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Introduction
18.905 is the graduate algebraic topology class at MIT, and it’ll be a weird semester to take it because we’re all over

the world, but hopefully the class can still be a good time. The goal is for it to not feel like a “completely virtual

experience.”

Fact 1

The students of the class shared where we are currently located, as well as what we want to get out of the class

and why we want to learn algebraic topology.

Because a lot of students are interested in category theory, the class will put a “categorical spin” on the topic –

since we are following Professor Haynes Miller’s notes, there will be a fair amount of that.

In terms of logistics, we’ll be using the Canvas website for 18.905. Professor Miller’s notes are posted on the

welcome message, and a general syllabus is also posted in its corresponding location. We will not use the Hatcher

book extensively (it’s mroe geometric than Dr. Hahn prefers), but it can be an alternative source.

The point of this class is to cover homology, cohomology, and Poincaré duality – if we read the 100 pages

corresponding to that material, we should understand the class, and the “finiteness” of content makes this class

hopefully approachable. Homology is a tool in algebraic topology which (along with cohomology) is used everywhere in

mathematics, especially in algebraic geometry and differential geometry. And we’ll see how it can show up in surprising

places through category theory and applied mathematics, too. However, this class will not cover point-set topology

and the fundamental group – we can read Hatcher or the end of Munkres for that.

Zoom lectures will be recorded, so those of us attending in inconvenient time zones can still learn the material.

Logistics-wise, we should display the name we want to go by, as well as pronouns optionally. And we should unmute

ourselves whenever we want to talk or send questions into the chat in order to keep the class interactive.

There will be biweekly problem sets – we should submit our homework only if we are taking the class for credit,

and if so, we should make sure to meet in groups. That’s why the website https://psetpartners.mit.edu has been

developed: this makes it easier for us to work on problem sets together, and we should just remember to write down

all sources and other people that we consulted at the top of each pset. Problem sets will be worth 85 percent of our

grade, and the last 15 percent is a (significantly easier) exam that should take only about an hour to complete.
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1 September 2, 2020
We’ll start with a small introduction of “what homology is” and where we’re going to go with it during this semester.

The basic concept is that we want to study spaces by studying how many holes they have – this is a very coarse

invariant, but it can still be useful.

Example 2

The shape O has “one hole,” while the shape Y has “no holes” and the shape 8 has “two holes.”

We need to be able to rigorously define what a “hole” means, and we need to have a rigorous way to calculate how

many such holes there are, so that we can distinguish different kinds of spaces. The fundamental group gives one

way for us to measure the number of holes: the fundamental group of the circle is Z, while the fundamental group of

Y is the trivial group, and the fundamental group of 8 is the free group on two generators.

But there’s no “surface” to any of these three shapes, and the fundamental group is inherently one-dimensional.

Since we’ll want to talk about higher-dimensional spaces, we will use a different method to understand these “holes,”

called the first homology group H1 (called such because it measures “one-dimensional holes” or loops, but generalizing

better to higher dimensions).

We’ll now describe an algorithm for calculating the first homology group, and we’ll spend some of the class explaining

why this is rigorous:

Example 3

Let’s compute the homology group H1 of the circle.

First of all, we’ll think of the circle has a discrete graph: take two points on the circle, and imagine that they are

connected by two segments. Then for every edge in the graph, we can draw an edge:

y

x

f g

These edge directions can be assigned arbitrarily – it turns out that it won’t matter where the arrows point. In

the diagram above, the edges f and g have source x and target y .

Now, let Z{f , g} denote the free abelian group generated by f and g: such elements can be written as formal sums

7f + 4g, or 0, or 3f − 2g. Similarly, let Z{x, y} denote the free abelian group generated by the two vertices x and y .

We can consider the group homomorphism

d : Z{f , g} → Z{x, y}

where f and g both map to y−x (that is, the target vertex minus the source vertex). The kernel of this homomorphism

is then the free abelian group generated by f − g – since there is one element generating this kernel, there is one
hole. This kernel is called the first homology group of the space, and the number of generators is also the first Betti
number.

We’ll spend the rest of today doing similar types of examples to help us gain some intuition.
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Example 4

Let’s compute the homology group H1 for the Y shape, which we expect to have zero holes.

We can imagine Y as being embedded in R2 with the subspace topology, and the natural way to turn this into a

graph is as follows:

w

x y

z

f

g

h

Like before, we can consider a group homomorphism

d : Z{f , g, h} → Z{x, y , z, w}

where f , g, h are sent to w − x, y −w, z −w , respectively. And this time the kernel is trivial (which is the free abelian

group with no generators), and therefore we indeed find that there are zero holes with this method.

Remark 5. Notice that we can cut up the two shapes above in different ways as well: for example, we can add extra

vertices and create more edges. We’ll soon see that we can add an extra vertex in the middle of some of our edges,

and this will also not change our final answer.

We’ll soon see how this concept generalizes to higher dimensional spaces, as well as why this invariant exists for

topological spaces.

2 September 4, 2020

Our first problem set has been posted – it’s due in two weeks (September 18 at class time) on Canvas. We can be

matched with other students as “pset partners” if we enter our available times on the psetpartners website soon! It’s

recommended that we start on the problem set early, so that we can absorb the material a little at a time (some of the

topics will make sense to us very soon, while other topics will take more time). Also, we won’t have class on Monday

because of Labor Day.

Remark 6. Starting next week, to accommodate different time zones, office hours will be held the hour before class

on Wednesdays and Fridays.

Recall that last time, we learned how to compute the first homology group H1(G) when G is a directed graph (an

object with vertices and some arrows between them). This homology group basically let us count the number of loops

in our graph – let’s do another example to illustrate the concept.
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Example 7

Suppose that our graph looks like a triangle:

a c

b

f g

h

To compute the first homology group, we form the map of free abelian groups

Z{f , g, h} ∂→ Z{a, b, c}

that sends f to b−a, g to c−b, and h to c−a. Then the kernel of the map ∂, also called a boundary homomorphism,

is generated by g − h + f , so

H1(G) = ker(∂) = free abelian group generated by g − h + f .

And the fact that we have one generator means that our object has “one hole.”

But we want to be able to talk about higher-dimensional objects, not just one-dimensional graphs, and we want

to be able to deal with topological spaces (like subspaces of Rn), not just combinatorial objects. We’ll tackle the first

problem first: we’ll understand how to deal with finding a combinatorial representation in higher dimensions.

Example 8

Say that we glue in a two-dimensional triangle into our shape from above:

a c

b

f g

h

A

This “solid triangle” should now have zero holes, so we expect the group H1 to be trivial. Here, g − h + f is a

cycle, so it’ll still be in the kernel of our boundary operator, but it’ll also be in the image of the boundary operator

∂A = g − h + f ,

because we can imagine going along the boundary of our triangle A, counting edges with direction! So homology will

record cycles modulo the boundaries, and we’ll rigorize this now.

Definition 9

A semisimplicial set X is a sequence of sets X0, X1, X2, · · · ,, and functions d0, d1 : X1 → X0, d0, d1, d2 : X2 →
X1, and so on (in general, we have n + 1 functions from Xn → Xn−1 for every n ≥ 1), such that the simplicial
identities are satisfied:

didj = dj−1di

whenever i < j and those equations make sense.
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The idea is that we’re building arbitrary shapes out of points, lines, triangles, tetrahedra, and so on.

Example 10

Suppose we have a semisimplicial set where X2 = ∅, X3 = ∅, · · · .

Then we actually just have a directed graph: X0 can be thought of as the set of vertices, and X1 can be thought

of as the set of edges. Here, d0, d1 : X1 → X0 record the “target” and “source” of our edges, and it turns out the

simplicial identities are always automatically satisfied.

Example 11

Let’s return to the two-dimensional solid triangle from above.

In this case, we have X3, X4, · · · all empty, and we have

X2 = {A}, X1 = {f , g, h}, X0 = {a, b, c}

corresponding to the faces, edges, and vertices. Now we need to specify a bunch of functions. The functions

d0, d1 : X1 → X0 are defined similarly to before: we have

d0f = b, d0g = c, d0h = c,

and

d1f = a, d1g = b, d1h = a.

It turns out that we can finish our description by setting

d0A = g, d1A = h, d2A = f .

We could have arrived at these equation by using the simplicial identity

d0d2A = d1d0A,

and it turns out that there is only one way to assign {0, 1, 2} to {f , g, h} so that A “maps to all three edges” and also

satisfies the simplicial identities. (But we’ll also see a better explanation soon.)

We can now explain how to compute the homology of a semisimplicial set X. Let Sn(X) denote the free abelian

group generated by the set Xn (this is also called the set of n-simplices).

Definition 12

For all n ≥ 1, the boundary operators are group homomorphisms

∂n : Sn(X)→ Sn−1(X)

are defined by sending σ ∈ Xn to
n∑
k=0

(−1)kdkσ.

We also define ∂0 : S0(X)→ 0 to be the zero homomorphism.
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Definition 13

Let X be a semisimplicial set. The group of n-cycles in X, denoted Zn(X), is the kernel of the boundary operator

∂n, and the group of n-boundaries in X, denoted Bn(X), is the image of ∂n+1.

Basically, the idea is to “get rid of higher-dimensional cycles.” We’ll prove on our homework that Bn(X) is a

subgroup of Zn(X), so every boundary is a cycle (if we take the boundary of a boundary, we get zero), which is in turn

a subgroup of Sn(X).

Because our boundaries are the “boring cycles” (which are actually just part of higher-dimensional behavior), it

makes sense to define the quotient abelian group

Hn(X) = Zn(X)/Bn(X),

which intuitively measures the number of n-dimensional holes in our object.

We can now turn to the second question: how can we turn our attention from semisimplicial (combinatorial) sets

to topological spaces? Specifically, how can we do the same process as we did with the circle and Y and other shapes

during the first class, cutting up our topological spaces to form a semisimplicial set?
Showing that all methods of cutting give us the same answer will take up some time, so we’ll dodge the question

by defining a “maximal” or “canonical” method of cutting up a topological space.

Definition 14

For any n ≥ 0, the standard n-simplex ∆n is a subspace of Rn+1, defined as the convex hull of the standard basis

{e0, e1, · · · , en}. In other words,

∆n =

{∑
i

tiei :
∑

ti = 1, ti ≥ 0

}
.

For example, ∆1 is basically a line segment in R2, and ∆2 is a triangle in R3.

Definition 15

Let X be a topological space. Define Singn(X) to be the set of all continuous maps ∆n → X.

These are extremely infinite sets – for example, Sing0(X) is the set of maps from a point to X, which means we

can think of it as the set of points in X. But we can still talk about these sets in useful ways: specifically, we have

maps

di : Singn(X)→ Singn−1(X),

which are defined by “forgetting” the basis element ei .

Example 16

In the map d1 : Sing2(X)→ Sing1(X), we take the image of the triangle with vertices e0, e1, e2, and we only keep

the part which is the image of the line segment from e0 to e2.

These di maps turn out to make Sing(X) into a semisimplicial set! And this way, we don’t need to cut a space

into simplices, because we’re doing the “maximal” construction where we consider all continuous functions.

Remark 17. We can look into Hatcher’s treatment of “∆-complexes” (which is an alternate name for a “semisimplicial

set”) – there are some good pictures.

6



Definition 18

If X is a topological space, define Sn(X), Zn(X), Bn(X), and Hn(X) to be Sn(SingX), Zn(SingX), Bn(SingX),

and Hn(SingX), respectively.

We can think of a certain hierarchy being used here, going from geometric to combinatorial to algebraic objects:

Topological Spaces
Sing−−→ Semisimplicial sets Hn−→ Abelian groups.

Here, “Sing” is short for “singular,” because we have some continuous but very ugly maps that can be created from

this process. And now we can understand why we chose d1A = h and so on in the solid triangle above: labeling our

vertices of the triangle as e0, e1, e2, the edge d1A is the one “opposite from” vertex e1, and so on.

3 September 9, 2020
A lot of us have been assigned to pset groups by the psetpartners website, but if we’re not satisfied with our groups or

had trouble with the process, we should email Dr. Hahn or go to office hours (which will now take place on Wednesdays

and Fridays before class, as previously mentioned). Our first problem set will be due next Friday.

Last time, we set up the basic idea of singular homology, and we discussed certain transformations described in

the diagram below:

Topological Spaces
Sing−−→ Semisimplicial sets Sn,Zn,Bn,Hn−−−−−−−→ Abelian groups.

That means that if we’re given a topological space, we should be able to extract a semisimplicial set, and then

subsequently extract an abelian group. But the arrows in the above picture have a more specific meaning – the maps

Sing, Sn, Zn, Bn, Hn are compatible with “maps between objects:”

Fact 19

If X → Y is a continuous map of topological spaces, and σ : ∆n → X is a continuous function, then the composite

map ∆n → X → Y is also continuous, so a map X → Y induces a map Singn(X)→ Singn(Y ).

To be more specific with the underlying ideas here, we’ll introduce a lot of category theory notation which will

encode what we care about here:
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Definition 20

A category C consists of the following:

• A class ob(C) of objects in C,

• For every pair of objects X, Y ∈ ob(C), a set of morphisms denoted HomC(X, Y ),

• For every X ∈ ob(C), an identity morphism 1X ∈ HomC(X,X),

• For every (X, Y, Z) (with X, Y, Z ∈ HomC(X,X)), a composition operation

HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z),

written as (f , g) mapping to g ◦ f . This composition must satisfy (h ◦ g) ◦ f = h ◦ (g ◦ f ) and

1Y ◦ f = f ∀ f ∈ HomC(X, Y ), f ◦ 1X = f ∀ f ∈ HomC(Y,X).

Remark 21. Note that categories have a class of objects instead of a set, which means the collection sits in a higher

Grothendieck universe. But we won’t need to worry about these issues for now. (This is really just to avoid needing

to worry about things like “the set of all sets.”)

We have perhaps already seen many examples of categories from other math classes:

Example 22

There is a category Set of sets, which means that ob(Set) is the class of all sets, and morphisms are functions

from one set to another.

In particular, if X, Y are two sets, then HomSet(X, Y ) is the set of all functions from X to Y . The composition

operation is just the composition of functions, and the identity morphism is the identity function.

Example 23

There is a category Ab of abelian groups, which means that the objects in ob(Ab) are abelian groups, and the

morphisms HomAb(A,B) refers to the set of all group homomorphisms A→ B.

The idea here is that the composition of two group homomorphisms is always a homomorphism, and we always

have identity homomorphisms.

Example 24

There is a category VectR of real vector spaces, where the objects in ob(VectR) are vector spaces (with scalar

field R) and the morphisms are linear transformations.

In general, “identity morphism is a morphism” and “composition of morphisms is a morphism” are really the two

facts that we get out of saying that something is a category.

Example 25

There is a category Top of topological spaces, where the objects are topological spaces, and HomTop(X, Y )

denotes the set of all continuous maps X → Y .
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Remark 26. When C is a category, we’ll often use X ∈ C as shorthand for X ∈ ob(C). (So X ∈ Top often means X

is a topological space.) Similarly, we’ll often write f : X → Y when we mean f ∈ HomC(X, Y ), and we’ll use the word

“map” instead of “morphism” frequently.

Definition 27

A morphism f : X → Y in a category C is called an isomorphism if there exists a map g : Y → X such that

g ◦ f = 1X and f ◦ g = 1Y .

Example 28

A morphism in Set is an isomorphism if and only if it is a bijection, and a morphism in Ab is an isomorphism if

and only if it is a group isomorphism. Similarly, an isomorphism in Top is a homeomorphism (a continuous map

with a continuous inverse).

Proposition 29

Suppose f : X → Y is an isomorphism in a category C. Then the inverse g : Y → X is unique, so we can talk

about “the inverse” rather than “an inverse.”

Proof. Suppose that g′ : Y → X were some other inverse of f . Since g ◦ f = 1X , we know that

(g ◦ f ) ◦ g′ = 1X ◦ g′ = g′,

but also (by associativity) this is equal to

g ◦ (f ◦ g′) = g ◦ 1Y = g,

so g = g′.

While category theory does unify a lot of mathematical concepts we’ve already talked about, there’s another reason

we care about it:

Definition 30

A functor F : C → D of categories consists of

• An assignment F : ob(C)→ ob(D) from objects to objects, and

• for all X, Y ∈ ob(C), there is a function F : HomC(X, Y )→ HomD(F (X), F (Y )).

Furthermore, we must have F (1X) = 1F (X) for all X ∈ ob(C), and for all composable pairs of morphisms f , g ∈ C,

F (g ◦ f ) = F (g) ◦ F (f ).

Example 31

For each n ≥ 0, there is a functor Singn : Top→ Set, and there is a functor Sn : Top→ Ab.

Let’s unpack this data: every topological space is associated to a set, and if we have a function between topological

spaces, we get a canonical function between sets by applying Singn. Similarly, we can get a homomorphism between

abelian groups from a function between topological spaces by applying Sn.
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And now we can do some “Inception-level stuff:”

Example 32

There is a (huge) category Cat of categories, where objects in ob(Cat) are categories and morphisms in Cat are

functors.

The idea is that if C and D are two categories, then HomCat(C,D) might be a class and not a set. But (again) we

won’t worry about this distinction too much.

The statement that “Cat is a category” means that we can compose two functors to get another functor:

Example 33

There is a functor Free: Set→ Ab, taking a set to the free abelian group generated by that set. Then Sn : Top→
Ab is the composite functor Free ◦Singn.

Note now that if X → Y is a map in Top (a continuous map between topological spaces), then we can form the

following diagram for each 0 ≤ i ≤ n, corresponding to our “degeneracy” maps di from last time:

Singn(X) Singn−1(X)

Singn(Y ) Singn−1(Y )

di

Singn(f ) Singn−1(f )

di

This diagram commutes, meaning that the two different composite functions we can form from Singn(X) →
Singn−1(Y ) are the same. We can formalize this idea:

Definition 34

Let F,G : C → D be two functors. A natural transformation Θ : F → G consists of maps ΘX : F (X)→ G(X)

for all X ∈ ob(C), such that for all maps f : X → Y in C, the diagram below commutes:

F (X) G(X)

F (Y ) G(Y )

ΘX

F (f ) G(f )

ΘY

Example 35

Suppose n ≥ 1 and 0 ≤ i ≤ n. Then there is a natural transformation di : Singn → Singn−1, where Singn and

Singn−1 are functors from Top to Set.

Definition 36

A natural transformation Θ : F → G is a natural isomorphism if the map ΘX is an isomorphism for all X ∈ ob(C).

We’ll finish with a construction: suppose that C and D are categories, and C has a set of objects (instead of a

class). Then there is another category Fun(C,D), whose objects are functors from C to D, and morphisms are natural

transformations of those functors. When we say that this is a valid construction, we’re saying that a composition of

two natural transformations is a natural transformation. We’ll continue with this and do some more examples next

time!
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4 September 11, 2020
We’ll continue to discuss the formal language of category theory today. We looked at functors Singn : Top → Set,

which record the set of continuous functions from a standard n-simplex into X, as well as natural transformations
di : Singn → Singn−1. But we haven’t put them together in the semisimplicial set construction, and we haven’t really

motivated the semisimplicial identities either. So we’ll try to put all of that into a categorical context today.

To do this, we’re going to need to construct new categories out of old categories.

Definition 37

Let C be a category. Then the opposite category Cop is a category so that ob(Cop) = ob(C), but for any

X, Y ∈ ob(Cop), we define

HomCop(X, Y ) = HomC(Y,X).

If f ∈ HomC(Y,X) is a morphism, we denote the corresponding morphism in HomCop by f op. The composition law

we use is

(f ◦ g)op = gop ◦ f op.

In other words, all of our morphisms get “flipped around.”

Example 38

Recall the category of real vector spaces VectR from last time: the objects of this category are vector spaces, and

the morphisms are linear transformations. Since every V has a dual V ∗ = HomVectR(V,R) (where the underline

refers to the vector space of such transformations, rather than just the set), note that if W → V is a linear map,

and V → R is a linear map, their composite is also linear. Thus, a linear map W → V induces a map V ∗ → W ∗

in the opposite direction after dualization.

This structure can be described concisely by saying that there exists a functor

( )∗ : VectopR → VectR.

Remark 39. We can also understand opposite categories in terms of functors. If C and D are categories, then a

functor F : C → D takes objects to objects, and maps c → c ′ to maps F (c)→ F (c ′). But sometimes we want to go

in reverse, which is why we have functors F : Cop → D, which still take objects to objects but send maps c → c ′ to

maps F (c ′)→ F (c).

Last time, we also described the following construction. Let C and D are categories, such that C has a set of

objects. Then Fun(C,D) is a category, such that the objects are the set of functors from C to D, and the morphisms are

natural transformations of functors. What this is really hiding is a claim that we can compose natural transformations

properly, which we should check on our own.

So now we’re ready to return to our semisimplicial sets:
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Definition 40

Let ∆inj denote the category with objects

ob(∆inj) = {[0], [1], [2], · · · },

and morphisms between objects given by

Hom∆inj([a], [b]) = {injective functions f : {0, 1, · · · , a} → {0, 1, · · · , b} that preserve order}.

(In other words, f (x) < f (y) whenever x < y .) This means that there are no morphisms from [a] to [b] when b < a,

and we’re also implicitly assuming that the composition of injective functions is injective, and that the composition of

order-preserving functions is order-preserving.

Example 41

There are three maps in ∆inj from [1] to [2]: such (injective order-preserving) functions {0, 1} → {0, 1, 2} are just
determined by the image, which is either {0, 1}, {0, 2}, or {1, 2}.

Proposition 42

A semisimplicial set is a functor ∆op
inj → Set.

There’s a lot of notation to unpack here, and we’re encouraged to think through this ourselves and see how the

precise correspondence works. But remember that a semisimplicial set was defined as a sequence of sets X0, X1, X2, · · ·
together with maps d0, d1 : X1 → X0, d0, d1, d2 : X2 → X1, and so on. From this, we should be able to extract a
functor F : ∆op

inj → Set.

Let’s try to understand that: the set of objects of ∆op
inj is the same as the set of objects of ∆inj, which is

{[0], [1], [2], · · · }. So we’ll have our functor send F ([i ]) to Xi . But we need to see where the di maps fit in, too:

Example 43

By definition of the opposite construction,

Hom∆op
inj

([2], [1]) = Hom∆inj([1], [2]),

which consists of the three maps in Example 41.

We’ll label these three maps: let f0 be the map with image {1, 2}, f1 be the map with image {0, 2}, and f2 be the

map with image {0, 1}. So now we’ll define the di map to be F (f opi ) : X2 → X1, and it’s good for us to think about

what this really means.

Note that this abstraction tells us that Fun(∆op
inj,Set) is a category (with natural transformations as morphisms).

This allows us to assert the following theorem that we’ve been working towards, which explains the “arrows” from the

first class more clearly:

Theorem 44

There is a functor

Sing : Top→ Fun(∆op
inj,Set).
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Theorem 45

There are functors

Sn, Zn, Bn, Hn : Fun(∆op
inj,Set)→ Ab.

Both of these results tell us that there are correspondences both in the objects and in the maps of the two categories,

and we can put those results together as well (because of the “huge” category that tells us functors compose):

Corollary 46

We have (composite) functors

Sn, Zn, Bn, Hn : Top→ Ab.

Definition 47

Let Fil denote the category with one object for each non-negative integer, no morphisms from a to b if a < b,

and a unique morphism otherwise.

It’s worth thinking why this is well-defined: this has the same objects as ∆inj, but very different morphisms.

Proposition 48

A functor Fil→ Ab can be thought of as a sequence of abelian groups with maps between them:

A0
∂1← A1

∂2← A2
∂3← · · · .

Definition 49

A chain complex of abelian groups is a functor Fil→ Ab with the property that

∂i−1 ◦ ∂i = 0 ∀ i ≥ 2.

There is indeed a category of chain complexes of abelian groups, denoted chAb, and the morphisms are then natural

transformations of functors Fil→ Ab. If we unwind the definition of a natural transformation, we find that a map of

chain complexes is a diagram as below:

A0 A1 A2 · · ·

B0 B1 B2 · · ·

∂1 ∂2

∂1 ∂2

In other words, we map A0 to B0, A1 to B1, and so on, so that all squares commute.

We’ll continue to restate results from earlier on in class:

Theorem 50

There is a functor from semisimplicial sets to chain complexes of abelian groups:

S∗ : Fun(∆op
inj,Set)→ chAb,

mapping X to a sequence S0(X)
∂1← S1(X)

∂2← S2(X)
∂3← · · · .
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Theorem 51

There are functors Zn, Bn, Hn : chAb→ Ab from chain complexes to abelian groups.

We can put all of this together by saying that the homology group functor Hn : Top → Ab is a composite of the

following functors:

• The Sing construction, which takes us from a topological space to a semisimplicial set,

• The S∗ construction, which takes us to a chain complex of abelian groups,

• The Hn = ker(∂n)/im(∂n+1) construction, which takes us to abelian groups.

5 September 14, 2020
Some more details are now known about the exam – it’ll be held on Monday, November 8th, and it should be much

easier than the problem sets (taking about an hour or less to complete). We’ll be given a 24 hour period to do it, and

we can consult books and the internet as we wish (but not other people). And as a reminder, our first problem set is

due at class time on Friday.

Last lecture, we defined a category called chAb, but we’ll quickly change our conventions to follow the official

course notes: from now on, we’ll call this category of nonnegatively graded chain complexes chAb≥0. Recall that

an object of this category is a sequence of abelian groups

· · · ∂3−→ A2
∂2−→ A1

∂1−→ A0,

and a morphism is a diagram between two of these objects with all squares commuting:

· · · A2 A1 A0

· · · B2 B1 B0

∂3 ∂2 ∂1

∂3 ∂2 ∂1

Definition 52

A (not necessarily nonnegative) chain complex is a sequence of abelian groups with maps

· · · ∂3−→ A2
∂2−→ A1

∂1−→ A0
∂0−→ A−1

∂−1−−→ A−2
∂−2−−→ · · · .

These are objects of the category chAb, with morphisms forming similar diagrams as above.

We mentioned last time that we can think about chAb≥0 as a functor category from Fil to Ab, and it’s worth

thinking about how that extends here. And to relate the two categories, we do have a functor chAb≥0 → chAb, where

any nonnegatively graded chain complex is just sent to · · · → A1 → A0 → 0→ 0→ · · · .

Fact 53

We also have functors Zn, Bn, Hn : chAb → Ab for any integer n, defined analogously as before, so we can still

define the nth homology group functor for chAb instead of chAb≥0, with Hn(X) = 0 for n < 0.

That’s enough category theory for now, and we’ll now spend some time looking at how to rigorously compute the

homology groups for topological spaces.
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Example 54

Let X = p be the one-point topological space (that is, R0). Can we compute the homology groups here?

Since Singn(X) is the set of continuous functions from ∆n → p, where ∆n is the standard n-simplex, there is only

one unique continuous map for each n, which we can denote an. This then gives us the nonnegatively graded chain

complex

S∗(X) = Z{a0}
∂1←− Z{a1}

∂2←− Z{a2} ← · · · ,

so each group here is abstractly isomorphic to the integers.
So now we want to explicitly write down the nth boundary map ∂n. It suffices to show where the generator an

goes, and that’s defined via

∂n(an) =

n∑
k=0

(−1)k(dkan),

where dk is a function of sets from Singk(X) → Singk−1(X). But there’s only one (n − 1)-simplex image that exists

in X, so this expression will just be

=

n∑
k=0

(−1)kan−1 =

an−1 k even,

0 k odd.

So S∗(X) is isomorphic in chAb≥0 to the sequence of maps

Z 0←− Z 1←− Z 0←− Z 1←− · · · ,

and now we’re ready to compute the homology groups. Remembering that ∂0 is defined to be the zero map, we find

that

H0(X) ∼= ker(∂0)/im(∂1) ∼= Z/0 ∼= Z.

(We could have probably predicted this if we’ve already worked on the problem set a bit.) Moving on,

H1(X) ∼= ker(∂1)/im(∂2) ∼= Z/Z ∼= 0.

And we can continue in this way:

H2(X) ∼= 0/0 ∼= 0,

and all subsequent homology groups H3(X), H4(X), · · · , will also be 0. Putting this all together,

Hn(p) =

Z n = 0

0 otherwise.

We can also compute the homology of the empty set, but this is basically all of the possible direct computations

we can do from the definition! So we’ll move into a slightly less boring class of spaces:

Definition 55

A subset X ⊆ Rn is star-shaped with respect to a point b ∈ X if for every point x ∈ X, the interval

{tb + (1− t)x : t ∈ [0, 1]}

lies entirely in X.
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In other words, we can draw a straight line from b to any point in subset X. Such shapes should be “completely

filled in:” we expect that they are basically disks but with some deformations.

Theorem 56

Let X be star-shaped. Then Hn(X) ∼= Hn(p) for all n.

In order to approach this, we’ll need to do some algebra in chAb (and we’ll see as time progresses that this class

is basically one-third algebra, one-third geometry, and one-third category theory).

Definition 57

Let C∗ and D∗ be chain complexes, and let f0, f1 : C∗ → D∗ be two maps (called chain maps). A chain homotopy
h : f0 ' f1 is a collection of homomorphisms h : Cn → Dn+1, such that

∂h + h∂ = f1 − f0.

If there exists a chain homotopy h : f0 ∼ f1, then f0, f1 are chain homotopic.

The slightly relevant diagram is below:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

h h

This is not a commutative diagram, but it’s a way for us to visualize what’s going on. This kind of structure

tends to arise out of geometric constructions, and it’s useful because of the following result:

Lemma 58

Suppose f0, f1 : C∗ → D∗ are chain homotopic. Then the two maps Hn(f0), Hn(f1) : Hn(C∗) → Hn(D∗) are the

same.

Recall that Hn is a functor, so a map like f0 or f1 gives us a map of abelian groups. And this result is saying that

the induced maps of abelian groups are identical.

Proof. Let c ∈ Zn(C∗) be an n-cycle. We must show that

f1c − f0c ∈ Zn(D∗) ∈ Bn(D∗).

Picking some chain homotopy h, we have that

f1c − f0c = (∂h + h∂)c = ∂hc + h∂c,

but ∂c = 0 because c is a cycle, so this is just ∂hc . So we’ve written f1c − f0c as the boundary of hc .

Remark 59. We’re using a convention where we are omitting indices (some of the partials here should be ∂n versus

∂n+1). This makes it more practical to write things down, and we should feel free to do the same on our homework.

Proof of Theorem 56. Suppose that X is starshaped with respect to b ∈ X. A map X → p induces a chain map

ε : S∗(X) → S∗(p), and the map b : p → X induces a map η : S∗(p) → S∗(X) (in both cases, because S∗ is a
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functor). We wish to show that for all n, Hn(ε) and Hn(η) are inverse isomorphisms of abelian groups. To do that,

we need to show that both compositions are identity maps. First, note that

Hn(ε) ◦Hn(η) = Hn(ε ◦ η)

by definition of functoriality, and because ε ◦ η is the identity map, this gives us

= Hn(1S∗(p)) = 1Hn(S∗(p).

We need to show that the other order of composition also gives us something nice: specifically, that

η ◦ ε : S∗(X)→ S∗(X)

is chain homotopic to the identity map, which is good enough by Lemma 58. We’ll use the chain homotopy

h : Sq(X)→ Sq+1(X)

that sends simplices to simplices (so we send generators to generators), meaning that for any σ ∈ Singq(X), we define

the map h(σ) : ∆q+1 → X via

h(σ)(t0, · · · , tq+1) =

b t0 = 1,

t0b + (1− t0)σ
(

t1

1−t0
, · · · , tq+1

1−t0

)
otherwise.

Geometrically, what is happening here is that given a simplex σ in our star-shaped region, we’re connecting it with

straight lines to everything in b (which adds an extra dimension). Because we’re star-shaped, this higher-dimensional

simplex will stay inside the region. Then d0(h(σ)) = σ, and for all i > 0, we have

di(h(σ)) = h(di−1(σ)).

This means that

∂(h(σ)) = d0hσ − d1hσ + d2hσ − · · · ,

which simplifies to

σ − h(d0σ − d1σ + · · · ) = σ − h∂σ.

This lets us conclude that ∂h+h∂ = 1−ηε, so we indeed have a chain homotopy, and 1 and ηε are chain homotopic.

6 September 16, 2020
The recording from last class had some technical issues, so it needs to be re-recorded before it can be posted on the

class website. (But it won’t be necessary for the problem set due on Friday.)

Last class, we defined the notion of chain homotopy. Basically, given two maps of chain complexes f0 : C∗ → D∗

and f1 : C∗ → D∗, we define a collection of group homomorphisms h : Cn → Dn+1 such that

∂h + h∂ = f1 − f0.

This is useful because chain homotopic maps f0, f1 give us the same homology groups Hn(f0), Hn(f1), and we used

this to show that star-shaped regions in Rn have identical homology groups to that of a single point. (We did this by

taking k-dimensional simplices and connecting them to (k + 1)-dimensional simplices.)
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A valuable question to ask, then, is the following: if we have two maps f , g : X → Y in Top, when are S∗(f ) and

S∗(g) chain homotopic? In such a case, we have Hn(f ) = Hn(g), and the idea is that working with topological spaces

can tell us something algebraic.

Definition 60

A homotopy h between maps of topological spaces f , g : X → Y is a continuous map

h : X × [0, 1]→ Y

such that h(x, 0) = f (x) and h(x, 1) = g(x). (And f and g are homotopic if such an h exists.)

The second variable here in x is often thought of as “time:” we can imagine that we have a continuous movement

(or family of interpolating maps) from the map f to the map g.

Theorem 61

If f and g are homotopic maps of topological spaces, then S∗(f ) and S∗(g) are chain homotopic (meaning that

Hn(f ) = Hn(g) as maps of abelian groups).

Proof. This is on our homework assignment, since it’ll help us get more familiar with the concepts but isn’t a particularly

memorable proof.

Fact 62

Suppose that h12 : X × [0, 1] → Y is a homotopy from f1 to f2, and h23 : X × [0, 1] → Y is a homotopy from f2

to f3. Then we can compose them together, in the sense that

h13(x, y) =

h12(x, 2t) 0 ≤ t ≤ 1/2,

h23(x, 2t − 1) 1/2 ≤ t ≤ 1

is a homotopy from f1 to f3.

This means that there is a transitivity property for being homotopic, and this is the argument we need to say that

f ' g (meaning f and g are homotopic) is an equivalence relation on the set of continuous maps HomTop(X, Y ).

(We also need to verify reflexivity and symmetry, but those are easier to do.)

This also means we have a homotopy category Ho(Top) with ob(Ho(Top)) = ob(Top) and HomHo(Top) =

HomTop(X, Y )/ ', meaning that maps in the homotopy category are homotopy classes of maps in Top. (And in

this assertion, we’re saying things like “composition behaves well with this equivalence relation.” This then gives us a

canonical functor

Top→ Ho(Top)

which sends maps to their equivalence classes – we can think of this functor as some kind of “quotient functor.”

Theorem 61 implies that we have a diagram

Top Ab

Ho(Top)

Hn
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which commutes – specifically, there exists a unique functor Ho(Top) → Ab. (This is a “first isomorphism” type

construction for categories: we’re saying that the functor Hn defined on Top has the property that it sends homotopic

maps to identical maps in Ab, so it “uniquely factors through” this homotopy category construction.) But if we look

at the functor S∗ : Top → chAb instead and try to construct a similar diagram, there isn’t a functor from Ho(Top)

to chAb which makes the diagram commute, because homotopic maps of topological spaces are not sent to identical

maps of chain complexes – only chain homotopic ones.

Remark 63. There’s a category Top∗ of “pointed topological spaces” (topological spaces with a base point), and we

also get a similar looking diagram out of the π1 fundamental group functor:

Top∗ Ab

Ho(Top∗)

π1

Here, π1(X) is the set of functions from S1 → X which send base points to X, modded out by the homotopy

equivalence '.

Definition 64

A continuous map f : X → Y of topological spaces is called a homotopy equivalence if it maps to an isomorphism

under the functor Top → Ho(Top). Two spaces X, Y are homotopy equivalent if there exists a homotopy

equivalence f : X → Y .

