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Lecturer: Professor Victor Guillemin

Notes by: Andrew Lin

Spring 2022

Introduction

This class will follow the textbook “Differential Forms,” published by World Scientific and authored by Professor
Guillemin and Peter Haine. We can reach out at vwg@math.mit.edu or stop by room 2-270 with any questions —
regular office hours will be Mondays and Wednesdays from 1-2pm.

The prerequisites for the course are 18.100B or 18.901, and (not necessary but helpful) 18.101. And background
in linear algebra (18.700 or helpfully 18.702) will be very essential — many of the concepts in the theory of differential
forms are basically linear algebra in various aspects. For now, we won't have any exams, and grading will be done using
biweekly problem sets. Hopefully, a grader will be recruited for the course who will also hold regular office hours.
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We'll begin with a simplistic description of what differential forms look like, looking at a few concrete examples that

occur in multivariable calculus (though they aren't called differential forms in that context):

Example 1

Line integrals of the form f7 fidx1+fHdx>+f3dxs for functions f1, f, f3 in the three variables xi, xo, X3, where -y is a
curve in 3D space, are differential forms. Similarly, surface integrals of the form fs fidxodxs+fhdxydxs+fzdxidxs
with respect to some compact surface S are differential forms, and so are volume integrals fD fdx;dxodxs over

some domain D.

We should be familiar already with how we compute such integrals, but one question we can ask is what the
integrands in these expressions mean intrinsically. In a similar vein, we may remember expressions like grad, curl,
and =+ from vector calculus — we may want to ask how to naturally generalize such operations to n-dimensional space,
without having to explicitly write down complicated expressions. And that's going to lead us to the study of differential
forms, but we'll start by thinking about multilinear algebra explicitly. (We'll want to generalize these notions when

we extend our definitions later, so it's good to have everything in one place.)

Definition 2
A vector space V over R is a set with two basic operations (v, w) — v + w (vector addition) and (x, v) — xv
(scalar multiplication) for any v, w € V and x € R, containing a zero vector, additive inverses, and also satisfying

commutativity and associativity of addition, distributivity, x;(x2v) = (x1x2)v, and 1v = v.




Definition 3

A set of vectors vq,---, v, span a vector space V if every v € V can be written as v = c;v; + -+ + ¢V, for
some ci,---,Cy € R, and it is linearly independent if whenever ¢c;vy + -+ 4+ ¢c,v,, = 0, we have ¢y,---,c, = 0.
If vi,---, v, is both linearly independent and spanning, then we call the set a basis.

Fact 4

For any finite-dimensional vector space, there always exists a basis (in other words, the definitions above are

legitimate).

Remark 5. The first week or two of the class will revolve around a lot of linear algebra, and we'll be exclusively
discussing finite-dimensional vector spaces (so we don’'t need to worry about any nuances with infinite-dimensional

spaces).

Definition 6

A subset W C V is a subspace of V if it is closed under addition and scalar multiplication.

Definition 7

Let V and W be two vector spaces. A map A: V4, — W is a linear mapping if for all vy, w» € V] and ¢, & € R,
we have A(civi + cva) = c1A(vi) + ©A(v2). The kernel of A is the set ker A = {v € V4 : Av = 0}, and the
image of Aistheset ImA={w e W :w = Av for some v € \} }.

We can verify that ker A and Im A are subspaces of V4 and W, respectively, and we also have the elementary result
dimker A4+ dimIm A = dimV4. And we also have a more concrete way of writing down what A looks like when V' and
W are finite-dimensional: if we let v, -, v, be a basis of V and let wy, --- , w,, be a basis of W, then we can write
Av; =3 ajjw; for some constants a;; € R, and then the matrix formed by these ajjs gives us a matrix representation

of the linear map A.

Remark 8. The convention is often to use Av; =Y aj;w; instead to define the matrix of A, but we'll use this definition

for consistency with the book.

Fact 9
The map between linear maps and matrices is a bijective correspondence, so we can use matricial identities to

learn a lot of facts about linear maps. In particular, any map defined by a matrix A = [a;;] is a linear map.

Definition 10
Let V be a vector space. A bilinear form is a map B : V x V — R which is bilinear in each variable, meaning that

B(civi + cava, v) = c1B(wv1, v) + c2B(v», v) and similar in the other variable.

We can refer to Chapter 1 of the textbook for more linear algebra details if we'd like, but we'll finish this lecture

with a few other useful definitions:



Definition 11
Let W be a subspace of a vector space V. A subset of the form v+ W = {v+ w : w € W} is called a W-coset
of V.

In particular, note that two W-cosets v; + W and v, + W are either the same set or completely disjoint, so that

V is a disjoint union of its W-cosets. Thus, we can make the following definition:

Definition 12
Let W be a subspace of a vector V. Then V/W is the set of W-cosets of V.

It's left as an exercise for us to check that V//W is indeed a vector space (meaning that it satisfies the axioms of
Definition 2), under the addition operation (v; + W) + (vo + W) = (vi + vo) + W.
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Last time, we did a review of linear algebra — in particular, for a subspace W of a vector space V, we defined the
W-coset v+ W = {v+w:w e W} for any v € V, and we mentioned that v; + W and v, + W are always disjoint or
identical, so that V' can always be written as a disjoint union of its W-cosets.

We also mentioned that this set of cosets itself has a vector space structure: we can define a quotient space V/W
of the set of W-cosets, with addition given by (v; + W) + (v» + W) = (v1 + v») + W and scalar multiplication given
by c(v+ W) = cv+W. (Then the zero vector is 0 + W = W itself, and we can check that all of the axioms of a
vector space are satisfied.) We then have dimV/W = dimV — dim W whenever V is finite-dimensional.

Finally, we also discussed the concept of functoriality: suppose V and U are two finite-dimensional vector spaces,
and A:V — U is a linear map. If W = ker A, then we get an injective linear map V/W — U, given by v + W — Av.
Also, for any subspace W of V/, the projection map 7 : V — V/W maps any v € V to the corresponding coset v + W.

We can now turn to the topic of today's lecture, tensors. Before we get to those definitions, we'll need to discuss

a few more important linear algebra notions:

Definition 13
Let V be an n-dimensional vector space. The dual space of V, denoted V*, is the set of linear maps {£: V —
R, £ linear}.

If we let e;,---, e, be a basis of V, then we can consider the corresponding dual basis €7, --- , e, where € is the
linear map that sends e; to 1 and all of the other ¢;s to 0: in other words,

v=aier+- -+ ae, = ev=a.

Proposition 14

These maps ¢ form a basis of VV*, so choosing a basis for V' automatically gives a basis for V*.

Proof. To show that the ef's span V*, suppose we have some linear map £ € V* in the dual space. Then we can define
a, = £(ey), and we can write our map as the linear combination £ =Y a, e, since

Le) = (Z a,,e,’j) (&) = Z aue,e = a.



*

To show independence, suppose some map Y a, e} is the zero map. Then 0 = 0e; = (> aye)f) e = a;, so all a; must
be zero. O

With this, if we have a linear map A : V — W, we can always define a linear map A* : W* — V* in the following
way: for any £ € W* (meaning that £ is a linear map W — R), we define A*£ to be the map V — R which applies A

and then £ to any vector in v.

To understand what this looks like more concretely, we can think about this in terms of coordinates: let ey, -+, e,
be a basis of V, and let f;,--- , f;; be a basis of W. Then we can characterize A with the numbers a;; given by
Ae,- = Z aj,ﬁ.
If we define e, -+, e and f}*, £ to be the dual bases of V* and W*, we now wish to check that

* ook A%
A*f, —E ajje; .

This is left as an exercise to us, but essentially we should use the fact that A*f*(e;) = f*Ae;. And what this tells us
is that if [a;;] is the matrix for the map A, then its transpose [a;;] is the matrix for the map A*.

Problem 15
Show that the double dual of V satisfies (V*)* = V. (As a hint, for any v € V, we can define the map
uy(£) = £(v), and that will give us a way to map the two spaces to each other.

Problem 16
Let W be a subspace of the vector space V, and let W+ be the set of £ € V* such that £(w) = 0 for all w € W.
Show that W+ is a subspace of V* and that (V/W)* = W+,

We can now think about functoriality in this context: if A:V — W is a linear map, and A* : W* — V* is its dual
map, then we claim that
ker A* = (Im A, ImA* = (ker A)*.

Definition 17

Let V¥ denote the k-fold product V x V x --- x V. A map T : VK — R is linear in its ith slot if for any fixed
vectors v, -+, Vi_1, Vig1, -+, Vp, themap v — T (v, -+, Vi1, V, Viz1, -+, V) is a linear map. T is a k-tensor if
it is linear in all k slots. Let £X(V) denote the set of k-tensors.

We can define a vector space structure on £5(V) as follows: if we have two k-tensors T; : VK — Rand 75 : VK — R,

then we can check that ¢;T1 + 7> also gives us a valid k-tensor (by checking linearity in each slot).

Example 18
A 1-tensor is a map from V — R, so £}(V) = V*. Meanwhile, a 2-tensor is a map V x V — R, so £L?(V) is the

set of bilinear forms on V. We'll use the convention that £°(V) = R for convenience.

Definition 19

A multi-index of length k is a sequence of integers [ = (i, -+, ix), where 1 < iy, -+, ix < n.




In particular, for a basis e, -, e, of an n-dimensional vector space V, a k-tensor T, and a multi-index | =
(i, -+, ik), we can define
T, = 7_(31-lv e e/k)'

As an exercise, we can check that these numbers (across all multi-indices /) determine the k-tensor T.

Problem 20
Let Z denote the set of multi-indices, and let £X(Z) be the set of maps from Z to R. Show that dim £X(Z) =
|Z| = n*, and show that the map from to Z(/), mapping T — Ty, is bijective. Thus, conclude that the dimension

of the k-tensors is dim £K = nk.

We'll finish by defining the tensor product operation:

Definition 21
If T2 € £X(V) and T, € L£4(V) are two tensors, we can define the tensor product T; ® Ty, a (k + £)-tensor, via

(Ti @ T)(va, -+ s Vi) = Ta(va, - ., Vi) To(Vieg1, -+ Vi) -

As an exercise, we should check that this is indeed a valid tensor — we'll be using it throughout this class.
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Last lecture, we introduced the concept of a k-tensor, which is a map T : V¥ — R which is linear in each of
the k copies of V. (In other words, if we fix vectors vy, -, Vi_1, Vix1, -+, Vk, then for any v € V, the map v —
T(vi,--+, Vi1, V, Vig1, -+, vk) is linear in v.) Recall that £X(V) denote the set of k-tensors; this is in fact a vector
space because any linear combination of k-tensors is itself a k-tensor.

In our definitions last time, we also introduced multi-index notation: a multi-index of length k is some sequence
I = (uy,---,uk) of integers 1 < u; < n, and we can define a k-tensor using a multi-index description by defining the
numbers T; = T(ey,, €y, -+ , €y, ) for each I. Those numbers then give us, by linearity, a concrete description of the

, . : K
k-tensor: as we'll describe later, if v; =37, aj;e;, then we have

T(Vl,"' ,vk):Za,T, .
/

We'll spend today discussing some more algebraic properties of these k-tensors. Recall that given two tensors T; €
Lk (V) and T» € £ (V), we can define the tensor product T; ® T, € £k (V) via

T1 @ To(vi, va, s Vigtke) = Ta(ve, oo Vi ) Ta(Vig 41, Vig ko )-
It's left as an exercise to use to check this is a valid tensor, and we can also verify some other properties of this product
operation:

1. (Associativity) For any three tensors Ty, To, T3, we have (T; @ To) ® T3 = T1 @ (T2 ® T3), so we do not need
to worry about parentheses when doing tensor product computations.

2. (Left and right distributivity) For any two tensors T1, T» € £% of the same order and any T3 € £*, we have
(T1+T2)®T3 =T1®T3+ T, ® T3, as well as T3®(T1—|—T2) =T3T1+ T3 Ts.



Note that we do not have commutativity (that is, T ® T, = T, ® T1) in general. But still, being able to take these
kinds of products allows us to consider an important special class of tensors:

Definition 22
Forall 1 < i<k, let£; € V* be linear maps. Then £; ® --- ® £, is a decomposable k-tensor.

Theorem 23
Let e, -+, e, be abasis of a (finite-dimensional) vector space V, and let €], - - - , e be the corresponding dual basis.
Let / = (u1, -+, uk) be an arbitrary multi-index of indices. Then the (decomposable) k-tensors ef = e ®---®e];,

form a basis of £LX(V).

Proof sketch. This is essentially a reformulation of the boxed equation T(vy,---,v) = >, a/T; from above. For
any k-tensor V' and any vy, .-, vk satisfying v; = Zf:l ajje;, if we define a; = ayy, - - - aky,. then plugging in the v;

expressions and using linearity of the tensor gives us

T(vi, i) = ZQIT/,

so we've written our tensor T as a linear combination of these T;s. From here, it just remains to show that the T;s

are linearly independent, which will be left for us to show. O

Being able to uniquely express T as linear combinations of tensors of the form e, @ --- ® e will be useful for

computations in the future!
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We'll discuss the theory of permutations today as they relate to some of the linear algebra objects that we've been

studying in this class:

Definition 24
A permutation of order k is a bijective map ¢ : {1,2,---,k} — {1,2,--- , k}. The set of all permutations of
order k is denoted Sy.

This set of permutations has a natural group structure, because bijective maps can be composed and inverted: if
o, T are elements of Sk, then o7 is the permutation that sends i to o(7(i)). (We can then check the group axioms

ourselves from here as an exercise.)

Definition 25

Let 1 </,j < k. The transposition permutation 7;; is the map sending / to J, j to /, and fixing all other integers.

It is a fact (that we might learn in an abstract algebra class) that every permutation is a finite product of trans-

positions — this can be proved by induction.

Definition 26

The elementary transpositions are the transposition permutations of the form 7; 1.




It turns out that we can also write every transposition as a finite product of elementary permutations — this is
again proved by induction. Essentially, notice that 7 1o = Tit1,i+2Ti i+1Ti+1,i+2, and then T 13 = Tit0,i+3Ti i+2Tit+2.i+3
(from which we can substitute in the expression for 7;;12), and so on. Thus, combining these two facts gives us the

important result:

Proposition 27

Every transposition is a finite product of elementary transpositions.

Definition 28
Let xq,---, X, be coordinate functions on R”, and let 0 € S,, be a permutation. The sign of the permutation o,
denoted (—1)7, is given by
(-1)° = M
Hi<j(Xi = X))

Notice that each set of indices {/, } will show up in both the numerator and denominator in some order, so the

right-hand side will just be one of +1.

Lemma 29

If 7 is any transposition permutation, then (—1)" = —1.

(This is easily verified by plugging the form of T back into the formula.)

Lemma 30
If o, 7 € S, are two permutations, then (—=1)°" = (—1)7(-1)".

Proof. Plugging into the formula, we have

ITicj Xor(y = Xor ()

(-1)°7 = HKJ(Xj =

We can rewrite this product as
_ i %ort) = %16 i, Gty = %)
H/<j(X‘r(i) - X‘r(j)) H;’<j(xi - XJ)

so that the second factor is (—1)7 by definition. But now replacing i and j with 7(/) and 7(j) in the numerator

and denominator is essentially a relabeling of the indices (alternatively, a reordering of the terms in the product). So
I o) %o

H/<j(xi#7)9#) !
i#, j# exactly once, so this fraction is exactly the definition of (—1)?. This finishes the proof. O

replacing i# = 7(i) will make the first term and these products each sum over each unordered pair

Corollary 31
If 0 € S, is a product of k transpositions, then (—1)7 = (—1)*.

Definition 32
Let T € LK(V) be a k-tensor, and let o € Sx. We define T to be the k-tensor such that

TU(Vl, A Vk) = T(Vg—l(l), e Vg—1(k)).




(The reasons for using the inverse permutation will become clear soon.)

Example 33
Let ¢1,---,4x € V* be linear maps, and let T be the decomposable k-tensor 41 ® --- ® €. Then T7 =

Lo()lo2)  Lo(k)-

Proposition 34
Let T be a k-tensor, and let 0, 7 € Si. Then T°7 = (T?)" (meaning that we apply the o permutation first to T,
and then 7 to that result).

Proof. By linearity, it suffices to show that this result holds for decomposable k-tensors, so we can apply Example 33
and verify that the result holds there. O

We'll finish this lecture by introducing two important objects that we'll be using for the rest of this course:

Definition 35
A k-tensor T € LX(V) is a symmetric k-tensor if for every permutation o € Sy, T° = T.

But for the theory of differential forms, the even more important object is the following:

Definition 36
A k-tensor T € LK(V) is an alternating k-tensor if for every permutation o € Sy, 79 = (—1)°T.

These alternating k-tensors will turn out to be the basic building blocks of differential forms, and we'll be studying

them a lot in the coming lectures.
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Last lecture, we introduced some properties of permutations, which are bijective maps o : {1,--- , k} — {1,--- , k}.
Treating composition of these maps as multiplication, the set of permutations Sx has a group structure (where the
inverse o~ ! of a permutation o is the inverse map).

A very relevant property of permutations is their sign, which is either 1 or —1 and is given by the definition
(=17 =1l ZO%0) |n particular, if we take a k-tensor T € £X(V), we defined the k-tensor T given by

Xi—X;
TU(Vl, Vo, -, Vk) = T(Vg—l(l), Vo-1(2), """ Va—l(k)),

and we said that a k-tensor is alternating if 7 = (—1)°T (and symmetric if T° = T) for all permutations o € SX.
These definitions become more clear if we look at the decomposable tensors of the form T =£4; ® £, ® - - - @ £ (where
£;s are linear maps) — for such tensors, we have T7 = £;1) ® £y2) ® -+ @ £o(y. Looking at such decomposable
k-tensors, which form a basis of all k-tensors, allows us to prove that 7(°™) = (T9)7.

We'll let S¥(V) denote the space of symmetric k-tensors, and we'll let A*(V) denote the space of alternating k-
tensors. The latter set will be essential for the theory of differential forms, and here we'll describe a way of constructing

such alternating tensors:



Definition 37

Let T € L£X(V) be an arbitrary tensor. The alternation operation is defined via

AI(T) = (-1)T".

