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1 February 3, 2020
Algebraic geometry is a beautiful subject, and it’s usually taught as a mid-level graduate course, so we’ll need to

discuss things in this class without a lot of background. In particular, we won’t assume commutative algebra (18.705),

though that might be useful. (18.702 is essential, though.)

Throughout this class, we’ll work with the scalars C – algebraic geometry can be done with any field of scalars,

but we’re making this choice to give a bit of intuition into the geometry. (Real numbers don’t work, by the way – we

need algebraic closure.)

The central objects of study here are systems of polynomial equations in multiple variables x = (x1, x2, · · · , xn)
of the form {f1(x) = 0, · · · , fk(x) = 0}. Geometrically, this means we’ll look at the locus of solutions X in affine
space An = Cn, and algebraically, it means we’ll look at the polynomial ring C[x ] (that is, polynomials in our variables

xi), modded out by our polynomials, which yields an algebra of the form

A = C[x ]/(f1, · · · , fk).

Note that any ring that can be generated by finitely many elements will be of this form – being finitely generated

means that there’s a surjective map C[x ] → A, and the Hilbert Basis Theorem tells us that the kernel can always be

generated by finitely many elements.

Remember that the ideal of C[x ] generated by f1, · · · , fk is the set of linear combinations g1f1 + · · ·+ gk fk , where

gi ∈ C[x ]. The point is that the geometry and algebra of this situation will complement each other!

We’ll start with some simple examples:

Example 1

Consider the two-variable polynomial f (x, y) = y2 − x3 − x2.

Let X be the locus (of zeros), described via y2 = x3 + x2. X lives in 4-space (because x and y can be complex),

but we can at least graph it in real space:
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The geometry is reflected in the algebra here, because we can actually parameterize this curve using polynomials:

if we draw a line of slope t from the origin (which is a double zero), then y = tx , so

f (x, tx) = t2x2 − x3 − x2 = x2(t2 − x − 1),

so x = t2 − 1, which tells us that y = t3 − t. In algebraic terms, this means that we can construct a map A1t → X

(the one-dimensional affine space maps to our locus X). In addition, we can take the algebra A = C[x, y ]/(f ) and

map it to C[t] (though these are not isomorphic algebras). Really, what’s going on is that we take the one-dimensional

complex t and identifying two points together, and that gives us our zero locus.

Example 2

On the other hand, consider the curve f (x, y) = y2 − x3 + x .

Now we want y2 = x3 − x , but notice that the (real) curve that comes out of this is no longer just one piece –

things are more complicated here. We’ll come back to this in a second.

Affine space is interesting, but it’s often important to study projective space:

Definition 3

Points in projective space Pn are classes of nonzero vectors (x0; x1, · · · , xn) with the equivalence relation that

(x0; x1, · · · , xn) = (λx0; · · · , λxn)

for any λ ∈ C, λ 6= 0.

One reason this is important is that Pn is compact, while An is not! Let’s verify this:

Proof. Let V be Cn+1, so then V − {0} maps to Pn. Then equivalence classes of Pn map to 1-dimensional subspaces

of V , so we can look at the unit sphere S in V . (Since V is a 2n+2-dimensional real space, S has dimension 2n+1.) S

is the set of points x such that
∑
x ixi = 1; since we’re modding out the equivalence relation, every point in projective
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space is represented by points in S (not uniquely). So there is a surjective map from S to Pn. Clearly S is closed and

bounded, so it is compact, and therefore Pn is compact as well.

So how can we find loci in projective space Pn? We want polynomials f (x0, · · · , xn) so that if f (x) = 0, then

f (λx) = 0 as well for all complex λ. If we write out

f (x) = f0 + f1 + f2 + · · ·+ fd

(splitting up our polynomial by degree), then

f (λx) = f0 + λf1 + λ
2f2 + · · ·+ λd fd .

For any given x where f (x) = 0, we can substitute in the values of f0(x), f1(x), and so on into our equation. We now

have a polynomial in λ that needs to be satisfied for all complex values of λ: this is only possible if the polynomial is

the zero polynomial! So that means fi(x) = 0 for all i .

In other words, in Pn, we should only be studying the zeros of homogeneous polynomial equations in x =

x0, · · · , xn – this tells us the same information as if we try work with polynomials in general.

So how can we study a polynomial like f (x, y) = y2 − x3 + x in projective space if it’s not homogeneous? The

solution is to use the extra variable to homogenize into a cubic

f (x, y , z) = y2z − x3 + xz2.

Let’s discuss the locus of this polynomial in P2x,y ,z . First, let’s go back to a more generic description: any point

(x0, x1, x2) can be identified with (1, u1, u2), where ui = xi
x0

, as long as x0 6= 0. This gives us a subset U0 ⊂ P2 of

points, corresponding to points (u1, u2) in the affine plane A2u1,u2 . Meanwhile, the points (x0, x1, x2) where x0 = 0 are

on a line L0 (defined by {x0 = 0}). So P2 = U0 ∪L0: U0 is often called the points at finite distance, and L0 is often

called the line at infinity.
With this, we can go back to our equation y2z − x3 + xz2 = 0: relabeling, we can say that

x22 x0 − x31 + x1x20 = 0.

If we consider x0 = 1, we get the affine space curve x22 − x31 + x1 (which is what we started with). But if x0 = 0, we

see what happens at infinity: that just gives us x31 , which means that there’s only one point at infinity, (0, 0, 1), on

the curve. (This has to do with being able to compactify the locus in one point.)

So let’s compute the Euler characteristic of this locus X (the number of vertices plus the number of faces, minus

the number of edges). We have four branch points (the three zeros on the x1-axis, plus the point at infinity), but

at every other point there are two different values of x2. This means that X covers most of P1 twice, so we should

triangulate the two copies of P1 instead. This gives two edges, faces, and vertices over every edge, face, and vertex,

except at the four branch points (vertices), which are double-counted:

e(X) = 2e(P1)− 4 = 2 · 2− 4 = 0.

So the genus of the surface here satisfies

e = 2− 2g =⇒ g(X) = 1.

This means that if we drew the locus in complex space, we see a torus (except missing the point at infinity).
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2 February 5, 2020

We’ll start by taking another look at our picture of the (real) projective plane, which can be described with points

in three dimensions. Let’s take the plane containing the points (1, 0, 0), (0, 1, 0), and (0, 0, 1), which has equation

x0 + x1 + x2 = 1. Every one-dimensional subspace of R3 goes through this plane exactly once, except the subspaces

with x0 + x1 + x2 = 0.

Yesterday, we drew the curve x0x22 = x
3
1 − x20 x1: there are three points where x2 = 0, which are at x1 = 0,±x0. In

addition, the curve intersects the line at infinity x0 = 0 with multiplicity 3 at the point (0, 1, 0), so that yields a “flex

point” at the intersection:

x2 = 0

x1 = 0
x0 = 0

triple zero

Remark 4. Note that a point like (−1,−1, 1) and a point like (1, 1,−1) are the same in projective space, so the

regions “wrap back” around.

Another way to draw this real projective plane is to take a 2-sphere and identify opposite points with each other,

but we won’t use that picture here.

With that, let’s move on to projective plane curves. We want to look at the locus of zeros for polynomials f ,

but remember here that we want to make sure f is an irreducible homogeneous polynomial.

The simplest case is a line: it takes the form

f = s0x0 + s1x1 + s2x2 = 0.

Another description is that we can take two points p = (p0, p1, p2) and q = (q0, q1, q2) and join them together to

get a line Lpq = {ap + bq}, which corresponds to a one-dimensional subspace (a, b) ∈ P1. So a line looks like a

one-dimensional projective space.

A conic is next: it’s a combination of the degree-two monomials, which are x20 , x
2
1 , x

2
2 , x0x1, x0x2, x1x2. First, let’s

see how to do linear changes of coordinates in P2: if x = (x0, x1, x2), we just let x ′ = Px for some 3 × 3 complex

invertible matrix.

Proposition 5

For any conic C, we can choose coordinates so that the equation of C in new coordinates is x0x1+x0x2+x1x2 = 0.

So there’s only one conic up to change in coordinates in projective space!

Proof. Choose three points on C, not on a line. (Being able to do this is the first problem on our homework, due next

week.) Adjust coordinates so that these are (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Then the modified function f satisfies f (1, 0, 0) = 0, so the coefficient of x20 is 0. The same holds for x21 and x22 ,

so now f is of the form ax0x1 + bx0x2 + cx1x2. And now scale the variables so that a, b, c become 1.

Next, let’s talk a bit about the tangent space: let C be a curve corresponding to the locus of zeros for f , and let

p ∈ C be a smooth point (this means the partial derivatives ∂f∂xi (p) are not all zero – the other case is called a singular
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point). For example, x30 + x
3
1 + x

3
2 = 0 is smooth (except at the origin, which is not a point of projective space), but

x0x
2
2 − x31 − x0x21 has partial derivatives (x22 − x21 ,−3x21 − 2x0x1, 2x0x2), which is zero for example at (1, 0, 0).

There’s a nice formula we can use:

Theorem 6 (Euler)

If f is homogeneous with degree d , then

x0f0 + x1f1 + x2f2 = d · f .

where f0 refers to the partial derivative of f with respect to x0.

We can just check this for a monomial: for example, if f = x20 x1, then

x0f0 + x1f1 + x2f2 = 2x
2
0 x1 + x

2
0 x1 = 3f .

(xi fi contributes the degree of xi towards the count of f .) So let’s write down the tangent line of a curve C at a point

p. To do that, pick another point q distinct from p, and define the line (this is equivalent to {ap + bq} but better

suited for our purposes)

Lpq = {p + qt} ∪ {q}.

Let’s now expand f (p + qt) in a Taylor series:

f (p + qt) = f (p) +
(∑

fi(p)qi

)
t +
1

2

∑
i ,j

qi fi jqj

 t2 +O(t3).

Looking term by term now lets us know when f (p + qt) is a tangent line. p is on the curve, so f (p) is always zero.

But the first derivative tells us about the slope, so we want to control the derivatives. We can write down the gradient

∇f = (f0, f1, f2)

and the Hessian matrix
H = (fi j), fi j =

∂2f

∂xi∂xj
.

If we write our two points p =


p0

p1

p2

 and q =


q0

q1

q2

 as column vectors, we can now rewrite

Lpq = f (p) +∇pqt +
1

2
(qtHpq)t

2 +O(t3).

Define a bilinear form on column vectors in C3 via

〈u, v〉 = utHpv ,

and now we can rewrite all of our coefficients for our line: Euler’s formula applied to the gradient tells us that

∇p · p = d · f (p),

5



and Euler’s formula applied to the Hessian tells us that

ptHp =
[
p0 p1 p2

]
f00 f01 f02

f10 f11 f12

f20 f21 f22

 = (d − 1) [f0 f1 f2

]
= (d − 1)∇p.

Therefore,

ptHpp = (d − 1)∇pp = d(d − 1)f (p),

and now Lpq can be written as

Lpq =
1

d(d − 1) 〈p, p〉+
1

d − 1 〈p, q〉t +
1

2
〈q, q〉t2 +O(t3).

p is on our curve C if 〈p, p〉 = 0, the line is tangent if 〈p, q〉 = 0 as well, and we get a flex if 〈q, q〉 = 0.
This line of reasoning only works if p is a smooth point on the curve, but we won’t be talking about the special

cases with singular points much in this class.

3 February 7, 2020

We’ll talk today about the first subtle fact of this subject, the dual curve. Let P = P2 be the projective plane, and

consider a line L in Px (that means points are labeled as (x0, x1, x2)) with the equation s0x0 + s1x1 + s2x2 = 0.

We can think of points (x0, x1, x2) on this line, but we can also think of this equation as a point (s0, s1, s2) – both

of these can be thought of as points in the projective plane, because the coefficients are only determined up to scaling.

So that means that a line L in P gives a point (s0, s1, s2), which we can call L∗ in the dual plane P∗ = P2s , and we can

also take a point p ∈ P and turn it into a line p∗ in P∗ (by taking (a, b, c) and turning it into ax0 + bx1 + cx2 = 0).

One way we can then write down this interchange between points and lines is that

p ∈ L ⇐⇒ L∗ ∈ p∗

(the roles of points and lines switch).

So now let C be a plane curve of the form f = 0 (which is irreducible and homogeneous). Recall that a point

p ∈ C is singular if the partial derivatives f0(p) = f1(p) = f2(p) = 0. All other points are smooth – it’s easy to show

that the number of singular points for an irreducible f is finite. Thus, let U be the set of smooth points; we can map
U to the dual space

t : U → P∗.

Explicitly, how is this map defined? If we take a point p ∈ U, let L be the tangent line to C at p (that’s why we leave

out the singular points, because the tangent line isn’t defined). Then we can let t(p) = L∗.

Theorem 7

Let U∗ = t(U). Then the closure of U∗ is a curve C∗ in the dual space P∗, and C∗∗ = C.

Basically, there’s some special cases to think about for our curve C: maybe we have a bitangent, which means

that a single tangent line is shared between two points, so the two points will have the same image in the dual space.

(So the curve will cross itself, and this gives us a node in the dual space.) Also, maybe we have a flex point where

the derivative goes to 0 for a moment – this turns out to give a cusp in the dual space. That’s why we don’t take
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C to be smooth – C∗ might still end up being singular even when C is smooth. Plus, we can use the degree of C to

count the number of nodes and cusps, too, which can be interesting.

Example 8

A smooth cubic has 9 flex points (no bitangents because that would mean slightly perturbing the bitangent would

make it intersect a line four times), and a generic quartic has 28 bitangents. (This means that the curve C∗

coming from a generic quartic will have 28 nodes.)

How do we find the degree of the dual curve? If C is cubic and smooth, then C∗ has degree 6, and it has 9 cusps

(corresponding to the 9 flex points on the cubic). A famous picture for the quartic: intersect two ellipses, and take

the product of the two equations to get an equation of the form

(ax2 + by2 − c)(a′x2 + b′y2 − c ′) = f (x, y).

And now if we add or subtract a small number, we can think about what happens to the zero locus. For example, the

locus of zeros where f (x, y) + ε = 0 will look like “four beans” (in the four areas inside one ellipse but not the other),

and that actually gives us 28 bitangents – four between each pair of beans, and one within each bean.

We’re going to use something called the transcendence degree, which we should read on our own (it’s algebra,

not algebraic geometry). We’ll review the main ideas here.

Definition 9

Let K/F be a field extension. α1, · · · , αk ∈ K are algebraically dependent over F if there exist coefficients

f (x1, · · · , xk) ∈ F [x1, · · · , xk ] such that

f (α1, · · · , αk) = 0.

(Otherwise, they are called algebraically independent.) The transcendence degree of K/F is the order of a

maximal set of algebraically independent elements of K.

(It can be checked that the transcendence degree is independent of the choice of set that we use.)

Example 10

The field of rational polynomials K = F (x1, · · · , xk) has transcendence degree k , so any set of k + 1 elements is

dependent.

With this, we can prove Theorem 7:

Proof. We’re working in K = C(x0, x1, x2) here, and we’re looking for a polynomial ϕ(s) which is zero on U∗ = t(U).

(Let’s not worry about whether it’s homogeneous or irreducible first.)

The transcendence degree of K over C is 3, so any four polynomials will be algebraically dependent: let’s take f (x)

(which is the polynomial that defines C), as well as f0(x), f1(x), and f2(x) (the partial derivatives). Because these four

polynomials are dependent, there exists an Ψ(s0, s1, s2, t) such that

Ψ(f0(x), f1(x), f2(x), f (x)) = 0

is identically zero. We can assume Ψ does not have any factors of t, and now if we define ϕ(s0, s1, s2) = Ψ(s0, s1, s2, 0),

then ϕ is now not the zero polynomial. On the other hand, if we let x = (x0, x1, x2) be a point of C (so f (x) = 0
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because we’re on the zero locus), then

ϕ(f0(x), f1(x), f2(x)) = Ψ(f0(x), f1(x), f2(x), f (x)) = 0

(because Ψ is the zero polynomial here). So for all points x on U (that is, all smooth points of C of our curve), we

have ϕ(f0(x), f1(x), f2(x)) = 0.

Now, what is the tangent line at this point x? Remember the Taylor series expansion

f (p + tq) = f (p) + (∇pq)t +O(t2),

where ∇p = (f0(x), f1(x), f2(x)). So if (s0, s1, s2) = t(x) (where t is the map from U to P∗), then (s0, s1, s2) =

(f0(x), f1(x), f2(x)). That means that ϕ(s) = 0 is zero on U∗, and now we have a polynomial that vanishes on U∗.

Since λx is the same point as x , we can make ϕ homogeneous (by just looking at one of its homogeneous parts).

Now letting g(x) = ϕ(f0, f1, f2), we know that g vanishes on U and is homogeneous: factor g, which corresponds to a

factorization of ϕ. Now f will still divide one of the factors of g, and the corresponding irreducible factor ϕ will vanish

on U (and therefore C): thus we’ve indeed shown that the closure of U∗ is a curve in the dual space.

Let’s spend some more time on why C∗∗ = C. Say we have a point p0 with tangent line L0 on the curve C – this

means that L∗0 will lie on p∗0 on the curve C∗. It seems pretty plausible that p∗0 will be the tangent line, and we’ll try

to show that here.

To do that, consider another point p1 on C with tangent line L1, and let L0 and L1 intersect at q. Since q lies on

L0 and L1, the line q∗ goes through points L∗0 and L∗1. But now have p1 approach p0 – L∗1 will approach L∗0, so the

line q∗ will approach the tangent line. And now we just need to show that q∗ is equal to p∗0.

We’ll work with affine coordinates for this (specifically, work in P2 where z = 1) – pick them such that p0 is the

origin (0, 0, 1) and the tangent line at p0 is the line y = 0. Then C is some curve f (x, y) = 0 – we can solve for some

function y = y(x) such that f (x, y(x)) = 0. Letting p1 = (x1, y1), the equation of L1 (the tangent to p1) is of the

form

y − y1 = y ′1(x − x1),

where y1 = y(x1) and y ′1 = y
′(x1). Then q = (xq, 0, 1) lies on this tangent line, so we can solve to find

xq = x1 −
y1
y ′1
.

As (x1, y1) goes to (x0, y0), xq goes to 0, because the derivative y ′ has a zero of order one less than that of y . So the

limit as p1 goes to p0 of q is indeed p0, which is what we want – this tells us that we do have C∗∗ = C.

One quick application of this is that C being smooth means C∗ has no bitangents and no flex points (otherwise

C∗’s dual would have a node or cusp). Soon, we’ll talk about the Plücker formulas, which tell us a bit more.

4 February 10, 2020
The first quiz has been moved from Friday to Wednesday due to popular vote.

Today, we’re going to talk about resultants. Say we have two polynomials

f (x) = a0x
3 + a1x

2 + a2x + a3, g(x) = b0x
2 + b1x + b2

(they could also be homogeneous if we just put ys to bring the degrees up). Then the resultant Res(f, g) is a

polynomial in the coefficients {ai , bj}, with the important property that Res(f , g) = 0 if and only if f and g have a
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common root.
At first glance, it might be confusing why we care about such a polynomial – it turns out this actually computes

a kind of “projection.” Say that f = f (t, x) and g = g(t, x) are polynomials, so the coefficients ai and bj above are

now polynomials in t. Then the resultant Resx(f , g) with respect to x is a polynomial in t as well – it has zeros at the

“images” of the intersection points when we project down onto the t-axis.

We can do this in higher dimensions as well: say f and g are polynomials of x, y , z . Then Resz(f , g) is a polynomial

in x and y , and it’s zero at the points where we take the intersections of the zero loci for f and g and project that

down onto the xy -plane.

So what polynomial in the coefficients {ai , bj} are we trying to take here? Say f , g have a common root x = x ,

and define h = x − x . Then h divides f and g, so we can write f = hp and g = hq for polynomials p, q, so

f g

h
= pg = f q

are two different ways of writing this polynomial. If f and g have, for example, degree 3 and 2, then p and q have

degrees 2 and 1, respectively. We can think of pg = f q as a relation among two polynomials – specifically, we can

consider what monomials can appear in p. pg is a combination of x2g, xg, and 1g if p is a quadratic, and f q is a

combination of xf and 1f . This gives us 5 dependent polynomials, and we’ll put these in a matrix. Because the

relation pg = f q has degree 4, we’ll write things in a 5× 5 table.

x4 x3 x2 x 1

xf a0 a1 a2 a3 0

1f 0 a0 a1 a2 a3

x2g b0 b1 b2 0 0

xg 0 b0 b1 b2 0

1g 0 0 b0 b1 b2

We now have a 5 by 5 matrix R, and if the common root exists, then the determinant of this matrix should be

0 because the polynomials are dependent on each other.

Definition 11

The resultant of two polynomials f and g is the determinant of the matrix R that comes out of this process

above.

Proposition 12

Suppose that f and g are monic, and suppose f has roots α1, α2, α3 and g has roots β1, β2. Then the resultant

is the product

Res(f , g) =
∏
i ,j

(αi − βj) =
∏
i

g(αi)

(because f = (x − α1)(x − α2)(x − α3) and g = (x − β1)(x − β2)).

This is not immediately obvious, but we’ll show the proof. The idea is that the coefficients ai and bj are elementary

symmetric polynomials in the roots αi , βj , so there must be a way to write this resultant in terms of ai and bj .

Proof. Let αi , βj be our roots, and let f =
∏
(x − αi) and g =

∏
(x − βj). The resultant Res(f , g) is a polynomial in

the roots, and we divide this polynomial by (αi − βj), which is a monic polynomial in the αi . Then

Res(f , g) = (αi − βj)q + r,
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where q, r are polynomials in αi , βj and r has degree 0 in αi . Now if we set αi = βj , Res(f , g) = 0 (because we have

a common root), so r = 0 as well. But r can’t depend on αi , so r = 0, and therefore αi − βj divides the resultant for

all i , j .

To finish, we just need to check that the degrees are the same – we claim that the resultant as a function of αi
and βj is homogeneous with degree deg(f ) · deg(g). (This would show that we’re within a constant factor, and we

can just use f (x) = xm and g(x) = xn − 1 to check that constant factor. Then computing the determinant is not too

bad – it’s going to be ±1.) We’ll come back to that next time.

For the rest of today, we’ll talk about the discriminant of a polynomial.

Definition 13

The discriminant of a polynomial f is the resultant of f with its derivative f ′.

For example, if f (x) = ax2 + bx + c , then f ′(x) = 2ax + b, and we have

discr(f ) = det


a b c

2a b 0

0 2a b

 = ab2 + 4a2c − 2ab2 = 4a2c − ab2 = −a(b2 − 4ac).
Often, people get rid of the a by working with a monic polynomial, and there’s the extra negative sign, but the whole

point is that this looks a lot like the b2 − 4ac we’re familiar with.

What does the discriminant tell us? If f has a double root, then f ′ will share a root with f , and the discriminant

will be zero. But also, if f is a function of t and x , we can plot it in the tx-plane – then the discriminant of f with

respect to x is zero for values of t where there is a “vertical” tangent or singular point (because there’s a double root

in x at that fixed value of t).

Proposition 14

Let f be monic with roots α1, · · · , αn. Then

discr(f ) =
∏
i ̸=j
(αi − αj) =

∏
i

f ′(αi).

(Both (i , j) and (j, i) appear in the product.)

The logic here is the same as before – if the discriminant vanishes with αi = αj , then the discriminant as a

polynomial in the roots must include (αi −αj) as a factor for all i , j . For example, in the case where f is a quadratic,

f = (x − α1)(x − α2) =⇒ discr(f ) = −(α1 − α2)2.

As an application, we’ll compute the genus of a smooth curve in the plane – let C be a smooth curve in P2 of

degree d using coordinates (x, y , z), and we choose a generic point q ∈ P2. We’ll project from P2 down onto P1:
changing coordinates so that q = (0, 0, 1), we draw lines from (0, 0, 1) to points on the curve and see where they

intersect P1(x, y). Then the discriminant with respect to the variable z is 0 at the points p where the lines connecting

q and p are tangent to the curve.

We’ll assume for now that the points of tangency are double roots – this is a tricky point, and we’ll talk about it

next time. But the degree of the discriminant is d2− d in the roots (take any pair of roots, and they’re included twice
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in the product), so the projection has d2 − d branch points. Then the Euler characteristic of the curve is

e(C) = d · e(P1)− (d2 − d) = 2d − (d2 − d) = 3d − d2,

because the projective line P1 is just a sphere. Because the Euler characteristic e(C) = 2− 2g, this tells us that the

genus of a smooth curve of degree d is

g =
1

2
(d − 1)(d − 2).

Let’s make a quick table:

d 1 2 3 4 5 6

g 0 0 1 3 6 10

This is interesting, because the genus of a curve can’t be 2 or 4 or 5 if it’s smooth. Also, let’s compute the degree

of the dual curve – the interesting points are where the lines from q is a tangent line to C. If we go over to the dual

space P∗ and look at our curve C∗, we have a line q∗ which intersects it – the degree of C∗ is just the number of

intersections with the generic line q∗.

Well, every intersection L∗ between C∗ and q∗ is some tangent line L to the original curve C, so the degree of the

dual curve is the same as the degree of the discriminant! Thus, the degree of C∗, the dual curve, is equal to d2 − d .

(And this verifies that the degree of the dual curve for a generic cubic is 6.)

5 February 12, 2020
The due date for problem set 1 was pushed back to Friday, because we’ll cover a few more ideas today that will be

interesting.

Say that we have an affine curve C corresponding to f (x, y) = 0, and we separate out the different degrees via

f = f0 + f1 + · · ·+ fd .

Let p = (0, 0) – then p ∈ C if f0 = 0, and p is a smooth point of C if f0 = 0 and f1 6= 0. Meanwhile, if f0 = f1 = 0

but f2 6= 0, then p is called a double point – in general, a point has multiplicity k if f0, · · · , fk−1 are all zero, but

fk(p) 6= 0.
We’ll look at specifically at double points: then we can write

f = (ax2 + bxy + cy2) + (dx3 + · · · ).

We’ll analyze by “blowing up” the xy -plane: let t = y
x , which means that we substitute in y = tx . Then we have a

map π from the xt-plane to the xy -plane given by (x, y) = (x, tx): the t-axis gets sent to the origin under π. So this

is a blowup because the origin gets sent to a line, and the y -axis doesn’t get hit except at the origin, but everything

else goes bijectively. (And horizontal lines in the xt-plane go to lines through the origin.)

So if we substitute y = tx into our polynomial f , we get a polynomial (we can get rid of the x2 factor throughout)

g(x, t) =
f (x, tx)

x2
= a + bt + ct2 + dx + · · · ,

where everything else after the dx term is divisible by x . The constant term (if we look at g as a function of x) is

q(t) = a+bt+ ct2. If q(t) has distinct roots, and we normalize our function so that c = 1 (when it’s 0, just change

the coordinates slightly), we have

g(x, t) = (t − α)(t − β) + dx + · · · .

11



Then the partial derivative with respect to t is

gt = 2t − α− β + x(· · · ).

If we look at the points in the (x, t)-plane where g is zero, we have (0, α) and (0, β), so the curve goes through those

two points. But gt(0, α) = α−β 6= 0, and we can solve g(x, t) = 0 to find an analytic function t = u(x) for v(0) = α

(for small x). Similarly, we can find an analytic function t = v(x) with v(0) = β – the point is that the projection π

to the xy -plane gives us two lines through the origin. This means the curve intersects itself, which is called a node.

What about the case where q(t) has a repeated root? Then g looks like

g(x, t) = (t − α)2 + x(d + · · · ).

Now gt(0, α) = 0, but the partial with respect to x , gx(0, α) is nonzero if d 6= 0. So we can again solve x = w(t)

for small t: it’ll have a vertical tangent at α = 0 in the xt-plane. Projecting this back down to the xy -plane gives us

a cusp. And the last case is where we have a double root, and we also have d = 0: then the locus g = 0 is singular,

so the conclusion is that the blowup curve g = 0 is smooth above a point p if and only if the singularity is a node or a

cusp.