If we unpack this a little, this means that f is a homotopy equivalence if and only if there exists an inverse map

g : Y → X such that f ◦ g and g ◦ f are homotopic to the identity map. And the “slogan” to remember here is that

homology cannot tell between homotopy-equivalent spaces, or between homotopic maps. So it’s useful to be

able to tell whether two spaces are homotopy equivalent quickly, and we’ll show one simple way this often comes up:

Definition 65

An inclusion A ↪→ X is a deformation retraction if there is a map h : X × [0, 1]→ X such that

• h(x, 0) = x for all x ∈ X,

• h(x, 1) ∈ A for all x ∈ X,

• h(a, t) = a for all a ∈ A and t ∈ [0, 1].

In other words, we start with X and “pull everything back” to A over time, such that everything inside A is untouched.

We can check that this is indeed a homotopy equivalence between A and X, and often we can show that two spaces

X and Y are homotopy equivalent if we can exhibit a common deformation retraction to some subspace A that sits

inside both X and Y .

Example 66

We can check that Sn−1 ⊂ Rn − {0} is a deformation retraction, even though the dimensions of the two spaces

are different. And an annulus and a circle with a small “stick” attached to it are homotopy equivalent, because

both deform into a circle.
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Last class, we proved that star-shaped regions have the same homology as a point – in fact, the inclusion of that

central point b ∈ X to X is a deformation retraction. But this hasn’t gotten us to proving things which are not

homotopy equivalent to a point, and we’ll need to understand some other simple spaces.

Specifically, we want to understand how inclusions A ⊆ X of subspaces relate the homology Hn(A) to Hn(X).

Notice that S∗(A) → S∗(X) is a subcomplex of chain complexes, meaning that we have a map of chain complexes

(as usual, with commuting squares) except with vertical arrows being inclusions Ci ⊆ Di rather than just any maps

Ci → Di .

This leads us to the following construction: let C∗ ⊂ D∗ be a subcomplex. Then the quotient complex D∗/C∗
has groups

(D∗/C∗)n = Dn/Cn

and differential maps

∂n : Dn/Cn → Dn−1/Cn−1

that are well-defined, because two classes in Dn that differ by a class in Cn will have boundaries that only differ by a

class in Cn−1. (This is exactly the assertion that the squares in the map of chain complexes commute.)

Definition 67

Let A ⊆ X be a subspace of a topological space. Then we denote Hn(X,A) to be the nth homology group of the

quotient complex S∗(X)/S∗(A).

We’ll discuss the relation between Hn(A), Hn(X), and Hn(X,A) next time!

7 September 18, 2020

We’ll continue to talk about the relative homology group Hm(X,A) today. Recall that if we have a subspace A ⊆ X,
we define Hm(X,A) is defined to be the homology group of the quotient chain complex S∗(X)/S∗(A). We know that

we have a general strategy for computing these homology groups: look for a slightly simpler subspace A of X, and

then try to relate the three groups

Hm(A), Hm(X), Hm(X,A).

To compute that third quantity Hm(X,A), we’ll learn today how to relate it to Hm(X/A). And the geometric picture

here is that we’re “breaking up a space into smaller pieces and putting the computation together.”

Definition 68

Let Top2 denote the category with objects

ob(Top2) = {(X,A) : X is a topological space and A is a subspace of X},

with morphisms

HomTop2
((X,A), (Y,B)) = {continuous maps f : X → Y with f (A) ⊂ B}.

This means we’ve basically extended homology from Top onto these pairs in Top2: for each nonnegative integer

m, we have a functor Hm : Top2 → Ab, which we’ll use to understand our homology gruops. And also note that we

have a functor Top→ Top2 which sends X to (X,∅), so we can view Top as a subcategory of Top2 if we want.

To understand the quotient chaim complexes a bit better, we’ll need to do some algebra.
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Definition 69

Let A f−→ B
g−→ C be a sequence of abelian groups with maps between them. This sequence is exact (at B) if

ker g = im f .

If this sequence of groups is part of a chain complex, then “this sequence has no homology,” since the homology

groups are ker g/im f .

Example 70

A sequence 0→ A
f−→ B is exact if and only if f is injective (since the kernel of f should be the image of the zero

map), and A f−→ B → 0 is exact if and only if f is surjective (since the kernel of B, which is all of B, should be

the image of f ).

Definition 71

A longer sequence of abelian groups is exact if it is exact on every three-term (adjacent) subsequence.

Example 72

The sequence of maps

0→ Z 2−→ Z 1−→ Z/2Z→ 0

is exact (we can check the condition on all three three-term subsequences). In general, an exact sequence of the

form 0→ A→ B → C → 0 is called a short exact sequence.

Example 73

The chain complex for the emptyset S∗(∅) is exact, because all groups are just 0. On the other hand, the chain

complex for a point S∗(p) is not exact, because the zeroth homology of a point is Z, though it is exact away from

S0(p).

This kind of language is useful because it’s often going to make some technical algebra machinery easier to deal

with:

Theorem 74 (Five lemma)

Suppose we have maps of abelian groups as in the diagram below, such that that all squares commute:

A4 A3 A2 A1 A0

B4 B3 B2 B1 B0

d

f4

d

f3

d

f2

d

f1 f0

d d d d

If both rows are exact, and f0, f1, f3, f4 are isomorphisms of abelian groups, then so is f2.

Even if this statement looks technical, it’ll turn out to be very useful.

Proof. We need to check that f2 is both injective and surjective. We’ll show the latter here, and we’ll get a chance to

try injectivity on our own.
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Pick some b2 ∈ B2 – we wish to write it as the image of some element of A2. Because f1 is an isomorphism, we

know that db2 = f1(a1) for some a1, and then da1 = 0 because f0da1 = df1a1 = ddb2 = 0 (last step because of

exactness, and using the isomorphism property of f0). Now by exactness, we know that a1 = da2 for some a2 ∈ A2,

and now we know that

df2a2 = f1da2 = f1a1 = db2.

And now b2 − f2(a2) goes to 0 under d , so there exists some b3 ∈ B3 such that db3 = b2 − f2(a2) by exactness. And

now because f3 is an isomorphism, we can “lift” this to an a3 such that

f3a3 = b3, =⇒ f2da3 = df3a3 = b2 − f a2a2.

This means that b2 = f2(a2 + da3), which means b2 is in the image of f2 as desired.

Remark 75. Proofs like this are called diagram chasing: they’re harder to do over Zoom because we’re supposed to

physically point at diagrams. So we should go through and verify that this kind of argument makes sense to us.

Definition 76

A short exact sequence of chain complexes is a diagram 0∗ → A∗
f−→ B∗

g−→ C∗ → 0∗.

We can expand out the definition to look like this:

· · · 0 0 0 · · ·

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

· · · Cn+1 Cn Cn−1 · · ·

· · · 0 0 0 · · ·

fn+1 fn fn−1

gn+1 gn gn−1

f2 f1 f0

In this diagram, rows must be chain complexes (so the composite of two maps must be zero), and the vertical

maps must be short exact sequences of abelian groups.

Example 77

Let A ⊆ X be an inclusion of topological sequence. Then 0 → S∗(A) → S∗(X) → S∗(X)/S∗(A) → 0 is a short

exact sequence of chain complexes.

Theorem 78

Let 0 → A∗ → B∗ → C∗ be a short exact sequence of chain complexes. Then we have a long exact sequence of

homology groups

· · · → Hn+1(B)
Hn+1(g)−−−−→ Hn+1(C)→ Hn(A)

Hn(f )−−−→ Hn(B)
Hn(g)−−−→ Hn(C)→ Hn−1(A)

Hn−1(f )−−−−→ Hn−1(B)→ · · ·
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We know that the Hn maps between A,B, C for a fixed n exist by functoriality, but it’s surprising that we have a

degree-lowering map that relates the homology between A and C. It’s not very easy to describe what these maps do,

but we can try to understand it by playing with some of the algebra.

This is a version of the Snake Lemma, and we’ll prove this algebraic result in digestible chunks on our homework

as well.

Fact 79

It seems people like to mention that the Snake Lemma was proved in a Hollywood movie, but the time between

the Snake Lemma being established and the movie coming out is now shorter than the time between the movie’s

release and the present day. We can see such a proof in the following Youtube video: https://www.youtube.com/

watch?v=etbcKWEKnvg.

Corollary 80

Suppose A ⊆ X is an inclusion of spaces. Then there is a long exact sequence

· · · → Hn+1(X)→ Hn+1(X,A)→ Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ Hn−1(X)→ · · · .

These “degree-lowering maps” are supposed to be pretty mysterious – in practice, we shouldn’t need to dig into their

definition when using this corollary. The point is to summarize the relation between our homology groups using the

fact that “there exists these maps that make the sequence exact,” and we’ll see why this is true as we start computing

homology groups in the next week or so. It’s particularly powerful because it relates all of the homology groups Hn at

once.

And now we can return to the question of computing Hn(X,A), and we’ll start with a simple case:

Example 81

Let b be a point of X, meaning that we have a pair (X, {b}) in Top2. Let’s compute the relative homology group

Hm(X, {b}).

We’ll be able to do things from first principles in this simple example. First of all, remember the definition: if we

consider the map S∗({b})→ S∗(X)→ S∗(X)/S∗({b}), we can note that Sm(X)/Sm({b}) is just the quotient of the

free abelian group generated by the m-simplices of X by the group generated by the single m-simplex ∆n → p
b→ X.

(In other words, we’re just killing a single m-simplex.) We can check that for all m > 0, this implies that

Hm(X) ∼= Hm(X, {b}),

because this is a “boring simplex” that is easy to calculate the boundary for. And as we showed on our homework,

H0(X) ∼= Zπ0(X), where π0(X) is the set of path components of X. Then there is a direct sum decomposition

H0(X) ∼= Z⊕H0(X, {b}),

where the Z corresponds to the path component containing b. This means we have a free abelian group of one lower

rank when we go from H0(X) to H0(X, {b}).
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Theorem 82 (Excision)

Let (X,A) be a pair of spaces, and suppose that there is a subspace B of X so that A ⊆ Int(B), and A→ B is a

deformation retraction. Then for all m, there is an isomorphism

Hm(X,A) ∼= Hm(X/A, p) ∼=

Hm(X/A) m > 0

ker(Zπ0X → Z) m = 0
.

The condition on B is not really that restrictive here (Int(B) refers to the interior of B) – it just makes sure

we’re not doing something horrible bad topologically. So we’ve shown some connection between relative homology

and absolute homology, via the Snake Lemma. Next time, we’ll start to gather things together so we can start doing

real computations.

8 September 21, 2020
Our second homework assignment will be posted tonight – it will be due in a little under two weeks.

Last time, we discussed the functor Hm : Top2 → Ab from pairs of topological spaces to abelian groups, and

we started discussing the excision theorem: this stated that for some pair (X,A) of spaces and a subspace B of X

satisfying some not-very-difficult conditions (that is, the closure of A is contained in the interior of B, and A→ B is

a deformation retraction), then

Hm(X,A) ∼= Hm(X/A, p) ∼= H̃m(X/A).

This is the most subtle of the theorems in homology theory, and we’ll spend a few days going over the proof of it.

In fact, we’re going to state and prove a more general version:

Definition 83

Suppose U ⊆ A ⊆ X are three topological spaces. Then if U ⊆ Int(A), then the triple is called excisive, and the

inclusion (X − U,A− U) ⊆ (X,A) is called an excision.

Theorem 84

An excision induces an isomorphism of abelian groups

Hm(X − U,A− U) ∼= Hm(X,A).

(Remember that we should think of Hm(X,A) as basically looking at the homology group of a quotient space, and

U is contained in both A and X, so (X − U)/(A− U) should look a lot like X/A.)

Definition 85

Two maps f , g : (X,A)→ (Y,B) are homotopic if there exists a function h : X × [0, 1]→ Y such that

• h(x, 0) = f and h(x, 1) = g for all x ∈ X,

• h(a, t) ∈ B for all a ∈ A and t ∈ [0, 1] (that is, the subspace A is sent to the subspace B at all times).

This allows us to define the Ho(Top2) category, which behaves under the homology functors as we want.
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Giving a quick summary of where we are right now, we’ve constructed the following ideas:

1. We have a sequence of functors Hn : Top2 → Ab for all integers n,

2. We have a sequence of natural transformations ∂ : Hn(X,A) → Hn−1(A) ≡ Hn−1(A,∅) (via our embedding of

Top into Top2) from the Snake Lemma, such that

(a) For any pair (X,A) of topological spaces, the sequence

· · · → Hq+1(X,A)
∂−→ Hq(A)→ Hq(X)→ Hq(X,A)

∂−→ · · ·

is exact (where all other maps besides the ∂ Snake Lemma ones exist because of naturality),

(b) If f0, f1 : (X,A)→ (Y,B) are homotopic, then Hn(f0) = Hn(f1).

3. The excisions we described earlier in the lecture induce a homology isomorphism.

4. We’ve constructed the “dimension axiom:” the homology groups Hn(p) of a point are Z for n = 0 and 0 otherwise.

5. Finally, we’ve checked some version of this result on our homework: if Xi are a collection of spaces indexed by

a set I, then

Hm

(⊔
i∈I
Xi

)
∼= ⊕i∈IHm(Xi).

Fact 86

These are the “basic facts of homology,” and this is meant in a pretty strong sense: a theorem by Eilenberg

and Steenrod says that these facts completely characterize the Hm functors. In other words, we can start

distinguishing topological spaces with algebraic invariants if we just know the facts above!

Remark 87. If we have a set of functors En : Top2 → Ab which satisfy all axioms above except the fourth (dimension

axiom), we get something called a extraordinary homology theory. We’ll see a few examples of these extraordinary

homology theories later on in the class, and there’s a lot of active research in this area (see K-theory, bordism theory,

topological modular forms, and so on).

Before we jump into excision, though, we’ll take a break and do a few calculations from these axioms that we’ve

listed above.

Example 88

Let’s calculate the homology groups Hm(S1) for a circle.

We know that

S1 ∼= [0, 1]/{0, 1}

(we take an interval and identify the two endpoints together). So we can use the following long exact sequence

associated to the pair ([0, 1], {0, 1}):
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H2({0, 1}) H2([0, 1]) H2([0, 1], {0, 1})

H1({0, 1}) H1([0, 1]) H1([0, 1], {0, 1})

H0({0, 1}) H0([0, 1]) H0([0, 1], {0, 1})

∂

∂

Now we can fill in the necessary information piece by piece:

• H2({0, 1}) = H1({0, 1}) = 0 by the dimension axiom and disjoint union.

• H2([0, 1]) = H1([0, 1]) = 0 because we have a deformation retraction to a point. Therefore, the maps

H2({0, 1})→ H2([0, 1]) and H1({0, 1} → H1([0, 1]) are the zero maps.

• Therefore, by the definition of an exact sequence, H2([0, 1], {0, 1}) is the zero group as well. (The same

argument works for all m > 2 too, which is why it’s not included here.)

• Now, H0({0, 1}) ∼= Z ⊕ Z, and H0([0, 1]) ∼= Z. (Remember that we’re creating free abelian groups of path
components here.) Since the points 0 and 1 are both being “included” into the interval, the map f : Z⊕Z→ Z
should send both (1, 0) and (0, 1) to 1. (Another way to understand this is to consider the composite map

{0} → {0, 1} → [0, 1], which is a deformation retraction. Since 1 7→ (1, 0) 7→ 1, we should indeed define our

map as shown.)

• Now, we want to look at H1([0, 1], {0, 1}). By exactness, this relative homology group is Z, corresponding to

ker f of the map defined in the last bullet point (which is the multiples of (1,−1).

• Finally, we can look at H0([0, 1], {0, 1}). The image of f is all of Z, so the kernel of the map H0([0, 1]) →
H0([0, 1], {0, 1}) is Z, which is everything. But the next boundary map is also zero, so this group is 0.

Other than calculating the map f , we didn’t have to do very many “geometric things,” and we didn’t need to know

much about the boundary maps, either! So we know that

H2([0, 1], {0, 1}) ∼= 0, H1([0, 1], {0, 1}) ∼= Z, H0([0, 1], {0, 1}) ∼= 0,

and now we can use the excision theorem to say that

Hm([0, 1], {0, 1}) ∼= Hm(S1, ∗) ∼= H̃m(S1),

where H̃m(S1) is the same as Hm(S1) except for m = 0. So putting everything together,

H2(S1) ∼= 0, H1(S1) ∼= Z, H0(S1) ∼= Z⊕ H̃0(S1) ∼= Z.

So the homology of a circle tells us that we have one path component and one one-dimensional hole:

Hm(S1) =

Z m = 0, 1

0 otherwise.

We can extend this to calculate (on our homework) that

Hm(Sq) =

Z m = 0, q

0 otherwise.
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And now we’ll end this class with a few consequences of our calculations:

Corollary 89

If q 6= r , then Sq and Sr are not homotopy equivalent. Furthermore, Rq and Rr are not homeomorphic.

Proof. The first part follows from having different homology groups. For the second part, suppose that Rq and Rr

are homeomorphic. Removing a point and its image tells us that Rq − {b1} is isomorphic to Rr − {b2} for two points

b1 ∈ Rq, B2 ∈ Rr . But there is a deformation from Sq−1 into Rq − {b1}, and also Sr−1 into Rr − {b2}, which is a

contradiction.

Theorem 90 (Brouwer fixed point theorem)

Let f : Dn → Dn be a continuous map. Then there is a point x ∈ Dn such that f (x) = x .

(In other words, if we “stir our coffee cup,” some point of coffee will be where it started during the process.)

Proof. Suppose otherwise. Then we can define the map g : Dn → Sn−1, such that

g(x) = the point where the ray from f (x) to x hits the boundary of the disk.

Notice also that for any x ∈ Sn−1 ⊆ Dn on the boundary, g(x) = x , so we have the identity map under the composition

Sn−1 ↪→ Dn → Sn−1.

For n ≥ 2, we can apply the functor Hn−1 to get the identity map Z → 0 → Z under composition, which is a

contradiction. (And n = 1 is a case we can address on its own.)

9 September 23, 2020
Today, we’ll continue some arguments from last class and justify a few statements we didn’t fully prove. Last time,

claimed that if we have three spaces U ⊆ A ⊆ X such that U ⊆ Int(A), then the excision

(X − U,A− U) ⊆ (X,A)

leads us to the final Eilenberg-Steenrod axiom that we haven’t proved yet and won’t prove on our homework, which is

that excisions induce homology equivalences. So the next few classes will cover a proof of this, and then we’ll be

able to return to calculations and discover interesting facts about topological spaces. (In particular, we’ll use this to

justify why the homology of a pair Hm(X,A) is essentially just Hm(X/A, p) as long as we satisfy some mild point-set

conditions.)

The key fact we’ll need to use is the locality principle, which we’ll set up now:

Definition 91

Let X be a topological space. A family A of subsets of X is a cover if X is the union of the interiors of all A ∈ A.

(This is basically like an open covering, but we want to allow our subsets themselves to be not open as long as the

interiors do the job.)
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Definition 92

Let A be a cover of X. An n-simplex σ : ∆n → X is A-small if the image of σ is entirely contained in a single

element A ∈ A.

In other words, a “small” simplex is one that lies entirely within one subset without needing to cross between

different ones. Note that if σ : ∆n → X is A-small, then so is diσ, which is entirely contained within σ itself (since

we’re just “forgetting some vertices”). But that means we can form a semisimplicial set, denoted SingA(X), where

we choose our n-simplices to be the A-small n-simplices in X . And now via the usual functor, we know that we can

create a chain complex SA∗ (X) (with elements of abelian groups just combinations of small simplices), which we can

say something useful about:

Theorem 93 (Locality principle)

The inclusion SA∗ (X) ⊆ S∗(X) induces an isomorphism on homology groups.

So the key to excision is that we can make our simplices into “very small” (A-small) simplices without changing

the homology groups. Intuitively, we need to change a cycle in Zn(X) into a “sum of smaller simplices,” and we can

do this by adding more boundaries to our simplex. Here’s some intuition first:

Example 94

Suppose X is a topological space, and σ : ∆1 → X is some (directed) path.

Suppose that we have a small triangle in X with σ as one of the edges, as shown below:

X

σ
f

g

Looking at this diagram, we see that

f − g + σ = 0

in the homology group H1(X), because it’s a “boundary” of the triangle. But now if we shrink this triangle , bringing

the top vertex down so that σ points basically along the same axis as f and g, as shown below, we can say that σ is

the same as f − g, mod our boundary map ∂. And we can always do this “breaking up,” regardless of what our space

X is, because g and f ’s images are contained inside σ’s. The hope is that making lengths smaller will help us make

“smaller simplices” in some sense.

σ
=

f

g

To make this more precise, our goal is to construct a natural transformation, denoted $, between the functor

Sn : Top→ Ab and itself. (This means that for any topological space X, we have to construct an abelian group map

$ from Sn(X) to itself, which should chop up our n-simplices into combinations of smaller n-simplices.)

To specify such a map, we need to say what it does to each generator σ : ∆n → X. The trick here (which will

come up on our problem set, too) is to consider the following naturality square:
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Sn(∆n) Sn(∆n)

Sn(X) Sn(X)

Sn(σ)

$

Sn(σ)

$

This square should commute, and we have the special n-simplex

1∆n : ∆n → ∆n

which is one of the generators of the free abelian group Sn(∆n). So let’s start with that element in the top left corner

and follow it around the square. Applying the vertical Sn(σ) map to 1∆n means we’re composing the identity map

∆n → ∆n with the map σ : ∆n → X, so

Sn(σ)(1∆n) = σ.

so now naturality (across the bottom and top paths of the square) forces

$(σ) = Sn(σ)$(1∆n).

So the naturality square lets us specify a functor $ described on every topological space, as long as we say what
it does to 1∆n . Let’s now $ cuts our simplices into smaller pieces:

Fact 95

We define $ by letting $(1∆0 ) = 1∆0 , which tells us that $ is the identity on points. Also, we set $(1∆1 ) = f − g,
where f and g are oppositely oriented line segments inside ∆1 as in the diagram above.

Going further, defining $(1∆2 ) will come from the following cutting up of a triangle:

F E

A

B C

D

In the diagram here, we define $(1∆2 ) = A−B+C−D+E−F . The important point is that this linaer combination

is the same (at the level of homology) as the original 2-simplex, because they look the same modulo boundaries.

In general, to define $(1∆n), we can let b denote the center of mass of ∆n. We’ll subdivide the boundary of ∆n

according to $ of one lower dimension, and then we can connect each of those to the central point b:

$1∆n = b ∗ $(∂1∆n),

where b ∗ (arg) : Sn−1(∆n) → Sn(∆n) is the “cone construction” we previously saw in the star-shaped region proof.

(In the triangle above, this means we take each of the six directed edges we’ve drawn along the boundary, and we

connect them to the center point to form A,B, C,D,E, F .) And we’re saying this doesn’t change the homology of

our simplex:
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Theorem 96

For any topological space X, $ : S∗(X)→ S∗(X) is a chain map, and it is chain homotopic to the identity (so in

homology, it’s not doing anything) via a natural chain homotopy.

Proof. We can check that

∂$1∆n = $∂1∆n ,

which is saying that the boundary of the subidivision – an expression like A−B+C −D+E − F in the triangle above

– is equivalent to the $ expression obtained by taking the boundary of the original triangle.

So then naturality tells us for any n-simplex σ : ∆n → X that

∂$σ = ∂$(Sn(σ)(1∆n)) = Sn(σ)(∂$1∆n) = Sn(σ)($∂1∆n) = $∂σ,

(it commutes with the differential, which makes it a chain map). Now to show that we have actually have $ chain

homotopic to the identity, we need to define a chain homotopy T : Sn(X)→ Sn+1(X) from $ to 1S∗(X). But the same

naturality trick means that it suffices to define what T does to 1∆n : we’ll define T (1∆0 ) to be 0, and for any n > 0,

we define

T (1∆n) = b ∗ ($1∆n − 1∆n − T∂1∆n).

This is an inductive construction, and it may appear to be a bit obscure, but we can check that it satisfies the condition

for being chain homotopic to the identity with some symbol-pushing. For some geometric intuition, T (1∆1 ) is exactly

the “squashed” 2-simplex living in S2(∆1) that we described in the picture above, where f , g, σ all live on top of each

other.

So now if A is a cover of a space X, our goal is to show that we have a homology isomorphism by shrinking a

chain via $ repeatedly.

Lemma 97

Suppose A is a cover of ∆n. Then for any simplex σ ∈ Sn(∆n), there exists an integer k such that $kσ is A-small.

Proof. This is a consequence of the following fact from point-set topology:

Lemma 98 (Lebesgue covering lemma)

Let M be a compact metric space, and let U be an open cover. Then there is some ε > 0 such that for all x ∈ M,

Bε(x) ⊆ U for some U ⊆ U .

Since ∆n is a compact metric space, we can apply this lemma with the open cover U = {Int(A) : A ∈ A}.
Subdividing via $ will make our diameter smaller and smaller, until we get below this specified value of ε.

And now we can bootstrap this to get the result for any space:

Lemma 99

Let A be a cover of a space X, and let σ ∈ Sn(X). Then there exists an integer k such that $kσ is A-small.

30



Proof. This comes from thinking about the definitions of singular homology. Assume without loss of generality that σ

is a single n-simplex. Then consider the inverse image σ−1(Int(A)) for all A ∈ A these subsets form an open covering

of ∆n (as opposed to X), so Lemma 97 gives us what we want.

Next time, we’ll use this to prove the excision theorem.

10 September 25, 2020
We’ll continue the proof of the excision theorem today, working off of the “locality principle” discussed yesterday, but

we’ll start by giving some geometric intuition for the “connecting map” in the homology long exact sequence. Suppose

that we have a pair of spaces A ⊆ X such that

Hm(X,A) ∼= Hm(X/A, p),

which is just Hm(X/A) for m > 0. (Remember that such a pair just needs to satisfy some mild point-set conditions.)

Then the Eilenberg-Steenrod axiom tells us about the existence of a long exact sequence

· · · → Hm(A)→ Hm(X)→ Hm(X,A)
∂−→ Hm−1(A)→ Hm−1(X)→ · · · .

We’re supposed to think of the connecting map ∂ as generally very hard to compute, but there are some situations

where that map is possible to understand. Suppose we pick a class c ∈ Sm(X) which is not in Zm(X), meaning in

particular that ∂c 6= 0 (we can’t be a boundary because we’re not even a cycle). However, if the image of c under the

quotient map Sm(X) → Sm(X/A) is a cycle, then this means ∂c ∈ Sm−1(X) must be in the image of the inclusion

Sm−1(A) → Sm−1(X). (In fact, ∂c must be within Zm−1(A), because the boundary of a boundary is always zero,

even when we don’t start with a cycle.) So in this case, ∂c represents some element of Hm−1(A), and it’s possible to

understand the boundary map.

Example 100

Let’s return to one of last time’s main examples: suppose that X = [0, 1] and A = {0, 1}, so that X/A identifies

the endpoints of the interval and gives us something homeomorphic to a circle.

If we consider σ : ∆1 → X to be the element of S1(X) that is a homeomorphism sending e0 to 0 and e1 to 1

(that is, the standard identification with the interval), then in the chain complex S∗(X), ∂σ = {1} − {0}. This is not
a trivial element in S0(X), but ∂σ is sent to 0 under the quotient X → X/A: in particular, σ is sent to an element in

Z1(X/A). So σ represents a class in H1(X,A) ∼= H1(S1), and the boundary is a class in H0(A) (the free abelian group

on {0} and {1}). Therefore, the boundary map in the diagram

· · · → H1(S1)
∂−→ H0({0, 1})→ · · ·

maps Z to Z ⊕ Z by sending σ to the element (1,−1). (And perhaps this helps us understand why the “boundary”

map is called that.)

So now we’ll return to excision. Last time, we showed that if we have a cover A of X (a set of subsets whose

interiors form an open cover) and an element σ ∈ Sn(X), then there exists an integer k such that the k-fold subdivision

$kσ is A-small.

Before we jump further, recall that we found a natural chain homotopy T from $ to the identity 1S∗(X), which

means that there is a natural chain homotopy T k from $k to 1S∗(X) (this is saying that chain homotopies compose).
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As a corollary of that, if we’re given any σ ∈ Zn(X), then $kσ must be equivalent to σ modulo boundaries. We won’t

need to use T k very much, except that it’s natural – we want to suppress the actual formula for T k because it is a bit

messy.

We’ll restate the locality principle again here:

Theorem 101 (Locality principle)

Let A be a cover of a space X. Then the inclusion of chain complexes SA∗ (X) ⊆ S∗(X) induces isomorphisms

HAn (X)→ Hn(X) for all n.

Proof. To show surjectivity, suppose that we have some cycle c ∈ Zn(X). Then our goal is to show there is some

A-small element of Zn(X) that is equivalent to c modulo boundaries, but this can be done using $kc (by the argument

from last class). Injectivity is a bit more tricky: here’s the result we need to show. Suppose that we have c ∈ ZAn (X)

is an A-small cycle that is “zero in homology,” such that c = ∂b for some b ∈ Zn+1(X). We need to show that this is

also “zero in homology” in the A-small case: that is, we must find some b′ ∈ SAn+1 so that ∂b′ = c as well.

To do that, we choose k so that the subdivision $kb is A-small. If we try to calculate the boundary of the

subdivision, we find that

∂($kb)− c = ∂(($k − 1Sn+1(X))(b))

by definition, and now we can use the chain homotopy definition to rewrite as

∂((∂Tk + Tk∂)(b)) = ∂∂Tkb + ∂(Tk∂b).

Boundaries of boundaries are always zero, so this leaves us with ∂(Tkc). So this means that

c = ∂($kb − Tkc),

and now we just need one more fact to finish:

Lemma 102

If c ∈ Sn(X) is A-small, then Tkc ∈ Sn+1(X) is also A-small.

Proof of lemma. Because A-smallness is closed under sums and differences, we can assume without loss of generality

that c = σ is a single A-small n-simplex. We can represent σ as the composite map ∆n → A → X, where A ∈ A is

one of the subspaces in our cover; let σ′ denote the map ∆n → A and ι denote the inclusion A → X. In particular,

this means we can write

σ = Sn(ι)(σ′).

But now Tk is natural, so we can push what it does to σ′ along the inclusion:

Tkσ = (Sn+1(ι))(Tkσ
′),

and Tkσ is the image of some Tkσ′ ∈ Sn+1(A). Therefore, Tkσ is indeed A-small, since it’s the image of something

going on in A itself.

And that’s enough for us, because $kb and Tkc are both A-small, and we’ve shown injectivity.

We now state the excision theorem again:
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Theorem 103 (Excision)

Suppose that U ⊆ A ⊆ X is excisive, so that U ⊆ Int(A). Then the map of pairs (X−U,A−U)→ (X,A) induces

homology isomorphisms.

Proof. The statement U ⊆ Int(A) is equivalent to the statement

Int(A) ∪ Int(X − U) = X.

But this now looks more like an open covering! Letting B denote X − U, we have that {A,B} is a cover of X, so

now (X − U,A− U) is the pair (B,A ∩ B). So this means we’re trying to show that the inclusion of chain complexes

S∗(B,A ∩ B)→ S∗(X,A) induces homology isomorphisms.

So here is the key diagram to look at:

0 S∗(A) SA∗ (X) SA∗ (X)/S∗(A) 0

0 S∗(A) S∗(X) S∗(X,A) 0

=

The second and third arrows are inclusions, and we can note that there are actually short exact sequences of chain

complexes (basically by definition, because S∗(X,A) is just S∗(X)/S∗(A)). But for every short exact sequence of

chain complexes, we know that we have a long exact sequence on homology groups. So for every map of short exact

sequences, we get a map of long exact sequences of homology groups:

· · · Hm(A) HAm(X) Hm(SA∗ (X)/S∗(X)) Hm−1(A) HAm−1(X) · · ·

· · · Hm(A) Hm(X) Hm(X,A) Hm−1(A) Hm−1(X) · · ·

∼=

∂

∼=

∂

We have the isomorphisms in the diagram above because of the equalities of the S∗(A)s originally. In addition,

we’ve just been proving in the last few classes (by locality) that HAm(X) → Hm(X) is also an isomorphism, and so is

HAm−1(X)→ Hm−1(X). And now we use the five lemma: we must have an isomorphism

Hm(SA∗ (X)/S∗(X))→ Hm(X,A),

and therefore SA∗ (X)/S∗(A)→ S∗(X)/S∗(A) must induce homology isomorphisms, where the homology satisfies

Hm(S∗(X)/S∗(A)) ∼= Hm(X,A).

We can now observe that

SAn (X)/Sn(A) = (Sn(A) + Sn(B))/Sn(A)

(because the A-small chains are just contained in one of the two pieces of the cover), and because we have abelian

groups, we can rewrite this as

∼= Sn(B)/(Sn(A) ∩ Sn(B)) = Sn(B)/Sn(A ∩ B) = Sn(X − U)/Sn(A− U),

which means the homology groups behave as desired.

While we don’t need to use the entire proof, since excision is an axiom for our purposes, some elements of the

proof will be useful as a tool to solve other problems.

33



Corollary 104

Let (X,A) be a pair of spaces, such that there is a subspace B of X with A ⊆ Int(B) and A→ B is a deformation

retraction. Then Hm(X,A)→ Hm(X/A, p) is an isomorphism for all m.

Proof. Consider the following diagram in pairs of topological spaces Top2:

(X,A) (X,B) (X − A,B − A)

(X/A, p) (X/A,B/A) (X/A− p,B/A− p)

i

j

k

i

j

We claim that every map labeled with a letter induces a homology isomorphism, and then commuting squares tell

us that the leftmost arrow does so too. This is true because:

• k is a homeomorphism in Top2,

• j is an excision,

• i is a homology isomorphism because of the deformation retraction that induces a homotopy invariance of

homology,

• j is an excision,

• i is also a deformation retraction obtained from the retraction B × I → B by quotienting out by A.

11 September 28, 2020

We’ll start with a quick summary of what we’ve done so far: we have functors Hn : Top2 → Ab, where Hn(X) =

Hn(X,∅), and there are natural transformations ∂ : Hn(X,A) → Hn−1(A). These functors and transformations then

need to satisfy the Eilenberg-Steenrod axioms. Last time, we talked about the excision theorem, and one application

is that is that whenever n > 0, we have

Hn(X,A) ∼= Hn(X/A, p) ∼= Hn(X/A).

We’ll now leverage these axioms to build some computationally practical tools to help us compute homology for

more interesting spaces. First of all, we’ll introduce another tool for computation besides the long exact sequence.

Theorem 105 (Mayer-Vietoris)

Let X be a space, and suppose {A,B} is a cover of X, meaning that A,B ⊂ X and Int(A) ∪ Int(B) = X. We’ll

fix names i : A ∩ B ↪→ A, j : A ∩ B ↪→ B, k : A ↪→ X, and ` : B ↪→ X. There is a long exact sequence

· · ·Hn+1(X)
∂−→ Hn(A ∩ B)→ Hn(A)⊕Hn(B)→ Hn(X)

∂−→ Hn−1(A ∩ B),

with other maps being given (geometrically) by

Hn(A ∩ B)
Hn(i)⊕Hn(j)−−−−−−−→ Hn(A)⊕Hn(B)

Hn(k)−Hn(`)−−−−−−−→ Hn(X).
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Proof. We can consider the following short exact sequence of chain complexes, where A = {A,B}:

0→ S∗(A ∩ B)
S∗(i)⊕S∗(j)−−−−−−−→ S∗(A)⊕ S∗(B)

S∗(k)−S∗(`)−−−−−−−→ SA∗ → 0.

The kernel of the difference map is indeed the image of the inclusion from the intersection, and we also have surjectivity

of the last map by “smallness” and injectivity of the first map easily. But now by the locality principle,

Hn(SA∗ (X)) = Hn(X),

so we obtain the Mayer-Vietoris sequence by taking the long exact sequence from this short exact sequence of chain

complexes.

