already in a determined cycle.

This sampling method is convenient, because we can now define the random variables

In,k = 1{a right parenthesis appears after the kth number in sorted cycle notation}.

(For example, In,k takes on the values (0, 0, 1, 0, 0, 0, 1, 0, 1) in our example permutation π.) Since the number of right

parentheses is the same as the number of cycles, our goal is to determine the behavior of Sn =
∑n

k=1 In,k . And because

of the way we sample, the In,k are actually independent Bernoulli variables of parameter 1
n−(k−1) , because there are

(k − 1) choices that the kth number cannot go to, and out of the remaining n − (k − 1) choices, the probability of

having a right parenthesis is the probability that we choose the current first entry of the cycle. Additionally, we can

see that any permutation will be sampled with probability 1
n ·

1
n−1 · · · · · 1 = 1

n! , so this does indeed yield a uniformly

random permutation of [n].

Thus, we’re in a setting to apply the Lindeberg-Feller central limit theorem to our random variables In,k . The

expected number of cycles in π is

E[Sn] =

n∑
k=1

1

n − (k − 1)
=

n∑
j=1

1

j
= log n +O(1),

and the variance is (using that a Ber(p) random variable has variance p(1− p))

Var(Sn) =

n∑
k=1

Var(In,k) =

n∑
j=1

1

j

(
1−

1

j

)
= E[Sn]−

n∑
j=1

1

j2
= log n +O(1).
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To apply Lindeberg-Feller, we recenter and rescale our random variables by defining the random variables

Xn,k =
In,k − E[In,k ]√

log n
.

This rescaling makes the first condition of Lindeberg-Feller hold (the sum of the variances of the Xn,ks is 1√
log n

2 Var(Sn),

which goes to 1 as n →∞). The second condition is pretty easy to check too, because each term of the expression

n∑
k=1

E

[(
In,k − E[In,k ]√

log n

)2

;

∣∣∣∣ In,k − E[In,k ]√
log n

∣∣∣∣ ≥ ε
]

is just equal to 0 for all n large enough (the numerator In,k − EIn,k is at most 1, so multiplying it by 1√
log n

makes∣∣∣ In,k−E[In,k ]√
log n

∣∣∣ smaller than ε almost surely for sufficiently large n). Thus Lindeberg-Feller applies, and we get the result

n∑
k=1

In,k − E[In,k]√
log n

d−→ N(0, 1).

Substituting in Sn =
∑n

k=1 In,k and
∑n

k=1 E[In,k ] = log n +O(1), we thus find that

Sn − log n√
log n

d−→ N(0, 1) ,

and we’ve seen an example in action where the central limit theorem can be applied even though the random variables

are not identically distributed.

However, there are some settings in which sums of random variables do not converge to a Gaussian:

Example 132

Suppose the random variables In,k are all distributed according to Ber(λn ) for some constant λ, and we want to

study the behavior of Sn =
∑n

k=1 In,k as n grows large.

This time, Sn =∼ Bin
(
n, λn

)
has expectation λ by linearity of expectation, so the probability that Sn is extremely

large (like 100λ) is pretty small. So because most of the mass is supported on a constant range (λ is a constant not

depending on n), but Sn is only supported on the nonnegative integers, it doesn’t really make sense to expect that the

distribution will approach that of a Gaussian. We can carry out the calculations to make this more clear: notice that

P(Sn = k) =

(
n

k

)(
λ

n

)k (
1−

λ

n

)n−k
=
λk

k!

(n)k
nk

(
1−

λ

n

)n−k
,

where (n)k denotes the falling factorial n!
(n−k)! . If we fix k and take n →∞, the middle term goes to 1, and the −k in

the right term’s exponent becomes irrelevant, and thus

lim
n→∞

P(Sn = k) = e−λ
λk

k!
.

So in this case, Sn actually converges in law to the Poisson distribution Pois(λ). Again, this is supported on the

integers, so it’s definitely not Gaussian. However, if we take λ large enough, we do recover the Gaussian limit – in

other words, Pois(λ)−λ)√
λ

d−→ N(0, 1) as λ → ∞. Another way of saying this is that if we consider the random variable
Bin(n,p)−np√

np(1−p)
, which is a random variable with mean 0 and variance 1, then (by direct calculation or by the central limit

theorem), it will converge to a standard normal if we take p fixed and n large, but it will converge to a Poisson

distribution if we take p = λ
n and n large. Let’s verify that we do get the correct limit behavior as we take λ→∞:
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Proposition 133

The Poisson distribution Pois(λ) converges in distribution to a Gaussian as λ→∞.

Proof. We’ll make use of characteristic functions. If Yλ ∼ Pois(λ), then the characteristic function of Yλ is

φ(t) = E
[
e itY

]
=
∑
k≥0

e itke−λλk

k!
= e−λ

∑
k≥0

(
λe it

)k
k!

= exp(−λ(1− e it)).

Since Y has mean and variance λ, we can define a normalized version Zλ = Yλ−λ√
λ
. The characteristic function for Zλ

is then

ψ(t) = E
[

exp

(
i t

(
Yλ − y√

λ

))]
= exp(−i t

√
λ)E

[
e itYλ/

√
λ
]
.

Plugging this into the form of φ above, we thus find that

ψ(t) = exp
(
−λ
(

1− e it/
√
λ
)
− i t
√
λ
)
.

But as λ gets large, we can do a series expansion, and we’ll find that

ψ(t) = exp

(
−λ
(
−
i t√
λ

+
t2

2λ
−O

(
1

λ3/2

))
− i t
√
λ

)
,

which converges pointwise to e−t
2/2 as λ→∞. Thus, the usual continuity theorem tells us that the rescaled Poisson

random variables do indeed converge to a standard normal.

Professor Sun once taught a class similar to 18.600, so she feels a little silly going over this next topic, but this

next part may be useful because apparently many of us haven’t taken an intro probability class before.

Example 134

We’re going to review all of the standard probability distributions. Consider Bernoulli trials, which means that

we have random variables Ik distributed iid according to Ber(p) for all k ≥ 1.

We’ll say that Ik = 1 (which occurs with probability p) is a “success” and Ik = 0 (which occurs with probability

1 − p) is a “failure.” Then the number of successes Bm =
∑m

k=1 Ik after time m (that is, m trials) is distributed

according to the binomial distribution Bin(m, p), with

P(Bm = k) =

(
m

k

)
pk(1− p)m−k

for any 0 ≤ k ≤ m. Meanwhile, the time G of the first success, or equivalently the first index k such that Ik = 1, is

distributed according to the geometric distribution Geo(p), with

P(G = k) = (1− p)k−1p.

As an extension of this, the time of the r th success Xr is distributed as Xr
d
= G1 + · · ·+Gr where G,Gi are iid Geo(p)

random variables. (In other words, the negative binomial distribution is the geometric distribution convolved with itself

r times.) Xr is then distributed according to the negative binomial distribution NegBin(r, p), with

P(Xr = t) =

(
t − 1

r − 1

)
(1− p)t−rpr
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for any t ≥ r (because we need exactly (r − 1) successes in the first (t − 1) trials, followed by a success).

Next, suppose that we scale p = 1
n , so that the vast majority of our experiments are failures. If we also scale time by

n (so that we can see successes at a reasonable rate instead of very rarely), then we’ll have done nt trials by time t. Then

as we calculated in Example 132, Bnt ∼ Bin
(
nt, 1

n

) d−→ Pois(t) converges to the Poisson distribution. Meanwhile, the

time E of the first success converges to a continuous random variable 1
nGeo

(
1
n

) d−→ Exp, the exponential distribution,
which has density

fE(t) = 1{t ≥ 0}e−t

(we can prove this with characteristic functions or direct calculations). The time of the r th success then also converges

to G1+···+Gr
n ∼ 1

nNegBin
(
r, 1
n

) d−→ E1 + · · ·+Er , where the Ei are iid exponential. This is the exponential law convolved

with itself r times, which gives us the Gamma distribution Gamma(r). The gamma density is good to remember,

and it can be derived by taking the limit of the negative binomial distribution:

P
(
NegBin(r, 1/n)

n

)
∈ [z, z + dz ] =

(
nz − 1

r − 1

)(
1−

1

n

)nz−r (
1

n

)r
(n dz) =

(nz − 1)r−1

(r − 1)!nr

(
1−

1

n

)nz−r
(ndz).

If we now fix r and z and take n →∞, we find that

P
(
NegBin(r, 1/n)

n

)
∈ [z, z + dz ] =

z r−1e−z

(r − 1)!
dz =⇒ fE1+···+Er (t) = 1{t ≥ 0}

tr−1e−t

(t − 1)!
.

For general real numbers α > 0 (not necessarily an integer), the Gamma(α) distribution similarly has density 1{t ≥
0} tα−1e−t

Γ(α) , where Γ(α) is the normalizing constant. (In particular, Γ is a generalization of the factorial, because

Γ(r) = (r − 1)! for positive integer r .) And the Gamma distribution will approach a Gaussian if the amount of time

passed is large relative to our sampling rate – in other words, we converge to a Gaussian as α→∞.

Fact 135

We showed in Example 131 that the number of cycles Sn of a random permutation of [n] satisfies Sn−log n√
log n

d−→
N(0, 1). If we let Cn,k be the number of cycles in π of length k , then it turns out that the tuple (Cn,1, Cn,2, · · · , Cn,n)

converges in distribution to (Yk)k≥1, where Yk ∼ Pois( 1
k ). The proof is a tiny bit outside the scope of what we’ve

done so far, and we can see Arratia and Tavaré’s paper [3] for more details. (The main idea is that a large number

of trials for a rare event is approximately Poisson, and the events that two different vertices are both in cycles

of length k are close to independent.) For now, we can at least check the expectations E[Cn,k ] = 1
k , because

there are (combinatorially) (n)k
k possible cycles of length k , and each one occurs with probability 1

(n)k
(this can be

checked by exploring the cycle one element at a time).

With the remaining time in this lecture, we’ll discuss some weak convergence concepts, with a reminder of what

results and proofs we should know for this class in general. For what follows, let S be a complete separable metric

space (that is, a Polish space) with Borel sigma-algebra B. The space of probability measures P on S is then also a

Polish space. This next result gives us useful alternative characterizations of weak convergence:
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Theorem 136 (Portmanteau theorem)

Let µn be a sequence of probability measures. Then the following are equivalent:

• µn =⇒ µ.

•
∫
f dµn →

∫
f dµ for all bounded uniformly continuous f .

• lim supµn(F ) ≤ µ(F ) for all closed F ⊆ S.

• lim inf µn(G) ≥ µ(G) for all open G ⊆ S.

• limµn(A) = µ(A) for all A with µ(∂A) = 0.

There is also a way to convert weak convergence of measures into a statement about convergence of random

variables:

Theorem 137 (Skorohod)

If µn =⇒ µ, then there exists a probability space (Ω,F ,P) and measurable mappings Xn, X : Ω→ S such that

LXn = µn,LX = µ, and Xn converges to X almost surely under P.

We should know the statements of these proofs and of Prohorov’s theorem (Theorem 122), and we should know

a bit more when we’re looking at the special case under the real line (S = R). Let’s do a bit of review for that: if

we have a set of measures on the real line, then each µn can be represented by its Fn, and µ can be represented with

its cdf F . We then say that Fn =⇒ F if Fn(x) → F (x) at all points of continuity of F – the portmanteau theorem

then implies that µn =⇒ µ if and only if Fn =⇒ F . From there, tightness in R is easy to characterize, because the

definition is equivalent to requiring that for any ε > 0, infn{Fn(x) − Fn(−x)} ≥ 1 − ε for some sufficiently large x .

So showing Prohorov’s theorem for R means that we just need to extract subsequences for our Fns which don’t have

mass escaping from the side, which follows by a diagonalization argument (the Helly selection theorem).

Skorohod’s theorem is somewhat abstract in general, but (just like Prohorov’s theorem) it’s simpler over R, and it

can also be very useful:

Proof of Theorem 137 for S = R. Represent µ with its cdf F – first suppose that F is one-to-one. In this case, let U

be uniform on [0, 1]; we claim that F−1(U) ∼ µ. Indeed, for any x ∈ R, we have

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)

(where the first equality comes from F being monotone and one-to-one, and the second comes from F (x) being

between 0 and 1). More generally, if F is not one-to-one, define the function X(u) = inf{y : F (y) ≥ u} in place

of F−1(u). Then notice that we have X(u) ≤ x if and only if F (x) ≥ u – the reverse direction is clear, and for the

forward direction, X(u) ≤ x implies that there are y < x + ε such that F (y) ≥ u for all ε > 0, so F (x) ≥ u by

right-continuity of F . Thus we again have

P(X(U) ≤ x) = P(F (x) ≥ U) = F (x).

Basically, given any cdf F , we can define a “rough inverse” of it using this mapping X, so we can construct the desired

random variables as follows. Let the probability space (Ω,F ,P) be ([0, 1],B,Leb), and define the random variables

X,Xn : Ω→ R via

X(ω) = inf{x : F (x) ≥ ω}, Xn(ω) = inf{x : Fn(x) ≥ ω}.
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Weak convergence then implies that Fn converges to F pointwise where F is discontinuous (which only happens at

countably many points because F is monotone) points of discontinuity. So for all ω where X is continuous, Xn
converges to X. (Here’s one way to show that: if X is continuous at X(ω) = x , then for all ε > 0 there is some δ > 0

such that for all ω′ ∈ (ω− 3δ, ω + 3δ), X(ω′) ∈ (x − ε
2 , x + ε

2 ). Picking some ε′ ∈ ( ε2 , ε) such that F is continuous at

both x − ε′ and x + ε′, we must have F (x − ε′) < ω − 2δ and F (x + ε′) > ω + 2δ (by definition of X and that F is

monotone). Because Fn converges to F pointwise at x ± ε′, for all sufficiently large n we thus have Fn(x − ε′) < ω− δ
and Fn(x + ε′) > ω + δ, meaning Xn(ω) ∈ (x − ε, x + ε) because ε′ < ε. Taking ε → 0 shows the result.) Since X

itself is also monotone, the discontinuity points are of measure zero, and thus Xn converges to X almost surely. Since

we’ve already shown that the laws of Xn and X are µn and µ respectively, we’ve proven the desired result.

(The proof of Skorohod’s theorem in general is kind of related to what we’ve done here, but it is more complicated

because we don’t have the simple mapping using F anymore.)

16 November 4, 2019
Class started with another attendance quiz today:

Problem 138

Let X,Xi be iid exponential random variables of density 1{x > 0}e−xdx . Find a sequence bn and a random

variable Y such that (max1≤i≤n Xi)− bn
d−→ Y .

Solution. We can write the distribution function for the maximum of independent random variables in terms of the

distribution functions of the individual variables: specifically,

P
(

max
1≤i≤n

Xi ≤ t
)

= P(X ≤ t)n = (1− e−t)n.

Substituting in t = log n + x to eliminate the dependence of n on the right-hand side, we have

P
(

max
1≤i≤n

Xi ≤ log n + x

)
= (1− exp(−(log n + x)))n ,

which converges to exp(−e−x) as n → ∞. Thus, we can take bn = log n , and Y = maxXi − bn converges in

distribution to a random variable Y with distribution function P(Y ≤ y) = e−e
−y

, which is called the Gumbel distri-
bution.

Remark 139. The terms convergence in law and weakly convergent mean the same thing.

The problem above is an example of an extreme value statistic, where we want to study the largest of a bunch

of samples. Let’s do another example of this type:

Example 140

Let Z,Zi ∼ N(0, 1) be standard Gaussians with density g(t) = 1√
2π

exp
(
− z2

dz

)
dz . We wish to study the

distribution of max(Z1, · · · , Zn).
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Solution. To use a similar strategy as the previous problem, we need to similarly study P(Z ≤ x) but for a standard

Gaussian. This time, the function

Ψ(x) = P(Z ≥ x) =

∫ ∞
x

1√
2π

exp

(
−
z2

2

)
dz

has no closed form expression, but we can get a nice lower bound for it when x is large:

Ψ(x) ≤
E(Z;Z ≥ x)

x
=

1√
2πx

∫ ∞
x

z exp

(
−
z2

2

)
dz,

which we can integrate with a u-substitution u = − z2

2 to find that Ψ(x) ≤
1√
2πx

exp

(
−
x2

2

)
=
g(x)

x
. This is only

an upper bound, and it’s not very useful for small x . But we can show that it’s a pretty tight bound for large x – write

√
2πΨ(x) =

∫ ∞
x

1

z
· −z exp

(
−
z2

2

)
dz,

and now integrate by parts (with u = 1
z and dv = −z exp

(
− z2

2

)
) to simplify to

√
2πΨ(x) = −

1

z
exp

(
−
z2

2

)∣∣∣∣∞
x

−
∫ ∞
x

1

z2
exp

(
−
z2

2

)
dz.

The first term evaluates to 1
x exp

(
− x2

2

)
, and the second can be integrated again by parts – letting u = 1

z3 and

dv = z exp
(
− z2

2

)
, we have

√
2πΨ(x) =

1

x
exp

(
−
x2

2

)
−
[
−

1

z3
exp

(
−
z2

2

)]∞
x

+

∫ ∞
x

3

z4
exp

(
−
z2

2

)
dz.

We want a lower bound, so we can toss the last term because the integrand is always positive. We thus get the bound

√
2πΨ(x) ≥

1

x
exp

(
−
x2

2

)
−

1

x3
exp

(
−
x2

2

)
=⇒ Ψ(x) ≥

g(x)

x

(
1−

1

x2

)
.

This implies that for x large and for some t ∈ R with |t| � x , we have the ratio

Ψ(x + t)

Ψ(x)
∼

1√
2π(x+t)

exp
(
− (x+t)2

2

)
1√
2πx

exp
(
− x2

2

) ∼ exp

(
−xt −

t2

2

)
,

and the leading order behavior is proportional to e−tx – more specifically, we can change variables t 7→ t
x to get

lim
x→∞

Ψ
(
x + t

x

)
Ψ(x)

= exp(−t).

With this, we can go back to our original question: we have Zis that are iid standard Gaussians, and we want to

understand the distribution of Mn = maxZi . Just like in Problem 138,

P(Mn ≤ x) = (1−Ψ(x))n ,

and we want to pick Ψ(x) to be approximately 1
n to again get rid of the n-dependence. So choose x = bn such that

this is true (this is a deterministic real number for each n, because Ψ is monotone). We then have, as bn →∞,

P
(
Mn ≤ bn +

t

bn

)
=

(
1−Ψ

(
bn +

t

bn

))n
=

(
1−

e−t

n
(1− on(1))

)n
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by our calculation above, and just like before this converges to e−e
−t

as n →∞! So the only difference from last time

is that our variables need to be rescaled: (
max

1≤i≤n
Zi − bn

)
bn

d−→ Gumbel .