Let’s look a bit more at the geometry of the cusps – the standard cusp is the point (0, 0) for the curve y2−x3 = 0.
All cusps are analytically equivalent to this one, so we’ll look a bit at the geometry here. We parameterize via x = t2

and y = t3: the question we’re asking is “what does the cusp look like if we slice across a cross-section?”

To figure this out, let t = e iθ. Then x = e2iθ and y = e3iθ, so as θ ranges from 0 to 2π, x goes around the unit

circle twice, while y goes around three times. The product of the two unit circles is a torus, so this gives us a picture

on the surface of the torus traced out by the cusp as seen below:

If we look at this more closely, it’s actually a trefoil knot! So that’s what a cusp looks like on the cross-section

|x | = |y | = 1. (But in four real dimensions, it doesn’t really make sense to call it a “knot” anymore.) We could also

think about the unit sphere xx + yy = 1 and intersect it with a cusp, and do a stereographic progression from the

3-sphere into 3-space – this also gives a kind of knot.

We’ll now move on: Hensel’s lemma will be our next topic. Let f (x), g(x) be polynomials; we can write out the

polynomial p(x) = f (x)g(x):

f (x)g(x) = (a0x
3 + a1x

2 + a2x + a3)(b0x
2 + b1x + b2) = c0x

5 + c1x
4 + c2x

3 + c3x
2 + c4x + c5 = p(x).

The coefficients ck can be computed in terms of the ai and bj :
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c0 = a0b0

c1 = a0b1 +a1b0

c2 = a0b2 +a1b1 +a2b0

c3 = a1b2 +a2b1 +a3b0

c4 = a2b2 +a3b1

c5 = a3b2.

These are the “product equations,” and it’s an interesting question to ask whether we can solve for the ai and bj .

One useful idea is the Jacobian criterion: say that f and g are monic, so that a0 = b0 = 1. Then let the Jacobian
matrix be

J =
∂(c1, c2, c3, c4, c5)

∂(b1, b2, a1, a2, a3)
.

We can calculate the entries of this matrix explicitly:

J =



a0 0 b0 0 0

a1 a0 b1 b0 0

a2 a1 b2 b1 b0

a3 a2 0 b2 b1

0 a3 0 0 b2


.

This is the transpose of the resultant matrix R. Thus, the Jacobian matrix is singular (has determinant 0) if and only

if f and g have a common root, which gives us the following result:

Corollary 15 (Hensel’s lemma)

Suppose that the coefficients ai , bj are analytic functions of t, and let ai = ai(0), bj = bj(0). Here f = f (t, x)

and g = g(t, x) are polynomials in x with coefficients that are polynomials in t, and p = f g: let f = f (0, x) and

define g, p similarly. Then if f , g have no common roots, and f is monic, then there exist f , g such that

p(t, x) = f (t, x)g(t, x)

and p = f g for small t.

Proof. Since f is monic, we have a0 = 0, so the leading coefficient b0 for the other factor is also nonzero. Now

the Jacobian matrix is nonsingular, so the Implicit Function Theorem tells us that there is a unique solution for the

remaining coefficients for small t, as desired. (If we don’t know what the Implicit Function Theorem is, we should

read this on our own. Here, we’re treating different powers of x as different “functions.”)

Basically, if we have some curve p(t, x) = 0 and we’re interested in how it looks near t = 0, suppose that p(0, x)

factors into two polynomials with distinct roots. Then Hensel’s lemma says that we can factor p(t, x) near 0.

The simplest example is if we have two polynomials

c0(t)x
2 + c1(t)x + c2(t)

?
= (x + a1)(b0x + b1),

where a1, b0, b1 are functions of t. The product equations are

c0 = b0, c1 = a1b0 + b1, c2 = a1b1.

We’re given that p = p(0, x) factors as (x + a1)(b0x + b1), and those two linear factors don’t have a root in common.
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This means that a1 6= b1
b0

, and Hensel’s lemma tells us that p factors via

p(t, x) = (x + a1(t))(b0(t)x + b1(t)).

6 February 14, 2020
We’ll talk about the Plücker formulas today: they count things like bitangents, nodes, and cusps. The formulas are

completely unimportant, but the interesting thing is that there are formulas (and they don’t depend on anything except

for degrees).

Specifically, we’ll work with a degree d smooth curve C which is ordinary, which means the following things:

• Flex points are ordinary (we have a triple intersection but not higher).

• Bitangents are ordinary – neither point is a flex point, and there are no tritangents.

This means that our map t : C → C∗ from our curve to the dual curve is defined everywhere. Pick a point not on

the curve, and choose coordinates so that q = (0, 0, 1). For every point p on the curve, draw a line from q to p, and

project this down to the xy -plane.

What does this look like in the dual plane? We have a special line q∗ which will intersect our curve C∗, and it

intersects at points L∗ corresponding to tangent lines in our original plane. In other words,

degC∗ = #(C∗ ∩ q∗),

and this is the number of points p̃ which are images of tangent lines from q.

We can calculate this using the discriminant: at each tangent line from q, the discriminant should vanish, because

we have a repeated root. So the degree of C∗ is the number of zeros of the discriminant f with respect to one of the

variables z . All of these zeros are simple zeros, and the discriminant of f with respect to z is the resultant

Res
(
f ,
∂f

∂z

)
.

f has degree d , and ∂f
∂z has degree d − 1, so the resultant has degree degC∗ = d(d − 1) – this is our first result.

We have some other numbers that we care about – the number of flex points f of C, as well as the number of

bitangents b. First, we can count f :

Lemma 16

A smooth point p of our curve C is a flex point if and only if the determinant of the Hessian matrix Hp (at the

point p) is 0, where Hp =
(
∂2f
∂xixj

)
1≤i ,j≤3

.

Proof. Remember that we defined the bilinear form

〈u, v〉 = utHpv

where we’re looking at the points as column vectors. Then we know that p is a flex if and only if the first three terms

of the Taylor expansion

f (t + pq) =
1

d(d − 1) 〈p, p〉+
1

d − 1 〈p, q〉t +
1

2
〈q, q〉t2 +O(t3)
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vanish. If f is a flex point, then the form must be degenerate, because it’s operating on a three-dimensional vector

space where p and q are independent vectors. On the other hand, if the determinant is zero, there is a null vector, so

there exists q which satisfies this equation above.

With this, how can we count the flex points? Let H be the Hessian curve {p : detHp} = 0: we wish to compute

the degree of H. H is a 3 by 3 matrix, and all entries have degree d − 2. This means that the determinant detHp has

degree 3(d − 2).
Here, we’re going to use a useful result:

Theorem 17 (Bézout)

Let X and Y be curves of degree m and n in projective space. Then the number of intersections is mn if

intersections are transversals (not double multiplicity).

(We’ll prove this using cohomology later on in the class – it’s not a very deep theorem, but it’s interesting.) Also,

we’ll use a result which is ugly to prove (mostly just computation):

Lemma 18

If p is an ordinary flex of our curve C, then C intersects the Hessian divisor curve H transversely at p.

So now, if the degree of H is 3(d − 2), and the degree of C is d , the number of flexes is just the number of

intersections:

f = 3d(d − 2) = 3d2 − 6d

(as long as d ≥ 2). It’s a fact that flexes map to cusps in the dual curve, and bitangents map to nodes, but this isn’t

obvious. (We’ll assume it for now.) Define δ∗ to be the number of nodes of C∗ and κ∗ to be the number of cusps:

then δ∗ = b, κ∗ = f .

Counting the number of bitangents is a bit harder, and there isn’t a very easy way to directly compute them on

our curve C. So instead, let’s count the number of nodes on C∗! Remember that the bidual gives us back the original

curve: (C∗)∗ = C, as long as we take closures. Choose a generic point Q in the dual plane, and project the curve from

Q onto the xy -plane (still in the dual plane). Then there are three types of interesting lines: (1) tangent lines to our

dual curve, (2) lines through a node, and (3) lines through a cusp.

Remember that we have some equation ϕ(u, v , w) = 0 for our dual curve, and the discriminant with respect to

one of the variables v has simple zeros for case (1), double zeros for case (2), and triple zeros for case (3). And this

gives us a formula: we know the degree of C∗ is d∗ = d(d − 1), so the degree of the discriminant is

deg discrv (ϕ) = d∗(d∗ − 1).

How many tangents do we have (case (1))? Remember the tangent lines correspond to intersections in the dual with

our generic line q∗. So because we’re working with the dual curve here, we should have d = degC total tangent lines.

So our equation is now

d∗(d∗ − 1) = 1 · d + 2 · δ∗ + 3 · κ∗.

But we know d∗ and κ∗, so this allows us to compute δ∗ = b: substituting in δ∗ = b and κ∗ = f = 3d2− 6d , we have

that

(d2 − d)(d2 − d − 1) = d + 2b + 3(3d2 − 6d).
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Expanding this out tells us that

d4 − 2d3 − 9d2 + 18d = 2b.

This is zero for d = 3 – cubics can’t have bitangents, so the first interesting case is d = 4:

256− 128− 144 + 72 = 2b =⇒ b = 28,

which is the result we’ve been talking about for a while.

So how do we show that there are double zeros for nodes and triple zeros for cusps? The main idea is to use

Hensel’s lemma. Remember that if we have a curve f (x, y) = 0 in the plane and we project a node down onto the

x-plane, we get a double zero. Say that the node is at (0, 0): then we know that

f (y) = f (0, y) = y2h(y)

for some other polynomial h. (The other zeros of h come from the other intersections of x = 0 with our curve f = 0.)

Then Hensel’s lemma tells us that we can also factor the multivariable polynomial

f (x, y) = g(x, y)h(x, y)

for small x , where g(0, y) = y2 and h(0, y) = h. What do we know about the discriminant of f ? Treating x as a

parameter,

discr(g(y)h(y)) =
∏
i ,j

(αi − αj)
∏
k,ℓ

(βk − βℓ)
∏
i ,k

(αi − βk).

where αi are the roots of g and βk are the roots of h. But the first two terms are the discriminants of g and h, and

the last term is the resultant. So

discr(f ) = Res(g, h)discr(g)discr(h).

So if we avoid accidents, the discriminant of the polynomial h and the resultant of g and h will be nonzero at x = 0.

So the order of vanishing of g is the same as the order of vanishing of f , and then we compute things for a quadratic

using the usual formulas.

Starting next class, we’ll move on to the second chapter – basic algebraic geometry for affine varieties.

7 February 18, 2020

We’ll start by talking about the Zariski topology today on the affine space An = {x = (x1, · · · , xn) : xi ∈ C}. Denote

C[x ] = C[x1, · · · , xn], and let f = (f1, · · · , fk) be a set of polynomials fi ∈ C[x ]. Then we’ll define

V (f ) = {x ∈ An|f (x) = 0, i.e. fi(x) = 0 ∀i}.

These are known as the Zariski closed sets. There are a few things to understand about them, none of which are

particularly difficult to prove: for example, if I is the ideal generated by f , often denoted (f ) (remember this is vector

notation), then I consists of

I = {g1f1 + · · ·+ gk fk , gi ∈ C[x ]}.

Then it’s clear that if the fis are zero at a point, then everything in the ideal is also zero at that point, so V (f ) = V (I).

(The Basis Theorem tells us that every ideal in C[x ] will look like (f1, · · · , fk).) Also, we have a nesting property: if

I ⊃ J, then V (I) ⊂ V (J). (The inclusions are reversed because having more functions is more restrictive, so there are

less points in V (I).)
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Proposition 19

The Zariski closed sets are closed in the Zariski topology.

Proof. We need to check that ∅ and An are Zariski closed, and if Cj are closed, the (possibly infinite) intersection∩
Cj is Zariski closed. We also need to show that C ∪D is closed (which shows this for finite unions as well). All of

these are pretty obvious except the last one.

∅ is the zero locus V (1) (it’s where 1 = 0) and An is the zero locus V (0) (it’s where 0 = 0). To show that

intersections are closed, say that Cj = V (Ij): then∩
j

Cj = V
(∑

Ij

)
,

because the intersection of the zero loci are where all the polynomials in each of the Ijs are zero. Since
∑
Ij is also an

ideal,
∩
Cj is also Zariski closed, as desired.

The last one – showing C ∪ D is closed – is slightly nontrivial: we’ll need to notice something about two ideals,

which is that

I ∩ J ⊃ IJ ⊃ (I ∩ J)2.

(Here, IJ is the product ideal, which is the sums of products of elements of I and J.) From these inclusions, we can

see that if C = V (I) and D = V (J), then

V (I ∩ J) ⊂ V (IJ) ⊂ V ((I ∩ J)2),

but the zero locus of an ideal squared is the same as the zero locus of the ideal. Therefore, we actually have

V (I ∩ J) = V (IJ).

With this, we want to show that C ∪D = V (IJ). We know that I ⊃ IJ, so V (IJ) ⊃ C, and similarly V (IJ) ⊃ D, so

this means V (IJ) ⊃ C ∪D.

To show the other direction, we want to show that if x ∈ V (IJ), then x ∈ C or x ∈ D. We know that for all f ∈ I
and g ∈ J, if x ∈ V (IJ), then f (x)g(x) = 0. If f (x) = 0 for all f ∈ I, then x ∈ C. Otherwise, there exists an f such

that f (x) 6= 0. Using this f and looking over all g ∈ J, we see that we must have g(x) = 0 for all g, meaning x ∈ D.

This shows that V (IJ) ⊂ C ∪D, and we’re done.

Remark 20. It’s important to keep in mind that closed sets in the Zariski topology look very different from what we

usually call “closed sets.”

One nice property of C[x ] is that it is Noetherian: any increasing chain of ideals I1 < I2 < · · · must be finite.

What does this tell us about the Zariski closed sets? Let Cj be Zariski closed sets, and let Ij = {f |f = 0 on Cj}. This

is an ideal, and C1 > C2 if and only if I1 < I2. This gives us an analogous condition to the one on ideals:

Proposition 21

The Zariski topology has the descending chain condition on closed sets: if C1 > C2 > · · · is a decreasing chain,

it must be finite.

Zariski open sets are the complement of Zariski closed sets, so we get an ascending chain condition for open sets

as well.
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Definition 22

A topological space is Noetherian if it has a descending chain condition on closed sets.

If X is a topological space and S is a subset of X, then S becomes a topological space with the induced topology:
T ⊂ S is closed if T = S ∩ C and C is a closed set in X. (And restricting to subsets of X will still give us the

descending chain condition.)

Definition 23

A topological space X is irreducible if it is not the union of two proper closed subsets.

In other words, if C and D are closed in an irreducible space X, and X = C ∪D, then C = X or D = X.

Proposition 24

Let X be an irreducible topological space. If U ⊂ X is a (nonempty) open set, then the closure of U (smallest

closed set containing U) is X.

Proof. Say that U is the closure of U. Since X is irreducible, if we let C = X − U be the complement of U,

X = U ∪ C =⇒ X = U ∪ C.

And now C is not X, because that means U is nonempty, so U must be X.

Definition 25

A topological space X is connected if it is not the union of two proper disjoint closed sets.

It’s hard to satisfy irreducibility, because we don’t require our two closed sets C and D to be disjoint! For example,

two intersecting lines form a connected space but not an irreducible space.

Theorem 26

Let X be a Noetherian space. Then X is a finite union of irreducible spaces.

Proof. We prove the contrapositive. Suppose that X = C0 is not a finite union of irreducible spaces: then we can

write C0 = C1 ∪D1, where C1, D1 are proper closed subsets of C0. Then one of C1 and D1 is not a union of finitely

many irreducible spaces: say that C1 is not. Then we know that C0 > C1, and now we repeat this argument with C1
instead of C0. But this gives us an infinite descending chain of closed sets, so X is not Noetherian.

Definition 27

A Zariski closed subset X of An is a variety if it is irreducible.

We’ll ask a question (which we’ll answer next time): if I and J are ideals, when is V (I) = V (J)? It’s clear that I

and J don’t need to be equal: I can be generated by f and J can be generated by f 2. But it turns out that this is

really the only reason that two ideals would have the same variety:
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Definition 28

The radical of an ideal I, denoted rad I, is the ideal

rad I = {f : f n ∈ I for some n > 0}.

rad(I) contains I, and the zero loci are the same: V (rad I) = V (I) (because f is zero if and only if f n = 0). This

radical is the key to answering our question, but it’ll take some work to prove:

Theorem 29

V (I) ⊃ V (J) if and only if rad I ⊂ rad J.

The backwards direction is clear – if rad I is contained in rad J, then V (rad I) contains V (rad J), so V (I) contains

V (J). But the other direction is something we’ll show tomorrow.

Another question we may want to ask: when is a Zariski closed set a variety?

Theorem 30

X = V (I) is a variety (in other words, it is irreducible) if and only if rad(I) is a prime ideal.

Recall that an ideal P is prime if

ab ∈ P =⇒ a ∈ P or b ∈ P.

Alternatively, if A,B are ideals,

AB ⊂ P =⇒ A ⊂ P or B ⊂ P.

Let’s do an example:

Example 31

Consider a map ϕ from A2x,y to A4t,u,v ,w of the form

ϕ(x, y) = (x3, y3, x2y , xy2).

There are some relations here: notice that tu = vw , v3 = t2u, and w3 = tu2. These three relations generate

some ideal I. Let’s show that the radical rad I is a prime ideal: we want to show that the locus of zeros X = V (I)

here is irreducible.

To do this, we’ll show that ϕ maps A2 surjectively to X. Given t, u, v , w which satisfy these relations, we just need

to find x and y : we can just set x = t1/3, y = u1/3. There are three choices for each of x and y , and we just need to

check that ϕ(x, y) = (t, u, v , w) – as long as our relations are satisfied, there is a choice of x and y that work here.

With this, it is easy to show that X is irreducible. Suppose otherwise: then its inverse image is the union of two

closed sets. But A2 is irreducible, which is a contradiction! So we have indeed shown that rad I is a prime ideal. And

in this particular case, rad I = I, but it requires more work to show this.

8 February 19, 2020

We’ll start with a bit of review: in the Zariski topology on the affine space An, the closed sets are of the form V (I)

for an ideal I in C[x1, · · · , xn]: they are the points p which vanish for all polynomials f ∈ I. (By the Basis Theorem,

all such ideals I are finitely generated.)
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We know that An is a Noetherian topological space – basically, it has the descending chain condition on closed

sets, which follows from the ascending chain condition on ideals. Thus, every closed set can be decomposed into

a finite union of irreducible closed sets. (Recall that X is irreducible if it cannot be broken up into proper subsets

C ∪D.) Then an affine variety is an irreducible closed set under the Zariski topology.

At the end of last class, we defined the radical

rad I = {g : gn ∈ I for some n ≥ 1}.

We know that I ⊂ rad I, and also

V (I) = V (rad I)

because a polynomial f has the same zeros as f n for any positive integer n. We’ll be proving some things today that

yield the following results:

Proposition 32

We have

• V (I) ⊃ V (J) if and only if rad(I) ⊂ rad(J).

• Let P be a radical ideal (meaning radP = P ). Then V (P ) is a variety if and only if P is a prime ideal.

Here’s the first main result:

Theorem 33 (Hilbert Nullstellensatz)

Let C[x ] = C[x1, · · · , xn]. There is a bijective correspondence between the following three sets:

• Points p of affine space An,

• Homomorphisms πp from C[x ] to C,

• Maximal ideals mp of C[x ].

Basically, πp evaluates a polynomial f ∈ C[x ] at p, and mp is the kernel of πp.

This comes from 18.702, so we won’t go into it in much detail. For example, it’s clear that every homomorphism

is surjective, so the kernel is a maximal ideal. If we’re looking at a point p = (a1, · · · , an), then the maximal ideal mp
is generated as

mp = (x1 − a1, · · · , xn − an).

Definition 34

An algebra A is a ring that contains the complex numbers C. A finite-type algebra A can be generated as

an algebra by some finite set of elements {α1, · · · , αn}, where αi ∈ A, so that all elements can be written as

polynomials in αi with coefficients in C.

Another way to define a finite-type algebra is to consider the map

τ : C[x1, · · · , xn]→ A

which sends xi to αi . Then this map should be surjective if we can write every element of our algebra as a polynomial

in the αis, and thus we can write

A ∼= C[x1, · · · , xn]/I
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for some ideal I = ker τ by the First Isomorphism Theorem.

Fact 35

A finite module over a ring means that every element in the module is a linear combination of our generating set,

but a finite-type algebra is different – it lets us write general polynomials! So we should be careful not to confuse

the two.

Theorem 36 (Hilbert Nullstellensatz, version 2)

Let A be a finite-type algebra. Then there is a bijective correspondence between homomorphisms π : A→ C and

maximal ideals mp of A.

Proof. This is basically the first version but applying the Correspondence Theorem. We can present

A = C[x1, · · · , xn]/I,

and then our homomorphisms π : A→ C correspond bijectively to homomorphisms π : C[x ]→ C where kerπ contains

the ideal I. (And the rest of the argument follows analogously.)

So if A = C[x ]/I, the two sets in the above theorem (maximal ideals of A and homomorphisms to C) also correspond

bijectively to the locus of zeros of I in An. We’ll actually use this more: A has to be a finite-type algebra, but we

don’t have to express it explicitly in the form C[x1, · · · , xn]/I for the result to hold. The point is that we can skip the

presentation altogether:

Definition 37

Let A be a finite-type domain (no zero divisors). The spectrum of A, denoted SpecA, is a set of points where

we put p into SpecA for every maximal ideal m = mp of A.

By definition, then, the set of points of SpecA correspond to the maximal ideals mp, which correspond to the

homomorphisms πp. So if we have a presentation A = C[x1, · · · , xn]/I, then SpecA is just the zeros of the ideal V (I).

Theorem 38 (Strong Nullstellensatz)

Let f1, · · · , fk , g ∈ C[x1, · · · , xn], and let V = V (f ) be the set of zeros of (all of) f1, · · · , fk in An. Then if g is

identically zero on V , then some power of g is in the ideal I = (f1, · · · , fk):

gn = h1f1 + h2f2 + · · ·+ hk fk ,

where hi ∈ C[x ].

Proof by Rainich. Add another variable y to the polynomial ring to get C[x1, · · · , xn, y ], and let W be the locus of

zeros in An+1x,y where f1 = f2 = · · · = fk = 0 and gy − 1 = 0. (In other words, g(x1, · · · , xn)y = 1.) Consider some

(x, y) ∈ W in the zero locus: then

f1(x) = · · · = fk(x) = 0

implies that g(x) = 0 as well (because g is identically zero on V ). But then we can’t solve gy = 1, so the locus W
is empty. Now, what can we say about a set of polynomials (specifically (f1, · · · , fk , gy − 1) here) whose zero locus

is empty? We’ll use a quick lemma here:
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Lemma 39

Any ideal I < R of a ring R is contained in a maximal ideal.

Using that fact, note that maximal ideals correspond to points in An, so if there are no points in the zero locus,

the ideal I generated by f1, · · · , fk , gy − 1 must be the whole ring R (it’s not contained in a maximal ideal). Thus,

there exist p1(x, y), · · · , pk(x, y), q(x, y) ∈ C[x, y ] which satisfy

p1f1 + · · ·+ pk fk + q(gy − 1) = 1.

Now let’s go to the ring R = C[x ][y ]/(gy−1): this means that the residue of y is g−1. (In other words, we’ve adjoined

an inverse of g(x) to C[x ].) We can suppose g 6= 0 (or the statement is trivial), and thus C[x ] ⊂ R.
But we also have our relation equation above, so in our ring R, gy − 1 = 0. This means that in R, we have

p1f1 + · · ·+ pk fk = 1.

The pis are polynomials in x and y , but we can get rid of y = g−1 by multiplying by a sufficiently high power of g. So

if we multiply by gN for some N and cancel the y ’s, we have a relation

h1(x)f1(x) + · · ·+ hk(x)fk(x) = g(x)N ,

which is exactly what we want – this means gN is in the ideal generated by f , as desired.

The first two results that we stated today, Proposition 32, can now be deduced from the Strong Nullstellensatz

pretty easily – this is an exercise!

The idea here is that we’re localizing our ring, which means to adjoin an inverse. What’s the meaning of this

name? In topology, something is true locally if it’s true in some open neighborhood. There are some open sets that

we understand well, and they are important – this proof illustrates some of the power of this startegy here!

9 February 21, 2020

We’ll start with a bit of review: recall that a finite domain A is isomorphic to some C[x ]/P , where P is a prime

ideal. We define X = SpecA to contain the points p corresponding to maximal ideals mp, which correspond to

homomorphisms πp : A → C. Also, it’s good to remember that SpecA for a domain A = C[x ]/I corresponds to the

variety V (I).

Elements α ∈ A determine functions on X = SpecA via the correspondence between points p in the zero locus

and maximal ideals πp:

α(p) = πp(α).

These elements of A are called the regular functions on X.

Lemma 40

The function πp(α) determines the element α. Equivalently (because πp is a homomorphism), if a function f is

zero, then α = 0.

Proof. If A = C[x ]/P , then X = VAn(P ) in affine space An is the zeroset of the ideal P . (Note that the correspondence

theorem tells us that maximal ideals of A are the same as maximal ideals of C[x ] that contain P .) So a function f
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that is zero on X is in P , so it must be the zero element α in A.

Definition 41

In the Zariski topology on an affine variety X, a closed set is the set of zeros of some ideal I of A.

For the sake of notation, denote VX(I) to be the zeroset of I: p ∈ VX(I) means that all elements α ∈ I are zero

at p: this means that α is in the kernel of πp, and we can correspond this to the maximal ideals via

VX(I) = {p : I ⊂ mp}.

One important operation which we briefly talked about last time is the idea of localization. Let A be a finite

domain, and let X = SpecA. Pick a nonzero element s ∈ A – we can adjoin an inverse to A, which we denote as

As = A[s
−1] = A[z ]/(zs − 1).

As is called the localization of A, and Xs = SpecAs is similarly called the localization of X.

Proposition 42

Xs corresponds to points of X at which s(p) 6= 0, and it’s an open subset of X because it’s the complement of

s = 0. Then the Zariski topology on Xs is the induced topology (a closed set of Xs is a closed set in X, intersected

with Xs).

Proof. Let p ∈ X be a point, and we correspond this to the homomorphism πp : A → C. If s(p) 6= 0, then we can

extend πp to a homomorphism As → C in a unique way: we know where the elements of A go, and the inverse s−1

goes to the inverse of s(p), which determines the homomorphism. On the other hand, if s(p) = 0, we can’t define

where the inverse goes. So whenever we have a homomorphism πp, we have a point p ∈ SpecAs .
For the topology, let D be a closed set in Xs : this means D is the set of zeros of some set of elements of As . But

an element of As looks like as−n, where a ∈ A, so we have some set

{a1s−n, · · · , aks−n}

of polynomials. (We can use the same exponent for all of the ai .) This has the same zeros as {a1, · · · , ak} in Xs ,

because s doesn’t have any zeros. So if C is the zeroset of a1, · · · , ak in X, we indeed have D = C ∩Xs .

Localization is important for two main reasons: it’s easy to understand the relationship between A and As , and

the localizations form a basis for the topology on X. (Here, a family of open subsets is a basis for a topology if

every open set is a union of members of this family.) So any open set can be covered by localizations, but this doesn’t

necessarily mean all open sets are localizations!

Example 43

Let X = A2x,y , and let U = X − {0, 0}. This is an open set, but it is not a localization.

To show this, we need to find an element s such that we can get U by inverting s. But if s 6= 0, inverting it doesn’t

make the point disappear, so we need to invert a function that is zero at the origin – every such polynomial vanishes

on a curve.
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How do we show that any open set U can be covered by localizations? If we want to show that U =
∪
Xsi , we

should take complements: let C = X − U be a closed set. Then the complement of any localization, Zi = X −Xsi , is

the zeroset of si (because Xsi is the set of points where si is equal to zero). So we know that

U =
∪
Xsi ⇐⇒ C =

∩
Zi ,

and by the definition of the Zariski topology, every closed set is the zeros of some elements in X, so we can indeed

write U as a union of localizations.

