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Abstract

In this expository paper, we provide an introduction to the theory of complex
multiplication (CM) of elliptic curves. By understanding the connection of an elliptic
curve’s endomorphism ring with the Galois group of the set of points on the curve E[n]
of order n, we can study abelian extensions of Q and Q[i] and understand a simple case
of Hilbert’s twelfth problem. Finally, we will present (in as much detail as reasonable)
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an explanation for the “almost-integer” e 3 which is the result of a connection

between the j-invariant modular function and the study of complex multiplication.

1 Introduction

This paper will develop some basic results in the study of elliptic curves with complex
multiplication, building off of the brief overview presented in the Spring 2020 instance of
MIT’s Seminar in Number Theory (18.784). One point discussed during class is that the
Weierstrass identification between an elliptic curve and its corresponding complex torus
allows for a natural group law to be defined on the elliptic curve, in which three collinear
points on the curve correspond to three points on the torus that sum to zero. Because this
group structure can be described in a geometric way, we are motivated to study the behavior
of the whole complex torus under maps known as endomorphisms, and we will see through
this discussion that the endomorphism rings can be particularly nicely described in terms of
their orders.

The discussion begins in Section 2, where we introduce the concept of an endomorphism
of an elliptic curve, as well the ring of endomorphisms for that curve. Section 3 will provide
a natural connection of the number theoretic content to a more algebraic subject: we will
discuss the Kronecker—Weber theorem (and prove a simple special case), which states that
all abelian Galois extensions of Q are subfields of a special class of field extensions known as
cyclotomic fields. We will then generalize this statement to a larger class of number fields,
briefly discussing the formulation of Hilbert’s twelfth problem, before bringing an explicit el-
liptic curve into the picture to understand a specific instance in which complex multiplication
generates our desired field extensions. Finally, we will conclude in section 4 by introducing
some class field theory, which will give us a brief glimpse into the connection between the
j-invariant modular function and the properties of imaginary quadratic extensions. The role
of complex multiplication here is to allow us to pick out specific orders of quadratic fields,
and we will subsequently find an unlikely connection between the unique factorization of the

[H— V;m} and the value of the j-invariant at a specific (related) point.

ring of integers Z
Presentation of results will loosely follow [4], [6], and [7], with motivation and additional

remarks coming from [3] and [5].



2 Endomorphism rings and complex multiplication

For any elliptic curve E, we denote the n-torsion subgroup E[n] to be the set of points
on an elliptic curve of order dividing n:

Eln] = {P € E :nP = 0},

where O is the identity element under the elliptic curve group law (corresponding to the
point at infinity).

Proposition 1. For any n, E[n| is isomorphic to the direct sum (Z/nZ) ® (Z/nZ).

Proof. Recall that every elliptic curve E can be identified with a complex torus C/A, where
A is a lattice in the complex plane, and this identification is made such that the group law
on the elliptic curve corresponds to adding the corresponding elements on the torus (that
is, adding the cosets of A in C). Thus, any point in E[n] corresponds to a point p € C/A
such that np € A: if A is generated by wy, ws, it is clear that any such element is of the form
p= L+ b“’TQ for integers 0 < a, b < n, showing the desired result. Il

While it is useful to consider the structure of these finite sets of points, it is also interesting
to look at maps on the entire elliptic curve, which motivates the next definitions:

Definition 2. An isogeny of elliptic curves Ey, E5 is a nonzero holomorphic group homo-
morphism (equivalently, an algebraic homomorphism) ¢ : Ey — Es.

Definition 3. An endomorphism of an elliptic curve E is an isogeny from E to itself.
The endomorphism ring of E, denoted End(E), is the set of all endomorphisms of E,
with addition being defined pointwise and multiplication being defined by composition.

The sum of two endomorphisms is indeed an endomorphism (because each individual
endomorphism fixes the origin O, so their sum will also do so), and any composition of iso-
genies is an isogeny, so the set of endomorphisms is closed under addition and multiplication.
In order to confirm that we have a ring, we just need to verify that we have a multiplicative
identity (which is the identity endomorphism) and that distributivity holds (which comes
from the fact that isogenies are group homomorphisms).

Example 4. The multiply-by-n map, which sends a point P € E to nP € E, is an endo-
morphism. (This corresponds to scaling the complex torus by n.)

In particular, this means that every endomorphism ring contains a subring isomorphic
to Z, since we can always apply a multiply-by-n map for any integer n.

