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Introduction
An MITx page for this class will be up by this afternoon. That’s where most of the content for this class will come

from (regular class meetings are recitations).

Lecture videos on the MITx page are divided into 7 to 25 minute sections, each covering some particular topic.

After each block, there are some “lecture exercises:” this class is structured in a way so that before each recitation, we

should have finished going over the material designated for it. We’ll also have real problems in problem sets – there

are about 11 of these over the semester, and they’re also going to be online.

Homework is the best predictor of how we’re going to do in this course – if we basically understand the homework

completely, we’re extremely likely to do very well. Homework on the MITx page is given to us problem by problem,

part by part, but we’ll also be given a PDF of the problems that we can complete like a regular problem set. And we’ll

have some tests in the evenings of the exams instead of recitations on those days.

This class also has a graduate TA (Matt Hodel) and an MITx site administrator (Michelle Tomasik), and we should

ask them if we have questions.

Grading is 10 percent lecture questions, 30 percent online homework, 15 percent for each of the two midterms

(March 11 and April 22), and 25 percent from the final. It’s pretty likely we’ll be able to drop one problem set. Because

this is an online course, we have a bit more flexibility - if we need a one-day extension, it’s easy for the system to give

that. Beyond that, we should go through S3.

In principle, no textbook is required for this class, but Griffiths and Shankar are good references – it’s good to read

things in a different way. There will be lecture notes, and students seem to like them.

MIT has been a bit reluctant to accept that online classes are equivalent to normal lecture-based classes, so in

general, coming to recitation is generally mandatory. When this class runs in previous years, a rule has not had to be

imposed, but attendance sheets are passed around. It will make a difference, and it’s important!

Scheduled office hours will be posted by the end of today – there will be about 2 to 3 hours per week. Other times

are also welcome by appointment.

1 February 3, 2020
8.05 is being changed a bit. The issue being corrected is that the addition of angular momentum is usually the last

topic of the semester, and it’s always a little rush even though it’s a bit difficult. So we’ll shift it a bit forward, and

there will be at least three more lectures at the end about the density matrix (which is a topic that jumped between

8.05 and 8.06 and eventually got dropped from both). So the aspects of 8.05 that were 8.04 review will go away: there
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will be an 8.04 review section in the MITx page, but it won’t be covered anymore. We can use it at our discretion, or

we can proceed to unit 1.

Fact 1

This class assumes pretty good knowledge of 8.04, so we’ll move to new material very quickly.

Wednesday’s exercises will not be due, but next week’s Monday, Wednesday, and Friday lectures will be graded.

We’re really hitting the ground running.

Fact 2

8.051 is a class based on online lectures, so we go through the lectures at our own pace. However, I will still

transcribe notes from each lecture and insert them in the appropriate spots of the class: lectures 1 and 2 will be

placed in the notes after this recitation (that is, before recitation 2), and all future lectures will be placed before

their corresponding recitations. This means that the flow of the class material approximately corresponds to the

flow of the notes.

With the last half hour or so of this first recitation, we’ll talk a bit about states in quantum mechanics.

Example 3 (Two-state system)

Consider a quantum system with two basis states ψ+ and ψ−.

This means that any state in this system can be written as a superposition of the two basis states. (Recall that

the ψ notation tells us that these are [complex-valued] wavefunctions.) Because these are wavefunctions, they are

normalized in such a way so that

〈ψ+, ψ+〉 = 1, 〈ψ−, ψ−〉 = 1

and it’s nice if the two basis states are orthonormal, so that

〈ψ+, ψ−〉 = 0.

Recall that we often define the inner product between two wave functions as

〈ϕ(x), ψ(x)〉 =
∫
dxϕ∗(x)ψ(x),

so that 〈ϕ, ϕ〉 =
∫
dx |ϕ|2 = 1.

Question 4. How many real parameters do I need to characterize a general state in this quantum system? That is,

how many real parameters are needed to describe the inequivalent states (that is, states that aren’t proportional by

some complex constant)?

(Survey: 1, 3, 6, 3 votes for 1, 2, 3, and 4.) Let’s go through and solve this: a general superposition looks like

ψ(x) = c+ψ+ + c−ψ−, c+, c− ∈ C.