We’ll now move on to the concept of morphisms: let X = SpecA and Y = SpecB, and say that ϕ : A → B is

a homomorphism. Then define the map u : Y → X (associated to the homomorphism ϕ) as follows: for any point

q ∈ Y , we have a homomorphism πq : B → C, which we can compose with ϕ to give a map πqϕ. By definition of

the spectrum of A, beause this is a homomorphism, it corresponds to some unique point p ∈ X = SpecA: define
u(q) = p.

What can we say about this to make it more clear what’s going on? Let α ∈ A and ϕ(α) = β ∈ B. We want to

evaluate α at a point p: by definition,

α(p) = πp(α) = πqϕ(α) = πq(β) = β(q).

So we define u such that evaluating α at p is the same as evaluating β at q.

Definition 44

A morphism Y → X is a map determined by the algebra homomorphism ϕ : A→ B as detailed above.

Let’s think about this when we’ve chosen a specific presentation

A = C[x ]/(f ), x = (x1, · · · , xn), (f ) = (f1, · · · , fk).

Let τ be the canonical map from C[x ] to A (modding out by the ideal (f )): composing this with ϕ gives us a map

Φ : C[x ] → B. When can we tell that Φ comes from a map ϕ? Any homomorphism Φ comes from substituting in

some values bi for our xis, and we need to make sure that everything in ker τ is also in ker Φ for the map ϕ to be

well-defined (this is both necessary and sufficient). So this means that Φ(fj) = 0 for all j , meaning that fj(b) = 0.

Proposition 45

In other words, constructing a homomorphism from A = C[x ]/(f ) to an arbitrary B, and thus constructing a

morphism from SpecB to SpecA, means we need to solve the equations fj(x) = 0 for x ∈ B.

Example 46

Let A = C[x, y ]/(y2 − x3), and let B = C[t]. Then we can solve the equation y2 = x3 in B: one solution is

y = t3, x = t2, and this defines a homomorphism A→ B by doing exactly that (send (x, y) to (t2, t3)). And we

know that SpecA is the cusp curve, and SpecB is the t-line, so we’ve found a morphism from the t-line into the

cusp curve.

Example 47

Let X = SL2(C), and let A = C[a, b, c, d ]/(ad − bc − 1). Then a map A → B means that we need to find a

B-valued matrix with determinant 1. And in each case, we’re finding a map into the special linear group.
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We can also look at the blowup of the plane (which we studied a few lectures ago): let A = C[x, y ], and let

B = C[x, w ]. We map A→ B by sending (x, y)→ (x, xw). Then we again have a morphism: SpecB maps to SpecA,

and the w -axis is mapped to the origin, while the rest of the y -axis is not in the image.

10 February 24, 2020
Today, we’ll talk about operations of a finite group on an affine variety, but let’s start with a bit of review. Recall that

if A and B are finite type domains, and X = SpecA, Y = SpecB, a homomorphism ϕ : A→ B gives us a morphism
u : Y → X defined as follows: if q ∈ Y is a point, this corresponds to a homomorphism πq : B → C, which we can

compose with ϕ to get a map πp = πqϕ. A way to think about this is that for any α ∈ A, we can define

α(p) = πp(α) = πq(ϕα) = [ϕα](q).

So now let G be a finite group of automorphisms of B. An element b ∈ B is invariant if σb = b for all σ ∈ G; then

the set of invariant elements, A = BG , is a subalgebra of B.

So for every automorphism σ : B → B, we get a morphism uσ : Y → Y (which we’ll just denote σ). Then G

operates on Y , but there’s a bit of a problem: suppose we compose two automorphisms together, so we get the maps

B
σ→ B

τ→ B.

But the corresponding maps backwards look like

Y
σ← Y

τ← Y

(going from algebras to varieties reverses arrows), which yields a different composition. So an easy fix is as follows:

let σ operate on the left on B, so we send b to σb, but let it operate on the right on Y , so q is sent to qσ. And this

fixes the problem: a map τσ sends q ∈ Y to qτσ.

So suppose we have an element β ∈ B: what can we say about

[σβ](q) ?

The definition of the regular function tells us that this is πq(σβ), and now this is a composition of functions (πq ◦σ)(β).
And now note that if p = qσ, then this is equal to πp(β) = β(p), so this does give us β(qσ) . (So this is a way to

move the σ back and forth.)

So if we map A = BG to B (for instance, via an inclusion), we have a map π from Y into X = SpecA, which can

be pretty interesting.

Example 48

Let B = C[y1, · · · , yn], which means Y = An, and let G = Sn operate on the indices. Then BG is generated by

the elementary symmetric functions, so

A = BG = C[s1, s2, · · · , sn].

Then X = Ans is the affine space labeled by s.

If we have a point of X, which means we know the values of the symmetric functions si = ai , then the yi are the

roots of the polynomial xn − a1xn−1 + · · · + (−1)nan. So the fibres of the map π from Y to X are the orbits of the
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group G operating on Any : the standard notation for the set of orbits is to use X = Y/G.

Example 49

Let B = C[y1, y2] and Y = SpecC[y1, y2], and consider G = 〈σ〉 to be the cyclic group generated by the map

σy1 = ζy1, σy2 = ζ
−1y2,

where ζ = e2πi/n.

The only invariants of σ are those where the difference of the exponents is 0 mod n, so

A = BG = C[u1, u2, w ]/(wn − u1u2),

where u = yn1 , u2 = y
n
2 , w = y1y2. (It’s not hard to show that this generates all invariant polynomials.)

So suppose that we’re given u1, u2, w which satisfy the relation, and say u1 6= 0. Then there are n possible values

for y1, and choosing this value fixes y2 (because we know the value of y1y2). So the n values of y1 are the orbit of the

original value under G, and thus X = SpecA is again equal to the set of the G-orbits. (The edge case is the origin,

which is a fixed point under σ.)

Theorem 50

Let B be a finite-type domain, and let G be a finite group of automorphisms of B. Let A = BG be the invariant

ring, and let Y = SpecB,X = SpecA. Then we have an inclusion π : Y → X (because A is a subset of B). Then

• A is a finite-type domain, and B is a finite A-module.

• The fibres of π are the G-orbits of π: and we have a bijective map Y/G → X.

We’ll do proof by example:

“Proof”. Let Y = SL2(C) be the set of 2×2 complex-valued matrices with determinant 1. Then B = C[a, b, c, d ]/(ad−
bc = 1). Let G = 〈σ〉, where σ2 = 1 and σ sends a point P ∈ Y to its inverse P−1. In other words,[

a b

c d

]
7→

[
d −b
−c a

]
.

These two matrices are identified in the orbits of G. To show the first point in the theorem, we need to write

down some invariants: notice that t = a + d, u = b2, v = c2, w = ad are all invariant under σ, and let R =

C[t, w, u, v ]/((w − 1)2 − uv). (because ad − bc = 1 in B, we also have the relation (w − 1)2 = uv in R). Note that

we have the chain of inclusions R ⊂ A ⊂ B.

Now a, d are roots of x2 − tx + w , and b, c are roots of x2 − u, x2 − v respectively. So let’s write B down as a

module over R: we have the elements 1, a, b, c, ab, ac, bc, abc (we don’t need d because we get it from t and a),

and any higher degree monomial in a, b, c will be divisible by at least one square, and we can use the equations to

reduce the degree (for example, a2 − ta + w = 0, so a2 = ta − w). So everything in B can be written as a linear

combination of these eight boxed elements, with coefficients in R.

Since R is a finitely-generated algebra (it’s generated by t, w, u, v), it’s Noetherian. Since A is an R-submodule of

B (which is a finite R-module), A is a finite R-module (this is property of Noetherian rings). To prove that A is a finite

type algebra, note that we have a finite number of generators of R as an algebra, and a finite number of generators

of A as an R-module. So we have a finite number of generators as an algebra, and we’ve proved our first point.
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Remark 51. Note that R isn’t the invariant ring here: there are other invariant polynomials, like bc , which are not in

R.

For the second point, we need to first (1) note that all points of Y in an orbit have the same image, then show

that (2) points in different orbits have distinct images. Then we’ll show that (3) every point in X is an image of a

point of Y/G – that’ll show that we have a bijection.

(3) is the most interesting: we will show that the map from Y to X is surjective. Let p ∈ X: then we have the

maximal ideal mp of A at p. Because A is contained in B, we can look at mpB, the “extended ideal,” whose elements

are combinations of the form

= {z1b1 + · · ·+ zkbk |zi ∈ mp, bi ∈ B}.

This is indeed an ideal of B, and every ideal except the unit ideal is contained in a maximal ideal. Say mpB 6= B: then

mpB is inside some maximal ideal mq in B corresponding to a point q ∈ Y .

So now we know that mpB ⊂ mq: consider mq ∩ A, which is an ideal of A (and not the unit ideal, because it

doesn’t contain 1). On the other hand, mp is contained inside mq ∩ A, and mp is a maximal ideal. So mp = mq ∩ A,

which means the map from Y to X indeed sends q to p, and we have a surjective map as desired.

So we just need to check whether mpB can be the unit ideal: can we write 1 =
∑
zibi? The answer is no –

suppose for the sake of contradiction, and sum over the orbit:∑
σ∈G

σ(1) =
∑
i ,σ

σ(zi)σ(bi).

σ(1) = 1, and the z ’s are in the maximal ideal mp, so σ(zi)s are in A (the invariant ring). Therefore, this is

=
∑
i ,σ

ziσ(bi) =
∑
i

ziαi ,

where α =
∑
σ(bi). So equating both sides, we have

|G| =
∑
i

ziαi ,

where αi ∈ A (because it’s fixed under σ), zi ∈ mp. So |G| ∈ mp, but |G| is invertible in C, which is a contradiction

(because mp will contain 1).

The central idea of this proof is to take advantage of certain invariants, which allow us to turn each generator of

B into a finite set of generators of B as an R-module.

11 February 26, 2020

We’ll talk for about three lectures about projective varieties. Recall that Pn is represented by the points (x0, · · · , xn) ∼
(λx0, · · · , λxn): then a Zariski closed set in Pn is the zeroset of a family of polynomials f1, · · · , fk , where each fi is

homogeneous in C[x0, · · · , xn]. And now, just as in affine space, we have

V (f ) = V (I), I = (f1, · · · , fk).
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Lemma 52

An ideal I in C[x ] is generated by homogeneous polynomials if and only if the homogeneous parts of f (of each

degree) are in I.

Just like with An, since the polynomial ring C[x ] has the ascending chain condition on ideals, Pn has the descending

chain condition on closed sets, so it is a Noetherian space. (In particular, this means that every closed set is a finite

union of irreducible closed sets). Analogous to the affine case, an irreducible closed set is a projective variety.
There’s just one thing to be careful about: the maximal ideal

M = (x0, · · · , xn)

is called the irrelevant ideal, because its zeroset is empty – (0, 0, · · · , 0) is not a point in projective space.

Proposition 53

If X ⊂ Pn is a projective variety, and P is the ideal of polynomials

P = {f |f = 0 on X},

then P is a prime ideal (different from M).

(The proof is analogous to the affine case.)

Example 54

A hypersurface is the zeroset of a single irreducible homogeneous polynomial f (x) – this is a projective variety.

Example 55

The Segre embedding of Pmx × Pny is a map s : Pmx × Pny → PNw , where we index our coordinates via

w = {wi j}, 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Then the point (x, y) maps to w via wi j = xiyj .

The dimension of this image space is N = (m + 1)(n + 1)− 1 (the −1 comes from us being in projective space).

Proposition 56

The Segre map is injective, and the image is the zero locus of the Segre equations

wi jwkℓ = wiℓwkj

for all indices i , j, k, ℓ.

Proof. First of all, these above equations obviously hold if wi j = xiyj . Let w be a point in PN which satisfies the Segre

equations: then some wi j 6= 0. We’ll say it’s w00 without loss of generality, and we’ll set w00 = 1 by scaling.

This means x0, y0 are nonzero, and we’ll set x0 = 1, y0 = 1. Then

wi jw00 = wi0w0j
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tells us that we should set wi j = xiyj , and indeed this is the unique solution.

Example 57

Let m = n = 1. Then we have a map P1 × P1 → P3 sending (x0, x1)× (y0, y1) to (w00, w01, w10, w11): then the

image is the zero locus of w00w11 = w10w01, which means P1 × P1 is actually a quadric.

Example 58

The Veronese embedding of Pn is a map v : Pnx → PNv , where we index coordinates via

v = {vi j}, 0 ≤ i ≤ j ≤ n.

Then (x) maps to vi j = xixj .

Proposition 59

The Veronese map is injective, and its image is the zero locus of the equations

vi jvkℓ = viℓvi j , 0 ≤ i ≤ k ≤ ℓ ≤ j ≤ n.

Example 60

We can send P1 → P2 under the Veronese embedding: (x0, x1) maps to the zero locus (x00, x01, x11) where

v00v11 = v
2
01. (And this means that P1 is a conic.)

The Veronese embedding uses a quadratic basis, but we could take cubics or higher-degree monomials:

Example 61

Take the cubic Veronese embedding, which maps P1 = (x0, x1) to P3 = (z000, z001, z011, z111) = (x30 , x20 x1, x0x21 , x31 ).
We’ll relabel the points in the image as (a, b, c, d): this forms a twisted cubic with the equations b2 = ac, ad =

bc, c2 = bd .

It turns out that these are the 2 × 2 minors of the matrix

[
a b c

b c d

]
: the points of the twisted cubic are often

written as (1, t, t2, t3) plus the point (0, 0, 0, 1). And this is equivalent to (u3, u2, u, 1) plus the point (1, 0, 0, 0).

where u = t−1.

With this, let’s go back to the Segre embedding: we know that Pm × Pn gets put into the zero locus of some

homogeneous polynomial equations. Is Pm × Pn a variety?
We don’t really have a definition for this yet, but we can look at Pm × Pn’s image in the Segre embedding and see

whether it’s a variety in PN . But this is not obvious, and we need to ask the question “what’s the Zariski topology in

PN?”

Fact 62

If X and Y are varieties, then the Zariski topology on X × Y is not the product topology (unless one of X and Y

is a point).
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To show an example of this, consider P1 × P1. The product topology is the coarsest topology (with fewest open

sets) which makes the projections continuous. The closed sets in P1 are just finite sets, so in the product topology,
the inverse image of a closed set in P1 × P1 should be closed. This means the product topology just requires finite

unions of “vertical/horizontal” lines and points to be closed, which is definitely not the Zariski topology.

Proposition 63

Let X and Y be irreducible topological spaces. Suppose there exists a topology on Π = X × Y such that

• The projections Π→ X, Π→ Y are continuous. (This means that the topology on Π is at least as fine as

the product topology.)

• For any y ∈ Y , the map from Πy = X× y → X is a homeomorphism, and similar for ΠX → Y . (This means

horizontal/vertical lines X × y and Y × x are “the same” as the original spaces X and Y .)

Then Π is an irreducible topological space.

(And this shows the result we want, because Pm and Pn are irreducible.)

Proof. Let C1, C2 be closed in Π such that Π = C1 ∪ C2. We work with the complements (open sets) W1 = Π − C1
and W2 = Π− C2: it suffices to show that W1 ∩W2 = ∅.

Let U1 be the image of W1 in Y , and let U2 be the image of W2. Our first step is to show that if W is open in Π,

then the image of U in Y is open. Intersect W1 with a vertical fibre Πx = x × Y : then W ∩ Πx is open in Πx , and Πx
maps bijectively to Y . This means the image of Ux in Y is open, and now note that

W =
∪
Wx =⇒ U =

∪
Ux

must also be an open set. So now we know that U1, U2 are open – suppose that W1 and W2 are not both empty. Since

Y is irreducible, U1∩U2 is not empty (or else the union of their complements in Y would be Y ). Let y ∈ U1∩U2: U1 is

the image of W1, so there is some point (x1, y) in W1y and (x2, y) in W2y . But W1y ,W2y are open in Πy , which maps

bijectively to X. But that means Πy is irreducible, which means W1y ∩W2y 6= ∅, and thus W1∩W2 6= ∅, contradiction

with the fact that Π = C1 ∪ C2.
Thus either W1 or W2 is empty, which means C1 = Π or C2 = Π, as desired.

12 February 28, 2020
Today, we’ll be talking about morphisms for projective varieties. We know that algebra homomorphisms give us affine

varieties, but it’s harder to make a definition for projective varieties (because points are equivalence classes in Pn).

Example 64

Let’s project a conic C onto a line X = P1. We choose our coordinates so that we project through the point

(1, 0, 0) onto the line x0 = 0.

If we have a point p = (a, b, c) on the conic, then πp will just be (b, c), because the line containing p and (1, 0, 0)

is cx1 = bx2. But what happens to the point q itself? We want to take a tangent line T at the point q, and see where

that intersects X. To do more, we’ll write out the explicit equation of the curve:

f = x0x1 + x0x2 + x1x2.
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Then the tangent line is of the form

T : (∇f )q · x = 0,

where f0 = x1 + x2, f = x0 + x2, f2 = x0 + x1. The gradient evaluated at q = (1, 0, 0) is (0, 1, 1); thus, a point x is on

the tangent line T if x1 + x2 = 0 and x0 = 0, which gives the point (0, 1,−1).
The central idea, though, is that there’s no way to write down a formula in polynomials that works for every point

on the conic! And there is no algebraic map from P2 to P1 except for constant maps, so there’s something tricky to

deal with here.

In general, when we look at projective varieties, we’ll call any nonempty open subset of a projective variety
a variety as well. (This is generally called a quasiprojective variety.) There are varieties that can’t be put into a

projective space, but we won’t talk about them here.

Fact 65

An affine variety is quasiprojective, because we have the standard affine open sets U j = {xj 6= 0} ⊂ Pnx . And then

U j ∼= An (because we need to normalize one of the coordinates to 1); another way to say that is that (defining

some new variables)

U j = SpecC [u0j , · · · , unj ] = SpecC
[
x0
xj
,
x1
xj
, · · · ,

xn
xj

]
.

Then an affine variety is a closed set in U j , which gives us what we want.

Next, let X be a projective variety in Pn, and let X j = X ∩U j be a (closed) affine subset of U j , ignoring the indices

where X ∩ Uj = ∅. (This won’t happen if we pick generic coordinates.) Then Xi ∩Xj ⊂ Xj is the subset of Xj where

xi 6= 0; that is, ui j = xi
xj
6= 0.

We know that X j is the Spec of some algebra Aj , which is a quotient ring of C[u0j , · · · , unj ]. We’re doing some

localizing here: note that

X i = X j = SpecAj [u
−1
i j ] = SpecAi [u

−1
j i ].

Thus, the field of fractions of Aj is the same for all j :

Definition 66

The function field K of X is the fraction field of any algebra Aj where Xj 6= 0. A rational function α is a nonzero

element of K.

And open sets of this will still give the same function field: all open subvarieties of a (projective) variety have

the same function field.

Definition 67

If α is a rational function on X, and p ∈ X, then α is regular at p if there is some index j and some s ∈ Aj such

that α ∈ (Aj)s (adjoining s−1 to Aj).

We’ll use these rational functions to define morphisms from a projective variety X to some projective space PN .

Definition 68

A point with values in K is the equivalence class of vectors α = (α0, · · · , αN), with αi ∈ K not all zero, where

scaling the vector by any λ ∈ K gives the same point.
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If p ∈ X is sent to some point with values in K, there are different cases that we should consider. If the αi are all

regular at p, and αi(p) are not all zero, then define our map α : X → PN via

α = (α0(p), · · · , αn(p)).

On the other hand, if the αi are not all regular or are all zero at p, then we look for a λ ∈ K such that setting α′j = λaj
allows us to evaluate α′ at p.

Example 69

Let’s go back to our example from the beginning of class: what is the function field for the conic C?

Substituting our variables in, we find that (normalizing u0 = 1)

u1u2 + u2 + u1 = 0 =⇒ u2 = −
u1

u1 + 1
.

This means that our function field is just

K = C(u), u = u1,

because we’ve already adjoined u2 (a rational function of u1) once we do u1. And this gives us the map (just multiplying

by various λs)

π(1, u1, u2) = (u1, u2) =

(
u,−

u

1 + u

)
= (1 + u,−1)

which is a good function as long as our functions are regular (u 6= −1). Then writing v = u−1, our map π sends a

point (1, u1, u2) to the point

(1 + v−1,−1) ∼ (v + 1,−v)

which is okay even at v = 0 =⇒ u =∞.

Definition 70

A point α with values in K is a good point if for all p ∈ X, there exists a λ ∈ K such that α′i = λai such that α′i
is regular at p for all i (and α′i(p) 6= 0 at at least one point). Then a morphism is a map defined by a good point.

This tells us how to define an isomorphism between two projective varieties X and Y : it is a morphism whose

inverse is a morphism. (And remember that X and Y can be open subsets of projective varieties as well.)

Here’s an example where this is useful:

Definition 71

An affine open subset of a variety X is an open subset U such that U is isomorphic to an affine variety SpecA.

It’s hard to know whether a subset is an affine open subset or not, especially in higher dimensions, but we have

a nice result: let U, V be affine open subvarieties of a variety X (which sits inside some projective space and is not

necessarily closed). Then U ∩ V is an affine open subvariety as well, and we’ll prove this next time.

13 March 2, 2020
Before looking some more at affine open sets, we’ll do a bit of review: a variety X is an open subset of a projective

variety X. The function field K of X is defined as follows: let X
i
= X ∩ U i , where U i is the standard open subset.
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Then if X
i

is not empty, then it is an affine variety: we can write X
i
= SpecAi , and then we define K to be the

fraction field of Ai . But we don’t really know what the affine open sets look like, so this is a bit clumsy.

Remark 72. All open subvarieties of X have the same fraction field – note that we’ve been dealing with the closure

this whole time.

Nonzero elements of the function field are called rational functions: such a function f is regular at a point p if we

can write p ∈ X i for some i , meaning X
i
= SpecAi , and then the fraction f has a denominator that does not vanish

at our point p – we then evaluate at our point.

A useful notion here is that of a point of projective space with values in K: this is just a collection α =

(α0, · · · , αr ) with αi ∈ K (not all zero) and the equivalence relation α ∼ λα for any λ ∈ K. Then we can say that

α is a point of X is it satisfies the defining equations of X – this helps us define a morphism α from a variety X to

projective space Pn. Specifically, if we have a point p ∈ X we look for a λ ∈ K in the functional field such that

• α′i = λαi for all i ,

• α′i are not all zero, and they are all regular at p.

If this is possible for every point p ∈ X, α is called a good point, and then we just define the map

α(p) = (α′0(p), · · · , α′n(p)).

α gives us a morphism of X to Pn: if the image is contained in subvariety Y of Pn, then α is a morphism to Y .

Lemma 73

Let {X i} be an open covering of X. Then if αi are morphisms from X i → Pn, and αi , αj are equal on X i ∩ X j ,
then we can consistently define a morphism α from X to Pn.

Proof. The X i have the same function field, and if αi , αj are equal, then αj = λαi for some λ ∈ K. So we adjust

αj such that αi = αj for all j (using different λs for each j , of course), and we can just let this function that we’ve

defined be α.

Definition 74

Let X ⊂ Pr , Y ⊂ Pn, and suppose we have a morphism α from X to Y . Then α is an isomorphism if it is bijective

and its inverse is also a morphism.

We can use the above lemma to help us now:

Lemma 75

Suppose {Yi} is an open covering of Y . Let X i be the inverse image of Y i : then α restricts to maps αi from X i

to Y i . Then if αi is an isomorphism for all i , then α is an isomorphism.

Proof. Let β i be the inverse morphism Y i → X i . Then β i = βj on Y i ∩ Y j , because αi and αj are equal. This means

β is a morphism as well by our previous lemma, meaning that α is an isomorphism.

So if we want to check for isomorphisms, this can be just done locally (on open subsets). Recall from last time

than an open subset U of a variety X is an affine open subset if U is isomorphic to SpecA for some finite-type domain

A.
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Theorem 76

Let U, V be affine open subsets of a variety X. Then U ∩ V is an affine open subset.

Proof. Identify U with SpecA and V with SpecB. To prove U∩V is an affine variety, we claim the coordinate algebra is

R = [A,B], the finite-type domain generated by A and B. (In other words, if A = C[a1, · · · , ar ] and B = C[b1, · · · , bs ],
A and B both have fraction fields equal to K, the function field of X, and we have C[a1, · · · , ar ; b1, · · · , bs ].) We will

show that if W = SpecR, then W ∼= U ∩ V .

Since X is a variety, it sits inside some Pn, and U, V sit inside X. A maps to R by inclusion, so we have a map

W → U (and similarly we have a map W → V ).

The inclusion map X → Pn is some morphism α, where α is a point of Pn with values in K (it defines the

embedding). But then α also gives us a morphism W → Pn: note that W can either map to U or V first, which means

the image of W under α is contained in U ∩ V .

We want to show the map α is an isomorphism. Choose an affine open set Z ⊂ U ∩ V . We want Z to be a

localization of U and of V : specifically, we wish to show that

Z = Us = Vt ,

where Us = SpecAs = SpecA[s−1] and Vt = SpecB[t−1].

Lemma 77

Let p ∈ X. Then there exists an affine open subset Z contaning p in U ∩ V that is both a localization of U and

V : Z = Us = Vt .

Proof. We know that if U = SpecA, then the localizations of U form a basis for the topology on U. So if p ∈ U ∩ V ,

we can choose a nonzero s ∈ A such that p ∈ Us ⊂ U ∩ V . Similarly, choose t ∈ B so that p ∈ Vt ⊂ Us (we can do

this because Us is open). Finally, choose r ∈ A so that p ∈ Ur ⊂ Vt ⊂ Us ⊂ U ∩ V .

Now r ∈ Vt , so we can write r = bt−k for some b ∈ B. We can now write the localization Vtb = (Vt)b = (Vt)r ,

and this last expression is just Ur (r is invertible in Vt). Thus, we’ve found the desired localization.

Wwe can do this for every point p ∈ X, so we can cover U ∩ V with sets Z which are localizations of both U and

V . Remember that R = [A,B]: then if Us = Vt , we know that As = Bt , so

Rs = [A,B]s = [As , B] = [Bt , B] = Bt = As .

This means our morphism α yields an isomorphism from Ws to Z for any s, and now we can cover U ∩ V with these

Zs. Therefore, W → U ∩ V is an isomorphism (by consistency of the morphisms).

We’re a day behind schedule – we’ll spend a day on the Grassmannian G(2, 4), but we should read about the

exterior algebra ∧V on our own, where V is a complex vector space.

14 March 4, 2020
We’ll discuss the Grassmannian today:
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Definition 78

The Grassmannian G(k, n) parameterizes the subspaces U of dimension k in an n-dimensional vector space

V = Cn.

We should think of G(k, n) as a set of points – one point for every subspace. For example, G(1, n) is one-

dimensional subspaces of Cn, which is the same thing as Pn−1. Similarly, G(n− 1, n) is the dual space (Pn−1)∗, which

has the same dimension.

This means that the first interesting case not covered by the above examples is G(2, 4): these actually correspond

to the lines in P3.

Remark 79. Professor Mattuck at MIT did a lot of research on Grassmannians, even if he’s known for a lot of teaching

too.

Let’s try to describe this in another way. Suppose U is a 2-dimensional subspace of V = C4, and say that U has a

basis u1, u2. This gives us a 2× 4 matrix, and we can usually change the basis via row reduction to[
1 0 ∗ ∗
0 1 ∗ ∗

]
,

where the ∗ yields a 4-dimensional subspace. This is true whenever we can row reduce the matrix

[
u1

u2

]
in this way,

which yields an open set W12 isomorphic to A4. If we can’t row reduce with the first two columns, we can always do

so with some other two columns (because the two rows are linearly independent). For example,

W24 =

{[
∗ 1 ∗ 0

∗ 0 ∗ 1

]}
.