Example 5. The elliptic curve E : y?> = 2® + x has an endomorphism

¢($, y) = (—SL’, Zy),

since (iy)? = (—x)% + (—x), ¢* is the identity map, but (z,y) is not generally a point of any
particular order, so ¢ is not a multiply-by-n map.

This last example is exceptional — most elliptic curves do not have such endomorphisms,
and those that do are particularly nice to study.



Definition 6. An elliptic curve E has complex multiplication (CM) if End(E) 2 Z.

In other words, a CM elliptic curve has a nontrivial endomorphism. To motivate this
name, consider what our endomorphisms look like on the complex plane for the corresponding
complex torus of E. Because the endomorphisms preserve both group and local structure,
an endomorphism ¢ must correspond to a holomorphic map f : C/A — C/A such that
flw+z+A)=fw+A)+ f(z+A) for any w, z € C/A. As discussed in Section 1.3 of [1],
such maps only exist when our function looks like

f(z)=mz, meC

in a neighborhood around z = 0, such that mA C A. Any integer m works (and corresponds
to a multiplication-by-m map), but any other real number would not take elements of the
lattice to elements of the lattice, so we would not have a well-defined endomorphism. Thus
the name complex multiplication reflects the fact that our lattice is being “rotated” by a
nontrivial endomorphism.

Definition 7. If a CM elliptic curve has a complex multiplication f(z) = mz for some m
in the upper half-plane H = {z + iy : y > 0,z € R}, then we call m a CM point.

By our above work, any such CM point m is associated to a lattice A, spanned by 1 and
some 7 € H (and therefore the elliptic curve C/A.). Then m must be an element of this
lattice and so must m?, which means that m? is some rational combination of 1 and m and
thus an algebraic number of degree 2.

Finally, note that we can restrict any endomorphism of F to the finite set of points E|[n].
Since this is a finite Z-module of rank 2, and in particular a free (Z/nZ)-module, we can
represent the endomorphism by where two basis elements go. This yields a 2 x 2 matrix
with entries in Z/nZ, and basis-independent invariants of this matrix, such as the trace and
determinant, which are useful for studying properties of elliptic curves over finite fields. In
particular, understanding the analogy of the determinant when we don’t restrict to E[n] is a
key tool in proving Hasse’s theorem for elliptic curves. More information about the degree
of an endomorphism and its use can be found in lectures 7 and 8 of [6].

3 The Kronecker—Weber theorem and abelian extensions

The theory of CM elliptic curves has various applications in algebra and algebraic number
theory, and we introduce one of those connections in this section with an introduction to
Hilbert’s twelfth problem.

3.1 Field extensions over the rationals

We begin by discussing a particular type of “nicely-behaving” field extension:

Definition 8. A cyclotomic extension or cyclotomic field is a field Q(¢) obtained by
adjoining a root of unity ¢ to Q.

Denoting ¢, = e2™/™, we know that
n—1
" —1= H(x —-(),
i=0



and thus our cyclotomic extensions are Galois extensions over Q with splitting field 2™ — 1
for some integer n. It is natural to ask about the Galois group of such an extension (the set
of automorphisms of Q(¢,) which fix Q), and in this case the result is particularly simple:

Proposition 9. There exists an injective homomorphism from Gal(Q((,)/Q) to (Z/nZ)*,
the multiplicative group of integers mod n.

In fact, the Galois group Gal(Q(¢,)/Q) is actually isomorphic to (Z/nZ)*, so there are
exactly ¢(n) elements in this group. However, since we are interested in considering subfields
of cyclotomic extensions, we do not need the stronger result here.

Proof. All nth roots of unity are of the form ¢* for some integer k. Since o must preserve
the order of ¢,,, we must send it to another primitive root of unity ¢’ @) Tt is easy to verify
that the map 0 — m(o) is indeed a homomorphism (since ¢ is an automorphism). Any
automorphism o in the Galois group is uniquely determined by where it sends ¢, (because
Q is fixed, and ¢ is sent to 0((,)?), so this map is also injective, as desired. ]

The above result tells us that since (Z/nZ)* is abelian, Gal(Q((,)/Q) is a subgroup of
an abelian group, meaning it is also abelian. Notably, this means that any subgroup of the
Galois group is abelian and therefore normal, and Galois theory now tells us that if we have
an intermediate field Q C L C Q(¢), we can use the Galois correspondence to say that

Gal(Q(¢n)/Q)
Gal(Q(¢n)/ L)

is a finite abelian group as well — in particular, L is Galois. In other words, every subfield of
a cyclotomic field is finite abelian, and we actually have the striking result that the converse
is also true:

— Gal(L/Q)

Theorem 10 (Kronecker—Weber). Let F' be a Galois extension over Q with finite abelian
Galois group Gal(F/Q). Then F is contained in a cyclotomic extension Q(().

