
18.676: Stochastic Calculus

Lecturer: Professor Nike Sun
Notes by: Andrew Lin

Spring 2020

Introduction

Most of the logistical information is on the class website at [1], including an official class summary and many references

to relevant papers and textbooks. Here are the main points for us: there will be homework roughly once every two

weeks. The first two are already posted, and they’ll be due February 12 and February 24 (submitted in class). Grading

is weighted 55 percent for homework, 20 percent per exam, and 5 percent for attendance. Office hours are Monday

2–4 in Professor Sun’s office, 2-432.

18.675 is a prereq, so we should talk to Professor Sun if we haven’t taken that class. We will be using [2] as our

main textbook.

1 February 3, 2020
Today, we’ll begin with an informal overview of the topics covered in this class. We’ll start with some basic reminders:

the standard Gaussian density
g(x) =

1√
2π
e−x

2/2

should be burned into our head, and the variable Z ∼ N(0, 1) is distributed according to this density. We should

know that if X,Xi are symmetric random signs (±1 with equal probability), and Sn =
∑n

i=1Xi , then Sn√
n

converges

in distribution to N(0, 1). We should also know how to prove this, either using the central limit theorem or by direct

combinatorial calculation (because Sn is a scaling of the binomial distribution).

Next, we can consider the simple random walk on the integers, which gives us a process (Sn)n≥0 (where n is a

time index): since Sn√
n

converges in distribution to a Gaussian, this means that over time n, the walk typically covers

a distance on the order of
√
n. So if we rescale time by n and rescale space by

√
n, we get a process

X(n)(t) =
1√
n
S⌊nt⌋.

For any fixed t, we still have the central limit theorem as before, which tells us that X(n)(t) d→ N(0, t). But one

idea throughout this class will be that we don’t need to consider a single t: the entire process X(n) =
(
X(n)(t)

)
t≥0

converges in distribution to (Bt)t≥0, something called a Brownian motion, as n →∞. Note that we haven’t defined

a Brownian motion yet, and we haven’t described the topology in which this converges in distribution. But we’ll do

everything more formally later on.

In short, here are some of the main goals of this class:
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• Formal construction of Brownian motion,

• Convergence of some natural processes (like simple random walk), which we can think of as a “functional CLT,”

• Calculations with Brownian motion (stochastic calculus).

For now, though, we’ll keep surveying some more ideas from the course: we’re going to talk a bit about Itô’s

formula and give an application to the conformal invariance of planar Brownian motion.

Example 1

First, we’ll describe some properties of our Brownian motion Bt given our informal definition above.

We should have B0 = 0, and for any 0 ≤ s ≤ t, we should have Bt − Bs ∼ N(0, t − s). Also, for any

0 ≤ s1 ≤ t1 ≤ s2 ≤ t2, Bt1 − Bs1 and Bt2 − Bs2 should be independent (because they correspond to disjoint parts of

the random walk). And in fact, just these properties actually suffice to characterize Brownian motion completely.

Example 2

Next, we’ll do a conceptual overview of Itô’s formula. Consider a process that evolves as

dXt = µtdt + σtdBt .

Informally, we can think of writing this as

Xt+dt −Xt = µtdt + σt · N(0, dt).

Let f : R→ R be a twice-differentiable function. If Xt followed a deterministic smooth trajectory, then we would know

how f (Xt) evolves, since we just have df (Xt) = f ′(Xt)dXt . But if we expand the stochastic version out, we instead

find that

df (Xt) = f
′(Xt)dXt +

1

2
f ′′(Xt)(dXt)

2

= f ′(Xt) (µtdt + σtdBt) +
f ′′(Xt)

2
(µtdt + σtdBt)

2 .

Because dBt is on the order of
√
dt, it dominates the µtdt, so we can replace (µtdt + σtdBt)

2 with just σ2t (dBt)
2 =

σ2t dt · N(0, 1)2. What Itô’s formula says is basically that we can actually ignore the fluctuations in the N(0, 1)2 term

if we take many measurements, and so that just disappears from the expression (it’s 1 on average). Thus,

df (Xt) = f
′(Xt) (µtdt + σtdBt) +

f ′′(Xt)

2
σ2t dt

=

(
f ′(Xt)µt +

f ′′(Xt)σ
2
t

2

)
dt + f ′(Xt)σtdBt ,

and we’ve now separated the contribution into a drift and a stochastic term.

Using this, we can do an application to planar Brownian motion – first, we’ll review a bit of complex analysis. If

we have a function f : C → C or f : D → C for some open D, then f is holomorphic or complex differentiable at

z ∈ C if the complex derivative

f ′(z) = lim
h→0

f (z + h)− f (z)
h

∈ C

exists. (Being complex differentiable is much stronger than being differentiable in R2 because we approach 0 in all

directions in the complex plane.) If we think of our function as going from R2 → R2, where z = x + iy and f = u+ iv
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(so that u, v are real-valued functions and x, y are real numbers), then f is holomorphic at z if the limits from the real

axis and imaginary axis are the same, meaning that we require

∂f

∂x
=
∂u

∂x
+ i
∂v

∂x
,
1

i

∂f

∂y
=
1

i

∂u

∂y
+
∂v

∂y

to be equal. Thus, we have the Cauchy-Riemann equations

ux = vy , uy = −vx .

One useful thing to know is that the Laplacian of the real part of f is

∆u = uxx + uyy = vxy − vyx = 0,

which means that the real part of any complex differentiable function is harmonic (and so is the imaginary part by an

analogous calculation).

Example 3

Consider a two-dimensional (standard) Brownian motion (Xt , Yt) – this just means that Xt and Yt are independent

standard one-dimensional Brownian motions. Alternatively, we can take Zt = Xt + iYt to be a standard Brownian

motion in C.

Suppose we have a conformal map f : D → D′ (which means that f is holomorphic and has a holomorphic inverse

f −1 : D′ → D). Again, let u = Re f and v = Im f .

Question 4. How does f (Zt) evolve if Zt stops when it hits the boundary of D?

We’ll need a two-dimensional version of Itô’s formula for this, but the same Taylor expansion idea works:

du(Zt) =
[
ux(Zt) uy (zt)

] [dXt
d Yt

]
+
1

2

[
dXt d Yt

] [uxx(Zt) uxy (Zt)
uyx(Zt) uyy (Zt)

][
dXt

d Yt

]
.

When we expand this out, we get cross terms like dXt · d Yt , which look like dt · N(0, 1)Ñ(0, 1). If we add up many

of these, they cancel out and become negligible, so we don’t have to worry about those: this means the second term

will only have the diagonal term contributions

1

2

(
uxx(dXt)

2 + uyy (d Yt)
2
)
,

but now we can replace (dXt)2 and (d Yt)2 with dt by the same argument as above, and now uxx+uyy = 0 because u is

harmonic. So the entire second-order term actually vanishes, and we’re just left with (now doing the same calculations

for v(Zt)) [
du(Zt)

dv(Zt)

]
=

[
ux(Zt) uy (Zt)

vx(Zt) vy (Zt)

][
dXt

d Yt

]
.

The 2-by-2 matrix on the right-hand side can be thought of as

G =

[
ux uy

vx vy

]
=

[
ux uy

−uy ux

]
=
√
u2x + u

2
y (rotation matrix),

but
√
u2x + u

2
y is just the modulus of f ′(z) = ux + ivx , and the determinant of the rotation matrix has to be 1 (we

have a conformal map). So we can conclude that if Zt = Xt + iYt is a standard Brownian motion in D ⊆ C, and
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f : D → D′ is conformal, then as long as Zt is in D, f (Zt) evolves via[
du(Zt)

dv(Zt)

]
= |f ′(Zt)|O(Zt)

[
dXt

d Yt

]
,

where O(Zt) is a 2× 2 rotation matrix. Note that the standard bivariate Gaussian N(0, I2×2) is rotationally invariant

(spherically symmetric), so it is reasonable to believe that standard Brownian motion is also rotationally invariant: if

O is a 2× 2 orthogonal matrix and Z is a BM in R2, then so is OZ.

We can also consider scaling: if Bt is a Brownian motion, then σBt is equal in distribution to Bσ2t . This is clearly

true for any fixed t because they’re both Gaussian, but in fact the idea is that we actually can’t tell the two images

(of the sample paths) apart. So the Brownian motion is a self-similar fractal.

Remark 5. Note that in the formula we’ve derived, the scale factor and the rotation depend on the given time. (This

means, for example, that when |f ′(Zt)| is big, the process runs faster.) So the process itself is not conformally

invariant, but the trace (the image of the motion) is indeed conformally invariant.

With the rest of the time today, we’ll give an example of a question that this class will let us answer:

Example 6

Consider a simple random walk on a grid with ε spacing on (εZ)× (εZ≥0). Suppose that we start our walk near

(0, y) and stop when we hit the horizontal axis. What is the law of the hitting location (the x-coordinate)?

We’ll think about this problem when ε is small, since we can approximate this walk with a Brownian motion in the

upper-half (complex) plane. One way to approach this is to map the problem into an easier domain: the function

f (z) = i−z/y
i+z/y maps H conformally into the unit disk D, and our new starting point is now the origin. Since we only care

about the hitting location (and not the time), and the Brownian motion is spherically symmetric, the hitting location
must be uniform on ∂D, which means the distribution on H can be easily recovered.

More explicitly, for any interval [a, b] ∈ R, we can calculate the probability of hitting within that interval explicitly –

the angle covered near x is proportional to |f
′(x)|
2π = y

π(x2+y2) (the factor of 2π coming from the length of the boundary

of the unit disk), meaning that

PH(Zτ ∈ [a, b]) = PD(Z̃σ ∈ f ([a, b]))

=

∫ b

a

y dx

π(x2 + y2)
.

This last integrand is also called the Poisson kernel for H (we’ll write it as Py (x) =
y

π(x2+y2)), because it’s closely

connected to the Dirichlet problem on H, which goes as follows. If we’re given a nice function b : R→ R and we want

to know the harmonic interpolation of b to H, the answer is given by

h(x, y) = E[b(Zτ )|Z0 = x + iy ];

that is, we start a Brownian motion at x + iy and find the expected value of b when it hits the boundary. (We can

prove this by looking at a finite graph or with direct calculation, and we’ll talk about it more later.) But explicitly, this

can be written as an integral

E[b(Zτ + x)|Z0 = iy ] =
∫
R
Py (s)b(s + x)ds.

Since Py is symmetric, we can replace s with −s, and thus this expected value becomes a convolution (b ∗Py )(x) with

the Poisson kernel. This is something we’ll see come up in the future as well!
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2 February 5, 2020
Today, we’ll start to formalize some of the ideas from yesterday’s informal overview – specifically, we’ll be starting with

Gaussian processes and Gaussian spaces. (We’ll follow the textbook pretty closely for now.) All random variables will

live on a common probability space (Ω,F ,P).

Definition 7

A d-dimensional Gaussian vector is an Rd -valued random variable X such that 〈X, u〉 is a one-dimensional

Gaussian variable for any u ∈ Rd .

This is somewhat fancier than other definitions and doesn’t depend on a choice of basis. In addition, this definition

doesn’t specify that 〈X, u〉 and 〈X, v〉 need to be jointly Gaussian for vectors u, v , but we’ll see that it is a consequence

of the definition.

Proposition 8

The law of X is uniquely determined by the mean vector µ = E[X] ∈ Rd and the covariance matrix Σ =

E[(X − µ)(X − µ)T ] ∈ Rd×d .

Proof. Take any θ ∈ Rd . By definition, 〈X, θ〉 is Gaussian with some mean and variance, but we can compute those

from µ and Σ:

E[〈X, θ〉] = 〈E[X], θ〉 = 〈µ, θ〉

by linearity of expectation, and

Var(〈X, θ〉) = Cov(〈X, θ〉, 〈X, θ〉) = θTΣθ

because covariance is bilinear. This means that we know the full distribution of 〈X, θ〉, which tells us the characteristic

function

ϕX(θ) = E [exp (i〈X, θ〉)] = exp
(
i〈µ, θ〉 −

1

2
θTΣθ

)
,

and as we saw in 18.675, knowing all of these characteristic functions is enough to determine the law of X.

Because of this, we’ll use the notation X ∼ N(µ,Σ), where µ ∈ Rd and Σ ∈ Rd×d is a symmetric positive

semidefinite matrix (because variance is always nonnegative). Any such matrix has a Cholesky factorization Σ = AAT ,

where A is a d × r matrix, and then if Z is standard normal in r dimensions (that is, iid standard Gaussian in each

component), then we have

µ+ AZ ∼ N(µ,Σ).

(Indeed, we can check that this has the right mean and variance by expanding out the matrix multiplication for AZ

and using that E[ZaZb] = δab.) In particular, we can write Σ = AAT for an invertible square matrix A if and only if Σ

has full rank, and in this case only we can use the change of variables formula to find that X has density

f (x) =
exp

(
− 12(x − µ)

TΣ−1(x − µ)
)

(2π)d/2| detΣ|1/2
.

(If r < d , then the law of X is supported on a subspace of Rd of lower dimension, so it has no density.)

One important fact is that for Gaussians, being independent and being uncorrelated are the same thing:
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Lemma 9

If X ∼ N(µ,Σ) is a d-dimensional Gaussian vector, then Xi are mutually independent if and only if Σ is diagonal.

In contrast, there’s the standard non-example where we consider Z ∼ N(0, 1) and ε ∼ Unif({±1}). Then the

covariance between εZ and Z is zero, but the two variables aren’t independent because they always have the same

absolute value (basically, this goes wrong because the two variables aren’t jointly Gaussian).

Proof. The forward direction is easy (independent implies uncorrelated). For the other direction, suppose Σ is a

diagonal matrix. Then the characteristic function

ϕX(θ) =

d∏
j=1

exp

(
iθj −

1

2
σj jθ

2
j

)
has no cross-terms, so the characteristic polynomial factorizes and thus the different components are independent as

desired.

With this, we’ll move on to the idea of a Gaussian space on (Ω,F ,P). (For the rest of today, we’ll assume

Gaussians are centered, meaning they have mean zero.) Recall that L2(Ω,F ,P) is the space of all (R-valued) random

variables on our probability space with finite second moment – this is a Hilbert space with inner product

〈X, Y 〉L2(Ω,F ,P) =
∫
Ω

X(ω)Y (ω)dP(ω) = E[XY ].

Definition 10

A (centered) Gaussian space is a closed linear subspace of L2(Ω,F ,P) containing only centered Gaussian

variables.

Example 11

Take X ∼ N(0,Σ) in Rd . Then the span of the coordinate random variables {X1, · · · , Xd} is a Gaussian space.

Meanwhile, a non-example is the span of Z ∼ N(0, 1) and εZ (where ε is the random sign as before); this doesn’t

work because Z + εZ is zero half the time and thus not Gaussian.

Gaussian spaces are important because they turn probability into geometry; for example, independence of Gaus-

sian variables becomes orthogonality in the space:

Theorem 12

Let H ⊆ L2(Ω,F ,P) be a centered Gaussian space, and let (Hα)α∈I be linear subspaces of H. Then the σ-fields

(σ(Hα))α∈I are independent if and only if the Hα are pairwise orthogonal.

We can read the book for this – it’s really a fancier version of Lemma 9. A related point is that conditional

expectation among Gaussians corresponds to orthogonal projection in a Gaussian space. By the way, the first hypothesis

is important here – we want that the Hα are all subspaces of a single centered Gaussian space to ensure that they

are jointly Gaussian.
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Problem 13

Suppose we have a bivariate normal (two-dimensional Gaussian) given by[
X

Y

]
∼ N

([
0

0

]
,

[
a b

b c

])
,

where we assume that the covariance matrix is positive definite. What is the law of Y conditional on X?

The standard trick used here is to find some θ such that Y − θX is independent from X. Here, Y − θX is also

jointly Gaussian with X and Y , so we just need to find what value of θ satisfies

0 = Cov(Y − θX,X) = b − θa,

meaning we should set θ = b
a . Then we can break Y up into a “parallel” and a “perpendicular” part as

Y =
b

a
X +

(
Y −

b

a
X

)
,

where the first term is in σ(X) and the second term (independent of X) is a Gaussian with variance

Var

(
Y −

b

a
X

)
= Cov

(
Y −

b

a
X, Y

)
= c −

b2

a
.

Putting everything together, the conditional distribution is given by

Y |X ∼ N
(
bX

a
, c −

b2

a

)
.

More generally (as an exercise for us), if [
X

Y

]
∼ N

([
0

0

]
,

[
A B

BT C

])
,

where X lives in a k-dimensional space and C lives in an ℓ-dimensional space, then we can check that Y |X is distributed

as N(BTA−1X,C − BTA−1B).

Theorem 14

Let H ⊆ L2(Ω,F ,P) be a centered Gaussian space, and let K ⊆ H be a closed subspace. Then for any X ∈ H,

we have

X|σ(K) = N(πK(X),E[(X − πk(X))2]),

where πK denotes the orthogonal projection of X onto K.

In geometric terms, the mean is the “parallel” part, and the variance is the “perpendicular” part. (Also, πK(X) is

measurable with respect to σ(K), so it is indeed known once we condition on the sigma-algebra.) In contrast, notice

that for a general X ∈ L2(Ω,F ,P) (not necessarily Gaussian), we only know that

E(X|σ(K)) = πL2(Ω,σ(K),P)(X).

In particular, σ(K) is generally very big – if K is the span of some variable Z, then σ(K) is the set of all measurable

functions of Z. So this theorem tells us that we can project onto a much smaller subspace in the Gaussian case.
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Problem 15 (Kalman filter; on homework)

Suppose we have independent Gaussians εn ∼ N(0, σ2) and ηn ∼ N(0, δ2) and we have some true unknown state

of a system which evolves over time:

0 = X0 → X1 → X2 → · · · → Xn, Xn+1 = anXn + εn+1.

Suppose we’re given a noisy observation Yi at each time satisfying Yn = cXn + ηn. (Assume that we know the

values of an and c and σ2 and δ2.) Our goal is to find E[Xn|Y1, · · · , Yn].

One approach is to define a Gaussian space H which is the span of the εi and ηi up to some time n. (In other

words, this is all of the noise going into the system up to time n.) From the way this is designed, all of the Xi and Yi
are linear combinations of the εs and ηs, so we always stay in the Gaussian space throughout the evolution. Then if

we want E[Xn|Y1, · · · , Yn], we’re doing an orthogonal projection – in particular, Xn must be a linear combination of Y1
up to Yn.

We’ll next discuss Gaussian processes, which are generalizations of Gaussian vectors:

Definition 16

Let I be an arbitrary (possibly uncountable) index set. A collection of random variables (Xt)t∈I is a (centered)
Gaussian process if any finite linear combination of the Xts is a one-dimensional Gaussian. The Gaussian space
generated by (Xt)t∈I is the closure of the linear span of the Xts. Define the covariance function Γ : I × I → R
via Γ(s, t) = Cov(Xs , Xt).

The covariance function Γ is symmetric and positive semidefinite, meaning that
∑

s,t θ(s)θ(t)Γ(s, t) ≥ 0 for any

θ which is nonzero for finitely many values in I (otherwise, this statement may not make any sense), since this

expression is just the variance of
∑

s θ(s)Xs .

The natural follow-up question is whether there necessarily exists a Gaussian process with a given (symmetric,

positive semidefinite) covariance function. The answer is yes, and this follows basically from the Kolmogorov extension

theorem (which we proved in 18.675, so we won’t do now). The most important example for us will be the construction

of Brownian motion based on a Gaussian process with index set R≥0, where the function takes the form

Γ(s, t) = Cov(Bs , Bt) = min(s, t)

(because if WLOG s < t, then Bt = Bs + (Bt −Bs), and the second term is independent of Bs). But we don’t want

to immediately cite the Kolmogorov extension theorem now, because we want to make sure that with probability 1,

our process is continuous in t – that is, for all ω ∈ (Ω,F ,P), Bt(ω) is continuous in t. Specifically, the theorem will

give us a measure on (RI ,B⊗I , ν), but that’s not really the space we want to use – we want the space of continuous

functions instead. So we’ll come back to this a little later.

On our homework, though, there’s a different construction of Brownian motion based on the construction of “white

noise,” which is what we’ll discuss for the rest of class. The heuristic idea is that on every “pixel” of space, we see an

independent Gaussian random variable, so we get “snow on a TV screen.” Here’s a more formal definition:

Definition 17

Let (E, E) be a measurable space, and let µ be a σ-finite measure on (E, E). Then a Gaussian white noise on

(E, E) with intensity µ is a linear isometry G : L2(E, E , µ)→ H, where H ⊆ L2(Ω,F ,P) is a centered Gaussian

space.
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An isometry preserves the inner product, so 〈f , g〉 = 〈G(f ), G(g)〉. (In other words, the covariance between G(f )

and G(g) should be the same as the inner product between f and g.) So for any “patch” of size dx around x , we

assign a Gaussian variable N(0, µ(dx)), and we do this for all points independently. So if we take a subset A ⊆ E, we

can think of the white noise being distributed as the “sum of all of these small Gaussian random variables:”

G(1A) = G(A) ∼ N(0, µ(A)).

This is an isometry because A and B being disjoint means we have independence G(A)⊥⊥G(B), so

0 = 〈1A, 1B〉 = Cov(G(1A), G(1B)).

In the informal language of “adding up infinitesimal Gaussian random variables,” we can write G(f ) =
∑

x∈E f (x)Zx

where Zx = N(0, µ(dx)), which helps us see that

Cov(G(f ), G(g)) = Cov

(∑
x

f (x)Zx ,
∑
x

g(x)Zx

)
=
∑
x

f (x)g(x)µ(dx)

(only the diagonal terms emerge), which gives exactly the inner product between f and g. But of course, this doesn’t

exactly make sense without the formal definition.

However, even when we have this definition, we still need to ask whether we can actually construct such an object.

The last question on our homework asks us to construct an explicit white noise G and in fact construct Brownian

motion from that via Bt = G(1[0,t]). This Brownian motion will have the right covariance properties, and we can show

that B is continuous almost surely – this is actually the historically older construction of Brownian motion.

We’ll finish by contrasting all of this with something else we might have seen: compare this Gaussian white noise

of N(0, µ(dx)) to the Poisson random measure, where for each patch of dx , we assign a Bernoulli random variable

of parameter µ(dx). Then taking subsets A ⊆ E, we’ll get a normal distribution in the white noise case with variance

µ(A), but a Poisson distribution of parameter µ(A) in the Poisson random measure case.

3 February 10, 2020
Last time, we talked about the general definitions of finite-dimensional Gaussian vectors, Gaussian spaces, Gaussian

processes, and Gaussian white noise. Today, we’ll go through about the construction of Brownian motion, but we’ll

need to cover a few preliminaries first.

Recall that if we have a covariance function Γ : I × I → R which is symmetric and positive semidefinite, then

there exists a Gaussian process (Xt)t∈I with covariance function Cov(Xs , Xt) = Γ(s, t). (We will often be working

with I = [0,∞).) We showed this with the Kolmogorov extension theorem – informally, the idea is that to define

a measure on RI , we need to be able to write down the joint law for any finite subset of I in a consistent way, and

then the Kolmogorov extension theorem gives us the measure (RI ,B⊗IR , ν). But in our case, if we’re given the values

of Γ(s, t), then Γ yields a covariance matrix for every finite collection of points in I.

Definition 18

In the special case where I = [0,∞) and Γ(s, t) = min(s, t), the resulting Gaussian process (Xt)t≥0 is called a

pre-Brownian motion.

Here’s a quick connection to the material from the end of last lecture:
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Proposition 19

Let (Xt)t≥0 be a real-valued stochastic process (any collection of random variables on (Ω,F ,P) indexed by t).

Then the following are equivalent:

• X is a pre-Brownian motion,

• We can express Xt = G([0, t]) = G(1[0,t]), where G is a Gaussian white noise on I = [0,∞) with intensity

equal to the Lebesgue measure.

Proof. The backwards direction follows directly from the definition of a Gaussian white noise – G is defined to be an

isometry, so we do get the correct covariance function. For the forward direction, we’re given a pre-Brownian motion,

and we need to construct an isometry. If f is a step function of the form

f (t) =

n∑
i=1

ai1(ti−1, ti ],

then we define

G(f ) =

n∑
i=1

ai(Xti −Xti−1).

We can check that G is an isometry on this class of step functions – specifically, if h(t) =
∑n

i=1 bi1{t ∈ (ti−1, ti ]}
(without loss of generality we can assume the two functions have the same break points ti), then the covariance can

be computed as

〈G(f ), G(h)〉 =
n∑
i=1

aibi(ti − ti−1) = 〈f , h〉

because distinct increments of X are independent by the definition of a pre-Brownian motion. So we do have an

isometry G from the step functions to the Gaussian space H spanned by X, and now we just need to define G on all

of L2. But the step functions are dense in L2([0,∞)), so we can extend G by finding step functions fn that converge

in L2 to a general f ∈ L2([0,∞)). Because fn converge to f in L2, they form a Cauchy sequence (in L2); since G

preserves distances, G(fn) is a Cauchy sequence in the Gaussian space. Since the Gaussian space is a subspace of L2,

this means G(fn) will converge in L2 to a limit G(f ), and this gives us the isometry we want.

As a reminder, we’re going to construct a specific white noise G which guarantees continuity of sample paths.

The generic definition we have here doesn’t contain such a guarantee, because the Kolmogorov extension theorem

gives us a process X = (Xt)t≥0 which is just some random element of the space (RI ,B⊗I , ν) for I = [0,∞). This

sigma-algebra contains events of the form

{Xt1 ∈ A1, Xt2 ∈ A2, · · · , Xtn ∈ An} ,

where Ai are Borel subsets of the real line, as well as an event like

{Xt = 0 ∀t ∈ Q},

which is a countable intersection of the events above. On the other hand, events that are not measurable are things

like

{Xt = 0 ∀t ∈ I},
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because an uncountable intersection of events need not be measurable, and similarly

{Xt continuous in t}, {Xt measurable in t}

also require us to know about Xt on uncountably many values of t. So the probability space isn’t rich enough to

capture properties like continuity – here is an example of something that can go wrong:

Example 20

Let X be a Gaussian process with Γ(s, t) = min{s, t} on (RI ,B⊗I , ν). We will introduce some additional random-

ness by augmenting the probability space to include the uniform random variable U ∼ Unif[0, 1] independent of

X. (This means we’ve moved to a larger space (Ω,F ,P) = (RI ,B⊗I , ν)⊗ ([0, 1],B,Leb), where we draw X and

then independently draw U.) Now if we sample ω′ ∈ RI and u ∈ [0, 1], we can define a new random variable

X̃t(ω
′, u) = Xt(ω

′) + 1{t = u}.

If we define Xt(ω′, u) = Xt(ω′), then Xt and X̃t are closely related – for any fixed t, P(Xt = X̃t) are equal with

probability 1, because any fixed time t has probability 0 of being equal to u. But X and X̃ aren’t the same process,

and in particular they can’t both be continuous because we add a 1 to one of them at some random time. So Xt and

X̃t are both Gaussian processes with the correct covariance, but we can’t guarantee continuity even though we have

the same finite-dimensional marginals.

Definition 21

Let (Xt)t∈I and (X̃t)t∈I be two processes. We call X̃ a modification of X if P(Xt = X̃t) = 1 for any fixed time

t ∈ I, and we say that X and X̃ are indistinguishable if{
Xt 6= X̃t for any t ∈ I

}
⊆ N

for some measure-zero set N (this is just because the event may not actually be measurable).

Note that Xt and X̃t above are not indistinguishable, because they will always be different at some time t = u

with probability 1. The main goal of this lecture is to construct a modification of X which is continuous, but we’ll

have to change the probability space a little bit to do that. The actual construction is actually very concrete: we’ll

first define Brownian motion on [0, 1], looking at the dyadic points

Dn =

{
0,
1

2n
,
2

2n
, · · · ,

2n − 1
2n

}
.

These sets Di are nested in each other (D0 ⊆ D1 ⊆ · · · ), and their infinite union D =
⋃∞
n=0Dn is countable and dense

in [0, 1]. At a very high level, D is a countable dense subset, and we’ll only look at the process X on D. Then for any

other value not in D, we’ll define the process using continuity, and we just need to show that we do end up with a

continuous process.
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Lemma 22

Let f : D → R be a function that satisfies∣∣∣∣f ( i2n
)
− f

(
i − 1
2n

)∣∣∣∣ ≤ K

2nα

for all n ≥ 1 and 1 ≤ i ≤ 2n− 1 for some constant K and some α > 0. Then f satisfies a similar type of estimate

for all points in D: we have |f (s)− f (t)| ≤ K′|s − t|α for all s, t ∈ D with K′ = 2K
1−2−α . (In other words, f is an

α-Hölder function on D.)

(This is completely deterministic – there’s no probability going on here, and note that f is defined on D only.)

Proof. Without loss of generality, let s < t. Then there is some integer p such that

1

2p
≤ t − s ≤

1

2p−1
,

which means s and t are either in adjacent 1
2p blocks or separated by one block. Either way, let s0 be the smallest

point in Dp larger than s and t0 be the largest point smaller than t. Then, the idea is that “the best way to get from

s to t should use the largest jumps, because the small jumps don’t give a good estimate,” so formally we can write

s = s0 −
n∑
t=1

δℓ
2p+ℓ
, δℓ ∈ {0, 1}

(looking at the steps of size 1
2p+1 ,

1
2p+2 , and so on and always taking them if we can), and similarly

t = t0 +

n∑
ℓ=1

ηℓ
2p+ℓ
, ηℓ ∈ {0, 1}.

In the worst case, we will need all of these steps, which means that by the assumption in our lemma we have

|f (s)− f (t)| ≤
K

2pα
+ 2

∑
ℓ≥1

K

2(p+ℓ)α
≤
K′

2pα
≤ K′|s − t|α,

as desired.

Lemma 23

Suppose that (Xt)t∈[0,1] is any stochastic process satisfying E[|Xs −Xt |q] ≤ C|s − t|1+ε for all s, t ∈ [0, 1]. Then

for all α ∈
(
0, εq

)
, there exists a Kα(ω) <∞ such that

∣∣Xi/2n(ω)−X(i−1)/2n(ω)∣∣ < Kα(ω)
2nα

for all n ≥ 1 and 1 ≤ i ≤ 2n − 1.

This lemma basically says that the conditions from the previous lemma hold, except now we have a random K.

Proof. Let An be the event {ω :
∣∣Xi/2n(ω)−X(i−1)/2n(ω)∣∣ ≥ 1

2nα for any 1 ≤ i ≤ 2n − 1} (the numerator of 1 here is

good enough for the calculations). By a union bound (over all 2n possibilities) and Markov’s inequality, we have that

P(An) ≤ 2n · 2nαq · E
[
|Xi/2n(ω)−X(i−1)/2n(ω)|q

]
≤ 2n2nαqC

(
1

2n

)1+ε
=

C

2n(ε−αq)
,
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where the middle inequality comes from our assumption. But by Borel-Cantelli, P(An i.o.) = 0 because P(An) forms a

geometric series. So if ω lies outside the measure-zero event {An i.o.}, then we must have an N(ω) such that ω /∈ An
for all n > N(ω). That means that with probability 1, the quantity inside the supremum of

sup
n≥1

{
max

1≤i≤2n−1

∣∣Xi/2n(ω)−X(i−1)/2n(ω)∣∣ · 2nα}
is at most 1 for all n ≥ N(ω), meaning that

sup
n≥1

{
max

1≤i≤2n−1

∣∣Xi/2n(ω)−X(i−1)/2n(ω)∣∣ · 2nα} ≤ max{1, max
n<N(ω)

{
max

1≤i≤2n−1

∣∣Xi/2n(ω)−X(i−1)/2n(ω)∣∣ · 2nα}} .
The right-hand side is now some finite number for each ω (because the max is being taken over a finite set), and in

fact that is the Kα(ω) from the lemma statement.

Lemma 24

Under the same assumptions as Lemma 23, there is a modification X̃ of X whose sample paths are continuous.

In fact, the sample paths will be α-Hölder continuous for all α ∈
(
0, εq

)
.

Proof. Let E be the event that the estimate of Lemma 23 holds for D, meaning that E is the complement of the

event {An i.o.} from the previous proof. Then by Lemma 22, we know that

|Xs(ω)−Xt(ω)| ≤ K′α(ω)|s − t|α

for all ω ∈ E and all s, t ∈ D. Now we define X̃ in the way we said we would (extending by continuity):

X̃t(ω) =

lims→t,s∈D Xs(ω) if ω ∈ E,

0 otherwise.

(So if we’re in the measure-zero situation where the estimates don’t hold, then X̃ is zero for all time.) But now X̃ is

an α-Hölder continuous function for all ω – it satisfies the same estimate with the same K′:

|X̃s − X̃t | ≤ K′α(ω)|s − t|α

for all s, t ∈ [0, 1] (not just D). We do still need to check that X̃ is a modification of X – in principle, it seems

like we may have changed a lot from X, because we’ve ignored its value everywhere except on a countable set. But

remember that we have the assumption E [|Xs −Xt |q] ≤ C|s − t|1+ε, so as s converges to t, the right hand side goes

to 0, meaning Xs goes to Xt in Lq and therefore also in probability. On the other hand, Xs goes almost surely to

X̃t as s → t for s ∈ D by definition. Therefore Xt = X̃t almost surely by uniqueness of limits, because they are both

limits of Xs as s approaches t.

The combination of these three lemmas is called the Kolmogorov continuity lemma. We’ll take a closer look

now at one of the bounds

P(An) ≤ 2n2nαq · C
(
1

2n

)1+ε
that we had in our proofs earlier. Notice that we’ve used the dyadic partitioning twice here – once to go from s to t,

where s, t ∈ Dn are separated by many intervals of 1
2n , and once in this Markov bound to use the same bound many

times. A more naive way we could have done our bound is to say that because we have |s − t| = L
2n for some L and

13



some n, we can consider the probability that |Xs − Xt | ≤
(
L
2n

)α
for all s ∈ Dn and t = s + L

2n . A union bound here

would not use the fact that our intervals are overlapping, and we would arrive at the weaker result

P
(
|Xs −Xt | ≤

(
L

2n

)α
for all s ∈ Dn, t = s +

L

2n

)
≤ 2n ·

C
(
L
2n

)1+ε
(L/2n)αq

=
C · L1−(αq−ε)

2n(αq−ε)
.