Remark 106. Vietoris published his last mathematical paper at the age of 103; he was actually the oldest person alive

at one point. But he’s most famous for this theorem.

Let’s see some applications of this now:

Example 107

Let’s calculate part of the homology of S2 using Mayer-Vietoris. We’ll use A to be the “upper hemisphere” plus a

little bit, and B to be the “lower hemisphere” plus a little bit: then A ∩ B is a collar around the equator.

(Remember that we need the interiors of A and B to cover X, so we can’t just use the hemispheres.) Then one

part of our long Mayer-Vietoris sequence becomes

H2(A)⊕H2(B)→ H2(S2)
∂−→ H1(A ∩ B)→ H1(A)⊕H1(B).

Here, A and B are homeomorphic to the disk, and a disk is homotopy equivalent to a point (because, for example,

it’s star-shaped). Therefore,

H2(A) = H2(D2) = H2(p) = 0,

and the same holds for B. Thus, the direct sum H2(A) ⊕ H2(B) is just the zero group, and the same is true for

H1(A) ⊕ H1(B). Next, notice that H1(A ∩ B) is homeomorphic to the annulus, which is homotopy equivalent to S1

(by a deformation retraction), so H1(A ∩ B) = Z.

Remark 108. We’ll always have to do this kind of “induction” argument, where we know the homology of S1 to get

the one for S2.

Thus, we have an exact sequence

0→ H2(S2)
f−→ Z→ 0,

such that f is injective and also surjective, so it must be a bijection. Thus H2(S2) = Z .

Example 109

Consider the torus T ∼= S1×S1, which we can draw as a hollow donut or as a filled-in square with opposite edges

identified (in the same orientation). Our goal is to cover this torus with simpler spaces as well.

We’ll do something similar to the sphere – we’ll take the “left part” and “right part” of the donuts, which are

“macaronis” that intersect in the middle. So A and B are homeomorphic to cylinders, and A∩B is the intersection of

two (smaller) cylinders.
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This time, part of the Mayer-Vietoris sequence is

H2(A)⊕H2(B)→ H2(T )
∂−→ H1(A ∩ B)→ H1(A)⊕H1(B)→ H1(T )

∂−→ H0(A ∩ B)→ H0(A)⊕H0(B).

We’ll still go with the philosophy that the values of the individual groups, and some of the non-boundary maps, are

easier to compute than the boundary ones. First of all, A and B are both homoeomorphic to the annulus, which is

homotopy equivalent to a circle (by deformation retraction again). Thus,

H2(A)⊕H2(B) ∼= 0⊕ 0 = 0

(remember that Hq(Sn) is Z for q = 0, n and 0 otherwise), while

H1(A)⊕H1(B) ∼= Z⊕ Z, H0(A)⊕H0(B) ∼= Z⊕ Z.

Next, A ∩ B is the equivalent to the disjoint union of two cylinders, so H0(A ∩ B) = Z ⊕ Z (we have two path

components), and H1(A ∩ B) = Z⊕ Z. So now we can rewrite our Mayer-Vietoris sequence as

0→ H2(T )→ Z⊕ Z f−→ Z⊕ Z→ H1(T )→ Z⊕ Z g−→ Z⊕ Z.

This isn’t enough on its own to determine H2(T ) and H1(T ), so we need to also understand a few of the maps.

Because we don’t know anything about the homology of the torus, we can’t do much with the Snake Lemma boundary

maps, but we can at least understand the maps labeled f , g above.

Let’s start with g, which sends H0(A ∩ B) → H0(A) ⊕ H0(B). To understand this, we can look at the path

components: we’ll send (1, 0) to (1, 1), because any element of A ∩ B is in both A and B, and similarly (0, 1) is sent

to (1, 1). So in general, an element (x, y) ∈ H0(A ∩B) will be sent to (x + y , x + y). On the other hand, the map

f : H1(A∩B)→ H1(A)⊕H1(B) is a bit harder to understand, but A “provides a homotopy equivalence of one cylinder

Q of A ∩ B to the other one: looking at topological spaces, the sequence of maps of spaces

Q→ A ∩ B → A t B → A

give us a map of homology groups via the functor H1:

Z→ Z⊕ Z→ Z⊕ Z→ Z.

We can follow the maps and find that 1 7→ (1, 0) 7→ f (1, 0) 7→?, but if we look at the composite map from Q to A,

we’re including a “small tip” of the macaroni into the whole thing, so we have a deformation retraction. Thus 1 must

end up being sent to 1. Since the map A t B → A is a projection, and so is At → B, we know that f (1, 0) = (a, b)

must have a = 1. The same argument tells us that b = 1, and thus we have

1 7→ (1, 0) 7→ (1, 1) 7→ 1.

This therefore tells us that the map f is also (x, y) 7→ (x+y , x+y), and now we have enough information to compute

H2(T ) and H1(T ). First of all, consider

0→ H2(T )→ Z⊕ Z f−→ Z⊕ Z.

Because the kernel of f is Z (it’s all multiples of (1,−1)), and the map H2(T )→ Z⊕ Z must be injective, exactness
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implies that H2(T ) ∼= ker(f ) ∼= Z{(1,−1)} ∼= Z . And now, we can look at

Z⊕ Z f−→ Z⊕ Z r−→ H1(T )→ Z⊕ Z g−→ Z⊕ Z.

We have

ker(r) = im(f ) = diagonal Z ↪→ Z⊕ Z,

and the image of r is a copy of Z in H1(T ). The rest of the argument will be left as an exercise to us, but we can

find that H1(T ) ∼= Z⊕ Z .

Soon, we’ll introduce tools for more combinatorial arguments for calculating homology groups, like the graph

drawing we did on the first day of class. For example, if we take our square with opposite edges identified (call them

f , g) and cut along the diagonal h, we’ll have two faces A and B. This will form a semisimplicial set for the torus,

which gives us the chain complex Z{A,B} → Z{f , g, h} → Z{x}, sending A 7→ f + g − h,B 7→ g + f − h, and f , g, h
all to 0. Our aim will be to prove that no matter how we cut up our space, this kind of construction is indeed valid!

12 September 30, 2020
Our second problem set is due at class time on Friday – there was a sign error in the last part, which has been fixed

now.

As mentioned last time, we’re going to return to talking about calculating homology using a finite semisimplicial

set and proving that this construction is valid. It’ll take us a bit of time to get there, though:

Definition 110

Let C be a category, and consider a diagram in C:

A B

C

f

g

A pushout of such a diagram is a commuting square

A B

C P

f

g pB

pC

with the following (universal) property that for any other square with P replaced with P ′, there is a unique map

p : P → P ′ such that

p ◦ pC = p′C , p ◦ pB = p′B.

This definition should remind us of that of a product, which is also fundamentally about a unique map coming from

a diagram. (We’ll get some practice on the next problem set looking at specific examples of what these look like.)

Example 111

Let’s describe (without proof) what pushouts look like in Top.
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If we have three topological spaces and two continuous maps A→ B, A→ C, then the pushout has

P = (B t C)/(f (a) = g(a) ∀a ∈ A).

In other words, we use the quotient topology where we identify some points in the disjoint union B t C, by making

any point f (a) equal to the corresponding point g(a). So we have a sequence of maps

B → B t C → P,

and then the composite of these two maps B → P is the map pB.

Example 112

There is a unique function from the emptyset to any other topological space, so the pushout of the diagram

∅ B

C

is just the disjoint union B t C.

Example 113

There is a unique map from any topological space to the one-point topological space p, so the pushout of the

diagram

A B

p

f

g

is P = B/im(f ), because all points under f are identified with each other.

There’s also a particularly important kind of pushout that we should keep an eye out for:

Definition 114

Suppose we have a pushout square as shown: ⊔
i∈I S

n−1 B

⊔
i∈I D

n P

We then say that P is obtained from B by attaching n-cells.

Here, I is some index set, so
⊔
i∈I S

n−1 is a disjoint union of spheres. We then apply the inclusion map into the

corresponding boundaries of the disks Dn, and the idea is that we’ve identified some (n − 1)-spheres inside of B to

get P .
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Example 115

Consider the following diagram:

S1 t S1 p

D2 tD2 P

Then we obtain P from the one-point space by attaching two 2-cells, which we can think of as “sticking two hollow

spheres onto a point.” That’s because we’re taking the disjoint union of two disks, but we’re taking both boundaries

and identifying all points there together. So the disks “curl up,” and we’re left with our two hollow spheres attached

at a central point.

Similarly, the figure-8 graph is obtained from the same attaching process in one lower dimension:

S0 t S0 p

D1 tD1 P

This space is homeomorphic to the perimeter of a square with opposite edges identified in the same direction:

b

b

a a

Specifically, this means there is a continuous map r : S1 → (figure-8), called aba−1b−1, corresponding to going

along a, then b, then a backwards, then b backwards in the square. And then we can glue a 2-cell to this figure-8

shape by using r as the boundary:

S1 (figure-8)

D2 P

r

Then P is homeomorphic to the disjoint union of a disk and the hollow square, but then we identify the two

boundaries, so this is actually homeomorphic to the torus. In other words, if we take a solid square and identify two

opposite edges a, we get a cylinder, and then identifying the other two gives us a torus. Rewording this claim, we say

that T is obtained from the figure-8 by attaching a 2-cell.
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Definition 116

A CW complex X is a space together with a sequence of subgroups

∅ = Sk−1X ⊆ Sk0X ⊆ Sk1X ⊆ Sk2X ⊆ · · · ⊆ X,

such that X is the union of the SknX (the “n-skeleta” of X), and we have a pushout diagram:⊔
i∈In S

n−1 Skn−1X

⊔
i∈In D

n SknX

In other words, the n-skeleton is obtained from the (n − 1)-skeleton by attaching n-cells.

(The “C” here stands for “cell,” and the “W” stands for “weak,” because we’re using the weak topology – a set is

open if it is open when restricted to each skeleton.)

Example 117

The torus T can be given the structure of a CW complex by letting

Sk0T = p, Sk1T = (figure-8), Sk2T = Sk3T = · · · = T.

Definition 118

A CW complex is finite-dimensional if SknX = X for some n, and the dimension of X is the smallest n for which

this is true. A CW complex is of finite type if In is finite for each n.

It’s possible that CW complexes can have cells in larger and larger dimensions, and it’s also possible that we can

attach an infinite number of n-cells at each step. So the descriptions of “finite-dimensional” and “finite-type” help us

keep the shapes more manageable.

Definition 119

A CW complex is finite if it is finite-dimensional and of finite type.

Equivalently, a CW complex is finite if it has finitely many cells. (For instance, the torus has one 0-cell, two 1-cells,

and one 2-cells with the specific structure above.)

Theorem 120 (from point-set topology)

Any CW complex is Hausdorff, and a CW complex is compact if and only if it is finite. In fact, any compact

smooth manifold can be given some finite CW complex structure.

We can organize CW complexes into a category which we call CWcomp, with morphisms being diagrams where all

squares commute:
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...
...

Skn+1X Skn+1Y

SknX SknY

Skn−1X Skn−1Y

...
...

⊆ ⊆

⊆ ⊆

⊆ ⊆

⊆ ⊆

We then have a functor

U : CWcomp→ Top,

which records only the union of the skeleta (which “forgets” the subspace structure and only keeps the underlying

topological space).

Fact 121

There is a functor

Fun(∆op
inj,Set)→ CWcomp

from semisimplicial sets to CW complexes, where we view the sequences X0, X1, · · · as collections of points, edges
(attached to points via the di maps), triangles, and so on.

Specifically, if X· is a semisimplicial set, then Xn is the set of n-cells in the corresponding CW complex.

Remark 122. There are CW complexes that don’t arise from the image of the functor here – we can think of these

CW complexes as slightly more combinatorial than topological spaces, but still somewhere between semisimplicial sets

and topological spaces.

Then the composite map

Fun(∆op
inj,Set)→ CWcomp→ Top

is sometimes called a geometric realization of a semisimplicial set.

Our goal from here is to understand homology groups Hn for a geometric realization, and we want to prove that

they can be obtained by taking the homology of the semisimplicial set (using the method from the first few lectures).

We’ll do this by more generally understanding the homology of CW complexes.

Example 123

The n-sphere Sn can be given a CW structure with one 0-cell and one n-cell.

This basically tells us that we have a pushout diagram as shown:

Sn−1 p

Dn Sn
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This is a very compact structure, and it’s a reason we should think of CW complexes as being “more flexible” than

our semisimplicial sets. But there is a different CW structure on Sn which we’ll occasionally make use of, by setting

Sk−1S
n = ∅, Sk0S

n = p t p = S0,

and then we take

Sk1S
n = S1, Sk2S

n = S2, · · · , SknSn = Skn+1S
n = Sn.

Basically, we keep gluing in a top and bottom hemisphere to our k-dimensional sphere, until we get to an n-

dimensional one. So if we want to get from Skk−1S
n to SkkSn, we glue two k-cells as hemispheres. And this means

that we have a CW complex S∞, defined via SknS∞ = Sn: while this CW complex is finite type, it is not finite, because

it describes an infinite-dimensional space. We can try thinking about what homology S∞ has, and we’ll continue to

explore CW complexes next time.

13 October 2, 2020
We’ll continue talking about CW complexes and related notions today. Last time, we discussed the specific CW

complex

S∞ =
⋃
Sn

with Sk−1S
∞ = 0, Sk0S

∞ ∼= S0, Sk1S
∞ ∼= S1, and so on. (So passing from one skeleton to the next, we attach two

cells that correspond to “hemispheres” in the next dimension.)

We know that

Hq(Sn) =

Z q = 0, n

0 otherwise.

So as n →∞, we should guess that the homology just reduces to

Hq(S∞) =

Z q = 0

0 otherwise.

This can actually be made precise: we can prove this because homology is made out of simplices, and each individual

simplex is compact, so mapping it into a union of spheres must map it into a particular sphere. And each homotopy

also comes from a compact space, so everything is going on in some particular finite-dimensional sphere.

Proposition 124

S∞ is contractible; that is, it is homotopy equivalent to a point.

Proof. We can write a point x ∈ S∞ as a sequence

x = (x0, x1, x2, · · · )

such that xn = 0 for all sufficiently large n, and
∑

i x
2
i = 1. (Remember that by definition, S∞ is the union of Sns,

so any element x must sit in a specific Sn, and that makes our sequence finite.) So now we can look at the map

f : p → S∞ which picks out some point, say (1, 0, 0, · · · ), and we can also look at the unique map g : S∞ → p which

sends everything to p.
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We want to show that f and g are inverse homotopy equivalences, meaning that

f ◦ g ∼= idS∞ , g ◦ f ∼= 1p.

The latter is clear because g ◦ f is exactly the 1p map, but we need to show that the map f ◦ g (which sends every

point to (1, 0, 0, · · · ) is homotopic to the identity. To do that, consider the map

T : S∞ → S∞, T (x0, x1, · · · ) 7→ (0, x0, x1, · · · )

which shifts the sequence to the right by one spot (this is indeed a continuous function). We’ll show that T ∼= 1S∞

and also that T ∼= f ◦ g, which is enough to prove what we want.

For the first of these homotopies, we can consider the map h : S∞ × [0, 1]→ S∞.

h(x, t) =
tx + (1− t)Tx
||tx + (1− t)Tx || .

This is a well-defined, continuous map because tx + (1 − t)Tx is never the origin – the first nonzero coordinate in

Tx occurs after the first nonzero coordinate in x , and even in the t = 0 case we’re okay because Tx isn’t the origin

either. We can check that this satisfies the properties that we want, and now we turn to a homotopy T ∼= f ◦ g: we
use

h(x, t) =
tT x + (1− t)(1, 0, · · · )
||tT x + (1− t)(1, 0, · · · )|| .

Similarly this is well-defined because the denominator has a nonzero first coordinate except when t = 1, and even in

that case we’re fine.

This “shifting” process, allowed only because our sequences are infinite, is called a swindle. And we’ve proved a

fun result, even if it won’t be theoretically imporant for us going forward. It’s just important to keep in mind that a

CW complex can have infinitely many cells, but we still end up with something that is just homotopy equivalent to a

point.

We can talk about another CW complex that is extremely important:

Example 125

The real projective k-space RPk is defined as the quotient

RPk = Sk/(x ∼ −x)

which identifies opposite (antipodal) points on the sphere.

For example, RP0 = S0/(x ∼ −x), where S0 consists of two points that are antipodal (because S0 is the subspace

of R1 of distance 1 away from the origin, which is {(−1), (1)}). So that means that RP0 is a single point.

Next, RP1 is a circle with opposite points identified, which can be thought of as identifying opposite edges of a

hollow square (both in opposite orientations). But this turns out to just be another circle. If we’re not super sure

how to visualize this, we can write it out as shown:

b

b

a

a
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Then the double-headed arrow goes from b to a, and the single-headed arrow goes from a to b. So this means we

indeed have a circle, where a and b are two of the points.

But now going on to RP2 and higher, we’re identifying antipodal points of a 2-sphere, and we can’t draw this inside

a 3D space (much like we can’t draw a Klein bottle inside 3D space).

Fact 126

We can notice that the inclusion of the equator Sk → Sk+1 is compatible with the map x 7→ −x (antipodal points

are still antipodal). So we have inclusions

∅ ⊆ RP0 ⊆ RP1 ⊆ RP2,

and this gives us a CW complex.

We can write out the pushout diagram more explicitly:

Sk−1 RPk−1

Dk RPk

Here, Sk−1 → RPk−1 is the quotient map, and the inclusion Sk−1 ↪→ Dk is the boundary of the upper hemisphere.

(It’s worth thinking about this a bit more so that we understand this point.) So RPk can be thought of as a CW

complex with exactly one cell in each dimension up to k , meaning that

RP∞ =
⋃
RPn

is finite type but not a finite CW complex, just like S∞. We’ll prove, though, that unlike S∞, this is not contractible,
and it will turn out that there’s a lot of structure encoded in this one space!

Now that we have some fundamental examples of CW complexes, we can examine their homology to look at the

geometric realization of a semisimplicial set. First, we’ll need to do a calculation:

Definition 127

A wedge of k-spheres is a space, denoted
∨
i∈I S

k , consisting of |I| different k-spheres all meeting (only) at a

single point.

For example, the figure-8 graph that we drew last class is a wedge of two 1-spheres, and we can add another circle

to the central point to get a wedge of three 1-spheres, and so on. We can write this more formally as∨
i∈I
Sk =

⊔
i∈I
Sk/

⊔
i∈I
p.

Then the reduced homology group is

H̃q

(∨
i∈I
Sk

)
= Hq

(∨
i∈I
Sk , p

)

(remember that when q > 0, this is the same as ordinary homology, and we have one less Z when q = 0). Excision

tells us that this is the same as

= Hq

(⊔
i∈I
Sk ,

⊔
i∈I
p

)
.
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And we can calculate these relative homology groups using the long exact sequence of the pair
(⊔

i∈I S
k ,
⊔
i∈I p

)
: this

looks like

· · · → Hq

(⊔
i∈I
p

)
→ Hq

(⊔
i∈I
Sk

)
→ Hq

(⊔
i∈I
Sk ,

⊔
i∈I
p

)
∂−→ Hq−1

(⊔
i∈I
p

)
→ Hq−1

(⊔
i∈I
Sk

)
→ · · · .

And we understand many of these groups already: using the Eilenberg-Steenrod axiom for disjoint union tells us that

Hq

(⊔
i∈I
Sk

)
∼=


⊕

i∈I Z q = 0, k

0 otherwise,

and also that

Hq

(⊔
i∈I
p

)
=


⊕

i∈I Z q = 0

0 otherwise.

So the groups Hq
(⊔

i∈I S
k ,
⊔
i∈I p

)
will be zero almost everywhere: we can check (in a straightforward way) that

H̃q

(∨
i∈I
Sk

)
∼=


⊕

i∈I Z q = k

0 otherwise.

In particular, when k is positive, the zeroth relative homology group makes sense: we only have one path component,

so H0 of the wedge is indeed Z, and thus H̃0 of the wedge should be 0.

This calculation is important to us because of the following idea: if we let X be a CW complex, we can consider

the relation between homology groups of skeleta

Hq(Skk−1X), Hq(SkkX).

But if we want to do something like this, we need to consider the long exact sequence of the pair (SkkX,Skk−1X),

which requires us to understand the maps

Hq+1(SkkX,Skk−1X)
∂−→ Hq(Skk−1X)→ Hq(SkkX)→ Hq(SkkX,Skk−1X).

The first and last maps here are isomorphic to H̃q+1(SkkX/Skk−1X) and H̃q(SkkX/Skk−1X), respectively, and there

is a pushout square ⊔
i∈Ik S

k−1 Skk−1X

⊔
i∈Ik D

k SkkX

which tells us that

SkkX/Skk−1X ∼=
⊔
i∈Ik

Dk/
⊔
i∈Ik

Sk−1

is really just identifying a single point on the boundaries of all of our disks, because the pushout construction for SkkX

first puts Skk−1X together with a bunch of disks, and then the quotient then collapses all of skk−1. And taking a

disjoint union of disks and identifying their boundaries indeed gives us a wedge
∨
i∈Ik S

k . (For visualization, we can

consider k = 1 and putting two line segments together into the figure-8 graph.)

So the relevant parts of the long exact sequence are exactly given by the reduced homology of the wedge of spheres,

which we’ve just calculated. And now we’ve basically spelled out the following result, which we’ll cover next time:
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Proposition 128

Suppose X is a CW complex, and say that k, q ≥ 0 are integers. Then

Hq(SkkX) =

0 k < q

Hq(X) k > q
.

In other words, for a fixed q, nothing really happens except around q = k . We’ll see with some examples next time

that the homology will indeed change at the qth place, and then at the (q + 1)th place, and never again.

14 October 5, 2020
Our third problem set is now posted – it’ll be due two weeks from last Friday, and it’ll be a bit easier than the previous

one (where the last problem had a lot to absorb).

We’ll start by discussing homology for a CW complex: recall that the result we stated at the end of class last time

was that for a CW complex X and k, q ≥ 0,

Hq(SkkX) ∼=

0 k < q

Hq(X) k > q.

Let’s look at some small values of q first to understand what’s going on:

• When q = 0, we’re saying that H0(SkkX) ∼= H0(X) for all k > 0. Here, we should be thinking of Sk0X as a

bunch of points, Sk1X as gluing edges to points in the 0-skeleton that already exist, Sk2X as gluing disks to the

1-skeleton, and so on. And the point is that attaching a cell to objects that are already present does not change

the number of path components that we have.

• When q = 1, we’re saying that H1(Sk0X) ∼= 0, H1(Sk1X) is something that we aren’t explicitly describing, and

H1(Sk2X) ∼= H1(X) (along with all subsequentH1(SkkX)). The first result here says that the disjoint union of

a bunch of points has trivial first homology group, which makes sense. Beyond that, we’re saying that we’re

adding loops and cycles when we add the 1-skeleton (specifically, we’re “adding to” Z1(X)), but then we need

to mod out by boundaries, which come from 2-cells. So attaching the 2-cells will help us do that “modding out”

of B1(X).

In general, the idea is that Hq(Skq−1X) ∼= 0, then Hq(SkqX) will surject onto Hq(X), and then we’ll finally mod

out appropriately to get Hq(Skq+1X) ∼= Hq(X). But let’s prove this rigorously for CW complexes.

Proof. We can compare Hq(Skk−1X) and Hq(SkkX) by using the long exact sequence of the pair (SkkX,Skk−1X).

We know that (by excision)

Hq(SkkX,Skk−1X) ∼= H̃q(SkkX/Skk−1X),

which we indicated at the end of last class is just a wedge of spheres

H̃q

(∨
i∈Ik

Sk

)
∼=
⊕
i∈Ik

Z only when q = k and 0 otherwise.

(Geometrically, we can imagine that we’re “filling in some triangles” when we go from Sk1X to Sk2X, and then each of

those triangles becomes a hollow 2-sphere when we collapse the whole skeleton Sk1X.) Then the long exact sequence
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tells us that the homology of the skeleton can only change in a few places: the qth homology of the k-skeleton is 0 if

k < q, because the groups Hq(SkkX) and Hq(Skk−1X) are isomorphic for small k .

And for k > q, we find that Hq(SkkX) ∼= Hq(Skk+1X), so we will be done if we can show that the homology of

the k-skeleton is actually the homology of X itself for k > q. (That is, X is the infinite union of the k-skeleta – we

need to make sure that nothing weird happens like with the S∞ construction.) To do that, note that ∆q and ∆q+1 are

compact, and anything in Hq has to be represented by a sum or difference of finitely many simplices. So each given

sum of simplices lives in some specific k-skeleton; knowing ∆q is compact tells us surjectivity from Hq to Hq+1, and

then the boundary relations are also present because ∆q+1 is compact as well.

Our next step is to look at cellular homology, which is a method to construct homology groups using these CW

complexes:

Definition 129

Suppose X is a CW complex. Let Cn(X) = Ccell
n (X) denote the relative homology group

Hn(SkkX,Skn−1X) ∼= H̃n

(∨
i∈In

Sn

)
,

which is the free abelian group on the set of n-cells of X.

Definition 130

For each n ≥ 0, define the map

d : Cn+1(X)→ Cn(X)

to be the composite map Cn+1(X) = Hn+1(Skn+1X,Skn(X))
∂−→ Hn(SknX) → Hn(SknX,Skn−1X) = Cn(X),

where ∂ is the boundary map that comes from the long exact sequence described earlier.

Theorem 131

The maps d : Cn+1(X) → Cn(X) make C∗(X) into a chain complex (that is, d ◦ d = 0). Furthermore, the

homology of this chain complex is isomorphic to the homology of X.

For some intuition, we’ll look at a few examples now to see how cellular homology works.

Example 132

Consider a sequence of functors

Fun(∆op
inj,Set)

F−→ CWcomp U−→ Top,

where the composite functor is called the geometric realization of semisimplicial sets.

Then we know that

Ccell
n (F (X)) = ZSingnX = Sn(X)

is the free abelian group on the n-simplices, and then

Ccell
∗ (F (X)) = S∗(X)
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is the standard chain complex we’ve been working with. So the point of this theorem is that the semisimplicial homology

of X agrees with the singular homology of the geometric realization of X, which means we finally have the justifications

for the maneuvers from the beginning of class – it indeed doesn’t matter how we chop up our simplices. In fact, the

singular homology is not just an invariant of the topological space – it’s an invariant up to homotopy equivalence, too.

(And this emphasis on homotopy types rather than topological spaces is why this is an “algebraic topology” course.)

But cellular homology works even when our CW complexes don’t come from semisimplicial sets:

Example 133

Let’s compute the homology of the sphere Sn again, using cellular homology. We’ll assume n ≥ 2.

We know that Sn has a very simple CW complex structure, which doesn’t come from a semisimplicial set. (Basically,

we have one 0-cell and one n-cell.) If we use this CW structure, then Ccell
` (X) is the free abelian group on the set of

`-cells, meaning that

Ccell
0 (Sn) ∼= Z, Ccell

n (Sn) ∼= Z,

and all other Ccell
` (Sn) ∼= 0. So C∗(S2) is isomorphic to the chain complex

Z d←− 0
d←− Z d←− 0

d←− 0 · · · ,

but all of the d maps are just trivial because there’s always a 0 somewhere! So then we can compute

H2(S2) = ker(d)/im(d) = Z/0 ∼= Z,

and in general doing this “kernel mod image” calculation will give us Z for H0 and H2 and 0 everywhere else, which

is the expected answer. And notice that we arrived at this answer directly, as opposed to using an inductive method

with our previous methods, so this is another sign that CW complexes are more flexible.

In particular, if a CW complex X has only even-dimensional cells (2-cells, 4-cells, and so on), then the same chain

complex calculations will tell us that

Hq(X) ∼=

0 q odd⊕
i∈Iq Z q even.

And in geometric situations, for example for varieties defined over C, we sometimes are able to construct CW complexes

with only even cell structure, while we can’t get “even semisimplicial sets” in the same way.

In most examples, computing those boundary maps can be difficult or tedious. But let’s also do an example where

the boundary maps are easier to deal with:

Example 134

Let’s compute the homology of the torus T 2, using the CW structure

Sk0T = p, Sk1T = (figure-8), Sk2T = T.

Remember that we draw the figure-8 often as the boundary of a square with opposite edges identified (so that all

vertices collapse to a single one). This has one 2-cell, which is attached to the 1-skeleton via the map b−1a−1ba :

S1 → Sk1T .

We can now compute the homology group from the cellular chain complex

Z{x} d1←− Z{a, b} d2←− Z←− 0 · · · ,
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We know that d1 is the zero map (thinking about the “target minus source,” or using the fact that we know H0(T ) ∼= Z
a priori), and we can also understand how to compute the map d2: since the boundary of our 2-cell is glued with

b−1a−1ba, we must have

d2u = −b − a + b + a = 0.

So both the d1 and d2 maps are zero, and this recovers the homology group we’ve already calculated.

Proof of Theorem 131. Consider the following diagram with many long exact sequences of pairs (the d maps have

been labeled as dx and dy just for ease of reference):

Ccell
n+1(X) = Hn+1(Skn+1X,Skn(X)) 0 = Hn−1(Skn−2X)

0 = Hn+1(Skn−1X) Hn(Skn)X Hn(SknX,Skn−1X) Hn−1(Skn−1X)

Hn(Skn+1(X)) Hn−1(Skn−1X,Skn−2X)

0 = Hn(Skn+1X,SknX)

∂n
dx

jn

dy

∂n−1

jn−1

All rows and columns here are exact, and each d is defined as the composite arrows described here. But now we

know that dy ◦dx = 0, because it’s a sequence that can be computed by taking the vertical and horizontal arrows, and

the composition of the two horizontal maps is zero by exactness.

From here, jn−1 is injective by exactness of the rightmost column, and therefore

ker(dy ) = ker(∂n−1)

(injection doesn’t increase the kernel), and then this is im(jn) by horizontal exactness. Furthermore, jn is injective by

exactness of the horizontal sequence, and therefore we can identify im(jn) with Hn(SknX). Putting this all together,

ker(dy )/im(dx) = Hn(SknX)/im(∂n),

which is exactly the homology group Hn(Skn+1X) by the left vertical exact sequence, and that’s Hn(X).

15 October 7, 2020

We’ll continue the discussion of CW homology today. Last time, we saw that the cellular chain complex Ccell
∗ (X) of a

CW complex X indeed computes the singular homology groups for the union of the skeleta, and that’s good because

this is more “compact” than the very infinite Sing complex. And we saw a few examples of this: for instance, we can

compute the homology group of S2 easily with the minimal cell structure (one 0-cell and one 2-cell), without needing

to worry about boundary maps or the long exact sequence. (And we combined this with the functor from semisimplicial

sets to chain complexes to verify that the homology calculations we did on the first day of class do indeed work.)

As we move along further in math, we’ll get a few more tools to help us deal with some of the differential maps,

but the cellular differentials are a bit subtle to compute if we don’t have anything combinatorial. Remember that we

computed last time that the differentials in the chain complex Ccell
∗ (T ) of a torus are both 0, but we discovered this by

drawing the torus as a square with opposite edges identified, so we did have some combinatorial or geometric intuition

there.
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Example 135

Consider S2 with a different (less minimal) cell structure

Sk0S
2 = S0, Sk1S

2 = S1, Sk2S
2 = S2.

We do this by starting with two points (a 0-sphere) x and y , and then we attach two paths u and v connecting x

to y , and then we attach two “hemispheres” A and B to the top and bottom of the 1-sphere we’ve just formed. So

our cellular chain complex looks like

Ccell
∗ (S2) = Z{x, y} d←− Z{u, v} d←− Z{A,B} ← 0 · · · .

(There’s an ambiguous notation here – we’re suppressing the fact that the object on the left side depends on the CW

structure.) To calculate the maps d , we can make a choice between the orientations of the edges: for example, we

can pick

du = y − x, dv = y − x.

If we’re just trying to compute the 0th homology group, we only care about the image of the d map, and indeed

changing the orientation will never do anything to that (we’ll just change u to −u). So this tells us already that the

zeroth homology group is

H0(S2) = Z{x, y}/Z{y − x} ∼= Z.

(As always, the numerator is the kernel of the d0 map, which is the whole group, and the image is the kernel of the

d1 map.) And now we need to figure out what dA and dB are – to do that, it’s worth going back to some of the

definitions. We should remember that we are doing an attachment of cells when we go from the 1-cell to the 2-cell,

which gives us the following pushout square:

S1 t S1 Sk1S
2 = S1

D2 tD2 Sk2S
2 = S2

f

This pushout square governs how A and B are attached, and we care about understanding the top map f here

(because once we know the map from S1 t S1 to Sk1S
2 = S1 – in other words, “how the boundary of our disks are

attached” – we determine the 2-skeleton). And we have a way of determining the cellular boundary d map just from

this map f , using the composite map

S1 t S1 → Sk1S
2 → Sk1S

2/Sk0S
2.

Here, the last topological space Sk1S
2/Sk0S

2 is a wedge of two 1-spheres (corresponding to the loops u This gives

us a map on H1 of the form

Z⊕ Z→ Z⊕ Z,

where we’re associating the Zs to A,B, u, v , respectively, and this map records the value of dA and dB (if we look at

how things go into the quotient space). Remember that the boundary of A looks like this:
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x y

u

v

Then the map S1 → Sk1S
2 (the gluing map that determines A) is the identity map, but we don’t even need to

understand how things map onto the 1-skeleton of the sphere – it’s enough to know how S1 maps onto the wedge of

two 1-spheres obtained by identifying x and y . The same holds for B.

In more generality, if we want to compute the boundary of an n-cell, we know that this n-cell is determined by

some map

Sn−1 → Skn−1(X)

(which tell us “where we attach the n-cell”). And then the value of the composite map

Sn−1 → Skn−1(X)→ Skn−1(X)/Skn−2(X),

where the last group is a wedge
∨
i∈In−1

Sn−1, gives us the boundary d of the n-cell. And now we have a geometric

way of understanding what the cellular boundary map is doing!

So finishing up our example, we can now characterize the d maps of

Ccell
∗ (S2) = Z{x, y} d←− Z{u, v} d←− Z{A,B} ← 0 :

we have

du = y − x, dv = y − x, dA = v − u, dB = v − u.

And we can confirm by calculation that this gives us homology groups {Z, 0,Z, 0, · · · }, just like before.

Fact 136

Note that a generator of H2(S2) in this particular CW structure is given by A − B (the difference of the two

hemispheres). And we can see that this is true without a lot of work, because the attaching maps from S1 → Sk1S
1

that define A and B are identical, so dA = dB.

We’ve now seen that homology can be used to prove that topological spaces are not homotopy equivalent (if

we have two spaces and they have non-isomorphic homology groups, they can’t be homotopy equivalent, because

homology is an invariant of homotopy type). But another thing we can do is prove that continuous maps are not

homotopic. Homology is a functor, and if we have two continuous maps of topological spaces which are sent to

different maps of abelian groups, that tells us important information.

Definition 137

Let f : Sn → Sn be a continuous map. The degree of f is the value of 1 under the group homomorphism

Hn(f ) : Z→ Z.

So if f , g : Sn → Sn are two maps of different degrees, then they cannot be homotopic – otherwise we’d have an

equivalence of maps in homology.
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Lemma 138

Suppose that f , g : Sn → Sn are two maps. Then

deg(g ◦ f ) = deg(g)deg(f ).

Proof. Consider the sequence of maps

Sn
f−→ Sn

g−→ Sn,

which gives us (under Hn) a composite map of groups

Z Hn(f )−−−→ Z Hn(g)−−−→ Z.

Since Hn(f ) sends 1 to deg(f ), and Hn(g) sends 1 to deg(g), we must indeed send 1 to deg(f ) deg(g) under the

composite map (because we have a homomorphism).

Corollary 139

Suppose f : Sn → Sn is a homeomorphism. Then deg(f ) is either 1 or −1.

Proof. A homeomorphism is an isomorphism in Top, so there must exist a map g : Sn → Sn such that the composite

is the identity in Top. But the degree of the the identity map is 1 (this follows by functoriality, since Hn(1Sn) must be

1Z), so

1 = deg(g) deg(f ),

and the result follows.