This result was first introduced in 1853, but the first correct proof was presented in 1896
by Hilbert, and subsequent generalizations have been established with the help of class field
theory. The proof of the theorem is outside the scope of this paper — a proof may be found
in [2] — but we will present a special case here.

Proof for quadratic extensions. Note that any quadratic extension over QQ can be formed by
adjoining a single element of degree 2: by the quadratic formula, this element is of the form
#E for rational numbers a, b, ¢, and thus it suffices to adjoin a single element /N, where
N is a squarefree integer. Our goal is to show that F' = Q(\/N ) is contained in a cyclotomic
field.

But we can factor N as a product of primes (no prime shows up multiple times), and
we can adjoin two roots of unity (,, and (, by simply adjoining (,,, instead. In addition,
v/—1 = e™/? is already a root of unity. Therefore, it suffices to prove this result for the case
where we adjoin /p to Q for any prime p.

For p = 2, we can simply adjoin (g = \/75 + i*/Ti, and for odd primes, we can consider the
complex number



where ¢ = ¢*™/P, This sums over all quadratic residues twice (except it only counts ¢° once),
so 72 is p when the prime is 1 mod 4 and —p when the prime is 3 mod 4 (the details of
evaluating this quadratic Gauss sum can be found in exercise 4.4 of [4]). In both cases, this
means we can always consider a primitive (4p)th root of unity: since /p and i will both be
contained in Q((yp), we've found an explicit cyclotomic field containing /p, and this proves
the theorem in our special case. O

We can begin to see the connection here to elliptic curves with the following result:

Proposition 11. Let E be an elliptic curve of the form y? = x3 + ax? + bz + ¢ with rational
coefficients. Letting O denote the point at infinity, and suppose that

Eln] ={(z1,91), - (@m, ym), O}

is the coordinate representation of the points of the n-torsion subgroup. Then

Q(E[n]) = Q(xlv Yi, - 7$m7ym)
is a (not necessarily abelian) Galois extension of Q.

Proof. Tt is easy to show that x; and y; are algebraic over Q by explicitly writing out the
group law, since we can write the z-coordinate of the point n(x;,y;) as a rational function
in z and set the denominator equal to zero. And because y? = 3 + az? + bx; + ¢ for all 1,
this means y; is also algebraic over Q.

In order to check that the extension is Galois, we must check that any homomorphism
o : Q(FEn]) — C satisfies 0(Q(E[n])) C Q(E[n]) (where we fix some initial embedding of
Q(E[n]) into C). For any point P = (x,y) € E[n]|, define o(P) = (0(z),0(y)) (and define
o(0) = O). Then we know that o(P) and P must have the same order for any point P on
the elliptic curve, which means that each point in E[n| is sent to another point in E[n]. This
means o permutes Py, -+, P, and thus any element which is generated (as an algebra) by
the z;8 and y;s must stay in Q(E|[n]|) under o, as desired. O

We will see the return of objects like Q(E[n]) in a later section.

3.2 Hilbert’s twelfth problem

A way to restate the Kronecker—Weber theorem is as follows: we have a base field Q, and
there is an analytic function
fla)=em

which generates finite abelian extensions of Q. Indeed, a cyclotomic extension arises by
adjoining an element of the form e?™/™ for some integer n, so the implication here is that any
abelian extension can be contained within the “information” of the above analytic function f
by plugging in elements x of the base field Q. The goal is to show that we can do something
similar when our base field is not just QQ, and Hilbert’s twelfth problem asks whether it is
possible for us to do just that:

Problem 12 (Hilbert’s twelfth problem). Given a base number field K, is it possible to
construct a meromorphic function f such that for any field extension L with finite abelian
Galois group over K, we can pick special values ay,- - ,a, (corresponding to what are known
as singular moduli) such that K C L C K(f(a1), -+, f(a,),{g:}), where g; include certain
values of the Weierstrass p function, as well as roots of unity?