The L1−(αq−ε) term is large here (possibly close to the order of L), and L is possibly on the order of 2n−1, so our

union bound has lost a lot from the overlapping intervals. So the point is that we should be reusing bounds that we

already have and “taking the largest steps possible!”

We’ll finish this class by applying these lemmas to Brownian motion, finally completing the construction that we

want. We have

E [|Xs −Xt |q] = E [N(0, |s − t|)q] = |s − t|q/2E[|Z|q]

because Xs − Xt is a centered normal random variable with variance t − s. If we set q
2 = 1 + ε, the above lemmas

allow us to make a modification to X that is α-Hölder for α < ε
q =

q/2−1
q . This estimate holds for any positive q,

so in particular if we take large q, this approaches 12 . So our modification is just short of 12 -Hölder continuous, and

the obvious question is whether this is optimal. It turns out that the answer is yes, and this is the last part of our

homework.

Thus, we have constructed a process with continuous sample paths and the correct covariance! Next time, we’ll

talk about the probability space that is “canonical” for this Brownian motion.

4 February 12, 2020
As a reminder, the website for this class contains links to some useful references – in particular, you can find these

notes that you’re reading now. (These shouldn’t be considered an official resource, though, since they aren’t being

checked by the course instructors.)

Recall from last time that we defined a pre-Brownian motion to be a Gaussian process with covariance function

Γ(s, t) = min(s, t), which allows us to define a Brownian motion to be a pre-Brownian motion with continuous

sample paths. The idea is as follows: suppose (Xt)t∈[0,1] is a pre-Brownian motion on any probability space (Ω,F ,P)
rich enough to support such a process. The main content of last class was the Kolmogorov continuity lemma, which

basically tells us that a modification (Bt)t∈[0,1] of X exists with sample paths α-Hölder for all α ∈ (0, 12). In other

words, there exists a Kα(ω) <∞ such that

|Bs(ω)− Bt(ω)| ≤ Kα(ω)|s − t|α ∀s, t ∈ [0, 1],

and in particular this tells us that Bt is also continuous. (We constructed this by only looking at the dyadic set, showing

continuity there, and then taking limits.)

Our next question is what happens if we consider a pre-Brownian motion (Xt)t≥0 for all nonnegative t rather than

just the interval [0, 1]. The idea is that we can just apply the above results for [i , i + 1] for each integer i , which

tells us that a modification (Bt)t≥0 exists which is locally α-Hölder (on every compact interval) and therefore also

continuous; in particular, B satisfies the definition of a Brownian motion. Letting I = [0,∞), define the set

C(I) = {continuous functions I → R} ⊂ {all functions I → R} = RI .

The sigma-algebra we can place on RI is Q = B⊗I , so a natural sigma-algebra to place on C(I) is

G = Q|C(I) = {C(I) ∩ A : A ∈ Q}.

14



The Brownian motion B now gives us a measurable (exercise) mapping which induces a measure on C(I): we can

write this as

B : (Ω,F ,P)→ (C(I),G, P = B#P).

In other words, for all A ∈ G, we assign it a measure P (A) = P(B−1(A)) where B−1 is the pre-image of the Brownian

motion. While (Ω,F ,P) is not unique, because there can be all kinds of “extra randomness” in the probability space,

we do have the following:

Proposition 25

The measure P (called the Wiener measure) is unique.

Proof. It suffices to show that the value of P is uniquely determined, and it’s enough to check this for a pi-system

which generates the sigma-algebra G. Consider the probability of a “simple” event like

P (Bt1 ∈ [a1, b1], · · · , Btn ∈ [an, bn]).

Events of this type generate G, and we can calculate the probability using the covariance matrix Γ(ti , tj) (where i , j

run from 1 to n) to be

P
(
N(0,Γ(ti , tj)) ∈

∏
[ai , bi ]

)
.

But this is an explicit value we can find by calculating an integral, and this characterizes the value of P (E) for all

events E in the pi-system generating G, so we’re done.

Fact 26

We defined a sigma-algebra G on C(I) by restriction, but here’s another way to characterize it. A natural topology

to put on C(I) is to say that fn converges to f if fn converges to f uniformly on compact sets; this topology is

metrizable because we can define the metric

d(f , g) =

∞∑
n=1

1

2n
min

{
1, sup
t∈[0,n]

|f (t)− g(t)|

}

(in particular, d(f , g) ≤ 1 for all f , g). Then d(fn, f ) goes to 0 if and only if fn → f locally uniformly, so the metric

captures the topology.

Proposition 27

The Borel sigma-algebra of C(I) in the d-topology, denoted H, is the same as the sigma-algebra G above.

Proof. First, we show that G ⊆ H. It’s enough to show that the events in G are in H; consider events of the form

(which generate G)
{Bt1 ∈ [a1, b1], · · · , Btn ∈ [an, bn]}.

This set is closed with respect to the d-topology (if we have a sequence of functions in this set, then any limit point

will also have that Bti ∈ [ai , bi ] for each i), and the Borel sigma-algebra contains all of the closed sets, so such sets

are indeed in H and thus all of G is contained in H.

To show the other direction, it’s enough to show that an open ball in H is contained in G. The set {h : d(f , h) < ε}
is contained in G, because we can measure d(f , g) by looking just at rational t (basically we’re saying that while the
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definition of d takes a supremum over the whole interval [0, n], we can restrict to only a countable set of indices by

continuity). Thus, this open ball is also measurable in G, so H ⊆ G.

So far, we’ve been just treating Brownian motion just as a function in t, but now we want to actually make the

process “move forwards or backwards in time.”

Definition 28

Define the sigma-algebras

Ft = σ (Bs : s ≤ t) , Ft+ =
⋂
s:s>t

Fs .

Intuitively, Ft+ gives an “infinitesimal amount of information past time t.” For example, if the process B had a

right derivative limh↓0
Bt+h−Bt

h , then it would be measurable with respect to Ft+ but not Ft . (But we’ll see soon that

Brownian motion does not have a right derivative.) Recall that we’ve characterized Brownian motion in a way that

ensures it has independent increments for disjoint time intervals (from the definition of the covariance function); this

next result is a stronger version of that statement:

Proposition 29 (Markov property, simplest version)

Suppose that (Bt)t≥0 is a Brownian motion. Then for any fixed time s ≥ 0, the process (Bs+t − Bs)t≥0 is a

Brownian motion independent of Fs .

Proof. Let Wt = Bs+t − Bs be our new process. We must show that Wt is a pre-Brownian motion and that it has

continuous sample paths – the latter is true because the sample paths are just subsets of the sample paths for Bt ,

and the former follows because it has the correct covariance function. Furthermore, because Brownian motion has

independent increments, we can make the independence statement

(Wt1 ,Wt2 , · · · ,Wtk )⊥⊥(Br1 , · · · , Brℓ)

for any r1, · · · , rℓ ≤ s. A pi-lambda argument then tells us that W ⊥⊥Fs as desired.

Proposition 30 (Markov property, slight improvement)

Under the same setting as Proposition 29, we have W ⊥⊥Fs+.

Proof. Again, (Wt1 ,Wt2 , · · · ,Wtk ) is independent of Fs+ unless some of the times are 0. To get around that, note

that we can write

(Wt1 ,Wt2 , · · · ,Wtk ) = lim
ε↓0
(Wt1+ε,Wt2+ε, · · · ,Wtk+ε)

by continuity of Brownian motion. For any fixed ε > 0, this is independent of Fs+, so the independence holds in the

limit as well (because the limit is measurable with respect to those variables).

This leads us to the following consequence:

Theorem 31 (Blumenthal 0-1 law)

For any event A ∈ F0+, we have P(A) ∈ {0, 1}.
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In words, A “only sees the Brownian motion at an infinitesimal time at the beginning,” and the idea is that we can’t

produce something nontrivial that depends on this infinitesimal time.

Proof. By Proposition 30 with s = 0, we know that σ(Bs : s ≥ 0) is independent of F0+. But F0+ sits inside

σ(Bs : s ≥ 0), so F0+ is independent of itself; thus for any A ∈ F0+, we have P(A)2 = P(A) and therefore

P(A) ∈ {0, 1}.

This gives us a bit more to work with:

Proposition 32

Let B be a Brownian motion with B0 = 0. Then the following hold:

1. B will cross 0 an infinite number of times almost surely. In other words, for all ε > 0, we have almost surely

that

sup(Bs : s ∈ [0, ε]) > 0, inf(Bs : s ∈ [0, ε]) < 0.

2. For any a ∈ R, the hitting time Ta = inf{t : Bt = a} is finite almost surely.

For example, this tells us that it doesn’t make sense to define “the first time B returns to 0.”

Proof. For (1), for any ε > 0 define the event

Aε = {sup(Bs : s ∈ [0, ε]) > 0}

and let A =
⋂
ε>0 Aε. We can restrict to only looking at time-values s which are rational, so Aε is a measurable set for

any ε, and similarly this means A =
⋂
n A1/n is also measurable. Now A is in F0+, because the events A1/n ∈ F1/n are

decreasing and nested. So by the zero-one law, P(A) is either 0 or 1, and we want to show that it is 1. However, for

any ε > 0, we have P(Aε) ≥ 1
2 (because Brownian motion is symmetric around 0). Since these events are decreasing

as ε→ 0, in the limit we have

P(Aε) ≥
1

2

ε→0
=⇒ P(A) ≥

1

2
=⇒ P(A) = 1.

(The other statement follows analogously.) Now (2) is actually a consequence of (1), since taking ε = 1 tells us that

1 = P (sup(Bs : s ∈ [0, 1]) > 0)) = lim
δ↓0
P (sup(Bs : s ∈ [0, 1]) ≥ δ)

by continuity. Now we can rescale space by 1
δ and rescale time by 1

δ2 ; the result is still a Brownian motion, which

means that

1 = lim
δ↓0
P
(
sup

(
Bs : s ∈

[
0,
1

δ2

])
≥ 1
)
= P

(
sup
s
Bs ≥ 1

)
again by continuity because 1

δ2 goes to infinity. This means that Bs will hit height 1 at some point with probability 1,

and we can scale again to show that B hits any height a almost surely (for instance, we can multiply space by 10 and

multiply time by 100).

In particular, if we run a Brownian motion for all time, it will not converge to anything, since it must hit height a,

then height −a, and so on. That means it oscillates a lot, and thus Brownian motion is not particularly well-behaved

compared to other processes we might have seen. To answer the question of “how regular Brownian motion is,” we’ll

choose a few interesting results for this class that are interesting but skip the more specialized ones. Our first result

will be important to stochastic calculus: we know that Brownian motion is ( 12 − ε)-Hölder, and on homework 2 we’ll
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see that

lim sup
h↓0

|Bt+h − Bt |√
2h log (1/h)

= 1 a.s..

This tells us that the 12 exponent is basically correct, and this should generally make sense – we have that

|Bt+h − Bt | ∼
√
h|N(0, 1)|,

so we should expect the increment to be on the order of
√
h (and the above statement shows that sometimes it is

bigger).

Definition 33

A function f : [a, b] → R is of bounded variation (BV) if (taking a supremum over all sets of break points

between a and b)

sup
p={ti}

n∑
i=1

|f (ti)− f (ti−1)| <∞.

For a partition p = {ti}, we’ll define V 1p (f ) =
∑n

i=1 |f (ti) − f (ti−1)|. Sufficiently nice functions will always be of

bounded variation – for example, a C1 function f is of bounded variation because

V 1p (f ) ≤
∫ b

a

|f ′(t)|dt.

However, Brownian motion is not of bounded variation – we can read this in the book or try this ourselves. (If we

partition our interval [0, 1] into blocks of size ε, we have 1ε intervals and each increment is on the order of
√
ε, so this

gives us something very large.) So we’ll need a more suitable measure of variation instead. For instance, consider an

α-Hölder function f (meaning that |f (s) − f (t)| ≤ K|s − t|α). Then one way we could measure its regularity is to

consider

V 1/αp (f ) =

n∑
i=1

|f (ti)− f (ti−1)|1/α ≤
n∑
i=1

K1/α|ti − ti−1| ≤ K1/α(b − a) <∞

(by the α-Hölder bound). This means that Brownian motion on a compact interval satisfies V 1/αp (B) < ∞ for all

α < 1
2 . But this is not a good measure of variation either: because we’re raising |ti − ti−1| to a power greater than

2, the sum tends to 0 as our partition gets finer. Specifically, for any fixed α ∈ (0, 12), we know the Brownian motion

is actually γ-Hölder for γ ∈ (α, 12), so taking P to be a set of break points separated by ε, we find that

V 1/αp (B) �
1

ε
(εγ)1/α � εγ/α−1,

which tends to 0. So raising the increments to any power larger than 2 doesn’t work – this motivates raising to exactly
the second power:

V 2p (B) =

n∑
i=1

(Bti − Bti−1)2.

This turns out to actually tend to a non-trivial limit:

Proposition 34

Suppose that Pn is a subdivision of the interval [0, t] for all n. Then V 2Pn(B) converges to t in L2 as the mesh of

Pn goes to 0.

Note that we have L2 convergence but not almost sure convergence.
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Proof. This is a simple variance calculation. First, break up the t term into the lengths of our intervals as

||V 2Pn(B)− t||
2
2 = E

( n∑
i=1

(Bti − Bti−1)2 − (ti − ti−1)

)2 .
Each term has mean 0, because the expected value of each squared increment is the length of the interval. In addition,

the increments are independent, so if we expand the square and take expectations, the cross-terms go away and we’re

left with

||V 2Pn(B)− t||
2
2 =

n∑
i=1

(ti − ti−1)2E[(Z2 − 1)2]

where Z is a standard normal. Now the expectation term is just some constant, meaning we can bound this L2 norm

from above by E[(Z2 − 1)2] · mesh(Pn)
∑n

i=1(ti − ti−1) = E[(Z2 − 1)2] · mesh(Pn)t, which goes to 0 as n → ∞ by

assumption.

This result is important, because the limit V 2Pn(B) has to do with sum of squares of Brownian motion on small

intervals, which is a good way of understanding an expression like
∫ t
0 (dBs)

2 (as we’ll do later on in the class).

For our next result, consider the natural filtration Ft = σ(Bs : s ≤ t) as before, and define F∞ = σ(Bs : s ≥ 0) to

be the sigma-algebra of “everything we know about the Brownian motion.” Now let T be a stopping time (meaning

that {T ≤ t} ∈ Ft for all t), and define the stopping-time sigma-algebra

FT = {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft}.

In words, FT captures everything we know about the process up until our random stopping time.

Proposition 35 (Markov property, strong version)

Let T be a stopping time. Then (BT+t − BT )t is a Brownian motion, and it is independent of FT under the

measure P where we condition on T being finite.

We can read the proof in the book (it involves approximating the vector of Brownian motion values with dyadic

rationals). One of the most important applications for this is the reflection principle: suppose we want to compute

the value

P (Bt > a for some t ∈ [0, 1]) .

The idea is to consider a height b < a and ask about the probability that we do exceed a but end below b at time

1. To answer that question, we can reflect the Brownian motion after the stopping time when we hit a, which shows

that we just need to end above a − (b − a) = 2a − b. In other words, if St = sup(Bs : s ≤ t),

P(S1 ≥ a,B1 < b) = P(S1 ≥ a,B1 ≥ 2a − b) = P(B1 ≥ 2a − b).

But B1 is just a standard normal, so this tells us everything we might want to know about the supremum process!

We’ll cover this in more detail next time.

5 February 18, 2020
At the end of last time, we discussed the reflection principle briefly, and we’ll elaborate on that discussion now. Recall

the strong Markov property for Brownian motion, which tells us that for any stopping time T , (BT+t − BT )t≥0 is
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a Brownian motion independent of FT (the stopping-time sigma-algebra) if we condition on T being finite. This is

useful, for example, if we want to consider the supremum process

St = sup{Bs : 0 ≤ s ≤ t}

which is nondecreasing in t.

Theorem 36

For any a > 0 and b ∈ (−∞, a], we have

P(St ≥ a,Bt ≤ b) = P(Bt ≥ 2a − b).

The point is that this gives us a joint distribution between St and Bt in terms of something that is completely

explicit, since Bt is just a normal random variable with mean 0 and variance t.

Proof. Apply the strong Markov property to the stopping time τ = inf{s ≥ 0 : Bs ≥ a} (the first time we hit a) to

see that Ws = (Bτ+s −Bτ )s≥0 is a Brownian motion independent of the process up to time τ . Now we can explicitly

write down

P(St ≥ a,Bt ≤ b) = P(τ ≤ t,Wt−τ ≤ −(a − b))

because both sides tell us the probability of hitting a at some point and then going down by (a− b) to get back below

b. Using the reflection principle and noting that W is symmetric in law, the previous probability can also be written as

P(τ ≤ t,Wt−τ ≥ a − b) = P(St ≥ a,Bt ≥ 2a − b).

But Bt ≥ 2a − b means in particular that St ≥ Bt ≥ a, so we can drop the St ≥ a assumption and get the stated

result.

In particular, this means the joint density of St and Bt is given by − ∂2

∂a∂bP(Bt ≥ 2a − b) (negative sign because

we have St ≥ a but Bt ≤ b), and this density is supported on {a ≥ 0, b ≤ a}. And now we can take this density and

integrate out the b to find the marginal law of St , but there’s a faster way: decompose as

P(St ≥ a) = P(St ≥ a,Bt ≥ a) + P(St ≥ a,Bt ≤ a) = P(Bt ≥ a) + P(Bt ≥ 2a − a) = P(|Bt | ≥ a),

because the law of Bt is symmetric. So this means that for any fixed t, St is equally distributed as |Bt |. However,

do note that the processes

(St)t≥0, (|Bt |)t≥0

are not identically distributed, because St is increasing while Bt returns to 0 infinitely many times.

Remark 37. On our homework, we’ll discover a bit more: it turns out that St and |Bt | are both equally distributed as

St − Bt for any fixed t, and (St − Bt) is also equally distributed as |Bt | as a process.

Note that this calculation also gives us the law of the first time we hit a: if σa = inf{t ≥ 0 : Bt = a}, then

σa
d
= inf{t ≥ 0 : Bt/a2 = 1} = a2σ1,

but we can get the exact distribution via the calculation

P(σa ≥ t) = P(St ≤ a) = P(|Bt | ≤ a) = P
(
|Z| ≤

a√
t

)
= P

(
a2

Z2
≥ t
)
.
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where Z is a standard normal. Comparing the left and right sides, we see that σa is equally distributed as a2

Z2 , so in

particular E[σa] is infinite for all a > 0. Taking a = 1, this means that σ1 is distributed as 1
Z2 . We can then calculate

the density of σ1 explicitly (left as an exercise), and find that for large t,

P(σ > t) �
1√
t
,

which decays quite slowly. But now we can compare this with the τ = inf{t : |Bt | ≥ 1} (so now asking for the first

time we hit either 1 or −1); it will turn out that

P(τ > t) ≤ exp(−Ω(t)),

which decays much more quickly. To understand this exponential decay intuitively, suppose that we run Brownian

motion for a very long time and we want it to stay confined in the interval [−1, 1]. Looking at successive intervals of

length 1, there is always some positive chance it leaves in each time interval and conditioned on staying inside [−1, 1]
this probability is bounded from below. But again, we’ll be more precise on the homework.

This is all we’ll cover from chapter 2 of Le Gall – now we’ll move on to chapter 3, which discusses continuous-
time martingales. Unfortunately, it’s pretty boring: under mild assumptions, all the properties from discrete-time

martingales hold. So we’ll go through this fairly quickly – if we took 18.675 in a different semester where we didn’t

cover martingales in such detail, we might have to do reading on our own.

Brownian motion Bt is an example of a continuous-time martingale, and here’s another example to keep in mind

as well: let ζ, ζi be iid exponential random variables, and let

Nt = max

{
n :

n∑
i=1

ζi ≤ t

}
.

Then Nt is distributed as Pois(t), and it is an integer-valued process with right-continuous sample paths (but discon-

tinuous jumps). It will turn out Nt−t is a continuous-time martingale as well, so our formalism should be able to study

it. (Generally, we’ll be assuming that the processes we are studying are right-continuous.) Throughout this chapter,

everything will live on a probability space (Ω,F ,P) with a filtration

(Ft)0≤t≤∞ : Fs ⊆ Ft ∀s ≤ t.

We’ll call (Ω,F , (Ft),P) a filtered probability space.

Definition 38

A process (Xt)t≥0 is adapted to a filtration Ft if Xt ∈ Ft for all t.

We’ll also reiterate the following definition from earlier:

Definition 39

A random variable τ : Ω→ [0,∞] is a stopping time if {τ ≤ t} ∈ Ft for all t (that is, whether we stop doesn’t

depend on what happens in the future). The σ-field of the past up to τ is

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft ∀t}.

So an event that only depends on time up to τ can be rephrased as “only needing information up to t if τ ≤ t.”
We should read all of the basic facts about filtrations and stopping times on our own (sections 3.1 and 3.2 of our
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book). An example of what we’ll see is that if σ, τ are both stopping times, then their minimum σ ∧ τ and maximum

σ ∨ τ are also stopping times, and

Fσ∧τ = Fσ ∩ Fτ .

(This specific fact is useful for one of the questions on our homework.)

Definition 40

Let (Ω,F , (F)+,P) be a filtered probability space, and let (Xt)t≥0 be a real-valued process. Then (Xt) is a

submartingale if the following properties hold:

• Xt ∈ Ft for all t (in other words, the process is adapted to the filtration),

• E[|Xt |] is finite for all t (the variable is integrable),

• For every 0 ≤ s ≤ t, we have Xs ≤ E[Xt |Fs ]; we similarly say that (Xt) is a supermartingale if we flip the

inequality.

A martingale is both a submartingale and a supermartingale, meaning that E[Xt ] is constant for a martingale,

nondecreasing for a submartingale, and nonincreasing for a supermartingale.

Example 41

Let Z ∈ L1(Ω,F ,P) be any integrable random variable. Then we can check that Xt = E[Z|Ft ] is a martingale.

The fact that Xs = E[Xt |Fs ] follows from basic properties of the conditional expectation, and each Xt is integrable

because

E[|Xt |] = E [|E[Z|Ft ]|] ≤ E [E[|Z||Ft ]] = E[|Z|] <∞

by Jensen’s inequality.

Remark 42. The standard Brownian motion Bt is a martingale (it satisfies all properties in the definition), but there

is no random variable Z such that Bt = E[Z|Ft ] because E[|Bt |] = t1/2E|N(0, 1)| is unbounded as t →∞.

There are some other important martingales based on Brownian motion as well: we can check that B2t − t is

a martingale, as is exp
(
θBt − θ2t

2

)
. We’ll use the rest of this lecture to prove some basic results about general

martingales:

Proposition 43

Let Xt be a (sub/super)martingale. Then for any t <∞, we have

sup {E[|Xs |] : 0 ≤ s ≤ t} <∞.

We didn’t have to prove this in the discrete case, because we only had a finite number of variables to consider

between 0 and t, and we know that E[|Xs |] is finite at any given time s.

Proof. Without loss of generality, say that X is a submartingale. Then (Xt)+ = max{Xt , 0} is a submartingale

(because f (x) = max(x, 0) is a convex nondecreasing function), so E[(Xt)+] is nondecreasing. Therefore, for any

s ≤ t,
E[|Xs |] = E[2(Xs)+ −Xs ] ≤ E[2(Xt)+ −X0].

This bound holds uniformly over s, so the supremum of E[|Xs |] must indeed be finite.
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This next fact is a weak version of the optional stopping theorem for discrete-time submartingales, and we saw

this in 18.675:

Lemma 44

Let Xn be a discrete-time submartingale, and let τ be a bounded stopping time such that τ ≤ n almost surely.

Then E[X0] ≤ E[Xτ ] ≤ E[Xn].

Proof. Consider the stopped process Yk = Xk∧τ . This is also a submartingale, and

E[X0] = E[Y0] ≤ E[Yn] = E[Xn∧τ ] = E[Xτ ]

because τ ≤ n almost surely. For the other inequality, write

E[Xτ ] =
n∑
k=0

E[1{τ = k}Xk ] ≤
n∑
k=0

E[1{τ = k}E[Xn|Fk ]]

by the submartingale condition, and now we can put 1{τ = k} inside the conditional expectation because it is

measurable with respect to Fk . Thus,

E[Xτ ] ≤
n∑
k=0

E[E[1{τ = k}Xn|Fk ]] =
n∑
k=0

E[1{τ = k}Xn] = E[Xn],

as desired.

Similarly, we also have the following result:

Proposition 45 (Maximal inequality, discrete version)

Let Yn be a discrete-time (sub/super)martingale. Then for all λ ≥ 0,

λ · P
(
max
0≤k≤n

|Yk | ≥ λ
)
≤ E[|Y0|+ 2|Yn|].

This tells us that we have control of the entire trajectory up to time n just by knowing something about the process

at the beginning and end.

Proof. Without loss of generality, assume Yn is a supermartingale. Let A be the event that max0≤k≤n |Yk | ≥ λ, and

consider the stopping time

τ = min {k : |Yk | ≥ λ or k = n} ∈ {0, 1, · · · , n}.

Recall that the notation E[X;A] means E[X · 1{X ∈ A}]. We have

λP
(
max
0≤k≤n

|Yk | ≥ λ
)
≤ E[|Yτ |;A],

because |Yτ | ≥ λ whenever the event A occurs. The right-hand side can now be decomposed as

E[|Yτ |;A] ≤ E[|Yτ |] = E [Yτ + 2(Yτ )−] ,

and now since Yτ is a supermartingale and (Yτ )− is a submartingale, we can upper bound this quantity by E[Y0+2(Yn)−],
which is at most the right-hand side.
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Remark 46. We can get a small improvement in Proposition 45 if we assume that X is a martingale. Then we can

do the decomposition before removing the indicator on A:

λP(max
k≤n
|Xk | ≥ λ) ≤ E[|Xτ |;A] = E[(Xτ )+ + (Xτ )−;A],

and because X is a martingale, (Xτ )+ and (Xτ )− are both submartingales, so this is actually bounded by E[|Xn|;A].

We can now generalize this result to continuous-time martingales:

Proposition 47 (Maximal inequality, continuous version)

Let Xt be a (sub/super) martingale with right-continuous sample paths (this is a regularity condition). Then

λP
(
sup
s≤t
|Xs | ≥ λ

)
≤ E[|X0|+ 2|Xt |]

Proof. Fix t. Then any sequence 0 = t0 < t1 < t2 < · · · < tm = t gives a discrete-time (sub/super)martingale (Xtk )k ,

so by Proposition 45, we have

λP
(
max
0≤k≤m

|Xtk | ≥ λ
)
≤ E[|X0|+ 2|Xt |].

Now consider a sequence of such time sequences Dm ↑ D, where D1 = {t0 = 0, t1 = t} and the Dms are nested and

increase to a countable dense subset D in [0, t]. We find that

λP

(
sup

s∈[0,t]∩D
|Xs | ≥ λ

)
≤ E[|X0|+ 2|Xt |],

and right-continuity allows us to replace [0, t] ∩D with [0, t], yielding the desired result.

Next, we’ll prove a few more inequalities that are weaker but easier to package and remember:

Proposition 48 (Doob’s Lp inequality, discrete version)

Let Xn be a discrete-time martingale. Then for all p > 1 and finite n, we have (letting Cp =
p
p−1)∣∣∣∣∣∣∣∣ max0≤k≤n

|Xk |
∣∣∣∣∣∣∣∣
p

≤ Cp||Xn||p.

Proposition 49 (Doob’s Lp inequality, continuous version)

Let Xt be a martingale with right-continuous sample paths. Then for all p > 1 and finite t, we have (letting

Cp =
p
p−1) ∣∣∣∣∣∣∣∣ sup

0≤s≤t
|Xs |

∣∣∣∣∣∣∣∣
p

≤ Cp||Xt ||p.

Here, the discrete version again implies the continuous version by the same argument as above, so we’ll just prove

the discrete version.

Proof of Proposition 48. With the same event A as before, we take the inequality

λP
(
max
k≤n
|Xk | ≥ λ

)
≤ E[|Xn|;A]
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from Remark 46. We wish to bound the Lp norm of Sn = max0≤k≤n |Xk |, which we will do using the formula

E[(Sn)p] =
∫ ∞
0

P(Spn ≥ t)dt =
∫ ∞
0

py p−1P(Sn ≥ y)dy

(last step by a change of variables t = yp). Plugging in the boxed inequality yields

E[(Sn)p] ≤
∫ ∞
0

py p−1
[
E(|Xn|;Sn ≥ y)

y

]
dy,

and by Fubini’s theorem, we can change the order of integration to rewrite this as E
[
|Xn|

∫ Sn
0 py

p−2dy
]
, where the

indicator that Sn ≥ y is accounted for by replacing ∞ with Sn. Integrating directly and then using Hölder’s inequality,

we find that

E[(Sn)p] ≤
p

p − 1E
[
|Xn|Sp−1n

]
≤

p

p − 1 ||Xn||p||(Sn)
p−1|| p

p−1
=

p

p − 1 ||Xn||p||Sn||
p−1
p .

We can now divide through by ||Sn||p−1p to get the desired result if the norm is finite, and otherwise we use a standard

truncation argument to finish the proof.

However, it’s important to remember that there’s no Lp inequality for p = 1. For example, consider the simple

random walk Xn on the integers starting from X0 = 1, let τ be the first time n such that Xn = 0, and let Mn = Xn∧τ .

This yields a nonnegative martingale with E[Mn] = 1, but we can’t control the maximum of this process – indeed, if

we define Sn = maxk≤nMk , then ||Sn|| is unbounded as n → ∞. To see this, it’s enough to show that ||S∞|| has

infinite expectation – the probability that S∞ is at least a is the chance that a random walk hits a before 0, which is
1
a (by the optional stopping theorem for discrete-time martingales, for example). This is not summable over a, so the

expectation is indeed infinite.

6 February 19, 2020

Yesterday, we defined what it means for (Xt)t≥0 to be a continuous-time (sub/super)martingale on a filtered probability

space (Ω,F , (Ft),P). We then showed the maximal inequality

λP
(
sup
0≤s≤t

|Xs | ≥ λ
)
≤ E [|X0|+ 2|Xt |] ,

assuming that the process X has right-continuous sample paths. (There’s a slightly stronger result for martingales,

which is that λP(A) ≤ E[|Xt |;A] for an event of the type A = sup0≤s≤t |Xs | ≥ λ.) We also used this to show the Lp

inequality by integrating the previous result to find that∣∣∣∣∣∣∣∣ sup
0≤s≤t

Xs

∣∣∣∣∣∣∣∣
p

≤
p

p − 1 ||Xt ||p

for all p > 1 and t ∈ [0,∞). This requires right-continuous sample paths – if we don’t assume that fact, we actually

only prove that

λP

(
sup

s∈[0,t]∩D
|Xs | ≥ λ

)
≤ E [|X0|+ 2|Xt |]

for a countable dense set D. We’ll build off of this today: in particular, we’ll show that under mild conditions, a

(sub/super)martingale has a right-continuous modification.

25



Definition 50

A function f is right continuous with left limits (also rcll or càdlàg for short) if for all t ≥ 0, f (t) = lims↓t f (s),
and for all t > 0, lims↑t f (s) exists.

The main idea is that martingales can’t oscillate too much, so we can guarantee existence of limits. We’ll start

with a deterministic result by controlling upcrossing numbers: for any subset I ⊆ [0,∞) and any a < b, denote

Ufa,b(I) to be the maximum k such that there exist times s1 < t1 < s2 < t2 < · · · < sk < tk suh that f (si) ≤ a and

f (ti) ≥ b for all i . (In other words, this is the maximum number of times that we go from a to b.) Basically, if we

can control upcrossing numbers, we have some regularity control:

Lemma 51

Let D be a countable dense subset of [0,∞), and suppose we have a function f : D → R that is locally bounded,

meaning that sup{|f (t)| : t ∈ [0, T ] ∩ D} < ∞ for all T ∈ D. Also, suppose that Ufa,b(D ∩ [0, T ]) < ∞ for all

T ∈ D and for all rational a < b (to avoid issues with measurability). Then f has all of its left and right limits,

and the function

g(t) = f (t+) = lim
s↓t,s∈D

f (s)

is rcll.

Proof. Take any t ≥ 0, and suppose for the sake of contradiction that the (WLOG) right limit lims↓t,s∈D f (s) does

not exist. This means that the lim sup and lim inf of this limit are different, so there exist rational a, b with

lim inf
s↓t,s∈D

f (s) < a < b < lim sup
s↓t,s∈D

f (s).

But this means the function f must cross between a and b infinitely many times, which is a contradiction with the

assumption that Ufa,b([0, T ] ∩D) is finite. Showing that the function g is rcll follows from a similar argument.

This basically tells us that we need to control upcrossing numbers, and we can do so using the following idea:

Definition 52

Let Xn be an adapted discrete process, meaning that Xn ∈ Fn for all n, and let Hn be a previsible process,

meaning that Hn ∈ Fn−1 for all n. Then the Doob transform is defined via

(H ·X)n =
n∑
k=1

Hk(Xk −Xk−1).

Notably, if X is a supermartingale and H is a nonnegative bounded previsible process, then H · X is also a

supermartingale. We can check this from the definition, but what it’s really saying is that if there is a gambling system

X where we can’t win, even with a betting strategy H (to tell us how much to bet in the next game), we can’t game

the expected gain H ·X.

Lemma 53 (Doob’s upcrossing inequality)

Let Xn be a discrete supermartingale. Then the expected number of upcrossings satisfies

E
[
UXa,b([0, n])

]
≤
E[(Xn − a)−]
b − a .
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Proof. We’ll study the value Y we get off of betting on X only during upcrossings. More formally, let Y = H · X,

where

Hj = 1{j ∈ (σi , τi ]} for some i

and where σi and τi are stopping times corresponding to the ith time Xn is below a and above b, respectively. Note

that Hj is in Fj−1, because

{j ∈ (σi , τi ]} = {σi ≤ j − 1} ∩ {τi ≤ j − 1}c ,

and both of these events are Fj−1-measurable by the definition of a stopping time. Thus Y = H ·X is a supermartingale

with Y0 = 0, so E[Yn] ≤ 0. On the other hand, we know that Yn gets a contribution from the number of completed

up-crossings, and then there’s an extra term from the end where we start an up-crossing but we go very far down at

the end. In the worst case we can lose (Xn − a), so

Yn ≥ (b − a)UXa,b([0, n])− (Xn − a)−.