Example 140

Let’s consider the degree of the map f : Sn → Sn which reflects across a hyperplane. (For instance, we could

imagine reflecting around the equator of S2, so A and B swap places.)

We can note that f is not just a map from a 2-sphere to itself – it’s a map of CW complexes! And on Ccell
∗ , it sends

A− B to B − A and doesn’t do anything else. So looking at the cellular chain complexes (rather than the homology

groups) tells us that the degree must be −1, and this argument holds for any f : Sn → Sn.

Corollary 141

A reflection of Sn along an equator is not homotopic to the identity.

Example 142

Now let’s consider the degree of a rotation of Sn (for example, spinning along a globe).

We know that any rotation of Sn along an axis is homotopic to the identity by writing out an explicit homotopy:

we continuously “raise the amount of rotation” from 0 to the final amount. Therefore, the degree of a rotation must

be 1 . (We may know that the composition of two reflections is a rotation, and that’s indeed compatible with the

fact that (−1)(−1) = 1.)
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So now we can think about the antipodal map S1 → S1 sending x 7→ −x : because this is a 180 degree rotation,

it has degree 1. In contrast, the antipodal map S2 → S2 is not a rotation, because there’s no axis being fixed. To

understand this, we should think of a point of S2 as a triple (a, b, c) ∈ R3 with a2 + b2 + c2 = 1, and then this

map sends (a, b, c) 7→ (−a,−b,−c). But this is a composite of three maps, where we swap the sign of a, b, and

then finally c . So we actually have a composite of three reflections, each with degree −1, so our final answer is

(−1)3 = −1 . This generalizes to n dimensions – in general, the degree of the antipodal map Sn → Sn is (−1)n+1 .

We’ll see next time how this can help us compute the homology of the real projective spaces, which are the quotients

under this antipodal map.

16 October 9, 2020
We’ll start with a summary of the last few classes, repeating the main points of cellular homology. Recall that if

we have a CW complex X, we define a chain complex Ccell
∗ (X) (which is “fairly finite” compared to the singular chain

complex), whose homology groups compute the singular homology groups. Then the nth group Ccell
n (X) is the free

abelian group on the set of n-cells In, and then we can compute the differential d : Ccell
n (X)→ Ccell

n−1(X) by considering

the diagram below (an extension of the pushout square):⊔
i∈In S

n−1 Skn−1(X) Skn−1(X)/Skn−2(X) ∼=
∨
i∈In−1

Sn−1

⊔
i∈In D

n Skn(X)

If we apply Hn−1 to the top row of this diagram, we go from a map of topological spaces to a map of abelian

groups. The top left corner of this square tracks (or parameterizes) the boundary of our n-cells, while the top right

corner is an easier-to-understand version of the (n−1)-cells, so this characterizes d : Ccell
n (X)→ Ccell

n−1(X) completely.

Note that we definitely need to know the homology of spheres and wedges of spheres – either using Mayer-Vietoris

or other methods – for this to be a viable strategy for computing homology groups. And these differential maps d are

sometimes difficult to compute, but if we manage to write down a semisimplicial set (so that everything is in triangles

instead of cells), we have a combinatorial explicit way to write down all of the relevant maps.

From here, we started discussing the homology of maps Hq(f ) : Hq(X) → Hq(Y ), and to figure out what that

is, we often put some CW structure on X and Y (semisimplicial sets, or just some generic CW structure), so that f

induces a map of Ccell
∗ (X)→ Ccell

∗ (Y ), not just from Hq(X)→ Hq(Y ). This was helpful when we looked at the degree
of a reflection f : S2 → S2 around the equator, and the idea was to treat the top and bottom hemispheres as 2-cells

(that is, pick a useful CW structure for the problem). Then the reflection swaps A and B, both of which have the

same boundary, because we’re attaching the top and bottom hemisphere in the same way. So dA = dB and therefore

A − B is in the kernel of d , meaning it’s an element of Hcell
2 (S2). And since we know that the homology H2(S2) is

isomorphic to Z, A − B must be a generator of Hcell
2 (S2), and this means we can think about the following map of

cellular chain complexes:

Z{A,B} Z{u, v} Z{x, y}

Z{A,B} Z{u, v} Z{x, y}

f g h

Here, f maps A,B to B,A respectively, while g and h are the identity map. Since A−B maps to B−A, this tells
us that the degree of the reflection must be −1, because H2(f ) : Z→ Z is the multiplication by −1.
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We’ll get lots of practice choosing the right CW structure and working through calculations on this problem set

and the next one!

At the end of last class, we generalized this to show that for any sphere Sn, a reflection along an Sn−1 ⊂ Sn has

degree −1, and therefore the antipodal map Sn → Sn (secretly a composite of reflections) has degree (−1)n+1. So

today, we’ll compute one more important example of cellular homology right now, and then the rest of the computations

will be mostly left for our homework.

Example 143

Let’s compute the homology for the real projective spaces, using the tools we’ve developed in cellular homology.

Recall that we define the real projective spaces via

RPn = Sn/(x ∼ −x);

that is, we identify opposite points on the sphere with each other. If we were asked to compute the homology, we

could try to construct a semisimplicial model, but that can be very challenging – in fact, a lot of algebraic topology

concerns combinatorially describe a space that’s more naturally presented geometrically.

Instead, we can use a CW structure on RPn, which contains one k-cell in each dimension 0 ≤ k ≤ n. Let’s check
this in some low dimensions:

• S0 is two points (a CW complex with two 0-cells), and RP0 is what we get when we identify those two points

together, which indeed gives us a single 0-cell.

• S1 looks like a circle, and we can describe the cell decomposition as a CW complex with two points and two

(half-circle) edges connecting them. Then RP1 has the two points identified, as well as the two edges, so we

just have one 0-cell and one 1-cell. (In other words, RP1 is homeomorphic to a single point with a loop, which

is just another circle.)

• If we want to understand RP2, we start with S2, which we can describe (as usual) with two points x, y , two edges

u, v connecting them, and two hemispheres A and B above and below the equator. Then RP2 identifies each of

those pairs together. But this isn’t a space that we’re super familiar with – in particular, this isn’t homeomorphic

to anything that embeds in 3-dimensional space (much like a Klein bottle)!

So instead of drawing on prior knowledge of simple spaces, we’ll think about the pushout square that defines RP2,

where (loop) refers to the 1-skeleton RP1.

S1 (loop) RP1/RP0 ∼= S1

D2 RP2.

Then the horizontal composite map on H1 gives us a map Z→ Z, and when we go once around the original circle

S1, we go through u twice.

So that means that we can write down the cellular chain complex:

Ccell
∗ (RP2) ∼= Z{A} → Z{u} → Z{x},

where A is sent to 2u. And then we know that u is sent to 0 for a variety of reasons, and this allows us to compute

Hq(RP2):

H0(RP2) = Z, H1(RP2) = Z/2Z, H2(RP2) = H3(RP2) = · · · = 0.
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In other words, we have a loop that’s not a boundary, but if we go around it twice, it becomes a boundary! (This is

similar to some ideas with the Mobius strip.) Ad even though we have some two-dimensional information, RP2 doesn’t

have any H2 in it, so somehow the 2-cell doesn’t give us a 2-dimensional hole – it just tells us about how going around

a circle twice gives us a boundary.

So now let’s move on to Ccell
∗ (RPn) in general. We’ll do this inductively: assume that we understand RPn−1. Then

we can draw the diagram from attaching our n-cell:

Sn−1 RPn−1 RPn−1/RPn−2 ∼= Sn−1

Dn RPn.

To make progress here, we need to understand the maps geometrically, and using the same cell diagrams as above,

we can think of the quotient sphere as two (n − 1)-spheres wedged together and also identified together using the

antipodal map.

One way to understand this is that the map Sn−1 → RPn−1/RPn−2 is the action of first pinching the equator

together (giving us a wedge of two (n − 1)-spheres), and then quotienting under antipodal identification. So the

differential d : Ccell
n+1(RPn+1) → Ccell

n (RPn) is calculated by looking at the homology of the “pinch + identify” map.

Therefore, we have a composite map

Z pinch−−−→→Z⊕ Z quotient−−−−→→Z,

where the pinch map sends 1 to (1, 1), and then the quotient map sends (1, 0) to 1 and (0, 1) to the degree of the

antipodal map. And d : Ccell
n+1(RPn+1)→ Ccell

n (RPn) is the multiplication map Z→ Z by (1 + (−1)n).

Example 144

We can compute the homology groups of RP4 by saying that

Ccell
∗ (RP4) ∼= Z 2−→ Z 0−→ Z 2−→ Z 0−→ Z.

Then computing the homology groups directly gives us the more sophisticated answer of

Hq(RP4) =



Z q = 0

Z/2Z q = 1

0 q = 2

Z/2Z q = 3

0 otherwise.

From here, we’ll move in a different direction, looking at invariants beyond homology. In algebraic topology,

some invariants are easier to compute than homology, while others are hard, but they “see” different information about

a topological space. We’ll spend some time here talking about “easier” invariants (meaning that they distinguish fewer

spaces than homology, but they’re easier to compute).
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Definition 145

Let X be a finite CW complex. The Euler characteristic of X is

χ(X) =
∑
k

(−1)k |Ik |,

where |Ik | is the number of k-cells.

Example 146

The 2-sphere has a minimal CW structure with one 0-cell and one 2-cell, so its Euler characteristic is 1 + 1 = 2.

Alternatively, we can equip it with an alternative CW structuer with two 0-cells, two 1-cells, and two 2-cells, and

then the Euler characteristic is 2− 2 + 2 = 2.

Getting the same answer in both ways is not an accident:

Theorem 147

The Euler characteristic χ(X) depends only on the homotopy type of X (the union of the skeleta, up to homotopy

equivalence), not the specific choice of CW structure.

Example 148

The Euler characteristic of the torus can be calculated by picking the CW composition with Sk0(T ) being a single

point, Sk1(T ) being a figure-8, and Sk2(T ) being the whole torus. Then the Euler characteristic is 1− 2 + 1 = 0.

And because this is more straightforward to compute than homology, we can use the above theorem to get the

following result easily without needing to do much computation:

Corollary 149

The torus and the sphere are not homotopy equivalent.

We’re going to be working with the following more refined result:

Theorem 150

If X is a finite CW complex, then

χ(X) =
∑
k

(−1)k rank(Hk(X)).

Since we can write this in terms of only homology groups, χ(X) is indeed “strictly weaker” than homology. And

we should explain what rank means in the theorem above. Since Z is a PID, and abelian groups are Z-modules,

there is a classification of finitely generated Z-modules – every finitely generated abelian group is isomorphic to

Zr ⊕ Z/n1Z ⊕ Z/n2Z ⊕ · · · ⊕ Z/ntZ, where r ≥ 0 and n1, · · · , nt ≥ 2, and we call r the rank of A. (So something

like Z⊕Z/2Z has rank 1.) And if X is a finite CW complex, we can compute the homology groups of X with cellular

homology, and that finiteness tells us that Hk(X) is indeed finitely generated for each k .
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17 October 13, 2020
Last time, we started discussing topological invariants that are easier to compute than homology, and our primary

example was the Euler characteristic (of a CW complex X)

χ(X) =
∑
k

(−1)k |Ik |.

The fact that this is indeed an invariant was an important theorem that we stated – we claimed that the Euler

characteristic doesn’t depend on the CW structure of X, and it’s also a strictly easier invariant than homology:

χ(X) =
∑
k

(−1)k rk(Hk(X)),

where the rank of the finitely generated abelian group Hk(X) is the “number of free copies of Z.” (Because we have

a finite cellular chain complex, we do know that all Hk are finitely generated.) Let’s prove this now, starting with an

algebraic fact:

Lemma 151

Let 0 → A → B → C → 0 be a short exact sequence of finitely generated abelian groups. Then rk(B) =

rk(A) + rk(C).

We’ll prove a variant of this on problem set 4 (which will be posted this Friday when we turn in problem set 3), so

the proof is omitted for now.

Proof of invariance of χ(X). For all k ≥ 0, we have short exact sequences of finitely generated abelian groups

0→ Zcell
k (X)→ Ccell

k (X)
∂−→ Bcell

k−1(X)→ 0.

Let’s look at

• Exactness at Zcell
k (X) tells us that the map from cycles into chains is injective, but indeed the cycles are just a

subset of the chains.

• The boundaries are defined to be the image of the boundary map ∂, so we have exactness as Bcell
k−1(X).

• The above two facts together give exactness at the middle, too.

We also have a short exact sequence

0→ Bcell
k (X)→ Zcell

k (X)
∂−→ Hcell

k (X)→ 0.

(To verify this, we need to check that every boundary is a cycle, and that the homology is the quotient of the cycles

by the boundaries.) So now ∑
k

(−1)k |Ik | =
∑
k

(−1)k rk(Ccell
k (X)),

since the rank of the free abelian group on the k-cells is the number of k-cells. And now we can write this as

=
∑
k

(−1)k
(
rk(Zcell

k (X)) + rk(Bcell
k−1(X))

)
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with the first exact sequence, and then use the second exact sequence to rewrite this again as

==
∑
k

(−1)k
(
rk(Bcell

k (X)) + rk(Hcell
k (X)) + rk(Bcell

k−1(X))
)
,

and the two terms with Bks cancel out with each other, leaving the result.

The Euler characteristic is not a very powerful invariant, because it doesn’t distinguish quite as many spaces, so

let’s look at another one now which is still easier to compute than homology, called homology with coefficients. The
idea is that we don’t necessarily need to use the free abelian group functor:

Definition 152

Let R be a commutative ring and X be a semisimplicial set. Then for any k ≥ 0, Sk(X;R) is the free R-module
generated by Xk .

For example, Sk(X;Z) = Sk(X) (because Z-modules are just abelian groups). And we can do a similar thing for

topological spaces:

Definition 153

Let R be a commutative ring and X be a topological space. Then for any k ≥ 0, Sk(X;R) is the free R-module

generated by Singk(X).

In both cases, the alternating sum of the semisimplicial face maps di will create the differential maps Sk(X;R)→
Sk−1(X;R) for a chain complex S∗(X;R) of R-modules. (So this is a direct clean generalization.) And S∗(X;Z) =

S∗(X) as well.

Example 154

Consider the semisimplicial set shown below:

x z

y

u v

w

A

We’ll consider S∗(X;Q), which is a chain complex of rational vector spaces with linear maps between them – it’ll

be isomorphic to

0→ Q→ Q⊕Q⊕Q→ Q⊕Q⊕Q→ 0→ · · · .

(Here, the first Q is the vector space with basis A, the first direct sum is the space with basis {u, v , w}, and the second

direct sum is the one with basis {x, y , z}.) Then the linear maps are determined in the usual way: we send u, v , w to

y − x, z − y , z − x , respectively, and knowing how the basis elements behave under the maps tells us how the whole

map behaves. Therefore, we get exactly the same thing as before, just with groups replaced with vector spaces.

So now the homology R-modules of S∗(X;R), denoted Hq(X;R), can be calculated with a similar method as with

Hq(X;Z). We can check that all of our (Eilenberg-Steenrod) homology proofs still work for homology with coefficients

in any commutative ring R, except that

Hq(∗;R) =

R q = 0

0 otherwise.
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In particular, if X is a CW complex, we can always compute Hq(X;R) by looking at the cellular chain complex

Ccell
∗ (X;R).

Example 155

Let’s look again at the homology of RP2, which has a cell structure with one 0-cell, one 1-cell, and one 2-cell.

Earlier, we calculated Hq(RP2) = Hq(RP2;Z) with a cellular chain complex

· · · → 0→ Z 2−→ Z 0−→ Z→ 0→ · · · ,

telling us that

Hq(RP2) =


Z q = 0

Z/2Z q = 1

0 otherwise.

So now let’s move from “integral homology” to “rational homology:” we can calculate using the similar-looking cellular

chain complex

· · · → 0→ Q 2−→ Q 0−→ Q→ 0→ · · · .

Therefore, we can

Hq(RP2;Q) =


Q q = 0

0 q = 1

0 otherwise

because this time, Q/2Q is the trivial group – every rational number can be written as twice another rational number.

And now let’s calculate Hq(RP2,F2), where F2 denotes the field with two elements. This time, if we look at

· · · → 0→ F2
2−→ F2

0−→ F2 → 0→ · · · .

And the point is that the map 2 is the same as the map 0 in this case, so

Hq(RP2;F2) =



F2 q = 0

F2 q = 1

F2 q = 2

0 otherwise.

We can tell that our answers do indeed change a lot depending on the choice of commutative ring R.

Fact 156

All subsequent material won’t be tested until after November 9 – it’s important for us to have a good understanding

of cellular homology, so pset 4, due October 30, will give us lots of practice with that. After the election, we’ll

have our brief exam on November 9.

In the next few weeks, we’ll be talking about material for problem sets 5 and later. Here are some of the key

questions we’ll be answering:

• In what sense can Hq(X;R) be easier than Hq(X;Z)? In particular, can we compute Hq(X;R), homology with

coefficients, in terms of the integral (standard) homology? (The answer turns out to be yes, but the translation
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process is a bit subtle.) In some sense, the integral homology groups are the best ones – for example, the rational

homology groups will “pick out the free parts” of them.

Remark 157. In applied topology (for instance persistent homology in computer science), we may be given a

giant collection of points in R1000. Then if we fix a radius R and connect any two points that are less than R

apart, then we can draw a 2-simplex for points, all of which are in some diameter R circle, and keep building up

a semisimplicial set in this way. And there are theorems that say that homology with Q coefficients has much

lower computational complexity, and provably so!

• How can we compute Hq(X × Y ) in terms of Hq(X) and Hq(Y )?

• Extending that thought, any topological space has a diagonal map ∆ : X → X ×X, mapping x to (x, x). What

can we say about Hq(∆)? In particular, there will be spaces where Hq(∆) is not the same as Hq(X) – effective

homology on the diagonal will give us some information about X that the pure homology groups don’t see.

• What special features do manifolds have with respect to homology (compared to generic topological spaces)?

In the process of answering these questions, we’ll introduce the (purely algebraic) functors Tor, Ext, and also

introduce the relevant ideas of cohomology.

18 October 14, 2020

Yesterday, we introduced “homology with coefficients” in a general commutative ring as a generalization of Hq(X)

(which is homology “in the integers”). Today, we’ll start looking at how to compute Hq(X;R) from Hq(X) = Hq(X;Z),

which will turn out to be related to computing the homology of a product space X × Y in terms of the homologies of

X and Y .

All of these tools will be purely algebraic, so we’ll need to set up some tools from category theory and algebra.

Recall that for two abelian groups A and B, we defined HomAb(A,B) to be the set of functors (group homomorphisms)

from A to B. But this set has extra structure – if f , g : A→ B are two homomorphisms, then f +g and f −g are also

homomorphisms. (For example, f − g : A→ B is defined by the formula (f − g)(a) = f (a)− g(a).) That means the

set HomAb(A,B) is an abelian group with this addition law, and we will denote this object of Ab by HomAb(A,B).

Let’s generalize this:

Definition 158

Suppose R is a commutative ring, and let R-mod be the category of R-modules. Then HomR-mod(M,N) can be

given the structure of an R-module, and we denote the resulting object in R-mod by HomR-mod(M,N).

(For example, the set of linear maps between vector spaces over a field form another vector space.) This construc-

tion turns out to be functorial: mapping (M,N) 7→ HomR-mod(M,N) is functorial in its inputs. Here’s what we need

to check to verify that statement:

• Suppose that N → N ′ is some map of R-modules. Then any map M → N gives a composite map M → N → N ′,

so there will be an R-module map

HomR-mod(M,N)→ HomR-mod(M,N ′).
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• Now suppose that M → M ′ is some fixed map of R-modules. Then there will be a corresponding map

HomR-mod(M ′, N)→ HomR-mod(M,N),

where the map f : M ′ → N gets sent to the composite map M → M ′ → N (notice that the direction of maps

is being flipped here).

In other words, we have a functor

HomR-mod : (R-mod)op × (R-mod)→ (R-mod),

sending (M,N) to HomR-mod. And the more general structure here is that some categories C (such as R-mod) have

internal Homs
HomC : Cop × C → C,

where Cop × C is the product category in the category of categories Cat.

Example 159

The category Set of all sets also has an internal Hom, where we can just set

HomSet(A,B) = HomSet(A,B).

It turns out that there is a currying isomorphism here: if A,B, C are sets, then we have a bijection

HomSet(A× B,C) ∼= HomSet(A,HomSet(B,C).

For example, if we have a function f : A→ HomSet(B,C), we can send it to a function g : A× B → C, given by

g(a, b) = (f (a))(b).

Internal Homs will usually give something of this flavor, so we should ask if we can find the analog of this currying

isomorphism in R-mod.

Theorem 160

Let R be a commutative ring. There is a functor (called the tensor product)

⊗R : (R-mod)× (R-mod)→ (R-mod),

with the property that

HomR-mod(A⊗R B,C) ∼= HomR-mod(A,HomR-mod(B,C).

In addition, this isomorphism is natural in A,B, C, and this uniquely determines ⊗R.

We typically denote ⊗R(A,B) as A ⊗R B instead. Note that ⊗R and HomR-mod are actually adjoint functors,
which is an important concept in category theory that we might see later. The important thought is that both functors

determine internal structure, and they actually determine each other.

The first step is to define a functor ⊗R : R-mod × R-mod, and then we need to check the isomorphism and

naturality conditions.
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Definition 161

If A and B are two R-modules, then the tensor product A ⊗R B is the R-module generated by symbols a ⊗ b
with a ∈ A and b ∈ B, with the following (quotienting) relations:

• Distributivity: a ⊗ (b + b′) = a ⊗ b + a ⊗ b′, and (a + a′)⊗ b = a ⊗ b + a′ ⊗ b.

• Scalar multiplication: (ra ⊗ b) = r(a ⊗ b) and a ⊗ (rb) = r(a ⊗ b).

We can check ourselves that this actually defines a functor ⊗R, but once we have our tensor product more

concretely, we’re ready to sketch the proof of the above theorem.

Proof sketch of Theorem 160. With our definition, a map of R-modules A ⊗R B → C is determined by where it

sends the generators a ⊗ b. So given a map f : A ⊗R B → C, we can define a map g : A → HomR-mod(B,C) via

(g(a))(b) = f (a ⊗ b), and analogously given g, we can define f (a ⊗ b) = (g(a))(b). What we need to check is that

the relations on A⊗R B are defined to ensure that g is indeed an R-module map if and only if f is, and this is a basic

algebraic check.

Let’s look at a few examples that are most relevant for us:

Example 162

If R = Z, what does A⊗Z B look like for Z-modules A and B?

Here, A and B are abelian groups, and A⊗Z B will be some other abelian group.

• We’ll do one example in full detail. If A = Z/2Z and B = Z/4Z, then the tensor product has eight generators

0⊗ 0, 1⊗ 0, 0⊗ 1, 1⊗ 1, 0⊗ 2, 1⊗ 2, 0⊗ 3, 1⊗ 3,

with various relations. For example,

0⊗ 2 = (0 · 0)⊗ 2 = 0(0⊗ 2) = 0

by scalar multiplication, and this holds for all other generators with a 0 appearing anywhere. So our tensor

product is generated just by 1⊗ 1, 1⊗ 2, 1⊗ 3, but

1⊗ 1 + 1⊗ 1 = 1⊗ (1 + 1) = 1⊗ 2,

and similarly 1⊗ 1 + 1⊗ 1 + 1⊗ 1 = 1⊗ 3, so the other generators can just be written in terms of 1⊗ 1. Since

1 ⊗ 1 + 1 ⊗ 1 + 1 ⊗ 1 + 1 ⊗ 1 = 1 ⊗ 2 + 1 ⊗ 2 = 1 ⊗ (2 + 2) = 1 ⊗ 4 = 0, our tensor product group is just

generated by 1⊗ 1, and we have a cyclic group. But in fact

1⊗ 1 + 1⊗ 1 = (1 + 1)⊗ 1 = 2⊗ 1 = 0,

so 1⊗ 1 has order 2, meaning that

Z/2Z⊗Z Z/4Z = Z/2Z .

(We do need to check that 1⊗ 1 is nonzero.)

• Next, let’s check an example of Theorem 160: let’s verify that

HomAb(Z/4Z⊗Z Z/2Z,Z/2Z) ∼= HomAb(Z/2Z,Z/2Z)
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is actually isomorphic to

HomAb(Z/4Z,HomAb(Z/2Z,Z/2Z)) ∼= HomAb(Z/4Z,Z/2Z).

(The boxed groups are the ones actually stated in Theorem 160.) So we should have the same number of group

homomorphisms from Z/2Z to Z/2Z as from Z/4Z to Z/2Z, which is indeed true: either we send 1 to 0 or 1

to 1 in both cases.

We’ll look at some more example computations next time!

19 October 16, 2020

We calculated the homology groups of RP∞ in a combinatorial way, through the nerve N(BC2), on our homework

– the idea was to point out that we have a geometric and a combinatorial-algebraic way to compute the homology

groups, but the latter isn’t necessarily easier to do by brute force.

Last class, we started discussing the internal Hom and tensor product in the category of R-modules: these were

related by a natural isomorphism (which can be used as the definition of a tensor product)

HomR-mod(A⊗R B,C) ∼= HomR-mod(A,HomR-mod(B,C)).

Concretely, we also wrote down that A ⊗R B is an R-module generated by symbols a ⊗ b with a ∈ A, b ∈ B,

along with certain relations (regarding distributivity and scalar multiplication). One thing we used implicitly is that

A ⊗R B = B ⊗R A, and this is clear in the concrete construction because all of the relations pair up in a symmetric

way. But from the abstract internal Hom description, this is perhaps more surprising.

We started calculating some tensor products over Z last lecture as well: for example, we found that

Z/2Z⊗Z Z/4Z ∼= Z/4Z⊗Z Z/2Z ∼= Z/2Z.

Let’s try looking at another example:

Example 163

What is the tensor product Z/2Z⊗Z Z/3Z?

At first glance, we have the six generators 0⊗ 0, 0⊗ 1, 0⊗ 2, 1⊗ 0, 1⊗ 1, 1⊗ 2. But we know that anything with

a 0 is just the zero element, so the only generators that remain are 1⊗ 1 and 1⊗ 2, and now

1⊗ 1 + 1⊗ 1 = 1⊗ (1 + 1) = 1⊗ 2.

So this means our tensor product is generated by 1⊗ 1 alone, but now

1⊗ 1 + 1⊗ 1 + 1⊗ 1 = 1⊗ 3 = 0, 1⊗ 1 + 1⊗ 1 = 2⊗ 1 = 0.

So the order of this element must divide both 2 and 3, meaning 1⊗ 1 = 0. Therefore, this group is the trivial group.

Proposition 164

If A is an abelian group (that is, any Z-module), then Z/2Z⊗Z A ∼= A/2A. More generally, we have

Z/nZ⊗Z A ∼= A/nA.
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Proof. This tensor product is generated by elements 1⊗ a for a ∈ A, with the relations that 2(1⊗ a) = 2⊗ a = 0. A

similar argument works for general n.

From here, the next step is to look at the group Z⊗Z A. If we have an abelian group B, we can use the abstract

characterization to say that (all Homs below are in the Ab category)

Hom(A⊗Z Z, B) ∼= Hom(A,Hom(Z, B)).

Since B is abelian, the set of group homomorphisms from Z to B is just B itself – it’s determined by where 1 is sent.

So this is the same as Hom(A,B) , and therefore it makes sense that A ∼= A ⊗Z Z, which we can check by showing

the isomorphism of groups a 7→ 1⊗ a.

Proposition 165

Let R be any ring, and let M be an R-module. Then

R ⊗R M ∼= M.

A similar argument here relies on the fact that

HomR-mod(R,N) ∼= N,

and the rest is similar. So now we can tensor with cyclic abelian groups, as well as with the ring itself, and we can do

a bit more theory for understanding now.

Definition 166

Let R be a ring, and let A,B, C be R-modules. A bilinear map f : A × B → C is a function of sets with the

following relations:

• f (a + a′, b) = f (a, b) + f (a′, b) and f (a, b + b′) = f (a, b) + f (a, b′) for all a, a′ ∈ A and b, b′ ∈ B,

• f (ra, b) = r f (a, b) and f (a, rb) = r f (a, b) for all a ∈ A, b ∈ B, r ∈ R.

Theorem 167

Bilinear maps from A× B → C are in bijection with R-module maps from A⊗R B → C.

Proof. This is basically just the concrete description of a tensor product – specifying a bilinear map A×B → C requires

us to satisfy certain conditions, which are exactly the same as the tensor product constraints.

We won’t use this way of thinking very much, but it can be useful in certain contexts.

Next, we’ll turn our attention to the tensor product of direct sums:

Theorem 168

Let A,B, C be three R-modules. Then

(A⊕ B)⊗R C ∼= (A⊗R C)⊕ (B ⊗R C),

with isomorphism given by (a, b)⊗ c 7→ (a ⊗ c, b ⊗ c).

64



We can check on our own that this is an isomorphism by constructing the reverse map. One way of interpreting

this is that the operations (⊕R,⊗R) make R-mod (also denoted ModR) into a categorical ring. We can check things

like the associativity of our tensor product: there is a natural isomorphism

(A⊗R B)⊗R C ∼= A⊗R (B ⊗R C).

So R-mod form a commutative ring, but in the sense of categories instead of classical algebra. And we can actually

completely understand a ring R in terms of its R-modules, which we can look into if we’re interested.

And this helps us understand basically all tensor products that we care about in this class: we know how to compute

⊗Z of finitely generated abelian groups.

Example 169

Suppose we wanted to compute something like

(Z/2Z⊕ Z/3Z)⊗Z (Z/6Z⊗ Z).

We can then distribute the tensor product as

= ((Z/2Z⊕ Z/3Z)⊗ Z/6Z)⊕ ((Z/2Z⊕ Z/3Z)⊗ Z),

which further simplifies (like in ordinary algebra) to

Z/2Z⊗ Z/6Z⊕ Z/3Z⊗ Z/6Z⊕ Z/2Z⊗ Z⊕ Z/3Z⊗ Z,

where we use the tensor product as the primary operation in the order of operations, and simplification from the work

we’ve done before yields

Z/2Z⊕ Z/3Z⊕ Z/2Z⊕ Z/3Z.

And certainly with finite type CW complexes, we should only expect to see this kind of finitely generated abelian group.

We are interested in homology with coefficients, but often the rings R that we use are Z,Q, and finite fields like F3.

And modules over a field are just vector space, and now we can figure out how those work too!

Example 170

In Q-modules (rational vector spaces), let’s compute

(Q⊕Q)⊗Q (Q⊗Q⊗Q).

(This is basically the generic example that we might see with finite-dimensional vector spaces.) If we expand this

out with the distributive law, we end up with six copies of Q ⊗ Q ∼= Q, so we end up with a 6-dimensional Q-vector
space Q⊕Q⊕Q⊕Q⊕Q⊕Q. So we basically multiply the dimensions when we’re working over a field.

This is all we’ll say about tensor products of abelian groups for now, and we’ll start tackling a slightly fancier

question now – tensor products of chain complexes.

Example 171

Consider the interval I = [0, 1] = D1 as a CW complex with two 0-cells and one 1-cell. We’re interested in looking

at I × I.
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Then our cellular chain complex looks like

Z{a} → Z{x, y},

sending a to y − x . We can calculate the homology of an interval, which is the same as the homology of a point. So

now we can get a product cell decomposition for I × I:

x ⊗ x y ⊗ x

y ⊗ yx ⊗ y

a ⊗ x

y ⊗ a

a ⊗ y

x ⊗ a a ⊗ a

Basically, every cell here comes from taking the product of some cell in the first I and some cell in the second I.

And this naming might help us understand the differential map: we can write down equations like

∂(a ⊗ x) = y ⊗ x − x ⊗ x = “(y − x)⊗ x ′′ = “∂a ⊗ x,′′

but also

∂(a ⊗ a) = a ⊗ x + y ⊗ a − a ⊗ y − x ⊗ a = “(y − x)⊗ a + a ⊗ (x − y),′′

which looks a lot like ∂a ⊗ a − a ⊗ ∂a. This leads us to the following definition:

Definition 172

Let C∗, D∗ be two chain complexes of R-modules. The tensor product C∗ ⊗R D∗ is a chain complex with groups

given by

(C∗ ⊗R D∗)n =
⊕
p+q=n

Cp ⊗Dq

and differential map

∂(cp ⊗ dq) = (∂cp ⊗ dq) + (−1)p(cp ⊗ ∂dq).

This sign coefficient (−1)p can be obtained by thinking about geometry, but it’s important for us in showing that

the composition of two ∂ maps is the zero map. And we’ll eventually prove that this kind of tensor product chain

complex is what we want for computing the homology of a product space:

Ccell
∗ (X)⊗ Ccell

∗ (Y ) ∼= Ccell
∗ (X × Y ).

The idea is that the homology groups of Ccell
∗ (X)⊗ Ccell

∗ (Y ) are computable purely in terms of Hq(X) and Hq(Y ), so

that will help us look at X × Y . (We don’t need to understand the entire cellular chain complexes for X and Y – just

the homology groups are sufficient!)

Unfortunately, this construction has some bad properties as well. The main issue is that if C∗ and D∗ are two chain

complexes, the homology of C∗ ⊗ D∗ can’t be determined in general from the homology of C∗ and the homology of

D∗. So it’s a very special property of those cellular chain complexes that come up in our study – chain complexes from

other sources may not have homology groups coming from the homology group of the two pieces.

In addition, there isn’t an obvious “internal Hom” in chain complexes: if we look at all the maps between two chain

complexes, there isn’t an obvious way to make that into a chain complex. So that might make it more confusing to
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deal with a tensor product description, especially with the abstract definition! This property is actually related to the

last one – next class, we’ll talk about why the chain complexes arising from CW complexes behave better than other

ones.

20 October 19, 2020
Problem set 4, giving us more practice with cellular homology, is now posted – as always, it will be due in about two

weeks.

We’re going to continue discussing the algebra of tensor products today. Recall that we were motivated last time

by the product CW structure on a product of two CW complexes to define a tensor product of two chain complexes

of R-modules, with nth group given by

(C∗ ⊗R D∗)n =
⊕
p+q=n

Cp ⊕R Dq,

and boundary maps given by

∂(cp ⊗ dq) = (∂cp)⊗ dq + (−1)p(cp ⊗ (∂dq)).

Recall that the term (−1)p is necessary for the partial maps to form a chain complex. But there are still some confusing

features – it turns out that the homology of a tensor product of this form is only simply related to the homology of the

individual chain complexes C∗ and D∗ when the origin is from CW complexes. In addition, the set of maps hom(C∗, D∗)

is not obviously a chain complex, so we haven’t quite figured out how to relate tensor products to our internal Homs.

So we’ll jump into some more algebraic theory today. Let’s start with a short exact sequence

0→ A→ B → C → 0,

and consider some other R-module. It makes sense to then consider the sequence

0→ A⊗R M → B ⊗R M → C ⊗R M → 0

and ask whether it is exact. The answer turns out to be no, and we can see this concretely:

Example 173

Take R = Z, and consider the short exact sequence

0→ Z 2−→ Z q−→ Z/2Z→ 0

where q denotes the quotient map.

If we tensor this short exact sequence with Z/2Z, we find a sequence

0→ Z⊗Z Z/2Z→ Z⊗Z Z/2Z→ Z/2Z⊗ Z?2Z→ 0,

which is isomorphic to

0→ Z/2Z→ Z/2Z→ Z/2Z→ 0.

(For the first two groups, this was because tensoring Z ⊗Z A always gives us back A, and for the third, recall that

Z/2Z⊗Z A ∼= A/2A.) But now the multiplication by 2 map becomes the 0 map, which is not injective, so we cannot

have exactness.
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However, there is an important result that helps our tensor product behave a little bit nicer with exactness:

Theorem 174

Let M be an R-module. Then the functor

· ⊗R M : R-mod→ R-mod

is right exact, meaning that if A→ B → C → 0 is an exact sequence of R-modules, so is A⊗RM → B⊗RM →
C ⊗R M → 0.