The interpretation of Hilbert’s twelfth problem and its connection to Kronecker—Weber
has had a slightly complicated mathematical history: various statements were put forward,
with various scholars attempting different versions of the problem. Hilbert referred to “ellip-
tic functions” both in the sense of general elliptic functions and the specific modular function
j, and in fact in Kronecker’s original formulation of “Abelian equations” only dealt with the
case where the Galois group is actually cyclic. In addition, Hilbert’s original formulation did
not include the {g;} in the problem statement above. A further mathematical and historical
discussion can be founded at [3].

Today, this problem is still open in general, but the theory of complex multiplication
allows us to understand the case of imaginary quadratic fields (that is, the fields Q[v/d] with
d a squarefree negative integer). And with the theory established above, we're ready to see
a concrete example of this in play.

3.3 A more general example

Recall that the equation y?> = 3 + x defines a CM elliptic curve (which we described
above). We want to use this to study field extensions, much like we did with the cyclotomic
polynomials over Q.

Theorem 13. Consider the elliptic curve E : y*> = x® + x. Then the field
Ky = Q1) (E[n])
is a Galois extension of Q(i) with (finite) abelian Galois group.

Proof sketch. K, is indeed a Galois extension, because Q(E[n]) is Galois over Q by our above
work, and adjoining ¢ to this still yields a Galois extension. (Since K, is Galois over Q, it
is also Galois over Q(7).) Thus, it remains to prove that the Galois group Gal(K,,/Q(7)) is
abelian. This demonstrates why we wanted to consider Q(i) instead of Q: fixing ¢ in all
of our automorphisms ensures that our complex multiplication ¢ commutes with our Galois
elements, which is nice when we are trying to show commutativity.

The central idea is to represent our Galois elements o; as matrices in G Lo(Z/nZ): the ma-
trix representation is injective, because knowing where two generators go tells us everything
about the image of E[n]. We can also represent ¢ as a matrix in GLy(Z/nZ).

But now ¢ is not a scalar multiple of the identity, and ¢ commutes with all elements o;.
Thus the elements o; must actually commute with each other, and we’ve shown the desired
result. O

And just like in the cyclotomic case for Q, we have a stronger result about fields of
abelian Galois group over Q(¢), which we state without proof:

Theorem 14. If L is a finite abelian field extension of Q(i), then L is contained in K, for
some n.

To demonstrate that this is indeed using special values of a meromorphic function f
as in Hilbert’s twelfth problem, consider the generators of the n-torsion subgroup E[n] in
the complex torus, denoted “- and <. Then we know that K, is generated by integer
combinations of these generators, and in fact the explicit correspondence between the elliptic
curve and complex torus means that we can explicitly write down the Galois extension

k=0 ({o(22282) o (22192 vo<ea<a)),
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where g is the Weierstrass function defined relative to the lattice (w,ws). A more extensive
discussion of these two theorems and their consequences can be found in section 6.5 of [4],
but the main point is that the action of the Galois group on K,, can be described with matrix
multiplication. This demonstrates that a specific symmetry in a CM elliptic curve can help
understand some algebraic properties — specifically, the behavior of abelian extensions of
Q(i) — which initially may seem completely disjoint from the complex multiplication itself.

4 The almost-integer ¢™v!63
As defined in Section 1.1 of [1], the j-invariant is the modular function

. 172843
i(r) = —25,
™ g5 — 2793

where go and g3 are multiples of the standard Eisenstein series on the upper half-plane H.
This modular function can be connected to a lattice function, and this lattice function in
turn connected to the lattice for an elliptic curve C/A:

Definition 15. The j-invariant for an elliptic curve E : y* = 23 + ax + b is defined to be

3
() = 417328 4a2.
a’ 4 27b

This appears similar in form to the j-invariant we have already studied, and it is an

important meromorphic function in studying questions that arise in a special case of the

aforementioned Hilbert’s twelfth problem. As we have already seen, two elliptic curves have

the same j-invariant if and only if they are isomorphic, and an important isomorphism to
consider in the upcoming arguments will be the multiplication by m for a CM point.

Definition 16. The endomorphism algebra over Q for an elliptic curve is the tensor
product End(E) @7 Q.

We state the next result, which helps us characterize these endomorphism algebras, with-
out proof:

Proposition 17. For any elliptic curve E over a field (not necessarily C), the endomorphism
ring is a free Z-module of rank 1, 2, or 4, corresponding to an endomorphism algebra of Q, an
imaginary quadratic field Q(«), or an (imaginary) quaternion algebra Q(«, B), respectively.