Taking expectations of both sides, we have

0 ≥ E[Yn] ≥ (b − a)E[UXa,b([0, n])]− E[(Xn − a)−],

and rearranging gives the desired bound.

Corollary 54

Let Xt be a supermartingale and let D be a countable dense subset of [0,∞). Then there is a probability-zero

event N such that for all ω 6∈ N, the function t 7→ Xt(ω) satisfies Lemma 51.

Proof. The first property (locally bounded) follows by the maximal inequality

λP

(
sup

s∈[0,t]∩D
|Xs | ≥ λ

)
≤ E(|X0|+ 2|Xt |) <∞

and taking λ → ∞ (which shows that we cannot have a positive probability of going off to infinity). The second

property (number of upcrossings is bounded) follows from Lemma 53 plus an approximation argument. Indeed, for any

finite subset Dn of D, Lemma 53 tells us that

E
[
UXa,b([0, t] ∩Dn)

]
≤
E[(Xt − a)−]
b − a

because Xt is a supermartingale. Now taking Dn nested and increasing to D should yield an increasing number of

upcrossings, but we’ll always be uniformly bounded by the right-hand side, so even in the limit we must have finitely

many upcrossings.

Remember that our goal is to turn our process Xt into a modification X̃t such that P(X̃t = Xt) = 1 for all

t. What we’ve proved so far suggests that we should do this by taking limits from the right. However, while we

know that t 7→ Xt(ω) has left and right limits, we still need to check that taking limits from the right to get an rcll

function actually yields a modification of Xt . For example, let f be a deterministic nonincreasing function and let

Xt = f (t). Then this is a supermartingale, but if f is not right-continuous, then there’s no way for us to modify it to

get right-continuous sample paths.

So from here, we’ll need to use two facts: first of all, we showed last time that if Xt is a (sub/super)martingale, then

sup{E[|Xs |] : 0 ≤ s ≤ t} is finite for all finite t. Also, we’ll need some theory of backwards (sub/super)martingales,
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which are indexed by Z≤0 instead of Z≥0. In such a process, we have sigma-algebras F−3 ⊂ F−2 ⊂ F−1 ⊂ · · · , and a

supermartingale now satisfies an inequality of the form Y−10 ≥ E[Y−9|F−10].

Proposition 55

If Yn is a backwards (sub/super)martingale and supn[|Yn|1] < ∞, then Yn converges to a finite limit Y−∞ almost

surely and in L1.

Proof. If (· · · , Y−3, Y−2, Y−1, Y0) is a backwards supermartingale, then we can apply the Doob upcrossing inequality for

any finite n ∈ Z≤0 to find

E
[
UYa,b([n, 0])

]
≤
E[X0 − a)]
b − a .

Now we can take the limit as n → −∞, and the total number of upcrossings will be uniformly bounded by the finite

quantity on the right-hand side. This means that for all rational a, b, UYa,b([−∞, 0]) < ∞, almost surely, so Yn must

converge almost surely to a limit Y−∞ (or else it would oscillate between two rational numbers infinitely often). The

L1 convergence is a uniform integrability argument, which is trickier for supermartingales than for martingales (which

we did in 18.675) – we should read this on our own.

Theorem 56

Let Xt be a supermartingale and let D be a countable dense subset. Then there is some probability-zero event N

such that Xt(ω) has left and right limits for all ω 6∈ N. Furthermore,

Yt(ω) =

Xt+(ω) = lims↓t,s∈D Xs(ω) if the limit exists,

0 otherwise

is a supermartingale with the filtration Gt = Ft+, and Xt ≥ E[Yt |Ft ] with equality if the map t 7→ E[Xt ] is

right-continuous (this is the mild condition).

Proof. The first part (left and right limits) follows directly from Corollary 54 and Lemma 51. To check that Yt is a

supermartingale, it’s clear that Yt ∈ Gt by the limit definition, and for any sk ↓ t, Xsk is a backwards supermartingale.

This backwards supermartingale is bounded in L1, because the supremum of E[|Xs |] is bounded on finite time intervals,

so we can use Proposition 55 to show that Xsk converges almost surely and in L1 to Yt – in particular, Yt is indeed in

L1 (which shows integrability).

Next, the supermartingale condition for Xt shows that Xt ≥ E[Xsk |Ft ], and Xsk converges in L1 to Yt , so this

converges to E[Yt |Ft ] as k → ∞, showing the desired inequality. Finally for the equality case, if t → E[Xt ] is right

continuous, then E[Xt ] = lims↓t E[Xs ]. We can switch the limit and expectation by the L1 convergence, so we in fact

have

E[Xt ] = E
[
lim
s↓t
Xs

]
= E[Yt ].

This means that we know both that Xt ≥ E[Yt |Ft ] and that E[Xt ] = E[Yt ], but these can only hold if the former

inequality is actually an equality. Thus Xt = E[Yt |Ft ] almost surely as desired.

Finally, we still need to show that Yt is actually a supermartingale. Let sn ↓ s and tn ↓ t be chosen so that s < t

and sn < tn for all n. Then for any event A ∈ Gs , we have

E[Ys ;A] = lim
k→∞

E[Xsk ;A]
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by the backwards supermartingale L1 convergence, but now we may bound this from below by limk→∞ E[Xtk ;A] =
E[Yt ;A] , where in the last step we’ve again switched the limit and expectation. This shows that we do have a

supermartingale.

We can now put everything together for the main result:

Theorem 57

Suppose we have a right-continuous filtration (meaning that Ft = Ft+ for all t) and assume that Ft is complete
(meaning it contains the null sets). Let Xt be a supermartingale with right-continuous mean E[Xt ]. Then X

has an rcll modification X̃ which is also a supermartingale with respect to Ft .

Proof. We define

X̃t(ω) =

Yt(ω) if ω /∈ N,

0 otherwise,

where N is the set from Corollary 54. (This means that we’re allowed to look into the whole future and see if things

go wrong – it’s just an issue with measurability.) So now X̃t ∈ Ft because Ft is right-continuous and complete, and

it is also a supermartingale because Yt is a supermartingale and X̃t = Yt almost surely.

It remains to show that X is a modification of X̃. By the last part of Theorem 56 (using X̃ instead of Y ), we

have Xt = E[X̃t |Ft ] because the mean is right-continuous, but X̃t is measurable with respect to Ft+ = Ft and thus

Xt = X̃t almost surely, as desired.

Basically, with a sufficiently rich filtration and with the mild condition that the deterministic function E[Xt ] is

right-continuous, we get some nice results.

Remark 58. It’s necessary to assume that E[Xt ] is right-continuous: as mentioned above, a counterexample otherwise

is the deterministic process Xt = f (t) for a non-right-continuous f . It’s also necessary to have the assumption of

right-continuity: consider Ω = {±1}, let P be the uniform measure on Ω, and define Xt(ω) = ω1{t > 1}. In words,

this means that X starts off as 0 and then jumps to a random bit at time 1, so it is a martingale. However, the

filtration generated by X is trivial until t = 1 and then jumps to the complete sigma-algebra, so the filtration is not

right-continuous, and indeed there is no modification of X that is rcll.

Next time, we’ll talk about the optional stopping theorem for continuous martingales, and that will be all from

chapter 3.

7 February 24, 2020

Last time, we discussed sample path regularity for continuous-time (sub/super)martingales: it was somewhat technical,

so let’s review the main points. If D is a countable dense subset in [0,∞), we found that for any (sub/super)martingale

Xt , its left and right limits

Xt+(ω) = lim
s↓t,s∈D

Xs(ω), Xt−(ω) lim
s↑t,s∈D

Xs(ω)

exist, and if the mapping t → E[Xt ] is right-continuous, we actually have Xt = E[Xt+|Ft ]. Then if F+ is right-

continuous and complete (contains the null sets), then X has a modification X̃ satisfying X̃t = Xt+ except on a null

set, and this modification has sample paths which are rcll (right-continuous with left limits). This will allow us to

generally assume right-continuous sample paths in most of our future discussion.
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Today, the discussion will focus on optional stopping theorems, primarily for martingales. The main feature is

that we can extend the statement Xs = E[Xt |Fs ] for fixed s ≤ t to random times; our goal is to prove that if

σ ≤ τ are both stopping times, then Xσ = E[Xτ |Fσ]. There are lots of applications of this, many of which are on our

homework, but here’s a simple example:

Example 59

Let Bt be a Brownian motion started from 0, and let τ = τa ∧ τb for a < 0 < b. Then an optional stopping

theorem will tell us (because Bt is a martingale) that

0 = B0 = E[Bτ ] = aP(τa < τb) + bP(τa > τb),

allowing us to explicitly calculate the probability p = b
b−a that we hit a before we hit b.

Note, though, that optional stopping theorems do not hold without further restrictions:

Example 60

Let τ be the first time that Brownian motion hits 1. We’ve shown previously that τ is finite almost surely, but

0 = B0 6= E[Bτ ] = 1.

We do have a reason to believe that the optional stopping theorem should continue to hold, though: we know that

if Xt is a martingale, then E[Xt ] is constant in t, and if τ is a stopping time, then Xt∧τ is a martingale. (There is a

small caveat: we know the stopped process is a martingale in discrete time, but we haven’t actually proved this for

continuous time yet.) But then this means E[Xt∧τ ] is also constant, so

E[X0] = E[X0∧τ ] = E[Xt∧τ ]

for all finite t. And then taking t →∞ should yield (for any finite stopping time τ) that

E[X0] = lim
t→∞
E[Xt∧τ ]

?
= E

[
lim
t→∞
Xt∧τ

]
= E[Xτ ],

so we’ve reduced this to the usual L1 convergence question: “can we swap the limit and expectation?”. We’ll start

with an almost-sure (pointwise) convergence result:

Proposition 61

Let Xt be a (sub/super)martingale with right-continuous sample paths, and suppose that supt ||Xt ||1 <∞ (mean-

ing our process is bounded in L1). Then Xt converges almost surely to X∞ ∈ L1 (though L1 convergence may

not occur).

Proof. Without loss of generality we can assume that Xt is a supermartingale (otherwise multiply it by −1). Then we

know by the upcrossing inequality that

E [Ua,b([0, T ] ∩D)] ≤
E[(XT − a)−]
b − a ,

and by the monotone convergence theorem, because the left hand side is increasing as we take T →∞, we have

E[Ua,b(D)] ≤ sup
t

E[|Xt − a|]
b − a <∞.
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This means that Ua,b is finite for all rational a < b almost surely, and thus the same is true over all rational < b. In

particular, this means Xt must converge (or else there would be a rational sandwiched between the liminf and limsup).

Then Fatou’s lemma tells us (because X∞ = lim inft→∞Xt) that

E[|X∞|] ≤ lim inf
t→∞

E[|Xt |] <∞,

so X∞ is in L1 as desired.

Again, it’s important to remember that Xt does not always converge in L1 to X∞ under these conditions. Another

example that is good to keep in mind is

Xt = exp(Bt − t/2),

which is a nonnegative martingale with E[Xt ] = 1 for all t. However, Bt will be much smaller than t
2 as t → ∞, so

Xt converges almost surely to X∞ = 0.

Proposition 62

Let Xt be a (sub/super)martingale with right-continuous sample paths, and suppose we know that supt ||Xt ||p <∞
for some p > 1. Then Xt → X∞ almost surely and in Lp, and in particular it also converges in L1.

Proof. This proof is the same as in the discrete case. Recall Doob’s Lp inequality, which tells us that∣∣∣∣∣∣∣∣sup
s≤t
|Xs |

∣∣∣∣∣∣∣∣
p

≤
p

p − 1 ||Xt ||p.

Taking t → ∞, the left side is nondecreasing in t, and the right-hand side stays bounded by assumption, so S =

supt≥0 |Xt | is in Lp. The conditions assumed here are strictly stronger than in the previous proposition, so we know

already that Xn → X∞ almost surely. But now by the dominated convergence theorem, we have

lim
t→∞
E(|Xt −X∞|p)→ 0,

since |Xt −X∞|p is dominated by (2S)p, which we’ve shown is in L1.

This will help us with some but not all of the cases we’re interested in, and in fact we have a precise characterization

of when L1 convergence occurs. (And the proofs now will be a bit more complicated than in the discrete time case.)

Definition 63

A collection of random variables {Xi}i∈I is uniformly integrable (u.i.) if

lim
M→∞

(
sup
i∈I
E[|Xi |; |Xi | ≥ M]

)
→ 0.

As a trivial example, let Z ∈ L1(Ω,F ,P), and assume that all of our random variables satisfy |Xi | ≤ Z. Then the

|Xi |s are uniformly integrable because E[|Z|; |Z| ≥ M] goes to 0. A less trivial example is to consider the collection of

random variables

XG = E[Z|G],

where G is any sub-σ-field of F (showing this is uniformly integrable is a good exercise). Finally, note that being

uniformly integrable is stronger than being bounded in L1 (also useful to think about on our own).
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Theorem 64

Suppose we have a collection of random variables Xn indexed by integer n which converge in probability to X∞.

Then the following are equivalent:

1. The {Xn} are uniformly integrable,

2. Xn converges in L1 to X∞,

3. E[|Xn|] converges to E[|X∞|].

(We can see [3] for the proof, but we also proved this last semester in 18.675.) As a word of caution, (1) implies

(2) implies (3) if we have a real-indexed process Xt , but (3) does not imply (1).

Definition 65

A martingale Xt is closed if there is some Z ∈ L1 such that Xt = E[Z|Ft ] for all t.

Theorem 66

Let Xt be a right-continuous martingale. Then the following are equivalent:

1. X is closed,

2. {Xt} is uniformly integrable,

3. Xt converges almost surely and in L1 as t →∞.

Again, remember that the Lp condition was sufficient, while these assumptions are both necessary and sufficient.

Proof. (1) implies (2) because E[Z|G] is always a uniformly integrable family. To show that (2) implies (3), note that

uniformly integrable implies supt ||Xt ||1 < ∞, so Proposition 61 tells us that Xt converges almost surely to X∞, and

Theorem 64 tells us that Xt converges in L1 to X∞ as well. Finally, to show that (3) implies (1), note that we have

Xt = E[Xu |Ft ] for all t ≤ u < ∞. But Xu converges to X∞ in L1 by assumption, so we can pass the limit through

the integral and find that Xt = E[X∞|Ft ]. Therefore taking Z = X∞ shows that the martingale is closed.

This result was the main step in proving the discrete-time optional stopping theorem, but the continuous-time case

makes a few things more complicated. Remember that if Xn is discrete and adapted to Fn and τ is a stopping time,

then we define the stopping-time sigma-algebra

Xτ ∈ Fτ = {A ∈ F∞ : A ∩ {τ ≤ n} ∈ Fn ∀n}.

Then to check that Xτ is actually measurable with respect to Fτ , we just needed to check if {Xτ ∈ B}∩{τ ≤ n} ∈ Fn.
But this is just a finite union of events

{τ ≤ n} ∩

(
n⋃
k=1

{Xk ∈ B, τ = k}

)
,

which is indeed in Fn. But we immediately get measurability issues if we use continuous time because we’d have to

take an infinite union, so claiming that Xτ ∈ Fτ does actually require some regularity assumptions.
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Proposition 67

Suppose Xt is adapted to Ft and has right-continuous sample paths, and let τ be a stopping time. Then Xτ ∈ Fτ .

Proof. We’ll prove that Xτ is a composition of two maps. Fix t > 0, and consider the map F : Ω× [0, t]→ R sending

F (ω, s) = Xs(ω). We claim that this map is measurable with respect to Ft ⊗ B[0,t] (where B denotes the Borel

sigma-algebra) – this property is called being progressive, and it’s stronger than being adapted. To show this, we’ll

approximate F with something that has this property: we split our interval [0, t] into blocks of length t
n , and define

F (n)(ω, s) = X(⌈s·n/t⌉)/(n/t)(ω)

(meaning that we take the value of X at the right edge of the block). Each F (n) is measurable, because the preimage

of any set B can be written as

(F (n))−1(B) =

[
n⋃
k=1

{{
Xkt/n ∈ B

}
×
(
(k − 1)t
n

,
kt

n

]}]
∪ ({X0 ∈ B} × {0}),

which is just a collection of rectangles. As we take n → ∞, F (n) converges to F by right-continuity (because

(ds · n/te)/(n/t) ↓ s as n gets large), and the pointwise limit of measurable functions is measurable. So now we want

to show that Xτ ∈ Fτ , which means that we need to show that

{Xτ ∈ B} ∩ {τ ≤ t} ∈ Ft

for all t. For any fixed t, define G(ω) = (ω, t ∧ τ(ω)), and take F from above. Then

(Ω,Ft)
G→ (Ω× [0, t],Ft ⊗ B[0,t])

F→ (R,BR)

is a composition of two measurable maps, and notably

{Xτ ∈ B} ∩ {τ ≤ t} = {τ ≤ t} ∩ {ω : F (G(ω)) ∈ B},

because t ∧ τ(ω) = τ on the event τ ≤ t. And now τ ≤ t is in Ft by the definition of a stopping time, and similarly

{ω : F (G(ω)) ∈ B} is measurable because it’s the preimage of a measurable set. Thus we have the desired result.

Let’s look now at another result from discrete-time that we have to be more careful about in the continuous-time

case. In discrete time, the stopped process Xn∧τ can be written as the sum

Xn∧τ = X0 +

n∑
k=1

1{k ≤ τ}(Xk −Xk−1),

which is the same as the H-transform X0 + (H · X)n, where Hk = 1{τ ≥ k} is Fk−1-measurable. Since each Xn is

integrable by definition of a martingale, Xn∧τ will be in L1 for all n (since it’s a sum over n + 1 terms each in L1);

from there, we can check that Xn∧τ is a martingale using the H-transform property. But both of these facts are less

obvious in the continuous-time case, and we have to do a bit more.

Theorem 68

Let Xt be a uniformly integrable martingale with right-continuous sample paths, and let σ, τ be stopping times

such that σ ≤ τ . Then Xσ, Xτ are both in L1, and Xσ = E[Xτ |Fσ].

33



Proof. We’ll sketch the proof here: assume that we know the discrete-time result already. Approximate the

stopping times by

σn =
dσ · 2ne
2n

, τn =
dτ · 2ne
2n

.

Clearly σn ↓ σ, τn ↓ τ, σn ≤ τn, and σn, τn are stopping times for all n (because they’re larger than σ, τ respectively, so we

“know to stop” at some time later). Then the discrete time optional stopping theorem tells us that Xσn = E[Xσ0 |Fσn ],
so the Xσn are uniformly integrable. Because Xσn converge almost surely to Xσ by right-continuity, that means that

Xσn also converges in L1 to Xσ. Similarly, Xτn converges almost surely and in L1 to Xτ . But (by the discrete-time

result) we have

Xσn = E[Xτn |Fσn ],

and any event A ∈ Fσ is contained in all Fσn and therefore in their intersection. Thus E[Xσn ;A] = E[Xτn ;A] for all

events A ∈ Fσ, and taking n → ∞ yields (by L1 convergence) E[Xσ;A] = E[Xτ ;A]. This is exactly the definition of

the conditional expectation Xσ = E[Xτ |Fσ].

With this, we can finally prove the result that we’re after:

Corollary 69

Let Xt be a martingale with right-continuous sample paths, and let τ be a stopping time. Then (1) Xt∧τ is a

martingale, and (2) if {Xt} is uniformly integrable, then {Xt∧τ} is also uniformly integrable with Xt∧τ = E[Xτ |Ft ].

Proof. We prove (2) first. We know that τ and t ∧ τ are both stopping times, so Theorem 68 tells us that Xτ , Xt∧τ
are in L1 and that Xt∧τ = E[Xτ |Ft∧τ ]. Now we wish to show that for all A in Ft ,

E[Xt∧τ ;A] = E[Xτ ;A].

On the event that τ ≤ t, the expressions inside the expectations are identical, so E[1A1τ≤tXt∧τ ] = E[1A1τ≤tXτ ] .
On the other hand, on the event that τ > t, A∩{τ > t} is in Ft , and it is also in Fτ (by the definition of the stopping

time sigma-algebra), so it is in their intersection, which is Ft∧τ . In other words,

E[1A1{τ>t}Xt∧τ ] = E[1A1{τ>t}Xτ ] ,

by using Xt∧τ = E[Xτ |Ft∧τ ] and bringing 1A1τ>t inside the inner expectation. Adding together the boxed expressions

shows the result.

Now to show (1) from (2), we know that Xt∧τ is measurable with respect to Ft∧τ ⊆ Ft , so our process is indeed

adapted to the filtration. Also, Theorem 68, Xt∧τ is in L1, so it is integrable. Thus, we just need to show that

Xs∧τ = E[Xt∧τ |Fs ]. If we fix any finite t and define Ys = Xs∧t (so we run the process only for a finite time), then

Ys is uniformly integrable because it is closed – there is a single random variable Xt with conditional expectations

Ys = E[Xt |Fs∧τ ]. So applying (2), we see that Yτ = Xτ∧t is in L1, and Ys = E[Yt |Fs ]. In terms of the original process,

this means that Xs∧τ = E[Xt∧τ |Fs ], showing the martingale condition as desired.

8 February 26, 2020
Today, we’re starting with Chapter 4 of our textbook, which discusses continuous semimartingales. In short, these

are processes of the form Xt = Mt + At where Mt is a continuous local martingale and At is a finite variation
process. We haven’t defined any of these terms or classified any of these processes yet, which will be the topic of the
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next few classes. But before that, we’ll take a step back and look at where things are headed (because the last few

lectures have been a bit technical).

Example 70

Consider the standard Brownian motion Bt , which is a continuous martingale. Suppose that we’re interested in

studying how Xt = f (Bt) evolves for some smooth function f .

Heuristically, we can use Itô’s formula, which tells us something of the form

dXt = f
′(Bt)dBt +

1

2
f ′′(Bt)dt

(where the main idea is that we’ve replaced the (dBt)2 term with dt). In particular, this means X is not a martingale

unless f is linear, which makes sense: a linear scaling µ+σBt should still be a martingale, but otherwise we get a drift

term caused by the curvature of our function f ′′. (Intuitively, a positively curved function f makes f (Bt+dt) larger

than the linear approximation f (Bt) + f ′(Bt)dBt .) So Itô’s formula gives us a decomposition

Xt =

[∫ t

0

f ′(Bs)dBs

]
+

[∫ t

0

1

2
f ′′(Bs)ds

]
,

which turns out to exactly be the process Mt + At we’ll be constructing. So this definition is really coming out of

manipulations of Brownian motion.

Throughout this discussion, it might be useful to keep the discrete-time picture in mind. Say that a process Xn is

adapted to Fn, where X0 = 0 and E|Xn| <∞ for all n. Then we can decompose

Xn =

[
n∑
i=1

(Xi −Xi−1 − E[Xi −Xi−1|Fi−1]

]
+

[
n∑
i=1

E[Xi −Xi−1|Fi−1]

]
,

upon which the first term corresponds to the martingale Mn and the second term to the finite variation process An. It

may not be entirely clear how this An relates to the At above, though: to make that more apparent, imagine that our

process Xn is a function f (Sn), where Sn = ε
∑n

i=1 ζi , ζi ∼ Unif{±1} is a random walk with step size ε. Then

An+1 − An = E[f (Sn + εζn+1)− f (Sn)|Fn],

and now we can Taylor expand in ε to write this as

f ′(Sn)E[ζn+1|Fn] +
1

2
ε2f ′′(Sn)E[ζ2n+1|Fn] + · · ·

(taking out the constants and derivatives because they’re measurable with respect to Sn). But the ζs are iid symmetric

random signs, so this simplifies to

An+1 − An =
1

2
ε2f ′′(Sn) + o(ε

2),

which now looks identical to the At term above. So to summarize, we want to understand this decomposition in the

continuous case: chapters 4 and 5 will help us with a formal characterization of this class of processes. Along the way,

we’ll prove Itô’s formula, which essentially tells us that the image of a continuous semimartingale under a smooth
map is another continuous semimartingale: that is, h(Mt +At) = M̃t + Ãt for sufficiently nice h. Heuristically, the

idea is that if Xt = Mt + At , then

dh(Mt + At) = h
′(Xt)dXt +

1

2
h′′(Xt)(dXt)

2

= h′(Xt)(dMt + dAt) +
1

2
h′′(Xt)

(
(dMt)

2 + 2dMtdAt + (dAt)
2
)
.
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A step of the martingale dMt is “like a step of the Brownian motion with some variance,” so dMt is a Gaussian

step with variance of order
√
dt, and dAt is something deterministic of order dt. So we can toss the last two terms,

and we’re just left with the three terms of highest order:

dh(Mt + At) = h
′(Xt)dMt +

(
h′(Xt)dAt +

1

2
h′′(Xt)(dMt)

2

)
,

where the h′(Xt) term will be the martingale part and the rest is the finite variation part. We don’t really know how

to integrate any of these terms yet, so we have a lot to understand – we’ll start with the h′(Xt)dAt term. Our first

task is to understand what a finite variation process is and how we take an integral against it.
Today, we’ll start with the case where At is some deterministic function of time and Xt is some deterministic

process. The reason for eliminating the ω here is that t will “be our ω.”

Definition 71

Let (Ω,F) be a measurable space (not the probability space of our process). A finite signed measure on (Ω,F)
is a function α : F → R such that α is countably additive, meaning that if we have disjoint sets Ai ∈ F , then

α

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

α(Ai),

where the sum must be absolutely convergent.

Example 72

If α+, α− are (actual nonnegative) measures on (Ω,F), then α = α+ − α− is a signed measure. Also, if µ is a

measure on (Ω,F) such that
∫
Ω |h| dµ < ∞, then ν(E) =

∫
E h dµ is also a signed measure – in fact, h = dν

dµ is

the Radon-Nikodym derivative.

It turns out that we can only get a signed measure by writing α = α+ − α− as the difference of two measures.

Let’s see how to show this:

Definition 73

Let α be a signed measure on (Ω,F). Then A ∈ F is positive if α(B) ≥ 0 for all B ⊆ A (similarly negative if

α(B) ≤ 0), and A is a null set if α(B) = 0 for all B ⊆ A.

Theorem 74 (Hahn decomposition theorem)

For any signed measure α on (Ω,F), there is a bipartition Ω = Ω+ t Ω− such that Ω+ is positive and Ω−
is negative. This decomposition is essentially unique – for any other decomposition Ω = B+ t B−, the sets

B+ ∩Ω−, B− ∩Ω+ must be null sets.

We should refer to the textbook from 18.675, [3], for the proof – it’s about a paragraph long.

Theorem 75 (Jordan decomposition theorem)

Any signed measure can be uniquely written as α = α+ − α−, where α+, α− are measures on (Ω,F).

Proof. Let α+(E) = α(E ∩Ω+) and α−(E) = α(E ∩Ω−) – we can check that this is unique.

We can now connect this to the idea of a finite variation process:
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Definition 76

A continuous function a : [0, T ]→ R is of finite/bounded variation (FV or BV) if there exists a signed measure

α on ([0, T ],B[0,T ]) such that a(t) = α([0, t]) for all 0 ≤ t ≤ T .

By the Jordan decomposition, this means we can write

a(t) = α+([0, t]) + α−([0, t])

where the two terms on the right hand side are nondecreasing functions of t (because α+, α− are actual measures).

We will sometimes refer to these as a+(t) and a−(t). Then the measure µ = |α| = α+ + α− is the total variation
measure of a, and we define v(t) = µ([0, t]) to be the “total variation of a on the interval [0, t].” So now if we want

to define an integral against the function a(s), one natural way to do so is to define it in terms of our measure:∫ T

0

f (s)da(s) =

∫ T

0

f (s)α(ds),

and similarly
∫ T
0 f (s)|da(s)| =

∫ t
0 f (s)µ(ds). It’s important to emphasize that in both of these equations, the left-

hand side is new notation, while the right-hand side is just a Lebesgue integral which we know how to compute. In

order for these integrals to be well-defined, we just need to make sure that f is measurable and absolutely integrable

(that is,
∫ T
0 |f (s)|µ(ds) <∞). Here are two simple properties of this integral:

• By Jensen’s inequality, we have
∣∣∣∫ T0 f (s)da(s)∣∣∣ ≤ ∫ T0 |f (s)||da(s)|.

• The function b(t) =
∫ t
0 f (s)da(s) is also of finite variation – this will be important for something like Itô’s

formula. Indeed, we can define b(t) = β([0, t]), where β is the signed measure β(E) =
∫
E f (s)α(ds) (this

should look like the Radon-Nikodym derivative equation). Now decomposing into positive and negative parts for

both f and α, the explicit formula for β is that

β(E) =

∫
E

(f+(s)α+(ds) + f−(s)α−(ds))−
∫
E

(f+(s)α−(ds) + f−(s)α+(ds)) .

So to recap, we’re considering the space (Ω,F) = ([0, t],B), and we have a signed measure α corresponding to

a decomposition Ω = Ω+ t Ω−. This yields a corresponding decomposition α = α+ − α− and µ = α+ + α−. Note

that α+ is absolutely continuous with respect to µ (because if a set has zero measure under µ, then it also has zero

measure under α+) and similarly, α− � µ. Furthermore, we can write down the Radon-Nikodym derivatives using the

defining properties: we have
dα+
dµ
= 1Ω+ ,

dα−
dµ
= 1Ω−

(because we want α+(E) =
∫
E
dα+
dµ dµ to be the integral over only Ω+, and similar logic for α−); call these two

functions h+ and h−. Then the corresponding finite-variation process a : [0, t]→ R can be written as

a(s) = α([0, s]) =

∫ s

0

h(s)µ(ds), where h =
dα

dµ
= h+ − h−.

Decomposing as a(s) = a+(s)− a−(s), we see that the total variation is v(s) = a+(s) + a−(s). Therefore,

a+(s) =
1

2
(v(s) + a(s)), a−(s) =

1

2
(v(s)− a(s)).

Remember that our eventual goal is to understand the quantity
∫ t
0 h
′(Xs)dAs . Once we introduce randomness back

in the process, our processes A and X will usually be correlated, so we need to ask how we can calculate the integral
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(for example, whether we can do it using time-steps like a Riemann integral). The first step is to look at a simpler

quantity:

Lemma 77

Let a : [0, t]→ R be a function of finite variation. Then∫ t

0

|da(s)| = sup{VP (a) : P subdivision of [0, t]},

where P is of the form {0 = t0 < t1 < · · · < tp = t} and VP (a) =
∑p

i=1 |a(ti)− a(ti−1)|. In addition, if we have

an increasing set of subdivisions P1 ⊆ P2 ⊆ · · · and the mesh of Pn goes to zero, then VPn(a)→
∫ t
0 |da(s)|.

Basically, we can approximate total variation by a discrete subdivision. This proof is similar to the Radon-Nikodym

theorem, but we’ll present a self-contained argument here:

Proof. We know that VP (a) ≤
∫ t
0 |da(s)| for all P by Jensen, so it suffices to show the convergence result (in other

words, show that we do approach
∫ a
0 |da(s)|). By scaling, we can assume without loss of generality that µ([0, t]) = 1

so that ([0, t],B, µ) is a probability space. Let Gn be the sigma-algebra generated by the intervals of Pn – for each fixed

n, Gn is a finite collection, and the Gn are nondecreasing because the Pn are nondecreasing. Then the sigma-algebra

σ generated by the union of the Gns is just the Borel sigma-algebra on [0, t].

By the Hahn decomposition, we can write X(t) = h(t) = 1{t ∈ Ω+} − 1{t ∈ Ω−}. X is a random variable on

([0, t],B, µ), and we have the filtration G1 ⊆ G2 ⊆ · · · ⊆ B, which gives us the closed martingale (implying uniformly

integrable as well) Xn = E[X|Gn]. This means that Xn converges to X almost surely and in L1, but because Gn is

finite, Xn is piecewise constant (on the intervals of Pn). Then (notation meaning here that the break points depend

on n) we can write

E
[
Xn; [t

(n)
i−1, t

(n)
i ]
]
= Xn(t

(n)
i−1) · µ([t

(n)
i−1, t

(n)
i ])

(where technically it’s possible to modify X at any point, but the point is that it’s the measure of the interval times

the value at any given point in that interval). But we also know that on this same interval (recalling that X and h are

the same) we have

E[X; [ti−1, ti ]] =
∫ ti

ti−1

h(s)µ(ds) = α([ti−1, ti ]) = a(ti)− a(ti−1).

But these two expectations should be equal, because Xn = E[X|Gn], so the value of Xn on [ti−1, ti ] is equal to
a(ti )−a(ti−1)
µ([ti−1,ti ])

. Now because Xn converges to X in L1, E[|Xn|] converges to E[|X|]. Xn is piecewise constant, so we can

write

E[|Xn|] =
|Pn |∑
i=1

µ([ti−1, ti ]) ·
∣∣∣∣a(ti)− a(ti−1)µ([ti−1, ti ])

∣∣∣∣ = |Pn |∑
i=1

|a(ti)− a(ti−1)| = VPn(a).

Meanwhile, |X| is 1 almost surely (it’s either 1 or −1 almost everywhere), so

E[|X|] = 1 = µ([0, t]) =
∫ t

0

|da(s)|.

Thus as n →∞, the convergence E[|Xn|]→ E[|X|] yields the result.
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Corollary 78

Let a be a function of finite variation and f : [0, t] → R be a continuous function. Then if P1 ⊆ P2 ⊆ · · · are

subdivisions of [0, t] with mesh going to 0, then

|Pn |∑
i=1

f (t
(n)
i−1)

(
a(t
(n)
i )− a(t

(n)
i−1)

)
→
∫ t

0

f (s)da(s),

where again the ti implicitly depend on n.