Remark 141. Not all random variables behave in this way – the result depends on the tail behavior of the distribution

for X – but there is a large class of variables for which we get convergence to the Gumbel distribution. (And that’s

why Gumbel is an extreme value statistic.)

We can also say a bit more about the values of bn we are picking for the standard Gaussian – if we want Ψ(bn) = 1
n ,

then the rough behavior we’re looking for is that

1

n
=
g(bn)

bn
=

1√
2πbn

exp

(
−
b2
n

2

)
.

Based on just this equation, it looks like we want b2
n = 2 log n + (lower order terms) – the next correction should

account for the bn in the numerator. Taking logs on both sides of the preivous equation, we find that

b2
n

2
= log n −

1

2
log log n +O(1) =⇒ bn =

√
2 log n

(
1−

log log n +O(1)

4 log n

)
.

And the estimate of Ψ(bn) ≈ g(bn)
bn

is good enough, because adjusting by the factor of
(

1− 1
b2
n

)
only changes bn by a

multiplicative factor of
(

1− O(1)
log n

)
.

We’ll do some more examples of weak convergence on our homework – it’s useful in general to be able to show

convergence of a sequence of random variables, so there will definitely be something about that on our next exam.

But for now, we’ll move on and spend a bit of time talking about weak convergence on Rd . (We should also read

section 3.10 in the textbook, but we’ll go over some of the main points here.)

Definition 142

Let µ be a probability measure on Rd . The generalized cdf of µ is defined by F (x) = µ
(∏d

i=1(−∞, xi ]
)
for

x = (x1, · · · , xd) ∈ Rd , and the characteristic function of µ is defined by χµ(t) =
∫

exp (i〈t, x〉) dµ(x) for

t ∈ Rd .

We showed on our homework that F is monotone and right-continuous, and we also found that the measure of

any d-dimensional rectangle can be found by an inclusion-exclusion argument as

µ

(
d∏
i=1

(ai , bi ]

)
=
∑
v∈V

(−1){#i :vi=ai}F (v),

where V is the set of vertices {a1, b1} × · · · × {ad , bd}. Then it turns out that µn =⇒ µ (with the general definition

from Definition 114) if and only if Fn converges weakly to F , meaning that Fn(x) → F (x) for all x where F is

continuous. And for the characteristic function, notice that the integrand still takes values on the unit circle, so χµ(t)

still takes values inside the unit disk. We do have a Fourier inversion theorem in higher dimensions as well, but it’s

easier to state if we assume the boundary has zero measure:
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Theorem 143 (Fourier inversion for probability measures on Rd)
Let µ be a probability measure on Rd , and suppose we have A =

∏d
i=1[ai , bi ] with µ(∂A) = 0. Then

µ(A) = lim
T→∞

∫
[−T,T ]d

φµ(t)

d∏
j=1

(
e−itjaj − e−itjbj

2πitj

)
dt.

So again knowing φ determines µ even in higher dimensions (because we can find a dense set of reals to pick

our endpoints ai , bi from such that µ(∂A) is always zero). With this, the one-dimensional continuity theorem also

generalizes directly with a similar proof (showing tightness):

Theorem 144 (Continuity theorem in higher dimensions)

Let µn be probability measures on Rd with characteristic functions φn. Then

• If µn =⇒ µ, then φn converge pointwise to φµ.

• If φn converge pointwise to φ and φ is continuous at t = 0, then φ is the characteristic function of some µ

and µn =⇒ µ.

Next, we can relate convergence in distribution in higher dimensions to that in one dimension:

Theorem 145 (Cramér–Wold)

If Xn, X are Rd -valued random variables, then Xn
d−→ X if and only if the one-dimensional distributions converge,

meaning that 〈θ,Xn〉
d−→ 〈θ,X〉 for all θ ∈ Rd .

Proof. First suppose we know that 〈θ,Xn〉
d−→ 〈θ,X〉 for all θ. Because f (x) = e ix is a bounded continuous function,

we know that (applying the definition of convergence in distribution to the random variable 〈θ,Xn〉)

E[exp(i〈θ,Xn〉])]→ E[exp(i〈θ,X〉)].

But now treating θ as a free parameter, we see that the characteristic functions φn of Xn converge pointwise to the

characteristic function φ of X, and E[exp(i〈θ,X〉)] is continuous in θ (by the same argument as Proposition 106), so

by the continuity theorem we indeed have Xn
d−→ X, as desired.

Similarly for the other direction, suppose Xn
d−→ X. The distribution of 〈θ,Xn〉 on R is the pushforward measure

of µn under the mapping f (x) = 〈θ, x〉, so the change of variables formula tells us that the characteristic function of

〈θ,Xn〉 is
φ〈θ,Xn〉(t) =

∫
e itxd(µn ◦ f −1) =

∫
e it〈θ,Xn〉dµn.

But the right-hand side is the characteristic function of Xn evaluated at tθ, and we have pointwise convergence

χXn(tθ) → χX(tθ) for any t because Xn
d−→ X. Thus we also have pointwise convergence of the characteristic

functions φ〈θ,Xn〉 to that of φ〈θ,X〉, and thus 〈θ,Xn〉
d−→ 〈θ,X〉.
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Corollary 146 (Central limit theorem for iid sequences in Rd)
Let X,X(i) be iid Rd -valued random variables such that E(||X||2) is finite. Define themean vector and covariance
matrix of X as

µ = E[X] ∈ Rd , Σ = Cov(X) = E
[
(X − µ)(X − µ)T

]
∈ Rd×d .

(Unpacking the notation, Σ = Cov(X) is the d×d matrix with entries equal to the covariances Σi j = Cov(Xi , Xj)

between the different coordinates.) Then we have 1√
n

∑n
i=1 (Xi − µ)

d−→ N(~0,Σ) (that is, convergence to the

multivariate normal distribution).

Proof. Much like in previous proofs, we’re going to show that the characteristic functions converge, so let’s start by

figuring out the characteristic function for the multivariate Gaussian. Because Σ is a d×d positive semidefinite matrix,

it has a Cholesky decomposition Σ = AAT for some A ∈ Rd×k . Then having Y ∼ N(0,Σ) is equivalent to saying

that Y d
= AZ where Z is a standard multivariate Gaussian N(0, Ik×k) (by plugging into the definition of the covariance

matrix). We thus find that the characteristic function for Y is

φΣ(θ) = E [exp(i〈θ, Y 〉)] = E [exp(i〈θ, AZ〉)] = E
[
exp

(
i〈AT θ, Z〉

)]
.

But by definition, we know that Z = (Z1, Z2, · · · , Zk) with all entries iid standard Gaussian, so the above expression

simplifies to (here using that c1Z1 + · · ·+ckZk has the same distribution as
√
c2

1 + · · ·+ c2
kZ
′ for a standard Gaussian

Z′ and that the characteristic function for the standard Gaussian is E[e itZ
′
] = e−t

2/2)

exp

(
−
||AT θ||2

2

)
= exp

(
−

1

2
(θTAAT θ)

)
= exp

(
−
〈θ,Σθ〉

2

)
.

Our goal is to show that the left-hand side’s characteristic function converges to this function φΣ(θ), meaning that it

suffices to show that for all θ ∈ Rd that

E

(
exp

(
i

〈
θ,

1√
n

n∑
i=1

(Xi − µ)

〉))
?−→ φΣ(θ).

But we know by the one-dimensional central limit theorem that

1√
n

n∑
i=1

〈θ,Xi − µ〉
d−→ N(0,Var(〈θ,X〉)) = N(0, 〈θ,Σθ〉)

(the last equality can be verified by expanding out the formula for variance). Thus we can take the characterstic

functions of those variables and find that for any fixed θ,

E

(
exp

(
i

1√
n

∑
i

〈θ,Xi − µ〉

))
→ exp

(
−
〈θ,Σθ〉

2

)
,

and thus we have convergence of the characteristic functions and therefore convergence to the desired distribution.

This concludes the content that we’re covering from chapter 3 of Durrett, and now we’re going to move on to our

next topic, martingales and conditional expectation. We’ll start with a motivating discussion:
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Definition 147

Suppose we’re on a probability space (Ω,F ,P), and suppose we have two events A,B ∈ F such that P(A) > 0.

Then we can define the conditional probability P(B|A) = P(A∩B)
P(A) . (In particular, P(B|A) = P(B) if A,B are

independent.) If P(A) > 0 and X ∈ L1 is an integrable random variable, we can also define the conditional
expectation E(X|A) = E(X;A)

P(A) .

Next, suppose X, Y are both random variables on (Ω,F ,P). For any y ∈ Ω with P(Y = y) > 0, we can define

g(y) = E[X|Y = y ] = E[X;Y =y ]
P(Y =y) . Then if Y satisfies P(Y = y) > 0 for all y ∈ supp LY , then we can define the

conditional expectation (random variable) E[X|Y ] = g(Y ).

Because of the division by P(A) and P(Y = y) above, it doesn’t directly make sense to condition on events of

probability zero. However, there are often situations where we do want to condition on an event of that sort. For

example, suppose we have random variables distributed as(
X

Y

)
∼ N(0,Σ) = N

((
0

0

)
,

(
σ11 σ12

σ21 σ22

))
,

where det Σ > 0. In general, a Gaussian of the form N(0,Σ = AAT ) doesn’t have a density on Rd unless A is actually

an invertible d ×d matrix. But if we assume that det Σ > 0 for the matrix above, then L(X,Y ) will be a measure on R2

with some density gΣ (the details can be worked out using a calculus argument). But the point is that even though

the probability that Y takes on any particular value is zero, we would still like to be able to say that

E[X|Y = y ] =

∫
xgΣ(x, y)dx∫
gΣ(x, y)dx

.

So the ordinary notion of conditioning from an introductory probability class isn’t quite enough, and we’ll discuss this

more next time!

17 November 6, 2019

Our second midterm exam will be of similar difficulty to the first one (and weighted equally). To give us more time to

finish the exam, it will be scheduled between 5–9pm on December 4th, depending on our availability.

Today, we’ll discuss conditional expectation and martingales. Recall that if X is a random variable on (Ω,F ,P) and

E|X| <∞, then we can define E[X|A] = E[X;A]
P(A) for any event A with positive probability. In particular, if Y is another

random variable with P(Y = y) positive, we can condition on the event Y = y and write E[X|Y = y ] = E[X;Y =y ]
P(Y =y) .

However, this doesn’t really work as generally as we’d like, because we want to define P(X|Y ) even when P(Y = y) = 0,

particularly when Y is completely nonatomic. So the key idea is that it doesn’t make sense to condition on events of

measure zero, so we shouldn’t think about individual events {Y = y}. Instead, we should think about Y as a whole

and try to define E[X|Y ] as a random variable. This random variable should be σ(Y )-measurable (because it should

depend only on the value of Y ), and it should satisfy the key property that

E[E[X|Y ]h(Y )] = E[Xh(Y )]

for a function h, as long as both sides are well-defined. Let’s formalize this now:
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Definition 148

Suppose X is a random variable on (Ω,F ,P) with E[|X|] <∞, and let G be a sub-σ-algebra of F . We say that Y

is a version of E[X|G] if Y ∈ G (that is, Y is measurable with respect to G) and E[X;A] = E[Y ;A] for all A ∈ G.

It’s an exercise for us to reconcile this definition with the “conditional probability” that we learned in introductory

probability. We need to show that this random variable Y actually exists and that it’s unique in some way. Also, the

notation suggests that Y should be integrable, so we should check that as well. But eventually, we will use this to

define conditional expectation via E(X|Y ) = E(X|σ(Y )).

Lemma 149 (Integrability)

If Y is a version of E[X|G], then E[|Y |] ≤ E[|X|] <∞ (so Y is integrable).

Proof. Because Y is G-measurable, {Y > 0} is in G, meaning that E[Y+] = E[Y ; Y > 0] = E[X; Y > 0]. Similarly,

E[Y−] = E[−Y ; Y < 0] = E[−X; Y < 0]. So now

E[|Y |] = E[Y+] + E[Y−] = E[X; Y > 0] + E[−X; Y < 0] ≤ E[|X|; Y > 0] + E[|X|; Y < 0] ≤ E[|X|],

as desired.

Lemma 150 (Uniqueness)

If Y and Y ′ are both versions of E[X|G], then Y = Y ′ almost surely.

Proof. By definition, both random variables are G-measurable, so define the event Aε = {Y − Y ′ ≥ ε} (which is also

G-measurable) for any ε > 0. We have that

0 = E[Y ;Aε]− E[Y ′;Aε] = E[Y − Y ′;Aε] ≥ εP(Aε),

so P(Aε) = 0. Taking ε → 0, we conclude that Y ≤ Y ′ almost surely, and flipping the roles of Y and Y ′ shows that

Y ′ ≤ Y almost surely as well. Thus Y = Y ′ almost surely.

Definition 151

Let µ and ν be measures on (Ω,F). We say that ν is absolutely continuous with respect to µ (denoted ν � µ)

if for all A ∈ F with µ(A) = 0, we also have ν(A) = 0.

Theorem 152 (Radon-Nikodym)

Suppose µ, ν are σ-finite measures on (Ω,F) with ν � µ. Then there is an F-measurable function f such that

ν(A) =
∫
A f dµ for all A ∈ F . (The function f is often written as dν

dµ).

This result basically says that if ν is absolutely continuous respect to µ, then ν has a density with respect to µ.

Recall that we had a similar situation in the proof of Cramér’s theorem, in which we had an exponential tilting with
dPθ
dP = exp(θX)

m(θ) (here Pθ was absolutely continuous with respect to P).
We won’t prove Radon-Nikodym right now, but we will return to it later in the course (see Theorem 215). For

now, we will use it to show existence of the conditional expectation.
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Proof of existence of conditional expectation. As in the definition, let X be an integrable random variable on (Ω,F ,P),

and let G be a sub-σ-algebra of F . Then the restriction of P to G, which we write as µ = P|G is a probability measure

on (Ω,G). We can now define a measure ν on (Ω,G) by setting

ν(A) = E (X+;A) for all A ∈ G.

This is a finite measure, because ν (Ω) = E[X+] < ∞ by assumption. Also, ν is absolutely continuous with respect

to µ, because if A is an event of probability zero, then E(X+;A) = 0. Thus the Radon-Nikodym theorem tells us that

there is a G-measurable function Y = dν
dµ such that ν(A) =

∫
A Y dµ for all A ∈ G.

But now notice that the left-hand side is ν(A) = E[X+;A], and the right hand side is
∫
A Y dµ = E[Y ;A]. Thus,

Y is a version of E[X+|G]. Similarly constructing a version of E[X−|G] and then subtracting the two random variables

gives us the desired conditional expectation.

We should read the textbook for some basic properties of the conditional expectation – in particular, it’s linear and

monotone, it satisfies a version of Jensen’s inequality, and so on. But there’s a few properties that are important to

know which are not analogous to the ordinary expectation:

Proposition 153

Let Gsmall be a sub-σ-algebra of G (which is a sub-σ-algebra of F). If E[X|G] ∈ Gsmall, then E[X|G] = E[X|Gsmall].

Proof. Let Y = E[X|G]; we wish to show that Y is a version of E[X|Gsmall]. By assumption, Y is measurable with

respect to Gsmall, so the first condition is satisfied. Also, E[Y ;A] = E[X;A] for any A ∈ G by definition of Y , so in

particular it holds for all A ∈ Gsmall, verifying the second condition.

Proposition 154 (Tower property)

Suppose we have sub-σ-algebras Gsmall ⊆ G ⊆ F as before. Then

E[E[X|Gsmall]|G] = E[X|Gsmall] = E[E[X|G]|Gsmall].

Proof. The proof is very similar to the one above. For the first equality, let Y = E[X|Gsmall]; we wish to show that Y

is a version of E[Y |G]. Indeed, it is measurable with respect to Gsmall and thus G, and the other condition is asking

us to show that E[Y ;A] = E[Y ;A] for A ∈ G, which is true. For the second equality, define Z = E[X|G]; we wish to

show that Y is a version of E[Z|Gsmall]. Again Y is measurable with respect to Gsmall, and the other condition asks us

to show that E[Y ;A] = E[Z;A] for any A ∈ Gsmall, which is true because both of these are equal to E[X;A] by the

definitions of Y and Z.

Proposition 155

Let X and Y be random variables such that E[|Y |] and E[|XY |] are finite and X ∈ G. Then

E[XY |G] = XE[Y |G].

In other words, because X is a known constant with respect to G, we can pull it out of the conditional expectation.

Proof. First, we show that the equality holds if X = 1B for some B ∈ G, and we’ll do this by showing that the right-

hand side is a version of E[XY |G]. It’s measurable because both X and E[Y |G] are G-measurable, and the product of
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two measurable functions is also measurable. For the other condition, we must check that E[XY ;A] = E[XE[Y |G];A]

for all A ∈ G, and this is true because

E[XY ;A] = E[1BY ;A] = E[Y ;A ∩ B] = E[E[Y |G];A ∩ B]

(in the last step we use that A ∩ B ∈ G because A,B ∈ G), which simplifies to E[1BE[Y |G];A] = E[XE[Y |G];A] , as

desired. Finally, by linearity of conditional expectation, this identity then holds for simple functions and thus general

measurable functions.

One last note is that we can sometimes interpret conditional expectation as an orthogonal projection. To set

that up, notice that if G ⊆ F , then the space of random variables L2(G) is a subspace of L2(F).

Proposition 156

For any random variable X ∈ L2(F), the conditional expectation E[X|G] is an orthogonal projection of X onto

L2(G).

Proof. First of all, conditional Jensen’s inequality tells us that E[E[X|G]2] ≤ E[E[X2|G]] = E[X2] (which is finite

because X ∈ L2(F)), so E[X|G] is integrable and thus indeed in L2(G). To show orthogonality, we need to show that

the difference between X and E(X|G) is orthogonal to any element of L2(G). In other words, we must show that

for any Z ∈ L2(G), we have E[Z(X − E[X|G])] = 0. By linearity of expectation, we can write the left-hand side as

E[XZ] − E[ZE[X|G]]. But since Z ∈ L2(G) is G-measurable, we have by Proposition 155 and then Proposition 154

that

E[XZ]− E[ZE[X|G]] = E[XZ]− E[E[XZ|G]] = E[XZ]− E[XZ] = 0,

since an ordinary expectation is like conditioning on the trivial σ-algebra.

There’s one special topic in our textbook about regular probability distributions, which we’ll skip for now. Instead,

we’ll move on tomartingales, which is a topic with many interesting applications. Throughout the following discussion,

we’re working on a probability space (Ω,F ,P).