TESK

Proposition 38

The facts below follow from definitions and properties of the sign of a permutation:
1. Forany T € LX(V), we have Alt(T) € A*(V).
2. For any o € Si, we have Alt(T7) = (—1)? Alt(T).

3. If T € Alt(T), then Alt(T) = KIT.

We will now construct a basis for Ak(V). First, let ey, --- , e, beabasisof V, andlet e, - - - , e} be the corresponding
dual basis of V*. For any multi-index [ = (i1, ..., ix), we define e = ef; R ® e;;, and we may recall from previous

lectures that these e form a basis of L5(V). Given this fact, we now define
¢ = Alt(ef)

for all multi-indices /; because the ef form a basis and Alt is surjective, we know that the ¢;s span A*(V). But to
avoid having linear dependence, we need to restrict the set of /s that we use:

Definition 39

A multi-index [ is strictly increasing if i < b < --- < J,.

Theorem 40
The set {¢, : / strictly increasing} is a basis for the set of alternating k-tensors AX(V).

Beginning of the proof. First of all, call a multi-index / repeating if /. = is for some r # s. Notice that ¢, = 0 for
any repeating multi-index | — we can see this by breaking Sk up into the two cosets formed by the subgroup {1, 0,s},
or equivalently saying that T; = 7,7, so that

Al(T)) = AIt(TO) = — Alt(T;) = AIt(T}) = 0.

Thus we do not want to include ¢, for repeating /. Now if we consider a non-repeating multi-index /, let (i, ir,, ==+, ir,)
be the reordering of the indices of / so that n < rn» < -+ < ry, and let 0 € S, be the permutation that takes j
to i, then [9 is strictly increasing, and Alt(ef,) = (—1)7 Alt(ef) (because (ef)? = e,). Thus any ¢; is £¢- for
some increasing multi-index /79, so the set of ¢, formed by just the increasing multi-indices / also spans the whole set
A¥(V*). The rest of the proof will be shown next time! O
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Our first homework assignment will be on Canvas today, and it will be due two weeks from today.



First, let's do some review. We've been studying the “permuted” versions of tensors in the last few lectures: for
any tensor T € £X(V) and any permutation o € S, we define T? via T?(vy, -+, vik) = T (Vo-11), -+, Vo-1(k))- (This
definition is motivated by the fact that a decomposable tensor T = £; ®- - - @£ becomes T7 = £;(1)®- - - @Lg(k).) The
fundamental objects important for the theory of differential forms are the alternating tensors satisfying T = (=1)°T°¢

(or equivalently T? = (—=1)°T) — we can construct the tensor
AIL(T?) = > (-1)7T°.
geSy

It turns out that Alt is a surjective map from L£K(V) to AX(V), and Alt(T) = k!T if T is an alternating tensor. It then

makes sense to ask about the kernel of the map Alt:

Definition 41
A decomposable k-tensor T =41 ® - - - ® £ is redundant if £, = £,,1. The linear span of all redundant k-tensors

is denoted Z* (elements of Z* will be called redundant as well).

Proposition 42
If T €I, then Alt(T) = 0.

Proof. Suppose T =41 ® --- ® £y is decomposable with £, = £,.,. Let o be the transposition permutation swapping
rand r + 1, so that
Alt(T) = Alt(T?) = (=1)7 Alt(T) = — Alt(T),

so that Alt(T) = 0. Since these redundant tensors span Z¥, Alt(T) = 0 for any element of Z*. O

We aim to show that these redundant k-tensors span the kernel of Alt, which is the converse result. This is
essentially showing the other part of the theorem from last lecture, but first, we mention some important preliminary

results:

Lemma 43
If T1 and T are elements of Z'(V) and Z°(V), respectively, then T; ® T, and T, ® T; are element sof Z" (V).

Proof. It suffices to consider the case where T; and T, are both decomposable redundant k-tensors, so that 77 has
some repeat £; = £;;1. Then whether we are tensoring 71 ® T, or To, ® T, we will have two adjacent slots where the

linear maps are the same (either £, = £;,1 or £;vc = £i1s11, respectively). O

Lemma 44
If T € £5(V) and o € Sk, then T = (=1)°T? + T’ for some T’ € Z*.

Proof. By linearity, it suffices to show the result when T is decomposable. Let T =41 ® - - - ® £,. We know that any
permutation o can be written as a product of elementary transpositions of the form 7; = o} 41; if we consider the

case where o is a single transposition 7;, then

THT =60 QUi®Liy1+Li1 @) R - DLk

10



But this right-hand side is in the linear span of redundant decomposable tensors, because
i@Lliy1 + 241 @ L) = (L +Liy1) @ Ui+ L4iy1) — 4 @4 — L1 @ Ly,

Thus T + T7 is in Z¥, and because (—1)? = —1 in this case that's exactly what we want to show.
From here, we use induction: suppose ¢ is a product of the form 7y75 ... Tp,—1, and we know that 7 — (—1)°T°

is in ZK. Then by the inductive hypothesis we have (abusing notation a little here)
ToT =(T°) = (-1)"T° + I*,
and again applying the inductive hypothesis we get

=(-1)7(=1)°T +IF = (-1)7"T + I*,

showing the desired result. O
Corollary 45
For all T € £X(V), we have
1
T = P AIR(T) + 1

for some | € ZK(V).

Proof. By Lemma 44, we have

AR(T) =3 (-1)7T% = 3 (~1)7(~1)°T + S,

(e [

for some S, € ZK for each o € Sk. Since (—=1)7(—1)° = 1, this simplifies to

Alt(T) = KIT + ) S,

Dividing through by k! and rearranging gives the result — because each S, is in Z*, so is their average. ]

That finally gives us the result about the kernel of the map Alt:

Corollary 46
For any k-tensor T, if Alt(T) = 0, then T € Z¥. Also, any k-tensor T can be uniquely written as T = T’ + S/,

where T is alternating and S’ is redundant.

Proof. The first part follows by setting Alt(T) = 0 in Corollary 45. For the second part, suppose we have T =
T'+S" = T{+ 5], where T', T{ are alternating and S’, S} are redundant. Taking Alt of both sides, we find that
Alt(T) = kIT' = kIT], so T" =T and thus S’ = S7. O

We thus can think of alternating k-tensors as a quotient space, and that will be foundational for our future study.
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Last time, we introduced the set of redundant k-tensors Z*(V/), which are the linear span of the decomposable k-
tensors £ ® -+ - ® £y with £; = £;41 for some i. We then proved that if T is redundant, then Alt(T) = 0, and in fact

11



TZK(V) is the kernel of the map Alt : £X(V) — AK(V).
This allows us to make the definition of the most important object of the class:

Definition 47
The space of exterior k-forms on a vector space V is the quotient space AK(V*) = LX(V)/ZK(V).

In particular, here we're making use of the exact sequence
0 ZF(V) = £5(V) 28 AR(v) = 0
(where exactness follows from the result we showed last lecture). And furthermore, we now get a natural bijection

AV = AK(V),

where the idea is that the two descriptions of the same object (either as a quotient space, or as a subspace) can be
useful in conjunction. (Since we're looking at the space of tensors over V*, we can imagine these spaces as being

spanned by v; ® --- ® v;,, where the v;s are now basis elements of the original space V")

Definition 48

Let m : LK(V) — LK(V)/Z*(V) = N¥(V*) be the natural projection map. The wedge product operation is
defined as follows: for w; € AM(V*) and w, € A*2(V*), pick some T; € LK (V) so that 7(T;) = w;. Then define
w1 Awy =7(T1 @ Tp).

This definition basically tells us to go back into the full space of k-tensors and do a tensor product there, so that
the wedge product is a “factored version” of the tensor product. We can check that this is well-defined — in particular,
if we have Ty or T, redundant, then T; ® T, is redundant, so that after quotienting out we'll still have 0. Thus our

choice of Ty (which is up to a redundant tensor defined) will not change the end result w(T; ® T»).

Definition 49
Let V be an n-dimensional vector space, and let T € £X(V). The interior product operation is defined as follows:

for veV, 1, (T) is the (k — 1)-tensor given by

k
b(T)(ve, - i) = Z(—l)r_lT(Vly S Vem1, Vo Viegn, o Vi),

r=1

We'll talk more about this next time!

8 February 16, 2022

Last time, we wrote down the short exact sequence

0= ZH(V) — £5(V) 25 Ax(v) - 0,

which is basically a cleaner way of explaining that Z* is the kernel of the Alt map £K(V) — A*(V). This enabled us
to define the space of exterior k-forms AK(V*) = £X(V)/Z*(V), in such a way that we have a bijective map between
AK(V*) and AK(V). From there, the projection operation £K(V) — LX(V)/Z¥(V) = A*(V*) (which we can think
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about as basically applying Alt) allows us to define the wedge product: if w; € A (V*) and w, € A2 (V*), then
we can pick T3 € £(V) and T, € £%(V) such that m(T1) = w; and 7(T2) = w- (this is always possible because the
projection map is onto). Then w; A wr, = w(T1 ® T»), and we mentioned last time that this indeed well-defined.

We can now turn to considerations of functoriality:

Definition 50
If we have a linear map A : V — W between vector spaces, then we also get a linear map A* : LK(W) — LK(V),

given by the pullback operation: for any k-tensor T € LK(W), we have

AT(ve, ) =T(Avg, -+, Awg).

In particular, we can check that if T € Z¥(W), then A*T € ZK(V) (start with a decomposable k-tensor, noticing

that if £, = £,41, then A*¢, = A*{,.1), and we can also verify the relation
A (TL®To) = A*(T1) ® A (T>).
Thus, we can also define an induced map on the quotient spaces
A LKW JTR(W) — £K(V) /T5(V),
and therefore this pullback operation takes a linear map A : V — W and gives us a map
A* AW — AR(V).

(The reason we write AX(V) instead of AK(V*) here is that it's more in line with the naturality of quotienting by
the kernel and ending up with the image, but it's essentially the same thing.) In particular, bringing our definitions
together, we find that for w; € A®(V*) and ws € A2 (V*), we have

A" (w1 A wa) = Awi A Awa,

and thus in the special case where we're wedging together linear maps, we get

(A A N = Al A NAY

(we'll be using this a lot throughout the rest of the course!). With this in mind, we can apply our discussion to the

notion of a determinant from linear algebra:

Proposition 51

Let V, W be two n-dimensional vector spaces, and let e1,--- , e, and fi,--- , f, be bases of V and W, respectively
with corresponding dual bases ef,--- ,es and f*,--- ,f. Let A:V — W be a linear map with corresponding
matrix [a;;] with respect to these bases, so that Ae; = > a;;fi and A*f* =3 aj;ef. Then

A*(fl* A A fn*) — A*fl* /\,../\A*fn* — (Z aljlej;) A A (Zanj”ej;) = ZaljlaQJ'g"'anjnejv

* — S CECEEY .
where e = e;e? -+ - €.

In particular, for any repeating multi-index J, € = 0, and for any non-repeating multi-index, there is a permutation

o € S, such that o(i) = j; for all i, meaning that e} = (=1)7ef A --- A €}. And thus, our familiar above reduces to
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something more familiar, since we have a summation of the form

z:(—l)"alj1 cap, el Ney N ANep

Corollary 52

For any linear map A:V — W, we have

A (A AfF) = (detA)ef A--- Aep.

This functoriality allows us to prove some nice results from linear algebra without needing too much computation:
for example, we can see quickly that det(AB) = det(A) det(B), using that

det(AB)w = (AB)*w = B*(A*w) = B*(det A- w) = det AB*(w) = det(A) det(B)w.

We can also see that the identity map A : V — V has det(A) = 1, and that whenever A : V — V is not onto,
det(A) =0

9 February 18, 2022

Fact 53
We're assigned to read Section 1.9 and Section 2.1 of the textbook on our own over the weekend, which essentially

covers the concepts of orientations, vector fields, and 1-forms. But we'll mention a few of the facts here:

Definition 54
Let £ be a line through the origin in R?. Then £ — {0} has two connected components, and an orientation of £ is

a choice of one of these two components.

(This is equivalent to essentially choosing a direction for the line.) We also have a natural generalization of this

which will connect back to the material in the class:

Definition 55
Let L be a one-dimensional vector space. Then L—{0} has two components; specifically, if we fix some v € L —{0},
we have the component Lt = {Av : X > 0} and L~ = {Av : XA < 0}. An orientation of L is a choice of either
Lt orL™.

Even more generally, if V' is an n-dimensional vector space, an orientation of V/ is an orientation of the space
A" (V). If (e1, -+, e,) form an ordered basis of V, then the basis is said to be positively oriented if e; A--- A e,

is in the positive part of A"(V).

(Note that the dimension of the space AK(V) is (}), so A"(V) indeed has dimension () = 1.)
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Proposition 56

Let V' be an n-dimensional vector space, and let W C V be a k-dimensional subspace. If we are given orientations
on V and W, then there is a natural orientation of the quotient space V//W given as follows: choose an oriented
basis vq, - -+, v, of V such that the first k of these vectors form an oriented basis of W. Then we can orient V/W

by projecting the remaining n — k vectors onto V/W.

With that, we'll start making a few remarks that will start us on the next section of the class next week (Chapter

2 of the book). The idea is that Section 2.1 looks at simple but pivotal objects in the study of differential forms.

Definition 57
Let p € R" be a point. The tangent space at p, denoted T,(R"), is the set

Tp(R") ={(p.v) : v €R"}.

The point p can be called a base point.

We can form the obvious vector space structure on T,(R"), keeping the same base point, via

(p,v1) +(pva) = (p.vi+va), A(p.v)=(p.Av).

The idea is to think of v as an arrow originating from p and pointing in the direction of v.

Definition 58

Let U be an open subset of R”. A vector field v on U is a function which assigns to each point p € U a
corresponding v(p) € T,(U) = T,(R"). A one-form on U is a function which assigns to each point p € U an
element w(p) € T;(R").

Starting next week, we'll talk more about these definitions, generalize to k-forms, and get into the main topic of

this course!

10 February 22, 2022

Today, we'll fully begin discussing the concept of differential forms. Last lecture, we introduced the concept of a
tangent space (the set of pairs (p, v) for some fixed p € R") — we convert this to a vector space by using the usual

vector space structure on R” through v, keeping the base point p fixed:

(p,wv1) +(p.va) = (p.vi +v2), A(p.v) = (p.Av).

We can now think about functoriality in the following way: suppose we have open sets U,V € R"”,R™ and we have
a C* (smooth) map ¢ : U — V. Then we can define the derivative map D¢(r) : R” — R™ encoded by the matrix

[‘g‘z’ (r)] This leads us to the base pointed version of the derivative definition:
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Definition 59
Let ¢ : U — V bea C>® map, and let g = ¢(p). The map (d¢), between tangent spaces T,U — T,V is given by

(dp)p(p. v) = (a. De(p)(v)).

In other words, we map the base point to the new base point, and we apply the derivative map to the vector v.
One result from calculus is the familiar chain rule: if W is additionally an open set in R¢ and 9 : V — W is a C* map,

then we know that

(dod)p = dipgo dop.

Definition 60

The cotangent space to U at p is the vector space dual of the corresponding tangent space:

T,U=(T,U)".

In particular, if f € C*(U) is a smooth real-valued function, p € U is some point, and u = f(p). Then we can
think of f as a map (U, p) = (R, u). Taking its derivative, we then know that df, is a map T,U — T,R = R, so it's

fundamentally an element of the cotangent space: | df, € T U |

Problem 61
Let xq,- -, X, be coordinate functions on U C R"”. Then (dx1)p, - -+, (dx,), form a basis of the cotangent space
T U.

P

This basis can be described in an alternative way as well: if we let ¢; be the standard basis vector with a 1 in the

ith spot and Os in the others, and we use the notation

)
(ax,->p = (p, &) € TpU,

then these elements form a basis of T, and then (dx;), is the corresponding dual basis on T U.
We can now return to the definitions of vector fields and one-forms that we started last lecture: recall that a

vector field is a map v : U — T,U, and we can write that as
v(p) = (p.v(p))

for some map v : U — R".

Example 62

Let e again be the standard basis vectors. Then the vector field p — (p, €;) is denoted a%- Since (%) =(p, &)
! ! p

form a basis for T,U, we can write every vector field as

(D)= (o) = v=Yfipr-

for real-valued functions (the coefficients for our basis vectors) f;.
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Definition 63

A vector field v is C*® if v is C*, or equivalently if the corresponding fis are functions in C*°(U).

The duals to these vector fields are the one-forms: as we defined last time, a one-form is functions u which send

points p € U to elements of T U. In particular, if f € C>*(U) is a smooth function, then df is the one-form on U

mapping
df : p s df,.

The coordinate functions xq, - - - , X, on U then give us one-forms dxy, - - - , dx,. Since we've shown that these are basis

elements of 77U, we find that every one-form v on U can be written uniquely as
u=fidxy+---+ frdx,

for some real-valued functions f; : U — R.

Definition 64

A one-form is C* if the corresponding fis are C* functions. The space of C* one-forms is denoted Q! (V).

Example 65
If f € C°(U) is any smooth function, then the one-form df defined above is C*. Indeed, as we might expect,
df = &Ldx;.

We'll finish this lecture by defining the pullback operation on one-forms:

Definition 66
Let U € R" and V € R™ be open sets, and let f : U — V be a C*> map. Then given a one-form v on V, we can

define the one-form £ via
o (p) = (dfp)"v(f(p)),

where (df,)* : T4V — T;U is the map we defined earlier as being given by the transpose of df, : T,U — T,4V.

Problem 67
Suppose yi, -, ym are the standard coordinates on V, and f; = f*. Then any C* one-form on V' of the form

v =" ajdy; has corresponding pullback f*v =" f*a;df;, so that f*v is a C* one-form if v is.

In particular, £* is a map Q1 (V) — QL(V).

11 February 23, 2022

Fact 68
Our last lecture was just yesterday, and today’s lecture is a lot of review of that material (because of the new

definitions).
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Last lecture, we made a lot of important definitions relevant to our eventual introduction of differential forms.
Specifically, we discussed the tangent space T,U of a point p in an open set U, and we mentioned that when we have
a smooth map f : U — W between open sets, we can also define a base-pointed version of the differential map Df(p),
which we call df, (this just maps base point p to the new base point f(p) and applies Df to the “tangent” vector v).
We then have a chain rule (which is essentially a matrix multiplication statement) for these base-pointed differential
maps, given by

(dgof)p,=dgqodfy.