This is useful because we have more practice looking at things like the left hand side, so we’ll be able to simplify

calculations.

Proof. We start by trying to define the Stieltjes integral: let t(n)i be our break points corresponding to the subdivision

Pn, and define f (n)(t) = f (t(n)i−1) for all t ∈ [t(n)i−1, t
(n)
i ). The f (n) are bounded uniformly, because ||f (n)||∞ ≤ ||f ||∞ <∞,

and f (n) converges to f pointwise because f is continuous. But then the left hand side of the equation is
∫ t
0 f
(n)dα,

which converges to
∫ t
0 f dα by the dominated convergence theorem.

Remark 79. We say that a function a : [0,∞)→ R has finite variation if a has finite variation on any compact interval

[0, t].

9 March 2, 2020
Solutions for the first two homework assignments are posted on Stellar now; the next homework is due on Monday,

and we’ll have office hours 3-5 on Thursday instead of today.

Recall that a function a : [0, T ]→ R is of finite/bounded variation if there exists a signed measure α = α+−α−
on [0, T ] such that a(t) = α([0, t]) = a+(t)− a−(t) (noting that a(0) = 0). Last time, we defined the integral∫ t

0

f (s)ds =

∫ t

0

f (s)α(ds),

which is well-defined as long as we have the absolute integrability condition
∫ t
0 |f (s)||da(s)| < ∞. We noted that

the integral
∫ t
0 f (s)da(s), as a function of t, is also of finite variation, and we noticed that if f is continuous and we

have a sequence of subdivisions P0 ⊆ P1 ⊆ · · · of [0, t] with mesh going to zero, then the discrete approximations∑|Pn |
i=1 f (t

(n)
i−1)

(
a(t
(n)
i )− a(t

(n)
i−1)

)
converge to the integral

∫ t
0 f (s)da(s).

Everything last time was deterministic, so we’ll add randomness now. We’ll be on a filtered probability space

(Ω,F , (Ft),P) for the rest of this lecture, and for the rest of this chapter we’ll assume that we have continuous

sample paths.

Definition 80

An adapted process At (to our filtered probability space) is a finite variation process if all sample paths have

finite variation. If all sample paths are nondecreasing in t, then we say that At is an increasing process.

Recall that a process Ht is progressive if F (ω, s) = Hs(ω) is measurable with respect to the sigma-algebra

Ft ⊗ B[0,t]. In general, this is stronger than being adapted, but any continuous adapted process will be progressive.
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Proposition 81

Let A be a finite-variation process, and let H be a progressive process. Suppose that
∫ t
0 |Hs(ω)||dAs(ω)| is finite

for all finite t. Then (H · A)t =
∫ t
0 HsdAs is a well-defined finite variation process.

We’ll skip over this proof for now, but the fact that this is an FV process follows from the result above that∫ t
0 f (s)da(s) is FV. What we need to check is that this process is measurable with respect to Ft –we should read this

on our own, and this is where we use the progressive condition.

Remember that our original goal was to study the class of continuous semi-martingales of the form Xt = At +Mt ,

where A is FV and M is a (local) martingale. We’ll spend some time now on the latter object.

Definition 82

A continuous local martingaleMt on a filtered probability space (Ω,F , (Ft),P) is an adapted continuous process

for which there exists a sequence of stopping times (τn) such that

• τn(ω) ↑ ∞ for all ω,

• The stopped processes (Mt∧τn −M0) are uniformly integrable martingales for all n (we often say that τn
reduces M).

Example 83

Let Bt be a Brownian motion in R3, and define Mt = 1
|Bt | = (B

2
t,1+B

2
t,2+B

2
t,3)
−1/2. This is not a true martingale,

but it is a local martingale. (We’ll talk more about the difference in a future lecture.)

Note that all continuous martingales are continuous local martingales, because we can just take τn = n: we know

that Xs = E[Xn|Fs ] for all s ≤ n, so the variables (Mt∧τn −M0) are just conditional expectations of Xn and thus must

be uniformly integrable. This same conditional expectation argument actually implies that we can actually leave out
“uniformly integrable” from the definition.

Remark 84. The optional stopping theorem tells us that a stopped uniformly integrable martingale is still uniformly

integrable, so any stopping time τ of a continuous local martingale M gives us a continuous local martingale Mt∧τ .

Note that one set of stopping times to consider (which we can always use) is

τn = inf{t : |Mt −M0| = n}.

The idea is that at any finite n, all of the stopped processes Mt∧τn are bounded, so we have uniform integrability.

Proposition 85

Let M be a nonnegative continuous local martingale with M0 ∈ L1 (we need to add this condition because it’s

no longer true that Mt needs to be integrable in general). Then M is a true supermartingale but not necessarily

a martingale.

Proof. Let Nt = Mt −M0, and let τn be the reducing sequence for M. Then for all s ≤ t, we have

Ns∧τn = E[Nt∧τn |Fs ]
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because τn creates a uniformly integrable martingale, so the optional stopping theorem holds. Since M0 is integrable,

we can add it back to both sides to find

Ms∧τn = E[Mt∧τn |Fs ].

Taking limits on both sides, Ms∧τn converges to Ms by continuity, while the right hand side satisfies

lim
n→∞

E[Mt∧τn |Fs ] ≥ E
[
lim inf
n→∞

Mt∧τn |Fs
]
= E[Mt |Fs ]

by Fatou’s lemma and continuity, so we get the supermartingale inequality.

Theorem 86

If X is both a continuous local martingale and a finite variation process, then X = 0.

This is a useful result to have, because this result gives us uniqueness of the decomposition Xt = Mt + At .

Proof. Since X is a finite variation process, we know that X0 = 0 and Xt =
∫ t
0 dXs . Then because X is also a

continuous local martingale, we can define

τn = inf{t :
∫ t

0

|dXs | = n}

to be the first time the total variation of X exceeds n. Letting X(n)t = Xt∧τn , we know that |X(n)t | ≤ n for all t (because

we stop the process before it can change by more than n), which means that X(n) is bounded and therefore uniformly

integrable for each n. Fix n and let N = X(n) for notation (note that N is a martingale). We have

E[(Ns2 − Ns1)(Nt2 − Nt1)] = 0

for all s1 ≤ s2 ≤ t1 ≤ t2 (because when we condition on Ft1 , the martingale condition tells us this expectation is zero,

and then taking another expectation gives us 0 overall). This means that we can break up the sum as

E[N2t ] = E

[∑
i

(Nti − Nti−1)2
]
=
∑
i

E[(Nti − Nti−1)2],

but the fact that
∫ t
0 |dXs | = n means that summing squares of increments will give us something small. Specifically,

E[N2t ] ≤ E

[(
sup
i
|Nti − Nti−1 |

)
·
∑
i

|Nti − Nti−1 |

]
.

The sum is at most n by definition, and the first term goes to 0 as the mesh of {ti} goes to zero. Because the whole

expression inside the expectation is bounded, we know that this goes to 0 by the dominated convergence theorem.

Thus E[N2t ] = 0, meaning that Nt = X
(n)
t = Xt∧τn is identically zero for all n, which can only happen if X = 0.

From here on, we assume that Ft is complete.

Theorem 87

Let M be a continuous local martingale. Then there exists an increasing (finite variation) process At = 〈M,M〉t
called the quadratic variation, such that M2t − At is a continuous local martingale. A is unique up to null sets,

and if P1 ⊆ P2 ⊆ · · · is a subdivision of [0, t], then V 2Pn(M) converges to At as n →∞.
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Note that A is the formalization of what we labeled as
∫ t
0 (dMs)

2 in our earlier heuristic arguments. This is a really

important quantity: as motivation for why we care about this, if M is a continuous local martingale and At = 〈M,M〉t ,
then Mt is equal in distribution to a Brownian motion indexed by At . So a continuous local martingale is just a time
change of Brownian motion (and in the special case where 〈M,M〉t = t, M is just a standard Brownian motion).

Start of proof. We’ll prove this assuming that M is a bounded continuous martingale. (Generalizing to continuous

local martingales takes very little work.) Again, we assume M0 = 0 for simplicity.

For motivation, first consider a discrete-time martingale Mn. We can write

M2n =

n∑
i=1

(
M2i −M2i−1 − E[M2i −M2i−1|Fi−1]

)
+

n∑
i=1

E[M2i −M2i−1|Fi−1],

where the first summation is a martingale. So a natural idea is to take a discrete approximation for our continous-

time martingale, and hope that the remainder converges to our process A. It turns out that we don’t even need the

expectations – we can take A(n) =
∑(
Mti −Mti−1

)2
. More formally (in continuous time), M is a continuous bounded

martingale, so we can take our increasing subdivisions of [0, T ] (with mesh going to zero) and define

A
(n)
t =

|Pn |∑
i=1

(
M
t∧t(n)i

−M
t∧t(n)i−1

)2
.

Because M2t =
∑|Pn |

i=1

(
M2
t∧t(n)i

−M2
t∧t(n)i−1

)
, subtracting the two and expanding yields

N
(n)
t = M2t − A

(n)
t = 2

|Pn |∑
i=1

M
t∧t(n)i−1

(
M
t∧t(n)i

−M
t∧t(n)i−1

)
,

which is a bounded martingale (by assumption, since M is a bounded martingale).

Lemma 88

Suppose that |Mt | ≤ C for all t ≤ T , and suppose that M0 = 0. Then

E

(∑
i

(Mti −Mti−1)2
)2 ≤ 12C4.

(Without the assumption that M0 = 0, the right-hand side is instead 48C4.)

Proof of lemma. Expanding out the left hand side, we get diagonal terms for i = j and off-diagonal terms otherwise:

E

(∑
i

(Mti −Mti−1)2
)2 =∑

i

E[(Mti −Mti−1)4] + 2
∑
i<j

E
[
(Mti −Mti−1)2(Mtj −Mtj−1)2

]
.

Simplify the first term by pulling out some factors (and bounding them by C), and compute the sum over j > i in the

second term to get

E

(∑
i

(Mti −Mti−1)2
)2 ≤ (2C)2∑

i

E[(Mti −Mti−1)2] + 2
∑
i

E
[
(Mti −Mti−1)2(MT −Mti )2

]
,

where we’ve used the orthogonality of disjoint intervals (since MT −Mti =
∑

j>i Mtj −Mtj−1). Now bound the blue
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term in terms of C to show that

E

(∑
i

(Mti −Mti−1)2
)2 ≤ [(2C)2 + 2(2C)2]∑

i

E[(Mti −Mti−1)2] = 12C2 · E[M2T ]

again using orthogonality (here’s where we gain the factor of 4 when M0 = 0 isn’t assumed), and this last expression

is at most 12C2 · C2 = 12C4, as desired.

Lemma 89

If we still assume that Mt is bounded, then the sequence (N(n)T ) is Cauchy in L2 (as n →∞).

Proof of lemma. Suppose m ≤ n, so that the subdivision Pm is contained in the subdivision Pn. Let Pn = (sj : 1 ≤
j ≤ |Pm|) and Pm = (ti : 1 ≤ i ≤ |Pn|); because Pn is a refinement of Pm, we can also index the tis as ti ,k , where the

first index i tells us that we are in the range [si−1, si ]. Now the expected covariance can be calculated by writing out

the definition of N(n)T :

1

4
E
[
N
(m)
T N

(n)
T

]
= E

∑
i ,j

Msi−1(Msi −Msi−1)Mtj (Mtj −Mtj−1)

 .
If the time intervals are disjoint, the contribution to the expectation is zero, so we only get a contribution when the t

increments are inside the s increments and thus this expectation reduces to a sum over subincrements∑
i ,k

E
[
Msi−1(Msi −Msi−1)Mti ,k (Mti ,k −Mti ,k−1)

]
.

Each term here involves the times si−1 ≤ ti ,k−1 ≤ ti ,k ≤ si , so we can further break up the increment Msi −Msi−1 and

the only term that remains is the “middle one” (by conditioning at an appropriate time). Thus we have

1

4
E[N(m)T N

(n)
T ] =

∑
i ,k

E
[
Msi−1(Mti ,k −Mti ,k−1)Mti ,k (Mti ,k −Mti ,k−1)

]
.

So now if we want to show that our sequence N(n)T is Cauchy in L2, we want to calculate the L2 distance. Expanding

and then simplifying the terms to make the sum line up, we find that

1

4
E
(
N
(m)
T − N(n)T

)2
=
∑
i

E[M2si−1(Msi −Msi−1)
2]− 2(cross term above) +

∑
i ,k

E
[
M2ti ,k−1(Mti ,k −Mti ,k−1)

2
]

=
∑
i ,k

E
[
(Msi −Mti ,k−1)2(Mti ,k −Mti ,k−1)2

]

≤ E
[
sup
i ,k

∣∣Msi −Mti ,k−1∣∣4]1/2 E
(∑

i ,k

(Mti ,k −Mti ,k−1)2
)21/2 ,

where the last step is by Cauchy-Schwarz. The second term is bounded by our previous lemma, and the first term

converges to 0 again by dominated convergence theorem, so we do have Cauchy convergence in L2.

We’ll finish up the proof next time, but this lemma is the main point – knowing that the process is Cauchy allows

us to use the maximal inequality to get convergence.
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10 March 4, 2020
Today, we’ll continue the proof that we started last time. The main idea is that we have a continuous local martingale

Mt and want to decompose

M2t = (continuous local martingale)+ (finite variation process).

We know that this is unique, because any continuous local martingale that is of finite variation must be identically zero.

Specifically, our goal is to show that (1) there exists a finite variation process At = 〈M,M〉t (called the quadratic
variation of M) such that (2) M2t −At is a local martingale, and (3) if Pn is an increasing subdivision of [0, t], we have

|Pn |∑
i=1

(
M
t
(n)
i

−M
t
(n)
i−1

)2 p→ 〈M,M〉t .

Continuation of proof of Theorem 87. Remember that we’re proving this result assuming that M is bounded and that

M0 = 0. For any subdivision of [0, T ] and any t ∈ [0, T ], we can decompose

M2t =

|Pn |∑
i=1

(
M2
t∧t(n)i

−M2
t∧t(n)i−1

)
,

which can then further be decomposed as

M2t =

|Pn |∑
i=1

(
M
t∧t(n)i

−M
t∧t(n)i−1

)2
+ 2

|Pn |∑
i=1

M
t∧t(n)i−1

(
M
t∧t(n)i

−M
t∧t(n)i−1

)
.

The first term, which we denote A(n)t , is supposed to approach our finite variation process, and we showed last time

that the second term, which we denote N(n)t , is a martingale. We showed last time that N(n)T is Cauchy in L2 (as

n → ∞) for any finite T , as long as M is bounded. So now by Doob’s L2 inequality, there is some constant C such

that

sup
0≤t≤T

∣∣∣∣∣∣N(n)t − N(m)t

∣∣∣∣∣∣
2
≤ C

∣∣∣∣∣∣N(n)T − N(m)T

∣∣∣∣∣∣
2
.

As m, n →∞, the right-hand side goes to zero – because we have a martingale, having control of the endpoint gives

us control of the entire process in the form of a kind of uniform convergence. In particular, we can find nk →∞ (by

extracting a subsequence) so that

sup
0≤t≤T

∣∣∣∣∣∣N(nk )t − N(nk+1)t

∣∣∣∣∣∣
2
≤
1

2k
,

which implies that (because E[|X|] = ||X||1 ≤ ||X||2)

E

[ ∞∑
k=1

sup
0≤t≤T

∣∣∣N(nk )t − N(nk+1)t

∣∣∣] <∞.
This means that the quantity inside the expectation is finite almost surely, so the N(nk ) converge uniformly on [0, T ]

outside of a null set Ω0. We can thus define

Yt(ω) =

limk→∞ N
(nk )
t (ω) ω 6∈ Ω0,

0 otherwise.

This process is adapted to Ft , and we just need to check that Yt is a martingale. But we’ve shown that N(nk )t converges

44



to Yt almost surely and in L2, so because each N(nk )t is a martingale, the statement E[Yt |Fs ] = Ys follows by taking a

limit and passing the integral through (using L2 convergence).

So now we can construct our process At = M2t − Yt by taking the (uniform) limit (on [0, T ]) of the A(n)t s, because

M2t is fixed and N(n)t converges to Yt in the boxed equation above. While it is not necessarily true that A(n)t is an

increasing process, we do know that each A(n) is nondecreasing on the set {t(n)i }. The set of tis is dense in the limit,

so continuity tells us that the limit A is indeed a nondecreasing process on [0, T ].

Finally, repeating this process for all integers T ≥ 1 yields a collection of processes M2t = A
(T )
t + Y

(T )
t for t ≤ T .

We just need to show that all of these are compatible of each other, which follows from the uniqueness claim we made

earlier. In particular, the stopped process M2t∧T − A
(T )
t∧T is a martingale, and if T ′ ≥ T , then M2t∧T − A

(T ′)
t∧T is also a

martingale. So if we subtract these, A(T )t and A(T
′)

t must agree up to time T (because the difference is both a local

martingale and a finite variation process), so this means At is indeed well-defined.

It just remains to check the final claim, but we have already proven that

|Pn |∑
i=1

(
M
t
(n)
i

−M
t
(n)
i−1

)2
= A

(n)
T = M

2
T − N

(n)
T .

As n →∞, this converges in L2 to M2T −YT , which is exactly AT , so in particular the convergence in probability follows

as well.

All of the discussion above proves the theorem in the case where M is bounded and M0 = 0. Extending to the

general case is easy, and we can read the details of that on our own.

Example 90

Let B be a standard Brownian motion. We’ve shown that B2t − t is a martingale, so 〈B,B〉t = t.

In a future lecture, we’ll see the converse as well, which tells us that a continuous local martingale with 〈B,B〉t
is a Brownian motion. In fact, if Mt is both a continuous martingale and a Gaussian process, then M2t − E[M2t ] is a

martingale, so we have 〈M,M〉t = E[M2t ]. So in both of these cases the quadratic variation is deterministic, but in

general it can be random.

Theorem 91

Suppose that M is a continuous local martingale, and M0 ∈ L2. Then the following are equivalent:

• M is a true martingale bounded in L2,

• E[〈M,M〉∞] is finite.

If these properties hold, then M2t − 〈M,M〉t is also a true, uniformly integrable martingale.

Based on our work above, it’s natural to claim that M2t −〈M,M〉t is a martingale and thus the expectations of the

two terms are equal for all t. However, the main difficulty is that we only know that we have a local martingale.

Lemma 92

IfM is a continuous local martingale such that |Mt | ≤ Z ∈ L1 for all t, thenM is a uniformly integrable martingale.

Proof of lemma. By definition, there are stopping times τn such that Mt∧τn is a uniformly integrable martingale for all

n. Thus, we have

Ms∧τn = E[Mt∧τn |Fs ]
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for all s, t, and since Mt∧τn is a continuous process, it converges to Mt as n →∞. By assumption, |Mt | is dominated

by Z for all t, which means Mt∧τn is also dominated by Z for all n and thus the collection is uniformly integrable. Thus

Mt∧τn converges in L1 to Mt as n →∞, meaning that by the dominated convergence theorem we haveMs = E[Mt |Fs ]
and thus we do have a martingale. Finally, again the condition that |Mt | ≤ Z guarantees that we have a uniformly

integrable process.

Proof of Theorem 91. We can assume M0 = 0 without loss of generality (because all of the quantities here only

depend on increments of M). To show the forward direction, first note that S = supt≥0 |Mt | is in L2 by the Doob L2

inequality. Define the stopping time

σn = inf{t : 〈M,M〉t = n};

then Yt = M2t − 〈M,M〉t is a local martingale, so the stopped version Yt∧σn is also a local martingale. But

|Yt∧σn | =
∣∣M2t∧σn − 〈M,M〉t∧σn ∣∣ ≤ S2 + n,

which is in L1 because S ∈ L2. Thus, by Lemma 92, the stopped process Yt∧σn is a uniformly integrable martingale

(because it’s dominated by S2 + n), and thus E[M2t∧τn ] = E[〈M,M〉t∧σn ]. By assumption, M is a true martingale

and thus the left-hand side is uniformly bounded by E[S2], while the right-hand side increases to E[〈M,M〉t ] by the

monotone convergence theorem. Thus taking n →∞ and then t →∞ yields the result.

On the other hand, assume the total quadratic variation is finite. Define the stopping times

τn = inf{t : |Mt | = n};

similarly Yt = M2t − 〈M,M〉t is a local martingale, so Yt∧τn is also a local martingale. And now

|Yt∧τn | =
∣∣M2t∧τn − 〈M,M〉t∧τn ∣∣ ≤ n2 + 〈M,M〉∞

is in L1 by assumption, so Yt∧τn is a uniformly integrable martingale again by Lemma 92. This means that

E[M2t∧τn ] = E[〈M,M〉t∧τn ] ≤ E[〈M,M〉∞] <∞,

so M is bounded in L2 (by using Fatou’s lemma as n → ∞). It remains to show that we have a martingale – we

already know that E[Mt∧τn |Fs ] = Ms∧τn . For each t, the collection Mt∧τn is bounded in L2, and we’ll prove below in

Proposition 93 that this implies uniform integrability. Therefore we can pass the limit through the integral as n →∞
to find that E[Mt |Fs ] = Ms , as desired.

It remains only to prove the following:

Proposition 93

If {Xi} are bounded in Lp for some p > 1, then {Xi} is uniformly integrable.

Proof. Let q = p
p−1 , so that 1p +

1
q = 1. By Hölder’s inequality,

E [|Xi |; |Xi | ≥ M] ≤ ||Xi ||p||1{|Xi | ≥ M}||q.

But the ||Xi ||p are uniformly bounded by some constant C, and the second term is just P(|Xi | ≥ M)1/q. Thus this

simplifies by Markov’s inequality to

E [|Xi |; |Xi | ≥ M] ≤ C
(
E(|Xi |p)
Mp

)1/q
≤
C · Cp/q

Mp/q
.
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This goes to 0 uniformly over i as M →∞, so we’ve verified the desired uniform integrability condition.

We’ll finish by wrapping up some minor points from chapter 4:

Definition 94

Let (Ω,F , (Ft),P) be a filtered probability space. If M,N are both continous local martingales, then their

quadratic covariation is

〈M,N〉t =
1

2
(〈M + N,M + N〉t − 〈M,M〉t − 〈N,N〉t) .

We say that M,N are orthogonal if their covariation is zero.

For example, if we take two independent Brownian motions B1, B2, then we can check that 〈B1, B2〉 = 0.

Theorem 95 (Kunita-Watanabe)

Let M,N be continuous local martingales, and let H,K be measurable processes, meaning that the map (t, ω)→
Ht(ω) (resp. Kt(ω)) is measurable on F ⊗ B[0,∞). Then∫ ∞

0

|HsKs ||d〈M,N〉s | ≤
(∫ ∞
0

H2s d〈M,M〉s
)1/2(∫ ∞

0

K2s d〈N,N〉s
)1/2

.

(In particular, it is sufficient for H and K to be adapted and continuous.) This is a kind of analogy to the Cauchy-

Schwarz inequality. We won’t go through the proof in full here, but the main idea is that the left-hand side can be

approximated by
|Pn |∑
i=1

∣∣∣H
t
(n)
i−1
K
t
(n)
i−1

(
M
t
(n)
i

−M
t
(n)
i−1

)(
N
t
(n)
i

− N
t
(n)
i−1

)∣∣∣ ,
and by ordinary Cauchy-Schwarz this is bounded from above by(∑

i

H2
t
(n)
i−1

(
M
t
(n)
i

−M
t
(n)
i−1

)2)1/2∑
j

K2
t
(n)
j−1

(
N
t
(n)
j

− N
t
(n)
j−1

)21/2 .
But as n →∞, these two expressions converge to the left and right sides of the theorem statement, as desired.

Definition 96

A process Xt is a continuous semimartingale if it can be written as Xt = Mt + At , where Mt is a continuous

local martingale and At is a finite variation process. If we have two such processes Xt = Mt+At and Yt = M ′t+A
′
t

on the same space, then we define their covariation to be 〈X, Y 〉t = 〈M,M ′〉t .

And this definition should make sense, because the sum

n∑
i=1

(X
t
(n)
i

−X
t
(n)
i−1
)(Y

t
(n)
i

− Y
t
(n)
i−1
)

will converge to 〈M,M ′〉t as our subdivision Pn grows finer (in other words, the finite variation part doesn’t contribute

to the covariation or quadratic variation).
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11 March 9, 2020

We have an exam on Thursday evening in 2-449 (future note: this did not end up happening). This may be the last

thing we do in person before we get quarantined, but the class is not too big, so this is probably okay.

Today, we’ll start discussing stochastic integration (from chapter 5). We’re going to start seeing nice applications

of the theory we’ve been developing, and we’ll start with a bit of review. Recall that for a local martingale Mt ,

subtracting off the quadratic variation 〈M,M〉t (an increasing, finite variation process) fromM2 yields a local martingale

M2t − 〈M,M〉t . We showed that if M0 ∈ L2, then M is bounded in L2 if and only if E[〈M,M〉∞] is finite; in this case,

M2t − 〈M,M〉t will in fact be a uniformly integrable (true) martingale because

sup
t
|M2t − 〈M,M〉t | ≤

(
sup
t
|Mt |2

)
+ 〈M,M〉∞,

where the first term is integral by Doob’s L2 inequality and the second term is finite by assumption. (We wouldn’t

be asked to show Doob’s L2 inequality on the exam, but we would be expected to be able to reproduce the above

argument.) At the end of last lecture, we also defined the bracket

〈M,N〉 =
1

2
(〈M + N,M + N〉 − 〈M,M〉 − 〈N,N〉) ,

which in particular lets us calculate

MtNt − 〈M,N〉t =
1

2

(
Mt + Nt)

2 − 〈M + N,M + N〉t
)
−
1

2

(
M2t − 〈M,M〉t

)
−
1

2

(
N2t − 〈N,N〉t

)
.

Each term on the right is a local martingale, so the left side is also a local martingale, and if M,N are bounded in L2, so

isM+N. In such a situation, all three terms on the right side are uniformly integrable martingales, soMtNt−〈M,N〉t is

a uniformly integrable martingale as well, and in particular this means that E[M∞N∞] = E[〈M,N〉∞] if M0 = N0 = 0.

Our goal today is to take a semimartingale Xt = At +Mt and a class of processes Ht and define the stochastic

integral

(H ·X)t = (H · A)t + (H ·M)t =
∫ t

0

HsdAs +

∫ t

0

HsdMs .

We’ve already seen how to compute the first integral – A corresponds to a signed measure, so this is just the Lebesgue

integral of Hs against that signed measure. The notation suggests that this should be a continuous-time version of

the Doob transform – recall that in the discrete case, we defined

(H ·M)n =
n∑
i=1

Hi(Mi −Mi−1).

This object was a martingale for appropriate H, and analogously the continuous-time version
∫ t
0 HsdMs will turn out

to be a local martingale.

The reason we talk about everything in L2 is that this is an important case: we’ll define the stochastic integral for

martingales bounded in L2 today, and extending to local martingales will be done next time.

Definition 97

On a filtered probability space (Ω,F , (Ft),P), let H2 denote the space of L2-bounded martingales.

On this space H2, we can apply the boxed identity from above: since E[M∞N∞] = E[〈M,N〉∞], we define the

scalar product on H2 via

(M,N)H2 = E[〈M∞, N∞〉].
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In particular, if E[〈M∞,M∞〉] = 0, then M must be identically zero, so this is indeed a norm. With this norm, H2 is a

Hilbert space – to prove this, we need to check that it’s complete, meaning that a Cauchy sequence (with respect to

this norm) converges. We won’t do this in much detail because it’s similar to what we’ve already seen, but the point

is that if we have limm,n→∞ ||Mn−Mm||H2 → 0, then we can use the Doob L2 inequality to show uniform convergence

of the Mns.

Recall that a process Ht is progressive if the function F (ω, t) = Ht(ω) restricted to Ω× [0, t] is measurable with

respect to Ft ⊗ B[0,t]. An equivalent characterization is to say that F is measurable with respect to P, where A ∈ P
if and only if the process Xt(ω) = 1{(ω, t) ∈ A} is progressive. The point here is that there is a sigma-field P that is

equivalent to being progressive, but it’s not defined in a very useful way.

Definition 98

For an L2-bounded martingale M ∈ H2, let L2(M) be the space of all progressive processes H such that

E
[∫ ∞
0

H2t d〈M,M〉t
]
<∞.

Remember that 〈M,M〉t is of finite variation, so the inner integral is just a Lebesgue integral. Note that L2(M) is

equivalent to a standard L2 space L2(M) = L2 (Ω× [0,∞),P, ν) where the measure ν is defined via

ν(A) = E
[∫ ∞
0

1{(ω, t) ∈ A}d〈M,M〉t
]
<∞.

This means that L2(M) is also a Hilbert space with all of the corresponding nice properties, so we won’t need to prove

those again. In particular, we have an inner product

(H,K)L2(M) = E
[∫ ∞
0

HtKtd〈M,M〉t
]
.

From here, the idea is that for any M ∈ H2, we will define the stochastic integral with respect to M as an L2 isometry
JM : L2(M)→ H2 which maps a martingale H via

H 7→ JM(H) = H ·M =
(∫ t

0

HsdMs

)
t≥0
.

It’s helpful to write out what the isometry is directly – if it needs to preserve scalar products, we must have

(H,K)L2M = E
[∫ ∞
0

HtKtd〈M,M〉t
]
= (H ·M,K ·M)H2 = E [(H ·M)∞(K ·M∞)]

= E
[(∫ ∞

0

HtdMt

)(∫ ∞
0

KtdMt

)]
.

In the particular case H = K, this is called the Itô isometry. To define such an isometry, we can first define it on a

dense subspace of L2(M) and extend by continuity to the entire space:

Definition 99

Let E be the space of elementary processes of the form Ht =
∑p

i=1H(i)1{t ∈ (ti , ti+1]}, where each H(i) ∈ Fti
is almost surely bounded by some constant.

These processes are pretty simple: we have some set of deterministic times, and on each time interval we put a

(measurable) random variable. We have E ⊆ L2(M) because of the boundedness condition, and note that E makes no

reference to M at all.
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Proposition 100

E is dense in L2(M) with respect to the scalar product on L2(M).

Proof. In an ordinary setting, we know that simple functions are dense in L2, but this argument is a bit more complicated

because we need to account for the sigma-algebra. It’s enough to verify that if K ∈ L2(M) with K ⊥ E , then K = 0.

(Then the usual Hilbert space theory gives us denseness.) If K is orthogonal to E , this means that for all H ∈ E ,

0 = (H,K)L2(M) = E
[∫ ∞
0

HtKtd〈M,M〉t
]
.

We will deduce that Xt =
∫ t
0 Ksd〈M,M〉s is identically zero. First, we claim that X is well-defined as a finite-variation

process – for this, we just need absolute integrability. Specifically, by Cauchy-Schwarz we have

E
[∫ ∞
0

|Ks |d〈M,M〉s
]
≤

√
E
[∫ ∞
0

|Kt |2d〈M,M〉t
]
E [1 · d〈M,M〉t ] <∞,

where we know the first term in the square root is finite because of the inner product on L2(M), and similarly the

second term is finite because M is in H2. The integral on the left-hand side upper bounds |Xt |, so this implies that

Xt ∈ L1 for all t. Now define

Hr (ω) = F(s)1{r ∈ (s, t]},

where F(s) is some bounded random variable that is measurable with respect to Fs . We’ve assumed that K ⊥ E , so

0 = (H,K)L2(M) = E
[
F(s)

∫ t

s

Krd〈M,M〉r
]
= E[F(s)(Xt −Xs)]

by definition of Xt . Since we already proved that Xt ∈ L1, this last calculation tells us that X is a martingale. But it

is also a finite variation process, so we must have X = 0. This implies that K = 0 as an element of L2(M) (meaning

that it is zero except on a set of measure zero with respect to L2(M)), completing the proof.

Theorem 101

Let M ∈ H2 be an L2-bounded martingale. For any H ∈ E of the form Ht =
∑p

i=1H(i)1{t ∈ (ti , ti+1]}, define

JM(H)t =
p∑
i=1

H(i)(Mt∧ti+1 −Mt∧ti ).

Then JM defines an isometry from E (with the L2(M) scalar product) into H2, so it extends to an isometry from

L2(M) into H2.

(The idea here is that integrating 1 dMt should give us back the original martingale, so integrating elementary

processes gives us increments of the martingale.)

Proof. We know that JM(H) is in H2 (because H(i) are bounded and the stopped Ms are in H2), and the quadratic

variation process can be computed as

〈JM(H),JM(H)〉t =
p∑
i=1

H2(i)
(
〈M,M〉t∧ti+1 − 〈M,M〉t∧ti

)
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(this is only easy because H takes on a very simple form.) But this sum is also equal to
∫ t
0 H

2
s d〈M,M〉s by the

definition of the Lebesgue integral for this simple-like function. So now we can check the isometry property on E : by

the definition of the H2 scalar product and our observation above, we have

(JM(H),JM(H))H2 = E

[∑
i

H2(i)
(
〈M,M〉ti+1 − 〈M,M〉ti

)]

= E
[∫ ∞
0

H2s d〈M,M〉s
]
= (H,H)L2(M).

So JM is an isometry on E , and we can extend this to L2(M) by continuity.

Remark 102. We should have checked at some point that JM(H) doesn’t depend on the representation of H, since

H is written down in an explicit form and there might be different ways to do so. But the idea is that we have

||JM(H −H′)||H2 = ||H −H′||L2(M), and we say that H and H′ are the same if the right-hand side is zero.

We’ll spend the rest of the time on a useful result for Itô’s formula, which says in words that “the stochastic integral

commutes with the bracket.”

Proposition 103

Let M ∈ H2 and let H ∈ L2(M). Then H ·M is the unique element of H2 such that 〈H ·M,N〉 = H · 〈M,N〉 for

all N ∈ H2.

In particular, applying this result twice tells us that

〈H ·M,K · N〉 = HK · 〈M,N〉

as long as everything is well-defined (meaning M,N ∈ H2, H ∈ L2(M), K ∈ L2(N)); more explicitly, this is stating that〈∫ t

0

HsdMs ,

∫ t

0

KsdNs

〉
=

∫ t

0

HsKsd〈M,N〉s .