Remember that exactness failed at the first place in our example above, so we’ve gone around this issue by only look

at the “right” part of the sequence. (In fact, A→ B → C → 0 is exact if and only if A⊗RM → B⊗RM → C⊗RM → 0

is exact for every R-module M, because we can just take M = R.)

Fact 175

It’s important to remember that whenever we have a theorem or result about tensor products, we can also restate

it using internal Homs – they can often be easier to prove that way.

Theorem 176

A sequence of R-modules A→ B → C → 0 is exact if and only if

0→ HomR-mod(C,N)→ HomR-mod(B,N)→ HomR-mod(A,N)

is exact for all R-modules N.

In particular, we should notice the opposite functoriality here – the arrows have been flipped.

Proof that Theorem 176 implies Theorem 174. Assume that A → B → C → 0 is exact. To check that the tensor

product sequence A⊗R M → B ⊗R M → C ⊗R M → 0 is exact, it suffices to check (by Theorem 176) that

0→ HomR-mod(C ⊗R M,N)→ HomR-mod(B ⊗R M,N)→ HomR-mod(A⊗R M,N)

is exact for every N. And this is equivalent to wanting

0→ Hom(C,Hom(M,N))→ Hom(B,Hom(M,N))→ Hom(A,Hom(M,N))

to be exact for every N, but now we can apply Theorem 176) with N replaced with Hom(M,N).

Proof of Theorem 176. We’ll prove one direction (the other is left as an exercise). Exactness at Hom(C,N) is equiv-

alent to the map Hom(C,N) → Hom(B,N) being injective. In other words, by functoriality of our internal Hom, we

want to know whether a map C → N is determined by the composite map B → C → N. But that’s true because

B → C is surjective by exactness (at C in our original sequence), meaning that we can look at the image of the

composite map of some b that maps to c .

So now it remains to check exactness at Hom(B,N), which can be restated as follows: f : B → N restricts to the

zero map A→ B → N if and only if we can write f as a composite map B → C → N.

• If we have a composite map B → C → N, then we can look at A → B → C → N, and the map A → C (and

thus also the map A→ N) is the zero map by exactness of the original sequence at B.
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• Next, if f : B → N restricts to the zero map A → B → N, we want to find a map g : B → C so that f is the

composite B → C
g−→ N. Recall that C is the quotient of B by the image of A, so we just need to make sure that

f ’s kernel contains the image of A to have a well-defined composite map. And this is true because A→ B → N

is the zero map, so B → N sends everything in im(A) to zero.

We’ve now proved that if 0→ A→ B → C → 0 is exact, then A⊗R M → B ⊗R M → C ⊗R M → 0 is exact, but

we don’t necessarily have exactness 0→ A⊗R M → B ⊗R M. But notice that this sequence will stay exact if we use

M = R or M = R⊕R – in the latter case, we end up with a sequence 0→ A⊕A→ B⊕B → C⊕C → 0. In general,

if M is a free module (such as a vector space over a field), we preserve exactness (not just right exactness).

And to connect this back to topology, note that if we have a topological space X, we have a chain complex of

free R-modules Ccell
∗ (X;R), and perhaps that will start giving us a sense of what’s special about these particular chain

complexes.

21 October 21, 2020

Last time, we talked about the way tensor products interact with exactness (which encodes a lot of useful algebraic

facts). Specifically, if M is an R-module, then the tenso r product functor

· ⊗R M : R-mod→ R-mod

is right exact but not necessarily exact. But we mentioned that for free R-modules M (which always happens when R

is a field, for example), then tensoring with M is exact.

We primarily care about chain complexes because they help us encode homology, and that plays into the next

definition:

Definition 177

Suppose C∗ and D∗ are two chain complexes of R-modules. A chain map f : C∗ → D∗ is a quasi-isomorphism if

Hq(f ) is an isomorphism for each integer q.

In other words, the map is an isomorphism at the level of homology groups. In particular, having this quasi-

isomorphism tells us that C and D have the same homology, but there isn’t always a quasi-isomorphism between two

such chain complexes (so quasi-isomorphism is stronger).

Example 178

Suppose R = Z, and we have a two-term chain complex with Zs in degree 1 and 0:

C∗ = · · · → 0→ 0→ Z 5−→ Z→ 0→ 0→ · · · .

We also have another chain complex

D∗ = · · · → 0→ 0→ Z/5Z→ 0→ 0→ · · · .

Then C∗ and D∗ have the same homology groups (we can check this ourselves), and in fact we have the following

chain map which is a quais-isomorphism:
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· · · 0 Z Z 0 · · ·

· · · 0 0 Z/5Z 0 · · ·

5

q

We can check that this diagram does commute, so C∗ and D∗ are quasi-isomorphic. And this construction

motivates the next idea:

Definition 179

Let M be an R-module. A free resolution of M is a chain complex C∗ of free R-modules and a quasi-isomorphism

C∗ → M, where we think of M as a chain complex concentrated in degree 0 (that is, we have M at degree 0 and

0 everywhere else).

The example above shows us that C∗ is a free resolution of M = Z/5Z for R = Z, and we’ll work a bit more with

this idea now.

Example 180

If R is a field, then every module is itself a free resolution, because all R-modules are free.

Example 181

Suppose R = Z (this is basically the only ring that’s not a field that we’ll need to worry about for now), and take

M = Z/3Z⊕ Z⊕ Z/2Z.

We can write down a free resolution in the folloiwng diagram:

· · · 0 Z⊕ Z Z⊕ Z⊕ Z 0 · · ·

· · · 0 0 Z/3Z⊕ Z⊕ Z/2Z 0 · · ·

f

q

Here, in the map f , we send (1, 0) to (3, 0, 0), and we send (0, 1) to (0, 0, 2). We can check that the homology

of the top row and bottom row agree, and that the square commutes, so we do have a quasi-isomorphism. And this

example is basically the generic one – we can always find a two-term free resolution by taking a surjection from a free

module and adding some relations with the map f .

Remark 182. Note that free resolutions aren’t unique: consider the following diagram.

· · · Z Z⊕ Z⊕ Z Z⊕ Z⊕ Z 0 · · ·

· · · 0 0 Z/3Z⊕ Z⊕ Z/2Z 0 · · ·

f g

q

If f sends 1 to (0, 0, 1), and g sends (1, 0, 0), (0, 1, 0), (0, 0, 1) to (3, 0, 0), (0, 0, 2), (0, 0, 0) respectively, then we also

have a free resolution of the same M = Z/3Z⊕ Z⊕ Z/2Z. This isn’t a minimal resolution – there’s an extra relation

in the map from degree 1 to degree 0 – but it is valid.

However, there won’t always be such a compact solution for more complicated rings:
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Fact 183

Suppose R = Q[t]/t2, and let M be the module Q where t acts by (multiplication by) 0. This also has a free

resolution, but even the “smallest” one is infinite. But we won’t really need to worry about those kinds of rings.

Theorem 184 (Fundamental theorem of homological algebra)

Let N and M be R-modules. Let

· · · F2 F1 F0

· · · 0 0 N

and
· · · E2 E1 E0

· · · 0 0 M

be free resolutions of N andM, respectively. Then any R-module map f : N → M lifts to a chain map f∗ : F∗ → E∗,

and f∗ is unique up to chain homotopy.

Let’s see what this theorem means in practice:

Example 185

Take R = Z, and consider the abelian group map f : Z/2Z→ Z/6Z (so N = Z/2Z and M = Z/6Z) that takes 1

to 3.

A free resolution of Z/2Z has top row

F∗ = · · · → 0→ Z 2−→ Z→ 0→ · · · ,

and we have a similar chain complex E∗ for Z/6Z. So then we can get a chain map F∗ → E∗ as shown:

· · · 0 Z Z 0 · · ·

· · · 0 Z Z 0 · · ·

0

2

1 3 0

6

The squares all commute, so this chain map gives us a map H0(f∗) : H0(F∗)→ H0(E∗). And H0(F∗) is isomorphic

to Z/2Z, H0(E∗) is isomorphic to Z/6Z, and thus H0(f∗) is exactly the map f that we started with!So understanding

maps between R-modules is the same as understanding maps between free resolutions of R-modules, and furthermore,

we only need to understand maps up to chain homotopy.

Proof sketch of Theorem 184. We can build up a map between the free resolutions inductively, showing that there is

only one choice up to chain homotopy at every stage.

The first step is to create the dashed arrow in the following square:

F0 E0

N M

εN

f0

εM

f

We know that F0 is free on some set S0 by definition, so for each s0 ∈ S0, we can define f0(s0) to be any arbitrary

element of E0 such that

εM(f0(s0)) = f (εN(s0)).
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(This can always be done because εM is surjective, since H0(F∗) = F0/im(F1 → F0) is isomorphic to N. Similarly, this

tells us that εN is also surjective.) So now we can extend our diagram as shown:

F1 E1

ker(εN) ker(εM)

F0 E0

N M

f1

g0

εN

f0

εM

f

The top two vertical maps are surjective, so this helps us create F1 → E1, and so on. The rest of the proof is left

for us to think about – it may show up in our homework as well.

In practice, this theorem is really easy to use – we are guaranteed a chain map inducing in homology from the

module that we started with. (We’ll see this in action soon.)

Definition 186 (Sketchy for now)

Let R be a commutative ring, and let ch(R-mod) be the category of chain complexes of R-modules. The derived
category of R, denoted D(R), is a category obtained from ch(R-mod) by formally inverting all quasi-isomorphisms.

Quasi-isomorphisms aren’t actually isomorphisms, but we’re changing the category we’re talking about. So the

objects of D(R) are chain complexes, but there are many more morphisms than before. Specifically, for any quasi-

isomorphism f∗ : C∗ → D∗, we have a formal inverse g : D∗ → C∗ in D(R). (This is kind of like rigorously going from

the natural numbers to the integers – we just “add in inverses” to get the negative numbers.) So this means we also

add morphisms that are the composition of a quasi-isomorphism and a chain map, and so on – the goal is to force
quasi-isomorphisms to become isomorphisms in the minimal way.

Fact 187

The actual construction of D(R) is beyond the scope of this class, because there are set-theory technicalities

(such as having a set of maps versus a class of maps). But the point is that ch(R-mod) doesn’t matter to us –

D(R) does, because we’re working with homology.

Example 188

In D(R), every object is isomorphic to a chain complex of free R-modules, and free resolutions give us an example

of this.

Our next steps will be to learn some general facts about D(R) and then prove a few consequences of these facts

which can be stated without reference to D(R) itself. (This “derived category” doesn’t actually show up in Hatcher

or in Miller’s notes because it’s more technical, but taking this path will help motivate us to understand why these

consequences exist.)

For example, consider the following construction of tensor products in D(R). If C∗ and D∗ are two chain

complexes, the derived tensor product C∗ ⊗L D∗ is defined as follows:

• Replace C∗, D∗ with quasi-isomorphic chain complexes of free modules C′∗, D
′
∗.
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• Take the ordinary tensor product C′∗ ⊗R D′∗.

• Check that the result is well-defined up to quasi-isomorphism.

Since we’re avoiding the mention of quasi-isomorphism, we’re going to prove a consequence of this claim instead.

Next time, we’ll show that if M and N are R-modules, then the groups Hq(M⊗LN) is well-defined for every q. (These

groups are called Tor groups.) And we’ll do this without explicit mention to the derived category.

22 October 23, 2020

Last time, we introduced the derived category D(R) for a commutative ring R. Since quasiisomorphisms induce

isomorphisms in homology, the main point of the construction is that two chain complexes that are isomorphic in

D(R) must have isomorphic homology R-modules.

We then started seeing how the tensor product plays into this: the derived tensor product is denoted ⊗L or ⊗LR,
and we described the construction for it last time. (The reason for the symbol L is historical – it has to do with the

“ left adjoint” in the currying isomorphism.) One useful fact, in the case where at least one of C∗ and D∗ is a chain

complex of free R-modules, is that

C∗ ⊗LR D∗ ∼= C∗ ⊗R D∗.

And as we mentioned last time, we won’t try to go too far into this statement directly, since we aren’t talking about

D(R) directly. But we’ll prove some consequences of this fact:

Definition 189

Let M and N be two R-modules. The group Tori (M,N) is defined as the homology group Hi(M ⊗LR N), where

M and N are chain complexes concentrated at degree 0.

We’ll prove soon that Tori(M,N) is well-defined rigorously in this lecture (that is, it doesn’t take on different forms

if we pick different free resolutions), but for now it’s worth getting used to the algorithmic practices of computation:

Example 190

Suppose R = Z. What is Z/2Z⊗LZ Z/4Z?

There are different ways we can compute this, based on which module we choose to make a free resolution for and

also how we do it. So we’ll do this in a few different ways – one idea is to write

Z/2Z⊗L Z/4Z ∼= (Z 2−→ Z)⊗ Z/4Z,

and then we can take the tensor product from here to get nonzero things in degree 1 and 0:

∼=→ 0→ Z/4Z 2−→ Z/4Z→ 0→ · · · .

So now Tor0(Z/2Z,Z/4Z) is Z/4Z mod the image of the multiplication-by-2 map, which is Z/2Z. Similarly, we find

that Tor1(Z/2Z,Z/4Z) ∼= Z/2Z, and there is no homology anywhere else.

Alternatively, we could have computed this tensor product in another way by resolving the Z/4Z, so that

Z/2Z⊗L Z/4Z ∼= Z/2Z⊗ (Z 4−→ Z),
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and then computing this ordinary tensor product gives us

∼= · · · → Z/2Z 4−→ Z/2Z→ · · · ,

again with zeros beyond here. And again Tor0 and Tor1 are Z/2Z, because the multiplication-by-4 map is just the

zero map on Z/2Z. So indeed the homology groups are the same, and that’s what we should believe if we believe in

the derived category D(Z).

Finally, let’s compute this in a third, “less efficient way” by resolving both sides:

Z/2Z⊗L Z/4Z ∼= (Z{a} 2−→ Z{b})⊗ (Z{c} 4−→ Z{d}),

(the a, b, c, d just to make our notation easier, but those groups are all isomorphic to Z) and the tensor product of

these chain complexes is

Z{a ⊗ c} → Z{b ⊗ c, a ⊗ d} → Z{b ⊗ d}

(with these groups being in degree 2, 1, 0), with one of the differentials given by

∂(a ⊗ c) = (∂a ⊗ c) + (−1)(a ⊗ ∂c) = (2b ⊗ c) + (−1)(a ⊗ 4c) = 2(b ⊗ c)− 4(a ⊗ d),

where we’ve used the formulas ∂ from the resolutions of our two modules. (Remember the ± sign comes from the

original degree of the left term.) We can also calculate

∂(b ⊗ c) = ∂b ⊗ c + b ⊗ ∂c = 0⊗ c + b ⊗ 4d = 4(b ⊗ d),

∂(a ⊗ d) = ∂a ⊗ d − a ⊗ ∂d = 2b ⊗ d − a ⊗ 0 = 2(b ⊗ d),

and now we can confirm that this is a chain complex (that is, we haven’t made any calculation errors), because

∂∂(a ⊗ c) = ∂(2(b ⊗ c)− 4(a ⊗ d)) = 2 · 4(b ⊗ d)− 4 · 2(b ⊗ d) = 0.

And now we’re ready to compute the homology of the chain complex: H0 is Z{b⊗d}/im(∂1) = Z{b⊗d}/Z{2(b⊗d)} ∼=
Z/2Z, H1 is the kernel of ∂1 mod the image of ∂2, which is Z{b⊗ c − 2(a⊗ d)}/Z{2(b⊗ c)− 4(a⊗ d) ∼= Z/2Z, and
H2 is zero because ∂2 is injective. So we’ve recovered the same result as before with more calculation!

Example 191

Next, let’s compute the derived tensor product Z/2Z⊗L Z/3Z.

The most efficient way is to write it as

∼= (Z 2−→ Z)⊗ Z/3Z ∼= Z/3Z 2−→ Z/3Z,

and because the multiplication-by-2 map is surjective, we find that the Tor groups are all just zero in this case.

Example 192

The next idea to look at is Z/3Z⊗L Z.

This time, we already have a free resolution, and tensoring by Z does nothing in this case. So this is a chain

complex with Z/3Z concentratred at degree 0, and thus the Tor groups are Z/3Z in degree 0 and 0 otherwise.
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Example 193

If R is a field, and V,W are vector spaces over R, then Tor0(V,W ) ∼= V ⊗R W (a vector space with dimension

dim(V ) dim(W )) and Tori(V,W ) ∼= 0 for all i 6= 0.

In the logic above, we’re using the fact that every module over a field is its own free resolution.

Proof that the Tor groups are well-defined. Suppose that M and N are two R-modules, and F∗ and F ′∗ are two free

resolutions of M. We need to prove that (here we use the regular tensor products) F∗ ⊗R N and F ′∗ ⊗R N have the

same homology (Tor) groups.

We can in fact show that we have a chain homotopy between the two chain complexes, which is enough to show

that they have the same homology groups. And this goes back to the fundamental theorem of homological algebra:
up to chain homotopy, there exists a (unique) map f : F∗ → F ′∗ that lifts 1M , and there also exists a (unique) map

g : F ′∗ → F∗ that lifts 1M as well. So f ◦ g is a map from F ′∗ → F ′∗ that lifts 1M , so the fundamental theorem of

homological algebra tells us that f ◦ g must be chain homotopic to the identity (which also lifts 1M). So that means

that

(f ◦ g)⊗R N = (f ⊗ N) ◦ (g ⊗ N)

is chain homotopic to 1F ′∗⊗N , and the same argument works for showing that (g ◦ f )⊗RN is chain homotopic to 1F∗⊗N .

This means g⊗RN and f ⊗RN are inverses up to chain homotopy, meaning F∗⊗RN and F ′∗⊗RN are chain homotopy

equivalent.

Let’s now take a look at a related construction of Tor by studying a bit about internal Homs. If F∗ is a chain

complex of free R-modules, and N is an R-module, we can form a new chain complex,

HomD(R)(F∗, N),

which is basically the internal Hom in the derived category, but notice the negative sign:

HomD(R)(F∗, N)n = HomR-mod(F−n, N).

Let’s illustrate this more clearly:

Example 194

Suppose R = Z, and our F∗ chain complex has only terms in degree 1 and 0:

F∗ = · · · → 0→ Z 4−→ Z→ 0→ · · · .

Take N = Z/2Z. Then

HomD(Z)(F∗, N) ∼= · · · → 0→ Z/2Z ∂−→ Z/2Z→ 0→ · · · ,

where we have terms in degrees 0 and −1, instead of 1 and 0. And the differential map ∂ exists here, because a map

from the degree-0 Z to Z/2Z can be composed with the multiplication-by-4 map to get us a map from the degree-1 Z
to Z/2Z – this construction comes from the boundary map in F∗. (This is related to the contravariance of the Hom

functor.) So if M and N are R-modules, then we can compute HomD(R)(M,N) by replacing M with a free resolution

and then doing the kind of calculations above.
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Definition 195

Let M and N be R-modules. The group ExtiR(M,N) is the −ith homology group H−i(HomD(R)(M,N)).

In other words, this is the homology group H−i(HomD(R)(F∗, N)). We’ll need to prove on our homework that,

similar to Tor, this construction doesn’t depend on the free resolution F∗ of M, and this comes from the fundamental

theorem of homological algebra again. It turns out that these Ext groups is more natural than a lot of the other things

going on here, and that’s because we do have an internal Hom here. We’ll be able to use these Ext and Tor groups

to compute homology with coefficients, and we’ll see that next time!

23 October 26, 2020
Last class, we defined and worked a bit with the Ext and Tor functors. Now that we’ve done a bunch of algebra,

we can answer some topological questions that motivated that discussion, particularly dealing with homology with

coefficients.

Recall that the nth group of the chain complex of R-modules S∗(X;R) is the free R-module generated by Singn(X),

with boundary map given by the usual alternating sum of the di maps, which means that S∗(X) = S∗(X;Z) by definition.

Note that this chain complex S∗(X;R) can be alternatively described as S∗(X) ⊗Z R because S∗ is made out of

free Z-modules, and tensoring with Z turns them into Rs. And this ordinary tensor product also calculates the derived

tensor product S∗(X)⊗LZ R because S∗ is free. But in fact, we can make a more general definition:

Definition 196

Let M be an abelian group, and let X be a topological space. Then we can define

S∗(X;M) = S∗(X)⊗Z M, Hq(X;M) = Hq(S∗(X;M)).

In other words, we replace the ring R with an arbitrary abelian group – phrasing in terms of tensor products mean

we never use the ring structure at all. We still have M = Z or a field as the most interesting cases, though.

Fact 197

If R is a commutative ring and M is an R-module, then Hq(X;M) will acquire the structure of an R-module. In

particular, if M = R itself is a ring, then Hq(X;R) is itself an R-module.

At this point, let’s also introduce the new, related idea of cohomology, which will come up soon. Suppose that

we have an abelian group M and an topological space X. Then we can make a new chain complex concentrated in

non-positive degrees, where the (−n)th term is HomZ-mod(Sn(X),M) (itself an abelian group). This in fact helps us

calculate groups related to the derived category, since this calculates HomD(Z)(S∗(X),M).

Definition 198

The qth cohomology group Hq(X;M) of a topological space X is the (−q)th homology group of the chain

complex HomD(Z)(S∗(X),M).

It’s interesting to then think about homology with coefficients and cohomology with coefficients, and ask whether

these tell us more than homology with integers. And it turns out the answer is no – homology with integer coefficients

still determines everything we’re talking about, but it’s sometimes easier to compute (so still useful).
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To understand how this determination happens, we’ll talk about the universal coefficient theorems. We’ll start

with the cohomology version:

Theorem 199

Let X be a topological space, and let M be any abelian group. Then for any integer q, there is an isomorphism

Hq(X;M) ∼= HomAb(Hq(X),M)⊕ Ext1
Z(Hq−1(X),M)

The point is that the right side only has to do with integer homology groups, but the left side has coefficients in

M. Somehow, cohomology comes from mapping homology into M, but we also have an extra error term (the Ext

one).

Let’s now state the homology version in more generality and spend more time talking about it:

Theorem 200

Let C∗ be a chain complex of free Z-modules (such as S∗(X) or Ccell
∗ (X)), and let M be an abelian group. Then

for any integer q,

Hq(C∗ ⊗Z M) ∼= Hq(C∗)⊗Z M ⊕ TorZ1 (Hq−1(C∗),M).

Remark 201. The isomorphism above is not natural, though – even though we have a natural short exact sequence

0→ Hq(C∗)⊗Z M → Hq(C∗ ⊗Z M)→ TorZ1 (Hq−1(C∗),M),

and in fact the term in the middle is the direct sum of the outside terms, that doesn’t mean the direct sum decomposition

is natural in the isomorphism above. (For an example where this fails, we can see example 24.2 of Miller’s notes.)

Example 202

Consider the real projective plane X = RP2 – recall that we have a standard cell structure Ccell
∗ (RP2) =

Ccell
∗ (RP2;Z), which is Z 2−→ Z 0−→ Z.

As a reminder, this cellular chain complex allows us to compute

Hq(RP2) =


Z q = 0

Z/2Z q = 1

0 otherwise.

Let’s look again at how to compute Hq(RP2,M) for some other group M. For example, recall that we calculated

Hq(RP2,F2) by calculating Ccell
∗ (RP2)⊗Z F2 directly, and that gives us

F2
2−→ F2

0−→ F2 =⇒ Hq(RP2;F2) =

F2 q = 0, 1, 2

0 otherwise.

But now let’s try another method, which is to use the universal coefficients method above. The advantage here is

that we don’t need to know the cellular chain complex to do the tensor product – this time, we only need to assume
the boxed homology groups above. For example,

H2(RP2;F2) ∼=
(
H2(RP2)⊗Z F2

)
⊕ Tor1(H1(RP2),F2).
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(So the homology with F2 coefficients can be determined in terms of the ordinary H2 and H1 homology groups.)

Plugging this in and remembering that F2 is the same as Z/2Z,

H2(RP2;F2) ∼= (0⊗Z F2)⊕ Tor1(F2,F2) ∼= Tor1(F2,F2).

This Tor group is defined to be the derived tensor product

∼= H1(F2 ⊗LZ F2),

and we compute this by doing a free resolution:

= H1((Z 2−→ Z)⊗Z F2) = H1(F2
2−→ F2).

This two-term chain complex has first homology group F2 (multiplication by 2 is the zero map), and thus we’ve arrived

at H2(RP2;F2) = F2 , just like before but with less assumptions!

Similarly, we can compute using the universal coefficients formula again:

H1(RP2;F2) ∼= H1(RP2)⊗Z F2 ⊗ TorZ1 (H0(RP2),F2),

and reading off things from above yields

∼= (F2 ⊗Z F2)⊕ TorZ1 (Z,F2) ∼= F2 ⊕ TorZ1 (Z,F2).

But now Z is its own free resolution, so

TorZ1 (Z,F2) = H1(Z⊗L F2) = H1(→ 0→ F2 → · · · ),

which is the zero group. So indeed, H1(RP2;F2) = F2 , and the Tor group contributes nothing to this one.

Example 203

Let’s compute H2(S2;F3) (we can just equip it with the Z/3Z structure, but it doesn’t really matter).

We have

H2(S2;F3) ∼= (H2(S2)⊗Z F3)⊕ Tor1(H1(S2),F3),

and now because H2(S2) ∼= Z and H1(S2) ∼= 0, we have

∼= Z⊗Z F3 ⊕ Tor1(0,F3).

But 0 is its own free resolution, so

H1(0⊗L F3) = H1(0→ 0) ∼= 0,

and thus H2(S2;F3) ∼= F3 . This is indeed what we expect, because we can also compute this by using the minimal

cell structure on S2:

H2(Ccell
∗ (S2)⊗Z F3) ∼= H2((Z→ 0→ Z)⊗Z F3),

which simplifies to
∼= H2(F3 → 0→ F3) ∼= F3.

Again, the point is that we didn’t need to know this cellular structure to get our final answer.

Proof outline of the universal coefficients theorem. Suppose that we have a chain complex C∗ of free Z-modules and
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an abelian group M. We need to calculate C∗ ⊗Z M, and we can always do this by finding a two-term free resolution

· · · → F1 → F0 → 0→ · · ·

over the integers (this happens because the integers are a PID). So the short exact sequence of chain complexes that

we end up with is

0→ C∗ ⊗Z F1 → C∗ ⊗Z F0 → C∗ ⊗Z M → 0,

and now we can use the Snake Lemma to get a long exact sequence in homology (all tensor products here are over Z)

Hq(C∗ ⊗ F1)→ Hq(C∗ ⊗ F0)→ Hq(C∗ ⊗M)
∂−→ Hq−1(C∗ ⊗ F1)→ Hq−1(C∗ ⊗ F0).

Notice though that this exact sequence is the same as if we take out the F0, F1 (because the tensor product is exact

when we tensor with a free module). So this is isomorphic to

Hq(C∗)⊗ F1 → Hq(C∗)⊗ F0 → Hq(C∗ ⊗M)
∂−→ Hq−1(C∗)⊗ F1 → Hq−1(C∗)⊗ F0,

and this implies that we have a short exact sequence

0→ Hq(C∗)⊗ F0/F1 → Hq(C∗ ⊗M)→ ker (Hq−1(Cq)⊗ F1 → Hq−1(C∗)⊗ F0)→ 0.

But F0/F1 is exactly M, meaning that the kernel is exactly the Tor group Tor1(Hq−1(C∗),M) that we want.

24 October 28, 2020
Last time, we discussed the universal coefficient theorems, which let us define and compute homology with coefficients

in an arbitrary abelian group. We’ll continue developing some consequences of the existence of the Tor and Ext

functors, using the fact that we can calculate Tor with any free resolution and end up with the same final answer.

The first question we’ll think about is how to compute the homology of a tensor product of chain complexes:

Theorem 204

Suppose that C∗, D∗ are chain complexes of Z-modules, and suppose that C∗ is a complex of free Z-modules.

Then

Hn(C∗ ⊗Z D∗) ∼=

( ⊕
p+q=n

Hp(C∗)⊗Z Hq(D∗)

)
⊕

( ⊕
p+q=n−1

TorZ1 (Hp(C∗), Hq(D∗))

)
.

Note that if we tensor together two chain complexes, there isn’t a way of computing the homology of the result in

terms of the homology of the individual pieces, except when the tensor product agrees with the derived tensor product.

That’s why C∗ having free Z-modules is important here!

In fact, this is actually a generalization of our results from yesterday: when D∗ is concentrated in degree 0, meaning

there is only a nonzero group in the 0th spot, then this reduces to the universal coefficients theorem. And the proof

from last time can show this theorem whenever D∗ is concentrated in any single degree.

First proof idea. The tensor product C∗ ⊗ D∗ that we’re trying to compute actually calculates the derived product

C∗⊗LD∗ in D(Z), meaning that the homology will not change if we replace D∗ with any chain complex isomorphic to

it in D(Z). (In other words, we can change D∗ by a quasi-isomorphism without changing the homology of the tensor

product.)
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A reasonable choice to make is to replace D∗ with the chain complex D′∗ satisfying (D′∗)q = Hq(D∗) and all

boundary maps being zero (this has the same homology by construction). Then D′∗ becomes a direct sum of chain

complexes each concentrated in a single degree, so we can use the proof of the universal coefficients theorem to

finish.

Let’s now give a proof that doesn’t involve the derived category, but is still similar in spirit:

Second proof idea. Consider the chain complex denoted Z(D∗), where the nth group

Z(D∗)n = Zn(D∗) = ker(∂ : Dn → Dn−1)

is the set of cycles in the original chain complex, and all boundary maps are zero. We have an inclusion of chain

complexes Z(D∗)→ D∗, and this gives us a valid chain map. Furthermore, because the boundary maps of Z(D∗) are

zero, we know that it is a direct sum of chain complexes each concentrated in a single degree.

From here, we can think about the quotient chain complex D∗/Z(D∗): this also has all boundary maps zero, so it

is also a direct sum of chain complexes concentrated in a single degree. So we have the short exact sequence of chain

complexes

0→ C∗ ⊗Z Z(D∗)→ C∗ ⊗Z D∗ → C∗ ⊗Z D∗/Z(D∗)→ 0,

where we’re tensoring by a free module C∗ so we do preserve exactness. Any short exact sequence of chain complexes

can then be expanded to a long exact sequence in homology, meaning Hn(C∗ ⊗Z D∗) can be written in terms of the

homology of Hn(C∗ ⊗Z Z(D∗)) and Hn−1(C∗ ⊗Z D∗/Z(D∗)), and now we reduce to the UCT because of the “direct

sum of concentrated chain complexes” idea.

The above theorem holds more generally: if R is a PID, and C∗, D∗ are chain complexes of R-modules with C∗
consisting of free modules, then we have

Hn(C∗ ⊗R D∗) ∼=

( ⊕
p+q=n

Hp(C∗ ⊗R Hq(D∗)

)
⊕

( ⊕
p+q=n−1

TorR1 (Hp(C∗), Hq(D∗))

)
.

Being a PID is the relevant assumption, because the universal coefficients theorem relied on having the very short

two-term free resolutions. In fact, if R is a field, things further simplify to

Hn(C∗ ⊗R D∗) ∼=
⊕
p+q=n

Hp(C∗)⊗R Hq(D∗).

All of this is relevant to algebraic topology because of the following result:

Theorem 205 (Eilenberg-Zilber)

Suppose that X and Y are topological spaces, and R is a commutative ring. Then S∗(X×Y ;R) is quasi-isomorphic

(in particular, has the same homology) to S∗(X;R)⊗R S∗(Y ;R).

And this works nicely with our previous work: we can now compute the homology of a product in terms of the

homology of the individual spaces. One way to think about this is to examine the product CW structure on X × Y ,
which we sketched a bit a few classes ago. (After all, the tensor product is actually designed to match the cellular

chain complex on a product.) But not every topological space comes from a CW complex, and we haven’t really

developed the product CW structure idea yet. So we’ll prove this theorem directly next time, and for now we’ll explore

how this theorem works in practice.
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Example 206

How can we compute the homology groups Hq(RP2 × RP2;F2) (notice that we’re using field coefficients)?

Recall that

Hq(RP2;F2) ∼=

F2 q = 0, 1, 2

0 otherwise.

We can compute

H0(RP2 × RP2;F2) ∼=
⊕
p+q=0

Hp(RP2;F2)⊗F2 Hq(RP2;F2) ∼= H0(RP2;F2)⊗F2 H0(RP2;F2)

(there’s no other way to get nonzero groups p, q), and this is just F2 ⊗F2 F2 = F2 (we just multiply the dimensions

of the vector spaces). Next,

H1(RP2 × RP2;F2) ∼=
(
H0(RP2;F2)⊗F2 H1(RP2;F2)

)
⊕
(
H1(RP2;F2)⊗F2 H0(RP2;F2)

)
then simplifies to (FF2 ⊗F2 F2) ⊕ (FF2 ⊗F2 F2) = F2 ⊕ F2 . We can do a similar computation to find that H2 has

three copies of F2 (from each of (p, q) = (0, 2), (1, 1), (2, 0)), H3 has two copies (from (p, q) = (1, 2) and (2, 1),

since the (0, 3) and (3, 0) have zero groups being tensored), and H4 has one copy. This gives us our final answer:

Hq(RP2 × RP2;F2) ∼=



F2 q = 0, 4,

F2 ⊕ F2 q = 1, 3,

F2 ⊕ F2 ⊕ F2 q = 2,

0 otherwise.

It’s difficult to explicitly describe the space RP2 ⊗RP2 – for example, it’s hard to triangulate or make a semisimplicial

model for it. But computing its homology in this way is not too difficult in the F2 case, and the Z case just has us

doing some more computation.

Remark 207. We can notice that the answer “reflects” around q = 2, and this has to do with Poincaré duality – there

is some interesting geometry that explains why we have this symmetry, and we’ll prove some results like this near the

end of the semester.

Remark 208. We have a diagonal map RP2 → RP2 × RP2 mapping x 7→ (x, x), and thus we have a map H2(∆) :

H2(RP2;F2) → H2(RP2 × RP2;F2), which is a map from F2 to F2 ⊕ F2 ⊕ F2. It turns out that it’s very interesting

to answer questions about what this map actually is (given the source and target), and that will also come up in the

last part of the course.

We’ll finish today’s class with a bit of setup for the Eilenberg-Zilber theorem. Since we’re trying to show that S∗(X×
Y ;R) is quasi-isomorphic to S∗(X;R) ⊗R S∗(Y ;R), we’re actually going to construct an explicit quasi-isomorphism

here:
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Definition 209

The Alexander-Whitney map A : S∗(X× Y ;R)→ S∗(X;R)⊗R S∗(Y ;R) is a chain map defined by constructing

a map A : Sn(X × Y ;R)→ Sp(X;R)⊗ Sq(Y ;R) for all integers n, p, q with p+ q = n. It suffices to define A(σ)

for σ : ∆n → X × Y ∈ Singn(X × Y ), and this is determined by the maps α : ∆n → X and β : ∆n → Y . We define

A(σ) = (α|∆p)⊗ (β|∆q ) ,

with restriction to ∆p given by the ∆p → ∆n map sending (e0, · · · , ep) to (e0, · · · , ep, 0, · · · , 0), and restriction to

∆q given by the map ∆q → ∆n sending (e0, · · · , eq) to (0, · · · , 0, e0, · · · , eq).

Next time, we’ll indeed show this is a quasi-isomorphism, and that will conclude our unit on tensor products and

homology.

25 October 30, 2020

We’re now getting into the “dog days” of the semester, but we’ll have a break for the next few days (no assignments

until the exam on the 9th). Today, we’ll finish discussing the Eilenberg-Zilber theorem that we’ve been working towards,

which tells us that the Alexander-Whitney map A : S∗(X × Y )→ S∗(X)⊗Z S∗(Y ) for topological spaces X, Y , given

by the maps

A(σ) =
∑
p+q=n

α|∆p ⊗ β|∆q

for all σ : ∆n → X × Y , is a quasi-isomorphism. Here, α|∆p is the composite map

∆p
first coords−−−−−−→ ∆n

σ−→ (X × Y )
pX−→ X,

while β is the same composite but with ∆q
last coords−−−−−−→ ∆n and a pY projection map. Perhaps surprisingly, though, the

exact map is not super important for the proof of the theorem! It’s left as an exercise for us to check that this is a

chain map – that is, it commutes with the boundary maps of the two chain complexes.