Definition 157

A filtration is a sequence (Fn)n≥0 of σ-fields such that F0 ⊆ F1 ⊆ · · · ⊆ F . A sequence of random variables

(Xn)n≥0 on (Ω,F ,P) is adapted to a filtration (Fn)n≥0 if Xn ∈ Fn for all n. The natural filtration of the

sequence (Xn) is defined by setting Fn = σ(X1, · · · , Xn).

(Notice that the definition of a filtration doesn’t involve any probability – it’s just a statement about families of

sets.) In words, we “gradually reveal more information” at each step in a filtration.

Definition 158

Let F0 ⊆ F1 ⊆ · · · be a filtration on (Ω,F ,P). We say that (Xn)n≥0 is a martingale with respect to Fn if Xn
is adapted to Fn, E[|Xn|] < ∞ for all n (though we do not need to have a uniform bound across all n), and

E[Xn+1|Fn] = Xn.

In other words, given everything we know about the random variables up to the nth step, the next step’s expected

value is equal to the current value.
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Definition 159

In the last part of the definition above, (Xn)n≥0 is a supermartingale if we only have E[Xn+1|Fn] ≤ Xn, and

(Xn)n≥0 is a submartingale if we only have E[Xn+1|Fn] ≥ Xn.

(For notational convenience from here on, we will write that Xn is a martingale instead of (Xn).)

Example 160

Let Xn be a simple random walk on Z, meaning that we start at X0 = 0 and define Xn =
∑n

i=1 Yi , where Yi are iid

and are each 1 or −1 with probability 1
2 each. This sequence of random variables is a martingale, because each step

has probability 1
2 of adding 1 to Xn and probability 1

2 of subtracting 1 (so E[Xn+1|Fn] = 1
2 (Xn+1)+ 1

2 (Xn−1) = Xn.

The first observation we can make about martingales in general is that

E[Xn] = E [E[Xn|Fn−1]] = E[Xn−1],

where we’ve applied the tower property (Proposition 154) and then the martingale property. Applying this iteratively

tells us that

E[Xn] = E[Xn−1] = · · · = E[X0].

But we’ll now show that we also have E[X0] = E[Xτ ] for certain random times τ , and this will have many applications.

Definition 161

Let τ be a nonnegative integer-valued random variable. We say that τ is a stopping time with respect to a

filtration (Fn)n≥0 if {τ = n} ∈ Fn for all n.

The intuitive reason for the name “stopping time” is that we can think of a martingale as modeling our wealth

in a stock market, and we can only choose to stop our random process at time n (and hence deciding that we’re in

the event {τ = n}) based on the information that what we already know so far (which is the σ-algebra Fn). The

statement E[X0] = E[Xτ ] is then saying that we “cannot make money off of the stock market,” but things aren’t quite

so simple:

Example 162

Continuing our example from above, let Xn be a simple random walk on Z started at X0 = 0, and define

τ = inf{n : Xn = 1}.

Then τ is a valid stopping time, because it’s a nonnegative integer-valued random variable, it’s finite almost surely

(exercise), and at time n the event {τ = n} is measurable with respect to what we already know (it’s the same

as the event Xn = 1). But notice that 0 = E[X0] 6= E[Xτ ] = 1.

On the other hand, it does make sense to expect that E[X0] = E[Xτ ]. The key observation is that if Xn is a

martingale and τ is a stopping time, then the stopped process defined by

Yn = Xn∧τ , where n ∧ τ = min(n, τ),
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is also a martingale. Indeed, Yn = Xn unless we have “already stopped” (meaning τ < n), so we can write

Yn =

n−1∑
i=1

(1{τ = i}Xi) + 1{τ ≥ n}Xn.

We can check that Yn is integrable for any n (exercise). From there, notice that the first sum is measurable with

respect to Fn−1, and 1{τ ≥ n} = 1−
∑n−1

i=0 1{τ = i} is also in Fn−1. So conditioning the equation in Fn−1, we get

E[Yn|Fn−1] =

n−1∑
i=1

1{τ = i}Xi + 1{τ ≥ n}E[Xn|Fn−1].

But now by the martingale property of X, the conditional expectation on the right is Xn−1, so the entire right-hand

side reduces to Yn−1 and the stopped process is also a martingale! In particular, the earlier calculation shows that

E[Y0] = E[Y1] = E[Y2] = · · · , meaning that

E[Yn] = E[Y0] =⇒ E[X0] = E[Xn∧τ ].

But n ∧ τ → τ almost surely (in other words, because τ is finite almost surely, there is some n(ω) such that

τ(ω) ∧ n = τ(ω) for all sufficiently large n ≥ n(ω)). This means that Xn∧τ converges to Xτ almost surely, so

it’s reasonable to expect that with sufficient integrability conditions, we also have convergence of expectation and

thus E[X0] = E[Xτ ]. So a large part of this section of the class is figuring out conditions under which we have

E[Xn∧τ ]→ E[Xτ ]. We’ll continue this discusion next time, but for now we’ll describe a nice application:

Example 163

Let G = (V, E) be a finite connected graph, and let Z ⊆ V be its “boundary.” Let f : Z → R be a function (a

“boundary condition,”), and suppose we perform a simple random walk on the graph G stopped at the boundary

(meaning that we travel along the edges and always move to a random neighbor of v at each step). Let τ be the

first time we hit the boundary Z, and define

Mn = E[f (Xτ )|Fn],

where Fn is the filtration σ(X0, · · · , Xn) of the walk. Then Mn is a martingale (exercise), and its value depends

only on the current position Xn. It turns out that Mn = h(Xn) is the harmonic interpolation of f (which has the

property that the value at a vertex of the graph is the average of the neighboring values). And as an extension, if

we replace “harmonic function” with “subharmonic function” in Mn = h(Xn), then we’ll get a submartingale instead

of a martingale.

18 November 13, 2019
Last time, we defined martingales: given a filtration on a probability space, which is a nested sequence of σ-fields

F0 ⊆ F1 ⊆ · · · ⊆ F , a martingale is a sequence of integrable random variables (Xn)n≥0 where Xn ∈ Fn (the sequence
is adapted to the filtration), and the martingale property E[Xn+1|Fn] = Xn is satisfied. (If we replace these conditions

with an inequality ≥ or ≤, we get a submartingale or supermartingale, respectively.)

Remark 164. Last time, we showed that E[X0] = E[X1] = · · · for a martingale. By extension, if Xn is a submartingale,

then EX0 ≤ EX1 ≤ · · · , and we have the reverse inequality for a supermartingale.
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We’ll prove some martingale convergence theorems today, but we’ll start with some preliminary facts:

Lemma 165

Let Xn be a martingale, and let φ be a convex function such that φ(Xn) ∈ L1 for all n. Then φ(Xn) is a

submartingale.

As we’ll see in the proof, we can replace “convex” with “concave” and we’ll get a supermartingale instead.

Proof. Convex functions are measurable and Xn ∈ Fn, so φ(Xn) will be measurable with respect to Fn. Thus, it

suffices to check the submartingale condition, and indeed by conditional Jensen’s inequality we have

E[φ(Xn+1)|Fn] ≥ φ(E[Xn+1|Fn]) = φ(Xn),

as desired.

We can also generalize this to submartingales:

Lemma 166

Let Xn be a submartingale, and let φ be a nondecreasing convex function such that φ(Xn) ∈ L1 for all n. Then

φ(Xn) is a submartingale.

(Again, it is valid to replace “submartingale” and ”convex” with “supermartingale” and “concave,” respectively.)

Proof. This is almost identical to the previous proof – again φ(Xn) is measurable with respect to Fn, and we need to

check the submartingale condition again. This time, we have

E[φ(Xn+1)|Fn] ≥ φ[E(Xn+1|Fn)] ≥ φ(Xn),

where we’ve used conditional Jensen’s in the first equality and both the submartingale condition and φ being nonde-

creasing in the second equality.

Definition 167

A sequence of random variables (Hn)n≥0 is predictable (also previsible) with respect to a filtration (Fn) if

Hn ∈ Fn−1 for all n. If X = (Xn) is another sequence of random variables, then the H-transform of X is defined

via (H ·X)n =
∑n

k=1Hk(Xk −Xk−1).

To understand this definition, suppose we play a betting game, where at each positive integer time k betting 1

dollar means that we make net winnings of ∆Xk = Xk −Xk−1 dollars (meaning that we win 1 + ∆Xk dollars from the

game). Betting exactly one dollar at each time gives us net winnings of
∑n

k=1 ∆Xk = Xn−X0 (by a telescoping sum),

but more generally we can choose to bet different amounts of money each time. If we instead bet Hk dollars at time

k , we do indeed make net winnings of (H ·X)n at time n.

The reason that we require Hn ∈ Fn−1 is then because the amount we bet at time n should not depend on what

we win at time n, only what has happened up to time (n− 1) (this also motivates the name “previsible”). And if we’re

in a situation where E[∆Xk |Fk−1] ≤ 0 for all k (because casinos tend to make the player lose in expectation), then

(H ·X)n will be a supermartingale.
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Example 168

Recall that a stopping time τ is a nonegative integer-valued random variable with {τ = n} ∈ Fn for all n. If we

define Hn = 1{τ ≥ n} (in other words, betting only if τ didn’t happen yet), notice that Hn = 1 −
∑

`<n 1{τ =

`} ∈ Fn−1, so H is previsible. We can then check that (H ·X)n = Xn∧τ −X0.

Lemma 169

Let Xn be a submartingale, and let Hn be nonnegative and previsible. Suppose that Hn ∈ L∞ for all n, meaning that

each Hn is uniformly bounded by a (potentially different) constant almost surely. Then (H ·X)n is a submartingale

as well.

Again, the analogous statement holds replacing “submartingales” with “supermartingales.”

Proof. Let Yn = (H · X)n =
∑n

k=1Hk(Xk − Xk−1); we want to show that Yn is a submartingale. First of all, Yn is

integrable, because it’s the sum of finitely many terms which are each integrable (because each Hk is bounded by a

constant, and each Xk is integrable because X is a submartingale). Also, Yn ∈ Fn because all of the individual terms

are in Fn. So it suffices to show the submartingale condition, which can be written as

E[Yn+1|Fn]
?
≥ Yn ⇐⇒ E[Yn+1 − Yn|Fn]

?
≥ 0,

since E[Yn|Fn] = Yn because Yn is Fn-measurable. And this indeed holds: notice that

E[Yn+1 − Yn|Fn] = E[Hn+1(Xn+1 −Xn)|Fn] = Hn+1E[(Xn+1 −Xn)|Fn]

(where we use that Hn+1 is measurable with respect to Fn), and this conditional expectation is nonnegative because

Xn is a submartingale (and Hn+1 is nonnegative), as desired.

Corollary 170

If Xn is a submartingale and τ is a stopping time, then Yn = Xn∧τ is also a submartingale (because the stopped

process can be expressed as an H-transform by Example 168).

One goal of today’s class (which we should keep in mind) is to prove that any nonnegative supermartingale Xn
converges almost surely to some integrable limit X∞ with E[X∞] ≤ E[X0]. Because E[X0] ≥ E[X1] ≥ · · · for a
supermartingale, but all expectations are bounded from below by 0, this fact shouldn’t be too surprising. But the main

technical component of this proof is to show a bound on how often a submartingale can “go up,” which is equivalent

to a bound on how often supermartingales can go down.

Definition 171

Fix constants −∞ < a < b < ∞ and let Xn be a martingale. Define τ0 = −1, and for all positive integers k ,

define τ2k−1 = inf{n > τ2k−2 : Xn ≤ a} and τ2k = inf{n > τ2k−1 : Xn ≥ b}.

In other words, the τis are the times where Xn goes below a, then above b, then below a, and so on. (And if X

never goes below a, we have τ1 =∞.) By definition, we have τ0 < τ1 < τ2 < · · · , and we want to keep track of the

ranges (τ2k−1, τ2k ] – these are known as upcrossings because we’re going from a up to b. For any n, the number of

upcrossings Un(a, b) of [a, b] completed by time n is then Un(a, b) = sup{k : τ2k ≥ n}.
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Theorem 172 (Doob’s upcrossing inequality)

Let Xn be a submartingale. Then for any −∞ < a < b <∞,

E[Un(a, b)] ≤
E[(Xn − a)+ − (X0 − a)+]

b − a ≤
E[(Xn − a)+]

b − a .

Proof. Let Hn be the indicator variable for time n being inside an upcrossing (in other words, Hn = 1 if n ∈ (τ2k−1, τ2k ]

for some k). Equivalently, we may write

Hn =
∑
k≥1

1{n ∈ (τ2k−1, τ2k ]} =
∑
k≥1

1{n ≤ τ2k} − 1{n ≤ τ2k−1}

because the different upcrossings are disjoint. (If we’re worried about having an infinite sum, notice that we really only

need to sum up to n because there can’t be more than n upcrossings by time n.) But because each τi is a stopping

time, each indicator 1{n ≤ τi} is measurable with respect to Fn−1 (again by the same logic as Example 168), so Hn
is previsible. (Intuitively, we know at time (n − 1) whether we’re in an upcrossing at time n, because the upcrossing

interval includes τ2k .) Since Hn is bounded between 0 and 1 almost surely, we can also define Kn = 1−Hn, and then

Lemma 169 tells us that (H ·X)n and (K ·X)n are both submartingales.

The idea now is that betting during each upcrossing corresponds to an increase in X of (b − a), but there is a

minor problem: we may start an upcrossing and then have X become arbitrarily negative, which is bad for our bound.

So we will define

Yn = max(a,Xn) = a + (Xn − a)+,

which is also a submartingale by Lemma 166 because max(a, x) is a convex function. Lemma 169 still applies, so

(H · Y )n and (K · Y )n are both submartingales as well. Now notice that

(H · Y )n ≥ (b − a)Un(a, b),

because we can interpret this H-transform as “only betting during the upcrossings of Y ,” in which we win the increment

(b − a) from each upcrossing (because at the start of each upcrossing we have Xn ≤ a, so Yn = a, and at the end of

each upcrossing we have Xn ≥ b, so Yn ≥ b) and may even win an extra amount at the end. (Here is where using Y

instead of X is important – we wouldn’t necessarily know that the extra amount won is nonnegative with X.) Taking

expectations on both sides, we thus have

E[Un(a, b)] ≤
E[H · Y ]n
b − a ,

and we just want to upper bound this last quantity in terms of X. By definition, we know that

Yn − Y0 = (1 · Y )n = (H · Y )n + (K · Y )n,

and rearranging and taking expectations tells us that

E[(H · Y )n] = E[Yn − Y0 − (K · Y )n].

But Yn − Y0 = (Xn − a)+− (X0− a)+ by definition, and (K · Y )n is a submartingale started at zero, so E(K · Y )n ≥ 0.

Plugging both of these into the boxed expression gives us the desired result.

Intuitively, the key inequality here is that E[(K · Y )n] ≥ 0. In words, it’s hard to have many upcrossings because

it’s hard for the submartingale (K · Y )n (the amount of money we make betting outside of upcrossings) to be very
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negative.

Theorem 173 (Submartingale convergence theorem)

If Xn is a submartingale with supn E[(Xn)+] <∞, then Xn converges almost surely to some X∞ ∈ L1.

Proof. For any real numbers a, x ∈ R, we have (x − a)+ ≤ x+ + |a|, so Theorem 172 also tells us that

E[Un(a, b)] ≤
E[(Xn)+ + |a|]

b − a .

By assumption, E[(Xn)+] is uniformly bounded in n, so the right-hand side is some finite value and thus the ex-

pected number of upcrossings across [a, b] is uniformly bounded. By the bounded convergence theorem, the limit

limn→∞ Un(a, b) will be some random variable U∞(a, b) with finite expectation, and any random variable with finite

expectation is finite almost surely. This means that U∞(a, b) will be finite for all rational −∞ < a < b < ∞ almost

surely (by countable subadditivity). This means that our sequence X1, X2, · · · does not cross any rational interval

infinitely many times, so X∞ = limn→∞Xn indeed exists almost surely.

It remains to show that X∞ is finite almost surely and that it is integrable. By Fatou’s lemma (because (Xn)+

converges to (X∞)+), we have

E[(X∞)+] ≤ lim inf
n→∞

E[(Xn)+] <∞

(by assumption), so (X∞)+ does have finite expectation. Fatou’s lemma also tells us that E[(X∞)−] ≤ lim infn→∞ E[(Xn)−],

but we haven’t stated explicitly in our assumptions that this quantity is finite. However, we can write

lim inf
n→∞

E[(Xn)−] = lim inf
n→∞

E[(Xn)+ −Xn].

Now E[(Xn)+] is bounded, and because Xn is a submartingale we know that E[−Xn] ≤ E[−X0]. Thus we do indeed

have

E[(X∞)−] ≤ lim inf
n→∞

E[(Xn)−] ≤ lim inf
n→∞

E[(Xn)+]− E[X0] <∞.

So X∞ is in L1 because both its positive and negative parts have finite expectation, as desired (which also implies that

it is finite almost surely).

Theorem 174

If Xn is a nonnegative supermartingale, then it converges almost surely to some X∞ with E[X∞] ≤ E[X0].

Proof. Since Yn = −Xn is a submartingale, and (Yn)+ = 0 almost surely for all n (in particular, E[(Yn)+] is uniformly

bounded), the submartingale convergence theorem tells us that we have almost-sure convergence Yn → Y∞, so Xn
converges almost surely to X∞ = −Y∞ Since Xns are all nonnegative, so is X∞, and Fatou’s lemma then tells us that

E[X∞] ≤ lim inf
n→∞

E[Xn] ≤ E[X0],

where the last inequality comes from Xn being a supermartingale (so E[X0] ≥ E[X1] ≥ · · · ).

However, we should be careful – it is not true in general that we will have E[Xn]→ E[X∞]:
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Example 175

Let Xn be a simple random walk on Z, and let X0 = 1 and τ = inf{n ≥ 0 : Xn = 0}. Then Yn = Xn∧τ is a

nonnegative martingale (which is also a supermartingale), so it converges almost surely. Specifically, it converges

to Y∞ = Xτ = 0, so we have E[Y∞] = 0 but E[Yn] = 1 for any n.

To conclude the lecture, we’ll see an application of the convergence theorem:

Example 176 (Branching process)

Let Xn,i be an array of iid nonnegative integer random variables that have the same distribution as X. The law

of X is some probability measure p supported on the nonnegative integers called the offspring law. In a Galton-
Watson tree, we start with a root vertex which gets a random number of children (possibly zero) X1,1, which

form the first level of the tree. From there, the next level is formed by giving the first child X2,1 children, the

second child X2,2 children, and so on.