But many of these states are physically equivalent: right now, we have two complex numbers, which means four real

parameters. But a state like ψ is equivalent to 2ψ, which is equivalent to (1 + 3i)ψ, and so on: we normalize the
state to get the physics! So we need 〈ψ,ψ〉 = 1, which means

〈c+ψ+ + c−ψ−, c+ψ+ + c−ψ−〉 = 1.
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We can expand out the inner product, noticing that constants from the left term come out with a conjugate, to find

that

c∗+c+〈ψ+, ψ+〉+ c∗+c−〈ψ+, ψ−〉+ c∗−c+〈ψ−, ψ+〉+ c∗−c−〈ψ−, ψ−〉 = 1.

And now using our orthonormality conditions, this tells us that

|c+|2 + |c−|2 = 1.

This is a real constraint, so it removes one parameter.

But are we done? Let’s use our new information to rewrite

ψ = e iα+aψ+ + e
iα−bψ−

where a, b ≥ 0 and α+, α− are real. So now our condition tells us that a2+ b2 = 1, and a, b ≥ 0, but now we can see

another constraint: remember that we can normalize in the phase direction as well! So this is actually equivalent to

ψ = aψ+ + e
i(α−−α+)bψ−,

which means we really only have 2 free parameters: one for the phase difference and one for the magnitude of ψ+.

In summary, let’s rewrite this in a slightly nicer way:

ψ = aψ+ + e
iβbψ−,

where a, b ≥ 0, a2 + b2 = 1, which can also be written as

ψ = cos(χ)ψ+ + e
iβ sin(χ)ψ−,

where β ∈ [0, 2π] and χ ∈
[
0, π2

]
(because both cos and sin have to be positive).

Here’s one way to never forget the characterization of this state: think about spherical coordinates. Every point

has a coordinate θ and ϕ, and in spherical coordinates we have θ ∈ [0, π] and ϕ ∈ [0, 2π]. So we could write

ψ =

(
cos

θ

2

)
ψ+ + e

iϕ

(
sin

θ

2

)
ψ−.

So we can think of the space of states as the surface of a 2-sphere in 3-dimensional space: for every direction of our

2-sphere, we have a state, which is a linear combination of our “up state” ψ+ and “down state” ψ−.

2 The Variational Method and Introduction to Stern-Gerlach
We’ll start this class by discussing the variational problem, which might be new to some of us. This is connected

to a field called the calculus of variations – this is a pretty complicated topic, and we won’t get into a lot of the

difficulties. The main idea of calculus of variations is to look at maxima and minima of a functional instead of a

function. (In ordinary calculus, we try to find a point where some quantity is maximized, but here we’ll be trying to

find a function that maximizes some quantity.) So things are a bit more challenging!
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Fact 5

Calculus of variations seemed to have originated from Newton. The question he considered was to start with a

cross-sectional area and try to taper it in a way such that the resistance from a viscous fluid flowing through is

minimized. And this is complicated, because our ultimate goal is to find a shape rather than just a single number

or point (as we do in ordinary calculus).

Fact 6

Another famous problem, called the Brachistochrone problem, asks for us to design a curve from point A to

point B in a plane such that an object (under the influence of gravity) traverses the path the fastest. This was a

difficult problem for many mathematicians back then, including Leibniz, Newton, andthe Bernoullis!

So how is this calculus of variations idea related to quantum mechanics? It seems that special functions are often

the minimizer of some important quantity, and we have some special functions in quantum mechanics: the energy
eigenfunctions. It’s then natural to ask whether there’s a quantity that they minimize, and indeed the answer is yes.

So let’s start setting up our problem: we’re trying to solve the energy eigenstate equation

Ĥψ = Eψ,

where Ĥ is some (any-dimensional) Hamiltonian and ψ is a wavefunction (which can be of a vector x⃗ or just a single x

in one dimension). It’ll take a while for us to get to the “minimum or maximum” answer, so we’ll start with a simpler

question – determining something about the ground state energy.

Theorem 7 (Variational principle)

Let ψ(x) be an arbitrary normalized wavefunction (it doesn’t need to solve the Schrodinger equation), meaning

that
∫
|ψ|2dx⃗ = 1. Then we have the upper bound on the ground state energy∫

ψ∗(x)Ĥψ(x) = 〈Ĥ〉ψ ≥ Egs.

This equation doesn’t tell us the exact value of the ground state energy, but it gives us an upper bound for any
arbitrary function that we try putting in! And the strategy when we apply this principle is to plug in functions that

we think look like the wave function of a bound state. (Those ψ(x⃗) functions that we plug in are called trail
wavefunctions.)

Remark 8. Unfortunately, there isn’t a very good way of determining how good our bound is just from this equation

– we’ll develop some better tools later on.