Start of proof. Consider first an elementary process H ∈ E . In this case, we know that

(H ·M)t =
∑
i

H(i)(Mt∧ti+1 −Mt∧ti ),

where each term is a martingale. The covariation of this with N is just

〈H ·M,N〉t =
∑
i

H(i)
(
〈M,N〉t∧ti+1 − 〈M,N〉t∧ti

)
=

∫ t

0

Hsd〈M,N〉s = (H · 〈M,N〉)∞,

so the identity holds in that case. For a general H, we can approximate H by elementary processes Hn ∈ E , and we

wish to show that

〈H ·M,N〉 = lim
n→∞
〈Hn ·M,N〉 = lim

n→∞
(Hn · 〈M,N〉)∞ = H · 〈M,N〉.

It just remains to justify the limits on the left and right. We proved the Kunita-Watanabe inequality last time, which

says that ∣∣∣∣∫ HsKsd〈M,N〉s ∣∣∣∣ ≤ ∣∣∣∣∫ H2s d〈M,M〉s ∣∣∣∣1/2 ∣∣∣∣∫ K2s d〈N,N〉s ∣∣∣∣1/2 .
Thus for any X ∈ H2, we have by Cauchy-Schwarz and Kunita-Watanabe (setting M,N to both be M and H,K to be

X,N) that

E [〈X,N〉] ≤ E [〈X,N〉〈X,N〉]1/2 ≤ E [〈X,X〉]1/2 E [〈N,N〉]1/2 = ||X||H2 ||N||H2 ,
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meaning that taking the quadratic covariation with N is continuous with respect to the H2 norm. Thus, the left limit

is justified by taking X = (H −Hn) ·M and noting that Hn ·M converges to H ·M in the H2 metric.

For the right limit, apply Kunita-Watanabe and Cauchy-Schwarz again with H = X ∈ L2(M) and K = 1 to find

E [(X · 〈M,N〉)∞] ≤ ||X||L2(M)||N||H2 .

The proof is therefore completed by a similar continuity argument by taking X = H−Hn, which we’ve shown converges

to zero in L2(M).

In summary, all of the properties are easy to prove when H is an elementary processes, and then we just need to

take appropriate limits.

12 March 11, 2020
This will be the last class we have in person – we’ll continue after spring break on Zoom. If we don’t have efficient

high-speed internet, we should let Professor Sun know by email. We started talking about stochastic integration

last time: if H2 denotes the (Hilbert) space of L2-bounded martingales, we defined a scalar product on H2 via

(M,N)H2 = E[M∞N∞] = E[〈M,N〉∞]. We also defined the Hilbert spaces

L2(M) =

{
progressive H : ||H||L2(M) = E

[∫ ∞
0

H2t d〈M,M〉t
]
<∞

}
.

Then for any M ∈ H2, we can define the stochastic integral, which is an isometry JM from L2(M)→ H2 sending H

to H ·M. One property of H ·M is that it is the unique element in H2 such that for all N ∈ H2, we have

〈H ·M,N〉 = H · 〈M,N〉. (1)

From now on, we’ll use the notation 〈M〉 = 〈M,M〉. Our next goal is to extend stochastic integration to local
martingales (and therefore to semimartingales). We’ll start with a few remarks: if M is a local martingale and τ is a

stopping time, then the stopped process Mτ
t = Mt∧τ is also a local martingale (this follows straightforwardly from the

definitions). In particular, M2t − 〈M〉t is a local martingale, (Mτ )2t − 〈M〉t∧τ is also a local martingale. But there is a

unique process that yields a local martingale when we subtract off from (Mτ )2, namely 〈Mτ 〉. Thus

〈Mτ 〉 = 〈M〉t∧τ =⇒ 〈Mτ 〉 = 〈M〉τ .

Similarly, if M,N are both local martingales, then we also have

〈Mτ , Nτ 〉 = 〈M,Nτ 〉 = 〈M,N〉τ . (2)

This last fact is a bit harder to prove, but we can read it on our own.

Lemma 104

If M ∈ H2 and H ∈ L2(M), then for all stopping times τ , we have

(H ·M)τ = (H · 1[0,τ ]) ·M = H · (Mτ ).

Proof. Applying Eq. (2) and then Eq. (1), note that for any N ∈ H2, we have

〈(H ·M)τ , N〉t = 〈H ·M,N〉t∧τ = (H · 〈M,N〉)t∧τ .
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But the right-hand side is just the integral of H against a finite-variation process, stopped at some time τ , so we can

also write it as ((H · 1[0,τ ]) · 〈M,N〉)t . Thus, (H ·M)τ satisfies the characterizing property Eq. (1) for (H · 1[0,τ ]) ·M,

so we’ve shown the first equality.

For the second equality, we similarly have that

〈H · (Mτ ), N〉 = H · 〈Mτ , N〉 = H · (〈M,N〉τ ).

Again, this is the integral of H against a finite-variation process, so we can write it as ((H ·1[0,τ ]) · 〈M,N〉)t . But again

this means we’ve shown the characterizing property, so the result follows.

To extend our stochastic integral definition, we’ll need to be a bit more general:

Definition 105

For a local martingale M, define the space L2loc(M) via

L2loc(M) =

{
progressive H :

∫ t

0

H2s d〈M〉s <∞ for all finite t a.s.
}
.

Recall that to be in L2(M), we integrate from 0 to ∞ and require the expectation to be finite, but here we only

need the integral to be almost surely finite. The main goal of today is to prove the following result:

Theorem 106

Let M be a local martingale and let H ∈ L2loc(M). Then there exists a unique local martingale H ·M with initial

value 0 such that for all local martingales N, we have

〈H ·M,N〉 = H · 〈M,N〉.

Once we prove this, it will make sense to write (H ·M)t =
(∫ t
0 HsdMs

)
t
.

Proof. Let M0 = 0 without loss of generality (since nothing depends on the initial value). We’ll start by talking about

how to construct this process: we want to extend our definition from the L2-bounded case, so we define the stopping

times

τn = inf

{
t ≥ 0 :

∫ t

0

(1 +H2s )d〈M〉s ≥ n
}
.

We can check that τn goes to ∞ almost surely: we assumed H2 is in L2loc(M) and 〈M〉 is a finite variation process,

so neither term in the integrand gets large too fast. Furthermore, the total quadratic variation of the stopped process

Mτn will be (almost surely) at most n, so E[〈M〉∞] is finite and therefore Mτn ∈ H2. Similarly, we have H ∈ L2(Mτn)

because by time τn, the integral
∫
H2s d〈M〉s is bounded by n.

This implies immediately that for each n, Xn = H · (Mτn) is well-defined and is an element of H2. We wish to show

that for any m > n, Xm and Xn are consistently defined, but we have

(Xm)τn = (H ·Mτm)τn = H · ((Mτm)τn) = H ·Mτn

by definition, then by Lemma 104, and then because τn < τm. This right-hand side is Xn, so do indeed have consistency

and in particular there is some X such that Xτn = Xn for all n. Furthermore, each stopped Xn is an L2-bounded

martingale (meaning it is uniformly integrable), so X is a local martingale, as desired.

Next, we need to check that this X = H ·M satisfies the desired property 〈H ·M,N〉 = H · 〈M,N〉. Assume without

loss of generality that N0 = 0. We’ll basically use the fact that the desired property holds at stopping times – define
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σn = inf{t ≥ 0 : |Nt | = n} and let γn = σn ∧ τn. Notice that Nσn is a local martingale bounded by n, so it is a true

martingale in H2. Then we have

〈H ·M,N〉γn = 〈(H ·M)τn , Nσn〉 (by Eq. (2))

= 〈H · (Mτn), Nσn〉 (by Lemma 104)

= H · 〈Mτn , Nσn〉 (by Eq. (1))

= H · (〈M,N〉)γn

= (H · 〈M,N〉)γn ,

where the last step comes from the definition of integrating against a finite variation process. But now taking n →∞
yields the desired property for X = H ·M, since both τn and σn go to infinity as n →∞.

Finally, we show that X is indeed unique: if there is some X̃ such that 〈X̃, N〉 = H · 〈M,N〉 = 〈X,N〉, then

〈X − X̃, N〉 = 0 for all local martingales N. But take N = 〈X − X̃〉 to show that we have a local martingale X − X̃
with quadratic variation 0, which can only happen if X − X̃ = 0.

Notice that Lemma 104 now also extends to the case where M is a local martingale and H is in L2loc(M), because

we’ve now proved the analogous arguments for local martingales.

We’ll next discuss something useful for our next homework. Recall that if M ∈ H2 (the L2-bounded case) and

H ∈ L2(M), we have two nice properties: first of all, E
[∫ t
0 HsdMs

]
= 0 (since H ·M =

∫ t
0 HsdMs is also a martingale).

We can also calculate the second moment in the following way: we have

E
[∫ t

0

Hsd〈M〉s
]
= ||H · 1[0,t]||2L2(M) = ||(H · 1[0,t]) ·M||2H2 = ||(H ·M)t ||2H2 ,

first by definition, then by the Itô isometry, and finally by Lemma 104. And since the H2 norm is just the expectation of

the martingale’s eventual value, this is exactly E[((H ·M)t)2] = E
[(∫ t

0 HsdMs

)2]
(the second moment we’re after).

It’s important to note that these equations don’t necessarily hold if we’re in the general situation where M
is a local martingale. However, they do hold under restricted conditions, for example if E

[∫ t
0 H

2
s d〈M〉s

]
is finite.

This is because X = (H ·M)t has total quadratic variation 〈X〉∞ = E
[∫ t
0 H

2
s d〈M〉s

]
(by Proposition 103), meaning

that if we assume the right-hand side is finite, then X ∈ H2. In general, if we’re interested in the second moment of∫ t
0 HsdMs , we have an upper bound

E

[(∫ t

0

HsdMs

)2]
≤ E

[∫ t

0

H2s d〈M〉s
]
, (3)

where if the right hand side is finite, then we have equality. (And otherwise this is a vacuous inequality anyway.)

With this, we can now make the stochastic integral definition for semimartingales: if we have a process X = A+M,

we want to define H · X = H · A + H ·M, and we want to do this for some reasonably large class of H-processes on

which both stochastic integrals will exist:

Definition 107

A progressive process H is locally bounded if sups≤t |Hs | <∞ for all finite t.

For any such process, we know that for any t,∫ t

0

|Hs ||dAs | ≤
(
sup
s≤t
|Hs |

)
·
∫ t

0

|dAs | <∞,
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so (H · A)t is well-defined. Similar reasoning shows that
∫ t
0 H

2
s d〈M〉s < ∞, so H ∈ L2loc(M) for any local martingale

M and thus H ·M will be well-defined as well. This stochastic integral H · X is now also a semimartingale, and it’s

already written in its canonical decomposition (H ·A is the finite variation part, and H ·M is the local martingale part).

We’ll use the remaining time to prove a useful convergence property, which is a dominated convergence type result

for stochastic integrals.

Proposition 108

Let X = A + M be a semimartingale, and suppose that Hn, H,K are locally bounded with K ≥ 0. Fix some

t > 0, and suppose that for all s ≤ t, we have Hns → Hs as n → ∞ and |Hns | ≤ Ks for all n. If
∫ t
0 Ks |dAs | and∫ t

0 K
2
s d〈M〉s are both finite almost surely, then (Hn ·X)t converges in probability to (H ·X)t .

Proof. By the usual dominated convergence theorem (since the finite-variation integral is just a Lebesgue integral and

everything’s dominated by K), we already have∫ t

0

Hns dAs
a.s.→
∫ t

0

HsdAs

To show the other part, let τk = t ∧ inf
{
r ≥ 0 :

∫ r
0 K

2
s d〈M〉s ≥ k

}
. Eq. (3) implies that

E

[(∫ τk

0

(Hns −Hs)dMs
)2]

≤ E
[∫ τk

0

(Hns −Hs)2d〈M〉s
]
,

and we’ll show that this right-hand side goes to zero by two applications of the dominated convergence theorem. First

of all, inside the expectation, the Hs are both dominated by K, so the integrand is dominated by 4K2. By definition of

the stopping time, the integral of this up to τk will still be finite, so using the dominated convergence theorem when

integrating against d〈M〉s shows that the quantity inside the expectation goes to zero almost surely. Then we can

use dominated convergence theorem again to show that the whole expectation converges to zero, since the integral is

uniformly dominated by 4k2 again by the definition of τk .

To prove the statement we’re after, now notice that

P
(∣∣∣∣∫ t

0

(Hns −Hs)dMs
∣∣∣∣ ≥ ε) ≤ P(∣∣∣∣∫ τk

0

(Hns −Hs)dMs
∣∣∣∣ ≥ ε)+ P(τk 6= t).

The second term goes to zero as k →∞ (since
∫ r
0 K

2
s d〈M〉s is finite almost surely by assumption), and then the first

term goes to infinity as n →∞ because the integral inside converges to 0 in L2. Thus the convergence in probability

is proven.

Corollary 109

Let X be a semimartingale, and let H be an adapted, continuous process (in particular, this means it will be locally

bounded and also progressive). Then for a sequence of subdivisions Pn = (t
(n)
i ) of [0, t] with mesh going to 0, we

have
|Pn |∑
i=1

H
t
(n)
i−1

(
X
t
(n)
i

−X
t
(n)
i−1

)
p→
∫ t

0

HsdXs .

If X were a finite-variation process, it wouldn’t matter whether we take H
t
(n)
i−1

or H
t
(n)
i

in the sum on the left-hand

side. But it matters here in the local martingale case, and we can check that directly. For example, if H = X, then
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this corollary tells us that
|Pn |∑
i=1

X
t
(n)
i−1

(
X
t
(n)
i

−X
t
(n)
i−1

)
p→
∫ t

0

XsdXs ,

but if we replace (i − 1) with i , we will instead have

|Pn |∑
i=1

X
t
(n)
i

(
X
t
(n)
i

−X
t
(n)
i−1

)
=

|Pn |∑
i=1

X
t
(n)
i−1

(
X
t
(n)
i

−X
t
(n)
i−1

)
+

|Pn |∑
i=1

(
X
t
(n)
i

−X
t
(n)
i−1

)2 p→
∫ t

0

XsdXs + 〈X〉t .

However, we can add these two statements together and find that

|Pn |∑
i=1

(
X
t
(n)
i

+X
t
(n)
i−1

)(
X
t
(n)
i

−X
t
(n)
i−1

)
=

|Pn |∑
i=1

(
X2
t
(n)
i

−X2
t
(n)
i−1

)
= X2t −X20 ,

so X2t − X20 = 2
∫ t
0 XsdXs + 〈X〉t . This is actually a special case of Itô’s formula, which tells us (in a special case)

that for sufficiently smooth f , we have

f (Xt)− f (X0) =
∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X〉s .

We can understand this statement in full now: if f is twice continuously differentiable, then f ′ is a continuous, adapted

process, so the first term on the right hand side is a semimartingale (it’s an integral of an adapted process against a

semimartingale), and the second term is a finite variation term.

We’ll end here for now – all of the cool applications of stochastic calculus will unfortunately have to be done via the

internet. Because we have two canceled lectures, we’ll be asked (if possible) to read the section about Itô’s formula.

As a reminder, the midterm tomorrow is canceled, and class resumes again after spring break. And from 3:30-5:00,

Professor Sun will be in room 2-175 for general advising hours.

13 March 30, 2020
Our first midterm will now be on Thursday during the usual timeslot – if this doesn’t work for us, we should email

Professor Sun. (The system will put us in a virtual waiting room, and we will be “admitted” into the internet office.)

There will be no lecture on Wednesday due to the exam, so we’ll have office hours during the lecture timeslot instead.

First of all, for a quick review of stochastic integration, we should scroll down to the bottom of the course webpage

and read the “Review of stochastic integration” section. The main points are that we can define stochastic integration

as an isometry in the L2-bounded case by approximating with elementary processes, and then in general we can use

the characterization 〈H ·M,N〉 = H · 〈M,N〉 if M and N are local martingales. We’ll start today with Itô’s formula,

and we’re going to state it in multiple dimensions here:

Theorem 110 (Itô’s formula)

Let Xt = (X1t , · · · , X
p
t ) be a process that evolves in Rp such that each X it is a continuous semimartingale. Then

for a twice continuously differentiable function F : Rp → R,

F (Xt)− F (X0) =
p∑
i=1

∫ t

0

∂iF (Xs)dX
i
s +
1

2

p∑
i ,j=1

∫ t

0

∂i jF (Xs)d〈X i , X j〉s

is also a continuous semimartingale with the above decomposition, meaning the first term is a local martingale

and the second term is a finite variation process.

56



Remember that the first term is integration with respect to a semimartingale, and the second is essentially a

Lebesgue integral, so we do understand all of the individual components of this statement. We won’t prove this during

class – we should read the proof in Le Gall on our own.

Remark 111. This formula holds even if F is defined only on an open set U ⊆ Rp, as long as t ≤ τε = inf{t :
dist(Xt , Ut) ≤ ε} for some ε > 0. In other words, we need to stay at least ε away from the boundary so that we can

define a function F̃ on all of Rp consistent with F .

Proposition 112

If M is a local martingale, then E(λM)t = exp
(
λMt − λ2

2 〈M〉t
)

is also a local martingale for all λ ∈ C.

Proof. Applying Itô’s formula with Xt = λMt − λ2

2 〈M〉t (so that E(λM)t = exp(Xt)) and F (x) = ex , we have

dEt = exp(Xt)dXt +
1

2
exp(Xt)d〈X〉t ,

because the derivatives of the exponential are just the exponential itself. Substituting in the values of Xt and 〈X〉t
(noting that the quadratic variation comes only from the local martingale part), we have

dEt = exp(Xt)
[
λdMt −

λ2

2
d〈M〉t +

1

2
λ2〈M〉t

]
,

because Xt gets its quadratic variation only from the local martingale part (λMt). But the last two terms cancel, so

we only have a local martingale term and thus E(λM)t is indeed a local martingale.

Theorem 113 (Lévy’s characterization of Brownian motion)

If X is a continuous adapted process on (Ω,F , (Ft),P) taking values in Rd , then the following are equivalent:

• X is a Brownian motion with respect to Ft ,

• The X is are continuous local martingales with 〈X i , X j 〉t = t · 1{i = j}.

Proof. The forward direction is easy, since Brownian motion is a continuous local martingale and a Brownian motion

in Rd is just d independent Brownian motions. For the reverse direction, we’ll want to use the Fourier transform, so

it’s natural to consider the exponential martingale E(iθ · X)t for θ ∈ Rd . By assumption, the quadratic variation is

〈θ ·X〉t = |θ|2t, so

E(iθ ·X)t = exp
(
iθ ·Xt −

1

2
i2|θ|2t

)
,

Now exp(iθ ·Xt) is bounded because it’s only varying on the unit circle, and the remaining part exp
(
1
2 |θ|

2t
)

is bounded

on any finite interval. This means E(iθ · X)t is actually a uniformly integrable martingale up to any finite time, so

we can apply the optional stopping theorem E [E(iθ ·Xt) | Fs ] = E(iθ · Xs) (for all 0 ≤ s ≤ t < ∞). Plugging the

definition in from above and rearranging terms yields

E [exp (iθ · (Xt −Xs)) | Fs ] = exp
(
−
|θ|2(t − s)
2

)
.

But now the left hand side is the characteristic function of Xt − Xs given Fs , while the right hand side is the

characteristic function of N(0, (t − s)Id). So conditioned on Fs , Xt − Xs has the correct normal distribution, which

means that X has the same finite dimensional distributions as the Brownian motion in Rd . Since we assumed that our

sample paths are continuous, this indeed means X is a Brownian motion, as desired.
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We’ve mentioned our next result before in previous classes:

Theorem 114 (Dambis-Dubins-Schwarz)

Let M be a continuous local martingale, and suppose that 〈M〉∞ = ∞ almost surely for simplicity. Then there

exists a Brownian motion B such that almost surely, we have Mt = B⟨M⟩t for all t ≥ 0.

If the quadratic variation is not infinite, then we just end up with a Brownian motion parameterized up to some

time.

Proof. We’re going to construct a B first and then show that it satisfies Lévy’s characterization. Without loss of

generality, we can assume that M0 = 0. Write At = 〈M〉t ; since A is a nondecreasing process, we can define an

“inverse” by defining τr = inf{t ≥ 0 : At ≥ r}. We now define Br = Mτr – we will check that this is a Brownian

motion with respect to the filtration Gr = Fτr , and we just need to check the Lévy characterization.

We know that Mτr accumulates a total variation of r by definition, meaning it’s a uniformly integrable martingale,

which implies that (Mτr )2 − 〈M〉τr is also a uniformly integrable martingale. So by the optional stopping theorem, we

have for all r ≥ s that

Bs = Mτs = E [Mτr | Fτs ] = E[Br | Gs ].

Also, B2s − s = (Mτs )2 − 〈M〉τs is a uniformly integrable martingale, so we can again apply the optional stopping

theorem to say that for all r ≥ s,

B2s − s = E
[
(Mτr )

2 − 〈M〉τr | Fτs
]
= E

[
B2r − r | Gs

]
.

So B is a local martingale with quadratic variation 〈B〉s = s, and now we just need to make sure B is continuous to

apply Lévy’s characterization. If A were strictly increasing, τ would be a continuous function – then Br = Mτr is a

composition of two continuous functions, so it must be continuous. So the only problem is that At may be constant

on some interval [τr , τr+], where τr+ = inf{t : At > r}. If this interval is nontrivial, then τr < τr+, and we need to

check if B is continuous at r . But if A is flat on this interval, M must also be constant, because any local martingale

with constant quadratic variation does not evolve with time (this is a lemma that we need to check, but we can read

the book for details). Thus B is continuous and thus it is indeed a Brownian motion.

Example 115

Recall the example from our first lecture, where we considered a holomorphic function f : C→ C. (meaning that

if we write f = u + iv , then f ′ = ux + ivx = vy − iuy by the Cauchy-Riemann equations).

We can now check that f applied to a Brownian motion Bt yields another Brownian motion: specifically, we have

f (Bt) = βAt , At =

∫ t

0

|f ′(Bs)|2ds,

where β is a Brownian motino.

Remark 116. We’re going to skip two topics in the book for now, which are the Burkholder–Davis–Gundy inequality

and the stochastic integral representation for martingales.

For the rest of today, we’ll discuss Girsanov’s theorem, which will give us some practice working with all of

the objects we’ve encountered so far. We did a lot of exercises involving change of measure, and we’ll start with

exponential change of measure here.
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Example 117

Suppose we have a random variable X with moment generating function m(θ) = E[eθX ] < ∞. Define a new

“tilted” probability measure with the Radon–Nikodym derivative

dPθ
dP
=
eθX

m(θ)
,

meaning that the probability of an event A is Pθ(A) = E
[
1A

dPθ
dP
]
.

The reason for the normalizing constant m(θ) is that we want Pθ(Ω) = 1. In particular, under this new measure,

notice that

Eθ[X] = E
[
X
dPθ
dP

]
=
E[XeθX ]
E[eθX ]

=
m′(θ)

m(θ)
,

so shifting the distribution by Pθ changes the mean as well.

Example 118

As an explicit example, let’s exponentially tilt the standard normal X ∼ N(0, 1) with
dPθ
dP
=

eθX

exp(θ2/2)
.

Then the density of X under Pθ is the product of the dentiy of X under P and the Radon-Nikodym derivative,

which factors nicely as

1√
2π
exp

(
−
x2

2

)
· exp

(
θx −

θ2

2

)
=
1√
2π
exp

(
−
1

2
(x − θ)2

)
.

So X is now distributed as N(θ, 1) – in other words, this particular exponential tilt just moves the center of our

distribution.

Example 119

Next, suppose

[
X

Y

]
∼ N

([
0

0

]
,

[
1 a

a 1

])
is bivariate normal and

dQ
dP
= exp

(
θY − θ2

2

)
.

We can repeat the calculation above, but another way to work through this is to use the characteristic functions

– it suffices to calculate EQ
[
e itX

]
= E

[
e itXeθY e−θ

2/2
]

for all real numbers t. This can be done by replacing Y with

aX+
√
1− a2W , where W is a standard normal independent to X (consistent with the covariance between X and Y ).

Plugging this in, we find that

EQ
[
e itX

]
= exp

(
1

2
(i t + θa)2 +

θ2t2(1− a)2

2
−
θ2

2

)
= exp

[
−
t2

2
+ i tθa

]
,

where the first term comes from the characteristic function of X and the second term comes from the characteristic

function of W . This means that X will now be distributed as N(θa, 1) under Q.

In both of those cases, we had a finite number of random variables, and now we’ll think about a more general case:

Example 120

Consider a sequence of iid random variables X1, · · · , Xn under P, and define the change of measure
dQ
dP
=

n∏
i=1

eθXi

E[eθX ]
by changing the measure for each Xi . Then the Xi are iid under Q as well, and now the process

Sk =
∑k

i=1Xi is a random walk under both P and Q (just with different jump distributions).
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Notice that for any finite n, we can also write this change of measure as

dQ
dP
= exp (θSn − n logm(θ)) ,

but if we take n → ∞, Q may not be absolutely continuous with respect to P. Motivated by our earlier examples,

consider a sequence of independent random variables distributed under P as[
Xi

Yi

]
∼ N

([
0

0

]
,

[
1 ai

ai 1

])
.

Then we can consider the two processes Mk =
∑k

i=1 σiXi and Lk =
∑k

i=1 τiYi , where the coefficients σi , τi ∈ Fi−1
can also be random. (So at each stage, we add a Gaussian increment times some random number which is measurable

with respect to the past.) Note that M and L are both martingales, and now we can define the “exponential martingale

for L”

Dk = exp

(
Lk −

1

2

k∑
i=1

τ2i

)
.

We can check that Dk is also a martingale – this should look very similar to the continuous exponential martingale

we talked about earlier in class – and for any finite time, we can now define a tilt dQ
dP = Dn. By applying our

above argument, Xi ∼ N(aiτi , 1), which means that Mk under Q behaves like Mk under P plus an extra drift term∑k
i=1 σiaiτi .

In other words, we find that Mk −
∑k

i=1 σiaiτi is a martingale under Q (while Mk itself is a martingale under P).
And this drift term is kind of a measure of the covariation of M with L: since M is the sum of σiXi and L is

the sum of τiYi , it makes sense that there is a covariation of aiσiτi . The point of Girsanov’s theorem is to give a

continuous-time version of this:

Theorem 121 (Girsanov’s theorem, informal)

Let M and L be local martingales under P, and define a change of measure via dQ
dP = D∞ = E(L)∞. Then

M − 〈M,L〉 is a martingale under Q.

The resemblance between this result and the discrete case should be clear. We should be a bit careful here – it’s

not always true that E(L)∞ is a valid Radon-Nikodym derivative because of absolute continuity, and let’s see how

that can fail in the discrete case. Suppose we have probability measures µ, ν on (Ω,F) with Fn ↑ F , and suppose that

νn = ν|Fn are absolutely continuous with respect to µn = µ|Fn for all n. Then we know that Dn = dνn
dµn

is a martingale

under µ, but it may not need to converge under ν, so we define D∞ = lim supDn. We can then decompose ν into a

continuous and singular part as

ν(A) =

∫
A

D∞dµ+ ν(A ∩ {D∞ =∞}),

which just tells us that we may not have absolute continuity as long as there is a positive chance that Dn diverges in

the limit.

Example 122

Let Ω =
∏∞
i=1{0, 1}, and let Fn = {A×

∏∞
i=n+1{0, 1}, A ⊆ {0, 1}n} be the set of events that only depend on the

first n variables. Suppose that µ =
⊗∞

i=1 Ber(p) and ν =
⊗∞

i=1 Ber(q) for some 0 < p < q < 1.

It’s clear that µ and ν are not absolutely continuous with respect to each other: a sample X ∼ µ looks like

(X1, X2, · · · ) where the Xi are iid Bernoulli with parameter p, and similarly X ∼ ν looks like iid Bernoullis with
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parameter q. In particular, 1n
∑n

i=1Xi converges to p under one measure and q under the other by the law of large

numbers.

But in the discrete case, we know that µn is just the law of (X1, · · · , Xn) under µ. Even if µ and ν are singular

with respect to each other, we do have µn � νn � µn for all finite n – “seeing n bits doesn’t tell us for sure whether

it comes from an iid Bernoulli p or iid Bernoulli q.” Indeed, we can calculate explicitly that

Dn =
dνn
dµn

=

n∏
i=1

eθXi

m(θ)
,

where θ is chosen exactly so that the mean shifts from p to q, meaning it satisfies

Eθ[Xi ] = q =
E
[
Xie

θXi
]

E[eθXi ]
=

peθ

peθ + 1− p .

Doing the algebra and substituting back in, we find that Dn concentrates around a specific point: we have

Dn =

(
q(1−p)
p(1−q)

Sn
)

(
1−p
1−q

)n ≈
(
q

p

)nq (
1− q
1− p

)n(1−q)
eo(n) = exp (nH(q|p)) ,

where H(q|p) is the binary relative entropy. In particular, H(q|p) = 0 if q = p and otherwise H(q|p) > 0, meaning

that if p 6= q then Dn →∞ and thus µ, ν are mutually singular.

Basically, we should remember that Girsanov’s theorem doesn’t work for arbitrary L, so we need to understand

which L actually produce a valid change of measure in the continuous case. We’ll discuss this more next time!

14 April 6, 2020
We’ll finish the discussion of Girsanov’s theorem today – we’ll start by recalling last week’s calculation. Suppose we’re

on a probability space (Ω,F ,P), and we have independent Gaussians of the bivariate distribution[
Xi

Yi

]
∼ N

([
0

0

]
,

[
1 ai

ai 1

])
,

such that Fn is the sigma-algebra generated by these variables. If σi , τi are bounded random variables that are Fi−1-
measurable, we can define Mk =

∑k
i=1 σiXi and Lk =

∑k
i=1 τiYi , which are martingales under P. Considering the

process up to some finite time n, we can calculate the Radon-Nikodym derivative

dQ
dP
= Dn =

n∏
i=1

exp

(
τiYi −

τ2i
2

)
= exp

(
Ln −

n∑
i=1

τ2i
2

)
.

Then by the martingale property, dQ
dP
∣∣
Fk
= Dk for all k ≤ n, and Dk is a discrete-time version of the exponential

martingale E(L)t = exp
(
Lt − 12 〈L〉t

)
(remember that in the continuous case, this gives us a strictly-positive continuous

local martingale). This D then helps us define a change of measure: we found last time that Xi ∼ N(aiτi , 1) is a

shifted Gaussian under Q (conditioned on Fi−1, so that we know the value of τi), so this means that Mk under Q
looks like Mk under P but with an extra drift term

∑k
i=1 σiτiai , which we can think of as a discrete-time version of the

“covariation of M with L.”

At the end of last lecture, we stated the informal version of Girsanov’s theorem: if M and L are local martingales

under P, we can define a change of measure via dQ
dP = D∞ = E(L)∞, and M − 〈M,L〉 will be a local martingale

under Q. We’ll formalize this today: assume we are working on a filtered probability space (Ω,F , (Ft),P), where our
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filtration Ft is right-continuous and complete.

Proposition 123

Suppose Q� P. Then Dt =
dQ
dP
∣∣
Ft is a uniformly integrable martingale, so it has an rcll modification.

We’ll skip the proof of this – the fact that it’s a martingale is easy to check from the definition of conditional

expectation, and the rcll modification comes from results of Chapter 3. The main point is that we’ll be working with

such rcll modifications from now on.

Lemma 124

Suppose Dt is a continuous local martingale with D0 = 1 such that Dt > 0 for all t. Then we can write Dt = E(L)t
for some continuous local martingale L.

Proof. Apply Itô’s formula to Yt = logDt to find

d Yt =
1

Dt
dDt −

1

2D2t
d〈Dt〉.

If we take Lt such that dLt = d Yt + 1
2D2t
d〈Dt〉 (to cancel out the finite variation term), then L is a local martingale

with

dLt =
1

Dt
dDt =⇒ d〈L〉t =

1

D2t
d〈D〉t .

which we can substitute back in to find d Yt = dLt − 1
2d〈L〉t . Integrating this yields logDt = Yt = Lt − 1

2 〈L〉t , and

finally exponentiating both sides tells us that Dt = E(L)t , as desired.

In particular, this proof tells us the explicit formula Lt =
∫ t
0
1
Ds
dDs .

Theorem 125 (Girsanov)

Assume that Q � P, and Dt =
dQ
dP
∣∣
Ft = E(L)t . Also assume that F0 is trivial, so D0 = 1. If M is a continuous

local martingale under P, then M − 〈M,L〉 is a continuous local martingale under Q.

This theorem essentially tells us that the class of martingales only changes by the drift term 〈M,L〉 – in particular,

the quadratic variation of a continuous local martingale under P and under Q are the same.

Proof. Let X be any adapted process. We first claim that if D · X (the product, not the stochastic integral) is a

continuous martingale under P, then X is a continuous martingale under Q. To check this, first we make sure X is

in L1 – indeed, EQ[|Xt |] = EP [Dt |Xt |] = EP [|DtXt |] (because D is positive), and this right-hand side is finite by

assumption of D ·X being a martingale. Now we check the martingale property: for any s ≤ t and any event A ∈ Fs ,

EQ[Xt1A] = EP[DtXt1A] = EP[DsXs1A] = EQ[Xs1A],

where we’ve used the definition of change of measure in the first and third equalities and the martingale property in

the second. Thus EQ[Xt |Fs ] = Xs as desired. And similarly, we can show that if D ·X is a continuous local martingale

under P, then X is a continuous local martingale under Q.

We’ll now apply this to X = M−〈M,L〉: we want to show that this is a martingale under Q, so it suffices to show

that D · X is a martingale under P. Remember that D evolves via the formula dDt = E(L)tdLt = DtdLt (see the

explicit expression from Lemma 124), so using Itô’s formula (with the function F (D,X) = D ·X) we have

d(D ·X)t = DtdXt +XtdDt + d〈D,X〉t
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(only the mixed partial terms are nonzero for the function F , and the factors of 2 cancel). XtdDt is already a

martingale, so we don’t need to expand it out further. However, we can plug in the formula for Xt and note that X

is M plus a finite variation term, so this simplifies to

XtdDt +Dt(dMt − d〈M,L〉t) + d〈D,X〉t = XtdDt +Dt(dMt − d〈M,L〉t) + d〈D,M〉t .