This tree may be finite or infinite, and the Galton-Watson process Zn is a summary of this tree, where Zn denotes

the number of vertices at level n. If we now define

Fn = σ (X`,i : i ≥ 1, 1 ≤ ` ≤ n) ,

then the process Zn is adapted to the filtration Fn (because we only need the Xn,is up to level n to determine the

number of children at level n). And in fact, Fn encodes more than just σ(Z0, Z1, · · · , Zn), because the Zis only tell

us the total population in each generation and not which parents they come from. One way to write this process more

mathematically is that

Z0 = 1, Zn =

Zn−1∑
i=1

Xn,i .

In particular, if Zn−1 = 0 (there is no population at level (n−1)), then Zn = 0 (all future populations are dead). More

generally,

E[Zn+1|Fn] = ZnE[X],

because each of the Zn children generate E[X] children on average. So this means that Zn
E[X]n is a nonnegative

martingale, and next time, we’ll use this fact to study what happens to the random tree as n gets large.

19 November 18, 2019

As a reminder, the next homework assignment is due on Wednesday (there are two extra problems from the original

assignment). Last time, we proved the submartingale convergence theorem: if E[Xn)+] is uniformly bounded, then

Xn converges almost surely to some finite random variable X∞. In particular, this implies that any nonnegative

supermartingale Xn converges almost surely to some integrable limit X∞. However, neither result implies that E[Xn]→
E[X∞] converges, and it is useful to know when that statement is true. For example, if Xn = Mn∧τ is a stopped process,

then we want to find conditions under which E[Mn∧τ ]→ E[Mτ ] (in particular, this would imply that E[Mτ ] = E[M0]).

So the main result we’ll be proving today is the Lp martingale convergence theorem, which states that if Xn is a

martingale with supn ||Xn||p <∞ for some 1 < p <∞, then Xn → X∞ almost surely and in Lp. It will turn out that

this also implies that Xn → X∞ in L1, so E[Xn] → E[X∞] (which is what we actually care about). And notably, this

result would not be true if we used p = 1 instead.
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Remark 177. Last lecture, we mentioned that many results that hold for submartingales also hold for supermartingales

(with reversed inequalities and assumptions, and thus with equality for martingales). This will hold for many of the

results we prove in the next few lectures, as we can see in the proofs.

Lemma 178 (Doob’s maximal inequality)

Let Xn be a submartingale, and define the nondecreasing process Xn = max {(Xi)+ : 0 ≤ i ≤ n}. Then for any

λ > 0,

λP
(

max
0≤i≤n

Xi ≥ λ
)

= λP(Xn ≥ λ) ≤ E(Xn;Xn ≥ λ) ≤ E[(Xn)+;Xn ≥ λ] ≤ E[(Xn)+].

Proof. The first equality is the definition of Xn, the second inequality holds because Xn ≤ (Xn)+, and the last inequality

is true because (Xn)+ is always nonnegative (so only counting the expectation on {Xn ≥ λ} can only decrease the

expectation). Thus, we only need to check the first inequality (which would be Markov’s inequality if Xn were replaced

with Xn.

First of all, because Xn is a submartingale, if τ is a stopping time with 0 ≤ τ ≤ k almost surely, then E[X0] ≤
E[Xτ ] ≤ E[Xk ] (exercise). So defining σ = inf{i ≥ 0 : Xi ≥ λ} and τ = σ ∧ n (so that 0 ≤ τ ≤ n), we have

E[Xτ ] ≤ E[Xn]. But we can only have Xτ 6= Xn if σ < n (meaning that we’ve already hit at least λ before n), which

means that Xn ≥ λ whenever Xτ 6= Xn. This means that we also have

E[Xn;Xn ≥ λ] ≥ E[Xτ ;Xn ≥ λ] ≥ λP(Xn ≥ λ)

(first step because E[Xτ ] ≤ E[Xn] and outside of the event Xn ≥ λ the two variables are equal, and second step

because Xτ ≥ λ whenever Xn ≥ λ). This shows the desired result.

Corollary 179 (Kolmogorov maximal inequality)

Let Mn be a martingale with M0 = 0, and let Xn = M2
n (which is a submartingale because f (x) = x2 is convex).

Then applying Lemma 178 to Xn, we have

P
(

max
0≤i≤n

|Mi | ≥ x
)

= P
(

max
0≤i≤n

|Xi | ≥ x2

)
≤
E[(Xn)+]

x2
=

Var(Mn)

x2
,

where we’ve used that E[Mn] = E[M0] = 0.

This result may look similar to Chebyshev’s inequality, which tells us directly that

P (|Mn| ≥ x) ≤
Var(Mn)

x2
,

but this version is stronger because we’re able to bound multiple Mis at once.

Theorem 180 (Lp maximal inequality)

Let Xn be a submartingale, and define Xn = max{(Xi)+ : 0 ≤ i ≤ n}. Then for all p ∈ (1,∞), we have∣∣∣∣Xn∣∣∣∣p ≤ p

p − 1
||(Xn)+||p .

In other words, the maximum of the first n values of the submartingale can be controlled by just the final one.

(However, note that this is really only a statement about the positive part of Xn – it doesn’t prohibit Xn from being

very negative.)
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Proof. One annoying detail is that we don’t know in advance that Xn is in Lp, so we will truncate and work with

Xn ∧M for some finite constant M. We claim that

λP(Xn ∧M ≥ λ) ≤ E[(Xn)+;Xn ∧M ≥ λ].

Indeed, this is trivially true when M < λ (because both sides are zero), and otherwise this reduces to Lemma 178.

Thus we have (with our usual integration trick)

E
[
(Xn ∧M)p

]
=

∫ ∞
0

pyp−1P(Xn ∧M ≥ y)dy ≤
∫ ∞

0

pyp−2E
[
(Xn)+;Xn ∧M ≥ λ

]
.

By Tonelli’s theorem (everything in the integrand is nonnegative), we may swap the order of integration, and the

right-hand side becomes

E
[

(Xn)+

∫ ∞
0

pyp−21{Xn ∧M ≥ y}dy
]

= E
[

(Xn)+ · (Xn ∧M)p−1 ·
p

p − 1

]
.

So by Hölder’s inequality applied to (Xn)+ and (Xn ∧M)p−1 (where 1
p + 1

p′ = 1 =⇒ p′ = p
p−1), we have

E
[
(Xn ∧M)p

]
≤

p

p − 1
||(Xn)+||p

∣∣∣∣(Xn ∧M)p−1
∣∣∣∣
p′

=
p

p − 1
||(Xn)+||p

∣∣∣∣Xn ∧M∣∣∣∣p−1

p
.

Since the left-hand side is
∣∣∣∣Xn ∧M∣∣∣∣pp, rearranging this inequality yields

||Xn ∧M||p ≤
p

p − 1
||(Xn)+||p.

Now if the right-hand side is infinite, the theorem is automatically true, and otherwise we can take M → ∞ and use

the monotone convergence theorem to finish.

Theorem 181 (Lp martingale convergence theorem)

Let Xn be a martingale. If there is some p ∈ (1,∞) such that supn ||Xn||p < ∞, then Xn → X∞ almost surely

and in Lp.

Proof. We have supn E[(Xn)+] ≤ supn E[|Xn|] < ∞, because ||Xn||p is uniformly bounded and ||Xn||1 ≤ ||Xn||p (by

Corollary 75). So Xn satisfies the conditions of the submartingale convergence theorem (Theorem 173), and thus

Xn → X∞ almost surely.

To show convergence in Lp, we apply the Lp maximal inequality, which tells us that∣∣∣∣∣∣∣∣max
1≤i≤n

(Xi)+

∣∣∣∣∣∣∣∣
p

≤
p

p − 1
||(Xn)+||p ,

and also that ∣∣∣∣∣∣∣∣max
1≤i≤n

(Xi)−

∣∣∣∣∣∣∣∣
p

≤
p

p − 1
||(Xn)−||p

(because both Xn and −Xn are submartingales if Xn is a martingale). By assumption, both right-hand sides are

uniformly bounded in n, and the left hand sides are nondecreasing in n, so supi≥0 |Xi | = Y is an Lp-integrable random

variable (by the monotone convergence theorem applied to the variables |max1≤i≤n Xi |p).
So now Xn → X∞ almost surely, meaning |Xn −X∞|p → 0 almost surely. But |Xn −X∞|p is dominated by (2Y )p,

which is integrable, so the dominated convergence theorem tells us that E [|Xn −X∞|p]→ 0, which is the desired Lp

convergence.
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We’re now ready to apply these results to branching processes. Recall the definition of a Galton-Watson tree:
we have a double infinite array of random variables (Xn,i)n≥1,i≥1 all iid to an offspring law X which is supported

on Z≥0 and has finite mean µ = E[X]. We start with a single root vertex, which generates X1,1 children at depth

1. Then the ith child at depth (n − 1) generates Xn,i children at depth n, and the Galton-Watson process Zn is

just the number of vertices at depth n, and we have the equation Zn =
∑Zn−1

i=1 Xn,i . Last time, we showed that if

Fn = σ(X`,i for all i ≥ 1, 1 ≤ ` ≤ n) (that is, the filtration tells us the structure of the tree up to depth n), then

E[Zn+1|Fn] = µZn =⇒ Mn =
Zn
µn

is a martingale.

Furthermore, if Mn is a nonnegative martingale, we know that Mn converges almost surely to some limit M∞ with

E[M∞] ≤ E[M0] = 1. But from here, the behavior depends on the mean µ:

• One case that is easy to understand is the subcritical Galton-Watson, where µ < 1. By Markov’s inequality

(using that Zn is nonnegative-valued),

P(Zn > 0) = P(Zn ≥ 1) ≤ E[Zn] = µn,

which is exponentially small in n. Thus Zn must converge to 0 almost surely, so the population goes extinct with

probability 1. In fact, we even have that Mn = Zn
µn → 0 almost surely in this case, because Zn is integer-valued

so it must eventually be zero. So the limit M∞ of the martingale is identically zero, and in fact this is an example

where E[M∞] = 0 < 1 = E[M0].

• The other cases are more interesting. µ = 1 gives us the the critical Galton-Watson, and for this case we

will assume that P(X = 1) < 1 (because otherwise we just have one child at each level and nothing interesting

happens). It turns out that extinction will occur here again, but the proof is less straightforward:

Proposition 182

In the critical Galton-Watson process, we have Zn → 0 almost surely.

Proof. Because µ = 1, Zn is a nonnegative martingale (and thus also a nonnegative supermartingale), so it converges

almost surely to some limit Z∞. Since Zn is integer-valued, Z∞ will also be integer-valued, and in fact (to have

almost-sure convergence) we must have Zn(ω) = Z∞(ω) for all sufficiently large n ≥ n(ω). In other words, we have

that

P

(⋃
k≥0

⋃
m≥0

{Zn = k for all n ≥ m}

)
= 1

(where k corresponds to Z∞(ω) and m corresponds to n(ω)). It suffices to show that this event cannot occur with

positive probability for any k > 0. Intuitively, this is because we’re asking the process to stay at k children forever, but

X is a nondegenerate random variable so this cannot always happen. To make that rigorous, note that for any k > 0,

there is some constant ck < 1 (independent of n) such that P(Zn+1 = k |Zn = k) = ck . Then

P(Zn = k for all n ∈ {m, · · · , m + `}) ≤ c`k ,

which decreases exponentially with `, so the probability that Zn = k for all n ≥ m is zero. The countable union of all

such events over all k > 0 and all m thus has probability zero,so we indeed have

P

(⋃
m≥0

{Zn = 0 for all n ≥ m}

)
= 1.
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This is exactly the same as having Zn converge to 0 almost surely.

• The most interesting case is the supercritical Galton-Watson, where µ > 1. This time, if the probability p0

of producing zero children is zero, then Zn > 0 almost surely for all n (because every vertex produces a positive

number of children). But if p0 > 0, then the tree does go extinct with some positive probability (for example,

if all vertices at a given level produce zero children). Intuitively, though, once the tree has survived for 100

generations, it will typically be pretty big, so we expect the tree to survive with some sizable probability. So the

interesting question here is whether the probability of nonextinction is positive.

To answer this question, we condition on the first level of the tree. If the first level has (for example) 3 children,

then the (n+ 1)th level of the tree dies out if and only if the 3 level-n trees rooted at those children all die out.

This yields the recursive formula

P(Zn+1 = 0) =
∑
k≥0

pkP(Zn = 0)k = ψ(P(Zn = 0)),

where

ψ(s) =
∑
k≥0

pks
k = E[sX ].

is a reparameterization of the moment generating function. Because X is nonnegative, 0 ≤ sX ≤ 1 when

0 ≤ s ≤ 1. Thus E[sX ] is finite for s ∈ [0, 1] (which is the range in which we are applying ψ), meaning this

function is indeed defined. We can also check that ψ is nondecreasing and convex in s, and ψ′(s) ↑ µ as s ↑ 1

(by differentiating term-by-term and using the dominated convergence theorem on the partial sums). Since

ψ(1) = 1 and ψ(0) = p0 > 0, the graph of ψ will have the general shape shown below:

ψ(s)

s

p0

ρ

1

1

Specifically, because the slope of ψ as s → 1 is µ > 1, our function will intersect ψ(x) = x at some unique point

0 < ρ < 1 (because ψ(x)− x is convex, has negative derivative at s = 0, and has positive derivative at s = 1).

We can now write

P(Zn = 0) = ψ(P(Zn−1 = 0)) = ψn(P(Z0 = 0)) = ψn(0).

Repeatedly applying a convex function will bring us towards a fixed point (which cannot be 1 because ψ(x) < x

for x near 1), and thus P(Zn = 0) → ρ as n → ∞. Finally, because the events {Zn = 0} are nested (if we’re

extinct at time n, we’re extinct at time (n + 1)), their probabilities are nondecreasing and increase to the event

{tree goes extinct}. Thus by continuity from below, the probability that the Galton-Watson tree goes extinct is

indeed ρ < 1.

For a more complicated question, suppose we have a supercritical Galton-Watson tree and condition on the event

that we do not go extinct. Then we may ask about the limiting distribution of M∞ = limn→∞
Zn
µn . Knowing the answer
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tells us a lot about the process – if we knew that Mn converged to some finite limit in (0,∞), then we’d know that

Zn grows like µn up to a constant factor (which is much stronger than just knowing for example that Zn = µn+o(n)).

It turns out that we have an exact characterization of when this happens – the same recursion as before tells us that

ψ(P(M∞ = 0)) = P(M∞ = 0).

The only fixed points of ψ are 0, ρ, and 1, and we can’t have P(M∞ = 0) because extinction implies M∞ = 0 and

occurs with positive probability (here we use that p0 6= 0, so ρ 6= 0). But it turns out that the other two possibilities

both occur:

Theorem 183 (Kesten-Stigum L logL criterion)

In a supercritical Galton-Watson tree, M∞ = lim Zn
µn is not identically zero if and only if the offspring law X satisfies

E[X logX] <∞.

We’ll see a special case of this on our homework, and we’ll also discuss this topic more in a later lecture.

20 November 20, 2019

Our last homework assignment is already posted on Stellar, and it’s due on Monday, December 2 (the class day before

the exam). There will be lecture that Monday but not on Wednesday, and we should make sure we have enough time

to both study for the exam and finish the problem set.

We’ve been discussing martingale convergence theorems in the last few lectures. We’ll start with a brief review: if

Xn is a submartingale satisfying a moment condition, then it converges almost surely (by Doob’s upcrossing inequality).

As a consequence, any nonnegative supermartingale converges almost surely. However, we have no guarantee that

there is convergence in L1, and indeed we do not always have E[Xn] → E[X∞]. Last time, we showed a sufficient

condition with the Lp martingale convergence theorem: if there is some p ∈ (1,∞) such that supn ||Xn||p <∞, then

Xn → X∞ almost surely and in Lp. Then if Xn → X∞ in Lp, then it converges in L1, so the expectations also converge.

But it turns out that we can get an exact characterization for convergence in L1, which we’ll discuss today.

Definition 184

Let (Xi)i∈I be a family of random variables on a probability space (Ω,F ,P). Then (Xi) is uniformly integrable
(also u.i.) if

lim
M→∞

sup
i∈I
E[|Xi |; |Xi | ≥ M] = 0.

This is related to the idea of tightness of a set of measures (but isn’t exactly equivalent). Recall that for any

integrable function X, the dominated convergence theorem tells us that E[|X|; |X| ≥ M]→ 0 as M →∞, but uniform

integrability is a uniform condition on the whole set of random variables.

Remark 185. Note that if (Xi)i∈I is uniformly integrable, then for any Xi we can write

E[|Xi |] = E[|Xi ; |Xi | < M] + E[|Xi ; |Xi | ≥ M] ≤ M + E[|Xi |; |Xi | ≥ M].

Then we can make the second term uniformly small (say smaller than 1) by taking M to be sufficiently large. In

particular, this shows that sup
i∈I
E[|Xi |] <∞ , so uniform integrability is stronger than having a uniform bound on the

L1 norm. In particular, this means that for any fixed M, the supremum in Definition 184 is finite.
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We’ll describe one natural way to construct a family of uniformly integrable random variables:

Lemma 186

For any random variable X ∈ L1(Ω,F ,P), {E[X|G] : G ⊆ F sub-σ-field} is uniformly integrable.

Proof. First, we claim that for all ε > 0, there is some δ > 0 so that for all A ∈ F ,

P(A) ≤ δ =⇒ E[|X|;A] ≤ ε.

(This was on our homework – the idea is that if this didn’t hold, then we can find a series of events An with P(An) ↓ 0

but E[X;An] 6= 0. But X is in L1, so this is a violation of the dominated convergence theorem.) Turning to the proof

of the lemma, by Markov’s inequality, conditional Jensen’s inequality, and the tower property, we have

P(|E[X|G]| ≥ M) ≤
E[|E[X|G]|]

M
≤
E[E[|X| |G]]

M
=
E[|X|]
M

.

We will be using the various {|E[X|G]| ≥ M}s (for sub-σ-fields G) as the potential events A, and our goal is to bound

E[E[X|G]; |E(X|G)| ≥ M] = E[|E[X|G] · 1{|E(X|G)| ≥ M}|]

by writing it in the form E[|X|;A]. But since 1{|E[X|G]| ≥ M} is G-measurable, and thus we can put it inside the

expectation as well and use conditional Jensen’s and the tower property again, simplifying the expression above to

E [|E[X · 1{|E(X|G)| ≥ M}|G]|] ≤ E [E[|X| · 1{|E(X|G)| ≥ M}|G]] = E [|X|; |E(X|G)| ≥ M]] .