We next defined the dual space T U; specifically, base-pointed differential maps df, can be thought of as maps
(U p) = (R, g) 2R, which are linear maps on the tangent space and thus elements of that dual space. And with all
of these new vector spaces, we can construct associated linear bases: for example, the (dx;), for 1 < i < n form a
basis of T,;"U if we're in n-dimensional space, and the dual basis of T,U consists of the elements (a%)p = (p, ) for
1<i<n.

Remark 69. The reason for the definition (%) = (p, &) is essentially that an element (p, v) of the tangent space
"Jp
encodes a vector v rooted at p, so a vector pointed in the e; direction is inherently connected to the notion of taking

the derivative along the x; coordinate.

Additionally, we defined one-forms, which are maps from U to T ;U (assigning to each point p a corresponding

element u, € T;,*U). Today, we'll start by discussing operations that we can do on these one-forms:
1. If uy, up are one-forms on U, then uy + s is the one-form v such that u(p) = v1(p) + w2(p) for all p € U.

2. If uis a one-form on U and ¢ € C>*(U) is a smooth function, then ¢u is the one-form such that (4u)(p) =

d(p)u(p) for all p. (But we cannot just multiply two one-forms together because u(p) is not a number.)

3. If p € C°(U) is a smooth function, then we can define the one-form dp which sends p — dp,. In particular,
each coordinate function x; is a smooth function, so dx; (for 1 < j < n) are all one-forms, and in fact every
one-form is “locally” a linear combination of this nature: we have a class of C* one-forms, denoted Q(U), given
by

u=pidxy + -+ Ppdx,
for some ¢; € C*>°(U) (and more generally, every one-form is of this form but for arbitrary real-valued functions

®i). In particular, Q(U) is closed under the first two operations of addition and multiplication by ¢.

The last object that we defined last lecture is the pullback operation: if we have a smooth map U — V/, then we
get a corresponding map f* : QY(V) — Q!(U) mapping one-forms via v + f*v. Specifically (changing the notation
slightly from last lecture), we have

(f*v)p = (dfy)"vq,

where (as usual) g = f(p). As mentioned last time, one way to understand why this pullback operation is defined in
this way is that if v = dx; and our smooth function is f = (f,- -, f), then f*dx; = df;. (And more generally, if v is
a C* one-form and f is a smooth mapping, then f*v is also a C* one-form.)

We'll finish this lecture by reviewing a few operations on vector fields, analogous to the ones on one-forms before:
if v1, vo are vector fields (maps U — T,U), then we can define v; + v, by pointwise addition

(vi +wv2)(p) = vai(p) + va(p).

We can also define multiplication by a smooth function ¢ : U — R
ov(p) = ¢(p)v(p).
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Finally, the objects % are vector fields on U which send p to (6?«) , and all vector fields are linear combinations of
i "/ p

0
vV = Z(ﬁ,an’

In particular, if ¢; are C*° functions, then we call v a C* vector field.

these fundamental vector fields of the form

12 February 28, 2022

(Friday's class did not occur because of a snow day, so we're having that lecture instead.) We'll discuss the theory of

integral curves of vector fields today.

Definition 70
Let U be an open set in R”, and let v be a vector field on U. A function <y : (a, b) — U is an integral curve of v

if for all a < t < b, if we define p = y(t), we have

o) = (. SL0).

More explicitly, if our curve is written out as y(t) = (x1(t), -, x,(t)), then this equation has the more explicit
form J

:

() = wlx(),

where we're writing out our vector field explicitly as v =) Via%,- With this, we can do some basic ODE theory. We'll

start by citing some relevant local results:

Fact 71 (Existence of integral curves)
Let v be a vector field, and let pp € U and a € R. Then there exists an interval | = (a —¢, a+¢€) for some € > 0,

an open set Uy C U containing pg, and a C* map F : Uy x | — U, such that «y,(t) is an integral curve of v.

Fact 72 (Uniqueness of integral curves)
Suppose 71 : I1 — U and v, : I — U are two integral curves of v. Then if y1(tg) = v2(tg) for some t € /1 N I,
then v1(t) = ¥2(t) for all t € /1 N /5, and patching the two curves

1(t) tel,
Y2(t) tel,

also results in an integral curve of v.

Fact 73
If we let | = (a,b) and I = (a — ¢, b— ¢), then given an integral curve y(t) : | — U, we also have the integral

curve y(t+c¢): lc = U.

There are also some relevant global results:
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Definition 74
A vector field v on U is complete if for every p € U, there exists an integral curve 7y,(t) : R — U such that
Yp(0) = p, and the map F : U x (—o0, 00) = U defined by F(p, t) =,(t) is a C* map.

In other words, there is an integral curve of v going through any point p in our open set which exists for all time.
(And these notions will come up when we generalize from Euclidean space to manifolds as well.) This means that the
map f; : U — U defined by fi(p) = F(t, p) is a C> map. Furthermore, fy is the identity map on U, and fro f, = fiy,
(so that f; and f_; are inverses). While this condition looks strong, it turns out that there is a large collection of

vector fields which satisfy this property:

Definition 75
A vector field v =3 Via%, on U is compactly supported if v; € C§°(U) for all /.

Proposition 76

If a vector field v is compactly supported, then v is complete.

Proof sketch. Suppose we have v(pg) = 0. Then the curve yo(t) = po for t € R (not to be confused with the v,(t)
maps above) satisfies

0= %%(t) = v(po),
SO 7 is an integral curve for v and is the unique integral curve through the point py. Now defining the set A= {p €
U : v(p) = 0}, for any p € A, the ODE uniqueness tells us that the unique integral curve of v through p is the constant
curve Yo(t) = po.

Definition 77
If an integral curve <y on [0, T) cannot be extended to a larger interval [0, T7), then it is maximal.

We claim that if y,(t) is maximal, then T = oo. Indeed, if p € A and v,(t) € Aforall 0 < t < T, then
Yp(t) — g € A as t approaches T because of compactness of A. Then using local existence at uniqueness at g,
we can show that y,(t) can be extended to an interval 0 < t < T + ¢ (so we can always extend if T is finite). In
particular, y,(t) is well-defined for —oo < t <0 and 0 < t < oo, and we've shown completeness. O

Definition 78
A function ¢ € C*(U) is an integral of motion for the dynamical system generated by a vector field v if for every

integral curve y(t), we have %(b(’y(t)) =0.

Theorem 79
A necessary and sufficient condition for ¢ to have this property is that the Lie derivative of ¢ is L,¢ = 0.

Proof. \We have J
Z29((D))

= (@), (55%(0)) = (@)u(p) =0

t=—

by the definition of an integral of motion. ]
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Proposition 80
Suppose ¢ is proper (meaning that preimages of compact sets are compact). Then ¢~!([—a, a]) is compact for

all a € R.

We can prove this by noting that if ¢(y(t)) is constant for a < t < b, then «y(t) can't go off to co as t — a or
t—b.

Example 81
Let U=R2, and let v = Xla%z — X_o_ be our integral curve. We can check that the function ¢(x1, x2) = x12 +X22
ax]

is an integral of motion for v, so v is complete.

Next lecture, we'll connect this back to our definition of differential forms and the definition of the space AK(V).

13 March 2, 2022

We'll start by reviewing some material from previous lectures about the exterior algebra: recall that if £%(V) is
the space of k-tensors on V/, and ZX(V) is the space of redundant k-tensors, spanned by elements £; ® --- ® £
where £; = £;11, we can define the space AX(V*) = £X(V)/Z¥(V). Then because the tensor product of redundant
k-tensors is itself redundant, we can also define the wedge product operation as follows: letting 7, be the projection
LK LK(V)/IK(V), it is well-defined to let the wedge product of w; = m, 71 and ws = my, T> be

w1 AWy = 7Tk1+k2(7—1 ® TQ) = /\k(\/*)

In particular, if £1,---,£, form a basis of V*, then the wedge products w;, = ¢;; A ¢, --- A ¢, with increasing indices
h <l < -+ < i form a basis of AK(V*), and the dimension of AK(V*) is (]) (so AK(V*) =0 for k > n).

Fact 82
We will set A°(V*) = R for convention, and this is consistent with having an (6’) = 1-dimensional vector space.

Today, we'll now connect this back to the definition of k-forms and differential forms. If we let U C R" be an open

subset and p € U be a point, recall that the tangent space of U is the set of points {(p, v) : v € R"}.

Definition 83
A k-form on an open set U C R" is a “function” A, which assigns to each p € U an element w,, € /\k(T,;"U).

Example 84
If wi, -+, wy are 1-forms on U, then for any p € U, wi(p) € TjU, s0 wi(p) A--- Awi(p) € N(T;U). Therefore,
w1 A+ Awg is a k-form on U, assigning p € U to wi(p) A -+ A wk(p).

Example 85
If f; € C°°(U) are smooth functions, then df; is a 1-form for each 1 </ < k, so dfi A--- A dfy is a k-form. More
specifically, letting / = (i, - - , ix) be a multi-index of length k, we can define dx; = dx;, A --- A dx,.
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Since (dx1)p, -+, (dx,), form a basis of the cotangent space T, U, we find that the elements
(dX/)p:(dX,'l)p/\'“/\(dX,‘k)p, << <l

form a basis for the kth exterior power of the cotangent space, /\k(T;U). Therefore, given any k-form w on U, we
can write

Wp = Z f,(p)dx,,
I

where the sum | goes over increasing multi-indices / and f;(p) are each real numbers. Therefore, we are really saying
that the k-form can be represented as
w=_fidx,
I

where f; : U — R is a function mapping each p € U to fi(p).

Remark 86. As a check, notice that if | = (i,--- ,ix) Is a repeating multi-index with i, = .41, then (dxi)p A -+ A
(dxi.)p = 0 for all p, and thus dx; = 0. On the other hand, for any non-repeating multi-index I, 1° is strictly increasing
for some permutation o, and then (dx;), = (—1)?(dx;s), so we do not need to include the non-increasing dx;s in our

sum for w. (This is why our sum only needs to go over increasing multi-indices.)

Definition 87

With the notation above, a k-form w is C* if the f;'s are each in C°(U), and we let Q*(U) denote the space
(linear span) of C* k-forms on U.

We can now take our discussion above about the wedge product into consideration:

Definition 88

Let w; € QM(U) and wy € Q% (U). The wedge product w; A Ay is the (ki + ky)-form which sends p € U to
w1(p) A wa(p) € Qitk(U).

We can verify from the definition directly that the wedge product is indeed C*°. This is one of the two fundamental
operations that we'll be using for k-forms, and the other we'll now discuss (the d— operation). We define Q°(U) =

C>(U), and we'll start by considering a 0-form f (which is just a function). Motivated by the differential statement

”af,-

i=1

dx;,

we make the following definition:

Definition 89

For a general k-form uniquely written as w = >, fidx; (with sum over increasing multi-indices /), we define

dw:de,/\dx,.

We are now ready to discuss a few important properties based on these definitions:
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Theorem 90

We have the following properties of k-forms:
1. For wy,wy € QK(U), we have d(w; + ws) = dw; + dws.
2. For w; € Ql(U) and w»> € QQ(U), d((,dl /\0J2) = dwy ANws + (*1),(1(,01 A dws.

3. For any k-form w, we have d(dw) = 0.

Looking back at Remark 86, we're saying that permutations do not really cause us issues up to a sign, and in fact
for all multi-indices /| we have
d(f[ A\ dX/) = dfi N dx.

To prove (2), notice that for f, g € C*°(U), we can use the product rule to find the special result for one-forms
of tole]
d(fg) = gz a—xfdx,- + fz 8—)qu,- = d(fg) = gdf + fdg.
More generally, if we take w; = fidx; € QX (U) and ws = gydx; € QF(U), we find that
d(w1 Aw2) = d(fig,)dx; A dxy,

and then using that product rule above gives us point (2) from the theorem.

14 March 4, 2022

Because Wednesday's lecture covered a lot of material, most of this class is review of that content.

We'll start today's lecture by reviewing the interior product operation from a few lectures ago in the context of
the exterior algebra: recall that for any v € V and any w = £; A --- A4, € N*(V*), we can define the interior product
t(v)w, an element of AK=1(V*), via

n

W(WVw =Y (=1) (V) A Ay Ay - A,
r=1
and one fact we can prove as an exercise is that ¢(v)¢(v)w = 0 for any v.

Last lecture, we also defined k-forms, which take in a point p € U C R” and output an element of /\k(T,j‘U).
(In particular, the wedge product of k 1-forms on U is a k-form, and those are easy to think about because 1-forms
assign to each point p € U an element w, € T;U). Specifically, if w; = df; for C* functions f;, we get k-forms that
look like dfi A --- A dfi, and more specifically, we can define the k-forms dx; = dx; A --- A dx;, for any multi-index
I'= (i, ,i). And last time, we described that because (dx;), form a basis for the cotangent space T,U, the (dx;),
for increasing / form a basis for /\k(Tg), meaning any k-form sends p to some w, = Y fi(p)dx;, and thus w = " fidx
for some functions f; : U — R.

From here, we can add k-forms w1, w»> together to get another k-form w; + w», and we can wedge any k;-form wy
and ky-form wy together (by sending p to wi(p) A wa(p) — this gives us a C* (ky + ky)-form as long as ws, wy were

C®°). And we also have the important d operation, motivated by df =3, %x,- from calculus (taking a O-form f to a
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1-form): we have

w=>)Y fidg = dw=_dfiAdx.
/ /

The important properties of this d operation are then that d(w; + w») = dw; + dw,, d(dw) = 0, and also that
d(wl A\ W2) = dw; Awy + (*1)k1wl A dws.

In particular, because dx;» = (—1)?dx;, combining this fact with the “product rule” above tells us that d(fidx,) =
df; A dx; for all multi-indices /, which will make later calculations easier. And we can check that dd = 0 by looking at

k-forms of the form wf;dx; and plugging in
ddw = d(dfy AN dx;) = d(dfi) A dx; — dfi Ad(dx),

and noticing that d(df;) = 0 and d(dx;) = 0 (left as an exercise by writing out the double sum and thinking about

reversing the indices in the sum).

15 March 7, 2022

Last time, we started by talking about the interior product operation, sending a k-form w € A*(V*) to a (k — 1)-form
L(V)w € N=1(V*): by linearity we can just consider the action on w = £; A --- A £y for £; € V*, and we have

k
L(Ww =Y (1) (W) A Aoy Ay Ao Al

r=1

We'll mention a few more properties of that operation today: notice from the definition that ¢(v)w is linear in both
v and in w, and also for any one-form w, we have v(v)w = w(v) € R. Additionally, connected to the fact that
t(v)e(v)w = 0 for any v, we also have ¢(v1)t(va)w = —t(w2)e(vy)w. Finally, combining the properties of the interior

and wedge product gives us (again being careful about the sign change)
L(V) (w1 A ws) = t(V)wy Aws + (1) wy A L(v)ws.

We'll now generalize this definition to vector fields:

Definition 92
Let U C R” be an open set, v a vector field on U, and w € Q*(U) a differential k-form. Define (v)w to be the
differential (k — 1)-form given by

(L(V)w)p = L(Vp)wp.

(It's left as an exercise for us to check that if v is a C* vector field, and w € QK(U), then ¢(v)w is indeed in
QK=1(U).) Our properties from before now generalize — in particular, linearity in v and w of the interior product

operation imply that for any k-forms wi, w»
t(V) (w1 +w2) = t(V)wr + t(V)wa, vy + v)w = t(vi)w + t(v)w,
and the wedge product identity also gives us (for any ki-form w; and kp-form wo)

L(V) (w1 Aws) = t(V)wy Aws + (—1)wi A t(v)ws.
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Also, we still have ¢(v)i(v)w = 0 and thus ¢(v)e(w)w = —t(w)e(v)w like before. And finally, we can write out the
interior product operation more explicitly as
k
c(v)(dxiy A--- Ndx;,) = Z(—l)e_lde,'l A= ANdX, A dX,, N dx;,
=1
(where v, is the £th coordinate of the vector field, and it outputs a number if we evaluate it at a point p € U).

We're now ready to talk about a more complicated operation on forms:

Definition 93

Let w € QK(U), and let v be a C* vector field. The Lie differentiation operation is defined via

Low = (v)dw + d(¢(v)w).

Proposition 94

This Lie differentiation operation commutes with the d operation:
L,dw=dL,w.
Additionally, when interacting with the wedge product, we have

L‘,V(OJl A\ LUQ) = val AWy + w1 A ,CV(,LIQ.

Proof. For the first property, note that (by definition)
Lydw = (v)ddw + di(v)dw,

while
d(Lyw) = du(v)dw + ddi(v)w.

But the terms with dd now vanish (because applying the d operation twice gives us 0), and thus the two terms are
indeed both equal (to di(v)dw). The second property is left as an exercise to us, but we can use the fact that by
definition,

Lywi Aws = de(v)(wr Awz) + L(v)d(wr Aws)

and now simplifying with properties of d and ¢ gives us
= (do(V)w1) Aws) + (=1)Kwy A de(V)ws + 1(v)(dwy A ws + (—1) wy A dw,).
O

We're now going to turn to the divergence formula. Notice that for any vector field which we write in the form
v=>" Via%,-' we have
L,dx; = du(v)dx; + t(v)ddx; = dv;.

In other words, if we have specifically an n-form w = dxy A -+ - A dx,, we find that

L,w= Z dxy A= ANdxi—1 A Lydxi N dxiz1 A+ N dXp.
i
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Now because L, dx; = dv; and dv; = > %dxj, and notice that dx; A dx; = 0 for / # j, meaning all of the contribution

i 9x;
to the blue term that is not from dx; goes away. So in fact our expression simplifies to
6V,‘
va:zi:dxl/\~--/\dx,-,l/\a—XI_dx,-/\dx,-H/\---/\dxn,

and thus we can understand the action of the Lie differentiation operation as it connects to calculus:

L,w= (Zg)\g)w

and this term in parentheses is the divergence of the vector field v which we might remember from calculus.