In order to prove the Eilenberg-Zilber theorem, we’ll basically elaborate (in a technical way) on two main ideas

we’ve been developing: naturality and the fundamental theorem of homological algebra.

To do that, consider the following construction: let C be a category, and let M be a set of objects of C (called the

set of models). For any collection {m1, · · · , mr} ⊂M, consider the functor F : C → Ab, given by

F (c) = Z

[⊔
i

Hom(mi , c)

]
.

This is called an M-free functor, and it is determined by a special set of objects (and checking naturality is left for us).

Example 210

Take C = Top×Top (pairs of topological spaces, with no assumptions about one being a subset of the other),

and let M be the set of pairs {(∆p,∆q) : p, q ≥ 0}.

These are functors that are “controlled by what they do on simplices,” and we can recall that we made a similar

type of naturality argument in the past. So now the functor corresponding to the single element {∆n × ∆n) is

F{∆n×∆n}(X, Y ) = Z [HomTop×Top(∆n,∆n), (X, Y )] = Z [HomTop(∆,X)× HomTop(∆n, Y )]
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(by the definition of the product category and how we compute Homs). But now picking an n-simplex in each of X

and Y is equivalent to picking an n-simplex for the product:

= Z [HomTop(∆n, X × Y )] = Sn(X × Y ).

So we have some language for describing our Sn maps now! Similarly, if we make the functor for the set M =

{(∆0,∆n), (∆1,∆n−1, · · · , (∆n,∆0)}, then

FM(X, Y ) = Z

[ ⊔
p+q=n

HomTop×Top((∆p,∆q), (X, Y ))

]
= Z

[ ⊔
p+q=n

HomTop(∆p, X)× Hom(∆q, Y )

]
.

But this is exactly

=
⊕
p+q=n

Z [HomTop(∆p, X)× HomTop(∆q, Y )] ∼=
⊕
p+q=n

Sp(X)⊗Z Sq(Y ),

because both Sp(X) and Sp(Y ) are free, and this is exactly S∗(X) ⊗Z S∗(Y ). So the point of this example was to

describe that the nth group of S∗(X × Y ), as well as S∗(X)⊗Z S∗(Y ), are controlled by maps from simplices.

So now, we’ll return to the general setup:

Definition 211

Let C be a category, and let M be a set of models in C. If F : C → Ab is any functor, an M-free resolution of F is

a functor F∗ : C → chAb with a natural transformation εF : H0(F∗)→ F , satisfying the following two conditions:

• Each Fn is an M-free functor,

• If we evaluate F∗ on an object of M, then it is a free resolution of F , meaning that Hi(F∗(m)) =0 i 6= 0

F (m) i = 0
and that εF : H0(F∗(m))→ F (m) is an isomorphism.

This is a pretty involved generalization of a free resolution – the idea is that functors are controlled by what they

do on the model set, so it can be useful to talk about being a free resolution only on those elements.

Theorem 212

Let Θ : F → G be a natural transformation of functors F,G : C → Ab. If F∗ and G∗ are M-free resolutions of F

and G, then there is a natural transformation Θ∗ : F∗ → G∗ lifting Θ, unique up to natural chain homotopy.

This is probably the most elaborate construction we’ll do in this class, and we won’t get too deeply into it, but

a small part will be on our homework. The language is set up to have a strong analogy between this result and the

fundamental theorem of homological algebra, though.

As a corollary of this, we actually find that the Eilenberg-Zilber theorem is true, and that the Alexander-Whitney

map A is unique up to natural chain homotopy – let’s show how this is proved:

Proof of Eilenberg-Zilber. Let C = Top×Top, and let

F (X, Y ) = H0(X × Y ), G(X, Y ) = H0(S∗(X)⊗Z S∗(Y )).

Then we can let

F∗(X, Y ) = S∗(X × Y ), G∗(X, Y ) = S∗(X)⊗Z S∗(Y ).
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It’s not true that F∗ and G∗ are always free resolutions, but when X and Y are simplices, F∗ and G∗ indeed record chain

complexes with homology only found in degree 0. So F∗ and G∗ are free resolutions at least on the model objects, and

in general they are indeedM-free resolutions. So now we can specify a natural map H0(X×Y )→ H0(S∗(X)⊗ZS∗(Y )),

we have a unique lift up to chain homotopy to this Alexander-Whitney map A : S∗(X × Y )→ S∗(X)⊗Z S∗(Y )!

So we do need to say what this map does on zeroth homology, but that’s just counting connected components. We

basically pick a natural isomorphism H0(X × Y )→ H0(S∗(X)⊗Z S∗(Y )) along with the natural inverse H0(S∗(X)⊗Z
S∗(Y )) → H0(X × Y ), and going around and composing these maps gives the identity on either H0(X × Y ) or

H0(S∗(X)⊗Z S∗(Y )). Thus, S∗(X × Y ) and S∗(X)⊗Z S∗(Y ) must be chain homotopy equivalent. The point is that

inducing an isomorphism on H0 means that we are chain homotopy equivalent to the identity! So quasi-isomorphism

has been shown.

So now we can turn to asking why homology of product spaces are actually interesting to us, and we’ll understand

this some more by looking at the diagonal map

X
∆−→ X ×X,

which exists for any topological space X. If we look at such a space X which has free abelian groups for homology

groups (e.g. not Klein bottle), Then we have that

Hn(X ×X) =
⊕
p+q=n

Hp(X)⊗Z Hq(X),

because the Tor terms in the Künneth theorem go away, and now we let H∗(X) denote the direct sum
⊕

n Hn(X).

(For example, we have four copies of Z for a torus, coming from 1 + 2 + 1 copies in H0, H1, H2.) Then

H∗(X)⊗Z H∗(X) =

(⊕
p

Hp(X)

)
⊗Z

(⊕
q

Hq(X)

)
,

and now distributing the tensor product over the direct sum yields

∼=
⊕
p,q

Hp(X)⊗Z Hq(X) =
⊕
n

⊕
p+q=n

Hp(X)⊗Z Hq(X) ∼=
⊕
n

Hn(X ×X) = H∗(X ×X) .

Therefore, we have a map

H∗(X)→ H∗(X ×X) ∼= H∗(X)⊗Z H∗(X)

induced by the diagonal map ∆n → ∆n. And let’s think about what’s going on in algebra here: if we have an abelian

group A and a map A→ A⊗Z A, this is what we actually call comultiplication, which is the (categorical) opposite of

a multiplication:

Definition 213

Let A be an abelian group. A multiplication is a map of abelian groups A⊗Z A
m−→ A, taking a⊗ a′ to an element

a′′ = m(a ⊗ a′), which satisfies

m((a1 + a2), a′) = m(a1 ⊗ a′) +m(a2 ⊗ a′), m(a ⊗ (a′1 + a′2)) = m(a ⊗ a′1) +m(a ⊗ a′2).

In other words, this multiplication distributes over addition (from our abelian group). For example, a ring is an

abelian group A with a multiplication satisfying certain properties, so ring multiplication is a valid example here. But

comultiplications are a bit weirder, and that means the inducing of a comultiplication by ∆ (rather than a multiplication)

means that this is not as related to familiar mathematical structures for us. For that reason, we’ll look into cohomology
groups (with any coefficients) next time, and we’ll find that ∆ induces a multiplication there. So we don’t need to
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talk about comultiplication directly, which will be convenient! (Basically, studying “corings” in homology is less good

than studying rings in cohomology.)

26 November 2, 2020
We’ll talk a lot about cohomology and the diagonal map over the next few classes, but we’ll first do a bit more

discussion about homology with coefficients (because there have been a lot of questions).

One of the main questions we might ask is “why we care about homology with coefficients if we can calculate them

from the ordinary homology groups anyway,” and applied algebraic topology in theoretical computer science was used

as an example. But let’s see some instances in pure math too:

Example 214

On our problem set, we looked a group homology: given a group G, we can form a category BG and a simplicial

set (the “nerve” of that category) N(BG), and we may care about the homology of Hq(N(BG);M) for various

q ∈ Z, groups G, and coefficient groups M.

We know that there’s a very specific combinatorial gadget we can use, but we should remember that the number

of simplices grows exponentially, so it’s hard to actually compute the groups in closed form with any algorithm.

For instance, if G = GLn(Fq) for some finite field q, we know the answer for M = Q, but it’s an open problem to

determine the answer for M = Z (and this is an active area of research right now).

Example 215

If X is a topological space and we have an integer k , we can define a configuration space Configk(X), which is

the subspace of X×k given by

{(x1, · · · , xk) ∈ X×k : xi 6= xj when i 6= j}.

Picking a point of our “configuration space” basically means we pick k distinct points of our topological space X,

and then we can also define the unordered configuration space

Bk(X) = Configk(X)/Sk ,

where Sk is the symmetric group. (In the unordered configruation space, we don’t care about the order that the k

points are chosen.) It turns out that we know Hq(Bk(Rn);Z), but we don’t know Hq(Bk(T );Z) (where T denotes

the torus). On the other hand, we learned about Hq(Bk(T );F2) in the 1980s and Hq(Bk(T );Q) in the 2010s, and

many people have tried to understand the answer for F3 or Z without success.

So now let’s turn our attention to cohomology, starting with a quick review of the definitions. If we have a

topological space X, and M is an abelian group, we can form the internal Hom

HomD(Z)(S∗(X),M),

which is an object of D(Z), meaning it has well-defined homology groups. Then we defined the qth cohomology group

of X in terms of the homology groups of this object:

Hq(X;M) = H−q(HomD(Z)(S∗(X),M)).
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This internal Hom is easy to compute, because we don’t need to resolve anything when S∗ is already free. Our first

step is to define

Sq(X;M) = HomAb(Sq(X),M),

and because HomAb(·,M) is a functor from Abop to Ab, we know that the map ∂ : Sq(X)→ Sq−1(X) must induce a

corresponding map ∂ : Sq−1(X;M)→ Sq(X;M) (precomposing with ∂). This gives us the cochain complex

S∗Hatcher(X;M) = · · · → 0→ S0(X;M)
∂−→ S1(X;M)

∂−→ S2(X;M)→ · · · ,

which can be thought of as a chain complex concentrated in nonpositive degrees. The cohomology groups can then

be found via

Hq(X;M) = ker(Sq(X;M)→ Sq+1(X;M))/im(Sq−1(X;M)→ Sq(X;M)).

Fact 216

As a warning, note that we can also form a cochain complex

S∗Miller(X;M) = · · · → 0→ S0(X;M)
−∂−−→ S1(X;M)

∂−→ S2(X;M)
−∂−−→ · · · ,

but with the slightly different boundary maps Sq(X;M) → Sq+1(X;M) of (−1)q+1∂. These two objects

S∗Hatcher(X;M) and S∗Miller(X;M) are isomorphic in D(Z), but they aren’t literally the same.

In lecture, we’ll have S∗(X;M) denote the Miller convention, but we can use either one. (So unlike the signs in

the tensor product, these are just a matter of convention.) And a useful fact is that S∗(X;F2) is the same in both

conventions, because −1 = 1.

Let’s quickly recall the universal coefficients theorem for cohomology:

Hq(X;M) ∼= Ext1
Z(Hq−1(X);M)⊕ HomAb(Hq(X),M).

This result shows us that cohomology with coefficients in M, can always be computed in terms of coefficients with

coefficients in Z, just like for homology.

Example 217

Let’s compute the cohomology group H2(RP2;F2).

The first method we can try is to use the cellular cochain complex: recall that we have the chain complex

Ccell
∗ (RP2,Z) ∼= · · · → 0→ Z 2−→ Z 0−→ Z→ 0→ · · · .

So the cochain complex will look like

C∗cell(RP2;F2) = · · · → 0→ HomAb(Z,F2)→ HomAb(Z,F2)→ HomAb(Z,F2)→ 0→ · · · ,

and HomAb(Z,F2) is just F2 because the map is determined by where 1 is sent. And now the two maps are ±2 and

±0, but since we’re working with F2 coefficients, all of the maps are just zero. So we’re left with the cochain complex

· · · → 0→ F2
0−→ F2

0−→ F2 → 0→ · · · ,

86



and this tells us that

Hq(RP2;F2) =

F2 q = 0, 1, 2,

0 otherwise.

The alternative method, though, is to use the UCT directly: for example,

H2(RP2;F2) ∼= Ext1
Z(H1(RP2),F2)⊕ HomAb(H2(RP2);F2),

and we know the integral homology groups of RP2 already:

∼= Ext1
Z(Z/2Z,F2)⊕ HomAb(0;F2) ∼= Ext1

Z(F2;F2).

In order to compute this Ext group, we need to compute

H−1

(
HomD(Z)(F2,F2)

)
,

and this requires us to find a free resolution. We’ll replace the first F2 with the isomorphic chain complex Z 2−→ Z, and
thus we need to find

H−1(F2
2−→ F2),

where the two groups are concentrated in degrees 0,−1, and this recovers the same answer of F2 as above.

So now we’re ready to think about how cohomology (specifically how the functor H∗(·;M)) interacts with the

diagonal map:

Definition 218

We use the notation (analogous to the one for homology)

H∗(X;M) ∼=
⊕
q

Hq(X;M).

The idea is that if X → Y is a continuous map of topological spaces, and M is an abelian group, then there is a

natural map

Hq(Y ;M)→ Hq(X;M)

(cohomology induces a map in the opposite direction, because internal Homs reverse arrows – they’re contravariant

functors). So if we set Y = X ×X, we always have a natural map

Hq(X ×X;M)→ Hq(X;M)

induced from the continuous diagonal map X → X ×X. If we add this up for all q, we end up with a map

H∗(X ×X;M)→ H∗(X;M),

and we want to view this as a “multiplication” (rather than as a “comultiplication” that we had to work with last time).

We know the homology of a product space in terms of the homology of the factors (using the Künneth theorem), and

we know how to relate that to the cohomology of our product space using the cohomology version of the UCT:

H∗(X × Y ;M) ∼= Hom(H∗(X × Y ;Z),M)⊕ (Ext terms).

So together, we get a “cohomology Künneth theorem” from these two isomorphisms.
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Remark 219. If R is a ring, and if H∗(X;R) is a free R-module, then we know (by the UCT) that

H∗(X ×X;R) = H∗(X;R)⊗R H∗(X;R).

So again, things look a lot simpler if we have free modules.

In general, if we have two spaces X and Y and a ring R, we can always construct a map

H∗(X;R)⊗R H∗(Y ;R)→ H∗(X × Y ;R).

However, if H∗(X;R) and H∗(Y ;R) are free modules, then this will be an isomorphism.

Corollary 220

If X is a topological space and R is a ring, then we have a natural multiplication

H∗(X;R)⊗R H∗(X;R)→ H∗(X;R)

defined by composing the maps

H∗(X;R)⊗R H∗(X;R)→ H∗(X ×X;R)
Hq(∆;R)−−−−−→ Hq(X;R)

In other words, there are individual cohomology groups for each space, but direct summing all of the cohomology

groups together allows us to multiply them too! After we do a bit more work, we’ll soon be able to talk about the

“cohomology rings” for individual spaces.

27 November 4, 2020

Today, we’ll discuss a cool fact: if X is a topological space and R is a (always commutative) ring, then

H∗(X;R) =
⊕
q≥0

Hq(X;R)

is a graded-commutative ring (which we’ll define later). To be a graded abelian group, we must satisfy the following

conditions:

• Each class (element) x ∈ Hq(X;R) ⊆ H∗(X;R) is homogeneous of degree q.

• Every class x ∈ H∗(X;R) can be written as a sum of finitely many homogeneous elements.

So if we want to think about how to go from a group to a ring, our next step is to figure out how our multiplication

looks.

Definition 221

Let X, Y be topological spaces and R a ring. Then there is a natural sequence of maps

H∗(X;R)⊗R H∗(Y ;R)
f1−→ H∗(S∗(X;R)⊗R S∗(Y ;R))

f2−→ H∗(HomD(Z)(S∗(X)⊗Z S∗(Y ), R))
f3−→ H∗(X × Y ;R),

and the composite map is called the cohomology cross product × : H∗(X;R)⊗R H∗(Y ;R)→ H∗(X × Y ;R).

This cross product is an isomorphism if either Hq(X;R) or Hq(Y ;R) is a finitely-generated free R-module for all
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integers q. (So when R is a field, it’s true if all homology groups are finite-dimensional vector spaces.) But the cross

product always exists, whether or not it is an isomorphism.

There are two different assumptions going on here: freeness is asking f1 to be an isomorphism, which has to do

with the Künneth theorem, and the finite generation is asking about f2. So let’s look at these f1, f2, f3 maps more

carefully.

• The map f3 is always an isomorphism, because by definition we compute the cohomology as

H∗(X × Y ;R) = H∗(HomD(Z)(S∗(X × Y ), R)),

and then the Eilenberg-Zilber theorem tells us that S∗(X× Y ) is the same, in the derived category, as S∗(X)⊗Z
S∗(Y ).

• The map f2 is induced from a chain map

HomD(Z)(S∗(X), R)⊗Z HomD(Z)(S∗(Y ), R)→ HomD(Z)(S∗(X)⊗Z S∗(Y ), R),

where the actual map is given by

f ⊗ g 7→

x ⊗ y 7→ (−1)pqf (x)g(y) |x | = |f | = p, |y | = |g| = q,

0 otherwise.

• The map f1 is something we’ve already seen – if R is a PID, then f1 is the map from the Künneth theorem.

Recall that the short exact sequence looks like

0→ H∗(C∗)⊗R H∗(D∗)
f1−→ H∗(C∗ ⊗R D∗)→ Tor terms→ 0,

and the f1 map is the one labeled. (If R is not a PID, it still exists and is natural, but it’s just not part of the

short exact sequence.)

Fact 222

In general, we should think of the finite generation hypothesis as an artifact of switching between homology
and cohomology.

We can look at H0(X;R), the zeroth cohomology group, for more understanding as well. Recall that the zeroth

homology group H0(X;R) counts the number of path components, so we expect something similarly simple for

H0(X;R). Writing π0X for the set of path components, we know that H0(X;R) is the set HomSet(π0(X), R),

additionally equipped with a natural R-module structure. For example, if X has two path components, H0(X;R) is

the set of maps from two points into R, which is something like R ⊕ R, and indeed whenever π0X is finite,

HomSet(π0X,R) ∼=
⊕
π0X

R.

But if π0X is infinite, this is not a direct sum, because every object of a direct sum must be a finite sum of the

individual pieces. Meanwhile, functions from π0X to R pick out infinite sequences! (This is similar to the distinction

between the product of abelian groups versus the direct sum of abelian groups.) Again, this has to do with switching

between homology and cohomology – H0(X;R) is always a direct sum.

So now we’ll return to the cross product and the cohomology ring. Again, recall that for any map X → Y of
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topological spaces, we have a map S∗(X)→ S∗(Y ), and thus we have a map

HomD(Z)(S∗(Y ), R)→ HomD(Z)(S∗(X), R)

(contravariance switches the direction of the arrows), and thus we have a map H∗(Y ;R) → H∗(X;R). Using the

diagonal map X → X ×X, we get a map

H∗(X ×X;R)→ H∗(X;R),

and now we use the cross product to extend this to

H∗(X;R)⊗R H∗(X;R)
×−→ H∗(X ×X;R)

H∗(∆;R)−−−−−→ H∗(X;R).

The composite map now gives us the multiplication of the “cohomology ring,” called the cup product in cohomology

(with coefficients in R). We do want to show that we have the desired ring structure:

Theorem 223

The cup product makes H∗(X;R) into an associative and graded-commutative ring.

That means we need to check the following conditions:

• There is an element 1 ∈ H0(X;R) such that the cup product 1x = x1 = x for all x ∈ H∗(X;R). (It’s the thing

that takes every path component and sends it to the multiplicative identity 1 in R.)

• If x, y , z ∈ H∗(X;R), then

(xy)z = x(yz),

so we can talk about xyz without any ambiguity.

• Being graded-commutative is not the same as being commutative: if x ∈ Hp(X;R) and y ∈ Hq(X;R), then

xy = (−1)pqyx ∈ Hp+q(X;R).

So if we want to multiply two elements in H∗(X;R), we need to break it up into its direct sum components first.

As always, if we want to do calculations with our constructions, we need to build from previous calculations, so we

must figure out how this product works in simple spaces first. For now, let’s try to get some geometric understanding

for this product, which we’ll eventually justify.

Example 224

If we calculate the cohomology groups of the torus T , we’ll find that

Hq(T ;F2) =


F2 q = 0, 2

F2 ⊕ F2 q = 1

0 otherwise.

We can see that the homology and cohomology are identical here, and there is indeed some kind of duality that

relates the two. We can draw two loops a, b around the torus, one “horizontal” and one “cross-section,” representing

the two generators of H1(T,F2) ∼= H1(T,F2), and now we can ask about the cup product ab ∈ H2(T ;F2). It turns

out that ab = 1, because a, b intersect! So the cup product has to do with intersections, and we’re claiming that
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no matter how we wiggle a (deform by homotopy), it’ll always intersect b at least once (and always an odd number of

times). Being able to justify this idea will take us a while, though.

For now, we’ll think about how to compute cohomology rings H∗ of more complicated spaces from the cohomology

rings of simple ones – something like the Mayer-Vietoris theorem, or trying to compute the cohomology of a product

space from the cohomology of the individual parts. We’ll prove next time that not only is H∗ a graded-commutative,

associative, unital ring, we can compute H∗(X × Y ;R) by thinking about H∗(X;R) and H∗(Y ;R) as rings.

28 November 6, 2020
For our test on Monday, we need to know how to use cellular or semisimplicial structures to calculate homology with

coefficients in R. (So there won’t be any Ext or Tor groups, and the Künneth theorem won’t come up.) Further

announcements about the test will be posted on Canvas, and we’ll still have a (relaxed) lecture on Monday.

Last class, we discussed the multiplication structure of H∗(X;R), the direct sum of the cohomology groups for

a topological space X (coming from a combination of the cross product and the diagonal map). We’ll look more at

this structure today, proving that it is unital, associative, and graded-commutative. (Recall that this last condition

means that if x ∈ Hp(X;R) and y ∈ Hq(X;R), then xy = (−1)pqyx ∈ Hp+q(X;R). This kind of thing also shows

up in places like supersymmetry in physics!) Additionally, if we have a continuous map of topological spaces X → Y

(a morphism in Top), then there is an induced map H∗(Y ;R)→ H∗(X;R) which is a map of rings (so addition and

multiplication are respected by the induced map).

Fact 225

Even if we don’t remember the proofs from today, the above facts are important for us to use in practice. If we

take a look at Sections 28 and 29 of Miller’s notes, or Section 3.2 of Hatcher, we can see the proofs in more

detail (but we should be aware of the different sign conventions).

We want to make our cup product more explicit, meaning that we need to understand how products work for

explicit elements in the cohomology group Hp(X;R). Note that any element of Hp(X;R) is represented by a class

f ∈ Sp(X;R) = HomAb(Sp(X), R).

Furthermore, f must be a cocycle, and it must not change if we add a coboundary to f . (Cocycles and coboundaries
have the same definition as cycles and boundaries, except that our chain complex is going in the opposite direction.)

So we notice that some of the arguments will depend on the specific chain complex that we choose.

Explicitly, an element of HomAb(Sp(X), R) is a function from Sp(X) to R that respects addition (it’s an abelian

group homomorphism), so it’s determined by a map f : Singp(X)→ R from the simplices σ : ∆p → X to the ring R.

So if we have two such functions, we want to construct the multiplication: if f ∈ Sp(X;R), and g ∈ Sq(X;R) are

two cocycles (meaning they do represent something in cohomology), we should have f g ∈ Sp+q(X;R) spit out a map

from (p + q)-simplices to R. And in fact, if we go through the definition, we’ll have

(f g)(σ) = (−1)pqf (σ|∆p)g(σ|∆q ),

where the f term is the “front p-face” of ∆p+q, while the g term is the “back q-face.”

Proof of associativity. Suppose we have f ∈ Sp(X;R), g ∈ Sq(X;R), h ∈ Sr (X;R) that are all cocycles. Then we
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can compute (f g)h and f (gh) by applying them both to σ ∈ Singp+q+r (X): we find that

((f g)h)σ = (−1)(p+q)r (f g)(σ|∆p+q )h(σ|∆r ),

which further simplifies to

= (−1)pr+qr (−1)pqf (σ|∆p)g(σ|∆q )h(σ∆r ).

So f accounts for the front, g for the middle, and h for the back coordinates. Expanding this out gives us

= (−1)pr+pq+qr f (σ|∆p)g(σ|∆q )h(σ∆r ) .

Similarly,

(f (gh))(σ) = (−1)p(q+r)f (σ|∆p)(gh)(σ|∆q+r )

simplifies to

= (−1)pq+pr f (σ|∆p)(−1)qrg(σ|∆q )h(σ∆r ),

and rearranging gives us the same thing as the boxed expression above.

Proof of unitality. We want to show that there is an element 1 ∈ H0(X;R) which serves as a multiplicative identity.

We can use the function 1 : Sing0(X) → R, which sends every 0-simplex to the identity element 1 ∈ R. So now for

every cocycle f ∈ Sp(X;R),

(f · 1)(σ) = (−1)p·0f (σ|∆p)1(σ|∆0 ) = 1 · f (σ) · 1 = f (σ),

because σ is a p-simplex to start with. Indeed, this means that f · 1 = f , and a similar computation shows that

1 · f = f .

The next proof is Theorem 3.11 in Hatcher, and it’s a bit trickier than the first two. To see why, suppose we have

two cocycles f ∈ Sp(X;R) and g ∈ Sq(X;R). Then for a (p + q)-simplex σ : ∆p+q → X, we have

(f g)(σ) = (−1)pqf (σ|∆p)g(σ|∆q ),

but direct evaluation of

(gf )(σ) = (−1)pqg(σ|∆q )f (σ|∆p),

where the g term now refers to the front q-face instead of the back q-face, which don’t necessarily have anything to

do with each other! So we don’t get any obvious relations from the definitions.

What we want to do is show that (f g)− (−1)pq(gf ) is a coboundary, which is all we need for the cohomology to

work out properly.

Proof sketch of graded-commutativity. We construct the following chain map S∗(X) → S∗(X) (we’re back to our

ordinary chain complexes now), which takes a degree-p simplex σ : ∆p → X to (−1)p(p+1)/2σ̃, where σ̃ is the

composite map

∆p
f−→ ∆p

σ−→ X,

and f reverses all of the orientations, sending (v0, v1, · · · , vp) to (vp, vp−1, · · · , v0). (When we reverse all of the

coordinates, we do p(p+1)
2 transpositions.) This map turns out to be chain homotopic to the identity, because flipping

the orientations picks up a negative sign. So we can apply this map to our f g − (−1)pqgf map, and that will show

the desired result.
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Fact 226

If X is a topological space and R is a ring, H∗(X;R) is not just a graded ring – it’s also a graded R-algebra,
which means that H∗(X;R) is an R-module (not just an abelian group) and that the multiplication is R-linear

(meaning the cup product is a map H∗(X;R)⊗R H∗(X;R)→ H∗(X;R), with a tensor-product on the left side).

Next, we’ll start talking about the cohomology ring of a product space, and we’ll end this class with a construction.

If A∗ and B∗ are two graded R-algebras, we can define their tensor product by ignoring the gradings and multiplication

(we just think about everything as R-modules). This result A∗ ⊗R B∗ has a tensor product graded R-algebra
structure, defined so that if a, b, a′, b′ are homogeneous, then

(a′ ⊗ b′)(a ⊗ b) = (−1)|b
′||a|(a′a ⊗ b′b).

In a future class, we’ll explain the sign convention, and we’ll also how it allows us to have the following result:

Theorem 227

Let X, Y be two topological spaces. Then the cross product

× : H∗(X;R)⊗R H∗(Y ;R)→ H∗(X × Y ;R)

is a map of graded R-algebras.

In other words, the cohomology ring of a product has a lot of constraints coming from the cohomology ring of its

individual spaces.

29 November 9, 2020
Today, we’ll talk through some examples and do some calculations, but we should feel free to take class time to work

on our test. We’ll have one more group homework assignment after this, which will be a little bit longer than the first

four.

Let’s try calculating some cup products by brute force, going back to the definition. (This is not generally

recommended – we usually use known answers of small spaces, plus some theorems that help us assemble the answer

– but we want to show that it’s possible to calculate directly.)

Example 228

Let’s calculate H∗(Klein bottle;F2), using the following semisimplicial decomposition with one 0-simplex, three

1-simplices, and two 2-simplices:

L

U

b

b

aa
c

v v

v v

93



To calculate the chain complex S∗(K), we take the free abelian groups generated by the simplices, and also look

at the boundary maps:

· · · → S∗(K) ∼= Z{U, L} → Z{a, b, c} → Z{v} → 0→ · · ·

If we want to find the chain complex S∗(K;F2) from this, we care about the free abelian group of homomorphisms

from Z{v},Z{a, b, c}, and Z{U, L} (respectively) to F2, so we have

· · · → F2{δv}
∂−→ F2{δa, δb, δc}

∂−→ F2{δU , δL} → 0→ · · · ,

where δv : Z{v} → F2 is the map that sends v 7→ 1, while δa : Z{a, b, c} → F2 takes a to 1 and b, c to 0 (and other

maps are defined similarly). Essentially, we’re using the dual F2-vector spaces.

Next, we need to compute the cohomological boundary maps without invoking any theorems. To compute ∂(δv ),

we need to come up with a specific function on the free abelian group Z{a, b, c} to F2, so we need to evaluate it on

a, b, c . And we know that because the homological boundary map ∂ sends a, b, c to 0, we

∂(δv )(a) = ∂(δv )(b) = ∂(δv )(c) = 0,

and indeed we want our zeroth cohomology group to be F2, so this is what we expect. Turning our attention now to

the next boundary map, we need to compute ∂(δa), a map from Z{U, L} to F2, so we need to figure out what it does

to U and L. Since our homological boundary map takes U to a + b − c and L to c + a − b, we know that

∂(δa)(U) = δa(a + b − c) = 1,

and similarly ∂(δa)(L) = 1. (If we were doing things with Z-coefficients, we’d have to worry about signs for these

boundary maps, but not here because we use F2-coefficients.) We can also find that ∂(δb)(U) = 1, ∂(δb)(L) =

−1, ∂(δc)(U) = −1, ∂(δc)(U) = 1. But every −1 is also just a 1, again because we’re working in F2. So because each

of δa, δb, δc get sent to functions which take both δU and δL to 1, we have

δa, δb, δc 7→ δU + δL.

We can now fill in our chain complex for our Klein bottle:

· · · → F2{δv}
0−→ F2{δa, δb, δc}

∂−→ [δa, δb, δc 7→ δU + δL]F2{δU , δL} → 0→ · · · ,

so the zeroth cohomology group is H0(K;F2) ∼= F2{δv}, a one-dimensional vector space, the first cohomology group

is H1(K;F2) ∼= ker(∂), which can be written in terms of various generators: two examples are F2{δa + δb, δb + δc}
or F2{δa + δb, δa + δc} (we’ll use the first one), which is a two-dimensional vector space. Finally, H2(K;F2) =

F2{δU , δL}/(δU + δL), which is a one-dimensional vector space.
And now we should be able to compute the cup products too: we should be able to take two elements of H∗(K;F2)

and multiply them. For example,

(δa + δb)(δa + δb)

should be something that lives in the H2(K;F2) vector space, and in order to compute it, we need to look back at our

geometric picture again, and we do this by figuring out what it does to U and L. We can order our vertices of U as

shown, so that edges always point from smaller to larger numbers:
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L

U

b

b

aa
c

v v

v v

0

1 2

Here, the front 1-face (the first two coordinates) of U is a, and the back 1-face is b. So up to a sign that doesn’t

matter for us,

(δa + δb)(δa + δb)(U) = ((δa + δb)(a))((δa + δb)(b)) = 1 · 1 = 1,

and similarly because the front face of L is c and the back face is a,

(δa + δb)(δa + δb)(L) = ((δa + δb)(c))((δa + δb)(a)) = 0 · 1 = 0.

Therefore, the cup product result is δU (it’s the map that sends U to 1 and L to 0), which is the nonzero element of

our vector space H2(K;F2).

So if we say that α = δa + δb, β = δb + δc are the generators of the first cohomology group, and we also say that

k is the generator of the second cohomology group, we’ve just found that α2 = k . Similarly,

(δb + δc)(δb + δc)(U) = ((δb + δc)(a))((δb + δc)(b)) = 0,

(δb + δc)(δb + δc)(L) = ((δb + δc)(c))((δb + δc)(a)) = 0,

so β2 = 0 . Finally,

(δa + δb)(δb + δc)(U) = ((δa + δb)(a))((δb + δc)(b)) = 1,

and

(δa + δb)(δb + δc)(L) = ((δa + δb)(c))((δb + δc)(a)) = 0,

so αβ = k . What we’ve found now is that

H∗(K;F2) ∼= F2{1} ⊕ F2{α} ⊕ F2{β} ⊕ F2{k},

which are homogeneous in degree 0, 1, 1, 2, respectively, with the boxed relations above, and also kα = kβ = k2 = 0

(because there’s nothing with degree larger than 2).

Fact 229

In our problem set, we may have used a CW structure instead of a semisimplicial set for the Klein bottle. But

the cup product is only defined in terms of front and back faces, so that definition really only makes sense for

semisimplicial sets.

30 November 13, 2020
Our final problem set will be posted on Monday, and it will be due on the last day of the semester that due dates can

be assigned. It’ll cover homological algebra, Ext, Tor, cohomology groups, and a bit of Poincare duality.

We’re going to start computing cohomology rings for a variety of spaces so that we can use them for geometric

purposes, and we should build up our toolbox for doing so. Sometimes, it’s pretty easy to do this, so let’s start with
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some “silly” rings:

Example 230

Let’s compute the cohomology ring H∗(S2;Z).

We know that

Hm(S2;Z) = HomAb(Hm(S2),Z)⊕ (Ext terms),

but everything is free so the Ext terms will vanish. This means that because the homology groups are Z, 0,Z, the
cohomology groups will also be Z, 0,Z . (Alternatively, we can use the minimal cell decomposition 0 → Z → 0 →
Z→ 0 in degree 0 and 2, and dualize it to get Z→ 0→ Z→ in degree 0 and −2. This will give us the same answer.)

Therefore,

H∗(S2;Z) = Z{1} ⊕ Z{x},

where 1 is the degree-0 part and x is the degree-2 part. And we also need to describe the multiplicative structure,

which follows

1 · 1 = 1, 1 · x = x, x · 1 = x

because 1 is the multiplicative identity. (Indeed, recalling the graded-commutatve condition, we do have

x · 1 = (−1)|x ||1|1 · x,

meaning that we don’t need to talk about a left versus right identity.) Finally, because of degree reasons, we have

x · x = 0.

Putting this all together, we have

H∗(S2;Z) ∼= Z[x ]/x2,

where x is homogeneous of degree 2. And we understood everything here using formal properties – we never had to

dig into the geometry or topology of the sphere.

Similarly, for any ring R and any integer n ≥ 1, we have

H∗(Sn;R) ∼= R[x ]/x2,

where |x | = n (the element x is homogeneous in degree n), and all products are forced. (This will always be isomorphic

to R ⊕ R as an R-module.)

Example 231

Last time, we found that if K is the Klein bottle,

H∗(K;F2) ∼= F2{1} ⊕ F2{α} ⊕ F2{β} ⊕ F2{k},

with 1, α, β, k of homogeneous degree 0, 1, 1, 2.

Furthermore, we found that α2 = αβ = k and β2 = 0, meaning that

βα = (−1)1·1αβ = −k = k

by graded-commutativity and using that we’re working in F2. And figuring out other multiplications can be done with
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just degree reasons and the identity element 1.