There are six such open sets, and therefore we can write the Grassmannian G(2, 4) as the union of 6 affine spaces A4.
To say a bit more, say that (v1, v2, v3, v4) is a basis of V = C4. Then the exterior algebra

∧V = ∧0V ⊕ ∧1V ⊕ · · ·

is the (noncommutative but associative) algebra generated by V with the relations

vw = −wv ∀v , w ∈ V.

(It’s equivalent to just assume that vv = 0 for all v ∈ V : expand (v + w)(v + w) = 0.) Here, ∧kV is the set of

elements in ∧V where we multiply k elements of V together:

• ∧0V is just C, so it has a basis of 1.

• ∧1V has dimension 4, and it’s generated by v1, v2, v3, v4.

• ∧2V has dimension 6, and it’s generated by v1v2, v1v3, v1v4, v2v3, v2v4, v3v4.

• ∧3V has dimension 4, and it’s generated by v1v2v3, v1v2v4, v1v3v4, v2v3v4.

• ∧4V has dimension 1, and it’s generated by v1v2v3v4.

In higher dimensions, there is nothing: if we try to multiply 5 things together, each monomial in v1, v2, v3, v4 will

have at least two copies of one of the basis elements, so it just becomes 0. And it’s easy to generalize this to an

exterior algebra ∧V where V is an n-dimensional vector space.
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Now note that

(v1v4)(v2v3) = −v1v2v4v3 = v1v2v3v4,

and similarly

(v2v3)(v1v4) = −v2v1v3v4 = v1v2v3v4.

So ∧2V is actually commutative – notice that this actually carries the structure of G(2, 4) inside it, up to scalars.

Definition 80

A decomposable element in ∧2V is an element w such that w = uv for some u, v ∈ V .

Proposition 81

If we can write w =
∑
i<j ai jvivj , then w is decomposable if and only if

a12a34 − a13a24 + a14a23 = 0.

Proof. We’ll do the more interesting direction: if w satisfies the relation, then we can try

uv = (a12v2 + a13v3 + a14v4)(−a12v1 + a23v3 + a24v4).

(There’s a negative sign because it’s the negative of a21.) And now we can just expand this to find

w = a212v1v2 + a12a23v2v3 + a12a24v2v4 + a12a13v1v3 + 0 + a13a24v3v4 + a12a14v1v4 − a14a23v3v4 + 0

(remembering that v3v3 = v4v4 = 0). And then combining the two v3v4 terms with our relation, and canceling the a12
everywhere indeed gives us w . (And if a12 = 0, use a different collection of the indices.)

Proposition 82

If a nonzero element w ∈ ∧2V can be written as u1u2, then (u1, u2) form a basis of a 2-dimensional subspace of

V . (In other words, they are independent.)

(Otherwise, u2 is a multiple of u1, and u1u1 = 0.) So now we have a way to characterize our subspaces: a

decomposable element of ∧2V is a subspace, which is a point in the Grassmannian. We just need to show that

different w ’s give different subspaces:

Proposition 83

Let w = u1u2, w ′ = u′1u
′
2, and define U,U ′ to be the span of (u1, u2), (u′1, u

′
2) respectively. Then if U = U ′, w ′ is

a scalar times w .

Proof. Since U = U ′, we can write u′1 = au1 + bu2 and u′2 = cu1 + du2. Expanding,

u′1u
′
2 = (ad − bc)u1u2 =⇒ w ′ = (ad − bc)w.

(the other terms are zeros because they are squares)

In particular, this means that the Grassmannian is a collection of points that satisfy a12a34 − a13a24 + a14a23 = 0,
up to scaling. So G(2, 4) corresponds bijectively to a quadric in P5 with that above equation! And in particular, that
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identifies G(2, 4) as a variety. (Note that this means G(2, 4) has dimension 4, but that’s something we already found

out earlier.)

This helps us answer some other questions:

Problem 84

Let X be a surface in P3. (We’ll use coordinates (x1, x2, x3, x4) here.) Does it contain a line ℓ?

Let’s look at the case where the line is

ℓ0 : {(x1, x2, 0, 0)},

or equivalently x3 = x4 = 0. To find out if ℓ0 ⊂ X, say that X is the zero locus f (x1, x2, x3, x4) = 0, where f is an

irreducible (homogeneous, because we’re in projective space) polynomial of degree d . Then when we plug in x3, x4
into f , the polynomial must be identically zero (because x1, x2 can be anything, except (0, 0)).

Well, plugging in x3 = x4 = 0 will in general give us the monomials

c0x
d
1 + c1x

d−1
1 + · · ·+ cdxd2 ,

where ci are some of the coefficients of f . Therefore, for surfaces of a given degree, containing a line is equivalent
to setting (d + 1) coefficients equal to zero.

What’s another way to say this? The number of monomials in x1, x2, x3, x4 of degree d is N =
(
d+3
3

)
, so the set of

surfaces S in P3 of degree d is parameterized by projective space of dimension N−1. (We want f to be irreducible, but

this is an open subset of that projective space.) The lines that contain ℓ0 form a linear subspace of S of codimension
d + 1, which means we have dimension N − 1− (d + 1) = N − d − 2.

But we care about containing some line, not just ℓ0. However, the surfaces containing any line ℓ form a linear

subspace of codimension d + 1. Consider

Γ ⊂ G(2, 4)× S

where Γ corresponds to ordered pairs ([ℓ], [X]): ℓ is a line corresponding to a point in G(2, 4), and X is a surface,

where ℓ ⊂ X. The dimension of S is what we found earlier, and the dimension of G(2, 4) is 4, so we can add those

dimensions together:

dimΓ = 4 + (N − d − 2) = N − d + 2 = dimS − d + 3 .

• When d = 1, we have dimΓ = dimS + 2, so the fibres of the map Γ → S have dimension 2. Indeed, degree 1

hypersurfaces are planes, and they contain a 2-dimensional subspace of lines.

• When d = 2, we have dimΓ = dimS + 1, so the fibres have dimension 1. This is correct: quadrics are like

hyperboloids, which have a one-dimensional family of rulings.

• When d = 3, we have dimΓ = dimS, so the fibres have dimension 0 most of the time. In other words, we just

have finite sets – most (generic) cubics have a finite set of lines, and the right number is 27. We’ll try to be

able to prove this! Remember that a generic quartic in P2 has 28 bitangents, and this is not an accident.

We don’t always need to have a finite set of lines for all cubics – we can always take a cubic in three variables and

draw all of the lines from that cubic to another point outside that plane, and then we’ll have infinitely many lines.

15 March 6, 2020
We’ll start talking about dimension today: there are two equivalent definitions, and we’ll choose one of them.
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Definition 85

Let X be a variety with function field K. The dimension of X, denoted dimX, is the transcendence degree of K

(that is, the maximum number of algebraically independent elements of K).

Another, more useful, definition is that dimX is the longest possible length k of a chain of closed subvarieties

(irreducible closed subsets) in X of the form (notice there are k + 1 subvarieties here)

X = C0 > C1 > C2 > Ck = point.

Let’s show that this definition is equivalent:

Proposition 86

All chains of closed subvarieties have length at most dimX, and equality holds if we have a maximal chain.

We’ll start by reviewing a concept: α1, · · · , αk ∈ K are algebraically independent if for all polynomials f (x1, · · · , xk),
f (α) 6= 0 – that is, we can’t find a polynomial relation in the αis. The transcendence basis is a set of elements of a

maximal algebraically independent set (if finite). (The maximum number can be infinite, though it isn’t when K is a

function field).

All transcendence bases have the same order – this is fairly simple to prove by induction.

Lemma 87

Suppose α1, · · · , αk , β are elements of our function field K, and {α1, · · · , αk} are algebraically independent. Then

adding β will keep our set algebraically independent if and only if β is not algebraic over C(α1, · · · , αk).

Proposition 88

Let A be a domain (which is also an algebra), and let K be the fraction field of A. If the transcendence degree of

K is finite, then there exists a basis of elements of A.

Proof. We proceed by induction – suppose α1, · · · , αk are elements of A that are algebraically independent but do

not form a transcendence basis. Then there is some β ∈ K which is not algebraic over the field C(α1, · · · , αk). We

can add β to our set (which we don’t want to keep, because we want our basis to contain elements of A), which is of

the form b
a for a, b ∈ A. But a, b can’t both be algebraic, or their quotient would be algebraic, so we can add either

a or b to our transcendence basis. Therefore, we can always find another element in A to add, and we’ve created an

algebraically independent set (α1, · · · , αk+1).

It’s helpful to understand the dimensions along our chain of subvarieties C0 > C1 > · · · > Ck :

Theorem 89 (Krull)

Let X be an affine variety of dimension n with X = SpecA, and let α ∈ A be a nonzero element. Let V be the

set of zeros of α in X – this forms a closed subset of X, which means it’s a finite union of irreducible closed sets.

Then every irreducible component of V has dimension n − 1.

The proof is a bit harder than we might initially think:
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Fact 90

This proof was presented during class, but it was simplified a bit too much and became incorrect. I’ve included

the correct proof later in the notes.

Proof. Choose α1, · · · , αn ∈ A to be a transcendence basis for K. Specifically, we can assume α is not a scalar

(otherwise V is empty, so the statement is vacuously true), so we can assume α = αn.

Let W be an irreducible component of V . V is the union of finitely many components: let Z be the union of the

others. “We want Z to be empty,” so we localize: each of W and Z are defined by some equations, and in particular

some elements of A are zero on Z. Pick an s ∈ A such that s is identically zero on Z but not identically zero on
W , and we’ll look at Xs = SpecA[s−1].

Xs has the same dimension as X, because it has the same field of fractions, and

Xs = X − (zeros of s).

In particular, Zs = Z ∩ Xs is the empty set, but Ws = W ∩ Xs is not empty (because s is identically zero on Z,

but not necessarily on W ). Since Xs ,Ws have the same dimensions as X,W respectively, we can replace them in our

statement and use Xs ,Ws instead.

Now since W (secretly W ∩Xs) is a closed subvariety of X, we can write W = SpecB, where B = A/P for some

prime ideal P . In particular, the zeros of P in W are the zeros of αn, which is exactly W . Now P and αA have the

same zeros, so the Strong Nullstellensatz tells us that

rad(αA) = radP = P.

Remember that rad I is the set of elements a such that some power of a is in I. If β ∈ A and β vanishes on W

(meaning it’s in the prime ideal P ), then βk is in αA for some k .

We want to show that dimW = dimA− 1: let αi be the residue of αi in B (mod our prime ideal P ), which gives

us (α1, · · · , αn−1). (Remember that αn = 0 because α goes to 0 when we mod out by P .) We claim that these form

a transcendence basis for K, the fraction field of B – this would show that dimW = n − 1.
There are two parts of this – we need to show they’re algebraically independent, and also every other element is

algebraic over C[α1, · · · , αn−1].
First, we’ll show that αis are algebraically independent. Say f (x1, · · · , xn−1) is a polynomial with f (α) = 0: then

f (α1, · · · , αn−1) ∈ P , where P is the radical of αA. (? We’ll postpone the rest of this proof for next time.)

On the other hand, let’s show that α1, · · · , αn−1, β are always algebraically dependent. Suppose otherwise: then

α1, · · · , αn−1, β form a transcendence basis in K if β is not algebraic over C(α1, · · · , αn−1). We know that β must

be algebraic over C(α1, · · · , αn), so we can write ∑
ci(α)β

i = 0,

where ci(α) are rational functions of α. Clearing denominators, we can assume they are polynomials, so we have some

polynomial f (x1, · · · , xn, y) such that f (α1, · · · , αn, β) = 0. This tells us that (modding out by P )

f (α1, · · · , αn−1, 0, β) = 0,

We can assume that xn does not divide f , so that when we plug in 0, f is not identically zero. But now we have a

polynomial relation between β, α1, · · · , αn−1, which is a contradiction.
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16 March 9, 2020
We’ll have a quiz next Wednesday during class – we’ll make the next problem set due after spring break, as long as

MIT isn’t canceled by then.

By the way, the proof of Krull’s theorem last time was incorrect, because we simplified the proof too much and it

became incorrect. So we’ll leave it for now and come back to it later on.

Today, we’ll start with the Nakayama Lemma. Let A be a ring and P = (pi j) be an n× n matrix with entries in A.

Then there exists another A-matrix C such that CP = (detP ) · I. Here, C is the cofactor matrix: the entry Ci j is

(−1)i+j times the determinant of P when we remove the jth row and the ith column. What’s important is that this

formula works in any ring. As an example, if P =

[
a b

c d

]
, then we have C =

[
d −b
−c a

]
(we should remember to

take the transpose after looking at the matrix minors).

So now let M be an A-module, and let v = (v1, · · · , vn) be a vector with entries in M. Let P be an n×n A-matrix:

then v is an eigenvector with value λ if

Pv = λv =⇒ (λI − P )v = 0.

Now if we let C be the cofactor matrix for (λI − P ), we know that C(λI − P )v = det(λI − P )v = 0. In other words,

we know that p(λ), the characteristic polynomial det(λI − P ), kills the vector v .

Proposition 91 (Nakayama Lemma)

Let M be a finite A-module, and let J be an ideal of A. If JM = M, then there exists z ∈ J such that (1−z)M = 0
– in other words, zm = m for all m ∈ M.

Proof. Let v1, · · · , vn generate the module M, so every element of M is a combination of the vis with coefficients in

A. Let v =


v1

v2
...

vn

. Since JM = M, each generator vi can be written as a sum of terms jm, where j ∈ J and m ∈ M,

and now each m is an A-linear combination of the vjs. Moving the coefficients from the vjs to the j ’s (which is allowed

by closure of the ideal J), we find that

vi =
∑
j

pi jvj ,

where the coefficients pi j are all in J. Thus v is an eigenvector of the matrix P = (pi j) with eigenvalue 1.

This means that if we have our characteristic polynomial p(t) = det(tI − P ), then p(1)v = 0. But every element

in M is generated by the vis, so p(1)m = 0 for all m ∈ M. Now we just need to find an element z : set

det(I − P ) = 1− z,

and notice that the left hand side is some polynomial z in the pi js (which are all in J), so z ∈ J, as desired.

For example, [
1− a b

c 1− d

]
= (1− a)(1− d)− bc,

so this gives the element z = a + d + bc − ad .

40



Corollary 92

Let A be a Noetherian domain, and let I, J be ideals of A. If IJ = I, then either I is the zero ideal or J is the unit

ideal.

Proof. Since A is Noetherian, I is a finitely generated ideal, which means I is a finite A-module. Therefore, the

Nakayama Lemma tells us that there is a z ∈ J such that (1− z)I = 0. Therefore, either I = 0 or there is an element

in I. In the latter case, we must have z = 1 (because there are no zero divisors in a domain), meaning J is the unit

ideal because z = 1 ∈ J.

Corollary 93

Let A be a Noetherian domain, and let x ∈ A be not a unit. Then∩
xnA = (0).

In other words, if y 6= 0 is in A, then xn does not divide y for sufficiently large n.

Proof. If x = 0, the statement is clearly true. Otherwise, let I =
∩
xnA, and let J = xA. Then JI = I (we just

multiply an extra x in every term), and J is not the unit ideal, so I is the zero ideal by the previous corollary.

This turns out to be true when our ideal J is not just a principal ideal, but it’s hard to show in that case. Also,

note that the assumption that A is a domain is important: a counterexample otherwise is to take A = C × C and

x = (1, 0).

We’ll look at something a bit different now:

Definition 94

Let A ⊂ B be domains. Then an element β ∈ B is integral over A if it is the root of a monic polynomial

f (x) = xn + a1x
n−1 + · · ·+ an, where ai ∈ A.

The set of elements in B that are integral over A form a subring of B, which we can check by verifying all of the

closure assumptions.

Lemma 95

Let A be a Noetherian ring. Then β is integral if and only if A[β] is a finite A-module.

Proof. If β is integral, we have the relation βn =(polynomial in β), so (1, β, β2, · · · , βn−1) generate A[β].

For the other direction, if A[β] is a finite A-module, then we keep picking powers of β until they generate A[β].

Then we have some finite list of powers of β, so we can write βN in terms of them, giving us a monic polynomial.

Lemma 96

Let A ⊂ B be finite type domains. Then B be a finite A-module if and only if all elements of B are integral over

A.
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Proof. Any submodule of B is a finite A-module, so all the elements are integral (because A[β] is always a submodule

of B). For the other direction, we know that B is generated by finitely many elements as an algebra. If each one is

integral, then B is a finite module because we adjoin one of them and it’s a finite module, then add the next one, and

so on.

Example 97

Let A = C[x ], and let B = A[y ]/(f (y)). Here, f is of the form

f (y) = a0y
n + a1y

n−1 + · · ·+ an,

where ai ∈ A are functions of x .

If a0 = 1 (or any other nonzero complex number), then the residue of y in B is integral. Thus, every element of

B is integral over A. But if a0 is not a constant, it will vanish at some points where a0(x) = 0. The fibre over any x0
is a finite set of points, but at each of the points where a0 vanishes, the degree of f goes down. So that corresponds

to a vertical asymptote, where y goes to ±∞ as x → x0. We don’t like these vertical asymptotes, which explains why

we care about the idea of β being integral!

For example, when f (x, y) = xy − 1, then a0(x) = x , and indeed as x → 0, y →∞. More generally, if we write

f = a0y
n + · · ·+ an,

we have
f

a0
= g = yn +

a1
a0
yn−1 + · · ·+

an
a0
.

If a0 6= 0, then this just looks like f , but when a0 = 0, at least one of the coefficients goes to∞. Since the coefficients

are symmetric functions in the roots, this means at least one root must go to infinity.

Theorem 98 (Noether Normalization Theorem)

Let A be a finite-type domain. Then there exist y1, · · · , yr in A that are algebraically independent, such that A

is a finite-module over a polynomial subring C[y1, · · · , yn] = P (so all the elements of A are integral over the

polynomials).

Proof. Choose generators x1, · · · , xn for our algebra A. If they are algebraically independent, then we’re done – P is

equal to the polynomial ring. Otherwise, let f be the polynomial that evaluates to 0 for our variables xi . We’ll use the

following result:

Lemma 99

There exists a linear change of variables so that f (x1, · · · , xn) becomes a monic polynomial in xn of deg d = deg f .

Proof of lemma. Let xi = x ′i + cix
′
n, where the cis are to be determined. (This is indeed invertible.) Take the

highest-degree homogeneous part of f : then

f (x1, · · · , xn) = f (x ′1 + c1x ′n, · · · , x ′n + cnx ′n).

Our goal is to show that f can be monic in x ′n. The coefficient of degree d comes from putting in x ′1 = x ′2 =

· · ·+ x ′n−1 = 0 and x ′n = 1: we’ll get

f (c1, · · · , cn−1, 1 + cn),
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which can be nonzero if we choose the cis appropriately, and then we can normalize to finish.

Then the Normalization Theorem becomes very simple: make that change of variables, and let R be the algebra

C[x1, · · · , xn−1] ⊂ A. But we chose a polynomial f earlier that evaluates to zero at our point (x1, · · · , xn), and x is

monic, so xn is integral over R. Therefore, A is a finite R-module.

And now we induct: we may assume R is a finite module over the polynomial subring P . Then A must be a finite

module over P , as desired.

This turns out to be extremely useful, and we’ll see applications shortly.

17 March 11, 2020
There won’t be a quiz next week. Professor Artin will post a problem set for us to work on for the next few weeks.

Lectures after this week might be done by Zoom, but things are a bit unclear for now. (We’ll still have lecture on

Friday.)

We’ll jump ahead a bit for today’s lecture, because it’ll be hard to get things organized. First, a bit of review: if

A ⊂ B, we say that B is integral over A if every element b ∈ B satisfies a monic polynomial relation with coefficients

in A. In particular, if A and B are finite-type domains, then B is integral over A if and only if B is a finite A-module.

It’s also possible to do this when B is an A-module, but then we’re not necessarily working with an inclusion

anymore:

Definition 100

Let Y = SpecB and X = SpecA. If there is a homomorphism ϕ : A→ B, then we call the morphism u : Y → X

a finite morphism. If A ⊂ B and B is a finite A-module, then Y → X is an integral morphism.

Example 101

Let Y = SpecB be a closed subvariety of X = SpecA. Then the inclusion map Y → X is a finite morphism,

because the corresponding homomorphism ϕ : A → B is a quotient map, and B is clearly a finite A-module

because it is generated by {1}. (Here, it’s helpful to note that B is an A-module in the sense that it is closed

under multiplication by ϕ(A).)

We can also extend our definitions of finite and integral morphisms beyond the affine case as well. Any morphism

u : Y → X is a finite (resp: integral) morphism if we can cover X by affine open sets, and for every such affine open

set X ′ = SpecA ∈ X, the inverse image Y ′ = SpecB is affine, and u : Y ′ → X ′ is finite (resp: integral). In general,

this means we only need to check on the affine open sets! To show that this definition is consistent with the previous

one, we need to look at the localizations (which form a basis for the topology), though the proof is a bit long because

we need to check a lot of different conditions.

For now, we’ll move on:

Theorem 102 (Chevalley’s finiteness theorem, version 1)

Let Y be a closed subvariety of Pn ×X. If the projection π : Y → X has finite fibres, then π is a finite morphism.
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Theorem 103 (Chevalley’s finiteness theorem, version 2)

Let X, Y be projective varieties, and say that u : Y → X is a morphism. Then if the fibres of u are finite, then u

is a finite morphism.

Let’s first show that version 1 implies version 2. Let Γ be the graph of u, which consists of points of the form

(y , u(y)). Then we have Y ⊂ Pn, and Γ ⊂ Y × X ⊂ Pn × X. Since Γ is a closed subvariety of Pn × X and Γ is

isomorphic to Y , we can compose the isomorphism with the morphism from Γ to X.

Proof of Chevalley (version 1). We’ll prove this in the case of P1 – since Pn just has more indices, we’ll avoid those.

We know that Y sits inside P×X, and π is the projection of a point down to X. The graph of Γ looks like some curve

in the X-axis and P1-axis: pick coordinates (y0, y1) in P1. Let X∞ be the points at infinity – that is, where y0 = 0.

In case 1 (this is the main case), we have that Y ∩ X∞ = ∅. Because we don’t hit the line at infinity, we can

assume X is affine, so X = SpecA for some A.

Consider the two standard open sets U0 ×X (where y0 6= 0) and U1 ×X (where y1 6= 0). Then we can say that

U0 ×X = SpecA[u], U1 ×X = SpecA[v ],

where u = y1
y0
, v = y0

y1
= u−1. In this case, because Y ∩X∞ = ∅, we know that

Y 0 = (U0 ×X) ∩ Y = Y.

The secret is to look at U1 × X first: this can be written as SpecR1, where R1 = A[v ]. Then Y 1 = (U1 × X) ∩ Y
is a closed subset of U1 × X, and it is irreducible (because it is an open subset of Y , which is irreducible), so Y 1 is

the locus of some prime ideal Q. (Remember that when we work in U1 × X, we’re leaving out the parts of the space

where y1 = 0.)

Now X∞ is the locus where v = 0, and Y 1 ∩ X∞ is empty because Y ∩ X∞ is empty. But we have two closed

subsets that don’t intersect, which must generate the unit ideal. Since X∞ is generated by v , we have that

Q+ vR1 = (1) = R1.

Then there exist f (v) ∈ Q, g(v) ∈ R1 in R1 = A[v ] (we’re writing everything as polynomials in v , with coefficients in

A) such that

f (v) + vg(v) = 1.

Write out f (v) = a0v
n + · · · + an; we know that an = 1 by matching constant coefficients. But now we can write

everything in terms of 1v = u instead: multiplying this through by a high power of u to clear all denominators, and

we’ll find that the left hand side is a monic polynomial in u, because the original constant term was 1.

To understand where this polynomial f vanishes, note that if we leave out both 0 and∞ in the projective coordinate,

we can go back and forth between u and v . This monic polynomial vanishes on all of Y − X∞, and thus it vanishes

on Y by closure. That means that u is integral over A, but we can also write B as a quotient of A[u] because Y is a

closed affine subset of U0 ×X. Thus B is a finite A-module, and we’ve proved the desired result.

In case 2, Y does intersect X∞. Then the plan is to cover X by localizations so that we can get away from our

problem: for any p ∈ X, p × P1 intersects Y at only finitely many points. Since the localizations form a basis, we can

cover X by X i = Xsi so that after a change of coordinates, we localize the points p ∈ X where Y intersects X∞ (this

is a closed set). Then we have a finite number of localizations (because of the finite fibre assumption)

Y i = (Pi ×X i) ∩ Y,
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and this doesn’t meet X∞. Then X i = SpecAi , and Y i is the inverse image of X i under π, so Y i = SpecBi , where

Bi is a finite Ai -module from case 1.

And the localizations cover X, so s1, · · · , sr generate the unit ideal of A.

Lemma 104

With all of the notation above, we have that Y = SpecB and B is a finite A-module.

This kind of argument often comes up in algebraic geometry, so we should pay attention to it here.

Proof of lemma. Let R =
∩
Bi – all of the Bis have the same fraction field, so we can take the intersection there.

We’ll show that Y = SpecR and R is a finite A-module.

Localize R, so

Rsj =
(∩
(Bi)

)
sj
.

If we invert sj in all of the Bis separately, we get something at least as big, so

Rsj ⊂
∩
((Bi)sj ).

Thus, for all β ∈ B in the right-hand set, we can write

β = bis
−k
j , bi ∈ Bi ,

where we use the same k for all i for simplicity. Thus βskj = bi for all i , and therefore βskj is in the intersection of the

Bis, which is R. Therefore, every element β ∈
∩
((Bi)sj ) is also in Rsj , so we have

Rsj =
∩
((Bi)sj ).

Bi is the coordinate algebra of Y i , so

Y i ∩ Y j = SpecBi ∩ SpecBj = Spec(Bi)sj ,

because we need a function that vanishes on the complement of Y j . And notice that (Bj)sj = Bj (sj is already invertible

in Bj), which means that

Y i ∩ Y j = Spec(Bi)sj = Spec(Bj)si .

Thus (Bi)sj = (Bj)si , and both of these are at least as big as Bj . But when i = j , we get equality, so indeed we have∩
(Bi)sj = Bj .

So R is a nice ring, because localizing gives us the Bjs. Let Ỹ = SpecR: we wish to show that Ỹ = Y . When we

localize Ỹsj , we end up with SpecRsj = SpecBj = Y
j . Thus Ỹsj is isomorphic to Y j , and the former is a covering of Ỹ

while the latter is a covering of Y . Thus we’ve shown that Y and Ỹ are indeed isomorphic.

To finish, note that Bi = Rsi is a finite Ai -module by construction for each i , so we can pick finitely many generators

for each Rsi . Then we can multiply by si (which is invertible in Ai), so that our generators are all elements of R, and

we do this for all (finitely many) localizations i . Putting all of these together yields a set of generators for R.

And now B is again a finite A-module, completing the proof.
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18 March 30, 2020

Fact 105

Classes from this day onward were conducted over Zoom.

We’re going to talk about double planes today, specifically projective double planes (we can read about affine

double planes on our own). Throughout this class, we’ll let X = P2 with coordinates x0, x1, x2, and we’ll let y be

another variable of weight d : in other words, we’ll let f (x) be a homogeneous polynomial of degree 2d , and we say

that y2 = f (x). Then we’ll look at the zero locus of y2 − f (x) in the weighted projective space, which is defined by

the relation

(x0, x1, x2, y) = (λx0, λx1, λx2, λ
dy).

Indeed, y2 − f (x) can be thought as a homogeneous degree 2d polynomial if y has weight d :

Definition 106

A double plane is a zero locus Y for y2 − f (x) in the weighted projective space.

Since X is the ordinary projective plane, we have the projection map π : Y → X sending (x0, x1, x2, y) to (x0, x1, x2).

The fibres of this map generally have two points (x, y) and (x,−y), but these are the same points when f (x) = 0. So

the branch locus ∆ corresponds to the points in P2 where the fibres of π are just a single point (x, 0). And there’s an

automorphism σ : Y → Y of the double plane given by

σ(x, y) = (x,−y);

this is an order 2 automorphism.