We'll finish this lecture by starting to look again at functorial properties of differential forms (and continue this
next time): recall from early on in 18.952 that for any linear map A : Wi — W5 of vector spaces, we get the dual map
A* W5 — Wy, Recall that we get a linear map A* : AK(W3) — A*(W;) as well, with the additional properties that
(this is how we can define the map)

A (w1 Awo) = A'wy A A*ws,

and for any linear map B : W» — W5 we also get
(BAY'w = A"B*w.

We can now generalize this by letting U be an open set in R” and V an open set in R™: for any map f : U — V such
that p — g, we get the map df,, : T,U — T4V and also the corresponding dual map df; : AX(TxV) — A*(T;U). The
assertion is now that for any w € Q*(V), we have an element wq € AK(TV), and then we can define the “pullback”

(f*w)p = (dfy)*wg,

allowing us to define the k-form f*w. In particular, we have f*d¢ = df*¢ for any ¢ € C>°(V), and for coordinates
X1, -, X, and a function f = (f1,--- , f,), we have f*dx; = df; (so that the pullback of a general k-form >~ a;dx; A
.-+ A dx;, is obtained by replacing a; with f*a; and dx; with df;,). But we'll talk more about this next time!

16 March 9, 2022

Last lecture, we generalized the interior product operation to vector fields: for a C* vector field on U and a differential
k-form w € QK(U), we get the differential (k — 1)-form t(v)w defined as

(L(v)w)p = t(vp)wp,

where recall that w), is an element of /\k(T,;‘U) and v, is an element of T,U (so that this interior product makes sense).

We also introduced the Lie differentiation operation
Low=(v)dw + du(v)w,

and we can also consider the following alternate definition:
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Definition 95

Suppose f; : U — U is a one-parameter group of diffeomorphisms generated by a complete vector field v, meaning
that we have paths 7y, for each p € U satisfying 7y,(t) = f:(p). (Recall that then in fact -y, is the unique integral
curve of v satisfying yo(p) = p.) Then we can also define Lie differentiation via

d
Lw=—Fw }
Y dt 't

Proposition 96
With the definition above, we also have (for all time t)
d

T ffw=fistL,w.

Proof. We have (by change of variables in ordinary calculus)

d d
—ffw=—"F(w) .
dt 't ds st <0

and because we have a one-parameter group, we can rewrite this as

d * *
:g(ftwofsw)s:O'

and pulling out the f;* and applying the definition gives us what we want.

Thus, the relation for the Lie derivative can be written
d

dtft*w = 17 («(v)dw + du(v)w) = Fi(v)dw + dffw,

which we will define to be
dQiw + Qrdw,  Qr = i 1(v)w.

If we then integrate this equation from a to b, we find that
frw = ffw = Qapdw + dQupw,

where @a,b is the integral of Q¢ from a to b. This motivates the following definition:

Definition 97
Suppose wy, wy € QK(U) are differential k-forms on U, and suppose they are closed (meaning that dw; = 0 and
dw, = 0). Then w; and w» are cohomologous, denoted w; ~ wo, if w; — wy = du for some u € Q~(U).

In particular, the calculation above for fw — f;*w shows the following result:

Theorem 98
Suppose w € QK(U) is a closed k-form. Then ffw ~ fw for all a, b.

Since fy is always the identity map in a one-parameter family, this tells us that
fiw —w = dQpw
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for Qp = @b,o- In other words, the pullback operation does not change the “cohomology class” — the difference between
w and fyw is d of some differential form.

We'll now move on to the integration operation in the theory of differential forms. Recall that for any n-
dimensional vector space, the nth exterior power of V, A"(V*), is a one-dimensional space, so A"(V*) — {0} has two

components, and an orientation of V is the choice of one of these two components which we denote A"(V*), (the

other is then denoted A"(V*)_). Furthermore, if we let vy, -, v, be a basis of V and v, .-+, v, be the dual basis,
then (vi, -+, v,) is positively oriented if vi A--- A v} isin A"(V*); and negatively oriented otherwise.
Definition 99

Let A:V — W be a bijective linear map between n-dimensional vector spaces. Then A is orientation-preserving
if A% A"(W*) — A"(V*) maps A"(W*); onto A"(V*),.

This can be written more explicitly using coordinates: if (vi,--+,v,) is a basis of V and (wy, -+, w,) is our basis
of W, then we can represent A with the matrix [a;;] where Av; =", ajjw;, and furthermore

AWy A= Awy) =detfajlvy A A vy

We can thus say that A is orientation-preserving if det[a;] > 0 (which might look familiar from other linear algebra
classes we've taken).

We can generalize these concepts to open subsets of R” as well:

Definition 100
Let U be an open set in R”, and let p € U. We can orient the space T,U by requiring that

(dxy A== ANdxp)p € NY(T,U)4.

In other words, we can alternatively choose that (6%1) R (6%) form a positively oriented basis for T,U.
p "/ p

Definition 101
Suppose f : U — V is a C* diffeomorphism between open sets U,V of R”. Then f is orientation-preserving if

for all p € U and g = f(p), df, : To,U — T4V is orientation-preserving.

We can apply this to the change of variables formula from calculus: recall that for any C* diffeomorphism

f: U — V, we can make a “u-substitution”

/d)dx:/f*mdeth\dy,
v U

where Js denotes the Jacobian matrix. In other words, we have fv o= fu f*det Js if f is orientation-preserving, and
we have a negative sign in that equality otherwise. We can now rewrite this standard calculus result in a nicer way:
let f: U — V be a diffeomorphism. Then if p € U and g = f(p), then

@ (55),7 % 5,0 (),

We then get the dual result

dfy(dxy A= N dxy)p = det(Jr)p(dxi)p A= A (dxn)p
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for the Jacobian matrix (Jr), = [g—xf;(p)}, so that our change-of-variables formula now reads

| Fr(dxi A= Adx,) = det(Jr)dxa A+ A dxy |

And next lecture, we'll see a more intrinsic version of this formula that doesn’t involve matrices at all!

17 March 11, 2022

Remark 102. / was not able to attend this lecture in person, so these notes are transcribed from Paige Bright and

Jeffery Yu's class notes.

Last lecture, we mentioned the change of variables formula from integral calculus, which states that for an
orientation-preserving diffeomorphism f : U — V between open subsets of R” and a compactly supported differ-

/w:/f*w.
v U

We'll be proving that result next week, but we'll work on some other results towards that goal for now:

ential form w € QX(V), we have

Theorem 103 (Poincaré lemma for rectangles)
Let U= Iy x --- x I, C R" be the open rectangle with /, = (a,, b,;) for all r. Suppose w € QX(U). Then w is
exact, meaning that w = du for p € QX1(U), if and only if [, w = 0.

Proof of forward direction. By the definition of the d operation, we know that if we write u = Zf;l fidxi \--- A
dxi—1 AN dXjz1 A--- A dxy, then
4 Of;
w = d/J, = Z(—l)li]-@i)(lid)(1 /\ st /\ an.

i

In particular, this means that if w = du, we have

1 Of;
— — 1)1zt
/nw_/uw_/u( 1) 6X,-dx1/\ A dxp

o
:Z( 8XC/X,‘) dxydx; Ao Ndxi—1 ANdxipr A A dxg
Iy i

=Y " (f(b) = fi(ar)) dxadxi A+ Adxioy Adxiza Ao A dxg

(slightly abusing notation here because f;(b,) and fj(a,) depend on the other x; values too, but the logic still works)

because all f;s are compactly supported and thus f; vanishes on the boundary. O

For the other direction, we'll need to do some more work, but it follows directly from the following result:

Theorem 104
Let U C R™ be open, and let A C R be an open interval. Suppose U satisfies that for all w € QT (U) with fw =0,
we have w € dQ7~1(U). Then A x U also satisfies this condition.

Proof. We proceed by induction on m.The base case m = 1 is where U = (a,b) C R. Indeed, if f € C§°(A) and
fab f(t)dt = 0, then we can use the function g(x) = [y f(t)dt € C§°(U), and we indeed have dg = f (this is the

ordinary fundamental theorem of calculus).
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Say that an open set that satisfies the condition in this theorem satisfies CPL. We then want to prove that if U
is CPL, then A x U is also CPL. For this, let xi,---, x, be coordinates on U and t, x¢,---, X, be the corresponding
coordinates on A x U. We can then write any w € Q"T(A x U) as

w="Ff(x, t)dt ANdxg A+ A dx,,

with corresponding integral [w = [, f(x, t)dt A dX. Define

0= f(x, t)dt | dX,
ARD

sothat [p, w = [g. F(x, t)dt = [z, dx (in other words, integrate out the variable t in advance). Then if ['w = 0, then
J 6 =0 as well. So now suppose U is CPL (as we have in our assumption), so that 8 = dv for some v € Q?7(U). Let
0 € C*®(R) be a bump function (in particular, compactly supported) on A, such that pr = 1. Defining K = pdt A v,
we then have

dK = pdt ANdv = p(t)dt A6,

so that
w—dv=dtA(v—p(t)d) =dt ANu(x, t)dxy A - Adxp_1,

where we define the function

u(x, t) ="f(x,t)— p(t)/ f(x, t)dt.
A
In particular, because p integrates out to 1, we find that [ u(x, t)dt = 0. So for our interval A = (a, b), if we define
t
v(x, t) :/ u(x, s)ds,
a

we'll have v € C3°(U x A) and 0:v = u by the ordinary fundamental theorem of calculus. We're now ready to finish:
letting ¢ = v(x, t)dxy A -+ A dx,—1, we then have that

do=dtAu(x, t)dxy A+ ANdxp—1 = w — dK,
so that w = d(¢ — K), and we've proved CPL for A x U. O

We've now proved both directions of the Poincaré lemma for rectangles, and next we'll generalize this to compactly

supported forms on open subset of R”.

Theorem 105 (Poincaré lemma)
Let U be a connected open subset of R”, and let w € Q2(U) (so that the support of w is contained in U). Then
Jw=0if and only if there is some u € Q271(U) with w = dp.

The backwards direction follows from the Poincaré lemma for rectangles. Indeed, if u € Q7-1(U), then the support
of w is contained within some rectangle and thus f du = 0.

For the forwards direction, suppose wy,wy € Q2(U). Recall that we write wy ~ wy if wy — wy = du for some
compactly supported (n — 1)-form w. It's equivalent to prove the following:
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Theorem 106
Let Qg C U be a rectangle, and let wy be an n-form with support contained in Qg and total integral 1. Let
w € Q2(U) be a compactly supported n-form with support contained in U and total integral ¢ = fw. Then we

have w ~ cwyg.

In particular, setting ¢ = 0 proves the forward direction of the Poincaré lemma, since it implies that w ~ 0 and

thus w = du for some u.

Proof. Construct a collection of rectangles Q; C U such that U is the union of the interiors of Q;. Let ¢; be a partition
of unity (meaning we have compactly supported functions which in total add to the function 1 on U) such that supp(¢;)
is contained within the interior of Q; for each /. Then for large enough m, w = Y7, ¢;w by compactness, so we can
reduce the statement to the case where we prove this result for each ¢;w. In other words, it suffices to prove this
result when the support of w is contained within the interior of some open rectangle Q;, which we call Q.

We claim that we can connect Qg and @ with a sequence of rectangles Qo = Rg, -+, Ry+1 = R such that the

interior of any two consecutive rectangles is non-empty. Indeed, the set
A = {x € U : there exists a sequence {R;} with x € int(Rn+1)}

is an open set, and its complement is also open. Thus because U is connected, U = A. Now to finish the proof,
for each i, choose a compactly supported n-form v; contained within int(R;) Nint(Rj+1) such that [v; = 0. Since
Vi — Vjy1 is supported in int(R;+1), by the Poincaré lemma for rectangles we have v; ~ v;1. The same logic says that
because we also have wy ~ v, we have cwy ~ cvp, and finally w ~ cvy. Thus this chain of equivalences tells us that

W ~ CWp, as desired, finishing the proof. O

18 March 14, 2022

We'll start today by going over yesterday's proof of the Poincaré lemma in more detail. Recall that we started by
proving the rectangle version of the lemma, which states for any open rectangle Q = /1 X --- x [, and any w € Qf_f(Q)
(that is, w is a compactly-supported k-form), if dw = 0, then w € dQXk~(Q) (because d?> = 0). And a more involved
result is that we have wi = 0 if and only if w is exact (meaning that w = du for some w).

Generalizing this to arbitrary connected open sets U C R" then involved a lemma which proved that for any
p,q € U, we have a sequence of rectangles Q; such that Q; N Qj+1 # &, and p is in the first rectangle and g is in
the last rectangle. We showed this by constructing the set of points g for which this is true, mentioning that it is
open (because there is always an neighborhood of g within a rectangle it's contained in) and so is its complement (for
basically the same reason — otherwise we could find arbitrarily close points to g which can be reached, meaning g can
also be reached), so connectivity of U implies that this set of points must be all of U (since it is nonempty).

That lemma was useful because it then allows us to repeatedly use the rectangle Poincaré lemma. Specifically,
we are then able to prove a slight generalization of the Poincaré lemma, which is that if wg is a compactly supported
n-form on an open rectangle Qo C U, then w ~ cwq for c = fuw. The argument is to use compactness to break up
w into a finite sum of forms supported on rectangles, and to note that the result we are trying to prove holds for finite
sums if it holds for the individual parts. From there, we use our connected set of rectangles {Q;}, showing repeated
equivalence of our n-forms by looking at compactly supported forms on the intersections Q; N Q1.

As of this result, we can now talk about the change of variables formula. The version that we've already talked about

states that if £ : U — V is a diffeomorphism between connected subsets of R”, then [, f*w = [, w if f is orientation-
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preserving, and similar with a negative sign if f is orientation-reversing. Today, we'll replace “diffeomorphism” with a
much weaker assumption, but first we'll review a bit of point-set topology:

Proposition 107
Let X,Y be topological spaces, and let f : X — Y be an arbitrary continuous map. Then if C is a compact subset
of X, then f(C) is compact.

The converse is not true as stated (that is, the preimage of a compact set is not always compact), but there are
many maps for which the converse does hold:

Definition 108

A continuous map f : X — Y is proper if for every compact subset C, f~1(C) is compact.

We can check that if f : X — Y and g : Y — Z are proper maps, then go f is also proper. We'll discuss proper
maps more next lecture, but we'll connect this back to differential forms for now:

Proposition 109
Let f: U — V be a proper map between open subsets U,V of R™. Then if w € QX(V), then f*w € QX(V).

Proof. Let C be the support of w. Then the support of the pullback form, f*w, is contained in the preimage f~1(C),

which is compact. O

Theorem 110
Let U,V be open subsets of R”, and let f : U — V be a proper C*> map. Then for all w € Q2(V), we have

/Uf*w:deg(f)/vw.

Here, deg(f) denotes the degree of the map f. We'll give a full definition of what it is in the proof, but provisionally

we'll use the following definition: if we fix (forever) an wo € Q2(V) with [, wo =1, then we set

deg(f) = / *wo.
U
(This integral indeed makes sense because f*wq is compactly supported.)

Proof. For any w € Q2(V), define ¢ = [, w. Then

/w—cwoz/w—c/wo:c—c:o,
v v v

so by the Poincaré lemma, w — cwy = dv for some v € QI71(V). Applying the pullback map, we find that
ffw— cffwg = f*dv = df*v,

and because f*v is compactly supported integrating it out over U gives us 0. Thus

/f*w:/cf*wO:cdeg(f):deg(f)/w,
U U v

as desired. ]
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We'll convert this wacky definition of degree into something more fundamental next time (which is essentially about

“counting the number of points in the preimage”), instead of needing to rely on this choice of wq

19 March 16, 2022

Last time, we discussed the Poincaré lemma, which states that any compactly supported n-form w € Q2(U) on a
connected open subset U of R” has fuw =0 if and only if w € dQ7~1(U). We then started analyzing the connections
of this result to the change of variables formula — in particular, if f : U — V is a proper map (meaning that preimages
of compact sets are compact), then w € QX(V) implies that f*w € QX(U), and this allows us to use the Poincaré

/Uf*w:deg(f)/vw.

However, last time, we gave a sketchy definition of the degree deg(f), where we fix a compactly supported n-form wq
with [, wo = 1 and defined deg(f) = [, f*wo. Specifically, with this definition and setting ¢ = [, w, we found that

lemma to prove that

fvw — cwg = 0, so that w — cwg = dv for some compactly supported (n— 1)-form v. Applying the pullback map and

integrating then gave us

/f*w—/cf*woz/df*u:o = /f*wzc/f*wozdeg(f)/w.
U U v

We can now talk more about the properties of this degree map and start doing some applications:

Proposition 111
Suppose U, V, W are connected open subsets of R”, and suppose f : U — V and g : V — W are proper C*> maps.
Then deg(g o f) = deg(f) deg(g).

Proof. By functoriality, we have

(gof)'w=f"g*w,

so that

deg(gof)/w/ (gof)*w:/ f*g*w:deg(f)/g*w:deg fdegg/w.
u Jw w v U

Equating the first and last expressions in this chain of equalities gives us the result. O

We'll now get this result to look more like the usual language of calculus: suppose U and V are connected
open subsets of R”, and let f : U — V be a diffeomorphism and ¢ be a scalar function. Then we know that

f\/ o= fu f*¢p|det Jr|. In the language of this course, for a differential form of the form
w = P(x)dxy A+ A dxp,

we can then show that [, w = [, f*w = =% [, w, depending on whether f : U — V is orientation-preserving or

orientation-reversing. Here's that statement in alternative words:

Proposition 112
Let U and V be connected open subsets of R”, and let f : U — V be a C* diffeomorphism. Then deg(f) = 1 if

f is orientation-preserving and —1 if orientation-reversing.

We'll prove this topologically, but first we need preliminary results:
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Lemma 113
Suppose U, V, W are connected open subsets of R”, and suppose f : U — V and g : V — W are C* diffeomor-
phisms. Suppose that Proposition 112 holds for both f and g. Then it also holds for g o f.

(As a hint toward proving this, fix some w € Q7(W). Then because g o f is also a diffeomorphism, we know that
(gof)'w="Ff"g'w = /(go fw= i/g*w

because the degrees of f and g are both +1.) We will also need the following (which we will prove as exercises):

Lemma 114
Let a € R", and consider the translation map 7, : x = x + a. Then Proposition 112 does indeed hold for the
map T,. Also, if A:R" — R" is a bijective linear map, then Proposition 112 does hold for A.