We can also look at a product like

(α+ β)(β) = αβ + β2 = k + 0 = k,

because distributivity holds for our ring. The point is that we can present this ring with other bases as well, and at the

end of the day we have

H∗(K;F2) ∼= F2[α, β, k ]/(α2 − k, αβ − k, αk, βk, k2).

Remark 232. We found this by using a particular finite semisimplicial set, and recall that we worked hard earlier on

in the class to show that we can pick any semisimplicial set when we’re computing homology groups. In order to

understand why we can do something similar for computing our cup products and cohomology rings here, note that

there is a map of seimsimplicial sets from our finite semisimplicial square diagram into Sing(K). When we defined the

cup product, we can think of everything we did last class as going on in the enormous semisimplicial set Sing(K), and

everything will still work.

We’ll get a glimpse now of how this ring structure can help us answer questions that aren’t just directly about the

computations:

Problem 233

Is there a continuous map f : S2 → K, such that H2(f ;F2) : H2(K;F2)→ H2(S2;F2) (cohomology reverses the

direction of arrows) is nontrivial?

This is a map F2 → F2, and we want to know whether there is a continuous map f such that the map is not the

zero map. For example, sending all of S2 to a single point wouldn’t work.

To answer this, note that f : S2 → K induces a map of rings, not just a map of cohomology groups. Specifically,

we can look at the map

H∗(K;F2)→ H∗(S2;F2),

which is actually a map

F2[α, β, k ]/(α2 − k, αβ − k, αk, βk, k2)→ F2[x ]/x2.

We’re asking whether it’s okay for this map to send k to x , and we know that because this is a map of graded rings,

α, β must both be sent to 0 (there’s no degree 1 part in the image). But then that means α2 = k must be sent to 0

as well, so the answer is no .

Next, let’s examine a construction that will help us start putting together cohomology rings. Suppose R is a ring,

and A∗ and B∗ are two graded R-algebras. Then remember that A∗⊗RB∗ has a canonical graded R-algebra structure:

• If we forget the multiplication and grading, we’re just tensoring two R-modules together, so this is indeed an

R-module.

• If a ∈ A∗ is homogeneous of degree p, and b ∈ B∗ is homogeneous of degree q, then a ⊗ b is homogeneous of

degree p + q. The multiplication is given by

(a′ ⊗ b′)(a ⊗ b) = (−1)|b
′||a|(a′a ⊗ b′b),

where we’re doing multiplications on A∗ and B∗ individually.

Two lectures ago, we stated the following result, and the sign (−1)|b
′||a| is essential for it to work:
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Theorem 234

If X and Y are topological spaces, then the cohomology cross product × : H∗(X;R)⊗RH∗(Y ;R)→ H∗(X×Y ;R)

is a homomorphism of graded R-algebras.

This is particularly useful because this is often an isomorphism, as long as the homology of one of the groups

Hq(X;R) is a finitely generated free R-module for all integers q.

Proof. We can see Miller’s lecture 29 for more details, but our goal here is to not unravel the definition of the cross

product too much. If α1, α2 ∈ H∗(X;R) and β1, β2 ∈ H∗(Y ;R) are all homogeneous elements in their respective

rings, we need to prove that the cross product interacts properly with the cup product:

(α1 × β1)(α2 × β2) = (−1)|α2||β1|((α1α2)× (β1β2)).

We can now consider the difference between the maps

X × Y ∆X×Y−−−→ X × Y ×X × Y

and

X × Y ∆X×∆Y−−−−→ X ×X × Y × Y,

where there is an isomorphism from the two images given by 1× Swap× 1. Note that

(α1 × β1)(α2 × β2) = H∗(∆X×Y )(α1 × β1 × α2 × β2)

where we’re using the associativity of the cross product. And now cohomology is a functor, so this can be written as

= (H∗(∆x × ∆y ) ◦H∗(1× Swap× 1)) (α1 × β2 × α2 × β2),

which can be re-parenthesized as

= H∗(∆x × ∆y ) (H∗(1× Swap× 1)(α1 × β2 × α2 × β2)) ,

which is

= H∗(∆x × ∆y )
(

(−1)|β1||α2|α1 × α2 × β2 × β2)
)
,

and this sign shows up because we’re evaluating this Swap isomorphism. This indeed leaves us with

(−1)|β1||α2|H∗(∆x × ∆y ) (α1 × α2 × β2 × β2)) = (−1)|β1||α2|(α1α2)× (β1 × β2),

as desired.

Example 235

How can we compute the cohomology ring H∗(T ;Z) for a torus T?

Noting that

H∗(T ;Z) = H∗(S1 × S1;Z),

we have a cross product

H∗(S1;Z)⊗Z H∗(S1;Z)→ H∗(X1 × S1;Z)
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which is an isomorphism because we have free modules for the S1s. Because H∗(S1;Z) ∼= Z{1} ⊕ Z{a}, where the

degree of a is 1 and a2 = 0, we can take a copy Z{1}⊕Z{a} and another copy Z{1}⊕Z{b}, and their tensor product

H∗(S1;Z)⊗Z H∗(S1;Z) ∼= Z{1⊗ 1} ⊕ Z{a ⊗ 1} ⊕ Z{1⊗ b} ⊕ Z{a ⊗ b},

where the individual summands have degree 0, 1, 1, 2. (Indeed, a rank 2 free Z-module tensored with a rank 2 free

Z-module should give us a rank 4 free Z-module.) We now just need to figure out the multiplications – 1⊗ 1 needs to

be the identity, and degree reasons mean that the only interesting thing left is products of degree-1 things. We know

that

(a ⊗ 1)(1⊗ b) = (−1)0·0(a1⊗ 1b) = a ⊗ b,

(1⊗ b)(a ⊗ 1) = (−1)1·1(1a ⊗ b1) = −a ⊗ b,

so indeed if we define a ⊗ 1 = x, 1 ⊗ b = y , a ⊗ b = z , we have xy = z, yx = −z (which is what we want for

graded-commutativity). Next,

(a ⊗ 1)(a ⊗ 1) = (−1)0·1(a2 ⊗ 12) = (−1)0(0⊗ 1) = 0,

so x2 = 0, and similarly y2 = 0. What we end up with is

H∗(T ;Z) ∼= Z[x, y , z ]/(xy − z, x2, y2, xz, zy),

and we don’t need to write down the yx + z relation because it follows from graded-commutativity. (Note that we

also know that x2 = x ·x = (−1)1·1x ·x = −x2, so we could have already learned that x2 = 0 by graded-commutativity

alone.) And we should be careful – if we saw this in algebra class, we would think that yx = z as well, but that’s not

the case.

31 November 16, 2020

Our final homework assignment will be posted tonight (as discussed last time), and we’ll have about three weeks,

including Thanksgiving break, to complete it. We’ll probably know everything we need to solve the problems by the

end of this week – doing the homework problems is the most important part of this class! Also, Professor Haynes Miller

is requesting comments on the notes, and there is a publishing deadline in December, so we can email any comments

that we have.

We’ll continue discussing basic techniques for assembling cohomology rings, and we’ll start with an algebraic

comment. If A∗ and B∗ are graded R-algebras, for example coming from cohomology with coefficients in R, then

A∗ ⊕ B∗ (the direct sum of the underlying abelian groups) is also a graded R-algebra. This is easier to think about

than the tensor product we discussed previously: we get a pointwise multiplication

(a, b)(a′, b′) = (aa′, bb′)

with unit (1, 1). (And the homogeneous degree-p pieces are generated by (a, 0) with |a| = p, as well as (0, b) with

|b| = p, so they end up being a homogeneous degree-p thing in each component.)

In category theory language, this object is the product of A∗ and B∗ in the category of graded R-modules. Let’s

see how we can use this for topology:
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Proposition 236

Suppose X and Y are topological spaces. Then H∗(X t Y ;R) ∼= H∗(X;R)⊕H∗(Y ;R) as R-algebras.

Proof. The inclusion X ↪→ X t Y induces a map of graded R-algebras H∗(X t Y ;R) → H∗(X;R), and similarly

Y ↪→ X t Y gives us a map H∗(X t Y ;R)→ H∗(Y ;R). But by the universal property of the categorical product, this

induces a map

H∗(X t Y ;R)→ H∗(X;R) tH∗(Y ;R).

Because of the way we’ve constructed this map, this is already a map of graded R-algebras, and we just need to show

this is an isomorphism by showing it is a bijection (forgetting about the ring structure). But then the cohomology

groups of a disjoint union can indeed be written this way by unpacking the definitions, and this is left as an exercise

(using the universal coefficients theorem).

We can talk now about wedges – we briefly looked at this when defining the figure-8 graph S1∨S1 or when working

with cellular homology.

Definition 237

Suppose (X, x) is a topological space along with a point x ∈ X, and let (Y, y) be a topological space along with

y ∈ Y . Then
X ∨ Y = (X t Y )/(x ∼ y).

Even though we don’t explicitly say which point we’re using to “glue” the two spaces together, the resulting wedge

does depend on our choice of x and y .

Recall that we discovered that wedges don’t change homology groups except in degree 0 (since we’re just quoti-

enting out by a single point, there’s a long exact sequence which is only “interesting” in degree 0). Something similar

turns out to happen for cohomology: if r : X t Y → X ∨ Y denotes the quotient map, we can use the long exact

sequence of a pair of spaces, which tells us (as we just said) that

Hq(X t Y )→ Hq(X ∨ Y )

is an isomorphism for all integers q > 0. Thus, the universal coefficients theorem tells us that Hq(X ∨ Y ;R) →
Hq(X t Y ;R) is also an isomorphism for all q > 0:

Proposition 238

The quotient map r : X t Y → X ∨ Y ) induces a map of graded R-algebras

H∗(X ∨ Y ;R)→ H∗(X t Y ;R)

which is an isomorphism in positive degrees and an injection in degree 0.

In other words, we can look at the larger ring and compute multiplications in the disjoint union instead of the wedge.

And we often know what degree-0 groups looks explicitly, because it can be expressed in terms of path components.

Example 239

Suppose we have a topological space S2 ∨ S1 ∨ S1 = (S2 ∨ S1) ∨ S1. Then H∗(S2 ∨ S1 ∨ S1;Z) injects into

H∗(S2;Z)⊕H∗(S1;Z)⊕H∗(X1;Z).
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The direct sum of cohomology rings (that is, the image of the injection) looks like

(Z⊕ Z⊕ Z)⊕ (Z⊕ Z)⊕ (Z),

where the first three Zs are degree 0, generated by (1S2 , 0, 0), (0, 1S1 , 0), (0, 0, 1S1 ) (where the 1s denote the units in

the individual cohomology rings for the spheres), the next two Zs are degree 1, generated by (0, x, 0) and (0, 0, x),

where the x ’s are generators of the corresponding groups H1(S1;Z), and the last Z is of degree 2, generated by

(y , 0, 0), where y is a generator of H2(S2;Z).

So to find the cohomology of the wedge S2 ∨S2 ∨S1, we need to take the subring of this generated as an abelian

group where we take all of the generators in positive degrees, (0, x, 0), (0, 0, x), and (y , 0, 0). But in degree 0, we

only have one generator, because the wedge only has one path-component. Thus,

H∗(S2 ∨ S1 ∨ S1;Z) ∼= Z⊕ (Z⊕ Z)⊕ Z,

where the Zs are in degree 0, 1, 1, 2, and all products of positive-degree classes are zero (because each one comes

from a different sphere). And this allows us to answer some other questions:

Example 240

Is S2 ∨ S1 ∨ S1 homotopy equivalent to the torus T?

We can more easily prove that these two maps are not homeomorphic – for example, we can remove a point from

the wedge and make it not path-connected anymore. So these two shapes may not look very similar to us, but we

haven’t developed any tools until now for proving things about why they’re not homotopy equivalent (because it has

the same homology groups as the torus)!

In other words, none of the algebraic invariants connected with homology have been able to distinguish these two

spaces so far, but the one exception is the ring structure in cohomology (or the coring structure in homology). And

indeed, H∗(S2 ∨ S1 ∨ S1;Z) has trivial positive-degree products, while the cohomology ring of the torus H∗(T ;Z) ∼=
Z[x, y , z ]/(x2, y2, xy − z, z2, xz, yz), where x, y are in degree 1 and z is in degree 2. In particular, this means xy = z ,

so there is a product of two positive-degree elements which is not zero. So S2 ∨ S1 ∨ S1 6∼= T in Ho(Top), and one

way to think about that is that the diagonal maps

(S2 ∨ S1 ∨ S1)→ (S2 ∨ S1 ∨ S1)× (S2 ∨ S1 ∨ S1), T → T × T

induce different maps in homology (meaning their cohomology rings are different).

With this, we now have all of the most basic tools for assembling cohomology rings, and everything from here will

be less elementary. Our focus will be on Poincaré duality, but we’ll learn further tools for computing cohomology

rings if we take 18.906 or go further into algebraic topology. We’ll present the main ideas and statements this week

so that we can work on the homework, and then we’ll spend some time afterward doing the relevant proofs.

First of all, suppose A is an abelian group and R is a ring. Then there is a map

f : HomAb(A,R)⊗Z A→ R,

which is adjoint to the identity g : HomAb(A,R) → HomAb(A,R) under the currying isomorphism. (This is because

the tensor product was specifically designed to give us a bijection between maps of the forms f and g above.) So now

if M is an R-module, we have a mp

f : HomR-mod(M,R)⊗R M → R,
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similarly adjoint to the identity g : HomR-mod(M,R)→ HomR-mod(M,R). Describing f explicitly is not too hard: if we

have a map M → R and an element m ∈ M, we define f (φ⊗m) = φ(m), so this is an “evaluation map.”

There’s a variant of this for cohomology, caled the Kronecker pairing. If X is a topological space and R is a ring,

then we have a pairing map

〈·, ·〉 : Hq(X;R)⊗R Hq(X;R)→ R.

To define this pairing, note that a class in the cohomology group Hq(X;R) can be represented by a cocycle in

Sq(X;R), modulo coboundaries, and we have our favorite explicit cochain complex designed to compute cohomology

groups for us. And an object in Sq(X;R) is a function on Singq(X), or equivalently an abelian group map defined on

the simplices Sq(X). On the other hand, a class in the homology group Hq(X;R) is a formal R-linear combination of

classes in Singq(X) that happens to form a cycle, modulo boundaries. So now we can take any function Singq(X)→ R

and evaluate it on a formal combination of classes in Singq(X), and that’s exactly what the pairing map does.

So this gives us a map

Sq(X;R)⊗R Sq(X;R)→ R,

which extends to a chain map S∗(X;R) ⊗R S∗(X : R) → R, where the left-hand side is a tensor product of chain

complexes and the right-hand side is concentrated in degree 0. That finally gives us our desired map Hq(X;R) ⊗R
Hq(X;R) → R, and we’re claiming that this is well-defined – if we modify our cocycle by a coboundary, it doesn’t

change the result of the Kronecker pairing. We’ll use this pairing next time to state Poincaré duality.

32 November 18, 2020

Last time, we discussed the Kronecker pairing (also called the “cap product”), the last product that we’ll be needing in

this class. This pairing is a map Hq(X;R)⊗R Hq(X;R)→ R, computed by evaluating the sum of maps on simplices

(in Hq(X;R)) on the particular formal sums of simplices (in Hq(X;R)). We’ll use this to state Poincaré duality, but

we’ll need to do some setup first.

Proposition 241

Let X be a finite type CW complex. Then the map Hq(X;F2) → HomF2-mod(Hq(X,F2),F2) is an isomorphism,

where the map is adjoint to the Kronecker paiirng.

We’re basically claiming that if we have finiteness assumptions (the CW structure only has finitely many cells in

each dimension, giving us finite-dimensional vector spaces) and we’re working with coefficients in F2, cohomology and

homology are linear duals in a canonical way involving the Kronecker product. We’ll prove this on our homework –

the result is also true if we replace F2 with another field, but we really only need it for F2 in this class.

The above proposition shows that the Kronecker pairing satisfies a particular condition:

Definition 242

A perfect pairing of two finitely-generated free R-modules V and W is an R-linear map V ⊗RW → R, such that

the adjoint map V → HomR(W,R) is an isomorphism of R-modules.

(This is basically a repackaging of a specific chosen isomorphism between V and the dual of W through the

currying isomorphism.) And with this, we can start stating Poincaré duality, which is a useful fact about cup products

in manifolds:
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Definition 243

An n-dimensional manifold M is a Hausdorff topological space, where every point has an open neighborhood

homeomorphic to Rn.

Example 244

A 2-dimensional manifold is called a surface, and examples of 2-dimensional manifolds include S2, T,K,RP2 and

R2 itself (even though this last one is not compact). A non-example of a manifold is S2 ∧S2, because there is no

neighborhood around the wedge point which looks like R2.

Example 245

Examples of 3-dimensional manifolds include R3, S3, S1 × S1 × S1, and RP3.

Many people spend time trying to classify manifolds, because they’re applicable in other fields as well – smooth

algebraic varieties over R or C and configuration spaces in physics systems are both often manifolds.

Fact 246 (from point-set topology)

Any compact manifold is homotopy equivalent to a finite type CW complex.

This, in particular, implies that the homology and cohomology groups of any compact manifold are finitely gener-

ated.

Theorem 247 (Poincaré duality, version 1)

Let M be a compact n-dimensional manifold. Then there exists a unique class (element) [m] ∈ Hn(M;F2), called

the fundamental class, such that for all integers p, q with p + q = n, the map

Hp(M;F2)⊗F2 H
q(M;F2)

∪−→ Hn(M;F2)
〈·,[m]〉−−−→ F2

(the composition of the cup product and the Kronecker pairing) is a perfect pairing.

(Another way to say this is that we take the cup product, and then we evaluate that result on the fundamental

class.) This can be restated as saying that Hp(M;F2) is canonically isomorphic to the F2-linear dual of Hq(M;F2)

whenever p + q = n (the adjoint map of the perfect pairing is an isomorphism).

Even if we don’t talk about cup products at all and we’re only interested in homology or cohomology groups, this

is still a very strong constraint:

Example 248

SupposeM is a compact 3-dimensional manifold with H0(M;F2) ∼= F2⊕F2 (meaning it has two path components)

and H1(M;F2) ∼= F2 ⊕ F2 ⊕ F2.

Now we can actually ask ourselves for all of the homology and cohomology groups of M (with F2 coefficients).

For example, because 1 + 2 = 3,

H2(M;F2) ∼= Hom(H1(M;F2),F2) ∼= F2 ⊕ F2 ⊕ F2,
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because the dual of a three-dimensional vector space is still a three-dimensional vector space. Similarly, because

0 + 3 = 3, we also know that H3(M;F2) ∼= F2 ⊕ F2. (And all other cohomology groups vanish, and we can actually

prove this because −1 + 4 = 3 and the negative cohomology groups are all 0.) And furthermore, by Proposition 241,

we know that homology is adjoint to cohomology, so H1(M;F2) is isomorphic to H1(M;F2) and so on. Therefore,

Hq(M;F2) =


F2 ⊕ F2 q = 0, 3

F2 ⊕ F2 ⊕ F2 q = 1, 2

0 otherwise.

But in fact, Poincaré duality is saying something not just about the cohomology groups but also cup products – let’s

see some examples to get a feeling for that.

Example 249

Recall that we’ve previously computed H∗(T ;F2) ∼= F2[x, y , z ]/(xy − z, x2, y2, xz, yz, z2) ∼= F2{1} ⊕ F2{x, y} ⊕
F2{z}, and this is a commutative ring because we’re working with F2-coefficients.

Let’s see what Poincaré duality is claiming for us here. First of all, there should be some fundamental class in T ,

which is an element of the second homology group H2(T ;F2) ∼= F2{δz} (we’re using again that the second homology

group can be viewed as the dual of the second cohomology group). This fundamental class turns out to be δz , and

now we can think about how this works out in practice: we’re supposed to get a Poincaré duality perfect pairing

P : H1(T ;F2)⊗F2 H
1(T ;F2)→ F2,

which first takes the cup product and then pairs against the fundamental class: for instance,

P (x ⊗ y) = 〈xy , δz 〉.

But we’ve computed that xy = z , so this is just

〈z, δz 〉 = δz(z) = 1.

We can also find that

P (x ⊗ x) = 〈x2, δz 〉 = 〈0, δz 〉 = δz(0) = 0,

and similarly P (y ⊗ y) = 0. But we also get a Poincaré duality for H0(T ;F2)⊗F2 H
2(T ;F2)→ F2: the only nonzero

result comes from taking the nonzero elements in each of H0 and H2, which yields

P (1⊗ z) = 〈1z, δz 〉 = δz(z) = 1.

So we’ve checked how the pairings work in the torus, but now we want to think about how this pairing being perfect

can help us compute the cohomology rings that we haven’t previously computed.

Example 250

Let’s compute the cohomology ring H∗(RP2;F2) (using that RP2 is a two-dimensional manifold, because it has a

canonical CW structure coming from a square).

We know that H0(RP2;F2) ∼= F2, because there’s one path component and H0 is the set of maps from path

components into F2 (or alternatively it’s the dual of the zeroth homology group). Also, H1(RP2;F2) ∼= F2 as well
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– this is something we know from the cell decomposition of RP2, and it’s not something Poincaré duality gives us

directly. But now we are able to say that because 0 + 2 = 2,

H2(RP2;F2) ∼= H0(RP2;F2)

(which avoids needing to use the specifics of the cell decomposition), and also everything in higher dimensions is just

0. So now we can say that our cohomology ring (as a graded F2-vector space) is

H∗(RP2;F2) ∼= F2{1} ⊕ F2{a} ⊕ F2{b}

where these F2s are in dimensions 0, 1, 2 respectively. And now we just need to compute the cup products: multiplying

anything with 1 gives us the original element, and b2 = ab = 0 for degree reasons, and thus we only need to compute

a2 and see whether it’s 0 or b. But Poincaré duality says that we have a perfect pairing

P : H1(RP2)⊗H1(RP2)→ F2,

and a pairing from F2⊗F2 → F2 is a perfect pairing only if it’s a nontrivial map (a trivial map doesn’t induce an

isomorphism for the adjoint map after we apply currying). That means that

〈a2, [RP2]〉 6= 0,

where [RP2] denotes the fundamental class of RP2. But pairing with 0 gives us 0, so indeed we must have a2 = b,

and we’ve finished describing the cohomology ring:

H∗(RP2;F2) ∼= F2[a, b]/(a2 − b, ab, b2),

where the degree of a is 1 and the degree of b is 2.

Remark 251. If we look at the cohomology ring H∗(S2 ∨ S1;F2) instead, that looks like F2[a, b]/(a2, ab, b2). So the

cohomology groups (as F2-vector spaces) are the same for S2 ∨ S1 and RP2, but the ring structures are different –

a2 = b in one case and a2 = 0 in the other. And we can verify that S2 ∨ S1 is not a manifold.

Next time, we’ll talk more about the intuition behind Poincaré duality and how it works beyond F2 coefficients.

33 November 20, 2020
Today’s the last day before Thanksgiving break, so we’ll discuss a bit about geometric intuition behind Poincaré duality.

After break, we’ll do a proof of Poincaré duality that doesn’t have very much to do with the geometry, but it’s still

helpful to have an image in mind.

105



Example 252

Consider a torus T , and suppose we have the two standard loops a and b shown:

a b

Even though a and b are geometric pictures of cycles, they also represent generators of H1(T ;F2) ∼= F2{a, b}. We

want to ask how many times a and b intersect, modulo 2 – the claim is that generically, no matter how we deform a

and b, the two will intersect an odd number of times.

To see this, let’s start with the standard a and b and look around a neighborhood of their unique intersection. a

and b can then either look like straight lines, or we could have some small deformation:

a
b

a

b

The two ways of drawing b are homotopic, but the number of intersections is indeed different. It is odd in both

cases, though, and it’s worth convincing ourselves why this always happens generically.

There are indeed special cases, like tangent intersections, where the total number of intersections is even. But

those cases are always unstable, because deforming a or b slightly will return us to an odd number of intersections. If we

take a class on smooth manifolds, the word for “generic” becomes “transverse,” and thus the unstable situation comes

up because we don’t have transverse intersections. (So that’s not really a topology question.) This is why it’s nice

that the cup product, a purely topological (in fact, homotopy-related) quantity, can help us analyze this intersection

number – we don’t have to do any of the smooth geometry that we otherwise would!

From here, we can try to ask stranger questions:

Example 253

How many times does a curve a intersect a? Here, we take two generic representations of the class a (rather than

taking the same curve twice).

This time, if we draw some more pictures, we’ll find that the intersection number is always even, though (again)

it can be hard to make this intuition rigorous:
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a a

a a

So now we can define an F2-module homomorphism

fa : H1(T ;F2)→ F2,

which is a map F2{a, b} → F2, and we’ll define it to send a to 0 and b to 1 (because this function counts the number
of intersections with a, modulo 2). But as we’ll show on our homework, the first cohomology group H1(T ;F2)

should be isomorphic to HomF2-mod(H1(T ;F2),F2) the linear dual of the first homology group, so fa represents a class

in the cohomology group H1(T ;F2) of the torus. This class is exactly the Poincaré dual of a.
In general, suppose we have a compact n-dimensional manifold M, and let p and q be two integers with p+ q = n.

If we fix a cycle a ∈ Hp(M;F2), then for any b ∈ Hq(M;F2), we can look at how many times a and b intersect.

Fact 254

The point is that whenever p+ q = n, generic representatives of a and b will intersect at some number of points,

rather than in a higher dimension. For example, a plane and line intersect at a point generically in R3, but two

planes intersect at a line.

And it turns out that the number of points mod 2 is independent of the generic choice of geometric representative

for a and b, so we can fix a ∈ Hp(M;F2) and think about varying b ∈ Hq(M;F2). Then we get a well-defined function

fa, which takes in possible q-cycles and spits out the number of intersections with a. And again, duality tells us that

this fa can be viewed as a class in Hq(M;F2).

So now we can explain that the Poincaré duality theorem, geometrically, tells us that this definition of a 7→ fa gives

us an isomorphism Hp(M;F2) ∼= Hq(M;F2). In other words, a cycle, modulo boundaries, is exactly determined by
the parity of how many times it intersects all other cycles! Remember that we had the pairing

P : Hq(X;F2)⊗Hp(X;F2)→ F2

is a map that sends u ⊗ v 7→ 〈uv, [M]〉 for the fundamental class [M]. Furthermore, we said that this pairing 〈·, ·〉 is
perfect, meaning that we induce an isomorphism

Hq(M;F2) ∼= Hom(Hp(X;F2),F2) ∼= Hp(X;F2).

The claim, then, is that these two ways of constructing an isomorphism – one rigorously, and one more geometric –

from Hp to Hq are the same. We won’t actually show the connection to geometry rigorously in this class (it’s beyond

the scope), but even the formal existence of such a structure on the cup product has many applications of its own.

Remark 255. The fundamental class [M] ∈ Hn(M;F2) is supposed to be a canonical object Poincaré dual to a class

in H0(M;F2). Remembering that H0(M;F2) sits inside H∗(M;F2), the canonical class to use here is the function 1.

It’s also worth asking whether there is a version of Poincaré duality for integer coefficients, since we’ve been

spending the whole class developing theory for arbitrary coefficient rings. The answer is yes, but it’s more complicated
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and only works for oriented manifolds, and we’ll try to explain it geometrically now. (But this won’t come up on our

homework.)

If we return to our torus, we do have an oriented manifold, and we can consider the standard picture of a and

b intersecting again. As we’ve seen with semisimplicial sets, homology classes come with a direction: this time, we

can draw arrows on a and b. If we now consider the three-intersection picture, we can zoom in on each of the three

intersections individually.

a
b

a

b

The first and third intersections look similar to the original one we had, but the second one has b going to the left

instead of the right! So our pictures differ by a reflection (a matrix with determinant −1), and thus we can count the

number of intersections between our classes by taking sign into consideration. And now because the torus is oriented,

our signed count will always be 1. (With something like the Klein bottle, we’ll get issues arising from the torsion in

the first homology group. But we’ll be more rigorous about this next class.)

In the last few minutes of class, we’ll see a few more applications of Poincaré duality with F2-coefficients. We

computed last time that H∗(RP2,F2) ∼= F2[a]/a3, and we can more generally H∗(RPn;F2) for any n.

Example 256

Let’s compute the ring H∗(RP3;F2): as a graded vector space, we know that

H∗(RP3;F2) ∼= F2{1} ⊕ F2{a} ⊕ F2{b} ⊕ F2{c},

where 1, a, b, c are in degree 0, 1, 2, 3.

(Notice that we indeed see the characteristic “symmetry” around the middle dimension.) We have a pairing

H1(RP2) ⊗F2 H
2(RP2) → F2, which can be viewed a map F2{a ⊗ b} → F2 sending P (a ⊗ b) = 〈ab, [RP3]〉. But for

this pairing to be perfect, it must be the nontrivial map from F2 to F2, so we must have ab = c (the nontrivial element

in degree 3). And continuing with these kinds of arguments, we can completely determine that

H∗(RPn) ∼= F2[a]/an+1,

where the degree of a is 1. (So it’s always going to be a “truncated polynomial algebra” in a.)

Theorem 257 (Borsak-Ulam)

Let f : Sn → Rn be any continuous function. Then there exists an x ∈ Sn such that f (x) = f (−x).

If we set n = 2, this tells us that any function from the two-dimensional sphere to the plane intersects itself at two

antipodal points. So some antipodal set of points on the earth will share the same temperature and also the some air

pressure (because we can encode that information in an ordered pair)!

Proof. Suppose for the sake of contradiction that no such x exists. Then we can consider the continuous function

g : Sn → Sn−1 with

x 7→
f (x)− f (−x)

|f (x)− f (−x)| .
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(This is well-defined exactly because of our assumption.) Now g(−x) = −g(x) (antipodal points are sent to antipodal

points), so there is a continuous map g : RPn → RPn−1 that is induced by g. (That is, we can quotient out by

antipodal points, and g respects that.)

We claim now that H1(g;F2) is nontrivial – this is a fact about paths, and part of the idea is that a path from the

north pole to the south pole becomes a loop (cycle) when we identify those two points. If we believe this fact, then

H1(g;F2) is also nontrivial, because it’s dual to a nontrivial element in homology. So that gives us a ring map

H∗(g;F2) : H∗(RPn−1;F2)→ H∗(RPn;F2),

which is a map F2[a]/an → F2[a]/an+1. But H1(g;F2) being nontrivial means a 7→ a, which means 0 = an 7→ an,

which is a contradiction.

34 November 30, 2020
This week, we’ll be looking at the proof of Poincaré duality and formulating similar results for coefficients besides F2.

The reason we’re being a bit relaxed about whether we understand the proof (instead focusing on how to apply the

result on our homework) is that this one is concrete and more “low-tech:” we’ll learn some new tools which lead to

different and perhaps easier proofs of Poincaré duality if we continue studying algebraic topology.

The version of Poincaré duality that we’re going to formulate is going to hold for manifolds with some extra

structure: specifically, the theorem will hold for manifolds equipped with an R-orientation, which doesn’t necessarily

exist for every manifold (and isn’t necessarily unique). But all manifolds are indeed F2-orientable, and that F2-

orientation is indeed unique. So the main goal for today will be to discuss this notion of orientation, which will be

required for the precise statement of Poincaré duality in more generality.

Example 258

For some geometric intuition, topological spaces like the Klein bottle, Möbius strip, or RP2 are not Z-orientable,
but the torus is Z-orientable.

Before discussing orientation in general, we need to look locally near a point (where things look like Rn):

Definition 259

LetM be an n-dimensional manifold, and let x ∈ M be a point. The local homology ofM at x is H∗(M,M−{x}).

The pair (M,M − {x}) is not one of the “nicely-behaved” pairs where we can just look at the homology of the

quotient. But by excision, we do know that

H∗(M,M − {x}) ∼= H∗(Rn,Rn − {x}),

and the long exact sequence of the pair (Rn,Rn − {x}) tells us that

H∗(Rn,Rn − {x}) ∼=

Z degree n

0 otherwise.

(because we know the homology of Rn and also Rn − {x}).
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Definition 260

A local Z-orientation of a manifold M near x ∈ M is a choice of generator of H∗(M,M − {x}).

Since we can either pick 1 or −1 as a generator, there are two choices for the Z-orientation at each point. And

for a general ring R, note that

H∗(M,M − {x})⊗Z R ∼= Z⊗Z R = R,

which gives us the following definition:

Definition 261

A local R-orientation of a manifold M near x ∈ M is a choice of (R-module) generator the rank-1 free R-module

H∗(M,M − {x}).

Local R-orientations of M near x are then in bijection with R×, the group of units in R. And since F×2 contains

only the element 1, there is indeed a unique choice for the local orientation near any point x ∈ M.

To go from local orientation to something more global, we need to pick these units in a consistent way:

Definition 262

Let M be an n-dimensional manifold. Define

oM =
⊔
x∈M

Hn(M,M − {x},

and similarly

oM ⊗ R =
⊔
x∈M

Hn(M,M − {x} ⊗Z R.

We can make oM (and similarly oM ⊗R) into a topological space if we put a topology on it (it’s a disjoint sum of

Rs, with one copy per point in the manifold), and we want the topology to make the projection map p : oM ⊗R→ M

(returning to the “point in the manifold that we’re over”) into a continuous map.

Definition 263

If A ⊆ M is a closed subset of a manifold M, and x ∈ A, then define

jA,x : Hn(M,M − A)→ Hn(M,M − {x})

to be the map on Hn induced by the inclusion (M,M − A) ↪→ (M,M − {x}).

(In the Eilenberg-Steenrod axioms, we said that homology should be a functor of pairs, so we do indeed have this

map.) So it turns out that a basis of open sets for our topological space oM will be given by {VU,α}, where U ⊆ M
is an open set, α ∈ Hn(M,M − U), and

VU,α = {jU,x(α) : x ∈ U}.

And in fact, the map p : oM ⊗ R→ M is an |R|-sheeted covering space (in the point-set topology sense).

Definition 264

A section of the projection map p : oM ⊗R→ M is a continuous function f : M → oM ⊗R such that p ◦ f is the

identity map. The set of all sections of p is denoted Γ(M; oM ⊗R).
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(This is secretly an algebraic geometry notation.) For Poincaré duality, we care about special kinds of sections:

Definition 265

A section f ∈ Γ(M; oM⊗R) is an R-orientation ofM if at each point x ∈ M, the class f (x) ∈ Hn(M,M−{x})⊗ZR
in the fibre of the covering space is a local R-orientation.

Fact 266

There is a nice condition (from covering space theory) showing the existence of R-orientations: if M is an n-

dimensional manifold where π1(M, x) = 0 for every x ∈ M (in other words, if M is simply connected), then the

projection map p : oM ⊗ R → M is the trivial |R|-sheeted covering space, because of the Galois correspondence

between covering spaces and subspaces of π1. So sections are then easy to understand, and there are |R×| total
R-orientations.

This fact tells us that some simple spaces are Z-orientable, and it is the most useful criterion if we want to use

Poincaré duality for coefficients other than F2. (And while the torus is not simply connected, it still has understandable

covering spaces.) But checking whether orientations don’t exist is a bit more subtle:

Fact 267

If M ⊂ N is an inclusion of manifolds, and M is not R-orientable, then N is also not R-orientable.

Because there’s a copy of the Möbius strip inside the Klein bottle, we can use tricks like that to show non-

orientability.

To see where the compactness comes in for Poincaré duality, we need another construction. IfM is an n-dimensional

manifold, then we have a map

j : Hn(M;R)→ Γ(M; oM ⊗ R)

defined by taking a class a ∈ Hn(M;R) and x ∈ M and evaluating j(a)(x). This should give us a class in the local

homology Hn(M,M − {x})⊗Z R, and we’ll define it to be the restriction of a ∈ Hn(M;R) to Hn(M;M − {x})⊗Z R.
And this gets us to a big theorem in orientation theory:

Theorem 268

If M is a compact manifold, then the map j is an isomorphism.