Now d〈M,L〉t = 1
Dt
d〈M,D〉t , so the last two terms cancel, and we’re just left with d(D · X)t = XtdDt + DtdMt .

Since there is no finite variation term (and Dt is also a martingale), this indeed shows that D ·X is a local martingale,

completing the proof.

Note that this is not the typical way that we apply Girsanov’s theorem – often we start with a continuous local

martingale L such that L0 = 0 and 〈L〉∞ <∞ almost surely. We know that this means Lt converges almost surely to

a limit L∞, so E(L)t is a continuous local martingale. In particular, because it is nonnegative, it is a supermartingale,

and thus it converges almost surely to E(L)∞ with E[E(L)∞] ≤ 1 by Fatou’s lemma. If we have equality, then

E(L)t = Dt is a uniformly integrable martingale (see our homework), and thus we can define dQ
dP = E(L)∞ and apply

Girsanov with this L. So we need to make sure L satisfies the condition E[E(L)∞] = 1 to make sure all of this is valid.

Fact 126

Theorem 5.23 in Le Gall gives a few criteria for this condition being satisfied. Specifically, if L is a continuous local

martingale with L0 = 0, then Novikov’s condition E
[
exp

(
1
2 〈L〉∞

)]
<∞ implies that L is a uniformly integrable

martingale with E
[
exp

(
1
2L∞

)]
< ∞ (Kazamaki’s criterion), which implies that E(L) is a uniformly integrable

martingale.

We can read the proof on our own, but we’ll instead focus on applications during class. Our first one will be to

constructing a solution for a stochastic differential equation:

Example 127

Suppose we want to solve the differential equation dXt = b(t, Xt)dt + dBt , where b is a measurable function

with |b(t, x)| ≤ g(t) for some g satisfying
∫∞
0 g(t)

2dt <∞.

Solution. Let X be a Brownian motion under P, and let Lt =
∫ t
0 b(s, Xs)dXs . Since X is a Brownian motion under

P, we have 〈L〉∞ =
∫∞
0 b(t, Xt)

2dt (since d〈X〉t = t), and this is finite because it is bounded by
∫∞
0 g(t)

2dt. Thus,

Novikov’s condition is satisfied, which means that we can define a new measure Q such that dQ
dP = E(L)∞. Applying

Girsanov’s theorem now tells us that B = X − 〈X,L〉 is a local martingale under Q.

Because B is X minus a finite variation process, Lévy’s characterization tells us that B is a Brownian motion

under Q because it has the correct quadratic variation. But X = 〈X,L〉 + B can be rewritten in differential form as

dXt = b(t, Xt)dt + dBt by plugging in the definition of L, and this is exactly what we wanted.

Notice that the only assumption we needed is that b(t, x) is measurable and bounded by an L2 function g(t) – no

other regularity condition was required! Our next application is the Cameron-Martin formula:

Example 128

Let Lt =
∫ t
0 g(s)dBs for some deterministic function g(s), and again define dQ

dP = E(L)∞. Then B̃ = Bt −
〈B,L〉t = Bt −

∫ t
0 g(s)ds will be a Brownian motion under Q, as long as E[E(L)∞] = 1.
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Thus is an explicit change of measure between a Brownian motion and a Brownian motion plus a deterministic

function h(t) of the form h = −
∫ t
0 g(s)ds. But note that not all functions h will work: for example, the law of Bt+ct

is not absolutely continuous with respect to the law of Bt , because Bt
t goes to 0 almost surely while Bt+ct

t goes to c

almost surely (so the measures are in fact mutually singular). To study this in more detail, notice that if we define

At = 〈L〉t =
∫ t

0

g(s)2ds,

then Lt behaves as βAt , where β is a Brownian motion. Since At is a deterministic time change, this means that Lt is

distributed normally as N(0, At), and thus if
∫∞
0 g(t)

2dt = 〈L〉∞ is finite, then L∞ is just distributed as N(0, 〈L〉∞),
so indeed we will have E[E(L)∞ = 1]. (So here, we don’t need Novikov’s condition to see that this last condition

holds, because we can calculate the law directly.) In other words, this means that the law of (Bt + h(t)) is absolutely

continuous with respect to the law of Bt if and only if we can write h(t) =
∫ t
0 g(s)ds such that

∫∞
0 g(t)

2dt < ∞;

such functions h form the Cameron-Martin (CM) space.

Example 129

We’ll spend the remainder of this class discussing an application to the large deviations principle – this often goes

under the name of Schilder’s theorem.

First, we recall Cramér’s theorem, which tells us about large deviations for the empirical mean 1
n

∑n
i=1Xi of a

random variable. Suppose that m(θ) = E
[
eθXi

]
is finite for all θ ∈ R, allowing us to define the cumulant generating

function κ(θ) = logm(θ). Cramér’s theorem then tells us that for any a > E[X],

1

n
logP

(
Sn
n
≥ a
)
→ −I(a),

where I(a) = supθ(θa−κ(θ)). In other words, the probability is exponentially decaying with rate given by this function

I. We proved the upper bound by using Markov’s inequality, and to show the lower bound, we used a change of

measure. Specifically, choose θ so that Eθ[Xi ] = a + ε, and define
dQ
dP
=
exp(θSn)

exp(nκ(θ)
. Then the idea is that the tilted

mean of Xi is slightly larger than a, so the event
{
Sn
n ≥ a

}
is now a typical event (since the sum of n iid terms with

mean slightly larger than a is likely to give something larger than a). So

1 ≈ Q
(
Sn
n
≥ a
)
≥ Q

(
a ≤
Sn
n
≤ a + 2ε

)
.

From there, we noticed that the Radon-Nikodym derivative is roughly constant on this event, so this is approximately

EP
[
dQ
dP
1

{
a ≤
Sn
n
≤ a + 2ε

}]
≈ exp (θna − nκ(θ))P

(
Sn
n
∈ [a, a + ε]

)
.

We’re going to do something similar now, but with Brownian motion sample paths instead:

Theorem 130 (Schilder)

For simplicity, consider Brownian motion on the interval [0, T ]. Let C[0, T ] be the space of continuous functions

with the sup-norm || · ||∞, and let W [0, T ] be the subspace of functions in C[0, T ] that start at 0. Then for any

A ⊆ W [0, T ],
−Λ(A◦) ≤ lim inf

ε↓0
ε logP(

√
εB ∈ A) ≤ lim sup

ε↓0
ε logP(

√
εB ∈ A) ≤ −Λ(A),

where A◦ is the interior of A, A is the closure of A, and Λ(A) = infh∈A I(h), where I(h) = 1
2

∫ T
0 h

′(t)2dt is

analogous to the I(a) of Cramér’s theorem.
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The key feature here is not the appearance of the liminf and limsup – instead, it’s the new function I(h) that is

relevant. If we cared in Cramér’s theorem about a general Borel set A, we’d have the liminf and limsup there, too.

Proof sketch for lower bound. Consider the set A = {f : ||f − h||∞ < δ}. We want to make an analogous argument

as in Cramér, turning A into a typical event. Thus, consider the tilt

dQ
dP
= exp

(
1√
ε

∫ T

0

h′(t)dBt −
1

2ε

∫ T

0

h′(t)2dt

)
.

Under this new measure, the Cameron-Martin formula tells us that being in A is basically like following a regular

Brownian motion but with a drift term h√
ε
, which is exactly what we want for B in the theorem statement. Thus

1 ≈ Q(A) = EP
[
dQ
dP 1A

]
, and now we can approximately evaluate the Radon-Nikodym derivative by taking its value at

B = h√
ε

to find that

1 ≈ exp
(
1

2ε

∫ T

0

h′(t)2dt

)
P(A) =⇒ ε logP(A) ≈ −

1

2

∫ T

0

h′(t)2dt = −I(h),

which is indeed the form of the desired inequality.

If we’re curious how we can extend this argument from a finite time interval to [0,∞), we can refer to the book

of Deuschel and Stroock.

15 April 8, 2020
We haven’t covered everything from chapter 5, but we’ll hold off on stochastic differential equations for now and

spend the next few lectures on continuous-time Markov processes, for which the theory goes beyond Brownian-type

processes. (Most of this comes from Le Gall chapter 6, but we’ll go a bit beyond that as well.) We’ll start with a

review of the discrete-time Markov chains:

Definition 131

A discrete-time Markov process or Markov chain on a finite state space E = {1, · · · , k} is a discrete E-valued

process (Xn)n≥0 specified by a transition matrix P ∈ Rk×k with entries pxy = P(Xn+1 = y |Xn = x).

This matrix P can be thought of as a map from Ck to Ck , meaning that it is a linear operator, and in particular it

also acts on functions f : E → C via

(P f )(x) =
∑
y

px,y f (y) = E [f (Xn+1)|Xn = x ] .

(This is the view we’ll take in the continuous-time case as well.) Here, P is a stochastic matrix – its rows sum to 1,

so the constant vector P1 = 1 is a right eigenvector with eigenvalue 1. And if we have n steps of the chain (that is, if

we only observe the state every nth step), the transition matrix is just P n – this fact (across all n) goes by the name

of the Chapman-Kolmogorov equations. Recall the following general result:
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Theorem 132 (Perron-Frobenius)

If a Markov chain is irreducible (meaning there is a sequence of steps from any state to any other state) and

aperiodic (the gcd of all directed cycle lengths is 1), then 1 is a simple eigenvalue (of multiplicity 1), and all

other eigenvalues have modulus strictly less than 1. Then the associated left eigenvector π∗ for the eigenvalue 1

(satisfying π∗P = π∗) has all positive entries, and it is the stationary distribution of the chain.

This can be thought of as a general theorem about matrices with real positive entries. The idea is that if we

diagonalize P = UDU−1, then the column vectors of U are the right eigenvectors ui , and the rows of U−1 are the left

eigenvectors vi . But now we can write out

P n = UDnU−1 =

k∑
i=1

(di)
nuiv

∗
i .

And now since 1 is a simple eigenvalue but all of the other eigenvalues have modulus less than 1, P nπ∗ will approach

1π∗ (the other contributions go away as n →∞).

For our purposes, what will be interesting is first generalizing the state space and then turning this into a continuous

process. We’ll begin by looking at a general measurable state space (E, E):

Definition 133

A Markov transition kernel on a space (E, E) is a map Q : E × E → [0, 1] such that

• for all x ∈ E, the function Q(x, ·) is a probability measure on (E, E), and

• for all A ∈ E , the function Q(·, A) is measurable.

Here, Q(x, ·) represents the law of the process at some future time, given that we’re in state x right now, analogous

tothe row vector of x in the transition matrix P . The second condition about Q(·, A) is more technical and comes

from generalizing the equation (P f )(x) = E[f (Xn+1)|Xn = x ] from above. Specifically, if we have a measurable

function f : E → C, then we can define Qf (x) =
∫
E f (y)Q(x, dy) – this is the Lebesgue integral of f against the

measure Q(x, ·) – analogously to the discrete case. We just want that for any measurable bounded function f , the

function Qf is also measurable and bounded, and this is where we use the measurability condition for Q(·, A). (Qf

being measurable follows directly for indicator functions, and then we approximate with indicators in general.)

We’ll let B(E) denote the set of bounded measurable functions on E with the sup-norm ||f || = ||f ||∞. Any Markov

transition kernel Q maps B(E) to itself – in fact, Q is a contractive operator, meaning that ||Qf || ≤ ||f ||, because

Qf is an expectation of the function f and thus uniformly bounded by its sup-norm. Note that so far, E has had no

conditions other than being a measurable space, but moving forward we’ll require further regularity conditions (and

point them out as they’re needed).

Definition 134

A transition semigroup on a state space (E, E) is a collection of transition kernels (Qt)t≥0 which satisfy the

following conditions:

• For all x ∈ E, Q0(x, ·) (the law of where we go in zero time) is the Dirac measure δx .

• For all s, t ≥ 0, Qs+t = QsQt .

• For all measurable A ∈ E , the map (t, x)→ Qt(x, A) is measurable with respect to B[0,∞) ⊗ E .
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The second condition here is the Chapman-Kolmogorov condition, and it’s less trivial than before because now

we’re making sure that all of our Qts are consistent. (And here QsQt is defined via composition of operators on

B(E).)

Definition 135

A Markov process with transition semigroup Qt on a filtered probability space (Ω,F , (Ft),P) is an adapted

process (Xt)t≥0 such that E[f (Xs+t)|Fs ] = (Qt f )(Xs) for all bounded measurable functions f ∈ B(E) and all

s, t ≥ 0.

Since this process has restrictions, we should make sure it does actually exist. If E is nice enough (for example,

if we have a Polish space), then existence of such a Markov process with the transition semigroup (Qt)t≥0 comes

from the Kolmogorov extension theorem. (We have the uncountable index set is [0,∞), and we just need to specify

consistent finite-dimensional distributions, but those come from the Qts.) We won’t check the Kolmogorov extension

theorem itself, but the point is just to make sure E is sufficiently nice.

Remark 136. However, just like with the construction of Brownian motion and martingales, there is no guarantee of

sample path regularity in this definition. We may talk a bit about this later on, but we’ll focus on the aspects that are

different from what we’ve already seen.

Going back to the discrete-time case, notice that we can also define a semigroup (Qn)n≥0, but the object is less

useful because it’s just (I, P, P 2, P 3, · · · ), so in particular it’s specified by a single transition matrix P . So the first

mystery is whether there is a “basic building block” analogous to P for Markov processes in continuous time which

encodes information of the entire semigroup (Qt)t≥0. The answer is “generally yes,” but the story is more complicated

– this is only true for Feller processes, which we’ll define later. To make that analogy, we’ll need a few more concepts:

Definition 137

The λ-resolvent of a semigroup (Qt)t≥0 (for some λ > 0) is the operator Rλ : B(E)→ B(E) such that

(Rλf )(x) =

∫ ∞
0

e−λtQt f (x)dt.

We should think of this as the Laplace transform (in the time-coordinate) of the semigroup. Remember that Qt f

is the expectation of f at time t, given that we’re currently at x – since the exponential distribution Exp(λ) has density

λe−λt , what this definition is really saying is that

(Rλf )(x) =
1

λ
E[f (Xτλ)|X0 = x ],

where τλ is a random time distributed according to Exp(λ). (So when λ is large, we emphasize times close to 0, and

vice versa.)

Lemma 138 (Resolvent equation)

For any λ, µ > 0, we have Rλ − Rµ + (λ− µ)RλRµ = 0.

Proof. It’s enough to prove this for λ 6= µ (otherwise this is clearly 0). The composition of the two resolvents is

(Rλ(Rµf ))(x) =

∫ ∞
0

e−λsQs(Rµ(f (x)))ds =

∫ ∞
0

e−λsQs

(∫ ∞
0

e−µtQt f dt

)
(x)ds.
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Expanding out the definition of Qs , this is∫ ∞
0

e−λs
∫
E

(∫ ∞
0

e−µtQt f (y)dt

)
Qs(x, dy)ds,

and now we can apply Fubini’s theorem (because there are no integrability issues when we have bounded functions) to

get ∫ ∞
0

e−λs
∫ ∞
0

e−µt
∫
E

Qt f (y)Qs(x, dy)dtds.

Now the inner integral
∫
E Qt f (y)Qs(x, dy) means that we start at x and evolve for time s, ending up at y , and finally

evaluate Qt f . This means we are at state y and evolve at time t, and see what the value of f looks like there, so this

inner integral all just evaluates to Qs+t f (x). Thus, this can all be rewritten as∫ ∞
0

e−λseµs
∫ ∞
0

e−µse−µtQs+t f (x)dtds,

where we’ve slipped in an eµs−µs to separate the two integrals. Setting r = s + t turns this into∫ ∞
0

e−λseµs
∫ ∞
s

e−µrQr f (x)drds,

which is a double integral over pairs (r, s). Changing the order of integration and then evaluating the inner integral

yields

=

∫ ∞
0

e−µrQr f (x)

∫ r

0

e−λseµsdsdr =

∫ ∞
0

Qr f (x)
e−µr − e−λr

λ− µ dr,

which is exactly
R(µ)− R(λ)
λ− µ f (x) ; comparing this to the boxed expression above yields the result.

This is mostly an algebraic manipulation – we won’t use it today, but it will come up again in the next few lectures.

The main idea is to become more familiar with the idea of composition of operators, and the key idea of the proof

here was “composing” the operators using Chapman-Kolmogorov.

For our next step, we’re going to need some more regularity – assume that our space E is metrizable, locally

compact (meaning that around any point, we can find a compact set that contains a neighborhood of the point), and

σ-compact (meaning E is a countable union of compact sets). In particular, this implies that E is a Polish space –

examples of such spaces E include open subsets of Rd , as well as much more general spaces. Let E be the Borel

σ-field of E, and write E =
⋃∞
n=1Kn (where the Kn are compact and nested – this exists by assumption of being

σ-compact).

Definition 139

A function f : E → R tends to zero at infinity if lim
n→∞

sup
x∈E\Kn

|f (x)| = 0.

Remember that a Polish space is defined to be separable (containing a countable dense subset) and completely

metrizable (topologically homeomorphic to a complete metric space). For example, if we take E = (0, 1), this is locally

compact and σ-compact (it’s the countable union of the sets
[
1
n , 1−

1
n

]
), so it is a Polish space. Note that while E is

not a complete metric space, because the point 1n doesn’t converge to anything in E, it is instead completely metrizable,

because (0, 1) is topologically homeomorphic to R. So being completely metrizable is a topological property – we

don’t need to put a complete metric on the space. (In the language of the definition, “tending to zero at infinity” for

the interval (0, 1) means that we tend to 0 at the endpoints 0 and 1.)

We’ll let C0(E) denote the set of continuous real functions on E tending to zero at infinity. This is a subspace of
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B(E), which is a Banach space with the sup norm, so we’ll also look at C0(E) with the sup norm. And we now have

enough of the topological setup to define the class of processes that we want:

Definition 140

On a space E satisfying the above conditions, a Feller semigroup is a transition semigroup (Qt)t≥0 such that

• Qt maps C0(E) into itself for all t ≥ 0, and

• for all f ∈ C0(E), ||Qt f − f || → 0 as t → 0.

A Feller process is a Markov process with a Feller semigroup.

Remember that Qt f (x) is the expected value of f at time t, given that we’re at x at time 0. So the Feller property

tells us that the process doesn’t make a large jump in a small amount of time, since the values of Qt f are close to the

corresponding values of f . However, discontinuous jumps are still allowed, and many natural Feller processes do have

jumps – it’s just that we’re not likely to make a jump immediately at any particular time. (We should think of having

a process that evolves continuously for some interval and then makes a jump occasionally.)

Definition 141

For a Feller semigroup (Qt)t≥0, let the domain of L, denoted D(L), be the set of f ∈ C0(E) such that Qt f−f
t

converges in C0(E) (in the sup-norm) as t ↓ 0. Then we can define the (infinitesimal) generator L of (Qt)t≥0
to be the operator D(L)→ C0(E) such that

Lf = lim
t↓0

Qt f − f
t

.

We’ll spend the rest of the lecture on a heuristic preview of the material for next week. We should think of L as

the “derivative” of Qt at time t = 0, but by the Chapman-Kolmogorov equations we know that

d

dt
Qt = lim

s→0

Qt+s −Qt
s

= lim
s↓0

QsQt −Qt
s

= LQt .

We know that a real-valued function q : [0,∞) → R solving the differential equation q′ = ℓq with initial condition

q(0) = 1 has unique solution q(t) = eℓt , and the Laplace transform of such a function is r(λ) =
∫ −∞
0 e−λtq(t)dt = 1

λ−ℓ

for λ > ℓ. By analogy, we might guess that Qt is similarly an exponential of the form Qt = etL =
∑

k≥0
(tL)k

k! , and

that the resolvent is (λ − L)−1. This isn’t a rigorous argument, but it’s our best guess, and our goal for next week

will be to explore how valid this analogy is.

Example 142

Consider Brownian motion on Rd – we’ll study it from the perspective of Feller processes.

For each t, Qt(x, ·) is the distribution N(x, tId×d) (this is how the process evolves in time t when started from x),

so the generator of Brownian motion looks like

Lf = lim
t↓0

E [f (x + Bt)]− f (x)
t

.

We don’t actually have all of the tools needed to evaluate this rigorously, but if f is nice enough and we let our

Brownian motion go for a small amount of time, Bt is small and thus we should be able to Taylor expand. This means

that

Lf = lim
t↓0

1

t
E
[
∇f (x) · Bt +

1

2
Btt (Hess f )Bt

]
,
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and Bt has mean 0 so the first term goes away in expectation. The Hessian of f is a d × d matrix, and in this case we

only picking up the diagonal terms because the Brownian motion Bt has independent entries in all d dimensions. Thus,

we’ll get the trace of the Hessian, which is the Laplacian, Lf =
1

2
∆f (x) . This highlights the connection between

Dirichlet theory and Brownian motion, which we’ll explore more soon!

We can also calculate Rλ in this case, but the integral is more complicated: it turns out to be related to the Green

kernel (the inverse of the Laplacian) when we take λ ↓ 0, since we’re saying in that case that the resolvent is the

inverse of L.

16 April 13, 2020
Remark 143. In the survey responses that we filled out, it was mentioned that some of us are having trouble seeing

the slides during class – as a reminder, there’s a Dropbox link at the bottom of the course webpage, which has slides

basically synchronized with lecture.

We’ll be talking more about Feller processes today, as well as a special case of these processes which is particularly

simple. For review, say we have a Markov process Xt with transition semigroup (Qt)t≥0 – recall that this means

Qt(x, ·) = P(Xs+t ∈ ·|Xs = x,Fs) for all s, t ≥ 0 and x ∈ E. As discussed last time, we can view Qt as an

operator on B(E): given a bounded function f , we define the function Qt f via (Qt f )(x) =
∫
f (y)Qt(x, dy) =

E [f (Xs+t)|Cs = x ]. The Chapman-Kolmogorov equations tell us that Qs+t = QsQt , and we can define a Laplace

transform Rλ =
∫ −∞
0 e−λtQtdt. (Since λe−λt integrates to 1, λRλ is a Markov kernel, meaning that multiplying by

λ makes it properly normalized.) We previously showed the resolvent equation Rλ −Rµ + (λ− µ)RλRµ = 0, which in

particular shows that Rλ and Rµ commute.

Last time, we defined Feller processes to be those such that ||Qt f − f || → 0 as t ↓ 0 for all f ∈ C0(E). We also

defined the space D(L) (the “domain” of L) to be the space of functions f ∈ C0(E) such that limt↓0 Qt f−ft exists in
C0(E) (with respect to the sup-norm topology). Our goal today is to understand how L determines the semigroup Qt .

Proposition 144

Qt and L commute with each other on D(L) (the space on which they are both defined) for all t.

Proof. We first write out

QtLf = Qt

(
lim
s↓0

Qs f − f
s

)
,

but now the limit is in the sup-norm and Qt is an operator which is contractive (the norm of Qf is at most the norm

of f ). Therefore, we can also bring the Qt inside the limit to get

lim
s↓0

QtQs f −Qt f
s

= lim
s↓0

Qs(Qt f )− (Qt f )
s

= LQt f ,

with the middle equality by Chapman-Kolmogorov, and this is exactly what we wanted to prove.

The next result we’ll prove is a differential relation:

Proposition 145

For all f ∈ D(L) and for all t ≥ 0, we have
∫ t
0 QsLf ds = Qt f − f =

∫ t
0 LQs f ds.
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In other words, the time-derivative of Qt f is given by QtLf . The two equalities were historically proven at different

times – they’re known as the Kolmogorov forward and backward equations, respectively.

Proof. By the previous proposition, we just need to prove one of the two equalities. Fix a point x ∈ E, define

h(t) = Qt f (x), and take the right-derivative of h – we see that

lim
s↓0

1

s
[Qs+t f (x)−Qt f (x)] = LQt f (x).

But since Qt is contractive, this convergence happens uniformly in x – more explicitly, we have∣∣∣∣∣∣∣∣Qt (1s (Qs − I)f
)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣1s (Qs − I)f

∣∣∣∣∣∣∣∣ ,
and because the right-hand side converges uniformly, the left-hand side does too. So we in fact have h′(t) = LQt f (x)

for all x , and integrating in t yields the result that we want.

We can explain the names of “forward” and “backward” equation a bit more now – for a large class of (diffusive)

processes, L turns out to be a differential operator. (For example, we showed last time that L = 1
2∆ for a Brownian

motion.)

• For the Kolmogorov forward equation, suppose we know the initial distribution X0 ∼ µ and we want to know

how the forward evolution affects the law of the process at some final time. We know that Xt ∼ µQt(dy) =∫
x∈E µ(dx)Qt(x, dy). But because we know that d

dt (µQt) = (µQt)L, this gives us a partial differential equation:

if µQt has a density p(t, x) in the x-coordinate at time t, then

∂tp(t, x) = L
∗
xp(t, x),

and we can solve this PDE “forward in time” by using the initial conditions p(0, x) that come from the initial

density µ.

• Meanwhile, for the Kolmogorov backward equation, suppose we want to calculate the expected value E[f (XT )|X0 =
x ] = (Qt f )(x). This time we’ll make use of the other equation d

dtQt f (x) = LQt f (x) – if we write f (t, x) =

Qt f (x), the defining partial differential equation is now

∂t f (t, x) = Lx f (t, x),

which we can solve “backward in time” from the final condition f (T, x) = f (x).

We’ll now return to the connection from last time between the resolvent and the generator:

Proposition 146

For a semigroup Qt , the range of Rλ, denoted R = {Rλf : f ∈ C0(E)}, doesn’t depend on λ. Also, R is a dense

subset of C0(E) in the sup-norm topology.

Proof. The resolvent equation can be rewritten as Rµ = Rλ (I + (λ− µ)Rµ), so the range of Rµ is contained in the

range of Rλ. But the roles of µ and λ are interchangeable here, so that means the range of Rλ is the same for all λ.

To show that R, we can consider λRλf for any function f ∈ C0(E), which can be explicitly written out as

λRλf =

∫ ∞
0

λe−λtQt f dt.
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This can be thought of as waiting an exponential (random variable) amount of time and evolving f by that length, and

this simplifies after a change of variables to
∫∞
0 e

−tQt/λf dt. Now as λ→∞, Qt/λf converges uniformly to f by the

Feller property and e−t is integrable. Thus by the dominated convergence theorem, this integral converges uniform to∫∞
0 e

−t f dt = f , as desired (we can approximate any f by functions in R with vanishing sup-norm error).

Theorem 147

For any Feller semigroup, D(L) = R, and the two functions Rλ : C0(E) → R and λ − L : D(L) → C0(E) are

inverses of each other.

Proof. It suffices to show that (1) (λ− L)Rλg = g for all g ∈ C0(E), and (2) Rλ(λ− L)f = f for all f ∈ D(L) (this

will also show that the domain and range line up). For (1), we know that

LRλg = lim
s↓0

1

s
(QsRλg − Rλg) = lim

s↓0

1

s

(
Qs

(∫ ∞
0

e−λtQtgdt

)
−
(∫ ∞
0

e−λtQtgdt

))
,

We can use Fubini’s theorem to move the Qs inside the integral and then do a change of variables to simplify (after

some rearranging, since replacing t with s + t shifts the bound) to

lim
s↓0

1

s

(
eλs
∫ ∞
0

e−λse−λtQs+tgdt −
∫ ∞
0

e−λtQtgdt

)
= lim

s↓0

1

s

(
(eλs − 1)

∫ ∞
0

e−λtQtgdt − eλs
∫ s

0

e−λtQtgdt

)
.

But this simplifies to λRλg − g as s ↓ 0, and rearranging proves the claim. Now for (2), take any f ∈ D(L) and apply

the Kolmogorov forward equation to rewrite

λRλf = λ

∫ ∞
0

e−λtQt f dt =

∫ ∞
0

λe−λt
(
f +

∫ t

0

QsLf ds

)
dt.

But now the first term integrates out to f , and we can swap the order of integration on the second term, so this is

also equal to

f +

∫ ∞
0

QsLf

∫ ∞
s

λe−λtdtds = f +

∫ ∞
0

e−λsQsLf ds = f + RλLf ,

and again comparing to the original expression yields the result.

Corollary 148

A Feller semigroup Qt is uniquely determined by its generator L (though we do need to specify the domain D(L)

for which the limit is well-defined).

Proof. Let g ∈ C0(E) be a nonnegative function (which in particular means Qtg is nonnegative as well). Knowing

the generator L tells us Rλg = (λ − L)−1g for all λ. But since Rλg =
∫∞
0 e

−λt(Qtg)(x)dt, this means we know

the Laplace transform of Qtg(x) for all λ and thus know Qtg(x) itself. This characterizes Qt for any nonnegative

function, which is enough to characterize it for all of C0(E).

Our description here is less explicit than in the discrete case, in which we just said that Qn = P n. So it’s natural

to ask if we have something like Qt = exp(tL), and that’s what we’ll discuss next. But first, we’ll do an example:

Example 149

Consider a Brownian motion in Rd , for which we’ve already shown that L = 1
2∆.
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Since Qt tells us about the probability of going from x to y , we can write down the semigroup explicitly as a

Gaussian density:

Qt(x, dy) =
1

(2πt)d/2
exp

(
−
|x − y |2

2t

)
dy.

The resolvent is then

Rλ(x, dy) =

∫ ∞
0

e−λtQt(x, dy) =

∫ ∞
0

e−λt
1

(2πt)d/2
exp

(
−
|x − y |2

2t

)
dtdy ,

and we know in general that this will be equal to (λ− L)−1. The inverse of the Laplacian is the Green kernel, so it’s

natural to plug in λ = 0 in this example. The resolvent will not always be defined at λ = 0 (we can’t always evaluate

the Laplace transform at 0), but in this case the integral converges as long as d > 2 (since for large t the exponential

term just approaches 1). Computing explicitly then indeed shows us that Rλ(x, dy) = 2G(x, dy) at λ = 0. The

reason this argument doesn’t work well when d = 1, 2 is that the Brownian motion returns to each state infinitely

often; it is still possible to get the classical Green kernel back, but we need to do some renormalization.

We’ll now turn our attention to the question posed earlier about whether Qt = exp(tL) by thinking about the

following situation:

Definition 150

Let Yn be a discrete-time Markov chain on a space (E, E) with a transition kernel P (x, dy). The canonical way to

turn such a chain into a continuous time process is to let Nt be a Poisson process of some rate c (which means in

particular that Nt is an integer distributed according to Pois(ct)). Then we construct a pseudo-Poisson process
via Xt = YNt .

Here, X and Y have the same trajectory up to a time change, and the only difference is that Y jumps at integer times

while X jumps at random times τn (specifically, the increment τn+1− τn are iid exponential random variables with rate

c). Then the generator of such a process is related to the chance of making a jump in a time t, where t is small. But

the probability that an exponential clock rings in time t is 1− e−ct ≈ ct, so

Lf (x) = lim
t↓0
E
[
f (Xt)− f (x)

t

∣∣∣∣X0 = x] = c ∫ (f (y)− f (x))P (x, dy).
In operator notation, this says that L = c(P − I) , so if we know the jump rate and transition kernel of a dsicrete

Markov chain, we can find the corresponding L for the pseudo-Poisson process. The generator L is also a bounded

operator, since ||Lf || ≤ 2c ||f || from the integral representation above, so we can indeed define

exp(tL)f =

∞∑
k=0

(tL)k f

k!
.

We wish to show that etL is indeed the same as Qt for the continuous-time process, and we can show this by writing

out

etL = etc(P−I) = e−ctIectP = e−ct
∞∑
k=0

(ctP )k

k!
=

∞∑
k=0

(
e−ct(ct)k

k!

)
P k .

But now we can plug in the mass function for the Poisson distribution – this right-hand side is exactly
∑∞

k=0 P(Nt =
k)P k . And this is exactly how the process should evolve in time t: we first figure out how many times we update the

chain, and then we evolve via P that many times. So we do indeed have Qt = etL in this simple case.

We’ll finish by discussing the Yosida approximation theorem. Suppose we’re back in the general case with a Feller

semigroup (Qt)t≥0 and a generator L. Since we have no control on the boundedness of L, we can’t always define
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exp(tL), but we can define a λ-approximation (remembering that λRλ “doesn’t evolve very much” for large λ)

L(λ) = λLRλ = λ (λ− (λ− L))Rλ = λ(λRλ − I) ,

where we’ve used the fact that λ − L is the inverse of Rλ. (A similar argument shows that this operator can also

be written as λRλL.) But here, the boxed expression looks a lot like L = c(P − I), so L(λ) is the generator of a

pseudo-Poisson process with transition kernel λRλ and rate λ. We’ll let Q(λ)t = exp(tL(λ)) denote the semigroup with

this generator L(λ).

Theorem 151 (Yosida approximation theorem)

For all f ∈ D(L), ||L(λ)f − Lf || converges to 0 in the sup-norm as λ→∞. In addition,∣∣∣∣∣∣Q(λ)t f −Qt f ∣∣∣∣∣∣ ≤ t ∣∣∣∣∣∣L(λ)f − Lf ∣∣∣∣∣∣ ,
so the left-hand side converges on any bounded interval. In fact, for all f ∈ C0(E) (a larger set than D(L)),

||Q(λ)t f −Qt f || converges to 0 on any bounded time interval.

So this λ-approximation idea gives us one way to approximate a Markov process, which is to use simple processes

of the form Q(λ)t and take λ → ∞. But at the end of the day, we’re interested in the process, not the semigroup,

so we’re curious about whether the processes (Q(λ)t )t≥0 converge in law to Qt as well. It turns out that this holds

somewhat generally, and we might talk about this later on.

17 April 15, 2020
We’ll cover three separate topics today, concluding our discussion of Markov processes. Our first is sample path
regularity for Markov processes, which will provide some nice connections with martingales. Last time, we discussed

that the resolvent and generator are related for a Feller process, and the other reason that this resolvent is important

is that we can construct a supermartingale with it:

Lemma 152

Let Xt be a Markov process with semigroup (Qt)t≥0 and resolvent Rλ. For any bounded nonnegative function

h ∈ B(E), the process St = e−λtRλh(Xt) is a supermartingale for all λ > 0.