Lectures 13 and 17 of [6] provide more details. Notably, for the elliptic curves over C
that we have been considering, the last case is not possible, and when we have complex
multiplication, the endomorphism ring is not a rank-one Z-module (because the ring is
strictly large than Z). Therefore, we only have one case remaining, and we can further
characterize that case:

Definition 18. Let K be a ring containing Q which is a finite-dimensional Q-vector space
of dimension r. An order of K is a subring of K which is a free Z-module of rank r.

So for our CM elliptic curves, the endomorphism ring is an order in an imaginary
quadratic field. The reason this is important is that we can describe such subrings alge-
braically:



Proposition 19. Let K be a quadratic extension of Q, and let Ok be its ring of integers.
Then the orders of K are of the form Z 4+ cOg for positive integers c.

Proof. We know that every order is contained in a maximal order, and this maximal order
turns out to be unique for finite field extensions of Q: it is the ring of integers Ok . Because
this ring of integers always contains 1 and it is a two-dimensional lattice in K, we know that
it is generated as a Z-module by (1, 7).

First of all, we verify that the sets Z+ cOg are indeed orders: they are lattices generated
by 1 and c7, so we just need to verify that we have closure under multiplication. Indeed, if
we take a + ca’ and b+ ¢b’ in our order, where a,b € Z and o',V € Ok, we have

(a+ca)(b+cb) =ab+c(a'b+ ab + ca't'),

and now ab € Z and a'b + ab' + ca’'l) € Ok because of the ring structure of the ring of
integers.

Now, we show that these sets are the only orders. By definition, an order of a quadratic
field can be thought of as a lattice, and because the maximal order is O, this lattice must
be a sublattice of the one generated by 1 and 7, and in fact it contains the element 1 (because
it is also a subring). Define ¢’ to be the smallest positive integer such that /7 is in the order.
Then the order contains 1, ¢, and ¢/7, so it contains Z + ¢ Ok. Now any other element of
the order a 4+ b must have b a multiple of ¢’ (or else we could use the division algorithm to
contradict the minimality of ¢’). Thus, any such order is indeed of the form we want. O]

If the endomorphism ring of £ is an order O of an imaginary quadratic field, we say that
E has complex multiplication by O. And now to start working towards our result, we
want to combine some of these objects we have just introduced.

Theorem 20. If zy € H is a CM point, then j(zo) is an algebraic number.

Proof. We have established above that zj is an algebraic number of degree 2, so we can write
azg + bz + ¢ = 0 for some a,b, c € Z (with a > 0 and ged(a, b, c) = 1). This means that we
can find a matrix M with nonzero determinant, which fixes z; under the usual action but is
not an integer multiple of a matrix in SLs(Z). (Note that ¢ is nonzero because z is not an
_ba (C) works when ac # 1, and M = E 2b_—f 1} works when
a = ¢ = 1 (this only has determinant 1 when b = —2, corresponding to 2o = 1, which isn’t
a CM point). The purpose of choosing such an M is to ensure that the functions j(z) and
Jj(Mz) are not identical.

Now note that the functions j(z) and j(Mz) are both modular functions with respect
to the congruence subgroup G' = SLo(Z) N M~1SLy(Z)M — because j is weight 0, we just
need to check that j(M~z) = j(Mz) for any v € G, which is true because j is modular.
(Specifically, we can write any such v as M~1AM for A € SLy(Z), and then the identity
reduces to j(AMz) = j(Mz).) But now G has finite index in SLy(Z) because M has some
finite integer determinant m, meaning M 1AM contains the subgroup I'(m). Thus, j(Mz)
and j(z) must be algebraically dependent, meaning there is a polynomial p(z,y) such that
p(G(M2),5(2)) = 0.

We wish to pick such a p with integer coefficients, and we claim that this polynomial can
be chosen only based on the determinant of M. Indeed, let M,,, be the set of matrices in

integer.) For example, M =



G Ly(Z) with determinant m. Then there are finitely many SLs(Z) orbits of M,,, since
. a b
Mm:{{o d}GGLQ(Z):ad:m,O§b<d}

characterize the sublattices of a fixed lattice of index m, so each of these elements gives us
one of the orbits. Thus, we can pick the polynomial that satisfies the identity

p(z,j(2)) = I[I @-iorz)

M'€SLa(Z)\ M

This function is well-defined because each j(M’z) is constant on each of the (finitely many)
orbits SLy(Z)\M,,. And notice that its z-coefficients are holomorphic, SLy(Z)-invariant
functions, so they must be polynomials in 7, and thus this function p is indeed a polynomial
in z and j(z).