This means that sections of the covering space (functions from the manifolds back to the disjoint union of copies

of R) are exactly in bijection with the top homology group Hn(M;R), given by the explicit function above. And to

see how this all connects to Poincaré duality, we finally get the origin of the fundamental class mentioned in Poincaré

duality:

Definition 269

Suppose that M is a compact, n-dimensional, R-oriented manifold (meaning that it’s oriented by a particular

section f ∈ Γ(M; oM ⊗ R), which restricts at every point to a local orientation). Then there is a corresponding

class Hn(M;R), which we call the fundamental class [M] of the R-oriented manifold.
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Proof of Theorem 268 for coefficients in Z. We’ll show a slightly more general fact: for any n-dimensional manifold

M, suppose we’re thinking about a specific compact subset A ⊆ M. Then for each x ∈ A, we have a map jA,x :

Hn(M,M−A)→ Hn(M,M−{x}) coming from the Hn functor, and these assemble into a map (combining all x ∈ A)

jA : Hn(M,M − A)→ Γ(A; oM)

(take the disjoint union of all points x ∈ A, which is a subset of the sections of M using the subspace topology). So

what we’ll prove is the following:

Theorem 270

Let M be an n-dimensional manifold, and let A be a compact subset of M. Then Hq(M,M − A) = 0 for q > n,

and the map jA : Hn(M,M − A)→ Γ(A; oM) is an isomorphism.

(This theorem is true even if A is something like the Cantor set inside of Euclidean space!)

Lemma 271

Let A and B be two compact subsets of M. Then if the theorem is true for A,B,A∩B, then it’s true for A∪B.

Proof of lemma. Consider the diagram

Hn+1(M,M − A ∩ B) Hn(M,M − A ∪ B) Hn(M,M − A)⊕Hn(M,M − B) Hn(M,M − A ∩ B)

0 Γ(A ∪ B; oM) Γ(A; oM ⊕ Γ(B; oM) Γ(A ∩ B; oM)

0 jA∪B jA⊕jB jA∩B

We want to show that the map in the second column jA∪B is an isomorphism, given that the jA⊕ jB and jA∩B maps

are isomorphisms, and we can do that using the five lemma as long as know that the top and bottom rows are exact.

We can check on our own that (by definition of the section construction) the bottom row is exact, and the top row

is exact by Mayer-Vietoris.

And to finish the proof, we should read Miller’s notes if we’d like to look more at the details – we use this lemma

repeatedly to reduce ourselves to simple compact subsets inside Rn, where we can check the result by hand.

35 December 2, 2020

We’ll sketch the (low-tech) proof of Poincaré duality today and Friday, and we’ll talk about some more modern

developments next week.

We’ve discussed a lot of structures on the homology and cohomology of a space: the cross product through the

Alexander-Whitney map

× : Hp(X;R)⊗R Hq(Y ;R)→ Hp+q(X × Y ;R),

the cup product, which is the cross product combined with the diagonal map

∪ : Hp(X;R)⊗R Hq(X;R)→ Hp+q(X;R),
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and the Kronecker pairing, coming from the concept that homology and cohomology are linearly dual:

Hp(X;R)⊗R Hp(X;R)→ R.

But today we’ll introduce a final operation, along the same lines as the three above:

Definition 272

The cap product
∩ : Hp(X;R)⊗R Hn(X;R)→ Hn−p(X;R)

is a “fancier Kronecker pairing” defined by applying homology to the chain map

Sp(X;R)⊗R Sn(X;R)
AW−−→ Sp(X;R)⊗R Sp(X;R)⊗R Sn−p(X;R)

〈·,·〉−−→ R ⊗R Sn−p(X;R) ∼= Sn−p(X;R),

where AW is the Alexander-Whitney map applied to Sn(X;R), and 〈·, ·〉 is the Kronecker pairing applied to

Sp(X;R)⊗R Sp(X;R).

We should note that all of these constructions are coming with the cross product, the diagonal map on a topological

space, and the Kronecker pairing. And the most important of them is the cup product, but the others are relevant as

well.

If we unwind the definitions, there are a few properties that are straightforward to show:

Proposition 273

The cap product satisfies the following properties:

• (a ∪ b) ∩ x = a ∩ (b ∩ x), and 1 ∩ x = x . In other words, H∗(X;R) is a module for H∗(X;R) – homology
is a module over the cohomology ring using the cap product as a module multiplication.

• 〈a ∪ b, x〉 = 〈a, b ∩ x〉. So as long as we know about the Kronecker pairing, the cap and cup products are

basically the same information.

• If ε : H0(X;R)→ R denotes the element adjoint to 1 ∈ H0(X;R) (meaning it’s the function from the free

module on path components to R, sending each component to 1), and b ∈ Hp(X;R), x ∈ Hp(X;R), then

ε(b ∩ x) = 〈b, x〉. So the cap product is a “souped-up” version of the Kronecker pairing.

• If we have a map f : X → Y of topological spaces, and we have b ∈ Hp(Y ) and x ∈ Hn(X), then

H∗(f ) [H∗(f )(b) ∩ x ] = b ∩ [H∗(f )(x)] (this is called the projection formula).

And now we’re ready to state the general Poincaré duality result:

Theorem 274 (Poincaré duality, version 2)

Let M be a compact n-dimensional manifold, equipped with an R-orientation for a PID R (so that we have

things like the Künneth formula and short free resolutions). Then there is a unique class [M] ∈ Hn(M;R) that

restricts to the local orientation in Hn(M,M − {x})⊗Z R for each point x ∈ M, with the property that the map

Hp(M;R)→ Hn−p(M;R) sending a to a ∩ [M] is an isomorphism for all p.

Geometrically, this isomorphism in reverse taking homology to cohomology takes a homology class and records

the intersection number with every complementary-dimension homology class. It’s hard to justify geometrically what’s

going on without smooth manifold theory, and we’ll prove this result here for integer coefficients.
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We’re actually going to prove this by formulating a more general statement, which works for compact subsets

of arbitrary manifolds (instead of just compact manifolds). The hope is that we’ll be able to break down the uglier

statement into pieces.

To do this, we’ll need to introduce relative cap products. If A ⊆ X is a subspace of X, then we have a relative
cap product

Hp(X)⊗Hn(X,A)→ Hn−p(X,A),

which makes the relative homology H∗(X;A) also into a module over the ring H∗(X). This structure exists because

of the following diagram:

0 0

Sp(X)⊗ Sn(A) Sp(A)⊗ Sn(A) Sn−p(A)

Sp(X)⊗ Sn(X) Sn−p(X)

Sp(X)⊗ Sn(X,A) Sn−p(X,A)

0 0

∩

The left column is the short exact sequence of chain complexes coming from relative homology – for reasonably

nice spaces, everything is free, so the tensor product with Sp(X) gets to be exact. (And another way to think

about it is to use the fact that there’s a noncanonical direct sum involved in the Künneth formula.) Then the map

Sp(X) ⊗ Sn(A) → Sp(A) ⊗ Sn(A) in the second row is induced by the inclusion A ↪→ X, and then we have a cap

product following that. Then the square we have commutes by the projection formula, and then the right column

is an actual short exact sequence.

So now the dashed blue map (the relative cap product we’re interested in) exists by the universal property of the
quotient. Specifically, remember that if we have a map of abelian groups B → A→ A/B, and we have a map A→ C,

we can show that a map A/B → C exists by checking that the composite map B → A → C is zero. So here, the

left column plays the role of B → A → A/B, and the bottom right corner Sn−p(X,A) plays the role of C. We must

check that the composite of the three red maps is zero, and we do this by using the commuting square to go through

Sn−p(A) in the top right corner instead. Then note that the composite map Sn−p(A) → Sn−p(X) → Sn−p(X,A) is

zero because the composite of any two maps in a short exact sequence is zero. Therefore, taking homology of this

dashed blue arrow does indeed yield the relative cap product.

Next, we need to introduce Čech cohomology. If K ⊆ X is a closed subset of a topological space X, then by

excision, we know that Hn(X,X −K) ∼= Hn(U,U −K) for any open set U that contains K (that is, locally around K).

So now we have a cap product

Hp(U)⊗Hn(U,U −K)→ Hn−p(U,U −K),

meaning that H∗(X,X − K) is a module over the cohomology ring H∗(U) for any open set U that contains K, and

our goal is to package all of that into a single module over a “germ” (in the sense of differential geometry). We’re

basically going to look at the limit of all open subsets over K and discuss what module structure we end up with.
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Definition 275

Let K be a closed subset of X. The Čech cohomology of K is denoted Ȟp(K), and an element x ∈ Ȟp(K) is

an element of Hp(U) for some open U containing K. Furthermore, if K ⊆ U ⊆ V for open sets U, V , we set

x ∈ Hp(V ) ⊆ Ȟp(X) equal to H∗(ι)(x) ∈ Hp(U) ⊆ Ȟp(X), where ι is the inclusion of U into V .

We should note that Ȟp(K) depends on how K sits in X – for reasonable closed sets, we have Ȟ∗(K) ∼= H∗(K),

but this fails when we have things like a Cantor set. (So a deformation retract of an open neighborhood is okay.)

Fact 276

The Čech cohomology Ȟ∗(K) is a ring, using the fact that the intersection of two open sets is open (so we can

use the usual cohomology cup product). Furthermore, the point is that when we glue all the module structures

together, Hn(X,X − K) is a module over Ȟp(K) (the universal thing that carries all the cohomology groups of

open sets).

What we’ll see next time is that if X is a space with closed subspace K, we’ve now constructed

∩ : Ȟp(K)⊗Hn(X,X −K)→ Hn−p(X,X −K),

which is reminiscent of the kind of things that happen in Poincaré duality. And indeed, we’ll be showing that this map

is an isomorphism, perfect pairing, and so on, under various conditions on X and K. We’ll do this by breaking up X

and K into smaller pieces, where we already understand the result, and then assembling everything into the result we

want using Mayer-Vietoris and the five lemma.

We’ll end today with an example where Čech cohomology behaves differently from ordinary cohomology:

Example 277

Consider the topologist’s sine curve, which is the graph of y = sin
(

2π
x

)
for 0 < x < 1 (and gets more periodic as

we approach 0). Let K ⊆ R2 be the union of this curve with {0}× [−1, 1], as well as some curve γ that connects

(0,−1) back to (1, 0).

This curve looks like a “messed-up circle,” where things get very complicated around the y -axis. Then

H∗(K) ∼=

Z degree 0

0 otherwise,

so singular cohomology thinks this weird space is a point. But

Ȟ∗(K) ∼= H∗(S1) ∼=

Z degree 0, 1

0 otherwise.

Basically, it’s not clear why we want to study the topology of pathological spaces like this, but there are various things

like Čech cohomology which do help us deal with them!
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36 December 4, 2020
We’ll finish our “bird’s-eye tour” general overview of a low-tech proof of Poincaré duality today. Last time, we introduced

Čech cohomology: if X is a topological space and K ⊆ X is a closed subset, then (restating what defined last time in

more detail) we defined

Ȟ∗(K) =
⊔
K⊆U

H∗(U)/ ∼,

where the equivalence class ∼ tells us about how elements interact if one open set is contained within another. And

we’ll describe yet another variation on thi, thinking about Čech cohomology on a pair.

Definition 278

Let L ⊆ K be a pair of closed subset of a space X. Then we define

Ȟ∗(K,L) =
⊔

L⊆V,K⊆U
H∗(U, V )/ ∼,

where (U, V ) ranges over all pairs of open sets V ⊆ U, V is an open neighborhood of L, and U is an open

neighborhood of K. And the equivalence relation considers two classes to be the same if they’re related along a

restriction given by these pairs.

Theorem 279

If (K,L) is a closed pair in a space X, then there is a natural long exact sequence

· · · → Ȟp(K,L)→ Ȟp(K)→ Ȟ(L)
δ−→ Ȟp+1 → · · · ,

where the Snake Lemma map raises the degree.

Basically, we take the long exact sequences from pairs of open sets and check that they’re compatible when we

put them together.

Theorem 280

Let A and B be compact subsets of a Hausdorff space X. Then the inclusion (B,A∩B) ⊆ (A∪B,A) induces an

isomorphism of

Ȟp(A ∪ B,A) ∼= Ȟp(B,A ∩ B)

for all integers p.

The hypotheses here are a bit more subtle – ordinary homology doesn’t require things to be compact or Hausdorff.

It’s just that the excision statements interact in a particular way when we put them together for different open sets.

We also discussed the cap product for a closed subspace K ⊆ X:

∩ : Ȟp(K)⊗Z Hn(X,X −K)→ Hn−p(X,X −K).

Basically, we could replace (X,X − K) terms by “local” open sets U (by classical excision). And now we can write

down a relative version of this to the Čech cohomology of a pair:

116



Definition 281

Let L ⊆ K be a pair of closed subspaces of a space X. The fully relative cap product is a map

∩ : Ȟp(K,L)⊗Z Hn(X,X −K)→ Hn−p(X − L,X −K).

This map in fact commutes with Mayer-Vietoris sequences, and we’ll spell that out here:

Theorem 282

Let A and B be compact subsets of a Hausdorff space X. Fix a class xA∪B ∈ Hn(X,X − A ∪ B) – this class

automatically gives us canonical classes xA ∈ Hn(X,X − A), xB ∈ Hn(X,X −B), xA∩B ∈ Hn(X,X − A ∩B) using

the induced maps from the inclusions. Then there is a map of long exact sequences

· · · Ȟp(A ∪ B) Ȟp(A)⊕ Ȟp(B) Ȟp(A ∩ B) Ȟp+1(A ∪ B) · · ·

· · · Hn−p(X,X − A ∪ B) Hn−p(X,X − A)⊕Hn−p(X,X − B) Hn−p(X,X − A ∩ B) Hn−p−1(X,X − A ∪ B) · · ·

·∩xA∪B (·∩xA)⊕(·∩xB) ·∩xA∩B

δ

·∩xA∪B

∂

And now we’ll come up with the maximally general version, which will make an “inductive” proof easier. Let M be

an n-dimensional manifold (not necessarily compact) and K be a compact subset. We have a map Hn(M,M −K)→
Γ(K; oM) (recall the latter is the set of functions from K to the disjoint union of homology groups oM , so that the

composite map K f−→ oM
p−→ K is the identity) which is an isomorphism. Then a Z-orientation along K is a section

of oM over K (an element in the set of sections Γ(K; oM) which restricted to a generator of the local homology

Hn(M,M − {x}) for every x ∈ K. This particularly nice section (Z-orientation) then corresponds to a homology class

[M]K ∈ Hn(M,M −K), called the fundamental class along K.
If L ⊆ K is an inclusion of compact subsets of M, then the map coming from functoriality

Hn(M,M −K)→ Hn(M,M − L)

sends [M]K to [M]L. (Another way of thinking of this is that a choice of local orientation that is compatible for every

point in K will restrict to L and give us a choice of local orientation there.) And we have also just introduced the cap

product

∩ : Ȟp(K,L)⊗Z Hn(M,M −K)→ Hn−p(M − L,M −K),

so we’re ready to put everything together:

Theorem 283 (Poincaré duality, version 3)

Let M be an n-dimensional manifold, and let L ⊆ K be a pair of compact subspaces. Suppose we are given a

Z-orientation along K, giving us a fundamental class [M]K . Then the map

· ∩ [M]K : Ȟp(K,L)→ Hn−p(M − L,M −K)

is an isomorphism.

We can read Miller’s notes for more details, but here are the key ideas of the induction:

Proof. First, we prove this for the special case where M = Rn and K and L are compact, convex subsets. This is a

bit of analysis – we need to use the point-set topology of Rn.
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From there, we can do the case where M = Rn and K,L are a finite union of such compact, convex subsets – this

requires writing down the Mayer-Vietoris sequence for a union, looking at the long exact sequences and using the five

lemma. (This step is relatively easy.)

The next step is to do M = Rn and K,L any compact subsets of Rn. This again requires some analysis: we use the

fact that an arbitrary compact subset of Rn can be arbitrarily well-approximated by a finite disjoint union of compact,

convex subsets (this is similar to the construction of the Lebesgue measure).

And from there, we’re ready to switch to the case where M is an arbitrary manifold, but K and L are finite unions

of compact Euclidean subspaces of M (here, Euclidean means that we take subsets of “local Rns” in neighborhoods of

points). This comes from writing M as a union of Rns – we can pick finitely many if we’re only interested in what’s

happening around K and L, because those subspaces are compact.

And finally, we get the case where M is arbitrary, and K and L are arbitrary compact spaces, using the fact that

M is a manifold, and thus Hausdorff, to do the appropriate approximations.

We’ll slightly restrict the above statement for some particular applications:

Theorem 284

Let M be an n-dimensional manifold with compact subset K. A Z-orientation along K determines a fundamental

class [M]K ∈ Hn(M,M −K), and capping with it gives us an isomorphism

Ȟn−p(K)→ Hp(M,M −K).

And now we can get a result that we couldn’t have with the original form of Poincaré duality, because Rn isn’t

compact:

Corollary 285 (Alexander duality)

Let K be a compact subset of Rn. Then the composite map

Ȟn−p(K)
∼=−→ Hp(Rn,Rn −K)

∂−→ H̃p−1(Rn −K)

is an isomorphism, where ∂ comes from the homology of a pair.

(Here, the first map is an isomorphism from the above result, and the second map is an isomorphism because Rn

has a very boring homology.) So we’re relating the Cech cohomology of a subspace to the homology of its complement.

Example 286

Let K be a closed loop in R2 (such as the image of a continuous function S1 → R2), which is nice enough that

its Čech cohomology Ȟ1(K) ∼= Z.

Basically, for a nice enough loop, Čech cohomology will be the same as ordinary homology. But there are some

pathological loops (like those made of the topologist’s sine curve) that we can deal with too! So Čech cohomology

covers a much wider set of curves, though we won’t prove that.

Then the reduced homology

H̃0(R2 −K) ∼= Ĥ1(K) ∼= Z,

so if we replace the H̃ with the corresponding homology group, we find that

H0(R2 −K) ∼= Z⊕ Z.
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Therefore, R2 −K has exactly two path-components, and this is exactly the Jordan curve theorem!

Fact 287

On the other hand, the analog of the Jordan curve theorem is false in R3: there are injective continuous maps

f : S2 → R3 such that R3 − im(f ) does not have two path components (a counterexample is the Alexander
horned sphere). So there’s something special about having two dimensions.

37 December 7, 2020
Today and Wednesday, we’ll be talking about “algebraic topology after 18.905,” exploring a bit of 18.906 and what’s

out in the world of topology afterwards. We’ve talked about four main topics in this course:

• Category theory (categories, functors, natural transformations, products, pushouts, internal Homs),

• Homological algebra (chain complexes of abelian groups, the derived category D(Z), the Tor and Ext groups),

• Homotopy theory (study of the homotopy category Ho(Top)),

• Algebraic topology (study of Top itself, and in particular manifolds).

One thing that’s good for us to notice is that homotopy theory and algebraic topology are two somewhat different

topics – on Wednesday, we’ll look at the former in more detail, but today we’ll think about what comes next in each

of the four topics.

Category theory: Products and pushouts are special cases of objects called limits and colimits, which are things

defined by the universal property. We defined the currying isomorphism, which is an example of an adjunction. (So

18.906 will start with this if it’s similar to how it’s been taught in the past.) Starting in the early 2000s, people like

to study higher categories, which have objects and morphisms like regular categories, but also 2-morphisms (which
are morphisms between morphisms), and possibly 3-morphisms and so on.

Example 288

“HZ-modules” is the higher category (or equivalently, ∞-category) of chain complexes. An object of HZ-modules

is a chain complex of abelian groups, a morphism is a chain map, and 2-morphisms are chain homotopies.

Example 289

S is the ∞-category of homotopy theory, where objects are topological spaces, morphisms are continuous maps,

and 2-morphisms are homotopies.

And since homotopy theory should not necessarily be associated with algebraic topology, we can also make an

equivalent ∞-category using just the combinatorial definition (so we don’t need to know what a topological space is if

we just work with simplicial sets). We introduced simplicial sets in the homework because ∞-categories are becoming

increasingly essential tools in different fields of math.

Example 290

Cat2 is the ∞-category of categories, where objects are categories, morphisms are functors, and 2-morphisms are

natural transformations.
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(Kerodon is a good source for learning more about this topic if we search it up online.)

Homological algebra: This topic is developed much more in algebraic geometry (such as in 18.725-726), where

we can learn about the sheaf Hom, sheaf Ext, sheaf cohomology, and so on. If we consider a set like {x2 +y2−1 = 0}
in R2, we’re using an algebraic way (the set of solutions to the equation) of describing a geometric object (the circle).

We may want to ask whether we can use an algebraic algorithm to calculate the homology of the solution set for a

given set of polynomials with real coefficients: in other words, if we were given the polynomial x2 + y2 − 1, could we

find the homology without needing to know much about topology? And doing this is due to Grothendieck.

This is valuable, because we can then think about applying this algorithm to a polynomial with coefficients in a

number field (in which it’s not clear how to extract topology). Then we can talk about things like the cohomology of

Diophantine equations – cohomology can be an invariant of polynomials over number fields or more algebraic fields!

The Galois action on the number field then gives us a Galois representation, which is an object in the Langlands

program.

Homotopy theory: One way of thinking about this topic to understand why it’s a subject separate from algebraic

topology is that it’s the “study of the equals sign,” or more specifically the isomorphism sign. Suppose we have a graph

of two vertices a and b connected by an edge: perhaps this edge means that a and b are “equal,” so this is isomorphic

to just having a single vertex a. But now if we have a graph where there are two edges between a and b, that means

they are equal in two ways – there are two different equalities. Then we could use one of the equalities to identify the

other point, but we still end up with a self-loop on the one vertex a.

a

b

→
a

a

b

→
a

If we also say that b is connected to c through a single edge, that means that b and c are equivalent in just one way,

and we can contract that edge in our simplified diagram. So notice that we’re really drawing homotopy equivalences

here: we look at systems of objects that are equal to each other when connected by paths, remembering how many

ways each connection can happen.

And if a and b are equal in two different ways, it’s possible that we can have an equality between equalities, and

drawing lines between the existing edges “fills in” the hole in the middle of the picture. So contracting this diagram

gives us a single point again, which can be thought of as telling us why D2 is equivalent to a point.

a

b

→
a

So homotopy theory is about objects, equalities between objects, but also equalities between equalities and so on.

And a CW complex or semisimplicial set is then a combinatorial system which gives us this kind of thing: the 2-cells

record equalities between equalities, the 3-cells record equalities between 2-equalities, and so on.

Algebraic topology: We can take a topological space and come up with certain invariants, and objects like

homology really come from homotopy theory but are still useful for studying topological spaces. Beyond this, an

example of a fundamental question we might want to ask in algebraic topology is “can we classify all n-dimensional

compact manifolds up to homeomorphism,” or alternatively do the same for smooth manifolds up to diffeomorphism.
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Example 291

Surfaces (2-dimensional compact manifolds) have been completely classified – it’s at the end of Munkres’ topology

book. (And Miller’s lecture notes have a lecture devoted to this classification, too.)

To get a sense for this, we’ll focus on the Z-oriented surfaces, which are classified entirely by the genus of the

surface (a genus g surface is a torus, but with g holes instead of 1). So in particular, we can determine a Z-oriented
surface by the first homology group, so if we have a collection of polynomial equations, we can see whether it’ll produce

a surface (this is something we can do in algebraic geometry), and to find out which surface, we just need to find its

first homology group.

But we’ll probably never classify all n-dimensional compact manifolds for large n, because the problem gets wildly

complicated. So instead the question becomes how to classify manifolds with particularly simple homology. In 1961,

Kervaire and Milnor classified all compact, simply connected, n-dimensional manifolds M that satisfy

Hq(M) ∼=

Z q = 0, n

0 otherwise,

meaning they look like a sphere, for all n ≥ 5. (The lower dimensions in topology can often be tricky, which has to do

with how going up in dimension makes it easier to untangle knots.) We also know the answer for n = 2 (known since

around 1900), and in 2003 we know the answer for n = 3 due to Perelman (and the work on the Poincaré conjecture).

But n = 4 is still unknown to us right now.

Milnor asked (after completing his work) whether it’s possible to classify simply connected (2n)-dimensional man-

ifolds with H0(M) ∼= Z and H1(M) ∼= H2(M) ∼= · · · ∼= Hn−1(M) ∼= 0. (So a lot of the homology groups vanish.) Note

that anything which is simply connected is Z-orientable, so Poincaré duality also tells us that the homology groups

Hn+1
∼= Hn+2(M) ∼= · · · ∼= H2n−1

∼= 0 and H2n(M) ∼= Z, but Hn(M) is unconstrained. (So it’s similar to the sphere

where we have the top and bottom dimension, but we also allow for some freedom of one homology group.) And this

is now done for all n except 2n = 4 (we can’t even do the simpler version of the problem here yet), 2n = 24, and

2n = 126. So there are some cool connections to sequences that stop after a finite amount of time – what can go

wrong is that we have strange issues in dimensions larger than 24, which have to do with the Leech lattice or monster

group.

Let’s go through some history on the progress made on this question: Wall solved n ≡ 6 mod 8 in 1962, Brown

and Peterson solved n ≡ 5 mod 8 in 1966, and Browder solved n ≡ 3 mod 8 in 1969. After that, Schultz solved

n ≡ 2 mod 8 in 1972, and Stolz solved n ≡ 1 in 1985. In 2009, the case n 6= 63 and n ≡ 7 mod 8 was solved by Hill,

Hopkins, and Ravenel. Hopkins was a professor at MIT of algebraic topology, and Hill was a graduate student (now

at UCLA and the head of the Association for LGBT Mathematicians). And the final case, n 6= 12 and n ≡ 0 mod 4,

was done by Dr. Hahn, along with Burklund and Senger (two grad students) last year! And Adela Zhang, another

grad student at MIT, is thinking about extending this to two unconstrained homology groups.

From here on all we’ll look at homotopy theory and the study of Ho(Top) (or some combinatorial system of

equalities, avoiding the topological setup). The basic question we’ll focus on is as follows:

Problem 292

If m and n are positive integers, how many maps are there from Sm → Sn up to homotopy?

The set of such maps, up to homotopy, is denoted πmSn, and we want to understand the answer for various m, n.

We proved on our homework that π3S
2 has more than one element, because we showed that not every pair of maps
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from S3 to S2 is homotopic. Here are some facts we’ll see in 18.906:

• If m < n, then all maps Sm → Sn are homotopic, so πmSn has only one element.

• If m = n, then πmSm ≡ Z: such maps are determined, up to homotopy, by their degree (the integer invariant

we’ve explored a lot on our homework).

• If m > n, then unless we’re in a special case where m = 2n − 1, πmSn is a finite set.

We may want to ask for the cardinality of this set in the m > n case, and a more refined question is to think

about the group structure of this set. If we have two maps f , g from Sm → Sn, we can define f + g by first ensuring

that the south pole of f is sent to the same point as the north pole of g (we can find some homotopic maps to do a

deformation). So now we take the sphere Sm, pinch the equator using a quotient map, and we have two copies of Sm

wedged together. So now we have a map Sm → Sm ∨ Sm, and then we’ll send the top half by f and the bottom half

by g.

Wikipedia has a table of all of these groups: for example, it turns out that π14(S4) ≡ Z/120Z× Z/12Z× Z/2Z.
We’ll study these in more detail on Wednesday’s class!

38 December 9, 2020
We’ll talk some more about homotopy theory today, particularly looking at homotopy groups of spheres and what

patterns arise. Recall that πmSn is the set of continuous maps from Sm to Sn, up to homotopy, and we mentioned

last time that this is a group. Specifically, we can add two maps f : Sm → Sn and g : Sm → Sn by pinching the

equator of Sm to get Sm ∧ Sm, and then sending the top half of the sphere via f and the bottom half via g. (And we

just need to use homotopy to adjust the maps f and g so that the south pole of f is sent to the north pole of g.)

We want to say as much as we can about these groups πmSn, and we’ll learn the following theorem in 18.906:

Theorem 293 (Freudenthal)

For n ≥ k + 2, πn+kS
n is independent of n.

The group πn+kS
n is denoted πkS – basically, for sufficiently large n, these groups become “stable.” Let’s see what

this looks like for k = 1:

Example 294

It is known that π3S
2 ∼= Z, π4S

3 ∼= Z/2Z, π5S
4 ∼= Z/2Z, and in general πn+1S

n is Z/2Z for all larger n. So

π1S ∼= Z/2Z, but we saw on our homework that there’s a particular interesting map in π3S
2, and that’s in fact a

free generator of the group.

We’ll focus on the “stable” groups πkS in today’s discussion: it turns out that the first eight groups for k =

1, 2, 3, 4, 5, 6, 7, 8 are Z/2Z,Z/2Z,Z/8Z⊕ Z/3Z, 0, 0,Z/2Z,Z/16Z⊕ Z/3Z⊕ Z/5Z, and Z/2Z, respectively. These
first few examples exhibit some chaotic-looking behavior, and it’s not clear what the pattern immediately is. In fact,

in the 1950s and 1960s, finding each of these groups was a major theorem. So it was a bit disappointing when the

results started coming in, because it wasn’t clear what to conjecture in general.

So we’ll use the one tool we’ve developed – homology – to understand these groups as best we can. An element of

π7S, for example, is a map f : S7+n → Sn for n � 0, and it’s difficult to distinguish these maps because the homology

H∗(f ) : H∗(S
7+n)→ H∗(S

n) is going to be trivial no matter what our map f is, just for degree reasons. So it’s a bit

unclear how to see information about homotopy spheres directly.
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Definition 295

A map of spheres f : Sm → Sn has Fp-Adams filtration at least k if we can find some factorization of f as a

composite Sm f1−→ X1
f2−→ X2

f3−→ · · · fk−→ Xk = Sn, such that each H∗(fi ;Fp) is trivial.

In other words, if a map has Fp-Adams filtration at least k , we can factor through k different topological spaces,

and we never know what any of those do through homology (so f gets more and more difficult to understand using

homology as k grows). This notion turns out to be robust – every map has a specific Fp-Adams filtration for every

prime p.

Fact 296

We’ll learn in 18.906 that πkS is always a finite abelian group, and we can write such groups as direct sums by

prime. So we can study πkS one prime at a time, and for each prime we can draw a relevant diagram that helps

us understand the structure better.

For example, let’s take p = 2. As mentioned above, π1S ∼= Z/2Z, so there’s only one interesting map Sn+1 → Sn,

which has Adams filtration 1 (so it’s visible to homology if we factor it through at least one other space). But π2’s

interesting map has Adams filtration 2, so a map Sn+2 → Sn can be factored through some space that’s still invisible

to homology. If we next look at π3, it turns out a fraction 1/2, 1/4, and 1/4 of the interesting maps have Adams

filtration 1, 2, 3, respectively, which reflects the Z/8Z structure. And in the diagram below, each connected component

of m dots basically corresponds to a term Z/2mZ in the group πkS.

1 2 3 4 5 6 7 8

1

2

3

4

5

k

Adams filtration

A supercomputer in China generated this kind of graph two years ago (work due to Isaksen, Wang, and Xu) – we’ve

made a lot of progress recently, but we’re at the limit of current knowledge with k = 90. Specifically, we’re getting to

the point where it takes a few months to compute! But we might hope that we can see some patterns in the columns

to understand what we can say about the groups, and that’s still a bit difficult to do. Organizing by Adams filtration

does give us some interesting patterns: at the top of the picture, we have some interesting periodicity (those groups

are called the v1-periodic homotopy groups of spheres, and they’re completely understood), and then there’s a gap

between those and the rest of the groups in the diagram. In other words, there’s a simple collection of homotopy

groups that are extremely invisible to homology, and then nothing for a while, and then a messy collection that are a

lot easier to detect with ordinary homology.

One of the biggest open questions in this subject is whether this gap continues forever, and how big it actually is

(between the v1-periodic and other groups), and the answers would have some geometric applications to the study of
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manifolds as well. And another natural question is whether we can understand the non-v1-periodic groups in the messy

part of the picture.

Definition 297

An extraordinary (co)homology theory E∗ is a functor E∗ : Ho(Top) → (graded abelian groups), satisfying all

of the Eilenberg-Steenrod axioms except the dimension axiom.

(In other words, we have Mayer-Vietoris sequences and excision and so on, but the homology or cohomology groups

for a point are allowed to be complicated.) And what’s nice about these homology theories is that they can sometimes

tell differences between maps f : Sm → Sn apart. Specifically, the E∗(f ) : E∗(S
m) → E∗(S

n) may be nontrivial,

because we don’t necessarily have concentration in a single degree like we do for H∗.

Example 298

The most important example of an extraordinary homology theory is E∗ = KO∗ (known as topological K-theory),
and this was heavily studied in the 1970s and 1980s. One notable feature is that we can use this theory to see

the v1-periodic part of π∗S.

In particular, topological K-theory has a geometric definition in terms of vector bundles (which we’ll also start

to learn about in 18.906), and there’s also some algebraic or combinatorial definitions that we can work with. But

developments have been made since the 1980s, and we can try to create extraordinary cohomology theories that detect

other elements in π∗S too. To understand that, we should talk a bit about homology theories in the abstract sense.

Definition 299

An E∞-ring is a cohomology theory E∗ taking values in graded commutative rings, instead of graded abelian

groups.

In particular, this means we have a product (analogous to the cup product), so an example would be E∗(X) =

H∗(X;R) for some commutative ring R. But we can also take values in graded commutative rings by taking E∗(X) =

KO∗(X) (this is called K-theory cohomology). It turns out that if we have an E∞-ring E∗, we can extract a
(canonical) classical ring by taking E∗ of a single point.

Example 300

The classical ring underlying H∗( · ;R) is the cohomology of a point with coefficients in R, which is R in degree 0

(and nothing else). Meanwhile, the classical ring underlying topological K-theory KO∗(·) turns out to be 8-periodic

in the degree (this is called Bott periodicity).

And the idea is that we can develop all of commutative algebra, replacing rings with E∞-rings, and finding analogous
statements for results like the Nakayama Lemma. Basically, cohomology theories should be the same in many ways

as ordinary rings, and this field of study is what is called “higher algebra” or “derived algebra” today. It turns out that

even though we get a lot of the same results, some differences do come up:

Example 301

In classical algebra and number theory, we like to study elliptic curves. Imitating the theory of elliptic curves in

E∞-rings gives us elliptic cohomology theories, which have interesting patterns that look like (for instance) Artin

reciprocity, and this can help us see some of the groups in the Adams filtration picture.
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But something interesting that doesn’t happen in classical number theory is that there is a universal elliptic
cohomology theory, which doesn’t have a lower algebra analog, which sees all information in elliptic curves! This

is known as TMF (topological modular forms), and if we take the TMF cohomology of a point, it turns out that

TMF∗(point)⊗Z Q is the classical ring of modular forms. So modular forms come up in topology, but in the context

of a more complicated object.

Thus, we can study things like abelian varieties and automorphic forms by constructing analogs of them in the world

of E∞-rings. And we can also talk about cohomology theories only valued in associative rings instead of commutative

ones (which is the notion of an E1-ring), and in general lots of (maximally complicated but universal) algebra can

be constructed in this “higher algebra” world than we could have classically. The study of chromatic homotopy
theory then assembles the homotopy groups π∗S out of things detected by E∞-rings: each E∞-ring has a chromatic

height, where height 0 looks like ordinary homology, height 1 is topological K-theory, height 2 is TMF, and there’s

a convergence theorem (the chromatic convergence theorem) which says that each element in π∗S is detected at

some height (some spot in the realm of the complexity of E∞-rings).
So this filtration of very complicated groups slowly reveals more and more information to us, and some ongoing

questions include how to compute in height 2 and how to connect number theory to height 3. So topologists sometimes

conjecture things in number theory, and that kind of work has been fruitful for progress. And a final open question to

consider is whether there is a geometric construction for EMF (rather than abstract higher algebra), just like we have

cycles or vector bundles for homology or K-theory. According to physicists, TMF∗(X) should be related to the Dirac

operator on the space of loops in X, but no one has been able to make that mathematically well-defined yet.
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