Since our map π is two-to-one, the image of Y will have dimension 1 as a subvariety of X. Let C be a curve in X

which is the zero locus h(x) = 0 of an irreducible homogeneous polynomial h. There are three cases here:

• C ramifies, which means that C is contained in the branch locus. This means that h divides f – this only occurs

for a finite number of curves. In this case, π−1C will map bijectively to C, because every point in C corresponds

to one point in π−1(C). (If we were talking about schemes, we’d want to say that the fibre is “two times the

curve,” because y2 = 0. We don’t have to worry about this, though.)

• C splits, which means that π−1C is made up of two curves D1∪D2 in Y . Applying σ to Y will switch the curves

D1 and D2 with each other, and Di → C are generically bijective for both i = 1 and i = 2.

• C doesn’t split, which means that π−1C is an irreducible curve. This happens when the ideal

(y2 − f , h)

is a prime ideal in C[x, y ].

All of this is analogous to what happens when we adjoin a quadratic element δ to Z (this is material from 18.702):

Example 107

Consider Z ⊂ Z[δ], where δ2 = −5.

There are a few different possibilities here, which correspond to the above cases:
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• Notice that the equation y2 = −5 becomes y2 = 0 when we’re looking mod 5, so that explains why the prime

p = 5 ramifies in Z[δ].

• On the other hand, p = 3 splits as

(3) = (3, 1 + δ), (3, 1− δ).

Since (3) does not split as a principal ideal, it makes it harder to analyze what the ideals actually look like in

Z[δ]. So it’s generally not very easy to say what the ideals look like in the case above where C splits. Meanwhile,

p = 41 does split into principal ideals:

(41) = (6 + δ)(6− δ).

• Finally, the prime p = 7 remains prime, which corresponds to the third case above.

So if we go back to the double plane y2 = f (x), remember that f (x) has even degree. Let’s take the particular

example where d = 2 and deg f = 4: we want to ask when a line C = L splits.
We can choose our coordinates so that the line is {x0 = 0}. Since L splits, we can say that the ideal (y2 − f , x0)

is not prime. Taking this ideal mod x0, we can define f (x1, x2) = f (0, x1, x2), and then we can rephrase our statement

as saying that (y2− f ) is not a prime ideal in C[x1, x2, y ]. Since C[x1, x2, y ] is a UFD, this is true if and only if y2− f
is not irreducible.

Since y2 − f is quadratic in y , a factorization will look like

y2 − f = (y + α)(y − α) =⇒ f = α2

(each factor has to be linear in y , and the polynomial is monic in y). So the line L splits if and only if f is a square.

This means that all of the roots of f have to have order 2, so ∆ has to be tangent to the line L. So in this special

case that we’re talking about with d = 2, lines that split correspond to bitangents of the branch locus ∆, so that

both of the two zeros have order 2. (It could also be a single fourfold tangent, but that’s not generic, so we’ll ignore

it.) Note similarly that a line L that splits in a double plane with d = 3 is a tritangent for the same reason. But

generic curves don’t have tritangents, because there are finitely many bitangents!

With this, we can explain the following famous property:

Proposition 108

Every smooth cubic surface contains 27 lines.

Proof. Suppose we have a cubic surface S ⊂ P3, and we label P3 with coordinates (x0, x1, x2, z) (it’s not weighted,

but we do want to distinguish one coordinate). Choose coordinates so that q = (0, 0, 0, 1) is a point on the curve
S: then the defining equation of S must be of the form

az2 + bz + c = 0,

where a, b, c are homogeneous polynomials of degree 1, 2, 3 in the x-variables. (Because (0, 0, 0, 1) is on the curve,

the coefficient of z3 is zero.)

Now the discriminant of f = b2 − 4ac is a homogeneous quartic, and thus we can describe the zero locus similarly

to the locus of the quartic double plane

Y : y2 = f ,
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where the quadratic formula tells us that

z =
−b +

√
f

2a
=
−b + z
2a

=⇒ y = 2az + b.

(The zero loci here are birational.) So the correspondence between S and Y makes sense whenever a 6= 0 – let’s look

at the a = 0 special case first. Then we can find a line L0 in X which splits in Y , because the defining equation of S

looks like

bz + c = 0

modulo a. The locus of a = 0 then defines a plane H0 in P3 with coordinates (x0, x1, x2, z), and this plane contains

the point q. Meanwhile, the locus of bz + c = 0 is a (non-generic) cubic curve in H0 – this equation is singular at the

point q, because there is no z3 coefficient. (To verify this, we can just suppose that a is the coordinate x0 by a change

of coordinates, and we can note that it’s not possible for that cubic curve to be the union of a line and a quadratic if

S is generic.

But now let’s look at the case where a 6= 0, we can take L to be another bitangent to the curve f = b2−4ac = 0.
L now intersects our first bitangent L0 in one point, and the map between S and Y is defined except at a single point

of L. Since L splits in Y (it’s a bitangent), we know that it is the union of a line and a quadratic. Since there are 27

bitangents distinct from L0, this means that there are 27 lines on a cubic, as desired.

19 April 1, 2020
There’s a lot on the syllabus for today – we’ll talk about valuations and then discuss a little about normalization.

Definition 109

Let K be a field. A (discrete rank 1) valuation on K is a surjective homomorphism from K× → Z+, such that

v(αβ) = v(α) + v(β) for all α, β ∈ K, and v(α+ β) ≥ min(v(α), v(β)).

Example 110

Let K = C(t), and let t = a be a point in A1t .

We can define the valuation vp with the following process: if f (t) is a polynomial, and t−a divides f k times, then

vp(t) = k . And if we have a rational function α = f
g , we’ll just define vp(x) = vp(f )− vp(g).

It turns out that all valuations of K = C(t) are either vp for some p or the valuation at the point at ∞ (which we

get by working with 1
t instead).

Definition 111

The valuation ring R of a valuation v is the set of α ∈ K such that v(α) ≥ 0.

This ring has the maximal ideal

M = {α : v(α) > 0}.

Indeed, if we take any other element in the ring, v(α) = 0. Then v(α−1) = 0 as well, so α is a unit of R. In other

words, all elements not in M are units, so M must be a maximal ideal.

M is also a principal ideal of the form xR, where x is any element where v(x) = 1. Indeed, if y ∈ R and v(y) = n,

then v(x−ny) = 0. Thus u = x−ny is a unit, so y = xnu, meaning that y ∈ xnR = Mn. Thus, the ideals of R are
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either the zero ideal or of the form Rn, and by the same logic, any element y of a proper R-submodule of K is of the

form xkR, and thus N = xkR (for the minimal k ∈ Z) or K (if no such k exists).

This also tells us that there is no ring R′ such that R < R′ < K. If there were such an R′, it would be an

R-submodule of K, and it must be of the form xkR for some k ≥ 0 (or else xk squared wouldn’t be in the ring). But

R is contained in R′, so k = 0.

Definition 112

A local ring R is a Noetherian ring with exactly one maximal ideal M, where M is not the zero ideal.

In particular, a valuation ring is a local ring.

Proposition 113

Let R be a local domain with maximal ideal M. Then M is a principal ideal if and only if R is a valuation ring.

Proof. We’ve already shown the backwards direction above. For the forward direction, first assume that the maximal

ideal in our local ring M = xR is a principal ideal. Let y be a nonzero element of R: by the Nakayama Lemma, we

know that the powers of x that divide y are bounded, so we can write y = xku, where x does not divide u. But u is

not divisible by x , so it must be a unit in the ring: we can then define v(y) = k . So we’ve now defined a valuation,

and it just remains to check the other conditions in the definition (which are not too hard).

With this, we can move on to the concept of a local ring at a point:

Definition 114

Let X be an affine variety, and let p be a point of X. Then the local ring of X at p is

Ap = {α ∈ K : α regular at p}.

In other words, there exists an affine neighborhood SpecA of the point p in X, such that α ∈ A.

To explain why this is indeed a local ring, we need to show that there is only one maximal ideal. The maximal ideal

at a point p of X is

mp = {α : α regular at p, α(p) = 0}.

It suffices to show that if s ∈ Ap and α(s) 6= 0, then α is a unit, so α−1 ∈ Ap as well. We know that α−1 ∈ A[α−1],
and SpecA[α−1] is SpecA with the zeros of α removed. Thus, p ∈ SpecA[x−1], so α−1 is regular at p, as desired.

We’ll now move on to our next topic – normalization.

Definition 115

Let A be a Noetherian domain with a fraction field K of characteristic zero. Then the normalization of A, denoted

A#, is the set of α ∈ K that are integral over A. A is normal if it’s equal to its normalization A#.

It is clear that A ⊂ A# ⊂ K, and we have some more structure here:

Theorem 116

A# is a finite A-module. In other words, the map X# → X is an integral morphism.

Proof sketch. The proof is involved, and one important object that will come up later in the class is the trace.
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Definition 117

Let L be a finite field extension of K, and let β ∈ K. Multiplication by β is a linear operator on L – the trace of

β is the trace of this linear operator.

We can use this trace to define a bilinear form on L, sending α, β to tr(αβ). This is an element of A (this is easy

to verify because the trace of an operator is basis-independent). From here, the main ideas of the proof are to assume

A is normal, use a basis for L such that all elements are integral, and then consider the map of L into Kn via the

operator

T (β) = (〈v1, β〉, · · · , 〈vn, β〉).

This is injective, and it maps the integral closure B of A (in L) to An, which means that B is isomorphic to a submodule

of An, which is finitely generated because A is Noetherian.

Let’s show an example of this (the most important case is that of curves):

Example 118

Let A = C[x, y ]/(y2 − x3), and let z = y
x .

z is integral over A, since z2 = y2

x2 =
x3

x2 = x (where we’re using x and y for the residues in A as well). In fact, we

also have y = z3, so the normalization A# is just polynomials C[z ]. In other words, we’ve “straightened out the cusp”

to create the affine line! We do need the following result to show that we’ve found our normalization, though:

Lemma 119

Any unique factorization domain is normal – in particular, polynomial rings over a field, such as C[z ], are normal.

We can show this by showing that any element β = r
s is integral and writing out its defining equation.

Example 120

Consider the ring A = Z[δ], where δ2 = −3.

As we might know from 18.702, this isn’t an integrally closed ring: we get the nice properties by using A# = Z[η],
where η = 1+δ

2 .

Definition 121

A local ring A has dimension 1 if the only prime ideals of A are 0 and the maximal ideal M.

For example, the valuation vp at a point p is a one-dimensional local ring.

Theorem 122

Let A be a local ring. Then A is one-dimensional and normal if and only if it is a valuation ring.

Proof. The backwards direction is easy, and the forward direction is trickier. Our plan will be to show that the maximal

ideal M of A is a principal ideal, and then we can use Proposition 113. Let x ∈ M: the radical ideal rad(xR) is the
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intersection of some prime ideals, but there are only two prime ideals in our local ring, and one of them is the zero

ideal. Thus rad(xR) = M, which means that Mr ⊂ xR for some r > 0.

Let r be the minimal such possible exponent: then Mr−1 is not contained in xR, but Mr is, and we can pick an

element of y that is in Mr−1 but not xR. So now yM ⊂ Mr ⊂ xR, and now we can consider the fraction z = y
x . This

is not in R (because y is not in xR) but zM is in R (because yM is in xR).

But now notice that zM is an ideal of R, because it’s closed under multiplication by R and addition. Since there

is only one maximal ideal, either zM is contained in M, or zM is the whole ring. Let’s write out those two cases:

(1) If zM is the whole ring R, then we can let t = 1
z , and we know that M = tR (by multiplying through by t).

Thus t is actually in R (because M contains t · 1), and now we’ve shown that M is a principal ideal, so we’re done.

(2) if zM ⊂ M, we can apply Nakayama: say that v1, · · · , vk generate the ideal M. Then we can write

zvi =
∑
j

pi jvj ,

where the pi j are in R. Therefore, (v1, · · · , vk) is an eigenvector of P with eigenvalue z , which means that p(z) = 0.

But this means that z is integral, which is a contradiction (since z is not in R).

Fact 123

We will also include the proof of Krull’s theorem here, now that we have enough tools. Recall that we want to

show that any closed subset VX(α), corresponding to the zero set of α in an affine vareity X of dimension d , has

irreducible components of dimension (d − 1).

Proof of Krull’s Theorem. We know that the dimension of any component C is less than d , because C is a proper

closed subset of X. Assume for the sake of contradiction that dimC < d − 1.
Let A be the coordinate algebra of X, and let B be its normalization. Then Y = SpecB has dimension d (because

A and B have the same fraction field, thus the same transcendence degree), and the morphism Y → X is an integral

morphism by definition. This map is also surjective, because every point in X is a maximal ideal m in A, and the

extension mB in B is not the unit ideal (this is a lemma from earlier in the class), so it corresponds to a point in Y .

Since we have an integral morphism, closed sets are mapped to closed sets, and there is some irreducible component

of VY (α) which maps to our irreducible component C of VX(α). Now the morphism D → C is an integral morphism

as well (it’s defined the same way as the one from Y to X), so D and C have the same dimension, meaning that it

suffices to prove Krull’s theorem for the case where A is normal (because we can replace X with Y and have the same

dimensionality).

Let the zero locus of α be written as C ∪ V . Similarly, as our earlier attempt, we want V to be empty, so we’ll

localize by finding an element s that is identically zero on V but not on C. Then Vs is empty (because s is zero

everywhere), but Cs is not empty. We’ve assumed here that A (and therefore X) is normal, so the localization Xs
is normal as well. Since Xs and Cs have the same dimensions as X and C, respectively, we can use the localizations

instead, and this means that we can assume α’s zero locus is irreducible.

Now we can say that C is both the zero locus of P and of α. This means that P = radP = rad(αA), which means

that P n ⊆ αA for sufficiently large n. We’re assuming that C has codimension at least 2 (in other words, dimension

at most d − 2). By definition, this means that C ⊂ Z for some subvariety Z of X with codimension 1 – say that this

corresponds to the prime ideal Q. Now P ⊃ Q, but α is not in Q (since α does not vanish on all of X), so αA is not

contained in Q.
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Lemma 124

With the notation above, there is an element γ ∈ A such that γ is not in αA but Pγ is contained in αA.

Proof of lemma. Pick some β ∈ Q. We have a Noetherian domain here, so by corollaries of the Nakayama Lemma,

we know that there is some k such that αk is the largest power of α dividing β. Now γ = β
αk

vanishes on Z \C, which

is a dense subset of Z, which means that γ vanishes on all of Z. So now we have a preliminary candidate: γ ∈ Q and

α does not divide γ.

Now to show that we can find a γ such that Pγ is contained in αA, we know from above that P n ⊆ αA for some n

and thus P nQ ⊆ αA – let r be the smallest integer such that P rQ 6⊆ αA. (This exists because we found a preliminary

γ above) Then there is some element of this ring P rQ that is not in αA, and that γ satisfies the conditions that we

want.

Taking this γ, we can consider the element δ = γ
α . We know that Pδ ⊂ P , because α is in P , but γ 6∈ αA =⇒ δ 6∈

A by construction. Pδ then vanishes on Z \C, which is a dense subset of Z, which means that Pδ vanishes on all of Z.

Therefore, Pδ ⊂ P , meaning δ is integral over A. By normality, this means that δ ∈ A, which is a contradiction.

20 April 3, 2020

Definition 125

A curve X is a variety of dimension 1.

The proper closed subsets of a curve are the finite subsets (by Krull’s theorem).

Definition 126

Writing a curve X as SpecA, if A is normal, then X is a smooth affine curve. In general, X is smooth if it can

be covered by smooth affine curves.

In general, if X is not smooth, we can take the normalization of A, and then X# will be a smooth curve. (We

need to normalize each of the affine open sets of a covering, and we need to check that this is consistent.) Then the

morphism X# → X is integral (because every element of A# is integral over A), so we have a surjective morphism.

Example 127

A good way to think about this is that X# removes singular points from X: for example, a cusp will be straightened

out.

Proposition 128

Local rings of smooth curves are valuation rings.

By definition, smooth curves are dimension 1. Remember that the local ring at each point is the set of rational

functions that are regular, so we just need to know that (assuming that X is affine here) the local ring is also normal.

But we won’t focus too much on the details here! We should just think of the local ring at each point as corresponding

to the valuation vp which evaluates the multiplicity of the zero or pole.

We’ll move along to talking about constructible sets: throughout this discussion, X is a variety.
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Definition 129

A locally closed set L is an intersection of the form Y ∩ U, where Y is closed and U is open.

Example 130

Let X = A2, and let L be a line with one point p deleted. Then this is the intersection of L with the complement

of p, so this is a locally closed set.

Clearly, open and closed sets are locally closed.

Proposition 131

L is locally closed if and only if it is a closed subset of an open set, which is also equivalent to it being an open

subset of a closed set.

Proof. We can replace Y ∩ U with Y ∩ (U ∩ Y ) to get an open subset of a closed set, and we can replace it with

U ∩ (U ∩ Y ) to get a closed subset of an open set. In general, we can find the minimal open and minimal closed sets

containing L (which exist by looking at chains of closed sets).

Definition 132

A constructible set S is a finite union of locally closed sets.

Example 133

Take X = A2, and let S be the union of the complement of the y -axis with the origin. Then S is constructible.

Lemma 134

Suppose that S is constructible. Then we can write S = L1 ∪ · · · ∪ Lk , such that Li = Yi ∩ Ui and the Yi are

irreducible and distinct.

Proof. We decompose each closed component Yi into its irreducible components, and then we “merge” parts that

share the same closed set – this preserves the property that all Li are locally closed.

Theorem 135

Let S be the smallest family of subsets such that

• open sets are in S,

• finite unions and intersections are in S (S1 ∪ S2 and S1 ∩ S2 are in S for S1, S2 ∈ S).

• complements SC = X − S are in S for any S ∈ S.

Then S is the family of constructible sets.

All constructible sets can be formed from open sets. To prove the remainder of the result, note that the union and

intersection of two constructible sets is constructible – if S1 = L1 ∪ · · · ∪ Lk and S2 = M1 ∪ · · · ∪Mn, we can write

S1 ∩ S2 =
∪
i ,j Li ∩Mj . This is because the intersection of locally closed sets is locally closed. We can similarly show

that complements are also constructible, so we can show closure.
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Theorem 136

Suppose f : Y → X is a morphism, and S is a constructible subset of Y . Then f (S) is a constructible subset of

X.

Conversely, the inverse image f −1(T ) of a constructible set T ∈ X is constructible (but this is easier; it follows

from continuity of morphisms).

Proof. (This basically consists of reducing the problem until there is nothing left to prove.) Since we’re working with

Noetherian rings, we can prove this by Noetherian induction – by the descending chain condition, we just need to

show that if a statement is true for all closed proper subsets of Y , it is true for Y as well (and the same is true for

X, which is also closed). In other words, we can assume this statement is already true if S is contained in a proper

closed subvariety of Y or f (S) is contained in a proper closed subvariety of X.

We can now proceed with the proof. If Y1 is a proper closed subvariety of Y , we can write the constructible set S

as (S ∩ Y1) ∪ (S ∩ (Y \ Y1))), and we can check that both of these pieces are constructible subsets. But then we’ve

shown the condition for S ∩ Y1 by Noetherian induction already, so we can replace Y with Y \ Y1 finitely many times,

which lets us assume that Y is a nonempty open subvariety. By basically the same logic, we can replace X with a

nonempty open subvariety.

It suffices to show that a locally closed set satisfies this condition (because S is a finite union of such sets), and

we can write this set as C ∩U, where C is closed and irreducible and U is open. Now Y = C ∩ (Y \C), but Y \C does

not intersect C, so we can assume that Y is just C. In other words, S = C ∩ U = Y ∩ U, and now we can assume Y

is just U – we’ve now reduced the problem to the case where S = Y .

Remember that we showed above that we can replace X and Y with open subvarieties, so we can write Y = SpecB

and X = SpecA. We now have an associated homomorphism ϕ : A→ B – this homomorphism is injective because the

kernel corresponds to a proper closed subset (which we’ve already removed from the picture in an earlier simplification).

To finish, Noether Normalization tells us that we can pick s ∈ A such that Bs is a finite module over As [y1, · · · , yk ].
We have surjective maps from Ys to SpecAs , as well as from SpecAs to Xs (because we have a finite module), which

means that there is a surjective map from Ys to Xs . Once again replacing X and Y with the open subsets Xs and Ys
gives us a surjective map, which indeed means that our image is constructible, as desired.

We’ll move on again to a nice topic: analyzing with smooth curves. Suppose that C is a smooth affine curve, q

is a point of C, and C′ = C − {q} is its complement. We should think of q as a “limit point.”

Proposition 137

C is the closure of C′ in the Zariski and in the classical topology.

Proof. This is true in the Zariski topology because C is irreducible (so we can’t break it up further, meaning C′ is not

closed). In the classical topology, C′’s closure must be either C′ or C because C is closed – if it were C′, then q would

be open, but it is also closed. Thus, q would be an isolated point, and no such points exist.

Theorem 138

Let X be a variety, and let S be a constructible set in X. Then S is closed if and only if for all morphisms

f : C → X, we have that f (C′) ⊂ S =⇒ f (C) ⊂ S.
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In other words, we can test if S is constructible by testing curves. Think of q as a limit point of C′: this says that

if S contains all of its limit points, it’s closed.

Proof sketch. The idea is that we need to “find enough curves:” we need to be able to test any point p in the closure

S to see if it is in S. To do this, we map in a curve C intersecting S at this point p, and use that as the removed

point. Here’s the main lemma that we need:

Lemma 139

Let S be a constructible subset of X, and let p ∈ S be a point. Then there exists a curve C and a point q such

that there exists a morphism f : C → X with f (C′) ⊂ S and f (q) = p.

Proof of lemma. Let S = L1 ∪ · · · ∪Lk , where Li = Yi ∩Ui ; we can assume that the Yi are irreducible by Lemma 134.

Each Li is then some dense open subset of Yi , meaning the closure of each Li is Yi . Thus, the closure of S is the

union of Y1 through Yk , meaning any point p is in Yi for some i .

Therefore, there exists an irreducible closed set Y that contains p, as well as a nonempty open subset V ∈ Y such

that V ⊂ S (this is basically the corresponding locally closed set Li). We can assume that Y is affine with Y = SpecB

(by taking X to be affine – this is okay because we have a Noetherian space). If dim Y = 0, then Y is just a single

point, so p ∈ S. Otherwise, we can reduce to dim Y = 1 by Krull’s theorem: this is because we can take a zero locus

from an element β ∈ B such that β(p) = 0, but β is not identically zero on any component of Z except p itself, and

consider β ∩ Y . By construction, this zero locus is closed and nonempty, and because it contains p, at least one of

these components of the zero locus contains p, and we can replace Y by one of those components – this will decrease

the dimension by at least 1.

So we can now say that dim Y = 1. Let C = Y # be a smooth curve: we know that π : Y # → Y is surjective

(because we have an integral morphism), so there exists a q ∈ C such that π(q) = p. We delete the (finite set of)

other points in the fibre over p by picking an affine open subset, and this shows that we indeed have the morphism

that we desire.

Using this curve to “test” closure gives us the result – if such a limit point p were not in S (meaning that S is not

closed), then we would not have that f (C′) ⊂ S =⇒ f (C) ⊂ S.

Corollary 140

If S is a constructible subset of X, then it is closed in the Zariski topology if and only if it is closed in the classical

topology.

The classical topology is finer, so anything closed in the Zariski topology is closed in the classical topology. The

converse comes from the “testing curve” idea above.

We’ll finish today with two more results about projective space being proper:

Theorem 141

Let Z be a variety, and let Y be a closed subset of Z × Pn. Let π : Z × Pn → Z be the projection map. Then

π(Y ) is closed in Z.

Proof. This is true in the classical topology because Pn is compact, so projection takes closed sets to closed sets.

More explicitly, take a sequence of points pi in π(Y ) converging to a limit point – for each one, we can pick a point
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(zi , xi) in Y ⊂ Z × Pn that maps to it under π, and then we can pick a subsequence of {xi} with a limit point x in Pn,
because of compactness. The zi also converge to some z (the same limit point that the pi converge to). Now (z, x)

is in Y (because Y is closed and therefore contains all of its limit points), and therefore its image p, which is the limit

point of the pis, is also in π(Y ).

But now images of constructible subsets are constructible by Theorem 136, and Y is constructible (because it is

closed). Because π(Y ) is closed in the classical topology, it is closed in the Zariski topology.

Corollary 142

Let f : X → Z be a morphism of projective varieties, and Y be closed in X. Then f (Y ) is closed in Z.

Proof. Use the graph Γf , which consists of the points (x, f (x)) ⊂ X×Z. This is isomorphic to X, and so Y is isomorphic

to a closed subset of Γf ⊂ X×Z. Now getting the values for f (Y ) is a projection map, and X ⊂ Pn =⇒ Γf ⊂ Pn×Z,

meaning that we can use the above result.

21 April 6, 2020
We’ll be spending the next week or so on modules – the first topic here is the structure sheaf of a variety. Let X be

a variety (everything here is defined with respect to X) – we can define the category (opens), where the objects of

the category are open subsets of X and the morphisms are inclusions. (There is a morphism from V → U if V ⊂ U,

and no morphism if V 6⊂ U.)

Definition 143

The structure sheaf O is the functor from (opens) to (algebras). Specifically, if U is open, then O(U) is the

algebra of rational functions α that are regular on U.

Recall that if α is in a function field K, then α is regular at a point p ∈ X if there exists an affine open set such

that U = SpecA, p ∈ U, and α ∈ A. Now if we have an inclusion V → U of open sets, then α being regular on U

implies that it is regular on V – this means that V ⊂ U =⇒ O(U) ⊂ O(V ) , and that’s what makes the structure

sheaf into a functor. (Notice that the arrows are reversed here, so this is contravariant.)
Suppose we want to check that a rational function is regular on some open set or on X – we don’t want to check

every affine open set.

Lemma 144

Let U = SpecA be an affine open set in X that is covered by other affine sets {U i = SpecAi} (we can assume

this set is finite). Then A =
∩
Ai .

In other words, the rational functions on SpecA are just the elements of A, and checking whether functions are

regular only requires a specific open covering, not all of them.

Proof. Note that being covered here means that the U i are all subsets of U, so having maps U i → U means we have

maps A→ Ai – this means that every element of A is in
∩
Ai .

We know that the localizations of U form a basis for the topology. Thus, we can always assume our open coverings

are localizations, and write U i = SpecA[s−1i ], where si ∈ A are nonzero for all 1 ≤ i ≤ k . The U is cover U, so there
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is no point where the sis are all zero – that means that s1, · · · , sk generate the unit ideal A. Let α be an element of

the intersection
∩
Ai : since α ∈ A[s−1i ], we know that sni α ∈ A for some n. There are finitely many sis, so we can

use the same n for everything. Since {si} generate the unit ideal, so do the powers {sni }, and thus we can write

1 =
∑
i

ais
n
i =⇒ α =

∑
ais
n
i α ∈ A,

and thus every element of
∩
Ai is in A.

Lemma 145

Let U be any open set in X, and let {U i = SpecAi} be an affine open cover of U. Then O(U) =
∩
O(U i).

The lemma tells us that the affine open sets are the important ones here. This is basically the same as the argument

we made above – we’ll omit the proof.

Proposition 146

O has the sheaf property: O(U) =
∩
O(U i) if {U i} is an affine cover of U.

The structure sheaf is a functor, and we want it because the variety X is not just a topological space – all

one-dimensional curves are homeomorphic, but we do care about what the functions are.

We’ll now move on to the definition of O-modules: let (affines) be the subcategory of (opens), where the objects

are the affine open subsets of X, and the morphisms are localizations. This second part is not so obvious: what it

says is that a morphism V → U in (opens) – that is, an inclusion – will be a morphism in affines if (1) U = SpecA is

affine and (2) V is a localization of U, meaning that V = Us = SpecA[s−1] for some s 6= 0 in A.