Here, we’re using the function h to go from an abstract space E to the reals, so that we can do things like addition

and subtraction.

Proof. Clearly St is a nonnegative process, and we can check that St ∈ L1 for all t. Indeed, λRλ is a bounded (Markov

transition) operator, meaning that ||λRλh|| ≤ ||h||, so there are no integrability issues at any finite time t. To check

the supermartingale property, we write

E [Ss+t |Fs ] = e−λ(s+t)E [Rλh(Xs+t)|Fs ] = e−λ(s+t)E
[∫ ∞
0

e−λrQrdr h(Xs+t)

∣∣∣∣Fs] .
We can move the expectation inside the integral by Fubini’s theorem and then evaluate that expectation using the

definition of the semigroup, so this simplifies to

e−λ(s+t)
∫ ∞
0

e−λrE [Qrh(Xs+t)|Fs ] dr = e−λ(s+t)
∫ ∞
0

e−λrQtQrh(Xs)dr.
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Applying Chapman-Kolmogorov and then performing a change of variables, we end up with

e−λs
∫ ∞
0

e−λ(t+r)Qt+rh(Xs)dr = e
−λs

∫ ∞
t

e−λrQrh(Xt)dr.

But now h is a nonnegative function, meaning the integrand is always nonnegative, and thus this last expression is

bounded from above by e−λs
∫∞
0 e

−λrQrh(Xt)dr = e
−λsRλh(Xs) = Ss , verifying the supermartingale inequality.

Earlier in the class (chapter 3), we proved that when our filtration is right-continuous and complete and Xt is a

supermartingale such that t → E[Xt ] is right-continuous, X has an rcll modification X which is also a supermartingale.

We’ll take advantage of this to prove that Markov processes have a similar property:

Theorem 153

Suppose Ft is right-continuous and complete on a filtered probability space (Ω,F , (Ft),P) and Xt is a Feller

process with semigroup Qt . Then X has a modification X̃ which is also a Markov process with semigroup Qt and

rcll sample paths.

Proving this directly is not so straightforward – the crucial fact that we used to prove the original result about

martingales was Doob’s upcrossing inequality (which gave us control over right and left limits). Markov processes

don’t necessarily have upcrossings in generic spaces E, but this result shows that working with nice enough (Feller)

processes still gives us enough control.

Proof sketch. We’ll assume first that E is compact, so that C0(E) = C(E) (in other words, the semigroup is defined

on all continuous functions). As a (topological) exercise, there exists a countable subset {fn} ⊆ C(E) which separate
the points of E, meaning that for all x 6= y , there is some n such that fn(x) 6= fn(y). Consider the countable set

H = {Rpfn : p, n ∈ N}.

We showed last time that λRλ converges to the identity as λ → ∞, and thus H also separates the points of E (for

any x, y that are distinct, we can find an fn such that fn(x) 6= fn(y), and then we can pick sufficiently large p so that

Rpfn(x) 6= Rpfn(y)). Now for any h = Rpfn ∈ H, define the process

Sht = e
−pth(Xt) = e

−ptRpfn(Xt).

This is a supermartingale by Lemma 152, and the Feller property tells us that the expected value t → E[Sht ] is right-

continuous. Thus, our arguments from chapter 3 show that there is a modification of Sht which is rcll, and now we

can simultaneously define the countably many modifications S̃ht for all h ∈ H. To finish, we take a countable dense

subset D ⊆ [0,∞) and take the limits

lim
s↓t,s∈D

Xs(ω), lim
s↑t,s∈D

Xs(ω).

(Remember that the Sht s are real-valued, while the Xs are E-valued – the claim we’re making is that these limits above

exist in E.) Indeed, we would violate the rcll property for some supermartingale S̃ht if these limits didn’t exist: if there

were two sequences sk ↓ t and s̃k ↓ t (taking sequence values in D), where Xsk (ω)→ x and Xs̃k (ω)→ y , then letting

h separate x and y . we would find that S̃ht has a limit along both of these sequences, which is a contradiction. Thus,

all of the limits do exist and X has the desired rcll modification.

In general, if E is not a compact space, we can use a one-point compactification. Applying the above argument

to E ∪ {∆} gives an rcll modification X̃ on the larger state space, and we just need to show that X̃ does not visit this

extra point ∆. This basically follows by using the Markov semigroup to verify that e−th(X̃t) has hitting times at 1n
going to infinity as n →∞.
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Theorem 154

Under the same setting as the theorem above, the process X̃ satisfies the strong Markov property.

We won’t say anything more about this here; the main argument is that it’s a Markov process, so it satisfies the

simple Markov property, and then we can approximate random times by a discrete set of possibilities, where being a

Feller process helps with continuity.

We’ll now move on to our next topic, Lévy processes. These processes don’t have to be continuous, so they

aren’t covered as much in our textbook, but there’s a large field of research about them – we can see [4] for more

information. In short, this is a specific class of Feller processes (including Brownian motion and Poisson processes)

which are “spatially homogeneous.”

Definition 155

A Lévy process is a real-valued process Xt with stationary and independent increments (meaning that for all

s ≤ t, Xt −Xs is independent of Fs and Xt −Xs is equidistributed as Xt−s), such that Xt converges in probability

to X0 = 0 as t → 0.

To understand how the spatial homogeneity point affects our situation here, we may write

Qt(x, dy) = P(Xs+t ∈ dy |Xs = x) = P(Xs+t −Xs ∈ d(y −Xs)|Xs = x) = Qt(d(y − x)),

since the conditioning does not affect our probability. In other words, this is a Markov process where deciding how we’ll

move at the next step is independent of our current position. There are a lot of known facts about these processes,

and we’ll talk today about the characterizing features of a Levy process. The characteristic function for Xt can be

written as

E
[
e iθXt

]
= E

[
e iθ(Xt/2+(Xt−Xt/2)

]
,

and the increments Xt/2 and Xt −Xt/2 are iid, so we can factor this. In fact, we can break this up into arbitrarily small

chunks, and the idea is that we end up with a characteristic function of the form E
[
e iθXt

]
= etψ(θ). Such a process

does not have a lot of degrees of freedom: for example, Xt is infinitely divisible, meaning

Xt = Xt/k + (X2t/k −Xt/k) + · · ·+ (Xt −Xt−t/k),

where all k terms on the right side are iid increments. The class of infinitely divisible processes is indeed somewhat

restricted:

Theorem 156

A Lévy process is characterized by three numbers (a, σ2, ν) (a drift term, a rate of diffusion, and a jump measure),

where ν is a possibly infinite signed measure on R \ {0} such that
∫
min(1, x2)ν(dx) <∞.

Proof sketch. First of all, Lévy processes are Feller processes (we can see our textbook for this), so we can assume

that we’re working with an rcll modification Xt . Such a process Xt has countably many discontinuities, which are the

points where ∆Xt = Xt −Xt− = 0. Take the empirical measure of the jumps

η =
∑
t

δ(t,∆Xt)

(we can think of this as drawing points in the t, Xt plane corresponding to the jumps), so that η is a random measure
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on [0,∞) × (R \ {0}). Because our process has stationary and independent increments, η must be independent on

distinct time blocks, meaning that η must be a Poisson random measure with intensity E[η] = (Leb)⊗ ν. So ν is the

distribution of the jumps, and that accounts for the discontinuity.

From here, we want to remove the jumps and end up with a continuous process, and the idea is that what we end

up with is basically a Brownian motion. Ideally, we’d subtract off
∑

s≤t ∆Xs – there’s only countably many jumps –

but we don’t know if this sum is convergent. Instead, we subtract off all jumps that are large: the rcll property tells

us that there are only finitely many large jumps, so we can define Jt =
∑

s≤t ∆Xs1{|∆Xs | > 1}. Now let ε ∈ (0, 1],
and define

Mε
t =

∑
s≤t
(∆Xs − E∆Xs)1{|∆Xs | ∈ (ε, 1]}.

This is also well-defined for any positive ε, and on our homework we’ll show that Mε
t has a well-defined limit Mt as

ε→ 0. (We’ll need the second-moment property on ν, and then we’ll need the martingale L2 inequality.) So now the

process Y = X −M − J is a continuous Lévy process which will turn out to be of the form at + σBt . The issue is

that we’ve assumed nothing about integrability in the definition of a Lévy process, and we’ll see how to fill in the

details on the homework.

Again, the significant point here is that Lévy processes only do two things: the continuous part evolves as a

Brownian motion, and the discontinuous part has jumps evolving at a Poissonian rate.

Theorem 157

Let ξ be a real-valued random variable. Then the following are equivalent:

• There exists a Lévy process such that X1 is equidistributed as ξ,

• The law of ξ is infinitely divisible,

• There exists a triangular array ξi ,j such that each row is an iid sequence of length mn and
∑mn

j=1 ξn,j
d→ ξ.

This is an important result, because one idea from last semester (Lindeberg-Feller) is that such a triangular

array with mild conditions forces ξ to be a normal random variable. But we also know that there are non-Gaussian

infinitely divisible random variables (such as the Cauchy, gamma, and Poisson distribution) in which we violate the

Lindeberg-Feller conditions. In particular, in such situations the random variables in our array are “heavy-tailed,” and

this theorem is interesting because it covers all iid triangular arrays with row sums converging to a limit (in contrast

with Lindeberg-Feller).

We’ll close with a brief note about our final topic, approximation of Markov chains. Recall that last time, we had

a Feller semigroup Qt with generator L, and we mentioned that L(λ) = λ(λRλ− I) generates a pseudo-Poisson process

with an associated semigroup Q(λ)t = exp(tL(λ)). The Yosida approximation theorem then stated that Q(λ)t → Qt as

λ → ∞, and now if X(λ)t is such a realization – that is, a process with semigroup Q(λ)t – we want to know whether

X(λ) converges in distribution to X.

One example this can help us understand is whether a simple random walk converges in distribution to Brownian

motion. And another example comes from the fact that the average of n Cauchy random variables is Cauchy (we can

show this by looking at the characteristic function): we may ask whether the process X(n)t = S⌈nt⌉/n (where S sums

up some number of Cauchy random variables) converges as a distribution to a continuous-time analog (namely the

Lévy process with X1 distributed according to the Cauchy distribution), given that X(n)t converges to t · (Cauchy) for

any fixed t.

The first issue we need to worry about is the topology for convergence in distribution – if we have an rcll random

variable that can also have jumps, the sup-norm topology is not a good choice anymore. For example, the process
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X(n)(t) which is 0 for some time 1+ 1n and then takes on the value 1 after that should converge to the process which

jumps up to 1, but this isn’t true in the sup-norm topology. Instead, we use the Skorohod topology, which allows us

to slightly reparameterize the time. And from here, the idea is that semigroup convergence is equivalent to weak
convergence in the Skorohod topology for Feller processes. It turns out that semigroup convergence is easier to

show in these kinds of situations (we can check each Qt on its own) than showing convergence in law directly.

18 April 22, 2020

We’ll quickly finish discussing Markov processes today (chapter 6) and move on to some preparation for potential

theory (chapter 7). Recall that we started by discussing Markov chains in discrete time in a finite state space, where

the chain is completely specified by a transition matrix P . Under mild conditions (being irreducible and aperiodic), the

Perron-Frobenius theorem guarantees convergence in law to a unique stationary distribution π∗ (that is, π∗P = π∗).

In continuous time, the dynamics of the system are now specified by a semigroup Qt , and in a particularly nice class

of processes known as Feller processes, we have a generator L that determines the semigroup, and we know that the

λ-resolvent satisfies Rλ = (λ− L)−1.
A further subclass of these Feller processes is the space of psuedo-Poisson processes, where the generator L just

looks like c(P − I): in such a case, Qt = exp(tL), and the Yosida approximation tells us that a Feller process can

be approximated by these psuedo-Poisson processes. Finally, a different subclass of the Feller processes is the Lévy

processes, which include standard Brownian motion Bt , the standard Poisson process Nt , and the first passage time
process Ta (that is, the infimum t such that Bt > a). This last process (Ta)a≥0 is indeed a Lévy process because it

has independent increments, and we can completely characterize its behavior:

Fact 158

We have Ta =
∫
[0,a]×[0,∞] xη(dsdx), where η is a Poisson random measure with intensity Leb⊗ 1{x>0}√

2πx3/2
.

This is a special case of the processes on our homework – it’s good to see this worked out if we haven’t seen

anything like it before, and the details are on the online notes.

With this, we’ll move on to potential theory – we’ll first cover the subject in a discrete setting because there’s

enough going on already in that case. The central idea of what we’ll be doing is relating Markov chains to Dirichlet
problems.

Definition 159

A Markov chain Yn evolving on a discrete state space V is reversible if there exists a symmetric function c :

V × V → [0,∞) such that p(x, y) = c(x,y)
c(x) , where c(x) =

∑
y c(x, y).

We’ll only discuss reversible Markov chains here – any such chain can be described by a weighted graph G = (V, E, c),

where the vertices are the elements of the state space and the (undirected) edges are of the form (xy), where

c(x, y) > 0. (For any edge e, c(e) is called its conductance.) We can also define the weighted adjacency matrix
A = {c(x, y)} – assuming non self-loops, the matrix has zeros on the diagonal. If we let D be the diagonal matrix

such that D(x, x) = c(x) (this is like the degree of x in the unweighted case), then the transition matrix of the chain

is P = D−1A. For a function u : V → R, consider the function

Lu(x) = Ex [u(Y1)− u(Y0)] .
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This is a discrete-time version of the generator, measuring the expected change in one step of the chain given that

we started chain at x . But this is just (Pu)(x) − u(x) = (P − I)u(x), and we call L = P − I the weighted graph
Laplacian. In particular, we can also write this out as L = P − I = D−1A− I = D−1(A−D).

Remark 160. To understand the name “graph Laplacian,” consider the case where we have a random walk on G = Zd .
Then x is a point in Zd , and there are 2d possibilities for where we can go, and thus

Lu(x) =
1

2d

d∑
i=1

(u(x + ei)− u(x))− (u(x)− u(x − ei)) .

This is a difference of first derivatives, so this behaves like a second derivative in the ith coordinate (summed over i),

and thus L acts basically like 1
2d

∑
i ∂
2
i .

From here on, we’ll assume that G is a finite connected graph, and we’ll be interested in potential functions (also

called harmonic functions), which are essentially functions u such that Lu = 0. First note that if we actually require

Lu = 0 to hold everywhere, then u must be constant. Indeed, take any x ∈ argmax(u); since u is harmonic,

Lu(x) = 0 =⇒ u(x) = Ex [u(Y1)].

But u(x) is the largest possible value of u, and the right hand side is a weighted average of values of u, so this means

u(y) = u(x) for all y adjacent to x . Continuing throughout the connected graph, this means that u is constant, as

claimed – this is known as the maximum principle.

So to make things more interesting, we’ll take some subset B of the vertices V , which we call the boundary B,

and we won’t require the function u to be harmonic on B. Then we get a more general maximum principle:

Lemma 161

Let G be a finite connected graph with boundary B and interior U = V \B, and let u : V → R be a function such

that (Lu)|U = 0 and u|B = 0 (harmonic on the interior, zero on the boundary). Then u = 0.

Proof. Again consider x ∈ argmaxx∈U(u(x)). Since u(x) is still a weighted average of us around it, we again have

u(y) = u(x) for all y ∼ x . Continuing in this way, we eventually reach the boundary (where the value is fixed to be

zero), and this tells us that everything must be zero.

Definition 162

A Dirichlet boundary value problem consists of finding a harmonic function u : V → R such that (Lu)|U = 0
and u|B = f for some boundary condition f . If such a u exists, the solution is called the harmonic interpolation
of f .

Note that if we have two solutions u′, u′′ with the same boundary data f , then u′−u′′ is still a harmonic function but

equal to zero on the boundary. Thus Lemma 161 tells us that u′−u′′ = 0 – in other words, the harmonic interpolation

must be unique. To show existence, we can write down a solution directly by defining

u(x) = Ex [f (Yτ )] ,

where τ is the first hitting time of the boundary. This has the correct boundary conditions, because τ = 0 for any

x ∈ B, meaning that u(x) = f (x), and we can check for ourselves that Lu(x) = 0 for all x ∈ U. (This means there is

always a unique harmonic interpolation from the boundary to the rest of the graph, as long as both the boundary and

the interior are nonempty. And the boundary does not need to correspond in any visual sense to an actual boundary.)
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Example 163

The reason for the name “potential function” is that we can view G = (V, E, c) as a wiring diagram of an electrical
network. Think of the vertices V as nodes and edges E as wire connections with an associated number c(e),

representing the electrical conductance of e. (In particular, r(e) = 1
c(e) is the electrical resistance we might

have seen in a physics class.)

There are two main facts to know about electrical networks:

• (Ohm’s law) If we hold two vertices x and y at fixed voltages v(x) and v(y) (for instance, the two ends of a

battery), then that imposed voltage difference creates an electrical current

i(x, y) =
v(x)− v(y)
r(xy)

= c(x)
c(xy)

c(x)
(v(x)− v(y)) = c(x)p(x, y)(v(x)− v(y)).

(This is how we define the current i , and we’ll take the convention that everything “flows downhill” from positive

to negative voltage.) Now if we have a voltage function v : V → R which tells us what the voltage is at each

vertex, then the net current into the node x from its neighbors y is (div i)(x) =
∑

y∼x i(y , x). Substituting the

previous expression in and using that c(x)p(x, y) = c(y)p(y , x), we thus have

(div i)(x) = c(x)
∑
y∼x
p(x, y)(v(y)− v(x)) = c(x)Lv(x).

• (Kirchhoff’s node law) If x is not connected to an external electrical source or sink, then the current into x is

the same as the current out of x . (If electrons flow in, they also need to flow out.) In other words, this means

that Lv(x) = 0 (the voltage function should be harmonic) everywhere other than the sources and sinks.

This means that the Dirichlet boundary value problem with boundary condition f : B → R will take on the value

of the voltage function v : V → R if we impose voltages f on B. This is a nice view, because it’s easy to calculate

properties of electrical networks: for example, having two edges in parallel with conductance c1 and c2 is equivalent

to a single edge with conductance c1+ c2, and having two edges in series with resistance r1 and r2 yields a single edge

with resistance r1 + r2. So there are various rules for reducing a network, and sometimes this reduction allows us to

take a complicated network and reduce to a single wire with an effective conductance (if we, for example, impose a

voltage of 1 on one vertex and a voltage of 0 on another). We’ll make this more formal:

Definition 164

Suppose our boundary B ⊂ V is partitioned as A t Z, where A is the set of sources and Z is the set of sinks. If

we have the boundary condition f = 1A (think of this as connecting the positive end of a battery to A and the

negative end to Z), then define the total current and effective resistance via

I(A→ Z) = −
∑
x∈A
(div i)(x) =

∑
x∈Z
(div i)(x), Reff(A→ Z) =

1

I(A→ Z) =
1

Ceff(A→ Z)
.

We can check that the effective resistance is the same if we switch A and Z, so we often represent the effective

resistance with a double arrow Reff(A ↔ Z). This is interesting from a probabilistic point of view, because we can

reframe quantities in terms of these conductances and resistances. For simplicity, take A = {a} to be a single point,

and define the escape probability from a to Z

P(a→ Z) = Pa (inf{n ≥ 1 : Yn ∈ Z} < inf{n ≥ 1 : Yn = a}) .
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(This is the probability that we escape to Z before returning to a.) To calculate this, condition on the first step of

the chain and write

P(a→ Z) =
∑
y∼a
Pa(Y1 = y)Py (inf{n ≥ 0 : Yn ∈ Z} < inf{n ≥ 0 : Yn = a}) .

Letting τ be the first hitting time of a ∪ Z, we can rewrite the last probability here as Ey [1Z(Yτ )] = Ey [1 − 1{Yτ =
a}] = 1− v(y), where v is the voltage function corresponding to v(a) = 1 and v(Z) = 0. Thus, we have

P(a→ Z) =
∑
y∼a
p(a, y)(1− v(y)) =

∑
y∼a
p(a, y)(v(a)− v(y)) = −Lv(a),

but as derived earlier, this means that

P(a→ Z) = −
(div i)(a)
c(a)

=
I(a→ Z)
c(a)

=
Ceff(a↔ Z)
c(a)

.

So we have a nice equivalence between a probabilistic quantity and an electrical one!

In the time remaining today, we’ll introduce the discrete Green kernel:

Definition 165

Suppose we divide our vertices again into a boundary B ⊂ V and interior U = V \ B – everything we define here

depends on our choice of U, but we’ll omit the subscript. Let τ = inf{n ≥ 0 : Yn ∈ B} be the first time our chain

leaves U. The Green kernel is defined by

Gx(y) = Ex

[
τ−1∑
n=0

1{Yn = y}

]
.

This quantity Gx(y) is the expected number of times our chain hits y when started from x , and it can also be

rewritten as

Gx(y) =

∞∑
n=0

Ex [1{Yn = y}; τ > n] =
∞∑
n=0

pn(x, y),

where pn is the probability that we hit y after n steps and haven’t left U yet. We know that c(x)pn(x, y) = c(y)pn(y , x)

by reversibility, so the quantity gy (x) =
Gx (y)
c(y) =

Gy (x)
c(x) is symmetric in x and y ; in particular, if G is the matrix with

G(x, y) = Gx(y), then (D−1G)(x, y) = gx(y) is a symmetric matrix. The key identity we should keep in mind is that

for any x ∈ U, we can condition on the first step of the chain, so

gx(x) =
Gx(x)

c(x)
=
1

c(x)
(1 + Ex [GY1(x)]) =

1

c(x)

(
1 +
Ex [Gx(Y1)]c(x)

c(Y1)

)
=
1

c(x)
+ Ex [gx(Y1)] .

Thus, the left and right sides of this equation tell us that Lgx(x) = − 1
c(x) . However, we can check that for any

other point y ∈ U \ x , we have (Lgx)(y) = 0 (the same calculation goes through, but we don’t get the +1 from the

starting point, so there is no 1
c(x) term). This means that Lgx = − 1x

c(x) , which can be rewritten as the matrix identity

LG = −I on U. So we can define G in the probabilistic way (with the expected number of visits), but it turns out to

also be equal to the matrix inverse of the Laplacian.

Remark 166. We should be a bit careful: remember that the definition of L does not depend on the choice of U, but

in the identity above, we’re restricting L to only contain the rows and columns corresponding to the vertices U.
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19 April 27, 2020
To give us a bit more time to think about the homework, the deadline is pushed to Thursday. To finish the class, there

will be a test next Thursday, May 7, and a final problem set on Tuesday, May 12.

Last time, we started discussing potential theory for discrete space and time: we let G = (V, E, c) be a weighted

graph, where the weights determine the transition of the Markov chain. Defining the weighted adjacency matrix

A(i , j) = c(i j) and letting D = diag(c(x) =
∑

y c(x, y) be the matrix which tracks the outdegree from each vertex,

we find that P = D−1A is the transition matrix, and L = P − I = D−1(A − D). This was helpful for solving the

Dirichlet problem, in which we have a vertex set V = B t U and want to find a function u : V → R such that Lu = 0

on U and u = f on B. Such a function exists and is unique, and the answer is given by u(x) = Ex [f (Yτ )], where τ is

the first hitting time of the boundary B.

We also introduced the Green kernel GU(x, y) = Ex
[∑τ−1

n=0 1{Yn = y}
]
, which tracks the total number of visits

to y – we found that GU = −(Lu)−1 can be written in terms of the Laplacian matrix (but only taking the rows and

columns from U). Furthermore, we can actually use this to rewrite the solution u. Writing L in block form, the

Dirichlet problem asks that [
LU LUB

LBU LB

][
uU

uB

]
=

[
0

∗

]
,

so we must have

LUuU + LUBuB = 0 =⇒ uU = −(LU)−1LUBf = GULUBf .

Here, KU = GULUB is also known as the discrete Poisson kernel, and we can write it out asKU(x, z) =
∑

y GU(x, y)LUB(y , z).

But the only nonzero terms here come from x, y ∈ U, z ∈ B, so this can also be written as

KU(x, z) =
∑
y∈U
(GU(x, y)− GU(x, z))p(y , z).

Here GU(x, z) is just zero, but the difference will become a derivative in the continuous analog. Indeed, the continuous
setting is what we’ll talk about today. We won’t talk about things in full generality – we started with a general weighted

graph in the discrete case, and it’s possible to similarly use a general Feller process with infinitesimal generator L, which

takes the place of the discrete Laplacian L. But in our case, we’ll just discuss Brownian motion in Rd , so we just have

L = 1
2∆.

Definition 167

Let U ⊆ Rd be an open subset. A function u ∈ L1loc(U) (locally integrable, so in particular bounded on compact

sets is strong enough) satisfies the mean value property on U if for all x ∈ U and r > 0 such that Br (X) ⊂ U,

u(x) =
1

|Br (x)|

∫
Br (x)

u(y)dy =
1

|Sr (x)|

∫
Sr (x)

u(y)dy,

where |Br (x)|, |Sr (x)| denote the volume of the ball Br (x) and sphere ∂Br (x), respectively.

We’ll make use of the following analysis fact:

Fact 168

A function f ∈ L1loc(U) satisfies the mean value property on U if and only if f is harmonic on U, meaning that

∆f =
∑n

i=1 ∂
2
i f = 0.

82



(In particular, this implies that f is twice continuously differentiable and in fact smooth.) This will help us in our

study of the continuous Dirichlet problem: we’ll assume for simplicity that U is a bounded domain and our boundary

condition is a continuous function f : ∂U → R. Our goal is then to find a continuous harmonic function u : U → R
such that ∆u = 0 on U and u = f on ∂U. It turns out that the solution looks similar to the discrete case as long as

we have some regularity condition:

Theorem 169

If U satisfies the “exterior cone condition,” then the solution to the Dirichlet problem is u(x) = Ex [f (Bτ )], where

τ is the hitting time of the boundary (that is, τ = inf{t : Bt 6∈ U}).

We won’t actually deal with domains that don’t satisfy the exterior cone condition in this class, so we won’t worry

too much about that detail.

Proof sketch. Because U is a bounded domain, ∂U is compact. Since f is continuous and defined on a compact

domain, it is bounded, and thus the function u we define above is bounded (in particular, it’s definitely in L1loc). To

show that u satisfies the boundary condition, we need the exterior cone condition (details here omitted). For the

mean value property, if we consider a ball Br (x) and let σ be the hitting time of the boundary Sr (x) when we start a

Brownian motion from x , then the strong Markov property tells us that

Ex [f (Bτ )|Fσ] = EBσ [f (Bτ )] = u(Bσ),

and plugging this in after using the law of iterated expectation yields

u(x) = E [E[f (Bτ )|f (σ)]|B0 = x ] = E[u(Bσ)|B0 = x ] =
1

|Sr (x)|

∫
Sr (x)

u(y)dy,

since the distribution of the sphere hitting point is uniform. And the left and right sides of this equation yield the

desired mean-value property.

Next, we’ll examine the continuous Green kernel: we can’t exactly define a “number of visits” in Rd , but we can

just use a density instead.

Definition 170

Let U ⊆ Rd , and let pt(x, y ;U) be the transition kernel of Brownian motion that is killed upon exiting U (more ex-

plicitly, Px(Bt ∈ A; τu > t) =
∫
A pt(x, y ;U)dy for all A). The Green kernel on U is GU(x, y) =

∫∞
0 pt(x, y ;U)dt.

In other words, the total time that we expect to spend in a set A is

Ex
[∫ ∞
0

1{Bt ∈ A}dt
]
=

∫
A

GU(x, y)dy.

This integral will be finite except maybe at y = x because we have a bounded domain, but we won’t worry too much

about those details. We showed in the discrete case that GU = −(LU)−1, meaning that the function GU(x, ·) is

harmonic on U \ {x} and (LGU)(x) = −1. The first statement is still true in the continuous case, but the second no

longer works because GU is singular at x . Thus, we’ll need to restate the “inverse” condition: let Pt,u be the operator

such that

Pt,U f (x) =

∫
U

pt(x, y ;U)f (y)dy.
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Note that this expression is also equal to Ex [f (Bt); τu > t]. We then also define GU to act on functions via integration:

GU(f (x)) =

∫
U

GU(x, y)f (y) =

∫ ∞
0

Pt,U f (x)dt.

Theorem 171

The Green kernel inverts the Laplacian, meaning that for any smooth function f with compact support in U, we

have − 12∆UGU f = f .

Proof sketch. Consider the quantity

1

t

∫ t

0

Ps,U f (x)ds =
1

t

(∫ ∞
0

Ps,U f (x)ds −
∫ ∞
t

Ps,U f (x)ds

)
.

The first integral on the right-hand side is GU(f (x)), while the second can be rewritten as Pt,UGU(f (x)) by Chapman-

Kolmogorov, so the expression is equal to −
1

t
(Pt,U − I)GU(f (x)) . But now as t → 0, the first boxed expression

converges to f , while the Pt,U−I
t in the final expression converges to the generator 12∆U of the process.

Everything we’ve been discussing so far has been using probabilistic quantities to say things about harmonic func-

tions, but we can also work in reverse. In Rd , we have the standard Green kernel

Γ(x, y) =


|x−y |2−d
(d−2)|Sd−1| d 6= 2,
1
|S1| log

1
|x−y | d = 2,

where |Sd−1| is the volume of the standard sphere. We can check by directly computing the derivative that Γ(x, ·) is

always harmonic on Rd \ x , so this helps us calculate probabilities for Brownian motion:

Example 172

Consider two balls of radius ε and R centered at the origin, and consider a Brownian motion at some x in

the annulus U between the balls, stopped when it hits either boundary. We wish to compute the probability

Px(τε < τR).

Letting f : ∂U → R be the function which is 1 on the inner boundary ∂Bε and 0 on the outer boundary ∂Br , we

are trying to compute Ex [f (Bτ )]. But we can construct the harmonic interpolation explicitly in this case: we have

u(x) = Px(τε < τR) =


R2−d−|x |2−d
R2−d−ε2−d d 6= 2,
logR−log |x |
logR−log ε d = 2,

where we’ve used the fact that Γ(x, ·) is harmonic – we can verify that the boundary conditions are indeed satisfied.

So this tells us an exact probability for the Brownian motion hitting distance ε before distance R, and now if we take

R→∞, the chance that τε < τR goes to 1 for d = 1, 2, but it goes to
(
ε
|x |

)d−2
< 1 for d ≥ 3. So Brownian motion

starting at x always hits any ball not containing x in dimensions 1 or 2, but this doesn’t necessarily occur in larger

dimensions. In other words, Brownian motion is recurrent for d = 1 or 2 but transient otherwise.

Now, we can compare our GU(x, y) (defined for a bounded U) to the classical Γ(x, y) (defined for the whole space).

In Rd , Γ inverts the Laplacian, meaning that integrating against a smooth, compactly supported test function f yields∫
R
Γ(x, y)∆y f (y)dy = f (x).
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It turns out that we can actually take U = Rd in the definition of GU(x, y) =
∫∞
0 pt(x, y ;U)dt – we have that∫∞

0 pt(x, y ;U)dt = 2Γ(x, y) for d ≥ 3 but not for d = 1, 2 (because the integral diverges). Nevertheless, we can still

get a relation between the Green kernel (with occupation densities) and the classical kernel: we recenter by taking any

fixed vector w of norm 1, and then we have∫ ∞
0

(
pt(x, y ,Rd)− pt(x, x + w ;Rd)

)
dt = 2Γ(x, y).

Example 173

We’ll finish by discussing the Feynman–Kac formula, doing a discrete-time version to give some intuition for the

continuous-time version on our homework.

As before, let G = (V, E, c) define a reversible Markov chain Yn. Let f : V → R and w : V → [0,∞) be two

functions, and define

u(n, x) = Ex

[
f (Yn)

n−1∏
k=0

1

1 + w(Yk)

]
.

Then we can calculate u(n + 1, x) by conditioning on the first visit of the chain, so that

u(n + 1, x) =
∑
y

p(x, y)
1

1 + w(x)
u(n, y) =

1

1 + w(x)

(∑
y

p(x, y)(u(n, y)− u(n, x)) + u(n, x)

)
.

But the sum over y in the right expression is just the discrete Laplacian Lxu(n, x), meaning that after some rearranging,

we arrive at

u(n + 1, x)− u(n, x) = Lxu(n, x)− w(x)u(n + 1, x).

This is a discrete PDE with initial condition u(0, x) = f (x). In the continuous version of this result, we’re similarly

given two functions f : Rd → R and w : Rd → [0,∞) and defining

u(t, x) = Ex
[
f (Bt) exp

(
−
∫ t

0

w(Bs)ds

)]
.

We can then find (see homework) that u solves the partial differential equation

∂u

∂t
(t, x) =

1

2
∆xu(t, x)− w(x)u(t, x)

again with initial condition u(0, x) = f (x). The special case w = 0 just gives us the heat equation (heat diffuses like

Brownian motion), and the solution in that case is u(t, x) = Ex [f (Bt)]. And since ∂u
∂t should be zero at equilibrium

(and thus u is a harmonic function), the only way for u to not be constant is if we have a nonconstant boundary

condition.

20 April 29, 2020
We’ll start with Chapter 8 of Le Gall today, discussing stochastic differential equations, existence and uniqueness of

solutions, and the case where we have Lipschitz coefficients.
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Definition 174

Let σ, b : [0,∞)×R→ R be real-valued functions of time and space that are locally bounded and measurable. A

(weak) solution of the stochastic differential equation (SDE)

E(σ, b) : {dXt = σ(t, Xt)dBt + b(t, Xt)dt}

(this is the usual informal notation) consists of the following:

• a filtered probability space (Ω,F ,Ft ,P) (we’ll assume the filtration Ft is complete),

• an Ft Brownian motion Bt , and

• an Ft-adapted process Xt with continuous sample paths, such that

Xt = X0 +

∫ t

0

σ(s, Xs)dBs +

∫ t

0

b(s, Xs)ds.