Beginning of proof of Proposition 112. From our preliminary results, we may assume by applying translation maps
(before and after applying f) that 0 € U oV and that f(0) = 0. This means that dfy is the identity map, so we can
then write f(x) = x + g(x), where g(0) = 0 and ¢’(0) = 0 so that g(x) < C|x|? for some C. If we now choose § > 0
so that C6 < 1, and we pick a function p(x) € C§°(R") such that 0 < p(x) < 1 and also satisfying

1 x| <$,
0 x| >4

we then have p(x)g(x) = 0 for |x| > 4, so that
1
p()g(x)| < p(x)CBlx| < 5 Ix|

(x) for |x| < 4. From here, we can look at the function f(x) = f(x) + p(x)g(x) and show that

and p(x) = g
deg(f) = deg(f), and the remainder of the proof is topological. O

20 March 18, 2022

After spring break, we'll be shifting gears from differential forms on R” to differential forms on manifolds. But for now,
we'll focus on the concepts we've been discussing so far — recall that last time, we related the differential forms w and
f*w via the change of variables formula, which made use of the notion of degree. Specifically, if we fix some compactly
supported n-form wy € Q2(V) with f\/ wo = 1, then for any proper map f : U — V, we defined deg(f) = fu f*wo.
The idea is that this is actually an intrinsic definition which doesn’'t depend on the choice of wq: specifically, for all

w € Q2(V), we have that
/f*w:deg(f)/w,
U v

so the degree of f is indeed going to yield the same answer no matter which wgy we choose.

Theorem 115
Let U,V be connected open subsets of R”, and let f : U — V be a proper C* map. If f is not onto, then
deg(f) = 0.

34



Proof. To prove this result, we'll need the following topological fact:

Fact 116
Let f: U — V be a proper C* map between open subsets of R". Then f(U) is a closed subset of V, so if f is
not onto and g € V' \ f(U), there is an open neighborhood W of g in V, such that W N f(U) = @.

We can then pick a compactly supported form wq € QI (W) satisfying fw wo = 1. Applying the pullback map, we
know that wg = 0 for all g € f(U), so 0 = [, f*wp and thus the degree of f is zero. O

Our main goals for today's lecture are to discuss how to compute degree geometrically and show homotopy
invariance of degree, again showing that the degree of a map f is very topological. First, the following is an exercise
in our textbook:

Proposition 117
Let U and V be open sets of R”, and let f : U — V be a proper C* map. Suppose we have some g € V and
f~1(q) C Uy for some open set Ug of U. Then there exists a neighborhood V, of g in V, such that f=1(\g) C Up.

In other words, we can expand around a given point’'s preimage by an “arbitrarily small amount.”

Definition 118
Let f: U — V be a proper C* map. A point p € U is a critical point if the map df, : T, — T, (where g = f(p))
is not bijective. Let Cr be the set of critical points, also known as the critical set; we call f(Cr) the set of critical

values.

We may notice that Cr is closed, and if f is proper, then f(Cy) is also closed. Furthermore, the set of regular
values Vg = V' \ f(C) is open.

Lemma 119

For any regular value g of f, f~1(q) is a finite set.

Proof. Since q is a regular value, any p € f~1(q) is a regular point, meaning that df, : T, — T, is bijective. Thus, by
the inverse function theorem, f maps a neighborhood U, of p diffeomorphically to a neighborhood V; of g.

We thus know that the U,s cover f~1(q), and since f is proper, f~1(q) is compact. By compactness, we can thus
find a finite subcover Up,, -+, Uy, of f~1(q). Because we have a bijective mapping from these neighborhoods U,,,

the only point in each neighborhood U, mapping to the point q is p; itself. Thus the preimage of g is the finite set
{a1,--+  an} O

We can then choose the neighborhoods to be disjoint (by choosing small enough neighborhoods), so that we have

a neighborhood V;, of g and a neighborhood U,, of each p; satisfying
FrVa)=JUn. UpNUy =@ Vij, f:U, — V, diffeomorphism.

(This is known as the stack of records theorem.) We can then finally understand another way to define the degree:
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Theorem 120 (Degree theorem)

Let g be a regular value of f, and let {p;, -, pn} be its preimage. Then we have

N
deg(f) = Z O-pr U
i=1

where each o, is 1 or —1, depending on whether df,, : T,, — T4 is orientation-preserving or orientation-reversing,

respectively.

Proof. Choose some wq € Q2(V) with [, wo = 1. By the definition of degree, we know that

degf:/f*w: /f*w.
() o ZU 0

And by our work last lecture, because f : U, — V is a diffeomorphism, each term in this sum will be 1 if f is

orientation-preserving and —1 otherwise. O

This then connects back to Theorem 115: if f : U — V is a proper C* map and g is not in the image of f, then
g € Cr must be a critical point. Additionally, f=1(q) will be empty and the degree of f is zero.

We'll now move on quickly to the topic of homotopy:

Definition 121
Let fo, f1 : U — V be proper C* maps. A homotopy between fy and f; is a C* map F : U x [0,1] — V such
that F(x,0) = fo(x) and F(x,1) = fi(x). If F is proper, then we call it a proper homotopy.

(In other words, a homotopy involves continuously deforming fy into f; with a smooth map.)

Theorem 122

If fy and f; are properly homotopic, then they have the same degree.

Proof. Fix a compactly supported wo € Q2(V) such that [,wo = 1. Then for each t € [0,1], deg(f;) = [ ffw
depends smoothly on t, but the degree is always an integer by Theorem 120. Thus deg(f;) must be constant in t and
deg(fo) = deg(f1). O

21 March 28, 2022

We'll start by reviewing the degree theorem from before spring break, as well as the related definitions. If U and V
are open subsets of R” and f : U — V is a proper C* map, then the degree is an invariant of the map f satisfying

/Uf*w:deg(f)/vw

whenever w € Q2(V) (so that both f*w and w are compactly supported and we can have both integrals make sense).
For another perspective on this degree, recall that a point g € V' is a regular value of f if df, : T,U — T4V is bijective
for any p € f~1(q). (We previously mentioned Sard’s theorem, wihch states that the set of regular values forms an
open dense subset of U.) Then for any regular value g, we proved that f=1(q) is a finite set {p1,---, px}, and then
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we found the formula )
deg(f) = Zop,,
i=1

where o, is 1 if df,, : Tp, — T4 is orientation-preserving and —1 if it is orientation-reversing (this makes sense because
the map is basically R” — R"). So if f is not surjective, then deg(f) = 0. Finally, we discussed the homotopy
invariance of degree, which tells us that two proper C* maps fy, f; : U — V that are homotopic also have the same
degree (because the degree must be continuous and integer-valued).

Today, we'll talk about some applications, starting with a familiar result:

Theorem 123 (Fundamental theorem of algebra)
Consider the monic polynomial p(z) = z"+a,_12" ' +---+ag (where ag, - - - , a,_1 € C). The equation p(z) =0

has at least one complex solution z.

Proof. Notice that pis a C* map C — C. Identify C with R? (by sending x + iy to (x,y)) and think of p as a map
from R? to R%. Then notice that

n—1
p(2) 2 121"+ ) laillZ'],
i=0
so |p(z)| — oo as |z| — oo because the leading term here, and thus p(z) is a proper map. Now define
p(z,t) = (1-t)z"+ tp(z)

(we can think of this as a homotopy between po(z) = z" and p(z)). Plugging in the expression for p(z), we know
that |p(z, t)| > |z|" — tZL_Ol laj||z'|, so again |p(z, t)| is unbounded as |z| — oo and we have a proper homotopy
between z" and p(z). Since the degree of py(z) is n, so is the degree of p(z). (This is left as an exercise for us: as
a hint, let ¢ be a C3°(R) function, and consider w = d(x? + y?)dxdy for calculation purposes. In polar coordinates,
this is ¢(r?)rdrd6, so we can check that pjw = n*¢(r?")r?"1drd6 and [, pjw = n [z w.) Thus the degree of p(z)
is nonzero and p is surjective; in particular, there is at least one point where p(z) = 0. ]

Theorem 124 (Brouwer fixed point theorem)
Let B" be the unit ball {x € R" : |x| < 1}, and let S"~! = Bd(B") be the unit (n — 1)-sphere which bounds that
ball. If f: B"™ — B"is a C* map, then there exists some x € B" such that f(xg) = xp (that is, we always have

a fixed point).

Proof. Suppose for the sake of contradiction that there is no fixed point. Consider the map v : B" — S"~! defined
in the following way: for each x € B", draw a ray originating at f(x) and pointing in the direction of x (because
f(x) # x), and let y(x) be the point on the boundary S"~! that the ray intersects.

Notice that y(x) = x if [x| = 1, so |y(x) — x| = 0 for all x € S"~1. But because y is a C* map, it extends to
an open subset U of B”, and for every € > 0, there is some § > 0 such that B, s O U and |y(x) — x| < ¢ for all
1 < |x| < 1+4. If we now pick some p € Cg°(Int(B7,s) such that p is identically 1 for [x| > 1, we can define the map
4 :R" — R" such that

- p(x)Y(x) + (L= p(x))x  |x| <1+,

¥(x) =
X x| > 1+,

and consider the homotopy
g(x, t) = t3(x) + (1 — t)x.
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This is a proper homotopy, so 4(x) has the same degree as the identity map, which is 1. But 4(x) > 1 —¢ everywhere,

1

so for any |xg] < 1—¢, 471 is empty, which is a contradiction with the degree being nonzero. O

22 March 30, 2022

Fact 125
As a reading assignment, we should read about the implicit function theorem in Appendix B of the textbook,
because it will have applications to what we'll do in the coming weeks.

We're currently transitioning from talking about differential forms on open subsets of R” to differential forms on
manifolds — in particular, we'll soon explain what a differentiable manifold is and start exploring relevant properties.
But today, we'll first go back to some previous topics that we've discussed, starting with some multivariable calculus

results:

Proposition 126 (Inverse function theorem)
Let U and V be open subsets of R", and suppose f : U — V is a C* map such that f(p) = q. If df, : To,U — T4V
is bijective, then it maps a neighborhood U, of p diffeomorphically to a neighborhood V; of g.

This result is actually the special case of two more general results:

Proposition 127 (Canonical submersion theorem)

Let k < n, and define the canonical submersion 7 : R” — R¥ to be the map (xq, -+, x,) = (x1,---,x). Let U
be an open subset of R”, and suppose f : U — R is a C> map with f(p) = 0. If df, : T,U — ToRK is surjective,
then there exists a neighborhood W of 0 in R¥, a neighborhood Uy, of U, and a diffeomorphism ¢ : W — U,
sending 0 to p such that m = f o ¢.

Proposition 128 (Canonical immersion theorem)

Let k < n, and define the canonical immersion ¢ : Rk — R” to be the map (x, -+, xx) — (x1, -+, X,). Let U
be an open neighborhood of 0 in R, and suppose f : U — R" is a C®map with f(0) = p. If df, : ToU — T,R"
is injective, then there exists a neighborhood W of 0 in R", a neighborhood V,, of p in R", and a diffeomorphism
¢:V, = W sending p to 0 such that v = ¢ o f.

We can now turn to a study of manifolds, starting with a preliminary definition:

Definition 129
Let X be a subset of R™, Y be a subset of RY, and f : X — Y be a continuous map. Then f is a C*® map if for
every p € X, there exists a neighborhood U of p in RM and a C* map f : U — RN such that flynx = flunx.

Definition 130
Let N > n. A set X C RV is an n-dimensional manifold if for every p € X, there exists an open set U of R”, an

open neighborhood V' of p in RV, and a diffeomorphism ¢ : U — V N X. (We call ¢ a parameterization of X at
p.)
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In other words, neighborhoods of p look locally like neighborhoods of R”, and we'll now try to define differential
forms on manifolds. In particular, if we let a = ¢~1(p), and we let T, : R” — R” be the translation map x — x + a,
we can compose ¢ with T, and always assume that ¢~1(p) = 0. (In this case, we say that the parameterization is
centered at zero.) Manifolds may seem like an abstract concept, but it's worthwhile to think about them because

they come up as solutions to systems of equations:

Proposition 131
Let U be an open subset of RN, and let f : U — R¥ be a C>* mapping. (Recall that a point a is a regular value
if for all p € f~1(a), df, : T,U — T,R¥ is surjective. If a is a regular value, then X = f~1(a) is an n-dimensional

manifold, where n = N — k.

In fact, many of the examples of manifolds we'll be seeing from now on are of this form X = f~1(a).

Proof. We can replace f with f — a, so that we can assume a = 0. If 0 is a regular value of f, that means that for all
p € f~1(0), df, : TPRN — ToR¥ is surjective. By the canonical submersion theorem, there are open neighborhoods U
of 0 and V of P in RV, as well as a diffeomorphism ¢ : U — V satisfying m = f o ¢ (for the canonical submersion ).
But any x € m~%(0) is of the form (0,---,0, Xxk41,- -+, Xn), SO ¢ maps a neighborhood of 0 in R" diffeomorphically
onto a neighborhood of p € f=1(0), and thus £~1(0) is an n-dimensional manifold. O

23 April 1, 2022

Last lecture, we introduced the concept of a manifold by explaining what it means to be a C° map between subsets
X and Y of RM and RV, namely that for every point p € X, there is a neighborhood U of p and a C> map f : U — RV
which agrees with f on U N X. We say that f is a diffeomorphism if it is bijective and both f and f~1 is C*, and
that allows us to define a subset X C R" to be an n-dimensional manifold if there is a neighborhood V,, around any
point p € X such that we have a diffeomorphism ¢ (called a parameterization at p, centered at p if $(0) = p) from
U — V, N X for some open set U of R” (so that X looks locally like an open subset of R").

Example 132
The n-sphere S” C R, defined as

{xeR™ X2+ 4+ x2, =1}

is an n-dimensional manifold. To check this, let H,i be the set of all points (x1, -+, Xsr1) € S” with x; > 0 or
x; < 0, respectively. We can verify that these are open sets which cover S”, and furthermore the map Hii — R”
sending (x1, -+, Xpe1) to (X1, * , Xi—1, Xi41, "+ » Xpa1) is a diffeomorphism. So any point in S has a neighborhood
(one of the H,-is that contains it) which looks like an open set of R”, and we can choose our parameterization ¢

to be the inverse of one of the His.

Example 133
Let X; C RN be C*® manifolds of dimension n; for 1 < i < k. Then the product manifold X; x --- x Xy is a
manifold of dimension n = ny + - - - + nk, because any point in the manifold is of the form p = (py, -+ , px) where

pi € RV Each of these p;s come along with a neighborhood V,,. a subset U; of R™, and a map ¢; : U; = Vj,, N X,
and then we can check that the product map (¢, -, ¢x) is a parameterization of the product manifold at p.
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Last time, we mentioned that one important source of manifolds is the following: if U is an open subset of RV,
f:U— RKisa C® map, and a € R¥ is a regular value, then X = f~1(a) is an n-dimensional manifold. (As an
example of this, if we let f : R™ — R be the map f(xq, -+, Xpq1) = X7 + -+ x2,4, then Df (x) = 2(x1, -+, Xp41).
1 is then a regular value, and f*1(1) is an n-dimensional manifold, namely S”7. We'll now see a more substantial

example:

Example 134

Let M, xn be the set of all n x n real-valued matrices [a;;], and let S,x, be the set of symmetric n x n real-valued
matrices (satisfying a;; = aj; for all /,j). We can verify that M., = R™ and that there is a natural map
¢ : Mpxn — Saxn given by ¢(A) = ATA. Then because / is a regular value of ¢, ¢~*(/,) is a manifold, namely

the set of orthogonal n x n matrices (satisfying AT A = /).

Example 135

Let G(k, n) be the set of all symmetric matrices P € S,x,, such that the rank of P is k (the image of the linear
mapping has dimension k) and P? = P. We can show that G(n, k) is a k(n — k)-dimensional manifold using the
methods from above, known as the Grassmannian (we can think of it as the set of k-dimensional linear subspaces
of R™).

(This will likely be on our next, and possibly last, homework assignment.) From here, we can now move on and

generalize the notion of a tangent space that we introduced originally on R":

Proposition 136

Let X C R” be a k-dimensional manifold, let p be a point in X, and let W be a neighborhood of p in RN. Suppose
¢:U—V =WnXis a parameterization of X centered at p (for some open set U of R¥). If we think of ¢ as a
C* map of U into W, then its derivative d¢g : ToU — T,W is injective.

Proof. By definition, there is a C* extension 9 : W — U of ¢!, such that di, o d¢y is the identity map, which can
only happen if d¢yq is injective. O

Definition 137
With the notation in the result above, we let the tangent space of p at X be T,X = Im(d¢o).

Proposition 138

The tangent space T,X has an intrinsic definition not dependent on the particular choice of ¢.

Proof. If ¢1 : Uy — V4 and ¢ : U> — VL are two parameterizations centered at p, replacing V4, Vb by V =V, NV, and
replacing Ui, U, by d),_l(V) allows us to assume that ¢ : Uy — V and ¢, : U> — V are both diffeomorphisms. Then
we have a diffeomorphism 1 = ¢5* o ¢1. Since (d1)o and (d¢o)o are injective and (dv)o is bijective, the images of
(d¢1)o and (d@g2)o must be the same (since they have the same dimension, and if (d¢1)o = (d¢2)o © (d¥p)o then the
image of (d¢1)o is contained in the image of (d¢2)o). O

We'll finish by mentioning a functoriality property for T,X: if X € R™ and Y C R¢ are C* manifolds, and
f: X = Yisa C*® map sending p to g, then df, : T,X — T,Y is well-defined. But we'll talk more about this next

timel

40



24 April 4, 2022

Last time, we introduced the concept of a tangent space on a manifold. Specifically, recall that a manifold X C RN
is a set that comes with a parameterization centered at p (for any p € X), in which we take a neighborhood U of 0 in
R” and a neighborhood W of p in R", and we have a diffeomorphism ¢ : U — W N X sending 0 to p. In particular, if
we think of ¢ actually as a C* map from U to W (which contains W N X), the map d¢o : ToU — T,W (this maps
an n-dimensional space to an N-dimensional space) is injective. (The proof of this was that because ¢ was originally
a diffeomorphism from U to W N X, it has a C* inverse map ¥ which extends to some open neighborhood W’ of p.
Then using W/ N W instead of W, the chain rule on Euclidean space tells us dy, o d¢o = id, which implies that d¢y
is injective.) We then proved that this gives us an intrinsic definition 7,X = Im(d¢y).