The reason we like to restrict to (affines) is that we know what localizations look like, and we don’t have very

much to say about inclusions of open sets that aren’t localizations.

Definition 147

An O-module is a functorM from (affines) to (modules).

So in an O-module, we assign a module to each affine open set of X, which should be compatible with the

localization. Specifically, if U = SpecA is an affine open set, the M(U) is an O(U)-module, where O(U) = A. Since

our maps look like localizations, we can explain this more explicitly: if Us is a localization of U, then M(Us) is the

localization ofM(U), which we denote asM(U)s . In particular, ifM(U) is an A-module M, thenM(U)s is just the

localization Ms .

Definition 148

Elements of M(U) are sections of M on U.If V → U is a map in (affines), so V = Us , then the image of a

section m ∈M(U) is the restriction of m to V .

By custom, we denote the restriction to V by the same letter m.

Example 149

In the free O-module On, the sections are vectors of sections of O.
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Example 150

If X = SpecA is affine, then O-modules are A-modules and vice versa.

Example 151

Let p ∈ X be a point. The residue field module κp is defined as follows: if U is an element of (affines) and

U = SpecA, such that p ∈ U, then A has a residue field κ(p), and we define κp(u) = κ(p). If p 6∈ U, then we

define κp(U) = 0.

Definition 152

An ideal I of O is an O-submodule of O. A maximal ideal at a point p ∈ X is mp(U) if U = SpecA and p ∈ U
and O(U) if p 6∈ U.

Definition 153

LetM and N be O-modules. A homomorphism ϕ :M→N is defined as follows: for every U ∈ SpecA, we know

thatM(U) and N (U) are O(U)-modules, and we have the homomorphism ϕ :M(U)→ N (U) of O(U)-modules,

such that whenever Us is the localization of U, ϕ(Us) is the localization of ϕ(U).

It seems annoying to define homomorphisms on every affine open set, but all of the baggage takes care of itself:

Example 154

Let ϕ : M → N be a homomorphism. Then we have a kernel K, a cokernel C, and an image – we know that the

kernel K should be an O-module, which means we need to understand K(U) for any affine U. But we can just

say that K(U) is the kernel of the homomorphism ϕ(U) :M(U)→ N (U).

We just need to make sure that localization is compatible:

Lemma 155

If ϕ : M → N is a homomorphism of A-modules for a domain A, and s ∈ A is a nonzero element, then we have a

homomorphism ϕs : Ms → Ns by localization. Then ker ϕs = (ker ϕ)s .

Definition 156

An sequence of O-modules · · ·M f→ N
g→ P · · · is exact if for any two adjacent maps f , g as above, we have

Im f = ker g.

Example 157

We have an exact sequence

0→ mp → O → κp → 0,

which means that the kernel of the homomorphism O → κp is mp and that we have an injective map mp → O.
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22 April 8, 2020

We’ll continue to discuss modules today. Recall that O is the structure sheaf on a variety X, where O(U) is a regular

function on U. Then an O-module M is a (contravariant) functor associates a module to every affine open set: if

U = SpecA is an affine open set, thenM(U) will be an O(U)-module, which is just an A-module.

We defined the category (affines) last time; the morphisms in this category are the localizations Us → U for some

nonzero s ∈ A. In order for this to be valid, we just need M(Us) to be the localization of M(U). And again, if we

have an affine open set SpecA, thenM(Us) = Ms is an As -module.

Our goal is to extend M to all opens (instead of just affines) – our question is to ask for global sections of M,

which are the elements ofM(X). They should be given by sections on an open covering {U i = SpecAi} which agree

on the overlap, so any element M(U) should be defined with a vector (m1, · · · , mk), where mi ∈ M(U i), such that

the restrictions of mi , mj to the smaller open set U i j are equal.

But we know that U i j = U i ∩U j is the intersection of affine open sets, so it is affine open as well: it’s Spec[Ai , Aj ].

This does not always give us a map fromM(U i) toM(U i j) unless U i j is actually a localization, but it’s not such an

important point.

In order for this to work out, we want the following sequence to be exact:

0→M(U)→
∏
i

M(U i)→
∏
M(U i j) ,

where the first arrow tells us that the map in the second arrow from M(U) →
∏
iM(U i) is injective (and describes

the vector (m1, · · · , mk)). Meanwhile, we should think of the last space
∏
M(U i j) as the space of k × k matrices:

then we want our map β to send (m1, · · · , mk)→ (zi j), where

zi j = mj −mi

when restricted to U i j . When these conditions are satisfied, this yields the sheaf property.

Theorem 158

Let M be an O-module. Then M extends uniquely to a functor M from (opens) to (modules) – such that M
has the sheaf property. In addition, any homomorphism of O-modules f :M→N extends uniquely.

This proof is long – we need to check that our map β above makes sense, which amounts to showing that when

we ave two affines with one contained in the other, there exists a map. We should read about this on our own.

Note that in our exact sequence, we can just take the product
∏
i<jM(U i j), because U i j and U j i are the same and

U i i = U i .

Example 159

Suppose X = U0 ∪ U1 is covered by those two affine open subsets. Then the sheaf axiom is equivalent to the

following sequence being exact:

0→M(U)→M(U ′)×M(U1)→M(U01).

If we say that X = P1 is the projective line, U0 = U1 are the standard affine open sets in X, and U0 = SpecA0
and U1 = SpecA1. Then A0 = C[u], where u = x1

x0
, and A1 = C[v ] = x0

x1
= u−1. Thus

U01 = SpecC[u, u−1]
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which is the Laurent polynomials in u. So if we have an O-module, we can get an A0-module M0 and an A1-module

M1. Now the Mi are the sections ofM(U i), and we must have

M(U01) =M0[u
−1] =M1[v

−1].

On the other hand, if we have an A0-module M0 and an A1-module M1, and suppose there’s an isomorphism

θ :M0[u
−1]→M1[v

−1] An O-module, we should have compatibility from localization, and thus we get an O-module

M.

Example 160

SupposeM0 is a free A0-module with basis B0, andM1 is a free B1-module with basis B1.

When we do our localizations, M0[u−1] and M1[v−1] are free A01-modules with bases B0, B1, and they are isomor-

phic. So θ is some invertible matrix P with entries in A01 – note that we can chagne B0 by an invertible A0-matrix Q0
and and B1 by an invertible A1-matrix to Q1, so here P determinesM.

Theorem 161 (Birkhoff-Grothendieck)

Given an invertible A01-matrix P (this is the Laurent polynomial ring), there exist an invertible A0-matrix Q0 and

an invertible A1-matrix Q1 such that Q−10 PQ1 is diagonal.

We know that the units of A0 are cuk for some k ∈ Z, This means that Q−10 PQ1 looks like a diagonal matrix with

entries of the form ueii , where all ei are integers. We’ll prove this later on with cohomology.

Corollary 162

Suppose that X = SpecA is affine. Then an O-module is equivalent to an A-module.

Proof. If we’re given an O-moduleM, then M =M(X) is an A-module. The localizations form a basis, so it’s enough

to just defineM(Xs) = Ms .

So the localizations are enough in this case where x is just an (affine)!

Proposition 163 (Coherence property)

If Y is any open set, and s ∈ Oy is a regular function, then Ys is Y \{(zeros of s}. ThenM(Ys) is the localization

of Y .

Remember that the definition of a moduleM means it has to be given on affines – thus we know that this is true by

definition for an affine open set Y . This property extends that fact to opens in general! We then call an O-module M

that has been extended to all opens a quasicoherent sheaf. Note that working with the extended module is harder –

we like working with (affines) and localizations, because many operations on modules are compatible with localizations,

while very few operations work on all open sets. The only notable exception to this is the kernel – for example, the

cokernel doesn’t work:

Example 164

Suppose f :M→ N is a homomorphism of O-modules. Then c = coker f is the module such that C(U) is the

cokernel of the mapM(U)→ N (U) for an affine open set U = SpecA, but not otherwise.
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23 April 10, 2020
Recall that for an O-moduleM for a variety X extends uniquely to a functor on all opens with the sheaf property.

Lemma 165

The sections ofM on the empty set are {0}.

This is more semantic than anything else – we’re bringing it up because we’ve been avoiding the empty set.

Example 166

A tensor product is an example of an O-module.

Recall that that if we have two A-modules M,N, we can construct an A-module M ⊗ N generated by tensors of

the form m ⊗A n (with m ∈ M, n ∈ N), with the bilinear relations

(m1 +m2)⊗ n = m1 ⊗ n +m2 ⊗ n, m ⊗ (n1 + n2) = m ⊗ n1 +m ⊗ n2, am ⊗ n = m ⊗ an.

One special case, where M and N are free modules with bases (m1, · · · , mr ) and (n1, · · · , ns), yields a tensor product

M ⊗ N which is a free module with basis {mi ⊗ nj}. We can think of M = Ar as forming the rows and N = As as

forming the columns of an r × s matrix.

Definition 167

LetM and N be O-modules. Then the tensor product is defined by its sections on U:

M⊗O N(U) = M(U)⊗O(U) N(U).

(In other words, the scalars of the tensor product are the regular functions on U.) This is a valid definition, because

taking any nonzero element s ∈ A yields

(M ⊗A N)s ∼= Ms ⊗As Ns .

Definition 168

Let f : Y → X be a morphism, and let N be an OY -module. The direct image f∗N is an OX-module defined as

follows: suppose U = SpecA is an affine open set in X, meaning that f −1U is some open set in Y (not necessarily

affine). Then the sections of f∗N on U are the sections of N on f −1U.

We can write this with less words as

(f∗N )(U) = N (f −1U).

Lemma 169

The direct image f∗N is an OX-module.

We prove this using the coherence property.
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Example 170

Suppose Y i→ X is an inclusion of a closed subvariety Y into X. Then i−1(U) = U ∩ Y .

Then we should have

f∗N (U) = N (U ∩ Y ).

We’re mentioning this special case because it’s called the extension of N by zero. This is because any open set

U ∈ X that doesn’t intersect Y yields

(f∗N )(U) = N (∅) = 0.

Example 171

Suppose Y
j→ X is an inclusion of an open set.

Inverse images are intersections again, so we still have

(f∗N )(U) = N (U ∩ Y ).

Meanwhile, we can also restrict an OX module M to Y , because V being (affine) open in Y implies that it is

(affine) open in X. This means that M(V ) is defined. For example, restricting OX to some open Y will give us the

structure sheaf OY on Y – this is different from the direct image. IfM is an OX module, we’ll say that the restriction

ofM =MX to an open Y is denotedMY .

Example 172

What happens when we combine a restriction and a direct image: what is j∗OY ?

We know that the sections on U are the same as the sections of OY on U ∩ Y (which is a smaller open set in U),

and this is the same as the regular functions on U ∩ Y – thus the sections can have poles in U but outside U ∩ Y , and

we have a map OX → j∗OY .

Our next topic is that of twisting modules on projective space Pr . Recall that a homogeneous fraction f = g
h

is a fraction where g and h are each homogeneous: f has degree deg f = (deg g − deg h), and if g, h are relatively

prime, then f is regular on an open set U if h does not vanish on U.

Definition 173

The sections of the twisting module O(n) on an open set U ∈ Pr are defined to be the homogeneous functions

of degree n that are regular on U.

These are particularly important – we’ll see why soon. Notably, if f is a homogeneous polynomial of degree d , then

multiplying by f defines a homomorphism from O(n) to O(n + d), because f is regular everywhere.

Suppose that we restrict O(n) to the standard open set U0 (that is, the points where x0 6= 0). Then the restriction

is a free OU0-module of rank 1 with basis {xn0 }. This is because the homogeneous polynomials that are regular on

all of U0 are (scalar multiples of) powers of x0 (everything else vanishes somewhere). Thus, the regular homogeneous

fractions look like f = g
xk0

for some k – we can show the rest as an exercise.

Here’s another definition of the twisting module: let H be the hyperplane where x0 = 0. Then we can define the

sections of O(nH) on U to be the rational functions f such that f xn0 is regular on U. So now f can have poles of
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order at most n on U ∩H. Now we have an isomorphism

O(nH)
xn0→ O(n).

We know that O ⊂ O(H) ⊂ O(2H) · · · , and we can consider

lim
n→∞

O(nH).

This is the set of rational functions such that f xn0 is regular for large enough n. Note that if f xn0 is regular on an open

set V , then f is a section of O on V ∩ U0, so f is an element of the direct image j∗OU0 . In other words,

limO(nH) = j∗OU0 ,

where j is the inclusion of U0 into Pr .
We’ll finish by discussing how to generate an O-module M. Suppose we have global sections m = (m1, · · · , mk)

ofM – they are elements of M(Pr ), and we get homomorphisms Ok m→M, sending

(α1, · · · , αk)→
∑

αimi .

When this map is surjective, we say that m generates the OPr module M. Then M is a finite O-module for every

affine open set U = SpecA if M = M(U) is a finite A = O(U)-module. (Note that this is only true because U is

affine!)

We’ll introduce the notation

M(n) =M⊗O O(n).

Theorem 174

Say that M is a finite O-module on Pr . Then the twisting module M(n) can be (finitely) generated by global

sections for sufficiently large n.

M itself is not generated by global sections – this is only true on the affines, and M does not need to have any

sections at all. We’ll review this a bit at the beginning of next lecture and then move on to cohomology.

24 April 13, 2020
Our goal for today is to show the result from the end of last time: given a finite O-moduleM on Pn, we can generate

the twisting moduleM(n) by global sections. Recall that the twisting module O(n) is defined such that the sections

on an open set U are the homogeneous fractions f = g
h are regular on all of U. For the hyperplane H at infinity, we can

define O(nH) similarly: its sections on U are the homogeneous rational functions of degree 0 such that xnα is regular of

degree n. Then multiplying by xn gives us an isomorphism from O(nH) to O(n). Recall that O ⊂ O(H) ⊂ O(2H) · · ·
and so on, and taking the limit as n → ∞ yields a limit limO(nH) such that its sections on an open set U are the

rational functions α with xn0α regular for sufficiently large n.

We discussed that this limit limO(nH) is the direct image j∗OU0 , where j is the inclusion of U0 into X = Pr .
Recall that the sections of the direct image are defined as

[j∗O0U ](V ) = OU0(V ) = OX(V ),

which is the set of regular functions on V . Let’s show this explicitly:
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Proof. A homogeneous fraction f = g
h (for relatively prime g, h) is regular on an open set U0 if the denominator

doesn’t vanish on U0, meaning it must be a power of x0 (times a scalar). To show when f is regular on an open set

V ∩U0, we factor the denominator h = h1 · · · hk , where the hi are irreducible polynomials. Then we care about having

h 6= 0 everywhere on V ∩ U0, and this happens whenever all hi 6= 0 on V ∩ U0. Letting Yi be the set of zeros of hi ,

we have an irreducible closed set in X = Pr . But V ∩ U0 is open, so Yi ∩ (V ∩ U0) is open in Yi , meaning this set is

dense or empty.

And now if hi 6= 0, we’re in the case where we want Yi ∩ (V ∩ U0) must be empty. We can write this as

(Yi ∩ V ) ∩ (Yi ∩ U0), and both terms here are either dense in Yi or empty – thus we need at least one of them to be

empty. In the latter case, we have that hi = cx0 (analogous to the simple case of being regular on U0), which we’ve

analyzed before. But in the former case, we have hi 6= 0 on all of V . Thus, f = g
h is regular on V ∩ U0 if h = h′xk0 ,

where h′ is a regular function on V . (Basically, we have a power of x0, and the rest can’t vanish on all of V .) Therefore

we need that f xk0 is regular on V if k is sufficiently large.

But now [j∗OU0 ](V ) = OU0(V ∩ U0) is the set of rational functions of degree 0 satisfying the condition that xk0α

is regular on V for sufficiently large k : thus we do have j∗OU0 as the limit O(nH).

Remember that we can twist a module: because O ⊂ O(H) ⊂ · · · , we can define

M(n) =M⊗O O(n), M(nH) =MM ⊗O(nH).

(These maps may not be injective ifM has torsion.) Then the limit here is

lim
n→∞

M(nH) =M⊗O limO(nH) =M⊗O j∗OU0 = j∗MU0 .

This is important, and we’ll discuss it a bit more: if we’re looking at a standard affine open of Pr , then O(U i) are

the rational functions with denominator xki . Then the sections of O(n) on U i are homogeneous fractions f = g
xk0

of

degree n, so g is of degree n + k . Then [O(nH)](U i) is the set of fractions of degree 0 such that multiplying by xn0
yields a regular function on U i , so xn0 f =

g
xki
=⇒ f = g

xm0 x
k
i

, where k is aribtrary, m ≤ n, and g is a function of degree

(n + k).

But now O maps isomorphically to O(n) on U i by the multiply-by-xni map, and we have an isomorphism on X from

O(n) to O(nH) by dividing by xn0 . So then an O-module M goes to M(n) via the isomorphism map 1 ⊗ xni , while

M(n) goes toM(nH) via the isomorphism map 1⊗ x−n0 .

So now let’s go back to the result we’re trying to show: recall that a O-module M is a finite O-module if for

every affine open set U = SpecA,M(U) is a finite O(U)-module (that is, a finite A-module). We discussed trying to

generate an O-moduleM by global sections m1, · · · , mk ∈M(X) by considering the homomorphism

(α1, · · · , αk →
∑

αimi ,

and the homomorphism being surjective means that we generateM(X).

Proof of theorem. Let M =M(U0) and A = O(U0). M is a finite A-module, and it is also [M(U)](U0).
It’s enough to show that these global sections of M(nH) restrict to generators of A mod M. This is

because we know that whenever U = SpecA is affine, OU-modules M correspond to A-modules M. And we know

how to localize this, so we can extend to the localizations of U, which is enough. Then if the global sections of

M(nH) generate M, then they generateMU0 . We have a map OkU0 →MU0 – let C be the cokernel of the supposed

generators. We know that the cokernel CU0 is zero here, and we can similarly show that CU i is zero (possibly with a

larger value of n), and then we use the sheaf axiom: remember that we have an injective map which can be represented
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as 0→ C(V )→
∏
i C(V

i).

But limM(nH) = j∗MU0 , where j is again the inclusion map, and we can pick generators for M =M(U0) – this

is supposed to be a finite A-module. We can represent by global sections of M(nH) – call them m′1, · · · , m′k – since

these map to m1, · · · , mk , these generate M.

25 April 15, 2020
We’ll begin talking about cohomology of O-modules today. There isn’t really any easy way to uniquely describe what’s

going on here, though there are lots of different constructions.

Let X be a variety, and consider the short exact sequence

0→ L f→M g→ N = 0.

This means that f is injective, ker g = Im f , and g is surjective. Then if U = SpecA is an affine open set of X, we

can map the sections via

0→ L(U) f (U)→ M(U) g(U)→ N (U)→ 0 :

this is an exact sequence of A-modules, where A = O(U). However, the sequence may not be exact if U is open but

not completely affine:

Lemma 175

If we have the short exact sequence 0 → L → M → N → 0 above, then 0 → L(U) f (U)→ M(U) g(U)→ N (U) is

exact for any open set U. (We do not need the surjectivity of g for this.)

Proof. Remember that an O-module is defined on the affine opens, and it extends to all opens by the sheaf property

of L,M, and N . If {U i} is an affine cover of U, then we have the exact sequence

0→M(U)→
∏
i

M(U i)→
∏
i ,j

M(U i ∩ U j)

by the definition ofM(U). We can then draw a commutative diagram:

0 0 0

0 L(U) M(U) N (U)

0
∏
i L(U i)

∏
iM(U i)

∏
i N (U i)

0
∏
i ,j L(U i j)

∏
i ,jM(U i j)

∏
i ,j N (U i j)

The columns are exact by the sheaf property, and because the U is and U i js are affine, the last two rows are exact

by definition (of 0 → L →M→ N → 0 being exact). Our goal is to prove that the first row is also exact (in other

words, that the additional blue 0 and arrows are valid).
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Take an element of L(U) that goes to zero in M(U), and take its image in L(U i).
∏
L(U i) is injective into∏

iM(U i), so it goes to 0, but then the L column is zero, so L(U) must be zero. We can use a similar Snake Lemma

idea to show the middle part works out too.

Basically, the sections are left exact but not necessarily right exact.

The next idea is to study global sections: by the above lemma, we know that we have the exact sequence

0→ L(X)→M(X)→ N (X).

Then the cohomology is a sequence of functors H0, H1, · · · , from O-modules to vector spaces, which “substitutes for

the lack of exactness.”

This has three characteristic properties:

• H0(M) =M(X) are just the global sections.

• We have the cohomology sequence which describes the lack of exactness: if we have a short exact sequence

0→ L →M→N → 0, we get the long exact sequence

0→ H0(L)→ H0(M)→ H0(N ) δ
0

→

→ H1(L)→ H1(M)→ H1(N ) δ
1

→ · · ·

δ0 is called the coboundary map, so computing H1(L) will tells us to what extent exactness fails. We’ll see

later that all but finitely many of these are zero.

• Basically, if X is affine, then the global section functor is exact, so we don’t need higher cohomology. The actual

statement is a bit more complicated: if U = SpecA is an affine open subset of X, and N is an OU-module, then

Hq(j∗N ) = 0 for all positive q. (Meanwhile, H0(j∗N ) is defined to be (j∗N )(X) = N (U), so it is not zero.)

Corollary 176

If X is affine, then Hq(M) = 0 for all q > 0 and allM.

Proof. Use the identity map X → X with the third charactersitic property. Then j∗N is just N .

Theorem 177

There is a cohomology theory satisfying the three characteristic properties above, unique up to isomorphism.

Unfortunately, there is no natural construction of the cohomology – the best way to think about it is to just work

with the characteristic properties.

Proof of uniqueness of cohomology. Say we are given a cohomology. Choose an affine open cover U = {Uν} of X –

it will follow from the logic that the choice of affine cover doesn’t matter. Let j be the family of inclusions of U into

X. LetM be an O-module – we want to describe its cohomology. We can restrict to open subsets: let

MU =
∏
MUν ,

∏
jν∗MUν .
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Lemma 178

Let R = j∗Mν . There exists a canonical injective map fromM→R, and Hq(R) = 0 if q > 0.

Proof. Let V be open in X. We know that V ν = V ∩ Uν cover V , so M(V ) is contained in the product
∏
M(V ν),

which we can write as a product
∏
MUν (V ). By definition, this is R(V ), soM(V ) is contained in R(V ), meaning we

do have injectivity.

For the second part,

Hq(R) =
∏

Hq(jµ∗MUν ) = 0,

because each Uν is affine.

Now we can form a short exact sequence 0→M→R→ S → 0, where S is the cokernel of the map fromM to

R. We know that the correspondending cohomology sequence has

0→ H0(M)→ H0(R)→ H0(S)→

H1(M)→ 0→ H1(S) . . . ,

but the key point here is that in the exact sequence

0→ H0(M)→ H0(R)→ H0(S) δ
0

→ H1(M)

with the cohomology given and a chosen covering of X, we know what the H0s look like – this gives us the first three

terms of the exact sequence, because H0(R) depends on the covering rather than the cohomology.

From here, we can look at 0 → H1(S) d→ H2(M) → 0: H1(S) is determined by M, not by the cohomology, so

H1(S) is unique, and therefore H2(M) is unique. Now we can repeat this argument inductively to show that everything

is unique: we do need to check uniquness in the δs, but the boxed sequence identifies H1(M) uniquely independent of

the cohomology – this fixes δ, and the idea is that knowing the coboundary maps is enough.

26 April 17, 2020

Recall the characteristic propertes of cohomology, which is a series of functors H0, H1, H2, · · · . Here, M is an OX-

module for some variety X.

• H0(X,M) = H0(M) = X is just the vector space of global sections. But there isn’t a very clear correspondence:

it’s not clear that when M is a finite module over the coordinate ring, H0(M) forms a vector space over the

scalars.

• We have the cohomology sequence: if we have a short exact sequence 0 → L → M → N → 0, this yields a

sequence of maps Hq(L) → Hq(M) → Hq(M) (because Hq is a functor, these maps exist by definition), and

then we have a coboundary map δ to Hq+1(L) such that the entire sequence is exact.

• If U is an affine open set in X, j is the inclusion map U → X, and N is an OU-module, then Hq(X, j∗N ) = 0)
for all q > 0. In other words, we don’t really have a cohomology for affine open sets – it just looks the same as

the exact sequence we already have.

We can talk about the third point here in more generality:
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Lemma 179

If Y is affine, f : Y → X is a morphism, and N is an OY -module, then Hq(X, f∗N ) = 0 for all q > 0.

This has consequences for what are called affine morphisms:

Definition 180

Let Y and X be varieties. A morphism f : Y → X is an affine morphism if for all affine open sets U in X,

V = f −1(U) is affine in Y .

Example 181

The most important case is when f is an inclusion of a closed (or open) subvariety Y into X: this is indeed an

affine open set.

Theorem 182

Let f : Y → X be an affine morphism, and let N be an OY -module. Then the cohomology

Hq(Y,N ) ∼= Hq(X, f∗N ).

Proof. We want to show that the sequence of Hq(X, f∗N )s is the cohomology for N , so we just need to verify the

three characteristic properties. Define F q(N ) = Hq(X, f∗N ) for convenience.

For the first characteristic property, we wish to show that F 0(N ) = N (Y ) forms the space of global sections. This

is H0(X, f∗N ), which is the space of global sections of f∗N on X. But f∗ is defined to have the sections of N on the

inverse image of X, which means this is indeed N (Y ) = H0(Y,N ).
For the second property, we need to look at a short exact sequence 0 → L → M → N → 0 of OY -modules.

Because f is an affine morphism, we claim that the sequence 0 → f∗L → f∗M → f∗N → 0 is also exact. But the
definition of being exact depends on being exact on the affine open sets, and if U is open in X, we want to know

whether the sequence

0→ f∗L(U)→ f∗M(U)→ f∗N (U)→ 0

is also exact. But letting V ∈ Y be the inverse image f −1(U), we konw that f∗L(U) = L(V ), so that sequence is

actually just

0→ L(V )→M(V )→ N (V )→ 0,

and this is exact because V is an affine open set of Y and 0→ L →M→N → 0 is exact.

For the third property, we take an affine open V ∈ Y and an OV -module N , and we let j : V → Y be the inclusion

map. We want to show that F q(j∗N ) = 0 for all q > 0, and this is just

F q(j∗N ) = Hq(X, f∗j∗N ).

The composition f∗ ◦ j∗ is a morphism, and V is affine, so Lemma 179 tells us that this is zero, as desired.

Example 183

Our goal with this will be to compute a specific cohomology: that of the twisting module O(n) on projective

space Pd .
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First of all, H0(Pd ,O(n) is the set of homogeneous fractions of degree n, but being a global section means that

our denominator must be a constant (so it doesn’t vanish anywhere), so this is the space of homogeneous polynomials

of degree n, which is a
(
n+d
d

)
-degree vector space whenever n ≥ 0.

To proceed, let’s map OP(n) → OH(n) to the hyperplane at infinity where x0 = 0: we just send x0 to 0. The

kernel is the set of homogeneous polynomials of degree n − 1 times x0, so we get the exact sequence

0→ OP(n − 1)
·x0→ OP(n)→ OH(n)→ 0.

This gives us a cohomology sequence: we’ll just write the dimensions of the spaces instead of the spaces themselves,

which yields

0→
(
(n − 1) + d

d

)
→

(
n + d

d

)
→

(
n + (d − 1)
d − 1

)
.

(Indeed, for this to be an exact sequence, the dimension of the middle space is supposed to be the sum of the

dimensions of the two outside spaces, and this is Pascal’s identity.)

Theorem 184

We have Hq(O(n)) = 0 for all q > 0 and n ≥ 0.

Proof. We induct on d : we can assume this is true for the cohomology on H, which is Pd−1. So then we can assume

the third columns of the dimensions of Hq are all zero. But the first columns all have dimension zero by induction on

n, so the second column all has dimension zero.