By the claim at the beginning of our proof, we can make this expression at most ε (for all G simultaneously) if we

make P(|E(X|G)| ≥ M) sufficiently small. But we have shown that those probabilities are bounded by E[|X|]
M , so taking

M large enough yields the result.

Theorem 187

Let Xn be integrable random variables. If Xn → X converges in probability, then the following are equivalent:

1. {Xn}n≥0 is uniformly integrable,

2. Xn → X in L1,

3. E[|Xn|]→ E[|X|].

This result is true for random variables in general, but we’ll apply it to martingales.

Remark 188. We will use the bounded convergence theorem in our proof, so we will mention now that our measure

theory convergence theorems can be strengthened. Instead of proving that
∫
fndµ→

∫
f dµ, both results (with slight

modifications) actually prove the stronger result that
∫
|fn − f |dµ → 0. Additionally (using that convergence in

probability implies almost-sure convergence along a subsequence), the dominated convergence theorem only requires

convergence in probability.

Proof. First, we show that (1) =⇒ (2). By Remark 185, uniform integrability implies that supn E[|Xn|] <∞. Again

recalling that convergence in probability implies existence of a subsequence Xnk → X converging almost surely, Fatou’s

lemma shows that E[|X|] ≤ lim infk→∞ E[|Xn,k |] <∞, so X ∈ L1. To show convergence in L1, define the “truncated
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identity function”

φ(x) =


M x ≥ M

−M x ≤ M

x otherwise.

Then by the triangle inequality, we can write

E[|Xn −X|] ≤ E[|φ(Xn)− φ(X)|] + E[|φ(X)−X|] + E[|Xn − φ(Xn)|].

Because φ is continuous and uniformly bounded, and Xn → X in probability, we also have φ(Xn)→ φ(X) in probability

(for example by using the characterization that “all subsequences have a further subsequence converging almost surely”).

Then E[|φ(Xn) − φ(X)|] → 0 by the (slightly stronger, as in Section 20) bounded convergence theorem, so the first

term goes to zero.

Next, because |φ(X)−X| ≤ |X|1{|X| ≥ M}, the second term can be upper bounded by E(|X|; |X| ≥ M). Finally,

the third term is bounded by E[|Xn|, |Xn| ≥ M]. Thus, we can make the right-hand side arbitarily small by first fixing

M and taking n →∞ to make the first term small, and then take M →∞ (using uniform integrability here) to make

the last two small. Thus E[|Xn −X|]→ 0, showing the desired L1 convergence.

To show that (2) =⇒ (3), we use Jensen’s inequality to find that

|E[|Xn|]− E[|X|]| = |E[|Xn| − |X|]| ≤ E[||Xn| − |X||] ≤ E[|Xn −X|]

(where the last step is just a property of real numbers). Since the right-hand side goes to zero by assumption, so does

the left-hand side.

Finally, for (3) =⇒ (1), it suffices to show that

lim
M→∞

(
lim sup
n→∞

E(|Xn|; |Xn| ≥ M)

)
= 0

(the usual definition uses sup instead of lim sup, but to get to sup, we can deal with finitely many exceptions for Xn
by picking a large enough M for each one and then taking the maximum). Consider the function

ψM(x) =


x |x | ≤ M − 1

0 |x | ≥ M

linear interpolation otherwise.

Notice that ψM is continuous and that |X|1{|X| ≥ M} ≤ |X| − |ψ(X)| ≤ |X|1{|X| ≥ M − 1}. Thus,

lim sup
n→∞

E[|Xn|; |Xn| ≥ M] ≤ lim sup
n→∞

E[|Xn| − |ψ(Xn)|].

now using the bounded convergence theorem (because ψ is uniformly bounded by M) on the second term and assump-

tion(3) on the first term means that

lim sup
n→∞

E[|Xn|; |Xn| ≥ M] ≤ E[|X| − |ψ(X)|] ≤ E[|X|; |X| ≥ M − 1].

As we send M → ∞, the right-hand side goes to zero (because X is integrable), so the left-hand side does as well,

proving uniform integrability.

We can now apply these results to martingales:
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Theorem 189 (Submartingale L1 convergence theorem)

For a submartingale (Xn)n≥0, the following are equivalent:

1. Uniform integrability,

2. Convergence almost surely and in L1,

3. Convergence in L1.

Proof. To show that (1) =⇒ (2), we again have that supn E|Xn| < ∞ from our earlier observations. Thus (by the

submartingale convergence theorem, Theorem 173), Xn converges almost surely to some limit X∞, meaning Xn → X∞

in probability as well. Thus we can apply Theorem 187 to show that uniform integrability also implies L1 convergence.

Finally, (2) =⇒ (3) is trivial, and (3) =⇒ (1) is a consequence of (2) =⇒ (1) in Theorem 187.

Theorem 190 (Martingale L1 convergence theorem)

For a martingale (Xn)n≥0, the following are equivalent:

1. Uniform integrability,

2. Convergence almost surely and in L1,

3. Convergence in L1,

4. The existence of a random variable X ∈ L1 such that Xn = E[X|Fn] for all n.

The first three conditions are the same as above (since martingales are submartingales), but this theorem also

tells us that if we have a uniformly integrable martingale, then there is some integrable random variable for which that

martingale is just gradually “exposing information.”

Proof. (1), (2), and (3) are equivalent by Theorem 189, and (4) =⇒ (1) is Lemma 186, so we just need to show

that (3) =⇒ (4). By repeatedly applying the martingale property, we know that Xn = E[X`|Fn] for all ` ≥ n, which
is equivalent to saying that

E[Xn;A] = E[X`;A] for all A ∈ Fn and ` ≥ n.

Taking ` → ∞, we have E[Xn;A] = E[X∞;A] because X` → X∞ in L1 (so if E[|X` − X∞|] → 0, we also have

E[|1A · (X` − X∞)|] → 0). Because everything is integrable here and we have satisfied the conditional expectation

identity, E[X∞|Fn] = Xn for all n, and X∞ is our random variable X.

Definition 191

Let Fn be a filtration on (Ω,F ,P). For any X ∈ L1(Ω,F ,P), the sequence Xn = E[X|Fn] is the Doob martingale
of X with respect to Fn.

As mentioned, the idea of such a sequence is that we reveal the randomness of X “a little bit at a time,” and what

we’ve just shown is that any martingale converging in L1 is exactly a Doob martingale for some X.

Theorem 192 (Lévy convergence theorem)

Let Fn be a filtration of (Ω,F ,P), and define F∞ = σ
(⋃

n Fn
)
. Then for any X ∈ L1, we have E[X|Fn] →

E[X|F∞] almost surely and in L1.
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Remark 193. The union of sigma-algebras is not itself a sigma-algebra, but here we are taking the sigma-algebra of

the union. This is sometimes denoted Fn ↑ F∞.

This is a statement about the limit of the Doob martingale. We should compare this with Theorem 190 – in that

case, we explicitly constructed a random variable X which satisfied the properties we want. But F∞ can be strictly

smaller than F , and the Lévy convergence theorem holds even if X is some arbitrary measurable function on F (even

if it’s not in F∞).

Proof. Define Xn = E[X|Fn]. We know that {Xn}n≥0 is a uniformly integrable family by Lemma 186, so it converges

to some X∞ almost surely and in L1 by the L1 martingale convergence theorem (Theorem 190). So we just need

to show that X∞ = E[X|F∞], which is an exercise with the definition of conditional expectation. We know that

X∞ ∈ F∞, because it is the almost-sure limit of the Xns, each of which is measurable with respect to Fn and thus to

F∞. For the conditional identity, notice that

Xn = E[X|Fn] =⇒ E[Xn;A] = E[X;A] = E[X∞;A] for all A ∈ Fn,

where the last equality comes from Xn = E[X∞|Fn] (again by the proof of Theorem 190). Applying this for an arbitrary

n, we find that E[X;A] = E[X∞;A] for all A ∈
⋃
n≥0 Fn. To finish, we extend this to the sigma-algebra σ

(⋃
n≥0 Fn

)
with the standard π − λ argument.

Applying this result to the indicator random variable 1A (for any A ∈ F∞) yields the following useful result:

Corollary 194 (Lévy 0-1 law)

Let Fn ↑ F∞. Then for any A ∈ F∞, we have P(A|Fn) → 1A (so in particular, the conditional probability

converges to either 0 or 1).

We’ll finish with a few helpful hints for the homework. The Azuma-Hoeffding bound says that if Xn is a

martingale with bounded increments, then Xn−E[Xn] is well-concentrated. One consequence is the concentration of
the independence number in Gn,p (the random graph of n vertices where each pair is connected with probability p).

Basically, if G = (V, E) is a graph, then S ⊆ V is an independent set if no two vertices in S are neighbors in G. The

independence number α(G) is then maximal cardinality of such a set |S| (which is some number between 1 and |V |).
We are asked to determine the behavior of X = α(G) as a random variable. One useful way to define a filtration is

F` = σ (edges restricted to the first ` vertices) .

This is known as an edge-revealing filtration, in which we’re told at each step how a new vertex is connected to the

currently revealed graph. There are variations on this idea, but the point is that the random variables E[X|F`] have
no integrability issues (because G is a finite graph) and form a Doob martingale, so using the Azuma-Hoeffding bound

will give us a concentration bound! And this kind of strategy also works for the clique number and chromatic number

of a random graph, too. (This general type of argument comes from a paper by Shamir and Spencer [9].) But as we’ll

see on our homework, our asymptotic bound will only be good for some values of p.

21 November 25, 2019
In the last few lectures, we’ve shown some results about submartingale convergence: specifically, if Xn is a submartingale

with supn E[(Xn)+] finite, then Xn → X∞ converges almost surely with E[|X∞|] < ∞. Also, uniform integrability,

convergence almost surely and in L1, and convergence in L1 are all equivalent for a submartingale.
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Today, we’ll talk about the optional stopping theorem. Recall that a stopping time τ with respet to a filtration

Fn is a random variable such that {τ = n} ∈ Fn for all n. As discussed previously, for any submartingale Xn and any

stopping time that is almost surely bounded by 0 ≤ τ ≤ k , we have E[X0] ≤ E[Xτ ] ≤ E[Xk ]. More generally, this tells

us that E[X0] ≤ E[Xτ∧n] ≤ E[Xn] for any finite n, but we can’t just replace n with ∞ here. So today’s discussion will

explain what we can do when we do take this limit.

Lemma 195

Let Xn be a uniformly integrable submartingale and τ be any stopping time (potentially with P(τ = ∞) > 0).

Then E[|Xτ |] <∞.

Proof. Because Xn is uniformly integrable, it converges to some limit X∞ almost surely, so the limit exists and Xτ
is well-defined (even when τ = ∞). Since f (x) = max(x, 0) is a nondecreasing convex function, (Xn)+ is also a

submartingale, so we also have E[(Xn∧τ )] ≤ E[(Xn)+] for any n. The right-hand side is uniformly bounded (by uniform

integrability) by some constant, which means that supn E[(Xn∧τ )+] <∞. But (Xn∧τ ) is a stopped process of (Xn), so

it is a submartingale as well. Thus by the submartingale convergence theorem, Xn∧τ converges to a limit in L1. But

that limit is exactly Xτ (whether τ is finite or infinite).

Corollary 196

If Xn is a uniformly integrable submartingale, and τ is any stopping time, then Yn = Xn∧τ is also a uniformly

integrable submartingale.

Proof. We wish to show that

lim
M→∞

(
sup
n
E[|Xn∧τ |; |Xn∧τ | ≥ M]

)
= 0.

We can split up the expectation into two cases, based on whether n or τ is smaller, to get

sup
n
E[|Xn∧τ |; |Xn∧τ | ≥ M] = sup

n
E[|Xn| · 1{τ > n}+ |Xτ |1{τ ≤ n}; |Xn∧τ | ≥ M]

≤ sup
n

(E[|Xn|1{|Xn| ≥ M}] + E[|Xτ |; |Xτ | ≥ M]) .

But because the Xn are uniformly integrable, the first term goes to zero as M → ∞, and because Xτ ∈ L1 (by

Lemma 195), the second term goes to zero as M →∞ by the dominated convergence theorem.

Theorem 197

If Xn is a uniformly integrable submartingale and τ is a stopping time, then E[X0] ≤ E[Xτ ] ≤ E[X∞].

As we will see in the proof, the first inequality E[X0] ≤ E[Xτ ] holds even if we only know that the stopped process

Xn∧τ is a uniformly integrable submartingale.

Proof. We have previously shown that E[X0] ≤ E[Xτ∧n] ≤ E[Xn] for all finite n. Since Xτ∧n is uniformly integrable

(by Corollary 196), it converges to Xτ in L1, so E[X0] ≤ E[Xτ ].

For the other bound, since Xn is uniformly integrable, Xn converges to X∞ almost surely and in L1. So Xτ∧n and

Xn converge almost surely and in L1 to Xτ and X∞, respectively, and because E[Xτ∧n] ≤ E[Xn] for each n, taking

limits on both sides yields E[Xτ ] ≤ E[X∞], as desired.

However, uniform integrability can often be difficult to check, so here’s an easier criterion:
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Theorem 198

Suppose Xn is a submartingale such that E[|Xn+1 − Xn| |Fn] ≤ B for all n. Then if τ is a stopping time with

E[τ ] <∞, then Xn∧τ is uniformly integrable (so in particular we do have E[X0] ≤ E[Xτ ]).

Proof. For any n ≥ 0, we can write

|Xn∧τ | ≤ |X0|+
∑
i≥1

1{τ > i}|Xi+1 −Xi |

by the triangle inequality. Call the right-hand side Y , and notice that it is independent of n. Now 1{τ > i} is measurable

with respect to Fi , so the expectation of Y can be written (by the tower property) as

E[Y ] = E[|X0|] +
∑
i≥0

E [E [1{τ > i} · |Xi+1 −Xi | |Fi ]]

= E[|X0|] +
∑
i≥0

E [1{τ > i} · E [|Xi+1 −Xi | |Fi ]] .

But now using our assumption, we can show that Y is integrable:

E[Y ] ≤ E[|X0|] +
∑
i≥0

E [1{τ > i} · B] = E[|X0|] + BE[τ ] <∞.

Because all |Xn∧τ |s are dominated by the integrable random variable Y , we have E[|Xn∧τ |; |Xn∧τ | ≥ M] ≤
E[|Y |; |Y | ≥ M] for all n. Since the right-hand side goes to zero as M → ∞, we get the desired uniform integrability

condition.

Next, we have a result that’s a bit disconnected from the previous ones, in that we don’t even need uniform

integrability at all:

Theorem 199

If Xn is a nonnegative supermartingale, and τ is any stopping time, then E[X0] ≥ E[Xτ ].

Proof. By Theorem 174, we have Xn → X∞ almost surely, so again Xτ is well-defined. But because E[X0] ≥ E[Xn∧τ ]

for all n, Fatou’s lemma tells us that

E[Xτ ] ≤ lim inf E[Xn∧τ ] ≤ E[X0],

as desired.

We will now generalize Theorem 197 by looking at multiple stopping times at once:

Definition 200

If τ is a stopping time with respect to Fn, then the stopping time σ-algebra associated to τ is

Fτ = {A ∈ F : A ∩ {τ = n} ∈ Fn for all n}.

This definition essentially says that an event A is in the stopping time σ-algebra if we “know if we’re in A at time

τ ,” since any event in Fn is “known” at stage n. We can check that if τ = k almost surely, then Fτ = Fk , and (with

more work) if we have a process Yn ∈ Fn, then Yτ ∈ Fτ .
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Theorem 201

Let Xn∧τ be a uniformly integrable submartingale. If σ, τ are both stopping times and σ ≤ τ almost surely, then

E[Xτ |Fσ] ≥ Xσ.

(When σ = 0, this is very similar to the inequality E[Xτ ] ≥ E[X0] that we’ve proved above.)

Proof. Since Yn = Xn∧τ is a uniformly integrable submartingale and σ is a stopping time, we know that E[Y0] ≤
E[Yσ] ≤ E[Y∞] (by Theorem 197), which we can rewrite as E[X0] ≤ E[Xσ] ≤ E[Xτ ] because σ ≤ τ almost surely.

Now fix A ∈ Fσ and define the random variable

ξ(ω) = σ1A + τ1Ac .

We always have either ξ = σ or ξ = τ , and we claim that ξ is a stopping time. Indeed, we can write

{ξ = n} = (A ∩ {σ = n}) t (Ac ∩ {τ = n}) .

Because A ∈ Fσ, the first term (A ∩ {σ = n}) is in Fn (by the definition of the stopping time σ-algebra). And the

second term can be written as

Ac ∩ {τ = n} =

(
n⋃
k=0

Ac ∩ {σ = k} ∩ {τ = n}

)

(since σ ≤ τ by assumption), at which point we can notice that Ac ∩ {σ = k} ∈ Fk ⊆ Fn and {τ = n} ∈ Fn, so the

entire right-hand side is also in Fn. Putting this all together, {ξ = n} ∈ Fn, so we do have a stopping time. Since ξ is

bounded by τ almost surely, we have E[Yξ] ≤ E[Y∞] =⇒ E[Xξ] ≤ E[Xτ ] by the same logic as for σ. But writing out

the definition of ξ, this tells us that

E[Xσ;A] + E[Xτ ;Ac ] ≤ E[Xτ ] =⇒ E[Xσ;A] ≤ E[Xτ ;A] = E[E[Xτ |Fσ];A]

by the tower property. Since A is an arbitrary event in Fσ, this shows the desired result.

We can now work with a quantitative example to see the optional stopping theorem in action:

Example 202 (Asymmetric random walk)

Consider a random walk on the integers defined by Sn =
∑n

i=1 ξi , where each ξi is 1 with probability p and −1

with probability q = 1− p. Assume that p ∈ (0.5, 1) (so that there is a drift in the upward direction).

We can rewrite Sn as

Sn =

n∑
i=1

(ξi − E[ξ]) + n · E[ξ].

The first term here is the sum of n iid terms of mean zero, and it has standard deviation on the order of
√
n. But

the second term is of order n, so it will dominate for large n and we will eventually stop returning to position 0. To

quantify this, notice that the equation 1 = E[sξ] = ps + q 1
s has solutions at s = 1 and q

p , so Mn =
(
q
p

)Sn
, which is a

product of iid terms of mean 1, will be a nonnegative martingale. Now for any integer x , let

τx = inf{n ≥ 0 : Sn = x}
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be the first hitting time of x , which can be infinite if the walk never reaches x . Now fix some a, b > 0 and define

τ = τ−a ∧ τb. The stopped martingale Mτ is uniformly bounded (between
(
q
p

)−a
and

(
q
p

)b
), so E[Mτ ] = E[M0].