We'll now explore the functoriality concepts that we started discussing at the very end of last lecture. In particular,
let X be a submanifold of RM (that is, a manifold in RM) and Y be a submanifold of R2. If we have a C>* map

X — Y sending p to g, then we can define the derivative of f at p, df, : T,X — T,Y in two different ways:

Definition 139
Taking the notation above, suppose W is a neighborhood of p in RM, and g : W — R™ is a C* map such that
f = g restricted to X NW. Then df, is defined to be dg, restricted to T,X.

This definition makes sense intuitively (we look at derivatives on Euclidean space instead of on the manifold), but

it depends on the choice of the function g. So we can try something else:

Definition 140
Again with the notation above, let ¢; : Uy — V; and ¢, : U> — V5 be parameterizations of X and Y centered
at p and g, respectively. Without loss of generality, assume V, C f~!(\%) (otherwise we can just make V4

smaller because ¢; is a diffeomorphism). Then df, is the the map that completes the following diagram, where

Yo =5 ofo¢r:

X % Ty

(d¢1)oT T(dd)z)o

ToU; —2% ToUs,

Unfortunately, this definition may look like it instead depends on the extension mappings ¢1 and ¢>. So we'll

reconcile that with the following diagram and the use of the 18.101 chain rule on f o ¢ = ¢» 0 Py:

W s T RN

(d(f)l)OT T(dd)z)o

ToU; SLLIIN ToUs

In particular, the tangent space T,X of an n-dimensional manifold X is n-dimensional. As an exercise, we can now
prove the chain rule on manifolds, which says that if f; : X; = X5 and  : X5 — X3 are C* maps on manifolds and

fi(p1) = p2, then
(de © fl)Pl = (df2)P2 © (dfl)m

An application of the chain rule is the following:

41



Proposition 141
Recall that for a map U — V between open sets of RN and R¥, and for a regular value g € V of f, X = f~1(q)
is an n-dimensional manifold, where N = N — k. Then T,X is the kernel of the map df, : T,U — T4V.

Proof. Let W be a neighborhood of p in RV, such that ¢ : U — W N X is a parameterization of X centered at p.
Then f o ¢ is the constant map U — X — q, so df, o d¢o = 0. But because d¢y maps ToU bijectively to T,X, T,X
must be a subset of the kernel of df,. On the other hand, Im(df,) is k-dimensional, so the kernel of df, must be
(N — k = n)-dimensional. Since T,X is n-dimensional, this means the kernel of df, must coincide with it. O

Next time, we'll talk more about the canonical immersion and submersion theorems and generalize them to mani-
folds!

25 April 6, 2022

We've now spent a few lectures understanding the notation and relevant definitions behind manifolds X, maps X — Y
between them, and their tangent spaces T,X. Last time, for a C>* map f : X — Y sending p to q, we defined the
derivative map df, at p between tangent spaces T,X — T,Y in two ways, either extending f to an open subset of
RM (the Euclidean space that X lives in) and using the Euclidean space definition of df,, or by making use of the
parameterizations U; — Wi N X and U> — W, NY that come along with the manifolds X and Y and defining df, in
terms of the corresponding dig map from the map on the Euclidean subsets 9 : U; — Us. It can be shown that these
definitions are both legitimate and coincide with each other (though as a sidenote, the second definition works even if
we have manifolds that aren’t subsets of R” for some n), so that we have a valid definition of the derivative df, and
thus of the map df. In particular, we also have a chain rule just like for ordinary Euclidean space.

Today, we'll show that our results about differential forms on Euclidean space apply for manifolds too.

Theorem 142 (Inverse function theorem for manifolds)
Let X and Y be n-dimensional manifolds, and let f : X — Y be a C* map sending p to q. If df, : T,X = T,Y is
bijective, then f maps a neighborhood U,, of p diffeomorphically onto a neighborhood V; of g in Y.

We may recall from a few lectures ago that we also stated the canonical submersion and canonical immersion
theorem for open subsets of R”, and there are analogous versions of those too. But because the canonical submersion
(for example) is defined from R” — RX (for k < n) as sending (x1, -+, Xx,) to (x1, -+, xk), we're going to need to do

that “submersion” on the open sets U coming with the parameterizations:

Theorem 143 (Canonical submersion theorem for manifolds)
Let X and Y be manifolds such that f : X = Y is a C* map sending p to q. If df, : T,X — T4Y Is surjective,
then there exist neighborhoods U, and V;, of p and g in X and Y/, respectively, and parameterizations ¢ : U — U,
sending 0 to p and 9 : V — V; sending 0 to g, such that f(U,) C V; and the following commutative diagram is
followed, with bottom arrow being the canonical submersion:

U, —— v,

o| E

u—"—-v
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In other words, every submersion looks locally like the canonical submersion. A similar property holds for the

canonical immersion ¢ : (xq, -+, xk = (X1, -+, %k, 0, -+ ,0):

Theorem 144 (Canonical immersion theorem for manifolds)
Let X and Y be manifolds such that f : X — Y is a C*° map sending p to q. If df, : T,X — T,Y is injective,
then there exist neighborhoods U, and V;, of p and g in X and Y/, respectively, and parameterizations ¢ : U — U,
sending 0 to p and 9 : V — V/, sending O to g, such that f(U,) C V4 and the following commutative diagram is
followed, with bottom arrow being the canonical immersion:

U, —— v,

o] &

Uu——v

We may read the proofs on our own, but the idea is to choose coordinates so that the manifolds actually become
locally open subsets of Euclidean space and applying the canonical submersion and immersion theorems that we've
already seen. (And we should note that these are local results — everything here has to do with picking a particular

point p and q.)
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We'll start to talk about differential forms on manifolds today — just like on Euclidean space, if X is an n-dimensional
manifold, recall that we can define the tangent space T,X at any point p € X. We can then define the analogous

cotangent (dual) space T, X, and we can define /\k(T;X) in the same way using the standard linear algebra techniques.

Definition 145
Let X be a manifold. A k-form on X is a “function” w which takes in a point p € X and produces an element
wp € /\k(T;X).

Many of the properties of k-forms that we've already studied still hold — we'll talk first about functoriality. If X; and
Xo are manifolds, and f : X; — X5 is a C* map sending p; to po, then we have a mapping df : T, X1 — T, X2, and
accordingly we get a transpose (pullback) map (df,)* : /\k(ngXg) — /\k(T,lel). Extending this pullback operation to
all points p, we find that given any k-form w on X», we can define a k-form f*w, on X; via

(f*w)p, = dfj wp,.
We also have the usual “chain rule:” if X; LN Xo LN X3 is a sequence of maps between manifolds, we then have
(hof)w=Ffw

We may recall that we like to restrict our attention to C* k-forms when we first studied everything over Euclidean

space, and that will be relevant here as well:
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Definition 146

Let w be a k-form on X. Then w is C* if for every p € X, there exists a parameterization ¢ : U — V N X (for
U,V open subsets of Euclidean space) such that ¢*w restricted to X is a C*> k-form on U. The space of C*®
k-forms on X is denoted Q(X).

In particular, if wis a C*® k-form, then f*w is also a C*>° k-form. We do need to show that this definition is
independent of ¢, but this is true because if we have diffeomorphisms ¢; : Uy — VN X and ¢o : U — V N X, then
¥ = ¢, o, is a diffeomorphism as well, and ¢jw = P*P5ws (so ¢iw is C if and only if 5w is).

Returning to operations on k-forms, just like over Euclidean space, if we have wy,ws € QX(X), then their sum
wi + ws (defined pointwise) is also in Q%(X). Also, we have a d operation just like over Euclidean space, defined in

the following way:

Definition 147
For any w € QK(X) and p € X, let ¢ : U — V N X be a parameterization of X at p (sending 0 to p). Then we

define

dw|x = (¢71)"d(¢*w).

In other words, we use the definition of the d operation on Euclidean space, and this is a legitimate definition

because of the functoriality argument we just made (left as an exercise to us).

Proposition 148
Let f: X; — Xo be a C°> map. Then for any w € QX(X,), we have f*dw = df*w.

We showed this result for open subsets of Euclidean space, but they also hold for differentiable manifolds.

Proof. Let f(p1) = p» for p1 € X1 and po, € X,. Suppose we have parameterizations ¢; : Uy — V4 and ¢ : U, — Vs
centered at p; and px (from now on we'll suppress the “intersection with X;" and so on). If we pick our neighborhoods
so that F~1(\5) D V4, then we have the following diagram:

Vi —— v

ol T

U14>U2

By the chain rule and the commutativity of the diagram, we know that ¢;f*dw = Y*¢5dw, which leads us to
dy*piw = d¢if*w. Some more manipulation (using the definition of d and the pullback operation) gives us the
result. O

From the definition of d, we can essentially read off the usual properties
d(wy 4 wo) = dwy + dws,  d(wy Aws) = dwy A dws + (—1)9wy A dws,  d(dw) =0

(where wy is a ky-form), because of the versions that we proved earlier on in the class.
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27 April 11, 2022

Last time, we discussed the definition of a (C*) differential k-form on an n-dimensional manifold (by looking at the
tangent space T,X, the corresponding exterior algebra /\k(T;X), and then having w assign to each p € X an element
wp € /\"(Tp*) in a way such that the pullback ¢*w of the parameterization at any p is a C* k-form on the corresponding
domain, an open subset of R"). And as a reminder, in the Euclidean case, a k-form w =Y ¢,dx; is said to be C* if
each ¢, is a C* function on U.

We also described the pullback operation, which gives us a differential form f*w given a differential form w and a C*
map. More explicitly, recall that on Euclidean space, we did this by saying that if w = )" ¢;dx;, then f*w =Y *¢,df;,
where f*¢; is still a C* function and df; = f*dx;. Parameterizations then let us generalize that definition (as we
mentioned last time). Similarly, we saw that the d operation, which takes w =Y fidx; to dw = > dfi A dx;, can be
extended to manifolds as well. And while these definitions appear to depend on the diffeomorphism ¢ that comes with
the manifold X, we can verify that the objects we define are in fact intrinsic. Furthermore, we verified that the usual
functorial properties of these operations that we proved over Euclidean space still hold more generally.

We'll now talk about vector fields on manifolds, generalizing our discussion on Euclidean space. the pullback

Definition 149
Let X be a manifold. A vector field v on X assigns to each p € X an element v(p) € T,X, and a vector field is
C® if its pullback is C*.

Definition 150
Let X be a manifold, w € Q%(X) be a differential k-form, and v be a C* vector field on X. Like over Euclidean

space, let the interior product ¢(v)w be the differential (k — 1)-form given by (¢(v)w), = t(vp)wp.

The only thing we must check is that this indeed gives us a C*° k-form:

Proposition 151

If w, v are C*, then so is t(v)w.

Proof. Let ¢ : U — V,, be a parameterization of our manifold X at p. Define v to be the pullback ¢*(v) restricted
to X, and similarly let w# = ¢*w|y,. Then we can check that ¢*(v(v)w|y) = t(vF)wh. O

With this verification, we are now permitted to extend the Lie differentiation to differential forms on manifolds:

Definition 152
Let v be a C* vector field on X, and let w € Q%(X). Then the Lie differentiation operation is defined (just like
on Euclidean space) as

Lyw = di(v)w+ t(v)dw

Proposition 153

Just like over Euclidean space, we have

dl,w=L,dw, L, (w1 Aws)=L,wi Aws+wi AL,w,.
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(The same proofs carry over verbatim.) We also have an alternative definition of the Lie derivative.

Proposition 154
Suppose that a vector field v is complete (recall that this means there is a one-parameter family of diffeomorphisms

f such that for each p € X, f;(p) is an integral curve of v with f,(p) = p). Then

d
Low = T (fFw)ig -

This proof is left as an exercise to us, but the idea is that for any ¢ € C*°(X), we have

[£0(p) = ¢(v:(p)) |

for an integral curve v:(p) with v9(p) = p. Then because ‘ fdw = ft*w‘ and ‘ (wi Awa) = fFw A Hws ‘ (discussed

previously in the class), we can differentiate the first boxed equation at t = 0 to conclude the result for differential
0-forms (that is, functions), differentiate the second boxed equation at t = 0 to conclude the result for dw given the
result for w, and differentiate the third boxed equation at t = 0 to conclude the result for wedge products. Since every

k-form is a sum of products of 1-forms, this proves the result.

28 April 13, 2022

We'll be talking about integration of differential forms on manifolds in the next section of this course. Our first result

is one about “partitions of unity:”

Theorem 155
Let X C RN be an n-dimensional manifold, and let i = {U, : o € Z} be an open covering of X (where T is some

index set). Then there exists a family of functions p; € C§°(X), such that

« each p; is nonnegative on X,
- for every compact subset C C X, there is some M > 0 such that suppg; N C = @for all i > M,
« > pi=1onall of X,

- for every i € a, there is some a such that supp(p;) C Uy.

Proof. For every p € X, there is some Uy, with p € Uy, so that we can choose an open set O, in RN containing p
such that Op N X C Uy. If we define O = J, Op, and we let p; € C5°(O) be a partition of unity subordinate to the
covering by the O,s (here we're using the partition of unity result on Euclidean space), we can let p; be p; restricted
to X. Then the properties in the theorem statement can be readily verified. O

We'll also define the concept of an “orientation” on a manifold, just like over Euclidean space. Recall that for any
one-dimensional vector space V/, an orientation is a labeling of the connected components of V — {0} as V. and V__, and
thus for any n-dimensional vector space V/, an orientation is a labeling of the connected components of A"(V) — {0}
as A"(V), and A"(V)_.
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Definition 156

Let X be an n-dimensional manifold. An orientation of X is a function which assigns to each p € X an orientation
of the tangent space T,X. The orientation is smooth if for every p € X, there is an open neighborhood U of p
in X and a C* n-form w € Q"(V), such that w, € A(T;)4 forall g € U.

Example 157
Let U be an open subset of R”. The standard orientation of U is the canonical orientation defined by the

Euclidean volume element dx; A -+ A dx,.

If we let X and Y be oriented n-dimensional manifolds and let f : X — Y be a diffeomorphism, we can again make
a functoriality argument: we again call f orientation-preserving if for every p € X (and corresponding g = f(p)), the

map (df,)* sends A"(T;)4 to A"(T,)+ (and otherwise orientation-reversing).

Definition 158
Let X be an oriented manifold, U be an open subset of R”, V/ an open subset of X, and ¢ : U — V a diffeomorphism.

¢ is an oriented parameterization if ¢ is orientation-preserving.

One important note is that if U is connected but ¢ is not orientation-preserving (that is, it is orientation-reserving),
we can replace the open set U with U’ = {(xy, -+, Xn) : (X1, "+, Xn—1, —Xn) € U}. Then replacing ¢ with ¢, defined
via ¢'(xq, -+, Xn) = d(x1, -+, Xa—1, —Xn), gives us an orientation-preserving map ¢'.

Our goal is now to define the integral wa for any compactly supported w € Q2(X), and we'll be doing so under
the assumption that X is oriented. We’ll first do the case where w € QZ(V), where V is a parameterizable open set

of X. In that case, we choose an oriented parameterization ¢ : U — V/, we can then define

fio= o o

where we can use the definition of differentiation of forms over Euclidean space by multivariable calculus.

Lemma 159

The definition of fvw is intrinsic (not dependent on the choice of parameterization ¢).

Proof. Suppose ¢1 : Uy — V and ¢ : U> — V be two oriented parameterizations. Because parameterizations are

diffeomorphisms, we get a diffeomorphism g = q§2_1 o ¢1, and then

prw =/ ($209)'w= / g Prw.
Ur Ui U

But because g* is orientation-preserving (since ¢1, ¢> are orientation-preserving), this right-hand side is equal to
fu2 ¢5w. So the integral is indeed independent of our choice of parameterization. O

We can now define integration of forms in the general case by using Theorem 155:
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Definition 160
Let {V, : o € U} be an open covering of X by parameterizable open sets, and let p; € C*(X) be a partition of
unity subordinate to the V,,. Then for any compactly supported n-form w € Q72(X), we may define

/szz:/xp,-w,

where the right-hand side is well-defined because each p;w is supported within a parameterizable open set.

By the last point of Theorem 155, because w is compactly supported, this sum eventually vanishes, and thus there
are no convergence issues. And furthermore, we can check that this definition is independent of our choice of partition
of unity — to see this, suppose U' = {Ué} is a different open covering of X by parameterizable open sets and o/ is a

corresponding partition of unity. Then by swapping the order of summation,
Z/p,-w=Z/p;pjw=2/pjp/w=2/pjw,
i i X i 7X j7X

showing that the definitions agree. And we can show functoriality as well: if X; and X5 are n-dimensional manifolds,

and f : X; — X5 is an orientation-preserving diffeomorphism, then for any w € Q7(X,), we have le ffw = sz w.

29 April 15, 2022

Last lecture, we started discussing integration of forms on a manifold X. Specifically, we said that if V is a parame-

terizable open set in X, w € Q (V) is compactly supported, and ¢ : U — V is an oriented parameterization of V, then

fio- o

via the definition of integration of forms on Euclidean space and the definition of the pullback map. More generally,

we can define

for an arbitrary form w, we can choose a covering of X by parameterizable open sets and then forming a partition of

unity subordinate to that covering, which then allows us to define

/XWZ/XP/OJ,

in which we justified why this sum is well-defined last lecture. Finally, we mentioned that the functoriality properties
of integration still hold over oriented manifolds: for any orientation-preserving diffeomorphism f : X; — X5 between
n-dimensional manifolds, we have le w= fxz w for any compactly supported n-form w € Q2(X>).