Theorem 185

Suppose n = −r for some r > 0. Then the dimension hq(O(−r)) = 0 if q 6= d , and the dimension of the dth

cohomology

hd(O(−r)) =
(
r − 1
d

)
.

Proof. First, we do r = 1. We look at our exact sequence (where i∗ is the inclusion of H into P)

0→ OP(−1)→ OP → i∗OH → 0 :

the dimensions on the seccond and third columsn are 1 on the first cohomology (corresponding to the constant

functions, the scalars), and zero everywhere else. So all of the cohomology on the first columnOP(−1) is 0 for O(−1).
And then an induction argument works just like for the positive case: consider

0→ OP(−r − 1)→ OP(−r)→ OH(−r)→ 0,

inducting on r in the second column and d in the third.

Example 186

Let Y be a plane curve of degree r in P2. Then we have (where i∗ is the inclusion Y → P2)

0→ OP(−r)
·f→ OP → i∗OY → 0.

(a regular function on P2 restricts to a regular function on Y , and the functions that are 0 on Y are those divisible

by f ).
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We’ve now computed the dimensions in the first two columns: column 1 (OP(−r) has 0, 0,
(
r−1
2

)
, followed by a

bunch of zeros, and column 2 (OP) has 1 followed by a bunch of 0s. So then using properties of exactness gives us

that column 3 (OY ) has dimensions 1,
(
r−1
2

)
, 0, · · · . In other words,

h1(Y,OY ) = pa

is the arithmetic genus of Y , which is also equal to g, the geometric genus, when Y is smooth.

In both of the above cases, it was okay to just ignore the i∗, because the cohomology transfers over:

Hq(Y,OY ) ∼= Hq(P2, i∗OY ),

because i∗ is an affine morphism.

Theorem 187

LetM be a finite OX-module, where X = Pn. Then

Hq(M(n)) = 0

for sufficiently large “twistings” n.

Proof. We know that M(r) is generated by global sections for sufficiently large r : thus, there exists a map from

Om →M(r) (where O is the structure sheaf – sufficiently large twists are finitely generated), and if K is the kernel,

we have the exact sequence

0→ K → Om →M(r)→ 0.

Twist this sequence, which yields

0→ K(r)→ O(n)m →M(n + r)→ 0.

We know that the middle column has dimension 0 for q > 0 and n ≥ 0 by Theorem 184. But then we have

Hq(O(n)m)→ Hq(M(n + r)) δ→ Hq+1(K(n))→ Hq+1(O(n)m),

where the first and last spaces are 0.

Lemma 188

Hq(M) = 0 for sufficiently large q.

Apply this to the coboundary map, which is an isomorphism: Hq(M(n + 1)) → Hq+1(K(n)) for sufficiently large

q, so because Hq+1(K(n)) is zero for sufficiently large q, Hq(M(n + r)) is also zero for sufficiently large q.

27 April 22, 2020
Due to popular vote, we’ll be replacing the quiz with a final assignment: it will be more cumulative but also more

routine than the usual homework questions.

We’ll begin by discussing support:
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Definition 189

Suppose that A is a finite type domain for simplicity and M is a finite A-module. The annihilator of M, denoted

ann M, is an ideal of A: it’s the set of α such that αM = 0. The support of M, denoted supp M, is the zero

locus V (ann M) of the annihilator in SpecA.

This definition carries over to O-modules, because both the support and annihilator are compatible with localization.

Proposition 190

Let M = M/(mpM) = M ⊗A k(p). Then

supp M = {p ∈ X : M 6= 0}.

In other words, the support of M is the “set of points of M that are not zero.”

Proof. Let I be the annihilator ann M. If I 6⊂ mp, then there exists α ∈ I such that α(p) 6= 0. But on M, scalar

multiplication by α is the same as multiplying by α(p). If this value is nonzero, then αM = α(p)M = M is not zero.

On the other hand, if M = 0, then mpM = M, and now Nakayama tells us that there exists an element z ∈ mp

such that (1− z)M = 0. Thus an element of I, 1− z ∈ ann M, so I is not contained in the maximal ideal.

The next result we’ll cover today is the vanishing of cohomology for large dimension. First of all, suppose that

X is a projective variety and we have an inclusion ι : X → P. LetM be an OX-module: we know that

Hq(X,M) ∼= Hq(R, ι∗M),

because ι is an affine morphism. So we can work with cohomology on projective space instead, which is convenient

because we know how twisting works there.

So now we can let M be an O-module on P, and let U0 : x0 6= 0 be the standard affine open set. If we let

j : U0 → P be the inclusion map, we have the sequence

M→M(H)→M(2H)→ · · · ,

whereM(H) =M⊗O O(H), such that the limitM(nH) is the direct image j∗MU0 .

Theorem 191

LetM be a finite O-module on projective space, and suppose supp m has dimension k . Then Hq(M) = 0 for all

q > k .

Proof. Consider the map fromM(−1) toM, given by multiplying by x0. Embed this in the exact sequence

0→ K →M(−1)→M→ C → 0.

The twists have the same support asM: O(n) is locally isomorphic to O. x0 annihilates K and C, so we can assume

that the support of K (some closed set in projective space) is not contained in the hyperplane, meaning that the

dimensions of the support of K and C are both less than k . (The support of K is contained in the support ofM, and

we can assume that x0 is not zero on any component of the support ofM.)

Here, we have the exact sequences

0→ K →M−1 →M→ 0
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which corresponds to the cohomology sequence

Hq(K)→ H(M(−1))→ Hq(M)→ Hq+1.

By induction, we know that the first and last of these are zero, so we have an isomorphism between Hq(N ) and

H(M(−1)). Similarly,

0→M(−1)→M→ C → 0

means that Hq(M(−1)) is isomorphic to Hq(M).
Now we can twist: replacingM byM(n),

Hq(M(n − 1)) ∼= Hq(M(n))

for n > k . And then taking the limit, for all q > k ,

limHqM(n) = Hq(limM(n)) = Hq(j∗M0
U) = 0,

because U0 is an affine open set. This means that Hq must be zero for sufficiently large 0.

Corollary 192

If P = Pn, then Hq(M) = 0 for all q > n.

Our next result basically says that “twisting kills the cohomology:”

Theorem 193

LetM be a finite O-module on P. Then Hq(M(n)) = 0 for all q > 0 and n sufficiently large.

Proof. Recall that M(r) is generated by global sections for large enough r , which means we have a surjective map

represented by the exact sequence Ok →M(r)→ 0. Letting N be the kernel, we have some exact sequence

0→ N → Ok →M(r)→ 0.

Twist this sequence to get

0→ N (d)→ O(d)k →M(d + r)→ 0,

and we know this yield the cohomology map

HqO(d)k → HqM(d + r)→ Hq+1N (d)→ Hq+1O(d)k ,

and the first and last thing here are zero, so the middle two are isomorphic. So by the previous result, we know that

Hq(M(d + r)) = 0 for large enough q, and the same logic shows that HqN (d ′) = 0 for some large enough d ′. Thus

Hq−1M(d ′ + r) = 0, and we can keep repeating this down for smaller and smaller q (adding some r each time).

Theorem 194

LetM be a finite module on P. Then Hq(M) is a finite-dimensional vector space for all q.

Proof for q > 0. As above, embed the multiply-by-x0-map in an exact sequence

0→ K →M(−1)→M→ C → 0.
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We can induct on the dimension of the support: because K and C are of lower dimension, it suffices to assume

HqK,HqC are finite-dimensional vector spaces. We have the exact sequences

HqK → Hq(M)(−1)→ HqM→ Hq+1K,

where the first and last term are both finite-dimensional vector spaces. Then the middle two must be both finite-

dimensional or both infinite-dimensional. The same argument works for the sequence

Hq−1C → Hq−1M→ HqM→ HqC.

so we know that HqM(−1) and Hq(M) are either both finite-dimensional or both infinite-dimensional. Now we can

twist and use the previous theorem: Hq(M(n)) will eventually have cohomology zero, and we can use descending

induction on n to show that all the twists have finite dimension.

The q = 0 case is harder to prove directly – it’s not obvious that the global sections form a finite-dimensional

vector space.

28 April 24, 2020
We’ll discuss the cohomology of projective smooth curves today – unfortunately, we won’t get time to talk about

surfaces.

First of all, a review: we define cohomology on projective space P for a finite O-module (finiteness isn’t officially

necessary, but it makes things easier for our discussion – for example, the support exists). There are three theorems

we shuld know about:

• If the dimension of the support suppM is k , then HqM = 0 for all q > k .

• The cohomology of the twist Hq(MM(n)) is 0 for sufficiently large n for any q > 0. (This one will be less

important today.)

• Hq(M) is a finite-dimensional vector space (this requires finite module).

These come from a paper by Serre from 1955 – this was also the first time the concept of an O-module was

introduced.

One other fact we should know: if i∗ : X → P is an inclusion of a projective variety, andM is an OX-module, then

Hq(X,M) ∼= Hq(P, i∗M).

This means that both the first and third result that we’ve stated above always hold for any projective variety.

We’ll now move to new materials. Recall that local rings of a smooth projective curve X are valuation rings: let

vp be the valuation at the point p ∈ X.
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Definition 195

A divisor on a smooth projective curve X is a finite combination of points

D =
∑
i

ripi , ri ∈ Z.

The divisor of a rational function f is

divf =
∑
p∈X

vp(f )p.

Since the valuation is zero on all but finitely many points, the divisor of a rational function is indeed a finite sum:

it’s basically the sum of the zeros minus the sum of the poles, counting multiplicity. Here’s how we can make that

more precise:

Definition 196

If vp(f ) > 0, then f has a zero of order r = vp(f ). Meanwhile, when vp(f ) < 0, then f has a pole of order
r = −vp(f ).

Definition 197

A divisor D is effective if ri ≥ 0 for all i : then we say that D ≥ 0. Given an open set U, D is effective on U if

ri ≥ 0 for all pi ∈ U.

One classical problem of algebraic geometry is to determine the rational functions f whose poles are bounded by

a given effective divisor, and we’ll use cohomology to discuss this.

Definition 198

An O-module associated to a divisor D is defined such that its sections on O(D) on an open set U are the

rational functions f such that div f +D is effective, plus the zero function.

By definition, the cohomology H0(O(D) is exactly this set of rational functions f such that div f +D ≥ 0, as well

as zero. This is the set that we’re trying to understand in the classical problem.

Lemma 199

O(D) is an O-module, and it is locally free of rank 1 (so it is free on each open set, meaning it looks like O).

Example 200

Consider the divisor D = −p.

This is the set of points such that div f− p ≥ 0, meaning that f must have a zero at p (so that it cancels out with

the −p). Thus, on any open set U that contains p,

O(−p)(U) = functions with a zero at p = mp.

On the other hand, if U does not contain p, then the sections are just the regular functions.
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Example 201

Now consider the divisor D = p.

Then our functions are allowed to have a pole of order at most 1 at p, so on any open set U that contains p,

O(p)(U) = rational functions with a possible pole at p.

(And again, we just get the regular functions for any U not containing p.)

The reason we care about cohomology is that it tells us that dimension of these spaces. We’ll start by looking at

our first example with the maximal ideal: we have the exact sequence

0→ O(−p)→ O → κp → 0,

where κp is the one-point module κ(p). We’ll tensor this with O(D): the tensor product is right exact normally, but

because O(D) is locally free, we’ll still have the whole exact sequence.

Lemma 202

The module associated to O(D + E) is isomorphic to O(D)⊗O O(E).

Basically, we know that div f + div g = div f g: we’re doing a bit of handwaving here. But then we end up with

the exact sequence

0→ O(D − p)→ O(D)→ ε→ 0,

where ε is a one-dimensional module concentrated at p (it’s also a residue field like κ(p), but not canonically). When

we write down the cohomology, we’re working with a curve, which means that the dimensions h2 and higher are zero

for all of O(D − p),O(D), and ε.

We know that ε is a one-dimensional module, so its global sections have dimension 1: h1(ε) = 1 . And its support

has dimension 0 (a single point has dimension 0), so H1(ε) has dimension 0.

So now there are only two possibilities to account for the boxed 1: either we have

h0(O(D)) = h0O(D − p) + 1 =⇒ h1(O(D)) = h1O(D − p),

meaning the 1 is absorbed into the sequence at level h0, or

h0(O(D)) = h0O(D − p) =⇒ h1(O(D)) = h1O(D − p)− 1

meaning the 1 is absorbed at level h1.

Definition 203

LetM be a finite O-module. The Euler characteristic χ(M) is defined via

χ(M) =
∑
q

(−1)qhq(M).

In the case of a curve, only the dimensions h0 and h1 can be nonzero, so

χ(M) = h0(M)− h1(M).
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Note that this already requires the first and third results from above to be a consistent definition. But we can plug

this in to both of the two cases above:

Corollary 204

For a smooth curve, we always have

χ(O(D)) = χ(O(D − p)) + 1.

Our next result shows that we can actually compute the Euler characteristic:

Definition 205

The degree of a divisor D
∑
i ripi is the sum of its coefficients:

degD =
∑
i

ri .

Theorem 206 (Riemann-Roch, version 1)

We have

χ(O(D)) = degD + χ(O).

So if there was no h1, we would have already computed the dimension for our classical problem.

Proof. This theorem is clear for the zero divisor D. We can get to O(D) by adding or subtracting finitely many points.

But each time we go from D to D− p or vice versa, and the above corollary shows us that we gain the appropriate

1 in each case. So induction of our previous corollary yields the result.

This version of Riemann-Roch is good for h0 (looking at the global sections), but not for h1.

Corollary 207

Let f be a rational function. Then deg(div(f )) = 0 (this means the number of zeros of f is equal to the number

of poles of f ), and this is also true if we replace “zeros of f ” with “zeros of f − c” for some c ∈ C.

Proof. Let D = div(f ), and consider the isomorphism O(D) f→ 0. Indeed, the sections of O(D) on U are the rational

functions α such that div(α) +D ≥ 0 on U, and

div(f α) = div(f ) + div(α) ≥ 0

on all of U. Thus, f α must be a section of O on U. Going backwards, we know by Riemann-Roch that χ(O(D)) =
degD + χ(O), but we also know that χ(O(D)) = χ(O), so degD = 0 because isomorphic modules have the same

characteristic. And f has the same poles as f − c , so we also get the same zeros.

Now notice that H0(O) = C: the number of zeros is equal to the number of poles, but global sections have no

poles, so there can’t be any zeros either. Let h1(O) be the arithmetic genus pa of O: thus Riemann-Roch can be

rewritten as

χ(O(D)) = degD + 1− pa.

And thus notice that

lim
n→∞

dimH0(O(np)) =∞,
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because deg(np) goes to infinity, meaning χ(O(D)) goes to infinity, and χ = h0 − h1. In other words, there exists a

rational function f with a pole only at p.

Corollary 208

As a final example, we can show that any projective curve X is connected in the classical topology.

Proof. Suppose otherwise: say that p is an isolated point, and we can write X = X1 ∪ X2 for clopen X1, X2. Pick a

point p ∈ X1, and choose a rational function f with a pole only at p (meaning there are no poles on X2). f is analytic

on X2, which is a compact space, and a bounded analytic function on a compact manifold is some constant c (this is

the maximum principle).

But then f − c is zero on Xi , and it is a rational function on a curve, so it can only have finitely many zeros, which

is a contradiction.

29 April 27, 2020
Today, we’re going to apply the Riemann-Roch theorem to curves of genus 0, 1, and 2. We’ll start with the case

where we have a smooth curve Y with function field K.

Proposition 209

Any point (α0, · · · , αn) of Pn with values in K defines a morphism π : Y → Pn.

Proof. For the morphism to be defined on all of Y , we must be able to pick an index i for each q ∈ Y such that

βj =
αj
αi

are all regular at q (we don’t need to worry about being nonzero, since αiαi = 1). Then we define the morphism

via

π(q) = (β0(q), · · · , βn(q)).

Because Y is a smooth curve, its local rings are valuation rings. Therefore, if we pick i so that the valuation at q, vq(αi),

is minimal (highest order pole), dividing must yield something that is regular (because vq
(
αj
αi

)
= vq(αj)−vq(αi)).

Proposition 210

Let Y be a projective curve, and let π : Y → X be a nonconstant morphism. Then π is finite (meaning that the

preimage Y ′ = π−1X ′ of any affine open set X ′ = SpecA is affine, and writing it as SpecB makes B a finite

A-module).

Proof. The fibres of X are closed subsets of Y , but Y is a curve of dimension 1 and the whole curve doesn’t map to

a point. So our fibres are finite sets, and we can use Chevalley’s Finiteness Theorem.

Proposition 211

Let π : Y → X be a nonconstant finite morphism of curves, and let K and L be the function fields of X and Y ,

respectively. Then L is a finite field extension of K of some degree n, and the fibres of X have n elements for all

but a finite number of points in X.
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Proof sketch. We can assume that X, Y are their affine open sets, X = SpecA, Y = SpecB, and B is a finite A-

module. Pick a primitive element of the field extension and look at the minimal polynomial of that element (which is

of degree n): then the discriminant is nonzero at all but finitely many points in X.

With that, we can move on to discussing Riemann-Roch.

• First of all, suppose Y has (arithmetic) genus 0, which means that the dimension pa = h1OY is 0. This arithmetic

genus is also equal to the geometric genus g for projective smooth curves (which we’ll show later on).

Consider the exact sequence

0→ O → O(p)→ ε→ 0,

where ε is the one-dimensional module supported at p (isomorphic to the residue field module). Then the

cohomology sequence has dimensions as follows because h0O is just the constant functions:

O O(p) ε

h0 1 ? 1

h1 0 ? 0

h2 0 0 0.

But we also have coboundary maps which help us figure out the rest of the table too:

O O(p) ε

h0 1 2 1

h1 0 1 0

h2 0 0 0.

This means that H0O(p) contains 1 as well as some nonconstant function α: by looking at the divisors, α has

a pole of order 1 at p and no other poles. Consider the morphism

π : Y
(1,α)→ P1 = X,

which evaluates at a point q to produce f (q) = (1, α(q)) when q 6= p and (α−1(p), 1) = (0, 1) at q = p (where

we have a pole). Remember that Riemann-Roch shows that α has a simple pole and takes on every value exactly

once (because the divisor has degree 0, meaning that the number of zeros of f − c is the same as the number

of poles of f ), which means that the map π : Y → X is a bijective finite morphism. Since X and Y have equal

function fields, but both are normal, this means that all curves of genus 0 are isomorphic to P1.

• In the case where we have genus 1, our table looks like the following:

O O(p) ε

h0 1 ∗ 1

h1 1 ? 0

There are two possibilities for ∗: either (h0(O(p)), h1(O(p))) = (1, 0) or (2, 1). But if h0(O(p)) = 2, then there

is a nonconstant rational function α which means the curve is isomorphic to P1, a contradiction. Thus we must

have the (1, 0) case.

Now we can consider the exact sequence

0→ O((k − 1)p)→ O(kp)→ ε→ 0,
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where we’re working with a slightly different ε, and say that k ≥ 2. We can inductively compute the dimension:

putting in (k − 1, 0) in the first column for O((k − 1)p) means that we have a second column of (k, 0): in other

words, h0O(kp) = k for all k ≥ 2. Then H0(O(2p)) contains 1, but it also contains a nonconstant function x

such that x has a pole of exactly order 2 at p (it can’t be order 1 by our earlier argument).

Next, we can consider h0(O(3p)): this also contains 1 and x , and it also contains an element y with a pole of

order 3 (because it is in H0O(3p) but not H0O(2p))l, which is independent from x because we have different

order poles. We can consider the morphism

Y
(1,x,y)→ P2

sending a point q to (1, x(q), y(q)) whenever q 6= p. Because y has a bigger order pole, this means that at

q = p, we send p to (y−1, xy−1, 1) = (0, 0, 1). This is a finite morphism, so the image is some curve X in P2

(its dimension has to be 1).

Now consider some line L : ax0 + bx1 + cx2 = 0 in P2, where a, b, c are generic. Then the points of Y that map

to L are those q ∈ Y such that a+ bx(q)+ cy(q) = 0, a+ bx + cy is a rational function on Y , and it has a pole

of order 3 at p, so it takes on every value 3 times. Thus, there are three points q with π(q) ∈ L ∩ X, meaning

that X is a cubic curve: let’s find its equation.

Notice that x2 has a pole of order 4 at p, so it is in O(4p), and 1, x, y , x2 are still independent. Thus, the

rational functions {1, x, y , x2} form a basis for H0O(4p), and similarly {1, x, y , x2, xy} for H0O(5p). Now y2

and x3 both have a pole of order 6 and we have a 6-dimensional space, so we get a linear dependence. This

gives us a plane cubic X, so every curve of genus 1 is isomorphic to an elliptic curve.

• Finally, we have the following table for curves of genus 2:

O O(p) ε

h0 1 1 1

h1 2 1 0

But now look at O → O(p)→ O(2p)→ ε:

O(p) O(2p) ε

h0 1 ∗ 1

h1 1 ∗ 0

The middle column either looks like (1, 0) or (2, 1), but it turns out that both are impossible.

We’ll move on soon to the second version of Riemann-Roch, which tells us more about what H1 actually looks like:

that will allow us to say more about what’s going on in this last case!

30 April 29, 2020
As an interlude, we’ll discuss the Birkhoff-Grothendieck theorem today:
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Theorem 212 (Birkhoff-Grothendieck)

Let X = P1, and let M be a locally free OX-module of rank r . Then

M∼=
r⊕
i=1

O(ni).

splits into a direct sum of (rank one) twisting modules.

This was proved by Grothendieck in this form, and it’s equivalent to a version with matrices proved by Birkhoff:

let A0 = C[u], A1 = C[v ], where u = x1
x0
, v = x0

x1
(these are the coordinate rings of the two standard affine open sets).

Then A01’s elements are the Laurent polynomials C[u, u−1]. Then we have the following:

Theorem 213

Suppose N is an invertible A01-matrix. Then there exists an invertible A0-matrix Q and an invertible A1-matrix P

such that Q−1NP is diagonal with diagonal entries that are integer powers of u.

When we look at a locally free moduleM, we’ll get a free module on U0 and on U1. Then N basically tells us how

to glue those two together, and this idea above of changing basis tells us that we can do exactly that in a simple way.

We’re going to prove Grothendieck’s version of this here (we’ll verify the Birkhoff matrix version on our homework

for 2× 2 matrices), but we’ll need to review some terminology first.

Definition 214

Let A be a domain and M be an A-module. An element m ∈ M is a torsion element if am = 0 for some a 6= 0 in

A (that is, the annihilator of m is nonzero). The set of torsion elements in M forms a module called the torsion
submodule. M is torsion-free if the submodule is zero, and it is a torsion module if all elements have torsion.

This works well with localization: if M is a torsion-free A-module and s 6= 0 is an element of A, then Ms is a

torsion-free As -module. Thus, the definition of “torsion-free” extends to O-modules as well.

We also want a few results about curves:

Lemma 215

Let X be a curve and M be an OX-module. If the torsion submodule is nonzero, then M has a global section:

H0M 6= 0.

Proof. ReplaceM by its torsion submodule, and assume it is finitely generated (take a finitely generated submodule).

This is okay, because we’re just trying to show that H0 is not zero.

Each element inM is killed by something, so its annihilator is a nonzero ideal, meaning that the annihilator module

is nonzero. Thus, the support suppM, which is a closed subset, is a finite set S (this is where we use the fact that

X is a curve). So now we use the sheaf axiom: we can choose an affine open set U that contains S. Let V = X − S:

then X = U ∩V is a union of two open sets, andM(V ) = 0, soM(X) =M(U). But U is affine, soM(U) is nonzero

as long as the module isn’t zero, and thusM(X) is nonzero.

Proposition 216

Let X be a smooth curve and M be a torsion-free finite O-module. Then M is locally free: that is, there exists

an affine covering {U i} for X such thatM(U i) is isomorphic to O(U i)r for some r .
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Proof. Since this is a local statement, we can assume X = SpecA. Let p be a point in X: recall the local ring Ap is

the set of elements α ∈ K in the fraction field of A that are regular at p, and we can get Ap by adjoining all elements

a that don’t evaluate to zero at p.

Because X is a smooth curve, we know that this local ring is a valuation ring. If M is a torsion-free O-module,

then this corresponds to a finite A-module M (because O-modules and A-modules correspond). Then

Mp =M⊗A Ap

is the module obtained by localizingM at p. Since Ap is a valuation ring, it is a principal ideal domain, so every torsion

free module is free: Mp is isomorphic to Apr by using a basis (m1, · · · , mr ) of Mp. Since there are finitely many of

these, the mi are all in some localizations Ms for a nonzero s ∈ A, and then we get a map Ars → Ms , which we can

embed in the exact sequence

0→ K → Ars →Ms → C → 0.

But we can localize this sequence: when we localize at a point p, we have that Kp = Cp = 0 (because of the

isomorphism), so there exists some s ′ ∈ A such that Kss ′ = Css ′ = 0, and now we’ve shown the result we want

(isomorphism for a localization).

Definition 217

Let A be a Noetherian domain, and let M,N be A-modules. HomA(M,N) is an A-module consisting of the module

homomorphisms M → N: addition and scalar multiplication of these homomorphisms are defined in the obvious

way.

We’ll write this as A(M,N). There are some relevant functorial properties here: if we have a module homomorphism

N1 → N2, we can map from A(M,N1) →A (M,N2). On the other hand, when we have a module homomorphism

ψ : M1 → M2, we have a contravariant map A(M2, N)→A (M1, N).

Fact 218

If 0 → N1 → N2 → N3 is an exact sequence, then so is 0 →A (M1, N1) →A (M2, N2) →A (M3, N3). Meanwhile,

if M1 → M2 → M3 → 0 is exact, then so is (again, contravariant) 0→A (M3, N)→A (M2, N)→A (M1, N).

Proposition 219 (Splitting)

If we have a set of maps N i→M s→ X, thenM is isomorphic to the direct sumM∼= N ⊕K, where K = ker s.

(We just need to check that N ∩K is empty and that N +K =M.)

Corollary 220

Any functor F on O-modules carries direct sums to direct sums.

One final fact to know about Hom is the following:

Lemma 221

Let M,N be A-modules for some Noetherian domain A. Let s ∈ A be a nozero element: if M is a finite module,

then

As (Ms , Ns)
∼= (A(M,N))s .
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We’ll finish the proof next time: we’ll want to refer to the dual module.

Definition 222

The dual module of an A-module M is

M∗ =A (M,A).

This is compatible with localization: for instance, if M is an O-module and M∗ =O (M,O) (because Hom is

contravariant in the first variable), a map M1 →M2 will give us a map M∗
2 →M∗

1. (And notice that we define the

dual module in this order because A(A,M) ∼= M: the homomorphism is dependent on where 1 is sent.)

31 May 1, 2020
We’ll put the Birkhoff-Grothendieck theorem aside for now and focus on a new topic: the second version of Riemann-

Roch.

We’re going to need some new terminology, and our first topic will be that of branched covers of curves. Suppose

that π : Y → X is a nonconstant morphism of smooth projective curves: recall that Chevalley’s Finiteness Theorem

tells us that π is a finite morphism, so if U = SpecA is an affine open subset of X, then its preimage π−1U is also

affine: writing it as SpecB, we’ll have an injective homomorphism A→ B, and B will be a torsion-free finite A-module,

and therefore it will be locally free. This means that it makes sense to take the direct image π∗OY , and this will be a

finite OX-module (because the modules on the affine open sets are all finite) that is locally free, say of rank n. We’ll

just make this our definition:

Definition 223

A morphism π : Y → X of smooth projective curves is called a branched cover.

One important concept here is that of ramification: let q ∈ Y have image p = π(q). We have a local ring at each

point of our smooth curve, so we can let x be the generator for our local ring of X at p (that is, it is a generator in

some affine open set). Because p is the image of q, and the local rings are valuation rings, we can also evaluate x at

q:

vq(x) = e

for some e ≥ 0, which we call the ramification index at q. Remember that our fibres are finite, so each point p ∈ X
has some points q1, · · · , qk in the fibre over p.