(Here, we are essentially using Theorem 197 and its analogous result for supermartingales.) Also, τ is finite almost

surely because the probability of not escaping (−a, b) is exponentially decaying in n. But now if we let π be the

probability that the walk hits −a before b, we have

1 = E[M0] = E[Mτ ] = π ·
(
q

p

)−a
+ (1− π) ·

(
q

p

)b
=⇒ π =

1−
(
q
p

)b
(
q
p

)−a
−
(
q
p

)b .
Taking a→∞, we find that the probability of never hitting b is P(τb =∞) = 0, and taking b →∞, we find that the

probability of hitting a is P(τ−a < ∞) =
(
q
p

)a
. So in words, any positive level will be reached almost surely, and any

negative level has a positive probability of never being reached.

Next, we ask about the expected amount of time it will take to hit any b > 0. For this, define a new martingale

Xn = Sn − nE[ξ] = Sn − n(p − q).

Since Sτb = b, it makes sense to expect that b−E[τb](p− q) = 0. To justify this, let Sn be the minimum value of Sn
over all n ≥ 0. This is a nonpositive random variable, and it is integrable because

E[−Smin] =
∑
a≥1

P(−Smin ≥ a) =
∑
a≥1

P(τ−a <∞) =
∑
a

(
q

p

)a
<∞

because we have a geometric series with common ratio q
p < 1. So Smin ∈ L1, and because Smin ≤ Sn∧τb ≤ b for all

n, Sn∧τb is uniformly integrable (for example because it is dominated by |Smin|+ b). This means that Sn∧τb converges

almost surely and in L1 to its limit Sτb , which is almost surely b by definition. So now turning back to our martingale

Xn, this convergence in L1 tells us that (because 0 ≤ τb ∧ n ≤ n)

0 = E[X0] = E[Xn∧τ ] = E[Sn∧τb ]− E[n ∧ τb](p − q)
n→∞
=⇒ 0 = b − E[τb](p − q),

because E[n ∧ τb] converges to E[τb] by the monotone convergence theorem. Thus E[τb] = b
p−q = b

2p−1 .

Example 203 (Patterns in a random string)

Sample (σ1, σ2, · · · ) iid from the alphabet A = {A,B, · · · , Z} (here |A| = 26). Let τ be the first time we see a

particular sequence of letters w , which we’ll take to be “ABRACADABRA.” We wish to study E[τ ].

We have τ ≥ length(w) = 11, and we can check that E[τ ] < ∞ (because within any block of time there is a

positive chance to see the word, so we have geometric decay). So τ is indeed integrable. We construct a martingale –

suppose that before each time n, a new gambler Gn enters and bets 1 dollar on the event {σn = w1}. If σn 6= w1, then

Gn loses and exits; otherwise Gn wins $26. In the latter case, Gn bets all of the money on the event {σn+1 = w2}, either
losing it or winning $262. This betting continues for Gn until there is a mismatch (that is, the event {σn+i−1 6= wi}),
or the entire string w is correctly predicted, in which case the gambler wins $2611.

Now, let Mn be the total winnings up to time n from the point of view of the casino. This is integrable for any n

(since any gambler’s winnings are bounded), and all games are fair, so Mn is a martingale (with respect to Fn, which
encodes both the sequence and the bets). Also, E[|Mn+1 −Mn| |Fn] is uniformly bounded almost surely, because only

the 11 most recent gamblers can be making bets (in particular we have a bound of 2611 · 11). Thus by Theorem 198,
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if τ is the stopping time where some gambler wins for the first time,

0 = E[M0] = E[Mτ ] = E
[
τ − 2611 − 264 − 26

]
,

because when the game stops, the casino has won one dollar from each of the τ gamblers, but at the stopping point,

there are three gamblers who have won 26, 264, 2611 dollars respectively. So E[τ ] = 2611 + 264 + 26 for this example

(and this generalizes to any sequence w), giving us our answer.

Next lecture, we’ll move on to discussing reverse martingales and their applications to zero-one laws.

22 November 27, 2019

We’ll study reverse martingales today, starting with two different (equivalent) definitions:

Definition 204

A reverse martingale is a martingale “indexed by the nonpositive integers Z≤0.” In other words, a reverse

martingale is a sequence of random variables (Mn)n≤0 such that (1) Mn ∈ L1(Fn) for all n, where · · · ⊆ F−2 ⊆
F−1 ⊆ F0 ⊆ F , and (2) we have the usual martingale property Mn = E[Mn+1|Fn].

Equivalently, we can index a reverse martingale in the usual way (Mn)n≥0, but now we require F ⊇ F0 ⊇ F1 ⊇
F2 ⊇ · · · , and our martingale property is now E[Mn|Fn+1] = Mn+1. We’ll use this latter notation.

Notice that if we have this nesting of σ-fields F ⊇ F0 ⊇ · · · , then Fn ↓
⋂
n≥0 Fn, which is itself a σ-field which

we call F∞. (So unlike with ordinary martingales, the the limit of the σ-fields is also a σ-field because we’re taking

intersections instead of unions.)

The theory of reverse martingales is actually easier than normal martingales: for example, we have Mn = E[M0|Fn]

for all n, so we have “less and less” information as we progress.

Theorem 205

If (Mn)n≥0 is a reverse martingale with respect to a filtration Fn ↓ F∞, then Mn → M∞ = E[M0|F∞] almost

surely and in L1.

Proof. Let Un(a, b) be the number of upcrossings of [a, b] traversed by the process (Mn, · · · ,M0) (this is going

backwards in time, so this is a normal martingale). By Doob’s upcrossing inequality, we have E[Un(a, b)] ≤ E[M0−a]+

b−a .

But the right-hand side is independent of n and finite (because M0 is integrable), so E[Un(a, b)] is bounded. Thus

E[U∞(a, b)] <∞ by the monotone convergence theorem, so by the same logic as in Theorem 173, Mn must converge

almost surely to M∞. Because Mn = E[M0|Fn] for all n, (Mn)n≥0 is a collection of conditional expectations of a M0

and is thus uniformly integrable. Convergence in L1 thus follows from Theorem 187.

To check that the limit is indeed E[M0|F∞], notice that for any A ∈ F∞ ⊂ Fn, we have E[M0;A] = E[Mn;A]

because Mn = E[M0|Fn], and then convergence Mn → M∞ in L1 implies that limn→∞ E[Mn;A] → E[M∞;A] as well.

So E[M0;A] = E[M∞;A] for all A ∈ F∞, which is the conditional expectation identity for M∞ = E[M0|F∞].

Corollary 206

For any random variable Y ∈ L1(Ω,F ,P) and any σ-fields Fn ↓ F∞ (where Fn ⊆ F for all n), E[Y |Fn] converges

to E[Y |F∞] almost surely and in L1.
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Proof. Mn = E[Y |Fn] is a reverse martingale, so it converges almost surely and in L1 to M∞ = E[M0|F∞] =

E[E[Y |F0]|F∞], which is indeed E[Y |F∞] by the tower property.

We’ll spend the rest of the lecture on various zero-one laws, which tell us that certain types of events in a

probability space must have probability either 0 or 1.

Definition 207

Let (Xi)i≥1 be independent (but not necessarily iid) random variables on a probability space (Ω,F ,P), and define

Fn+ = σ(Xn, Xn+1, · · · ) for all n. The tail σ-algebra of (Xi) is the σ-field T =
⋂
n≥1 Fn+.

Example 208

The event A = {Xn ≥ 3 i.o.} is in the tail sigma-algebra of the Xns, because it does not depend on the value of

the first k random variables for any k .

Formally, we can prove this by writing

A =
⋂
n≥1

⋃
m≥n
{Xm ≥ 3}

(in words, Xn ≥ 3 occurring infinitely often is the same as having Xm ≥ 3 for some m ≥ n no matter what n we pick).

But because the inner union is decreasing as a function of n, we can rewrite

A =
⋂
n≥`

⋃
m≥n
{Xm ≥ 3}

for any `. But this event is now in F`+ for all ` (because it doesn’t depend on X1, · · · , X`−1), so A is also in the

intersection T .

Theorem 209 (Kolmogorov 0-1 law)

Let (Xi)i≥1 be independent random variables on (Ω,F ,P), and let T be their tail σ-algebra. Then T is trivial

under P, meaning that P(A) = 0 or 1 for all A ∈ T .

In words, if an event doesn’t change when we change only finitely many coordinates, it either always happens or

never happens.

Proof without martingales. Define Fk = σ(X1, · · · , Xk) and Fm,n = σ(Xm, · · · , Xn) – because all of the Xis are

independent, Fk is independent of Fm,n as long as k < m ≤ n. Now fix k < m, and notice that
⋃
n≥m Fm,n is a

π-system generating the σ-algebra Fm+, so Fk is independent of Fm+ by a π-λ argument (since the collection of

subsets independent of Fk is a λ-system, and all of the π-system
⋃
n≥m Fm,n is is independent of Fk).

Next, Fm+ contains the tail sigma-algebra, so Fk ⊥⊥T for all k . Now
⋃
k Fk is a π-system (with all elements

independent of T ) which generates F1+, so F1+ is independent of T by another π-λ argument. But F1+ contains

T , so this really implies that T is independent of itself. Thus, for all A ∈ T ,

P(A) = P(A ∩ A) = P(A)2,

meaning that P(A) = 0 or 1 for all A, as desired.

Proof with forward martingales. We may argue as above to show that Fk is independent of T for all k . For any A ∈ T ,
consider the martingale Mn = E[1A|Fn]. By Theorem 192 Mn converges almost surely and in L1 to E[1A|F∞] = 1A
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(because T ⊆ F∞, so 1A ∈ F∞). But A is independent of Fn for all n, so Mn = E[1A] = P(A) for all n and thus we

also have M∞ = P(A). Setting the two limits equal, P(A) = 1A, so the probability can only be 0 or 1.

The Kolmogorov 0-1 law is stated in terms of random variables, but we can also state it slightly differently. Suppose

our probability space has a product structure

(Ω,F ,P) =

( ∞∏
i=1

Si ,

∞⊕
i=1

Si ,
∞⊕
i=1

µi

)
,

and define the random variables Xi : Ω→ Si via

Xi(ω = (ωj)
∞
j=1) = ωi

(that is, returning the ith coordinate of ω), so that the law of Xi is exactly µi . The next result requires the Xis to be

iid, but it will be stated similarly to the previous setting:

Definition 210

Suppose we have a product space (Ω,F ,P) =
(∏∞

i=1 S,
⊕∞

i=1 S,
⊕∞

i=1 µ
)
(equivalently, a sequence of iid random

variables). The exchangeable σ-algebra E is the set of events invariant under permutation of finitely many

coordinates (that is, a bijection π : N → N with fixed points at all but finitely many coordinates). Formally, for

any ω ∈ Ω = SN, define ωπ = (ωπ(i))∞i=1, and for any A ∈ F , define Aπ = {ωπ : ω ∈ A}. Call A permutable if

A = Aπ for all finite permutations, and let E = {A : A permutable}.

The set of events invariant under permutations of the first n coordinates is often written

En = {A ∈ F : A = Aπ for all π : N→ N with π(i) = i ∀i > n}.

In particular, notice that En ↓ E .

Example 211

We have T ⊆ E , because any event in the tail σ-algebra is invariant under exchange of the first n coordinates

for any n and thus invariant under all permutations of finitely many coordinates. However, T 6= E – for example,

A =
{∑n

i=1Xi ∈ [9, 10] i.o.
}
is exchangeable but not in T in general.

Theorem 212 (Hewitt-Savage 0-1 law)

On a product space (Ω,F ,P) =
(∏∞

i=1 S,
⊕∞

i=1 S,
⊕∞

i=1 µ
)
, the exchangeable σ-field E is trivial under P (meaning

that any event has probability 0 or 1).

Proof without martingales. We start with a useful fact:

Fact 213

On any probability space (Ω,F ,P), if Fi ↑ F∞ ⊆ F , then for any A ∈ F∞, we can find Ai ∈ Fi such that

P(A4Ai)→ 0 (where ∆ is the symmetric difference).

(This can be proven by a π-λ argument, because the set of A for which this is true forms a λ-system, and
⋃
i Fi
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is a π-system.) We will apply this to our product space by defining (for all n)

Fn =

{
E1 × E2 × · · · × En ×

∏
i>n

S : E1, · · · , En ∈ S

}
.

We have Fn ↑ F by definition of the product σ-field, so for all A ∈ F , we can find An ∈ Fn such that P(A4An)→ 0

(by Fact 213). Now define πn : N → N to swap k and n + k for all 1 ≤ k ≤ n and keep the other coordinates fixed,

and let Bn = (An)πn . For any event A ∈ E , we have

P(A4Bn) = P((A4Bn)πn) = P(A4An),

where the first equality comes from the measure P being invariant under permutations of indices (because it is a

product iid measure), and the second equality comes from A being permutable (we can check the details ourselves).

On the other hand, An depends only on the first n coordinates, while Bn depends on coordinates n+ 1 through 2n, so

An ⊥⊥Bn. Thus,
P(An ∩ Bn) = P(An)P(Bn) =⇒ P(A) = P(A)2,

because P(An),P(Bn),P(An ∩ Bn)→ P(A) if the symmetric differences go to zero.

Proof with reverse martingales. Again, we start with a useful result:

Lemma 214

If G,H are any two sub-σ-fields of F , and W is a random variable with W ⊥⊥H and E[W |G] ∈ H, then E[W |G] =

E[W ] is constant.

Proof of lemma. The conditional expectation Y = E[W |G] is G-measurable by definition and also H-measurable by

assumption. Define the event

A = {Y − E[W ] ≥ ε} ∈ G ∩ H.

Since A ∈ G, the definition of conditional expectation tells us that

E[W ;A] = E[Y ;A] ≥ (E[W ] + ε) · P(A).

But we also have A ∈ H, and W is independent of H, so we also have

E[W ;A] = E[W ]P(A).

Putting these together, E(W )P(A) ≥ (E(W ) + ε)P(A), which is a contradiction unless P(A) = 0. We can similarly

show that Y − E[W ] ≤ −ε with probability zero for any ε > 0. Thus we indeed have Y = E[W ] as desired.

Turning to the proof, we will show that E ⊥⊥Fk for all k (with Fk as defined in the previous proof), which implies

that E ⊥⊥F by a π-λ argument. Since F contains E , this shows that E is independent of itself, so P(A)2 = P(A) for

all A ∈ E just like before.

To show that E ⊥⊥Fk , it suffices to show that for any bounded measurable function φ : Sk → R, if we let

W = φ(X1, · · · , Xk) ∈ Fk , then we have E[W |E ] = E[W ]. (This is indeed sufficient because we can choose W to be

the indicator for an arbitrary event in Fk .) Because En ↓ E , we know that E[W |En] → E[W |E ] almost surely and in

L1 by Corollary 206. Now for an alternate way of studying E[W |En], consider the random variable An(φ) (for n ≥ k)
defined by

An(φ) =
1

(n)k

∑
i∈[n]k

φ(Xi1 , · · · , Xik ),
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in which we take an average of φ over all permutations of the indices {1, · · · , n} (and use the first k of them). Because

of this averaging, permuting the first n indices does not change the value of An(φ), so An(φ) ∈ En and thus

An(φ) = E[An(φ)|En] =
1

(n)k

∑
i∈[n]k

E [φ(Xi1 , · · · , Xik )|En] .

But because the different Xis are iid, all of these expectations are the same, so this reduces to E[φ(X1, · · · , Xk)|En] =

E[W |En] . Thus we can study convergence of An(φ) instead of E[W |En] directly. We claim that limn→∞ E[W |En] ∈
F(k+1)+. Indeed, consider the terms in An(φ) as n → ∞. The probability that (i1, · · · , ik) has any intersection with

(1, · · · , k) goes to 0 as n → ∞ (it’s at most k2

n by a union bound). So the limiting expectation is independent of

σ(X1, · · · , Xk) (since the total contribution to the expectation from terms including any of X1, · · · , Xk is then at most
k2

n sup(φ), which goes to zero as n →∞), and thus limn→∞ E[W |En] ∈ F(k+1)+.

However, remembering that this limit is also E[W |E ], we can apply Lemma 214 with G = E and H = F(k+1)+.

Specifically, W is indeed independent of F(k+1)+ by construction (because it is Fk -measurable), and E[W |E ] ∈ Fk+1,

so E[W |E ] = E[W ], finishing the proof.

For a final application of the reverse martingale, recall the strong law of large numbers, which says that for any iid

random variables X,Xi with E[X] = µ, we have 1
n

∑n
i=1Xi → µ almost surely. Here’s a shorter proof than the one we

last showed:

Alternate proof of Theorem 88. Let Sn = X1 + · · · + Xn be the usual partial sum, and define Gn = σ(Sn, Sn+1, · · · )
and Gn ↓ G (as usual, this is a σ-algebra because it’s the intersection of σ-algebras). Define Mn = Sn

n , and notice that

E[Mn|Gn+1] = E
[
Sn
n

∣∣∣∣Sn+1, Sn+2, Sn+3, · · · ,
]

= E
[
Sn
n

∣∣∣∣Sn+1, Xn+2, Xn+3, · · ·
]
.

But if we know the value of Sn+1, also knowing Xn+2, Xn+3, · · · do not give us any additional information about Sn
n , so

E[Mn|Gn+1] = E
[
Sn
n

∣∣∣∣Sn+1

]
=
Sn+1

n + 1
= Mn+1.

So Mn is a reverse martingale with respect to Gn, meaning that Mn converges almost surely to M∞ = E[M1|G∞] =

E[X1|G∞] by Theorem 205. But Gn ⊆ En for all n (because the values of Sn, Sn+1, · · · don’t change when we permute

X1, · · · , Xn), so G∞ ⊆ E . So by Theorem 212, E[X1|G∞] is a conditional expectation under a σ-algebra in which all

probabilities are 0 or 1, so it must be E[X1] = µ almost surely. This is the desired result.

23 December 2, 2019
Today is our last lecture before the second exam, so we’ll cover some new material and have quite a bit of review.

(There is no class on Wednesday – our exam is in the evening instead.)