Today, we'll look some fundamental results in multivariable calculus, namely Stokes’ theorem and the divergence
theorem, and generalize them to manifold versions. We'll start with a “model case” of Stokes' theorem on Euclidean

space:

Proposition 161

Let H" = {(x1, -, xn) € R" : x; < 0} be a half-space of R”, then R"™! = {(x1,---,x,) : x1 = 0} (identified
with the inclusion map tgo-1 @ (X1, -+, Xp—1) = (X1, -+, Xs—1, 0) is its boundary bd(H"). Then for a compactly
supported (n — 1)-form w € Q7~1(R"), we have

/ dw:/ Liin—lw
n Rn-1
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This proof is left as an exercise for us — the idea is that for any / > 1, fH,, g—;dxl -+~ dx, = 0 by integration by

parts, while for i = 1 we have

[ @B = (000 x)dx - dx,

We'll now generalize this as promised:

Definition 162
Let X be an n-dimensional manifold. An open subset D of X is a smooth domain if for every p € bd(D), there
exists a parameterization ¢ : U — V centered at p such that ¢ maps U NH" diffeomorphically onto VN D. (This

is called a D-adapted parameterization.)

In other words, every point on the boundary of D looks locally like a point on the boundary of the half-space H".

We can notice a few important facts:

« If D is a smooth domain and Z = bd(D), then because Bd(H") is isomorphic to H"~!, from the parameterization
¢ we have a diffeomorphism UNR"! onto VN Z. In other words, Z is a submanifold of X, and ¢ : UNR"! —
V' N Z is a parameterization of Z at p.

« Assuming now that X is an oriented manifold, we can assume that ¢ is an oriented parameterization (otherwise
do the trick from last time, where we replace U with U’ = {(xy, -+, x5) : (x1, -+, —x,) € U} and use the map
& (X1, Xn) = d(x1, -+ Xn_1, —Xp) in place of ¢). We then find that the map ¢ : UNR™ — VN Zis
orientation-preserving. This is in fact an intrisic property: if ¢ : Uy — V and ¢, : U, — V are two oriented
D-adapted parameterizations, and f = (1)2’1 o ¢y, then we get an orientation-preserving map of U; N H" onto

U "H", so if ¢1 : Uy NH" is orientation-preserving then so is ¢, : U, NH".

Theorem 163 (Stokes' theorem on manifolds)
Let X be an n-dimensional manifold, and let w € ngl(X). Let D be a smooth domain, and let Z be the boundary

of D. Then
/L*Zw:/ dw.
z D

Proof. Recalling the definition of integration of forms on manifolds, by a partition of unity we may assume that

w € Q17 L(W), where W is a parameterizable open set satisfying one of the following three properties:

- WnND=g,
« W CInt(D),
- there exists a D-adapted parameterization ¢ : U — W, in particular meaning that ¢(U NH" 1) - WnN Z.

In the first case, both sides of Stokes’ theorem are zero. In the second case, if ¢ : U — W is an oriented

parameterization, then because d commutes with the pullback map,

/dw:/ w:/qb*dw:/dq)*wzo.
D Int(D) U U

/dw: ¢>*dw:/ do*w,

D Hn n
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Finally, in the third case, we have



and on the other hand we have

/L*Zw:/ L1 w.
7 Rn-1

So now we can just apply the Euclidean version of Stokes’ theorem to get the desired result. O

We also get a simple but important corollary:

Theorem 164 (Divergence theorem)
Let X be an n-dimensional manifold, and let v be a C* vector field on X. If w € Q7(X), then ¢(v)w € Q771(X)
and Lyw € QI(X) are well-defined. Then for any smooth domain D, we have

/D,va:/zb(v)w.

Proof. Recall the definition of £,w = ¢(v)dw + di(v)w. Applying Stokes’ theorem gives us [, du(v)w = [, 1(v)w,

which implies the result. O

In particular, formulating this result over Euclidean space gives us the ordinary divergence theorem.

30 April 20, 2022

Today, we'll extend the discussion of degree theory to oriented manifolds, starting with an important generalization:

Theorem 165 (Poincaré lemma for manifolds)

Let X be an oriented, connected n-dimensional manifold, and let w € Q272(X). Then the following are equivalent:
1. [yw=0,

2. w = du for some p € QI71(X).

The above result can be restated in an alternate formulation: if wy, w, are both compactly supported n-forms on
X, say that wy ~ ws if wy —w» € dQQil(X). Then Theorem 165 is equivalent to saying that wy; ~ wo if and only if
Jxwr = [xwe.

Notice that Stokes' theorem on manifolds already tells us that the second property implies the first, so we just
need to prove that if fxw =0, then we can write w = du. Also, we can fix some parameterizable open set Uy C X,

and let wo € Q72(Up) be an n-form compactly supported on Uy. Then we may equivalently prove the following:

Theorem 166
Let X be an oriented manifold, let w € Q2(X), and let wy € 22(Uy) be compactly supported on a parameterizable
open set Up of X. If w e Q2(X) and [, w = ¢, then w ~ cwp.

Proof. By the definition of integration of forms, we can (using a partition of unity) assume that w € Q2(U) for some
parameterizable open set. Additionally, if ¢ = 0, then fuw = 0 implies that w € dQ771(U) (here we're using the
Poincaré lemma on R” by applying the pullback map), meaning that dw ~ 0. Otherwise, if ¢ # 0, replacing w
with ¢ allows us to assume without loss of generality that fuw = 1.

The main step of the proof from here (which should look familiar) is to choose a sequence of parameterizable

open sets U, -+, Uy, so that Uy = U and U;NU,_; = @ for all i (including i = 1). Then for each /, pick an
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wi € Q2(Ui—1 NU;) such that [w; = 1. Since Uj_1 is always a parameterizable open set, wj_1 ~ w; for all i (since

they have the same integral), and additionally w ~ wp. Thus wg ~ wy ~ wy ~ +++ ~ wy ~ w as desired. O

Definition 167
Let X and Y be oriented connected n-dimensional manifolds, and let f : X — Y be a proper C* map. Define the
degree of f to be the topological invariant such that for every w € Q2(Y), we have [, f*w = deg(f) [, w.

To check why such a topological invariant exists, suppose we choose some wy € Q2(Y) such that fy wo = 1,
and define deg(f) to be fx f*wg. Now suppose that fyw = ¢. Then by the variant of the Poincaré lemma above,
w ~ cwp, meaning that w — cwo = du for some p € Q771(Y). Applying the pullback map, we find that

/f*w: c/f*wo,

which leads us to the assertion [ f*w =degf [w.

Proposition 168
Let X,Y,Z be oriented n-dimensional manifolds, and let f : X — Y and g : Y — Z be proper maps. Then
deg(g o ) = deg(f) deg(g).

Proof. We've seen this result before for Euclidean space, and the same proof works: for any w € Q2(Z), we have
(gof)'w=rf*g*w, so deg(gof) [,w= [\ (gof)w= [, Fg*w = deg(f) [, g*w = deg(f) deg(g) [, w. O

We'll now explain the stack of records theorem, which should again look familiar. Let f : X — Y be a proper
map between oriented manifolds, and let ¢ € Y be a regular value of f, meaning that the preimage f~%(q) is a set
{p1., -, pn} and there exist disjoint neighborhoods U; of p; and V of g such that each f; : U; — V is a diffeomorphism
and f~1(V) = U, U;. Choose w € Q2(V) with [,,w = 1. Then

ffw= / fastiw,
\/); Z U/

and because each f; : U; — V is a diffeomorphism, fu, f*w will be either 1 or —1 depending on whether f is orientation-

preserving or orientation-reversing. Thus we again get a formula for the degree:

Theorem 169
Let f : X — Y be a proper map between oriented manifolds, and let g be a regular value of f with preimage
{p1.---,pn}. Thendeg(f) =3, 0p, where o, is 1 (resp. —1) if the map f; above is orientation-preserving (resp.

orientation-reversing).

Furthermore, we have the same homotopy invariance that we previously discussed (which explains that we indeed
have a topological invariant):

Proposition 170
Let fy, f1 : X = Y be two C* proper maps, and let F: X x [0,1] — Y be a proper homotopy between fy and f;
(meaning that F(x,0) = fh(x), F(x,1) = fi(x) and we have a proper C* map). Then if the map f; is defined
via fi(x) = F(x, t) for all x, then f; is proper, and for a compact set A C Y, there exists a compact set B C X
with f1(A) C B.
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(The relevant ideas here are the following: let w: X x [0, 1] — X be the projection (x, t) — x. Then there exists
a compact set B in X such that ffl(A) C B, because the f;s are proper maps.) And because the result above tells us

that the degree of any proper map f; is always an integer, and the degree is continuous, we have the following result:

Theorem 171
If fo and f; are properly homotopic, then deg(fy) = deg(f1).

31 April 22, 2022

We reviewed and generalized the definition of degree last lecture — for a proper C*> map f : X — Y between oriented
connected n-dimensional manifolds, we found that there was an invariant deg(f) such that fx f*w = deg(f) fyw for
all compactly supported n-forms w € Q72(Y’). We also established some familiar properties of this degree, namely that
deg(g o f) = deg(f)deg(g), that the degree is homotopy invariant, and that we can calculate the degree of a map
f via the “stack of records theorem.” The latter result basically states that if g is a regular value of the map f with

preimage {p1, -, pn}, then we can associate to it diffeomorphisms f; : U; — V between (disjoint) neighborhoods of
p;i and g for each / (with the condition that f=1(V) = vazl U; for the purposes of the proof). We then have
deg(f) = ZUP/'
i

where each op, is 1 or —1 depending on whether f; is orientation-preserving or orientation-reversing (and recall that
this proof came from the fact that for any w € Q2(V) with [, w = 1, we have deg(f) = [, ffw =3, [, f*w). We

can apply these discussions of degree to the extendability problem (left as an exercise to us):

Proposition 172

Suppose M is an oriented n-dimensional manifold, D C M be a smooth domain with compact closure, and
X =Bd(D). Thenif f: X — X is a proper map, then f cannot be extended to a proper map on D, because any
extendable map has deg(f) = 0.

We'll discuss another application of degree theory today, index theory for vector fields.

Definition 173
Let D be a smooth domain in R"” such that D is connected with compact closure. Let X = Bd(D), and let v be
a C> vector field on R” such that v(p) # 0 for all p € X. From this map v, we get a map X — S"~! sending

p to I;EZ;I' (Notice that X and S""! are both compact (n — 1)-dimensional manifolds). The index of v over D,

denoted ind(v, D), is then the degree of the map g.

Theorem 174
Let D; be a smooth domain in R” whose closure is contained in D. Then if v has no zeros in D\ Di, then
ind(v, D) =ind(v, D1).

Proof. Let W = D\ D, and notice that the map f, : 8D — S"! extends to a map F : W — S"! (given by
p— %. We may write W = X U X3, where X = Bd(D) and X; = Bd(D;) with its orientation reversed (it's good
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to draw a diagram for this). Now choose a differential (n — 1) form w € Q" *(S""1) such that [, w = 1. Define
the maps fo = f, and f; = (1), to be the restrictions of F to the two boundaries X and X;. By Stokes' theorem (in
the last step below), and the fact that dw = 0 (it's an n-form on an (n — 1)-dimensional space), we find that

Oz/ F*dwz/ dF*wz/ fw—/ fw = deg(f) — deg(f).
w w X X

Thus the degrees of the maps f and f; are equal, meaning that the index of v over D and over D; are identical. [J

Using this result, if we now assume that v only has a finite set of zeros {py, -+, px} over its domain D, then we

may let B(p, €) denote an e-ball around p, and we can let D% = D\Uf;l B(p;,€). Our map g above will then extend

toamap G: D’ — S"=1 (on which p still maps to ﬁgg;r and the boundary of D is the union X and the boundaries

of the balls B(pj, €). Thus, putting everything together, Theorem 174 gives us the following index theorem:

deg(g) = Zind(v, B(pi,€)) = |ind(v,D) = Z ind(v, p) |

32 April 25, 2022

We'll spend the last few lectures of the class on the last chapter of the textbook, discussing de Rham theory. We'll
start today with some basic definitions — recall that for a manifold X, Q¥(X) is the set of C> k-forms on X, and

Qk(X) is the set of compactly supported C* k-forms on X.

Definition 175

Let X be an n-dimensional manifold. Define the vector spaces
Z5(X) ={w € QX(X) : dw =0}, B*(X) ={w € Q"(X) : u € dQ*1(X).

Analogously, we may define ZX(X) = {w € Q&(X) : dw = 0} and BX(X) = {w € QK(X) : pu € dQE~1(X)}.

In particular, we can note that B%(X) C Z*(X) (because of exactness, coming from the fact that d?> = 0), so the

next definition also makes sense:

Definition 176
The kth de Rham cohomology group of X is given by H¥(X) = Z¥(X)/B*(X), and analogously we also define
HE(X) = ZE(X)/BE(X).

Our goal will be to understand these objects and to understand methods for computing the cohomology groups.
We'll use the notation that for any w € ZK(X), [w] is the image of w in H*(X) (and similarly for the same statement

for compactly supported forms).

Proposition 177

We have the following facts:

1. If X is connected, then H°(X) = R.
2. If X is n-dimensional, then HXK(X) = HX(X) =0if k > nor k < 0.

3. If X is connected and oriented, then Z2(2) = Q2(X).
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Proof. For (1), because a 0-form on X is a C* function and d of a function on a connected X is only zero if it is
constant, H°(X) must consist of the set of constant functions. (2) follows from the fact that we only have nontrivial

k-forms for 0 < k < n. Finally, (3) holds because dw of any n-form is zero, so all n-forms work. O

If we now think about the integration operation [ : Q7(X) — R, sending a form w to [, w, then recall that we've
previously proved that
w e dQIHX) = / w=0.
X

Quotienting out by BZ(X), we thus get a bijective map between HZ(X) and R in this case (by associating to each

form its integral on X).

Proposition 178
Let U C R" be an open rectangle. Then for all k > 0, H*(U) = {0}.

(This was on our homework, in which we proved that every form w € Z¥(U) is exact.)

Proposition 179
Let U C R” be an open rectangle. Then for all k < n, HX(U) = {0}.

(This was actually also on our homework — we proved that if w is closed, then w = du for some u € QX~1(U), so
in fact ZK(U) = BX(U).) We'll next discuss the Poincaré lemma for manifolds: let X be an n-dimensional manifold,
and at a point p € X let ¢ : U — V be a parameterization sending 0 to p. We may assume (by restriction of ¢) that
U is an open rectangle. Then if a € ZK(X) for some k > 0, and ayq is a restricted to V, then

da=0 = dag=0 = d¢p*ag=0 = ag= (¢ )*dB=d(¢;')B,

and thus a restricted to V is an element of B¥(X), because it's d of a (k — 1)-form. Thus H*(V) = 0 for all k > 0,
and thus every closed k-form, restricted to an open set, is exact. Now that we've discussed some local results,

we'll turn to global ones:

Theorem 180
For the sphere S, we have H°(S") = H"(S") =R and H*(S") =0 for 0 < k < n.

Proof. Because S" is compact and connected, we've already proved that H°(S") = H"(S") = R from our earlier
remarks. It now suffices to consider the situation for 0 < k < n. Let pg be the point (0,0,---,0,1) € S", and let
v: 5" —{po} — R" be the stereographic projection, meaning that for any point g € S”, we draw a line between pg
and g and consider where it intersects the hyperplane R” x {0} in R™1. This is a bijective map (since for any point
in R™ we can draw a line between it and pg, and it will intersect the sphere at one other point g besides pg).

Now for any a € Z¥(S"), there exists a neighborhood V' of p and some 8 € Q*~1(V) such that a = dB on V (by
our discussion above for parameterizable open sets V). Letting p € C§°(V) be a “bump function” such that p =1 on

a neighborhood of p, we can then replace a with & = o — dpB3, meaning that
& € QE(S" = {po}) = Q(R").

In particular, & = dB for some B € Qk=1(S" — {po}). If we then Write5 = 08 + B, we find that dﬁz = @, so
a € BK(S™). Therefore we mod out Z*(S") by itself and thus H*(X) = 0. O
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We'll close by thinking about functoriality of these groups: if X and Y are C* manifolds, and f : X — Y isa C*®
map, then we have a corresponding map * : QK(Y) — Q¥(X). Since f*dw = df*w< we find that we also get maps
f* . ZK(Y) — ZK(X) and B¥(Y) — B*(X). We thus get an induced map

1o HE (YY) = HA(X)

between the kth de Rham cohomology groups of X and Y: specifically, the map sends f#[w] to [f*w]. In addition, if
f: X — Y is a proper map, then preimages of compact sets are compact, so w € QK(Y) = f*w € QK(X). Thus,
even within the compactly supported forms, we also get a map ! : HX(Y) — H%(X), again sending [w] to [f*w].
We'll be making use of these facts in the coming lectures, and next time we'll show that these cohomology groups are

finite-dimensional as long as X is comacp.

33 April 27, 2022

Last lecture, we started introducing de Rham theory: recall that the de Rham cohomology groups of X are defined in
terms of the d map d : QK(X) — Q**1(X) on k-forms of X. Specifically, if ZX(X) is the kernel of the d map, and
B*+1(X) is the image, then we define H*(X) = Z*(X)/B*(X) (and also similarly define a version of this for compactly
supported forms). The notation we'll use, going forward, is that [w] denotes the image of a form w € ZK(X) (resp.
ZE(X)) in HA(X) (resp HE(X)).

We'll start to understand some techniques that can be used for computing these groups, starting with the Mayer—

Vietoris theorem.

Definition 181

Let C,C?,--- be vector spaces, and let d; : C' — C'*! be maps between those sequences (we will often just
denote these maps as d to simplify notation). We call the sequence C° B, c1 Dy 2. s called a complex if

diy10d; =0 for all /.

Example 182

Because d? = 0 for the d map we've been discussing, we have the de Rham complex
0— QX)L QLX) L Q2(X)- -,

. d d
as well as a similar complex for compactly supported forms 0 — Q9(X) = QL(X) = Q2(X)---

We may also discuss morphisms between complexes:

Definition 183
If Ck, d and Ck, d form two different complexes, then a morphism between the complexes is a map a : Ck % Ck
such that da = ad.