Proposition 224

Let ci be the ramification index at qi . Then
∑k
i=1 ei = n is the rank of the OX-module π∗OY , and the extended

ideal can be written as

mpOY = me1q1 · · ·m
ek
qk
.

In the case where we have affines U = SpecA and π−1U = SpecB, then mp is an ideal of A, and we have a map

A→ B such that

mpB = me1q1 · · ·m
ek
qk
.

We’ll move on to another preliminary topic:

82



Definition 225

Let Y be a smooth curve. An OY -module L is invertible if it is locally free of rank 1.

The reason for the name here is that

O(D)⊗O O(E) ∼= O(D + E) :

functions with poles D times functions with poles E are the functions with poles D + E. This means that

O(D)⊗O O(−D) ∼= O,

and since O can be thought of as a “unit” when doing an O-tensor product, O(D) and O(−D) are inverses.

Proposition 226

Every invertible module is isomorphic to OY (D) for some divisor D.

D isn’t necessarily unique here, so it’s interesting to ask when O(D) and O(E) are isomorphic. Remember that

the sections of this module on an open set U are the rational functions α on Y such that

div(α) +D

(where the divisor div counts the zeros minus the poles) is an effective divisor (≥ 0) on U. (And we also need to include

the element 0.) So suppose we have an isomorphism ϕ : O(D)→ O(E): if we look on an open set not containing any

points in D, then we just want the sections of O, the structure sheaf.

The idea is to note that O(D) and O(E) are both subsets of the function field of Y , which we denote K. “Lifting”

the isomorphism to K → K, we know that any map from K to itself is a multiplication by a rational function f . Thus,

we need to find a function f such that

div(α) +D ≥ 0 ⇐⇒ div(f α) + E ≥ 0,

but because the divisor is multiplicative, this means div(f α) = div(f ) + div(α), and then we can equivalently say that

D ≥ 0 ⇐⇒ div(f ) + E ≥ 0,

meaning that div(f ) = D − E .

Definition 227

Two divisor D,E are linearly equivalent if D − E = div(f ) for some rational function f .

Corollary 228

O(D) ∼= O(E) if and only if D and E are linearly equivalent.

A final preliminary concept we’re going to need is that of a differential:

83



Definition 229

Let A be an algebra (scalars C), and let M be an A-module. A derivation is a map δ : A → M such that

δ(a + b) = δ(a) + δ(b), δ(ab) = aδ(b) + bδ(a), and δc = 0 for all scalars c ∈ C.

(These are like the calculus rules for differentiation.)

Definition 230

A module of differentials ΩA is an A-module generated by elements da, for each a ∈ A, with the relations

d(a + b) = da + db, d(ab) = a db + b da, dc = 0 for c ∈ C.

These relations cut down the module to a finite A-module. Since the relations look the same in the two above

definitions, we can make the following observation:

Corollary 231

Derivations δ : A→ M correspond bijectively to module homomorphism ϕ : ΩA → M, such that

δ = ϕ ◦ d

(where d maps A to ΩA).

Suppose, for example, that R = C[x1, · · · , xn]. Then ΩR is a free R-module with basis dx1, · · · , dxn, because any

polynomial f has differential

df =
∑
i

∂f

∂xi
dxi ,

and we can inductively continue this reasoning.

Note that Ω is compatible with localization: if s 6= 0 is an element of a domain A, then ΩAs ∼= (ΩA)s . That means

we can define the OX-module ΩX by letting its sections on an affine open set U = SpecA be ΩA.

One other fact: suppose that I is an ideal of a ring A, and A = A/I. Consider the submodule

N = dI + IΩA,

which tells us that dα = 0 for any α ∈ I, as well as that αγ = 0 for any α ∈ I, γ ∈ ΩA. Then we have that

ΩA
∼= ΩA/N.

Proposition 232

Let Y be a smooth curve. Then ΩY is an invertible module.

Therefore, we can write ΩY ∼= O(K) for some divisor K, which we call the canonical divisor (up to linear

equivalence).

With all of this, we’re finally able to state our result:

Theorem 233 (Riemann-Roch, version 2)

Let Y be a smooth projective curve, let D be a divisor, and let K be a canonical divisor. Then

h0O(D) = h1O(K −D), h1(O(D)) = h0O(K −D).
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(These two equations are equivalent because we can plug in K −D for D in the first equation.) It’s not very clear

why differentials come up, and the proof won’t make that very clear either.

A corollary of this theorem will be the following result:

Theorem 234

For any smooth projective curve Y , we have pa = g (where pa = h1OY and g is the topological genus). In addition,

the degree of the canonical divisor is 2g − 2 = 2pa − 2.

32 May 4, 2020
We’ll start with a bit of review: recall that for a variety X, we can construct an O-module of differentials ΩX . If we

write X = SpecA, then ΩA is generated by elements {da : a ∈ A}, such that d(a+b) = da+db, d(ab) = adb+bda,

and dc = 0 for a, b ∈ A and c ∈ C. When Y is a msooth curve, ΩY is locally free of rank 1 (it is invertible), so

we know by Birkhoff-Grothendieck that ΩY ∼= O(K) for some canonical divisor K. (Note that we can have different

canonical divisors if they are linearly equivalent – that is, their difference is the divisor of a rational function.)

Then the second version of Riemann-Roch tells us that if Y is a smooth projective curve and D is a divisor, then

h0(O(D)) = h1(O(K −D))

(and therefore the same result holds when we swap the roles of D and K −D, since we can plug in D → K −D).

Note that when we apply this to the divisor D = 0, h0O(K) = h1O is the genus g of the variety, and h1O(K) =
h0O = 1. Thus, the Euler characteristic h0 − h1 here is χ(O(K)) = g − 1.

Corollary 235

The degree of the canonical divisor D is 2g − 2.

Proof. We know that

χ(O(K)) = degK + (1− g)

by Riemann-Roch version 1, and then the left hand side is g − 1 by the argument above.

Example 236

Let’s consider a curve of genus g = 2.

Then the degree of the canonical divisor, degK, is 2g − 2 = 2, and the Euler characteristic χO(K) = 1. This

means that h0O(K) > 0, so there exists some nonzero global section, which means that there exists a rational function

α such that

div(α) +K ≥ 0.

But now the left hand side is divK′ for some canonical divisor K′ (K and K′ are linearly inequivalent), so we can

assume that K′ is effective and of the form p1 + p2, where it’s possible that p1 = p2.

Riemnann-Roch now tells us that

h0(O(D)) = h1(O) = g = 2,
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so H0 has some basis (1, α) (we can always choose 1 to be a global section), such that α has poles at p1 and p2. This

means α has order 2, so takes on every value 2 times (with multiplicity).

But now (1, α) is a point of P1 with values in the function field F of Y , and any such point defines a morphism

Y → P1 via π(q) = (1, α(q)) whenever q 6= p1, p2 and ( 1α(q) , 1) = (0, 1) when q = p1, p2. We already mentioned that

π is a double covering of P1 above.

Definition 237

A smooth projective curve Y is hyperelliptic if it can be represented as a double cover of P1.

Every curve of genus 1 can be represented as such a covering, so this may explain the “elliptic” part of the definition.

One way to create such a curve is to consider y2 = f (x0, x1) in the weighted projective plane.

Corollary 238

Every smooth projective curve Y of genus 2 is hyperelliptic.

Example 239

Now let’s consider g = 3.

We can again assume that K is effective, so it is the sum of four points, and the global sections form a space of

dimension h0O(K) = g = 3: suppose we have a basis (1, α, β). Then α, β must have poles in the set {p1, p2, p3, p4}.
We claim that all points must be represented. Suppose otherwise, so that both α and β are sections of O(p1 +

p2 + p3) = O(K − p), where p = p4. Then

h0O(p1 + p2 + p3) = h0O(K − p) = h1O(p)

by Riemann-Roh version 2. But now we can estimate the cohomology of Op via the exact sequence

0→ O → O(p)→ ε→ 0.

We know that O(p) does not have a nonconstant global section, so the table of cohomology dimensions looks like

O O(p) ε

h0 1 1 1

h1 3 2 0

But then h1O(p) is not 3, which is a contradiction. So we can assume that all points are represented, and now

for any point q 6= p1, p2, p3, p4, we can construct the point with values in K (1, α, β). The only points where α and β

may not be regular are the pis, so there are only the four points pi that are on the line X0 = 0. So the image of Y is

a plane curve, and we have a finite morphism Y toX such that the degree of X is the number of points in L ∩X.

Since 4 points map to L, this means we either have X of degree 1 and a covering Y of degree 4, X of degree 2 and

a covering of degree 2, or X of degree 4 and a generically injective covering. But the first case can’t happen because

(1, α, β) are linearly independent.

The other two cases can be be described: if X is degree 2, then X is a conic isomorphic to P1, and Y is a double

covering and therefore hyperelliptic. And finally, if X is degree 4, then Y is the normalization of X, since the genus

of X has dimension
(
4−1
2

)
= 3.
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Corollary 240

A smooth projective curve of genus 3 is either hyperelliptic or isomorphic to a plane curve of degree 4.

We’ll finish by verifying Riemann-Roch in the case where Y = P1:

Proof. If we apply Birkhoff-Grothendieck to invertible modules, we see that every invertible O-module is isomorphic

to O(n) for some n, which we wish to identify.

Identify ΩX with O(K), where X = U0 ∪ U1. Identify U0 = SpecC[u] and U1 = SpecC[v ]. We know that ΩU0

is free with basis du, and we know that du = dv−1 = −v−2dv , so du has a pole of order 2 at the point at infinity,

meaning du is a global section of ΩX(2p∞). But this section is zero nowhere, so ΩX(2p∞) is free and isomorphic to

OX , meaning that

OX(−2p∞) ∼= O(−2).

So now we can verify Riemann-Roch by noting that O(D) is isomorphic to O(n) and that O(K −D) is isomorphic to

O(−n − 2). We’re supposed to have h0O(n) = h1O(−− 2) and h1O(n) = h0O((n − 2).
When n ≥ 0: then h0O(n) = n + 1 and h1O(n) = 0 (because we know the cohomology of the twisting modules).

Meanwhile, when r > 0, h0O(−r) = 0 and h1O(−r) = −r − 1. Plugging in r = n + 2, we find that

h1O(−n − 2) = n + 1, h0O(−n − 2) = 0,

and indeed things work out.

33 May 6, 2020

Today, we’ll want to generalize Riemann-Roch from P1 to curves in general. Proving it for P1 is just the computation

that we did in class, and in general we will want to make Y into a branched covering of X = P1. Then π : Y → X is

a finite morphism of some degree n, meaning that

Hq(Y,OY (D)) = Hq(X,π∗OY (D)),

so we can get an analogous statement for OY (D) by taking its direct image and applying Riemann-Roch. But there

are two main problems with this: first of all, π∗OY (D) is not invertible (unlike OY (D)), though it is locally free of rank

n. This isn’t too much of a problem, since we can use the Birkhoff-Grothendieck theorem to write the locally free

module as a direct sum of O(ri)s and then apply Riemann-Roch there. But we have a bigger issue in that we need to

relate π∗OY (K −D) to π∗OY (D), so we will need to rewrite some things here.

We’ll write OY (K) = ΩY as the module of differentials, and OY (D) = L as an invertible OY -module. Then the

dual module

L∗ =OY (L,OY ) ∼= OY (−D).
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Lemma 241

Let M and N be OY -modules, and let D be a divisor. Let OY (M,N ) be the O-module with sections equal to

the homomorphismsM(U)→ N (U). Then

OY (M,N ) =OY (M(D),N (D))

(whereM(D) =M⊗O O(D)), and O(K −D) is isomorphic to OY (L,ΩY ).

Proof. For the first part, we are given homomorphisms M → N , tensoring with O(D) gives us a homomorphism

M(D)→ N (D). This is an invertible operation because we can tensor with O(−D) to get back to where we started.

For the second part, remember that O(O,M) ∼=M (because sections m ofM correspond to the homomorphisms

that are multiplication by m).

OY (L,ΩY ) =OY (OY (D),OY (K)),

and tensoring both sides by O(−D) yields

∼= OY (OY ,OY (K −D)).

Definition 242

Let M be a locally free OY -module. Then the Serre dual of M, denoted M#, is the set of maps from M to

the differentials:

M# =OY (M,ΩY ).

For example,

OY (D)# =OY (O(D),O(K)) ∼=OY (O,O(K −D)) ∼= OY (K −D).

This tells us how to state Riemann-Roch version 2 in another way:

Theorem 243

LetM be a locally free OY -module. Then

h0M = h1M#, h1M = h0M#.

In order to apply the P1-version of Riemann-Roch 2, we need to show that

π∗(M#) ∼= (π∗M)#,

where M# is the Serre dual on Y , and the right side is the Serre dual on X. We’ll drop the π∗ symbol from here:

we’ll denote the direct image of an OY -moduleM on X byM as well. In other words, if U = SpecA is an affine open

in X, and V = π−1U = SpecB is affine, then the B-module M =M(V ) can be viewed as an A-module because we

have restriction of scalars through the map A→ B, and we’ll say that the sections of the direct image on U are also

denoted by M.

To make progress, we’ll need to talk about the trace of a differential. If we have a map OX → OY (which is the

direct image), then the trace is the map OY → OX such that the composition is multiplication by the degree of the

covering. We’ll let the trace of β be denoted as tr(β).
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To understand the trace for differentials, we’ll do a bit of computation: let p ∈ X be a point, and let x be a local

generator for the maximal ideal mp. Then we pick q ∈ Y such that π(q) = p, and let y be the local generator for mq,

we can let the ramification index be e (meaning that x = uy e , and u is a local unit). Then

dx = y edu + ey e−1udy,

but dy is a local generator for the module of differentials ΩY , and u is a regular function on Y at q. Therefore, du

can also be written as wdy for some regular function w at q. Therefore,

dx = (wy e + ey e−1u)dy = vy e−1dy,

where v = wy + eu is a local unit (invertible function locally at q), meaning that

dy =
1

vy e−1
dx

(so we have a pole of order e − 1 when we write things in terms of dy).

So now we can look on a fibre q1, · · · , qk of p ∈ X. If β is a differential on Y that is regular at all qi , then we can

write

β = bdx

(using the above local computation), where b has poles of order at most ei − 1 at each point pi .

Definition 244

The trace is a map τ of modules of differentials ΩY → ΩX , such that

τ(β) = (tr b)dx.

Proposition 245 (Main Lemma)

If β is a differential on Y which is regular at q1, · · · , qk (the fibre over p), then τ(β) is a regular differential on X

at p.

Proof. We know that β = bdx , where b has poles of order at most ei − 1 at qi . But we know that x has zeros of

order ei at qi , so xb is regular at all qi and evaluates to zero. Then

τ(xβ) = tr(xb)dx,

and the trace tr(xb) is regular at p: in fact, we have a general formula. If f is a regular function on Y , then

[tr(f )](p) =
∑
i

ei f (qi).

So if xb is zero at qi , then tr(xb) = 0 at p, meaning that 1x tr(xb) is regular at p as well. And because the trace is

OX-linear, this last expression is equal to the trace of b, meaning

τ(β) = tr(b)dx

is indeed regular at p, as desired.
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This trace defines a map ΩY → ΩX : note that

ΩY ∼=OY (OY ,ΩY ),

where the correspondence sends β to the map b → bβ. Then we can compose this map ΩY with τ to get to

OX (OY ,ΩX)

(because the first map is OY -linear, but the second map is OX-linear).

Lemma 246

The map

π∗(OY (OY ,ΩY )
τ◦→ OX(π∗OY ,ΩX)

is bijective.

So differentials on Y are the same as maps from OY to ΩX , which is a strange fact. As an exercise, we can look

at the case where Y is defined by y3 = x and X is the affine line. Unfortunately, the proof is a bit long, and we can

read it on our own.

So now if M is a locally-free OY -module, then

OY (M,ΩY )
τ◦→OX (M,ΩX),

because we can look at an open set and treat M as a direct sum of OY s, and then we can apply the above lemma.

So now the left side is the Serre dual M# computed on Y , while the right side is M# computed on X, and we’ve

shown Riemann-Roch version 2.

34 May 8, 2020
In these last two classes, we’ll focus on applications of the Riemann-Roch theorem.

Proposition 247

The arithmetic genus pa and topological genus g of a smooth curve are the same.

Proof. Recall that Riemann-Roch version 2 tells us that

h0O(D) = h1O(K −D), h1O(D) = h0O(K −D).

Applying this with D = 0 yields

1 = h0O = h1O(K)

and

pa = h
1O = h0O(K).

But version 1 also tells us that

pa − 1 = χ(O(K)) = degK + χ(O) = degK + 1− pa,

so the degree of the canonical divisor must be 2pa − 2.
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We’ll also compute this in another way. Suppose we have a branched covering π : Y → X = P1, and Y has branch

points qi with ramifications ei . Then looking at the differential dx on Y , if we let yi be a local generator for mqi , then

x = uy eii ,

meaning that dx has a zero of order ei − 1 at the point qi . We’ll asume that we’re looking at the points over ∞ on

P1 (this is just a change of coordinates): since dx has a pole of order 2 at the point ∞ on X, it must have a pole of

order 2 at all of the point p1, . . . , pn in the fibre over ∞.

So now let K be the divisor of dx on Y : this will be the sum of the zeros minus the sum of the poles, which takes

the form ∑
i

(ei − 1)qi − 2
n∑
i=1

pi .

Thus, the degree of K is
∑
(ei − 1)− 2n, which is also 2pa − 2 by our above calculation. But we are trying to work

with the topological Euler characteristic of Y as well: we know that

e(Y ) = ne(X)− (number of times the different sheets come together),

and this can be written in terms of the ramification indices: since ei sheets come together at a point qi , we lose

(ei − 1). Thus,

e(Y ) = n · 2−
∑
i

(ei − 1) = 2n −
∑
i

(ei − 1) = 2− 2pa

by consulting the calculation above. But in a manifold of degree 2, the Euler characteristic is also 2− 2g, so we must

have g = pa, as desired (and this tells us that degK = 2g − 2).

We’ll now move on to a different topic:

Definition 248

Let D be a divisor, and let h0O(D) > 0 (so we have some global sections). A point p ∈ Y is a base point of

O(D) if

h0O(D − p) = h)O(D).

In other words, whenever we have a function f such that div(f ) + D ≥ 0, we also have div(f ) + D − p ≥ 0. We

can understand this using the usual exact sequence

0→ O(D − p)→ O(D)→ ε→ 0,

which we use when proving Riemann-Roch version 1. When p is a base point, the h0 dimensions are the same, which

means that the h1 values for the two modules differ by 1. Otherwise, h0 will differ by 1.

In the case where D is effective, we can rephrase by saying that whenever p is not in the support supp D, if a

function f has poles at most D, then f has poles at most D − p.

Example 249

The module O(K) has no base points.

We can see this by computing h0O(K − p): by Riemann-Roch,

h0O(K − p) = h1O(p), h1O(K − p) = h0O(p).
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If Y is not the projective line, then h0O(p) must be 1 – there is no function with just one simple pole. So

h0O(p) = h0O =⇒ h0O(K − p) = h0O(K)− 1,

which means that our arbitrary point p is not a base point.

Example 250

On the other hand, p is always a base point of O(K + p): every function with poles K + p doesn’t actually have

the extra pole at p.

This is because

h1O(K + p) = h0O(−p) = 0 = h0O − 1,

and if the h0 dimensions differ, the h1 dimensions must be the same.

So now suppose that D > 0, and we use a basis of H0O(D) (of regular functions) to apply the morphism

π : Y → Pr

via (α0, · · · , αr ), where h)O(D) = r +1. Then remember that the degree of our morphism π is the number of points

in π−1H, where H is some generic hyperplane of Pr .

Lemma 251

If D is effective and O(D) has no base points, then degπ = degD.

Proof. Since H is generic, we’ll represent it in the form∑
cixi = 0.

Then the preimage of H is the set of points

{q ∈ Y :
∑

ciαi(q) = 0}.

Let β be the regular function

β =
∑

ciαi :

since the αis form a basis, this is also a global section in H0O(D). The set of zeros of β is exactly the set π−1H that

we want, but β will have all poles in the divisor D, since there are no base points in O(D). Thus, the number of poles

is degD, and this is equal to the number of zeros of β as well.

In the next topic that we cover, we’ll let g ≥ 2. Then we can use a basis of H0O(K) (of size g) to map

π : Y → Pg−1: this is known as the canonical map.

Theorem 252

The canonical map π is either an embedding of Y into Pg−1, or X, the image of Y , is isomorphic to P1 and Y → X

is a double cover (meaning that Y is hyperelliptic).

Proof. Suppose the map π : Y → X is not injective, so we have two points q1, q2 such that π(q1) = π(q2). Consider

O(K),O(K − q1), and O(K − q1 − q2). We know that K is only chosen up to linear equivalence, so we can assume

K is effective, and we can assume q1, q2 are not in the support of K.
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Then O(K) has no base points, meaning

h0O(K − q1) = h0O(K)− 1.

In other words, sppose our basis for H0O(K) is (α0, · · · , αg−1). Since this defines a morphism, these functions don’t

all vanish at q1, but the dimension of functions that do vanish is only 1 less than the total dimension. So let’s assume

that α0(q1) does not vanish, but all the other αis do: then π(q1) = (1, 0, · · · , 0) = π(q2) (by the initial choice of

q1, q2), which means α1, · · · , αg−1 alsovanish at q2 (and α0(q2) 6= 0 as well). So now

h0O(K − q1 − q2) = h0O(K − q1),

and also

h0O(K − q1 − q2) = h0O(K − q2) = g − 1,

because q2 is a base point of h0O(K − q1). So now Riemann-Roch version 2 restates this as

h1O(q1 + q2) = h1O(q1) = g − 1,

which means that

χ(O(q1 + q2)) = 2 + (1− g) = 3− g.

But h1(O(q1 + q2)) = g − 1, so h0 = 2, which means that there is a two-dimensional space of functions with the

poles q1, q2. Therefore, the map Y → P1 where we use a two-dimensional basis of h0(O(q1+q2)) has degree 2, which

means Y is hyperelliptic.

Throughout all of this, we’ve assumed Y → X is not injective, so the other case is that Y → X is bijective. It’s

still possible that X is a cusp curve, but we’ll skip over that – the way to deal with this case is to consider 2q instead

of q1 + q2 and look at this reasoning.

Theorem 253

Suppose Y is a curve of genus g ≥ 2. Then there is at most one way to represent Y as a double cover of P1.

We know that if Y is hyperelliptic, there is a way to do this, but this theorem tells us that the representation

is unique. We don’t have time to prove this, but a sketch of the main ideas is that when we have a double cover

π : Y → X = P1, we can count the number of branch points by noting that

2− 2g = 2e(X)− (branch points) = 4− B,

meaning that B = 2g + 2. So if we look at the divisor of dx on Y , we have zeros of order 2 − 1 = 1 at each of the

branch points q1, · · · , qB, and we have poles of order 2 at p1, p2 (the points in the fibre over ∞). Let K be the divisor

of dx on Y , which can be written as
B∑
i=1

qi − 2(p1 + p2).

35 May 11, 2020
We’ll discuss the canonical embedding of a curve today. Say that Y is a smooth projective curve: remember that Y

is hyperelliptic if there exists a degree 2 map Y → X = P1, meaning that Y is a double cover of X. As we discussed
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last time, there is at most one way to represent Y as a double cover of X when g ≥ 2.
It’s easy to construct hyperelliptic curves of any genus g: start with a homogeneous polynomial of degree 2d in

x0, x1, and form the double line

y2 = f (x),

where y is a weight d variable. Then the map Y → X ramifies at the zeros of f , meaning that the Euler characteristic

e(Y ) = 2e(X)− 2d = 4− 2d.

(because each of the 2d zeros is a branch point) But C(Y ) = 2− 2g, so g = d − 1
Another relevant fact is that whenever Y has genus ≥ 2 and is not hyperelliptic, O(K) has no base points, so its

global sections define a map π : Y → Pg−1. This map is then an embedding of Y as a closed subvariety of projective

space of degree g, and the degree of this embedding is degK = 2g − 2.
When the genus is 2, Y is always hyperelliptic, because O(K) will have degree 2, meaning the map Y → P1 has

degree k = 2g − 2 = 2, which is a double cover. We will proceed by describing this embedding in a few cases:

g = 3, 4, 5.

Example 254

When g = 3, we are embedding Y into P2, so Y is a plane curve of degree degK = 2g − 2 = 4.

Indeed, this works out because the arithmetic and geometric genus are equal to

g = pa =

(
4− 1
2

)
= 3.

But there’s another approach we can take here: take R = C[x0, · · · , xn] and impose a grading

R =
⊕

Rd ,

where Rd consists of the homogeneous polynomials of degree d . The dimension of Rd is
(
d+n
n

)
, so it is

(
d+2
2

)
in the

case where we have three variables.

So now let α = (α0, α1, α2) be a basis for the global sections H0O(K). Let A1 be the span of these elements, let

A2 be the span of the degree-2 terms in αis, and so on: this means we have a grading on A as well of the form

A =
⊕

Ad .

Now A1 = H
0O(K), and A2 ⊂ H0O(2K) and so on (because adding K gives an effective divisor for each αi , so adding

2K will do so if we have αiαj). Now Riemann-Roch tells us that whenever n ≥ 2,

h0O(nK) = χO(nK) = deg(nK) + 1− g = 4n + 1− g,

because h1O(nK) = 0 by Riemann-Roch version 2. The dimensions of Rd are
(
d+2
2

)
= 1, 3, 6, 10, 15, 21, · · · for

d = 0, 1, 2, 3, 4, 5, and the dimensions of h0O(dK) are 1, 3, 6, 10, 14, 18 (by plugging in the above formula). Thus,

there exists some nonzero homogeneous polynomial f (x) of degree 4 such that f (α) = 0, and there exist three

homogeneous polynomials h1, h2, h3 of degree 5, but that’s not new information because they’re just x0f , x1f , x2f .

But now Y is contained in the zero locus of this degree 4 polynomial f , so indeed we’ve seen again that every

non-hyperelliptic curve of genus 3 is a plane curve of degree 4.
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Example 255

When g = 4, we are embedding Y into P3, and the degree of the embedding is 4 · 2− 2 = 6.

We’ll count dimensions again: this time dimRd =
(
d+3
3

)
, and dimAd = deg(dK)+1−g = 6d+1−g for all d ≥ 2.

Then dimRd = 1, 4, 10, 20 and dimAd = 1, 4, 9, 15 for d = 0, 1, 2, 3, which means that there exists a homogeneous

quadratic f with f (α) = 0. Then there are five cubics including x0f , x1f , x2f , x3f : call the last one g. Then Y is

contained within the locus Z = {f = g = 0}, and now a version of Bezout’s theorem (in higher dimensions) says that

the degree of Z is 2 · 3 = 6. So every non-hyperelliptic curve of genus 4 is a complete intersection (it’s defined via

f = g = 0 in P3).

Example 256

When g = 5, we embed Y into P4 with degK = 2g − 2 = 8.

Then dimRd =
(
d+4
4

)
is 1, 5, 15 for d = 0, 1, 2, while h0O(2K) = deg(2K) + (1− g) = 2(2g − 2) + (1− g) = 12.

Thus, there are linearly independent three quadrics Q1, Q2, Q3 that all contain Y .

Now Bezout’s theorem tells us that the degree of Q1 ∩Q2 ∩Q3 is 2 · 2 · 2 = 8, which will also be the degree of Y

if the dimension of the intersection Q1 ∩Q2 ∩Q3 is 1. So then Y will be the intersection of 3 quadrics.

There’s also another case above where the dimension of Q1 ∩Q2 ∩Q3 is not of dimension but of dimension 2, and

this case does happen. If we can represent Y as a triple cover of P1, then Q1 ∩Q2 ∩Q3 will fall into his case, and Y

is called trigonal.

Remark 257. And similarly, for g = 6, deg Y = 10 doesn’t factor enough for Y to be a complete intersection.
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