Recall that if we have two finite measures µ, ν on (Ω,F), we say that ν is absolutely continuous with respect to µ

(denoted ν � µ), if for all A ∈ F with µ(A) = 0, we also have ν(A) = 0. Then a measurable function f : Ω→ [0,∞)

satisfying

ν(A) =

∫
A

f dµ =

∫
Ω

f (ω)1{ω ∈ A}dµ(ω)

for all A ∈ F is called the Radon-Nikodym derivative of ν with respect to µ and denoted f = dν
dµ . (An example

of such a derivative from our proof of Cramér’s theorem is the exponential tilting dPθ
dP =

exp(θ
∑n

i=1 Xi )

E(eθX)n
.) The Radon-

Nikodym derivative doesn’t exist for all µ, ν, but if it does, ν must be absolutely continuous with respect to µ, because
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given any set A with µ(A) = 0, ν(A) =
∫
A f dµ = 0. It turns out that the converse is also true (we stated this as

Theorem 152 earlier in the course):

Theorem 215 (Radon-Nikodym)

If µ, ν are σ-finite measures on (Ω,F) and ν � µ, then there is a measurable function f such that ν(A) =
∫
A f dµ

for all A ∈ F .

Notice that f is unique µ-almost-surely, because otherwise there would be some set A of positive measure such that

the integrals over A differ (if f1 and f2 were two different Radon-Nikodym derivatives, consider A = {f1 − f2 ≥ ε} or
A = {f1 − f2 ≤ −ε}). Earlier in the class, we used this theorem (without proof) to construct conditional expectation.

Specifically, if X ∈ L1(Ω,F ,P) and we have a sub-σ-algebra G ⊆ F , then we can assume without loss of generality that

X is nonnegative and define E[X|G] = dν
dµ , where µ = P|G and ν(A) = Eµ[X;A] for all A ∈ G. We can do this because

ν is absolutely continuous with respect to µ (if A has measure zero, then E[X;A] = 0 because any simple function has

integral zero over A). This conditional expectation is G-measurable and satisfies the conditional expectation property

by plugging in the definitions of µ and ν into ν(A) =
∫
A f dµ.

To start, we’ll prove a few basic properties of absolutely continuous measures:

Lemma 216

If we have finite measures π � ν � µ on (Ω,F), then dπ
dµ = dπ

dν
dν
dµ , µ-almost-surely.

Proof. Notice that we do indeed have π � µ, because µ(A) = 0 =⇒ ν(A) = 0 =⇒ π(A) = 0. We claim that for

all nonnegative measurable functions h, we have∫
h dν =

∫
h
dν

dµ
dµ.

Indeed, this identity holds for any indicator h = 1A (by definition of the Radon-Nikodym derivative), so it holds for

simple functions by linearity, and then we can approximate from below and use the monotone convergence theorem in

general. Next, because π is absolutely continuous with respect to ν, we have

π(A) =

∫
A

dπ

dν
dν

for any event A. But ∂dπ
dν is a nonnegative measurable function, so by the claim above, we have

π(A) =

∫
A

dπ

dν

dν

dµ
dµ.

Because the Radon-Nikodym derivative is unique almost-surely under µ, dπdν
dν
dµ must agree almost surely with dπ

dµ , as

desired.

Plugging in µ for π, or doing so while swapping the roles of µ and ν, yields the following result:

Lemma 217

If ν � µ and µ� ν, then dµ
dν =

(
dν
dµ

)−1

almost surely under both µ and ν.

The full proof of Radon-Nikodym can be found in appendix A.4 of Durrett, and it’s a bit outside the scope of

the class. However, there is one case which is easy to prove, which we’ll discuss now. Suppose we can partition our
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probability space into countably many pieces Ω =
⊔∞
i=1 Ωi , and F = σ(Ω1,Ω2, · · · ). Then for any finite measures µ, ν

on Ω with ν � µ, we can define

dν

dµ
(ω) = f (ω) =


ν(Ωi )
µ(Ωi )

when ω ∈ Ωi with µ(Ωi) > 0,

0 whenω ∈ Ωi with µ(Ωi) = 0.

(We can replace 0 in the second case with any other number – that case occurs with probability zero, so it doesn’t

contribute to any relevant calculations.) We can indeed check both properties of the Radon-Nikodym derivative in this

simple case, and thus we prove the theorem when we have a countable partition.

More generally, suppose our σ-algebra can be approximated with sets of the above form. In other words, consider

a space (Ω,F), where Fn ↑ F and each Fn is generated by a countable partition of Ω. For example, if we take

Ω = R and F = σ
(

[i ,i+1)
2n : i ∈ Z

)
, then Fn increases to the entire Borel σ-algebra BR (because the Borel σ-algebra

is generated by open intervals, and we can approximate open intervals with a countable union of these dyadic sets).

So if we have two finite measures µ, ν on (Ω,F) such that ν � µ, we can define µn (resp. νn) be the restriction of

µ (resp. ν) to Fn. We have µn � νn for all n, so dνn
dµn

exists by the above explicit construction, and it’s natural to ask

whether dνn
dµn
→ dν

dµ .

Remark 218. It’s possible to have µn � νn but not µ � ν. For example, take µ to be the infinite product of

Bernoulli(p) variables, and take ν to be the infinite product of Bernoulli(q) variables (for p 6= q). Then we do have

µn � νn for any n, but by the strong law of large numbers we do not have µ � ν (the event that Sn
n → p has

probability zero in ν but not in µ).

Lemma 219

Let µ, ν be probability measures on (Ω,F) with Fn ↑ F , and let µn = µ|Fn , νn = ν|Fn for all n. Suppose that

νn � µn for all n, so Xn = dνn
dµn

is well-defined. (However, we’re not assuming that ν � µ.) Then Xn is a

martingale with respect to Fn on (Ω,F , µ).

Proof. Let E denote expectation with respect to µ. Because Xn depends only on νn and µn, it is in Fn by definition,

so

E[Xn] =

∫
dνn
dµn

dµ =

∫
dνn
dµn

dµn = 1

(middle equality because dνn
dµn
∈ Fn so restricting µ to µn is sufficient, and last equality by the Radon-Nikodym property

for A = Ω). Thus Xn ∈ L1(Fn), showing integrability. For the conditional expectation property, let A be any event in

Fn. We have

E[Xn+1;A] =

∫
A

Xn+1dµ =

∫
A

Xn+1dµn+1 = νn+1(A),

where the middle equality comes from Xn+1 being in Fn+1 and the last equality comes from the Radon-Nikodym

definition. But νn+1(A) = ν(A) = νn(A) (all of these measures are restrictions of ν), so

E[Xn+1;A] = νn(A) =

∫
A

Xndµn = E[Xn;A],

showing the conditional expectation property and verifying that we have a martingale.

With this, we can answer our convergence question:
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Theorem 220

Let µ, ν be probability measures on (Ω,F) (again not assuming absolute continuity), such that Fn ↑ F , and again

define µn = µ|Fn and νn = ν|Fn for all n. If νn � µn with Xn = dνn
dµn

for all n, then X = lim supn→∞Xn satisfies

ν(A) =

∫
A

Xdµ+ ν(A ∩ {X =∞}).

The first term
∫
AXdµ is also called νcontinuous(A) (because it is absolutely continuous with respect to µ), while

the second term ν(A ∩ {X = ∞}) is called νsingular(A) (meaning its support is disjoint from ν). Basically, Xn is a

nonnegative martingale under the measure µ, so it converges almost surely to a finite limit under µ. However, it may

not do so under the measure ν, explaining the “boundary” second term. (Specifically, even though µ(X =∞) = 0, we

may have ν(X =∞) > 0.)

Once we prove this result, we’ll have proved the Radon-Nikodym theorem in the special case where we have

countable partitions Fn ↑ F increasing to the full σ-algebra (since νsingular is identically zero if we already know that

ν � µ, because then ν(X =∞) = 0).

Proof. The key idea is to introduce a measure that interpolates between µ and ν. Let ρ = µ+ν
2 , and let ρn = ρ|Fn =

µn+νn
2 for all n. By assumption, νn � µn � ρn (because ρn is an average of µn and νn, so any event with measure

zero under ρn must have measure zero under both µn and ρn), so the Radon-Nikodym derivatives

Xn =
dµn
dνn

, Yn =
dµn
dρn

, Zn =
dνn
dρn

are well-defined. We have Yn + Zn = 2 ρn-almost-surely, and by Lemma 219, Yn and Zn are Fn-martingales on

(Ω,F ,P). Furthermore, because they are nonnegative, they converge to finite limits Y, Z ρ-almost-surely, and thus

Y + Z = 2 ρ-almost-surely. (In particular, Y and Z are both bounded, so we have strong convergence results.) We

claim that Y = dµ
dρ . Indeed, fix some positive integer `; for all n ≥ ` and any A ∈ F` ⊆ Fn, we have (by the definition

of Yn, which is in Fn)
µ(A) = µn(A) =

∫
A

Yndρn =

∫
A

Yndρ,

which converges to
∫
A

Y dρ by the bounded convergence theorem (notice that this last step doesn’t work for X). Thus,

for any A ∈ F`, we have µ(A) =
∫
A Y dρ, so by a π-λ argument we have µ(A) =

∫
A Y dρ for all A ∈ F = σ

(⋃
` F`

)
,

so Y = dµ
dρ . Similarly, Z = dν

dρ . Now µn � µn � ρn, so by Lemma 216 we have dνn
dρn

= dνn
dµn

dµn
dρn

almost surely – that is,

we have Zn = XnYn almost surely, so Xn = Zn
Yn
∈ [0,∞] (where Xn = 0 only if Zn = 0, and Xn = ∞ only if Yn = 0).

Thus, X = lim supn→∞Xn = Z
Y (we have lim sup instead of lim in case of division-by-zero issues).

Turning back to the statement we are trying to prove, we know that ν � ρ with Radon-Nikodym derivative Z, so

we have

ν(A) =

∫
A

Zdρ =

∫
A

Z (WY + 1{Y = 0}) dP =

∫
A

ZWY dρ+

∫
A

Z1{Y = 0}dρ,

where W = 1
Y when Y > 0 and 0 otherwise. (We break up the integral in this way because X = ∞ corresponds to

Y = 0, and we’re trying to get X into the integral.) But now the first term is
∫
AXY dρ =

∫
AX

dµ
dρ dρ =

∫
AXdµ,

because ZW = X on the event that Y is positive (when Y = 0 there is no contribution to the integral), and we don’t

need to worry about the event {Y = 0} = {X =∞} in this term now that we’re integrating under µ-measure because

X is finite µ-almost-surely. And because Z = dν
dρ , the second term simplifies to

∫
A 1{Y = 0} dνdρdρ =

∫
A 1{X =∞}dν,

which is indeed ν(A ∩ {X =∞}), as desired.
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24 December 9, 2019
There won’t be any more assignments for this class – in this last week, we’ll cover a few topics of general interest.

Today, we’ll go over the proof of the Kesten-Stigum L logL criterion – the initial work comes from various papers by

Kesten and Stigum (including [5]), and many of the ideas covered in this lecture come from [7].

We’ll start with a review of the setup: say that ξ ∼ p is a probability distribution supported on Z≥0 (ξ is the L in

the theorem statement). Define an array ξn,i of iid random variables with law p, and define the Galton-Watson tree

by starting from a root vertex o (at depth 0) and letting the ith vertex at depth (n − 1) have ξn,i children at depth

n. This generates a (finite or infinite) tree, and Fn = σ(ξ`,i : i ≥ 1, 1 ≤ ` ≤ n) encodes all the information about the

tree.

Let Zn be the population of the tree at depth n, which satisfies the recursive equation Zn =
∑Zn−1

i=1 ξn,i . If we

assume that E[ξ] = m ∈ (1,∞) (so we’re in the supercritical case), then we know from previous discussion that the

probability of extinction (that is, the probability that Zn = 0 eventually) is some ρ ∈ [0, 1), meaning that there is a

positive probability that the population never dies out.

To understand the behavior of Zn in more detail, we know that Wn = Zn
mn is a nonnegative martingale, so it

converges almost surely to a limit W ∈ [0,∞). Because P(W = 0) satisfies the same fixed point equation as the

extinction probability, it is either ρ or 1. Then if P(W = 0) = 1, then Zn � mn almost surely, and if P(W = 0) = ρ,

we have P(W = 0 | nonextinction) = 0 (because whenever Z = 0, we also have W = 0), so W is positive and finite

almost surely. So conditioned on nonextinction, Zn � mn and we have exponential growth.

Kesten-Stigum then tells us when each of these cases occurs (this is a restatement of Theorem 183)

Theorem 221 (Kesten-Stigum)

Suppose (Zn)n≥0 is a supercritical Galton-Watson tree with offspring law ξ ∼ p, where E[ξ] = m ∈ (1,∞). Let

Wn = Zn
mn converge to W almost surely. Then the following are equivalent:

• P(W = 0) = ρ,

• E[W ] = 1,

• E[ξ log+ ξ] is finite (where log+(0) = 0 but otherwise we have the usual log).

On our homework, we showed that if E[ξ2] <∞, then the martingale Wn is bounded uniformly in L2 norm, so the

L2 martingale convergence theorem says that Wn converges in L2 to W , and hence also in L1. This means E[W ] = 1,

so we can’t have P(W = 0) = 1 and thus must have P(W = 0) = ρ. This theorem is a stronger version of that result.

One fact we’ll use in the proof of Kestin-Stigum also comes from our homework: we showed that if Y, Yi are iid

nonnegative random variables, then

lim sup
n→∞

Yn
n

=

0 if E[Y ] <∞,

∞ if E[Y ] =∞.

(The proof is that for any x > 0,
∑∞

n=1 P
(
Yn
n ≥ x

)
is sandwiched between Eb Yx c and Ed

Y
x e, which either both go to

0 or both go to ∞, and we can use Borel-Cantelli in either case.) As an easy consequence, we also have that if Y, Yi
are nonnegative integer valued random variables, then for any c > 1,

lim sup
n→∞

Yn
cn

=

0 E[log+ Y ] <∞

∞ E[log+ Y ] =∞.
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(This is the same proof as before but rewriting P( Yncn ≥ x) = P
(

logc
(
Yn
x

)
≥ n

)
– we have to deal with the case Yn = 0

separately, but that changes the expectation by at most 1.) This allows us to define a new process:

Definition 222

In a branching process with immigration, the population Xn at level n is given by

Xn =

Xn−1∑
i=1

ξn,i + Yn,

where ξn,i are iid as before and Y, Yi are iid (corresponding to the additional immigrating population).

Fact 223

On our homework, we showed that if E[log+ Y ] = ∞, then lim supn→∞
Xn
cn is infinite for all c > 1, and if

E[log+ Y ] < ∞, then lim supn→∞
Xn
mn converges to a finite limit ∈ (0,∞). The first case is easy by the previous

discussion, and the second can be shown with submartingale convergence theorem.

We’ll spend the rest of today linking these two results together. One key component comes from an exam question

and was also proved in last lecture as Theorem 220: basically, if µ, ν are finite measures on (Ω,F), and we have a

filtration Fn ↑ F , then we can write µn = µ|Fn and νn = ν|Fn . The result is that if νn � µn for all n, then we can

write

ν(A) =

∫
A

Wdµ+ ν(A ∩ {W =∞}) = νcontinuous + νsingular,

where Wn − dνn
dµn

and W = lim supWn. There are two extreme cases of this: having W = 0 µ-almost-surely is the

same as having νcontinuous = 0 and ν = νsingular singular with respect to µ, which is the same as having ν(W =∞) = 1

by setting A = Ω. On the other hand, if
∫

ΩWdµ = 1, meaning that νcontinuous(Ω) = 1, that’s equivalent to having

absolute continuity ν � µ and ν(W =∞) = 0.

To prove Theorem 221, we’ll apply this decomposition result on Ω = {rooted graphs} (which contains the rooted

trees) and Fn = σ(trees up to depth n). Ω can be made into a Polish space under the isomorphism distance (also

on our homework), and Fn increases to F , the Borel sigma-algebra on the metric space. The idea is to let µ =

Galton-Watson measure with offspring law p (meaning that we just generate a Galton-Watson tree in the ordinary

way under µ) and define ν so that dνn
dµn

= Wn = Zn
mn ; we’ll then proceed by looking at this process under the measure

ν. In principle, ν is already well-defined, since we know µn (and thus νn) for every n. But ν itself is a bit confusing,

and we don’t really know how to analyze a statement like ν(W =∞) = 0 yet. So we’ll do some preliminary work:

• First of all, if Tn is the Galton-Watson tree T truncated at depth n, then for any event B ∈ Fn,

ν(Tn ∈ B) = νn(Tn ∈ B) =

∫
1{Tn ∈ B}

Zn
mn
dµn

by the definition of the Radon-Nikodym derivative. In particular, letting B be the event that T dies by level

n, this integral is just
∫

0 dµn = 0 (because Zn = 0 on B). So the tree survives forever under ν (because

ν(extinction) = 0 – this is not true under µ.

• We can define ν1 explicitly: we have (remembering that m = E[ξ])

dν1

dµ1
= W1 =

ξ1,1

m
,

meaning that the original measure is biased by the number of offspring at the first level. In other words, ν1 is the

law of T1 with a size bias, and the probability of having k offspring is p̂k = kpk
m for any k ≥ 1. More generally,
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here’s a description of νn: let ν∗n be a probability measure on pairs (Tn, xn), where Tn is a tree of depth n and xn
is a vertex at depth n in Tn (meaning that we pick out a distinguished vertex at level n), given by

ν∗n(Tn, xn) =
µn(Tn)

normalization
,

where the normalization factor is∑
Tn,xn

µn(Tn) =
∑
Tn

µn(Tn)
∑
xn

1 =
∑
Tn

µn(Tn)Zn(Tn) = mn,

because this is the expression for the expected number of children E[Zn] under the normal Galton-Watson

measure. Now if ν̃n is the marginal of ν∗n on Tn (meaning that we forget which distinguished vertex we choose),

we have

ν̃n(Tn) =
∑
xn

ν∗n(Tn, xn) =
∑
xn

µn(Tn)

mn
= µn(Tn)

Zn(Tn)

mn
.

In particular, this means that dν̃n
dµn

= Zn
mn = Wn, so ν̃n is indeed the νn that we’ve been looking for – νn can be

obtained from µn by sampling a tree with a marked vertex and then forgetting the position of that vertex.

Nothing here seems to actually help yet (we still don’t have a way to describe ν), but the key observation is the

following: we can sample (Tn, xn) ∼ ν∗n for each n (which we can think of as Tn with a (unique) marked path ζn from

the root o to xn). We can also sample a tree (T, ξ) with a marked ray in the following way:

• Start from the root and have it generate ζ̂ ∼ p̂ children (from the size-biased law). Choose one of them, x1, to

be on the marked path.

• For all other children except x1, generate children according to the original law p.

• Generate children for x2 according to the size-biased law p̂, and choose one of them, x2, to be on the marked

path.

• Repeat this indefinitely, generating children according to p for any vertex not on the marked path and according

to p̂ for any vertex on it.