Let Φ(X)t denote the right-hand side of this last equation (it implicitly depends on Ω,F ,Ft , and B). Because

σ and b are locally bounded,
∫ t
0 σ(s, Xs)dBs is a local martingale M(X)t and

∫ t
0 b(s, Xs)ds a finite variation process

A(X)t , so we’ve had practice working with these types of objects already. If X0 = x ∈ R, then we say that X is a

solution for Ex(σ, b).
We’ll focus on the one-dimensional case, though many results generalize to the multi-dimensional case. The way

to think about this SDE is that it is the system governed by the ODE df
dt = b(t, f (t))dt but with some additional noise

σdBt . We have existence and uniqueness of solutions for the ODE under mild conditions, so we’d like to establish an

analogous idea for SDEs. However, things become a bit more complicated – in particular, there are a few notions of

what a “solution” means here:

Definition 175

A weak solution of E(σ, b) (as above) is defined in Definition 174. A strong solution also satisfies the additional

condition that Xt is adapted to the Brownian filtration σ(Bs : s ≤ t) ⊆ Ft .

The idea is that Xt appears on both sides of the weak solution, so we may want to solve for an Xt where all of

the randomness comes from the Brownian motion randomness alone.

Definition 176

Again take the definition of E(σ, b) from above. We have weak uniqueness of solutions if all solutions of Ex(σ, b)

have the same law and pathwise uniqueness if given (Ω,F ,Ft ,P, B), any two solutions X and Y with X0 = Y0
almost surely are indistinguishable.

Assuming that we have weak existence (so that we do have a weak solution), pathwise uniqueness is stronger

than weak uniqueness. This isn’t an obvious fact – we can read the book for an example where an SDE has weak

uniqueness but not pathwise uniqueness (we can construct a probability space so that they are not indistinguishable).

But showing that pathwise uniqueness implies weak uniqueness is the Yamada-Watanabe theorem – the idea is that

indistinguishability requires us to look on a single probability space. If we are given Ω,F ,Ft ,P, B, and a starting point

x , we have a unique solution X. But then if we have a different probability space and are given Ω′,F ′,F ′t ,P′, B′, x ,
we will also have a unique solution X ′, and the theorem tells us that X and X ′ will have the same law.

We’ll first note down a technical result:
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Fact 177 (Gronwell’s lemma)

Let g be a nonnegative bounded function on [0, t], and suppose there exist a, b ≥ 0 such that

g(t) ≤ a + b
∫ t

0

g(s)ds

for all t ∈ [0, T ]. Then g(t) ≤ aebt for all t ∈ [0, T ].

This is a fact about deterministic functions – it’s basically a calculus fact, so we’ll omit the proof. Note that if we

had equality, this would be easy, since we would have g′(t) = bg(t) with initial condition g(0) = a, and this is uniquely

solved by g(t) = aebt .

We’ll be considering a class of processes where we can prove all of the things that we want: specifically, we’ll

assume our coefficient functions σ, b : [0,∞) × R → R are continuous (jointly as a function of space and time) and

K-Lipschitz in the space coordinate, meaning that for all x, y ∈ R, we have

|σ(t, x)− σ(t, y)| ≤ K|x − y |, |b(t, x)− b(t, y)| ≤ K|x − y |

Theorem 178

If σ, b are continuous and K-Lipschitz, then for all (Ω,F ,Ft ,P, B) and all x ∈ R, there exists a strong solution
X for Ex(σ, b) on the the probability space, and we have pathwise uniqueness of solutions (meaning any other

solution Y is indistinguishable from X, so all solutions are strong).

Proof. We first show pathwise uniqueness. We are already given (Ω,F ,Ft ,P, B), and suppose that X, Y are both

solutions on this space with X0 = Y0 almost surely. (For this part, the starting point does not need to be fixed.) Our

goal is to show that X and Y are indistinguishable. Let τ be the stopping time

τ = inf{t ≥ 0 : |Xt −X0| ≥ M or |Yt − Y0| ≥ M}.

Consider the function h(t) = E
[
(Xt∧τ − Yt∧τ )2

]
. Since X and Y have the same starting point and we stop before

moving more than M away from the starting point, h is bounded by (2M)2. Now writing X and Y as a sum of the

local martingale and FV parts and using the trivial inequality (u + v)2 ≤ 2(u2 + v2), we in fact have

h(t) ≤ 2E

[(∫ t∧τ

0

(σ(s, Xs)− σ(s, Ys))dBs
)2]
+ 2

[(∫ t∧τ

0

(b(s, Xs)− b(s, Ys))ds
)2]
.

The first term is the expectation of the square of a stochastic integral, and recall that we’ve previously proven that

E
[(∫ t

0 HsdMs

)2]
≤ E

[∫ t
0 H

2
s d〈M〉s

]
. Using this and also applying Cauchy-Schwarz on the second term tells us that

h(t) ≤ 2E
[∫ t∧τ

0

(σ(s, Xs)− σ(s, Ys))2ds
]
+ 2tE

[∫ t∧τ

0

(b(s, Xs)− b(s, Ys))2
]
.

Now applying the Lipschitz condition, we have

h(t) ≤ 2K2(1 + t)E
[∫ t∧τ

0

(Xs − Ys)2ds
]
≤ 2K2(1 + t)

∫ t

0

h(s)ds ≤ 2K2(1 + T )
∫ t

0

h(s)ds

for all t ≤ T . Since h is a bounded nonnegative function, Gronwall’s lemma tells us that h = 0 on [0, T ] (because

the constant term is 0), so Xt∧τ = Yt∧τ almost surely for all t ∈ [0, T ]. Now take M → ∞ and T → ∞ to show
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that Xt = Yt almost surely for all t. By definition this doesn’t mean we have indistinguishability, but in this case the

assumption of continuity does imply that X and Y are indistinguishable, proving pathwise uniqueness.

Now we’ll show existence of a strong solution, and the calculation here will be fairly similar to what we’ve just done.

Remember that we’re working with a given (Ω,F ,Ft ,P, B), and a weak solution is just a solution of the fixed point

equation X = Φ(X). This motivates the idea of iterating Φ: let X0 be the constant process such that (X0)t = x , and

define Xn = Φn(X0) for all n. Our goal is to show that Xn converges to the fixed point solution satisfying X = Φ(X),

and we’ll do this by bounding the difference between Xn and Xn+1. Define

Gn(t) = E
[
sup
s≤t

(
Xn+1s −Xns

)2]
.

By the same calculation strategy as before and writing Xn+1 and Xn in terms of Xn and Xn−1, respectively, we find

that

Gn(t) ≤ 2E

[
sup
s≤t

(∫ t

0

σ(s, Xns )− σ(s, Xn−1s )dBs

)2]
+ 2E

[
sup
s≤t

(∫ t

0

b(s, Xns )− b(s, Xn−1s )ds

)2]
Now the first term can be controlled because it is the supremum of a local martingale, so we can apply Doob’s L2

inequality and then use the same inequality as before. Then also applying Cauchy-Schwarz to the second term yields

Gn(t) ≤ 8E
[∫ t

0

(
σ(s, Xns )− σ(s, Xn−1s )

)2
ds

]
+ 2tE

[∫ t

0

(b(s, Xns )− b(s, Xn−1s )2ds

]
.

Finally, applying the Lipschitz assumption we find that

Gn(t) ≤ 2K2(4 + t)E
[∫ t

0

(Xns −Xn−1s )2ds

]
≤ 2K2(4 + T )

∫ t

0

Gn−1(s)ds .

This means we have a bound for gn in terms of gn−1, and now we’ll just do the base case

G1(t) = E
[
sup
s≤t
(X1s − x)2

]
,

where X1s = Φ(X
0)s = x +

∫ s
0 σ(r, x)dBr +

∫ s
0 b(r, x)dr . Because σ, b are both locally bounded, G1(t) is bounded by

some constant c(T ) for all t ∈ [0, T ] (notice that we’re bounding the expectation of the second moment of (X1s −x),
not the function itself). Then inductively integrating the boxed bound above yields

Gn+1(t) ≤ c(T )(2K2(4 + T ))n
tn

n!
.

But this decays quickly because of the n! in the denominator, which means that when we sum the sup-norm differences,

we get

E

[∑
n

sup
t≤T

∣∣Xn+1t −Xnt
∣∣] ≤∑

n

√
Gn(T ) <∞.

Thus,
∑

n supt≤T
∣∣Xn+1t −Xnt

∣∣ is almost surely finite for any T , which means that Xn converges uniformly to X on

[0, T ] (and in general any compact time interval). We know that X1 is adapted to the Brownian filtration, and in

general integrating against a Brownian motion still keeps things adapted, so Xn is adapted to the Brownian filtration

for all n and thus the limit process X is adapted as well. So we just need to check that this is actually a (weak) solution

to X = Φ(X), but we showed that Xn = Φ(Xn−1) so taking n →∞ makes both Xn and Xn−1 in the above equation

converge to X. Thus it remains to check that

Φ(Xn) = x +

∫ t

0

σ(s, Xn−1s )dBs +

∫ t

0

b(s, Xn−1s )ds
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converges to Φ(X). It’s clear that the second term converges to
∫ t
0 b(s, Xs)ds because b is continuous and Xn−1s

converges uniformly to Xn (so we can apply dominated convergence theorem). To argue that the first term converges

correctly, we use the dominated convergence theorem on the difference
∫ t
0 (σ(s, Xs) − σ(s, X

n−1
s ))dBs for stochas-

tic integrals, where the dominating process is Ds = K
[∑

n supr≤s |Xnr −Xn−1r |
]
. This finishes the verification and

constructs our strong solution X.

For the next result, recall that the Wiener measure is the law of Brownian motion started from 0 – in particular,

it is a measure on continuous functions C([0,∞),R).

Theorem 179

Consider the space of functions C([0,∞),R). Let W be the Wiener measure, BC the Borel sigma-algebra on

C([0,∞),R), and G the sigma-algebra σ(Bc , N), where N is the set of W -negligible sets. If σ, b are continuous

and K-Lipschitz, then for all x ∈ R there exists a measurable function Fx : (C([0,∞),R),G)→ (C([0,∞),R),BC)
such that the following hold:

• for all t, Fx(w)t coincides almost surely with a measurable function of (w(s) : s ≤ t),

• for all w , the map x → Fx(w) is continuous as a map R→ C([0,∞),R).

• for all choices of Ω,F ,Ft ,P, B and for all x , Fx(B) is the unique solution of Ex(σ, b), and this is also true

if we replace x with a random starting point U ∈ F0.

The second point here tells us that if we start from two points x, y ∈ R that are close to each other, and we evolve

the SDE using the same Brownian motion, our paths will look similar when σ, b are bounded and Lipschitz. What we’ll

do is apply Theorem 178 with the filtered probability space

(Ω,F ,Ft ,P, B) = (C([0,∞],R),G,Gt = σ(w(s) : s ≤ t, N),W,w),

where w is the canonical Brownian motion. Then the solution we get out of the theorem will be Fx(w) – this is adapted

to the Brownian motion, so we automatically satisfy the first points. So we just need to show that the mapping is

continuous and that this works on any probability space, and we’ll do this next time.

21 May 4, 2020

Recall that we’ve been looking at the stochastic differential equation dXt = σ(t, Xt)dBt + b(t, Xt)dt, where σ and

b are K-Lipschitz in the x coordinate. Last time, we showed that given any (Ω,F ,Ft ,P, B), we can find a strong

solution Xxt started at x and adapted to the Brownian motion, and this solution is unique by pathwise uniqueness.

(The Yamada-Watanabe theorem, which states that pathwise uniqueness implies weak uniqueness, can be applied here,

but we can also prove weak uniqueness directly in this K-Lipschitz case.) We’ll now start with a proof of last time’s

result, which stated that we have a measurable mapping Fx : (C([0,∞),R),G)→ (C([0,∞),R),B) such that Fx(w)t
is measurable of (ws)s≤t , the map x → Fx(w) is continuous in x , and Fx(B) solves the stochastic differential equation

Ex(σ, b).

Proof of Theorem 179. We already showed there exists a strong solution Xxt for any (Ω,F ,Ft ,P, B, x), and we’ll

apply that here to the space(C([0,∞),R),G,Gt ,W,w, x). We want to show continuity, and we’ll make use of the

Kolmogorov continuity lemma – recall that if we have any stochastic process Ft which takes values in a complete

separable metric space (S, d) with the bound E [d(Fs , Ft)q] ≤ C|s − t|1+ε , then there is a modification F̃t of Ft that
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is α-Hölder continuous for all α ∈
(
0, εq

)
. We applied this to Brownian motion earlier in the class, and remember that

one part of the proof was to do a union bound (for the interval [0, 1])

P
(∣∣Xi/2n −X(i−1)/2n ∣∣ ≤ ( 1

2n

)α
for all i

)
≤ 2n(1+αq)/2n(1 + ε).

In particular, this does not rely on having independent increments! So we’ll apply the Kolmogorov continuity lemma to

Fx(w) (where we index by position x ∈ R instead of by time), thinking of this process as taking values in the metric

space (S, d) given by

S = C([0,∞),R), d(f , g) =
∑
n≥1

1

2n
min

(
1, sup
t≤n
|f (t)− g(t)|

)
.

Checking the assumptions of the continuity lemma requires the boxed estimate above, but we can read that on our

own, and once we verify this we do indeed get continuity. The last thing we must check is that Fx(B) solves our

SDE given any (Ω,F ,Ft ,P, B); we know it’s true on the Wiener space, but we need to check that it’s true for any

Brownian motion B. If we let w be our Brownian motion on the Wiener space, then Fx(w) solves Ex(σ, b), meaning

Fx(w)t −
(
x +

∫ t

0

σ(s, w(s))dw(s) +

∫ t

0

b(s, w(s))ds

)
= 0.

where w is our Brownian motion. Letting Ψ(w)t denote the left-hand side, we have
∫
w |Ψ(w)|dW (w) = 0. But then

any Brownian motion B has the same law as W , so we must also have
∫
|Ψ(B)|dP(B) = 0, which implies that Fx(B)

is a valid solution to our SDE.

Remark 180. As a technical sidenote, we do need to make sure Ψ is measurable as a function of w – the main difficulty

here is showing that the stochastic integral
∫ t
0 σ(s, w(s))dw(s) is a measurable function of w , but this follows from

the approximation∫ t

0

σ(s, w(s))dw(s) = lim
n→∞

2n∑
i=1

σ

(
(i − 1)t
2n

, w

(
(i − 1)t
2n

))(
w

(
i t

2n
− w

(
(i − 1)t
2n

)))
.

Note that this theorem we’ve just proved implies weak uniqueness without needing the Yamada-Watanabe theorem

– the solution comes from applying the same map Fx to our Brownian motion, no matter what probability space we’re

on, so the law of Xx is determined: for any event A we have

P(Xx ∈ A) = P(Fx(B) ∈ A) = P(B ∈ (Fx)−1A),

and then because the law of Brownian motion is given by the Wiener measure, this is just W ((Fx)−1A). So the law is

just (Fx)#W .

Remark 181. As stated last lecture, if we replace our starting point X0 = X with a random variable X0 = U ∈ F0,
we can still get a solution to our SDE with FU(B). But we can read the book for more details.

We will now make a connection to Markov processes: suppose for this part of the lecture that σ and b don’t
depend on time and that they are still K-Lipschitz in x .
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Theorem 182

Suppose σ(t, x) = σ(x) and b(t, x) = b(x) are K-Lipschitz, and let X be a solution of the SDE E(σ, b) on any

probability space (Ω,F ,Ft ,P). Then X is a Markov process, and the semigroup can be described via

Qt f (x) = Ex [f (Xt)] =
∫
f (Fx(w)t)dW (w).

(Remember that we showed the existence and uniqueness of a strong solution X already.)

Proof. We’ll first show that E[f (Xs+t)|Fs ] = Qt f (Xs), where f must be a bounded and measurable function. Define

the shifted process X̂t = Xs+t , and write it out as

X̂t = Xs +

∫ s+t

s

σ(Xr )dBr +

∫ s+t

s

b(Xr )dr = X̂0 +

∫ t

0

σ(X̂r )dB̂r +

∫ t

0

b(X̂r )dr.

This means that X̂t solves the SDE EX̂0(σ, b) on the probability space (Ω,F , F̂t = Fs+t ,P) with the shifted Brownian

motion B̂t = Bs+t − Bs . Therefore, Theorem 179 tells us that FXs (B̂) must solve the SDE, meaning we have

X̂t = FXs (B̂) =⇒ E [f (Xs+t)|Fs ] = E
[
f (FXs (B̂)t)|Fs

]
.

And now B̂ on the right-hand side is independent of Fs , so we can write this out as

X̂t =

∫
f (FXs (w)t)dW (w) = Qt f (Xs),

as desired. To finish, we need to show that Qt is a valid semigroup, which means that (1) Q0(x, ·) is the Dirac

measure δx concentrated at x , (2) the Chapman-Kolmogorov equations Qs+t = QsQt are satisfied, and (3) the map

(t, x) → Qt(x, A) must be measurable. The last point follows from Qt being continuous in t and x , and everything

else is straightforward.

Theorem 183

In the same setting as the theorem above, Qt is a Feller semigroup. The space of functions A = C2,cpt(R) that

are compactly supported and twice differentiable is contained in the domain D(L), and for any f ∈ A we have

Lf (x) = b(x)f ′(x) + σ2
f ′′(x)

2
.

Proof sketch. We’ll omit the proof of the Feller property, which is showing that (1) whenever f ∈ C0(R), we have

Qt f ∈ C0(R), and (2) Qt f → f converges in the sup-norm as t ↓ 0. For the remaining claims, we apply Itô’s formula

to f ∈ A and then plug in the SDE to find

df (Xt) = f
′(Xt)dXt +

f ′′(Xt)

2
σ(Xt)

2dt

= f ′(Xt) (σ(Xt)dBt + b(Xt)dt) +
f ′′(Xt)

2
σ(Xt)

2dt.

Subtracting off the drift term, we can define

Mt = f (Xt)− f (x)−
∫ t

0

(
f ′(Xs)b(Xs) +

f ′′(Xs)σ(Xs)
2

2

)
ds ,
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so that Mt =
∫ t
0 σ(Xs)dBs is a local martingale. Call the integrand in the boxed expression Gf (Xs) – we want to show

that G is the generator we’re looking for. For simplicity, let’s assume σ, b are bounded, so that M is a true martingale.

We then have

0 = E[Mt ] = Ex [f (Xt)]− f (x)−
∫ t

0

Ex [Gf (Xs)] ds.

Dividing through by t and taking the limit t ↓ 0, we find that

Lf (x) = lim
t↓0

Qt f (x)− f (x)
t

= lim
t↓0

1

t

∫ t

0

Ex [Gf (Xs)]ds

= lim
t↓0

1

t

∫ t

0

QsGf (x)ds.

But we know that Qs(Gf ) converges to Gf by the Feller property as s ↓ 0, so this last expression is indeed Gf (x),

showing that G is our generator.

In short, we can phrase the results above as saying that time-independent SDEs with Lipschitz coefficients
correspond to Feller processes.

Example 184 (Ornstein-Uhlenbeck process)

We’ll apply our theory to the SDE dXt = dBt − λXtdt.

Define the process Mt = eλtXt – by Itô’s formula, we have

d(eλtXt) = e
λt(dBt − λXtdt) + λeλtXtdt.

Since the drift terms cancel out, we have dMt = eλtdBt , meaning that Mt is a local martingale with increments

given by integrating a deterministic function eλt against a Brownian motion. So if we take M0 to be some integrable

function, Mt will be a true martingale, and

eλtXt −X0 = Mt −M0 =
∫ t

0

eλsdBs ,

and rearranging yields our solution Xt = e−λtX0 +
∫ t

0

e−λ(t−s)dBs . In particular, if X0 is deterministic or normal

and independent of B, then Xt is actually a Gaussian process, where we can calculate

Var(Xt) =
Var(X0)

e2λt
+

∫ t

0

ds

e2λ(t−s)
=
Var(X0)

e2λt
+
1

2λ

(
1−

1

e2λt

)
.

If we now choose X0 so that Var(X0) = 1
2λ , then we have Var(Xt) = 1

2λ for all t. We can also check that Cov(Xs , Xt) =
1

2λ exp(λ|t−s|) , which only depends on the difference between s and t. This means the centered Gaussian process X is

also stationary, and such a process is called the Ornstein-Uhlenbeck process.

Example 185 (Geometric Brownian motion)

Next, consider the SDE dXt = σXtdBt + rXtdt.

This is the crudest possible model we could have for the stock market (we have some rate of appreciation, as well

as some volatility). The idea here is to apply Itô’s formula to logXt (as long as X stays positive), which yields

d(logXt) =
1

Xt
(σXtdBt + rXtdt)−

1

2X2t
σ2X2t dt.
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Again the drift terms cancel, so we end up with the equation d(logXt) = σdBt +
(
r − σ2

2

)
dt. Since there is no

X-dependence on the right side, we can now integrate to get our solution Xt = X0 exp
(
σBt −

(
r −
σ2

2

)
t

)
.

22 May 11, 2020
Today, we’ll discuss a few results that are applications of what we’ve learned in this class, centered around the Dyson
Brownian motion in random matrices.

Definition 186

Let (Bi j)i≤j be a family of iid Brownian motions. Then the symmetric matrix Brownian motion is the symmetric

matrix H such that

H(t)i j =


√
2Bi j i = j,

Bi j i < j,

Bj i j < i .

In other words, all entries evolve according to independent Brownian motions, except that we want the matrix to

be symmetric. We include the
√
2 factor here because another way that we can obtain this matrix is via

H(t) =
X(t) + X(t)∗√

2
,

where X is a standard Brownian motion in Rn×n (meaning all entries are independent) which we symmetrize and

rescale. So all off-diagonal entries evolve like standard Brownian motions, but the diagonal terms will have a larger

variance.

Definition 187

The Hermitian matrix Brownian motion is similarly defined as

H(t) =
X(t) + X(t)∗√

2
,

where X is a standard Brownian motion in Cn×n.

We say that H(t)√
t

for a symmetric BM H is a sample from the Gaussian orthogonal ensemble or GOE, and

similarly H(t)√
t

for a Hermitian BM H is a sample from the Gaussian unitary ensemble or GUE.

We can show that H sampled from either GOE or GUE will always have n distinct eigenvalues almost surely, which

are real because we have a Hermitian matrix – we’ll order them as λ1 < · · · < λn. In fact, the ordered eigenvalue

process λ(t) = (λ1(t), · · · , λn(t)) is such that the eigenvalues never collide almost surely, so this eigenvalue process

does not leave the Weyl chamber
Wn = {z ∈ Rn : z1 < · · · < zn}.

There are two main results we’ll be covering today:
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Theorem 188

If H is a symmetric or Hermitian matrix Brownian motion, then the eigenvalue process solves the β-Dyson SDE

dλi(t) = β
∑
ℓ ̸=i

1

λi(t)− λℓ(t)
dt +

√
2dBi(t),

where Bi are independent Brownian motions, where we have β = 1 in the symmetric case and β = 2 in the

Hermitian case.

Notice that all eigenvalues λℓ < λi give a positive contribution to the drift term, and all eigenvalues λℓ > λi give

a negative contribution. So the eigenvalues will “repel” each other more strongly as the eigenvalues grow closer, and

this is related to why the eigenvalues are distinct almost surely for the GOE and GUE.

We won’t focus too much on the proof of existence and uniqueness for now – it turns out that for any x ∈ Wn
in the Weyl chamber, there is a unique strong solution of the β-Dyson SDE started from x for all β ≥ 1 which stays

inside the chamber for all time. After that, we’ll also cover the following result:

Theorem 189

For any x ∈ Wn, the β = 2 Dyson process started from x is equidistributed as an n-dimensional Brownian motion

started from x , conditioned to stay inside the Weyl chamber.

Note that n-dimensional Brownian motion will almost surely exit the Weyl chamber, because even two Brownian

motions will intersect almost surely. So we’ll need to be more precise about this statement to work with it.

We’ll first discuss the main ideas of the first result – most of the work is calculation:

Proof sketch of Theorem 188. We’ll just do the symmetric case – the method of proof is the same for the Hermitian

case. Call the entries of our symmetric matrix Hjk . We’ll calculate the first and second derivative of the ith eigenvalue

with respect to each matrix entry Hjk (for all j ≤ k) and then apply Itô’s formula, but we must break into separate

cases because the Brownian motions are different on the diagonals. We’ll find that

dλi(t) =

 n∑
k=1

∂λi
∂Hkk

√
2dBkk +

∑
j<k

∂λi
∂Hjk

dBjk(t)

+
1
2

n∑
k=1

2
∂2λi

∂H2kk
+
1

2

∑
j<k

∂2λi

∂H2kk

 dt.
The first bracketed term is the continuous local martingale term, and if we set it equal to

√
2dBi(t), the Lévy

characterization verifies that Bi is indeed a Brownian motion. Similarly, evaluating the partial derivatives on the

second bracketed term will show that it matches up with the finite variation term in the theorem statement. So it just

remains to explain how we actually calculate the needed derivatives: we write

∂λi
∂Hjk

=
d

dt
λi(H(t)),

where H(t) = H + t(Ejk + Ekj) and Ejk and Ekj are the “matrix units” which are 0 everywhere except with a 1 in

the (j, k) and (k, j) entries, respectively. This can then be computed using implicit differentiation, using the fact that

Hui = λui .

We’ll need a technical lemma for the second result:
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Lemma 190 (Andréif integration formula)

For “nice” functions fi and gi , we have

1

n!

∫
Rn
det


f1(x1) · · · f1(xn)

...
. . .

...

fn(x1) · · · fn(xn)



g1(x1) · · · g1(xn)

...
. . .

...

gn(x1) · · · gn(xn)

 dx = det

∫
R f1g1 · · ·

∫
R f1gn

...
. . .

...∫
R fng1 · · ·

∫
R fngn



Proof. Writing out the definition of the determinant on the left-hand side, we have

1

n!

∫
Rn

(∑
σ

sgn(σ)
n∏
i=1

fσ(i)(xi)

)∑
τ

sgn(τ)
n∏
j=1

gτ(j)(xj)

 ,
which can also be rewritten as

=
1

n!

∑
σ,τ

sgn(στ)
n∏
i=1

(∫
fσ(i)(xi)gτ(i)(xi)dxi

)
(where we’ve used that the integral over the product is the product over the integral of the individual independent

xis). But now summing over all permutations ρ = στ will count each one n! times, so those factors cancel out and

we get the formula of the determinant on the right side.

Lemma 191 (Karlin-McGregor formula)

Let B(t) be a Brownian motion in Rn, and let T be the first exit time of B from the Weyl chamber. Then for

any x ∈ Wn and measurable subset A ⊆ Wn,

Px(B(t) ∈ A;T > t) =
∫
A

det


pt(x1, y1) · · · pt(x1, yn)

...
. . .

...

pt(xn, y1) · · · pt(xn, yn)

 dy,
where pt is the transition density of a usual one-dimensional Brownian motion.

If the BMs were all independent and we didn’t care whether they collided or not, the transition kernel would just

be pt(x1, y1) · · · pt(xn, yn). So this result is saying that we need to use the determinant of pts instead if we require

our BMs not to collide. (And here, we’re restricting on the left side to the event that we haven’t left by time t, not

conditioning.)

Proof. Let Ti be the collision time inf{t : Bi(t) = Bi+1(t)}, so that T = minTi . Again expanding out the determinant

and writing the transition pt functions in terms of a Brownian motion yields (letting qt(x, y) be the determinant)

qt(x, y)dy =
∑
σ

sgn(σ)Ex

 n∏
i=1

1{Bi(t) ∈ dyσ(i)}

1{T ≥ t}+ n−1∑
j=1

1{T = Tj < t}

 ,
where bracketed term we’ve inserted is just 1. But when we look at the contribution from the 1{T ≥ t} term (meaning

we haven’t left the chamber) the only permutation that is relevant is that where the yis haven’t gone out of order

from the xis, so this contributes Ex

[
n∏
i=1

1{Bi(t) ∈ dyi};T ≥ t

]
. And we can make a swapping argument to show

that the total contribution from the other part is zero (if Tj happens before t, we can take the two Brownian motions
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that cross and switch them, changing the sign of the difference). So the boxed term is the only contribution from the

integral overall, and integrating it over A yields the left-hand side as desired.

In order to condition on “not colliding,” we’ll construct a martingale:

Corollary 192

For any x ∈ Rn, define the classic Vandermonde determinant

v(x) =
∏
i<j

(xj − xi) = det


1 x1 · · · xn−11

1 x2 · · · xn−12

...
...

...
...

1 xn · · · xn−1n

 .

Then if B is a Brownian motion in Rn and T is the exit time from the Weyl chamber, then Mt = v(Bt∧T ) is a

nonnegative martingale.

Proof sketch. Mt is indeed nonnegative because each term (xj − xi) in the product is nonnegative while we’re in the

Weyl chamber. Consider the expectation Ex [v(Bt∧T )] – if T ≤ t, then Mt = 0 (because v is zero when it hits the

boundary of the chamber) and there is no contribution to the expectation. So taking (y1, · · · , yn) to be the location

of the Brownian motion at time t, we can just calculate

Ex [v(Bt∧t);T > t] =
∫
Wn

det


1 y1 · · · yn−11

1 y2 · · · yn−12

...
...

...
...

1 yn · · · yn−1n

 det

pt(x1, y1) · · · pt(x1, yn)

...
. . .

...

pt(xn, y1) · · · pt(xn, yn)

 dy

where we’ve used the the Karlin-MacGregor formula. But symmetry in the variables here means we can integrate over

all of Rn instead of Wn by adding a factor of 1n! , and now the Andréif integration formula yields

Ex [v(Bt∧t)] = det


1 x1 · · · E[(x1 +

√
tZ)n−1]

1 x2 · · · E[(x2 +
√
tZ)n−1]

...
...

...
...

1 xn · · · E[(xn +
√
tZ)n−1]


(because by definition of the transition kernel, integrating y1 against pt(x1, y1) will just yield x1). And now this is just

equal to the simpler Vandermonde matrix

det


1 x1 · · · xn−11

1 x2 · · · xn−12

...
...

...
...

1 xn · · · xn−1n

 = v(x),

because we can expand out the rightmost columns by the binomial theorem and use row operations to subtract off

lower powers. And this is basically the martingale identity we want once we use the Markov property.
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Proposition 193

Let B(t) be a Brownian motion started from x ∈ Wn. Then there exists a unique measure Q such that for all

stopping times S <∞,
dQ|FS
dP|FS

=
MS
M0
=
v(BS∧T )

v(x)
.

Then the law of B under Q can be thought of as Brownian motion conditioned not to exit Wn – it is a Feller

process with generator given by Lf (x) = 〈∇ log v(x),∇f (x)〉+ 12∆f (x).

Proof. Let Ri be the first time that Mt ≥ i . Then MRi is a bounded martingale, so the optional stopping theorem

tells us that the exit time satisfies P(T > Ri) = v(x)
i . Define the measure

dQi
dPi

∣∣∣∣
FRi

= lim
t→∞

Mt∧Ri
v(x)

=
i1{T > Ri}
v(x)

(notice that this is zero if we exit the chamber before hitting i). Because M is a martingale, the Qi are consistent

with each other, so there is a measure Q whose restrictions to FRi are consistent with the Qis, and it will have the

correct values of
dQ|FS
dP|FS

. But now we have

P(A|T > Ri) =
P(A · 1{T > Ri})

v(x)/i
= EP

(
1A
i1{T > Ri}
v(x)

)
= Q(A)

by definition of the Radon–Nikodym derivative. So as we take i → ∞, we can think of this as conditioning on the

Brownian motion never exiting the chamber (since it takes arbitrarily long time to travel arbitrarily long distances).

We can now find the generator by noting that

Lf (x) = lim
t↓0

1

t
[EQ [f (B(t))|B(0) = x ]− f (x)] .

Applying the change of measure, this can be written in terms of P as

lim
t↓0

1

t

[
EP
(
f (B(t))

v(Bt∧T )

v(x)

∣∣∣∣B(0) = x)− f (x)] .
Now v(x) is a constant, and Itô’s formula tells us that

d(f (B(t))M(t)) = f (B(t))dMt + f
′(B(t))MtdBt +

1

2
Mt f

′′(B(t))dt + f ′(B(t))d〈B,M〉t .

We can ignore the martingale term because we’re taking expectations; Mt has mean v(x), and d〈B,M〉 = ∇v . So

plugging this back in yields

Lf (x) =
1

2
∆f (x) +

〈
∇f (x),

∇v(x)
v(x)

〉
,

and we’re done because ∇v(x)v(x) = ∇ log v(x).

Proof of Theorem 189. Recall that the β = 2 Dyson SDE is

dλi(t) = 2
∑
ℓ ̸=i

1

λi(t)− λℓ(t)
dt +

√
2dBi(t).

Apply a rescaling θ = λ√
2
, so that we have the equation

dθi(t) =
∑
ℓ̸=i

dt

θi − θℓ
+ dBi(t).
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This SDE gives us a generator

Lf =
∑
i

∑
ℓ̸=i

1

xi − xℓ
∂f

∂xi
+
1

2
∆f ,

and we can check this is indeed 〈∇ log v(x),∇f (x)〉 + 1
2∆f , which is the generator for the non-colliding Brownian

motion. Since the generators are the same, the two processes are equal in law, as desired.

As a final note, the reason we care about this identification is that when we consider some symmetric random

matrix X, we may want it to have spectral statistics like those of the GOE (this has to do with universality theorems
for random matrices). To show this, we construct a flow on the matrices, where H(0) = X and H(t) evolves via an

Ornstein-Uhlenbeck process (it’s like a Brownian motion, but we want it to stay stationary). Then H(∞) looks like

the stationary distribution for Ornstein-Uhlenbeck, which is the GOE, and we can bound

|E[f (X)]− E[f (H)]| ≤ |E[f (H(0))]− E[f (H(t))]|+ |E[f (H(t))]− E[f (H(∞))]|

for a GOE matrix H. If we take t very small, the first term is small by perturbation theory, but the surprising fact is

that the Dyson process mixes very quickly, so we can also control the second term (this is called the fast mixing of
the Dyson process). And many references for further study can be found on the official course website!
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