In other words, we can imagine writing out our complexes in two rows and having o be maps from the top to the

bottom. Then the “squares” in the diagram will commute:
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0 d 1 d 2 d
& G &

I

0 _ d 1 d 2 _ d
G G G

We'll now explain the general abstract definition of a cohomology group:

Definition 184
If C,d is a complex, then the kth cohomology group H(C) of the complex C is given by defining Z/ = {c €
C':dc=0} and Bj;1 = dC' and setting H*(C) = Z'/B'.

In particular, a morphism of complexes will induce a map a : H*(C;) — H*(Cy) (we can check that this is indeed

well-defined even though we have quotient groups because d and a commute).

Definition 185

Let Vg, V4, - -+ be a sequence of vector spaces, and let ; : V; — Vi1 be maps between those spaces. The sequence
Vo 2%V, 25\, — - is exact if kera; = im a_; for all i. A short exact sequence is an exact sequence of the

form {0} — V4 25 Vb 25 V4 — 0 (meaning that oy is injective, a is surjective, and ker(as) = im (aq)).

With all of this notation, we're now ready to discuss the main result of today's lecture. Here's the setup: let
{0} &t 29 ... beacomplexfor r = 1,2, 3 (meaning that d = 0), and suppose that 0 — CX 5 Ck L Ck — 0
is a short exact sequence for each k, meaning that the image of each / map is the kernel of the j map. Then we may

draw the following commutative diagram (which extends further both up and down):

j J
0 —— Ckt L cktt Citl 0
K E E
j J
0 ck —1 5 ck ck 0
E E E
0 — Ck1 Ly ¢kt L, gkt 0

Then defining ZK = {c € C¥: dc = 0} and BX = dCk~! for each k, r, we find that /(Bf) C B% and i(Zf) C Z¥&
(because i and d commute), giving us an induced map iy : HX(C1) — H*(C2). We similarly get an induced map
Ji : HX(C3) — H*(C3). We may check that kerjy = im j;, meaning that H*(Cy) LN HK(Co) %, HK(C3) is exact. It
turns out to not be short exact (we can't append a 0 to the beginning and end of it and still have exactness), but we

instead have that the following diagram commutes:

k41 k+1 k+1
G —— G —— G

[
Ck —— Ck

We may check (by exploring the implications of this diagram) that we then get a correspondence between an

element ck € Z4 and an element ¢! € Z¥*!, so we induce a map & : H*(C3) — H¥*1(C;), known as the coboundary

map. We then get our result:
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Theorem 186 (Mayer—Vietoris)

With the notation above, we have an exact sequence of the form

o HRY(C) B HRHG) B HRY(Ga) S HR(CL) B HR(G) B HR(C) S HRY(CL) = -

The proof of this requires a lot of commutative diagram chasing (keeping track of exactness and images and
kernels), but we can read about it on our own. And while this sequence does, in principle, extend infinitely, recall
that we've demonstrated that the H* cohomology groups are eventually zero for finite-dimensional manifolds, so the

sequence is only interesting within a finite range.

Corollary 187

Let X be a manifold, and let U; and U, be open sets in X. If we let CK = Q%(U; U Us), Ck = Q%(Uy) @ Q% (Us),
and CK = Q(U; NUs), then we (may check that we) get short exact sequences 0 — Ck £ Ck L Ck — 0, where
i is essentially restriction of a k-form on U; U U, to U; and U, and j sends wy & w» to the difference of w; and

wp on U; NU,. Then we get along exact sequence of cohomology groups
o B HA(ULU Up) & HE(Uy) @ HA(Un) % HA (UL N ) & HEA (U U L) & -

and also a similar result for compactly supported cohomology groups.

In particular, this often allows us to calculate the cohomology groups for U; U U, in terms of the cohomology
groups of Uy, U,, and Uy N Us.

34 April 29, 2022

Last lecture, we described the Mayer-Vietoris theorem, which in particular gives us an exact sequence involving de
Rham cohomology groups of U;, U, Uy N Us, and Uy U U (where U; and U, are open subsets of an n-dimensional
manifold X). More explicitly, if we let / : QK(U; U Us) — QK(U;) @ Q¥(Us) be the map which sends a k-form w on
Uy UUs to the direct sum of the w restricted to Uy and Us, and we let j : QK(U;) @ QX (Us) — QF(Uy) NQ¥(Uz) be the
map that sends (w1, W) t0 wW1l|wnw — Walu,nu,, then we satisfy the requirements on the large commutative diagram
that we drew last time, namely that dj(w;, w2) = j(dwy, dws) (that is, d and j commute), di(w) = idw (that is, d
and i commute), and composing the / and j maps gives us a short exact sequence. We'll reproduce that diagram here,
but now in terms of the Q; spaces instead of vector spaces C¥ from general complexes:

0 —— QLU Uls) — QLU @ QKL (Us) —L QFHL(Ur N Us) —— 0

fo & Jo

0 —— Qk(Ul UUQ) —l> Qk(Ul)@Qk(UQ) % Qk(Ul ﬂUQ) — 0
[ § §

0 —— QLU U L) — = QY(Uh) ® Q1 (Us) —2—= Q< H(Uin ) —— 0

From here, “diagram chasing” lets us convert this commutative diagram into a statement about the H* cohomology

groups, namely that we have a long exact sequence

S R UL U W) B HE (U @ HE(Us) B HR (UL 0 Us) S HR Y (U U ) s
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where the sequence continues on between cohomology groups of U; U Us, then of the direct sum of the groups for U;
and U, then of the groups of U; N U,, incrementing the index k.

Today, we'll see some applications of the Mayer-Vietoris theorem:

Theorem 188
Suppose U is a convex open set in R". Then H°(U) = R and H*(U) = 0 for all k > 0.

Proof. Fix some point py € U, and for each t € [0,1], let f; : U — U be the map

fe(p) = (1 = t)p + tpo.

This map is well-defined because U is convex, and we may notice that fo(p) = p is the identity map, while fi(p) = po
is the constant map. This gives us a homotopy between the two maps, and thus by homotopy invariance, we get an
induced map ftn : HK(U) — HX(U) independent of t. Thus the cohomology groups of a convex set must be the same
as those of a point, which can be checked easily to be HO(U) = R and H*(U) = 0 for all k > 0. O

Definition 189

Let X be an n-dimensional manifold, and suppose U = {U, : @ € Z} is a covering of X by open sets (for some
index set 7). Call U a good cover if for every finite subset ay, -+, € T, Uy, N--- N Uy, is either empty or
diffeomorphic to a convex subset of R".

This is basically a “niceness” condition, and it in particular requires the U,s to each be diffeomorphic to a convex
subset of R”.

Example 190
Suppose X is an open subset of R”, and for every p € X, let U, be a convex neighborhood of p. Then {U, : p € X}

is a good cover (because the intersection of convex sets is convex).

We'll now generalize the notion of convexity on Euclidean space to an analogous version for manifolds, remembering

that we always assume in this class our manifolds are subsets of RV for some large N:

Definition 191

Let X C R" be an n-dimensional manifold. For any p € X, let T,X be the tangent space of X at p, where we
view T,X as a subset of T,RN =RN. Then let L, be the set

Lo={p+v:veT,X}

Let m, : X — L, be the orthogonal projection of X onto the (affine) hyperplane L,. Then an open set U in X is
convex if for every p € U, T, maps U bijectively onto a convex open set in L, (which we can view as equivalent
to Euclidean space).

(In particular, in the definition above, if X is a one-dimensional manifold, we can think of L, as the literal tangent
line to X at p, and more generally we can imagine the hyperplane formed by all tangent vectors at p in RV.)
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Proposition 192
Let X be a manifold as in the above definition, and for each p € X, let B¢(p) be an open ball of radius € in L.

Then for any p € X, we may always pick a small enough € such that m(B.(p)) is convex.

This result is left as an exercise to us, but the idea is to let U, = m,'(Bc(p)) and notice that mq(U,) is very
close (for small €) to the original copy Be(p). And the idea is that a small enough perturbation of a convex set is still

convex, but we won't write out the details. We also have the following result:

Proposition 193
If U; and U, are two convex open sets of X, then U; N Us is also convex.

(This basically follows from the fact that if m,(U;) and m,(Uz) are convex in L, then so is their intersection.)
This discussion of convexity can then lead us to the following result (by taking the B¢(p)s for each point p of small

enough € so that each one is convex in X):

Corollary 194

Every manifold admits a good cover.

Definition 195
A manifold has finite topology if it admits a finite good cover {Uy, -+, Un}.

Our next few lectures will be to explore the following idea: suppose we have a finite good cover {Uy, -+, Un} of
a manifold X. We'll see that the cohomology groups of X can be read off from intersection properties of the U;s,
and that will give us a concrete way to compute the groups H¥(X). (This is known as Cech cohomology, and it will

turn out that that theory will be isomorphic to de Rham cohomology theory.)

Theorem 196
If X admits a finite good cover, then dim H*(X) < oo for all k (all cohomology groups have finite dimension).

To show this, we first mention a lemma which we can prove as an exercise:

Lemma 197
Suppose Vi = V% ﬂ V3 are linear maps such that im o = ker 3. Then if V; and V4 are finite-dimensional, then so

is V5.

Proof of Theorem 196. We induct on the size of the good cover. The base case m = 1 is clear, because then we can
use our convexity results from above. For the inductive step, if we have a good cover consisting of {Uy, -, Un—1} and
U, the inductive hypothesis tells us that the cohomology groups of Uy U---UUp—1, Up, and their intersection are all
finite. Now we can apply Mayer-Vietoris and Lemma 197 to show the result (each cohomology group of Uy U---U U,
is surrounded by two finite-dimensional spaces, and we have exactness at that group because it's part of a long exact

sequence). More explicitly, we have exactness

HY (U U U Up) NU,) — HYUL U - U U,) = HS(UL U -+ U Up—q) @ H5(U,),
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and now because U1 U---UU,_1, U,, and (U1 U---UU,_1)NU, all admit good covers by at most (n— 1) open sets (for
the latter using the open sets U;N U, for 1 < i < n—1), all of the other cohomology groups except H*(Uy U---U U,)
are finite-dimensional and thus the middle one is as well. O

In the coming lectures, we'll see how to use Mayer-Vietoris more explicitly and get a formula for these cohomology

groups!

35 May 2, 2022

Today's lecture will work towards connecting de Rham cohomology (involving the exterior d operation) to the new
theory that we started exploring last time, Cech cohomology. Recall from last time that this connection was introduced
in the following way: a good cover of an n-dimensional manifold X by a family of open sets U = {U, : o € T} is
a covering where any finite intersection of the U,s is either empty or diffeomorphic to a convex open set of R".
We showed last time (by Mayer-Vietoris) that if X admits a good cover by a finite collection of open sets, then all
cohomology groups HX(X) are finite-dimensional. This then motivated us to think about studying cohomology via

intersection properties of the U,s, and we'll start that construction today.

Definition 198
Let U = {U;, Uo,---, Uy} be a good cover of X, and let N¥ be the set of all multi-indices | = (ig, - ,ix) €
{1, ,N}" such that U, = U, n--- N U, is nonempty. The nerve of a cover U is the collection of sets
NO NT ONZ, -

Definition 199
The set of Cech cochains ék(U,R) is the set of maps ¢ : N — R, and the Cech coboundary map is a map
5 : Ck-1(U,R) — CK(U, R) defined as follows: for any ¢ € CK~1(U,R) and any / € N¥, we have

k
sc(l)y =Y (=1)cl),

r=0

where [, is the multi-index obtained from / by deleting the index j, (that is, the (r + 1)th index).

Proposition 200

The map 86 : Ck=1 — CK*1 is the zero map.

Proof. By applying the definition twice, we have (carefully keeping track of indices, having ¢ € Ck-land | € Nk“)

k+1 k+1
86c(l) => (=1)bc(l) = (Z(—l)f(—l)%(/,,s) + Z(—l)f(—l)s—lc(/r,s)> ,

r=0 r=0 \s<r s>r

with the two cases coming from the fact that indices after r get shifted by one in /, compared to /. But then each
I+ s shows up once in each subsum with opposite (—1)™ prefactors, meaning that everything cancels and we indeed
get 0. O

This implies that we have a complex

0— C°(U,R) — CY(U,R) — C2(U,R) — -- - ,
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and we can now finally define Cech cohomology groups:

Definition 201
The kth Cech cohomology group of an open covering U of X is given by

H*(U,R) = (ker§ : C* — C*1) /(im 6 : CF° 1 — C¥).

Our goal in this last section of 18.952 is essentially to prove that
H(U,R) = H*(X)

(in other words, that the Cech cohomology group and the de Rham cohmology groups are isomorphic). Before that,

we'll need to make a generalization of these cochains:

Definition 202
A Cech cochain of degree k with values in Q% is a map ¢ which assigns to each | € N¥ a ¢-form c(/) € Q4(U)).

The set of Cech cochains of degree k with values in Q¢ is the vector space C“(U,Qe), with addition given by
pointwise addition: for any ci, ca € CK(U, Q%), ¢ + ¢ is the cochain which sends / to c;(/) + co(/). We also get a

generalized coboundary map:

Definition 203
Let / € NX. For any 0 < r < k, define the restriction map

¥ QUL — Q4U))

(this makes sense because U, is contained in U)). Then define the coboundary map (mimicking the definition

above) by setting

for any c € CK~1(U, Q%) and | € NX.

We may check that d6 = 0 for this more general definition, using basically the same proof as Proposition 200. We
can now start computing cohomology groups by looking at small k: a ¢ € CO(U, Q%) is a map that assigns to each
1< i< N anelement w; € QYU;). From the definition, we see that §c = 0 if and only if

wilyny, — wilyu, =0 V(i j) € N

In other words, the kernel of the map & : C°(U, Q%) — CH(U, Q¢) is Q¥(X) itself (the set of forms that can be defined
consistently on all of the U;s at once). Next time, we'll extend this to see that we in fact get an exact sequence of

the form
0— Q4X) = C%U, QY = CHU, Q) — -+

and see how that leads us to the isomorphism we're after.
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36 May 4, 2022

Last lecture, we defined the Cech cohomology groups H*(U,R) (where U = {Up, --- , Uk} is a finite open cover of
a manifold X). The motivation for this cohomology theory is that it is easier to compute the Cech cohomology
groups from the definition than the de Rham cohomology groups — recall that if N¥ is the set of all multi-indices
(i, -+ i) € {1,--+, N}* such that Uy N---N U, is nonempty, then Cech cohomology is defined in terms of the Cech
cochains C¥(U,R) (the maps from N* to R) and the Cech coboundary map dc(/) = Zfzo(—l)rc(/r). We showed
that 6 = 0, forming a complex 0 — C°(U,R) — C*(U,R) — ---, and that gives us the Cech cohomology groups
H¥(U,R) = (kerd : CK — Ck1)/(im § : Ck—1 — Ck).

Today, we'll explain why the HX and H* cohomology groups are in fact the same. Last time, we generalized
Cech cochains to take values in Q¢ (for some integer £) — such cochains are maps ¢ that assign to each multi-index
I € N¥ an element c(/) € Q4U,). The sets CK(U, Q%) are vector spaces, and we defined a generalized § map
oc(l) = Zfzo(—l)"y,c(/,) (where 7, is the restriction map of a form from U, to U;). Since 6% = 0 here as well, we
are now motivated to consider the cohomology groups associated to this complex (of cochains with values in Q).

Last time, we mentioned that an element ¢ € CO(U, Qe) is a map that assigns to each index 1 </ < N an £-form
we € QYU;). Furthermore, 6¢c = 0 for such a map if and only if for every (i,j) € N, ic(j) — v;c(i) = 0, meaning
that there is some unique ¢-form w € Q¢(X) such that w restricted to each U, is w;. Thus the kernel of the map from
CO(U, Q%) — CY(U, Q%) is the set of all differential k-forms on X, Q¢(X). Inserting this into the complex, we now

arrive at the result from the end of last lecture, which is that we have a sequence

0— QX)) = CoU, Q) &

Theorem 204

The sequence above is exact for any £.

Proof. Let ¢; € C§°(X) be a partition of unity, such that the support of ¢; is contained in U; for each i. Define the
map Q : CK1(U, Q%) — CK(U, Q%) (notice that this lowers the order k instead of raising it like § does) via

N
Qc(l) =Y ¢ic(i. 1),

i=1
where we extend each ¢;c to be zero outside U; N U;. We may check that (Qd + 6Q)c(/) = c(/) for any /, and now
if we fix k, we can define the map d : CK(U, Q¢) — CK(Q**1) via dc(/) = d(c(1)). Since d?> = 0 on forms, we thus
get a valid complex
CKWU, Q% — CKU, QY — CHU, Q%) — - -

via the d map. Additionally, because 0-forms c(/) are elements of C*°(U), dc(/) = 0 if and only if c(/) is a constant,
and thus dc = 0 if and only if ¢ € CK(U,R). Thus we get an exact sequence

0 — CKU,R) = CHU, Q% — CHU, QY — -,

because if dc = 0 for some ¢ € CX(U, @), then c(/) € Q4(U;) must be closed for any /, and because U is diffeomorphic
to a convex open set (by definition) we have c(/) = dc(/)’ for some c(/) € Q¢~1(U,). (This implies that the image

of one d map is the kernel of the next.) O

It is now left as an exercise to check that the d and the § maps in fact commute, meaning that for any ¢ € CK(U, Q%)
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we have ddc = ddc (this can be checked from the definitions). From all of the properties we've verified, we thus get

a commutative diagram of the following form (where empty arrows are basically inclusion maps):

d d d d
0 —— Q2(X) —— C%U, Q2) — CYU,Q2) — (U, 02) —2 ..
d d d d
0 —— QYX) — CoU, Q) — CYU, Q) — U, Q) 2 -
d d d d

0 — QOX) —— C%U,Q°) —2 EYU,Q°) —4 (U, Q°) —2— ...

0 — CYUR) —>— CHU,R) —°— C2(U,R) —— ...

0 0 0

In this picture, everywhere except the blue column and row is exact, and those columns and rows are the de Rham
and Cech complexes that we've defined in the last few lectures. Such a diagram therefore allows us to convert a form
c € QFF1(X) such that dc = 0 to a cochain & € CK*1(U, R) such that §& = 0, by basically making a sequence of
right-down-right-down moves between the left row of Qs and the bottom column of CKs. This shows that whenever

X admits a good cover, H* and H* indeed agree.
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