And now we can check that p has integer coefficients by writing it out as an explicit
product over the representatives in M} :

i) = [ Cﬁ(x—f <d+ b))

ad=m,d>0 b=0

and now we can expand out the Fourier series for j, noting that all of its coefficients ¢, are
integers: letting ¢ = €™ and (; = €2>™/?, this becomes

d—1 %)
T (e X e

ad=m,d>0 b=0 n=-—1

But this is invariant if we replace (4 with ¢} for any r with ged(r,d) = 1, since we multiply
over all b anyway. Thus the coefficients of the ¢**/? terms are integers. Furthermore, if
we consider a fixed (a,d) and look at the inner product, all terms in the inner sum vanish
except integer powers of ¢g. This is because replacing z with z + 1 is the same as adding a
to each value of b, resulting in the same product over all b, but then the coefficients must be
1-periodic and therefore have Fourier expansion only coming from integer powers of ¢q. This
means that each term of the inner product has z-coefficients in Z[g, 1/¢].

Therefore, the full product p(x,j(z)) also has x-coefficients that are in Z[q,1/q|, and
those coefficients are also polynomials in j. So now employing “long division,” prioritizing
the lower-degree ¢ exponents instead of the higher-degree ones, shows that the joint z, j(2)-
coefficients are indeed integers because the “leading” coefficient % is 1. To finish, we
view the polynomial p as a function of x and y again (instead of x and j(z)). Note that
dividing p(z,y) by any factors of (z — y) that divide it yields a polynomial ¢(z,y) such that
q(z,x) is a nonconstant polynomial. (Here is where the choice of M at the beginning of
our argument matters.) And now we can plug in z = j(z9) = j(Mzy) (because M fixes z)
into our polynomial, and ¢(j(z0),j(z0)) = 0 gives us a nontrivial polynomial relation (with
coefficients in Z) for j(z), as desired. O

It is in fact true that j(zp) is an algebraic integer, which we will establish shortly, though
the proof then becomes more involved. Section 6.1 of [7] discusses this idea in more detail,
and it also establishes a more systematic method of analyzing values of j at such CM points.



But we will need to be more precise to get the result that we want, and here is where we
must cite some deeper results without proof. The first should look similar to the result we
just proved:

Theorem 21. For an order O, let Ellyp denote the set of j-invariants of elliptic curves with
CM by O. Then the Hilbert class polynomial, defined via

Hz)= ][] @-i&)

j(E)eElo
s a polynomial with integer coefficients.
We will also employ the use of a powerful correspondence:

Theorem 22 (First main theorem of complex multiplication). Let O be the maximal order
in an imaginary quadratic field of discriminant D, and let L be the splitting field of H(x)
over K = Q(v/D). The Hilbert class polynomial H(x) is irreducible and has degree equal to
the size of the ideal class group, and there is an isomorphism between the ideal class group
and the Galois group Gal(L/K).

The proofs and necessary background to understand these ideas, as well as further discus-
sion of topics like the splitting of primes in imaginary quadratic fields and the action of the
Galois group Gal(L/K), can be found in lectures 21 and 22 of [6] and chapter 6 of [7]. But
the main point to notice is that when our ideal class group is of order 1, there is only one
lattice up to scaling (because ideals of the ring Ok are sublattices). That means that there
is only one possible value of j(£) in the Hilbert class polynomial, and thus the polynomial
just looks like (z — j(E)), meaning j(FE) is an integer.

Now, we are finally ready to tackle our central question for this section. The ring of
integers of the quadratic number field F' = Q [\/—163] is a unique factorization domain,
meaning that it has class number 1. To apply the above results, we will want to consider
the maximal order of F', which is Z + Ok, and this lattice corresponds to the CM point

1
Z20 — 5(1 + vV —163)

This CM point yields an algebraic integer j(z), and by the argument above, unique factor-
ization tells us that j(E) = j(zp) is an integer. So we can try plugging in our value of zy
into the j-invariant modular function: we introduce the constant

q=¢e""" x~ 38 x 10718,

because we know the Laurent expansion for the j-invariant modular function looks like

i(q) = 3 L7444 O(q).

Since ¢ is very small (the g-coefficients don’t grow too quickly, because we have a modular
function), this tells us that we have the almost-integer

1
5%j(q)—744€Z,

and substituting in the value of zy again reveals that this constant is

1 — 6—27rizo _ e”‘/@
q
Indeed, plugging this number into a calculator shows that it is within 7.5 x 107!3 of the

nearest integer.
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