We can continue this process indefinitely, producing an infinite tree with a marked ray – importantly, this is

guaranteed to be an infinite tree because the size-biased law is supported on the positive integers, so an xi will always

exist. The infinite tree (T, ζ) has some law ν∗, and we claim that this agrees in law with (Tn, xn) – in other words, we

claim that ν∗|Fn = ν∗n for all n, where the right hand side is defined (as above) to be µn(Tn)
mn . Write the left-hand side

as ν∗|Fn = ν◦n – by our sampling process, we have

ν◦n(Tn, ζn) =
kpk
m
·

1

k
·

∏
x 6=x1

µn−1(T
(x)
n−1)

 · ν◦n−1(T
(x1)
n−1 ),

because we generate k children for the root vertex under the size-bias law, pick one of them at random, construct a

regular Galton-Watson tree rooted at x for all children x 6= xn−1, and perform the special sampling procedure up to

level (n − 1) for the marked vertex x1. We can compare this recursion to the one for ν∗n , which is

ν∗n(Tn, ζn) =
µ(Tn)

mn
=
pk
mn

∏
x at depth 1

µn−1(T
(x)
n−1),
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because other than the mn factor, we’re just doing the normal Galton-Watson sampling. This can be rewritten as

ν∗n(Tn, ζn) =
pk
m

∏
x 6=x1

µn−1(T
(x)
n−1)

 µn−1(T
(x1)
n−1 )

mn−1
.

Noticing that this is the same recursion as for ν◦n , and the two measures agree at n = 1, induction tells us that ν◦n = ν∗n

for all n. So now we have a measure ν∗ on (T, ζ), and we can just forget ζ by letting ν be the marginal of ν∗ on T .

Then ν restricted to Fn is the marginal of ν∗|Fn , which is the marginal of ν∗n |Fn , which is νn by our explicit calculations

above, so we have the desired ν|Fn = νn.

Now note that if (T, ζ) ∼ ν∗, then T \ ζ is a branching process with immigration because the unmarked children

coming off of ζ (that is, the siblings of the marked children) are “immigrating” into the tree as Y1, Y2, · · · . Specifically,
if Xn is the number of children at level n of the tree except for the marked ray, we have

Xn =

Xn−1∑
i=1

ξn,i + Yn,

where the Yns are iid with law ξ̂ − 1 (since we have the size-biased distribution but don’t count the marked vertex).

And by Fact 223, lim sup Xn
mn depends on E[log+ Y ], and

E[log+ Y ] = E[log+(ξ̂ − 1)] =
E[ξ log(ξ − 1)]

m
,

which is finite if and only if E[ξ log ξ] is finite! So we can now put everything together: Ω is the space of rooted graphs,

Fn are the sigma-algebras of the tree up to level n, µ is the Galton-Watson law with offspring law ξ ∼ p, ν∗ is the law
on pairs (T, ζ) as defined above, and ν is the marginal of ν∗ on T . For all n, µn, νn are the restrictions of µ, ν to Fn,
and dνn

dµn
= Wn = Zn

mn . And now if (T, ζ) ∼ ν∗, then T \ ζ is a branching process with immigration law Y = ξ̂ − 1, so

E[ξ log+ ξ] <∞ ⇐⇒ E[log+ Y ] <∞ ⇐⇒ ν∗
(

lim
Xn
mn

<∞
)

= 1

by Fact 223. Since Xn is the number of children at the nth level except for one of the vertices, we can replace Xn
mn

with Wn = Zn
mn (because the extra 1

mn is negligible). And if an event occurs with probability 1 under ν∗, it also occurs

with probability 1 under the marginal ν. Thus we can continue the chain of statements and write

E[ξ log+ ξ] <∞ ⇐⇒ ν
(

lim
n→∞

Wn <∞
)

= 1 ⇐⇒ ν � µ and
∫
Wdµ = 1,

where the last step comes from the “extreme decomposition case” we mentioned above where P(W = ∞) = 0. So

because P(W = 0) is either ρ or 1, but the latter case would yield
∫
Wdµ = 0, E[ξ log+ ξ] being finite is indeed

equivalent to P(W = 0) = ρ. And finally, writing a similar chain in terms of the notation from before (but now

assuming infinite E[ξ log+ ξ]), we have

E[ξ log+ ξ] =∞ ⇐⇒ E[log+ Y ] =∞ ⇐⇒ ν∗
(

lim sup
Xn
mn

=∞
)

= 1 ⇐⇒ ν(lim supWn =∞) = 1.

But W = lim supWn being infinite almost surely corresponds to the other extreme case where ν is singular with respect

to µ, meaning W = 0 µ-almost surely and thus E[W ] cannot be 1. Therefore E[ξ log+ ξ] being finite is also equivalent

to E[W ] = 1, as desired.

116



25 December 11, 2019

Today, we’ll cover the ζ(2) limit in the random assignment problem. We’ll use some of the techniques we’ve seen

in this class, and the results are very beautiful! There are two formulations of the problem that are equivalent:

Problem 224 (Version 1)

Let C ∈ Rn×n be a random matrix with iid entries each with distribution n · Exp (so in particular the entries have

mean n). Define

An =
1

n
min
σ∈Sn

(
n∑
i=1

Ci ,σ(i)

)
.

In other words, choose a rook-placement with minimum total sum of entries, and look at the average of those

entries. We wish to study E[An].

Problem 225 (Version 2)

Consider a complete bipartite graph Gn,n (where we have n vertices on the left and right and we draw all n2 edges

between the left and the right). Think of the vertices on the left side as indexing rows and vertices on the right

side as indexing columns, so Ci j is the weight of the edge connecting i on the left to j on the right. Letting each

edge have weight n · Exp as before, we can define

An =
1

n
min
M

{
n∑
i=1

Ci ,M(i)

}

where we take the minimum over perfect matchings M (which are a subset of edges such that every vertex is

adjacent to exactly one of those edges), and again we want to study E[An].

Here’s the result (from [2]) that we’ll be covering today:

Theorem 226 (Aldous)

In the setting above, we have limn→∞ E[An] =
∑∞

i=1
1
i2 = ζ(2) = π2

6 ≈ 1.6.

Fact 227

This answer was first conjectured in 1987 by Mezard and Parisi, and previous work had showed that

1 +
1

e
< 1.51 ≤ lim inf E[An] ≤ lim supE[An] ≤ 1.94 < 2.

Various “famous people” worked on these bounds, so many people cared about the answer to this problem. The

fact that the lim inf and lim sup are equal came from earlier work by Aldous in [1], and further work (see [6]

and [8]) showed E[An] =
∑n

i=1
1
i2 . Today, we’ll just show the original proof that the limit is π2

6 , but improvements

(see [11]) have further simplified the proof since then.

First of all, we may notice that E[An] does not scale with n, so we’ll start by explaining that. If we look at this

problem as a bipartite graph Gn,n with weights Ci j ∼ n · Exp, then for any matching M, we can define its cost

cost(M) =
1

n

n∑
i=1

Ci ,M(i).
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For any deterministic matching M, the expected value of the cost is 1
n

∑n
i=1 n = n, but we’re saying that the expected

cost of the best matching still stays constant. To understand this, one heuristic is to think about the edges incident

to a single vertex i on the left side, whose weights are n independent random variables C1, · · · , Cn. By definition, for

all t ≥ 0, we have

P(Ci ≥ t) = e−t/n =⇒ P
(

min
1≤i≤n

Ci ≥ t
)

=
(
e−t/n

)n
= e−t ,

which is the cdf of a standard exponential variable. Let C(1) be the smallest of the Cis, C(2) be the second smallest,

and so on (these are all still connected to a fixed vertex i). Since the exponential distribution is memoryless – that is,

P(C ≥ s + t|C ≥ s) = P(C ≥ t) – we can condition on the value of C(1) = min1≤i≤n Ci . Then we have n − 1 weights

left, and we know they’re all exponential and larger than Cmin, so the memoryless property tells us that

C(2)
d
= C(1) +

n

n − 1
· Exp

(here we use the fact that the minimum of k iid n · Exp random variables is distributed as n
k · Exp). Repeating this

process, if (C(1), · · · , C(n)) is the sorted list of weights attached to a vertex on the left, we have

(C(1), · · · , C(n))
d
=

(
E1, E1 +

n

n − 1
E2, · · · , E1 +

n

n − 1
E2 + · · ·+ nEn

)
,

where the Eis are iid exponential random variables. As n → ∞, this (heuristically) converges to (E1, E1 + E2, E1 +

E2 +E3, · · · ) which is a collection of points on the real line that can be described by a Poisson point process of rate
1 (in which the distance between points is given by an exponential random variable, and the number of points within

any interval [a, b] is given by a Poisson distribution). So in summary, if we look at the edges incident to a specific

vertex i , the first 100 smallest edges will be of constant order as n gets large, so it’s pretty reasonable to assume

constant-order weight for each Ci ,M(i) in our matching.

This is just a heuristic, though, and what we’ve said doesn’t really imply that the limit of E[An] should go to a

constant. So we have to be more specific:

Definition 228

The Poisson-weighted infinite tree is constructed as follows: let Π be the random collection of points (E1, E1 +

E2, E1 + E2 + E3, · · · ), where the Ei are iid exponential. In our tree, each vertex has infinitely many children

indexed by N, and the weights of the connecting edges are randomly sampled iid as Π for each vertex. (So the

first edge from each vertex is the lightest and given by E1, the next edge is given by E1 + E2, and so on.)

We define a matching M on this infinite tree in the same way as on our graph – it’s a subset of the edges such

that every vertex is covered exactly once. It turns out the graph Gn,n in our problem converges locally weakly to

the Poisson-weighted infinite tree T – we did the calculation for depth 1 above, and there’s a lot of independence

after that. So the main idea of Aldous’ proof is to consider the random bipartite graph (Gn,n,M
∗), where M∗ is the

best (lowest-cost) matching for Gn,n. Since Gn,n converges locally weakly to T , and M∗ is just a collection of 1s and

0s (telling us whether each of the edges are included), it seems reasonable to expect that we have the local weak

convergence

(Gn,n,M
∗)

lwc→ (T,M∗).

Trees are easier to analyze than complete bipartite graphs, so that motivates using the infinite tree to attack this

problem! One way to get a matching on the tree T is to always pick the lightest edge from the root, and then for

all children that aren’t connected, connect them to their lightest child, and so on. Because the lightest edge has

expectation 1, the average cost of this matching must be 1, which is less than π2

6 . So something has gone wrong –
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the point is thatM∗ has to arise from a local weak limit process, which is not true here! In particular, any local weak

limit should be spatially invariant, because the choice of root of our tree should not play any special role in whether

an edge belongs in the matching by the definition of local weak convergence. We’ll use the next result without proof:

Theorem 229 (Aldous)

If Wφ,M(φ) denotes the weight of the edge from the root φ to M(φ), then

lim
n→∞

E[An] = c∗ = inf
spatially invariant M

E[Wφ,M(φ)].

In words, consider any spatially invariant matching M of our infinite tree. Because all edges are equivalent, the

average cost can be defined as the expected cost of the edge next to the root! One direction of this theorem, showing

that lim inf E[An] ≥ c∗, is more straightforward, because we can use a local weak limit argument (which is essentially

compactness). Specifically, we can show that a subsequence of (Gn,n,M
∗) converges locally weakly to (T,M) for some

spatially invariant matching M, and then the average cost for M must be at least c∗ because c∗ is optimal. But the

other direction is more difficult because we have to produce a good approximation for the ideal c∗ on a finite graph,

and we won’t go through it here.

Instead, in the rest of this lecture, we’ll show that c∗ = π2

6 . Here’s a heuristic that the paper also starts off with

(we’re going to subtract infinity from itself, so there will be some issues with the rigor). Let the cost of the Poisson-

weighted infinite tree T be the minimum cost of a matching on T (obviously every matching has infinite weight, but

ignore that for now). Then we can write down a recursion based on what happens at the first level:

cost(T ) = min
j≥1

Wφ,j +
∑
i 6=j

cost(T (i)) + cost(T (j) \ j)

 .
Basically, we pay the weight of the edge φ, j connected to the root, plus the cost from subtrees T (i) at level 1 for all

i 6= j , and then we can’t use vertex j itself for T (j). If we compare this to the cost of the tree without the root vertex,

we get a lot of cancellation because the cost of (T \ φ) is just the sum of the costs T (i):

cost(T )− cost(T \ φ) = min
j≥1

(
Wφ,j −

(
cost(T (j))− cost(T (j) \ j)

))
.

Defining Xφ = cost(T )− cost(T \ φ) and Xj = cost(T (j))− cost(T (j) \ j), we get

Xφ = min
j≥1

(Wφ,j −Xj) .

But if we have a spatially invariant matching, Xφ and Xj should agree in distribution (because they are both defined

to be the difference between the cost of a full tree and the tree without a particular vertex).

Lemma 230

Let 0 < ζ1 < ζ2 < · · · be a Poisson point process (with (ζ1, ζ2, · · · )
d
= (E1, E1 + E2, · · · )), and let X,Xi be

iid from some probability measure µ on R. Then we have X d
= mini≥1 (ζi −Xi) if and only if µ is the logistic

distribution with density f (x) = 1
(ex/2+e−x/2)2 and cdf F (x) = ex

1+ex .

This lemma is proved by calculus, and once we know the distribution function of µ, we can calculate useful properties

directly:
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Lemma 231

Let X,Xi be iid from the logistic distribution µ, and define h(x) = P(X1 +X2 ≥ x) for all x ≥ 0. Then∫ ∞
0

h(x) = 1,

∫ ∞
0

xh(x)dx =
π2

6
.

To understand how this relates to the matching problem, we can go back to the boxed equation above. We

can guess that in the optimal matching for our tree, the weight of the edge adjacent to the root has distribution

Wφ,M∗(φ)
d
= ζi∗ , where i∗ = argmin(ζi − Xi)i≥1. So we will calculate E[ζi∗ ], and hopefully that’s the number that we

want – there’s various ways to do this, but we’ll follow what the paper does. Consider the process (ζi , Xi), which is

a sequence of points scattered on the right half-plane – call the ζ-axis the z-axis and the X-axis the x-axis. Because

the ξis form a Poisson point process, the number of points in any z-interval [a, b] is a Poisson random variable with

rate b− a. This means that within any region of the zx-plane, the number of points inside this region is also Poisson.

Specifically, (ξi , Xi) is a Poisson point process on (0,∞)×R with intensity measure Leb⊗µ, where µ is logistic (that
is, the Xis are iid logistic) and

#{points in R} ∼ Pois((Leb⊗ µ)(R)).

for any region R. In particular, for any two disjoint regions R and S, behavior inside those regions is independent, so if

we condition on the event Ay = {some point j of (ζi , Xi) lands on the vertical line z = y} (we will actually condition

on finding a point where z ∈ [y , y +dy ]), then the rest of the process is distributed as an independent Poisson process

(and z = y is disjoint from the other regions). This allows us to compute the expected value of i∗ = argmin(ζi −Xi).
We claim that

P(i∗ = j |Ay ) = P
(
y −Xj ≤ min

i≥1
(ζ̃i − X̃i)

)
,

where the j is the same one as in the event Ay (which we know the value of because we’re conditioning on Ay ) and

the ζ̃is and X̃is are independently sampled from Xj . (In words, this is calculating the probability that if we find a

point at horizontal coordinate y , it has the smallest value of ξi −Xi among all points in the process.) To explain this

equation, notice that i∗ = j means that ζj − Xj is the minimal value among all ζi − Xis, but we condition on ζj = y

and then the remaining (ξi , Xi) pairs are all independent of Xj so we can reindex them as an independent Poisson point

process. Write X̃ = mini≥1(ζ̃i − X̃i); by Lemma 230, because the X̃is are logistic, so is X̃. Putting this all together

and remembering that X and X̃ are independent, we find that

P(i∗ = j |Ay ) = P(y −Xj ≤ X̃) = P(X + X̃ ≥ y) = h(y)

by Lemma 231. So now we can calculate the unconditioned probability density function for ζi∗ (which is what we’re

after) – to have ζi∗ ∈ [y , y + dy ], we must have the event A[y,y+dy ] occur, so

P(ζi∗ ∈ [y , y + dy ]) = P(A[y,y+dy ]) · P(i∗ = j |A[y,y+dy ]) = h(y)dy

(because the probability of having a point in the Poisson point process in a horizontal strip of length dy is dy). In

other words, ζi∗
d
= Wφ,M∗(φ) has density h, so the expected value of Wφ,M∗φ on our infinite tree is just the expected

value
∫
xh(x)dx = π2

6 .

To conclude, we’ll briefly discuss how to make the rest of the proof actually work. Our random variable i∗ is related

to the matching on our infinite tree T , but we still need to construct the actual matchingM∗. (Morally, we want to

sample the infinite tree and then solve the boxed recursion above for the Xis, but there are infinitely many equations

and variables). So instead, the idea is to only look at the edge-weights of T up to some finite level n and solve for Xis
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within that, and we can avoid issues with dependence by using directed edges instead of undirected edges. Instead

of the boxed recursion above, we now require the modified statement that

Xv→w = min
u 6=v,w→u

(Ww→u −Xw→u).

So we construct (T,X) (the infinite tree and the set of Xi random variables) as follows. First of all, we sample the

edge-weights of T up to some finite-level n, and we let Wv,w be the weight along the edge connecting v with w (in

both directions). We can then determine the directed edge weights Xv→w and Xw→v within level n as follows. At all

vertices of level n, sample iid logistic random variables pointing to their children. Then applying the recursion at each

level n vertex allows us to find the directed edge weights from level (n − 1) to n, and repeatedly doing this allows us

to determine Xv→w for all edges pointing away from the root. After that, we can also determine the edge weights

pointing towards the root by continuing to apply the recursion relation – finally, we can apply the Kolmogorov extension

theorem to get the infinite construction (T,X).

But having X in addition to T now allows us to construct the matching on T . Indeed, the edge between i and j is

in the matching if

j = argmink∼i(Wi ,k −Xk→i).

This gives us a unique neighbor for each vertex, and we can check that i ’s neighbor is chosen to be j if and only if j ’s

neighbor is chosen to be i , because if j is chosen to be i ’s neighbor, then

W (i , j)−Xi→j < min
k∼i ,k 6=j

W (i , k)−Xi ,k = Xj→i

by our modified recursion relation. In other words, an edge is included in the matching if the two X variables associated

to it add to more than the weight Wi j , and we can check that this will not hold for any other vertex! This thus gives

us a construction with the desired weights (and thus a spatially invariant matching with expected weight π2

6 which we

can plug into Theorem 229), and we can finish the proof by showing that any deviation from this matching cannot

satisfy the recursion relation. (But we can read the paper for more details!)
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