“Proof”. We’ll make a few assumptions, which basically says that we don’t have a continuous spectrum of energy

eigenvalues. This is only used so that the proof is easier to write down – it means we can write down our energies

Egs = E1 ≤ E2 ≤ E3 · · · ,

and we know that our Hamiltonian acts on the energy eigenstates via

Ĥψn = Enψn.
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By completeness of the energy eigenstates, we can write our trial wave function

ψ(x) =
∑
n≥1

bnψn(x)

as a superposition of energy eigenstates. It’s important to note that ψ here does not solve the Schrodinger equation
– it’s just something invented out of our head. Now, we know that ψ is normalized, so

1 =

∫
|ψ|2dx =

∑
n≥1
|bn|2,

where we’ve used orthonormality of the energy eigenstates. And expanding out the expression for the expectation

value of the Hamiltonian 〈H〉ψ will yield ∫
ψ∗Ĥψ =

∑
n≥1
|bn|2En.

(This takes a few lines, but we’re basically using orthonormality again.) But we’re now almost done: the above

expression is lower bounded by

≥
∑
n≥1
|bn|2E1 = E1 · 1 = Egs ,

as desired.

Our next step is to make a more general statement for the variational principle – it’s not always convenient for

us to have normalized wave functions. But we know that for an unnormalized wave function ψ, we can create the

normalized wave function
ψ(x)√∫
|ψ|2dx

,

and this should satisfy the equation in the variational principle. Thus, we find that

Egs ≤
∫
ψ∗Ĥψdx∫
ψ∗ψdx

,

and this is actually nicer because we don’t need to work with such a restricted set of functions.

Fact 9

It is true that our trial function ψ cannot be completely arbitrary – it must be normalizable so that the denominator

here is well-defined and finite.

We can introduce the notation

F [ψ] =
∫
ψ∗Ĥψdx∫
ψ∗ψdx

,

and this F is called a functional (which inputs a function and outputs a number). Basically, given a trial wave function

ψ(x), which is a function, we compute a number, which is an upper bound on the energy ground state.

So we want to find the “critical point” of a functional – it seems that the ground state energy will be the minimum

value of the functional. And in fact, this functional is minimized exactly by the ground state wave function! (This

might seem dizzying, because a function can be specified by infinitely many numbers – critical points are hard to

visualize.) But it turns out that every eigenstate is actually a critical point of the functional (though the non-

ground states are saddle points), which we’ll show in our homework.
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Example 10

Consider the delta function potential

V (x) = −αδ(x), α > 0.

The ground state energy is well-known here, since we’ve solved this problem in 8.04 already: we have

Egs = −
mα2

2ℏ2
.

But let’s assume we don’t know what the ground-state wave function should look like, and we use some kind of

Gaussian as our trial function:

ψ(x) = e−
1
2
β2x2 .

(The reason for the β is to reap more of the benefits of our calculation to get a better bound – we can adjust our

parameter β to get the best possible bound on our energy.) So let’s start calculating: we can find the denominator

(from a standard Gaussian integral) to be ∫
|ψ|2dx =

√
π

β
,

and then we need to find ∫
ψ∗(x)Ĥψ(x) =

∫
e−

1
2
β2x2

(
−
ℏ2

2m

d2

dx2
− αδ(x)

)
e−

1
2
β2x2 ,

where we’ve substituted in the Hamiltonian with the given potential. This is not so fun, and in general in 8.05, we
can use Mathematica or Maple or MATLAB to make our life easier, as long as we think we could theoretically

find it ourselves. Well, the delta function part of the integral just gives us a −α, because we pick out the value at 0

with the delta function, and we actually want to integrate by parts for the term with the second derivative. This is

because our integral reduces to
ℏ2

2m

∫
dx

[
d

dx
e−

1
2
β2x2
]2
,

which is an easier integral to evaluate. And if we carry out all of the calculations, the final answer we get is that

(remembering to bring in the term from the denominator)

F [ψ] = −
β√
π
α+

β2ℏ2

4m
.

This expression is 0 at β = 0, and it’s 0 at some other positive value of β – specifically, this is some quadratic

function, and we can find the minimum to get the best possible upper bound on the energy ground state. Explicitly,

the variational principle tells us that

Egs ≤ min
β

{
−
β√
π
α+

β2ℏ2

4m

}
= −

mα2

πℏ2
=
2

π

(
−
mα2

2ℏ2

)
.

And the term in parentheses on the right is the true ground state energy, so our bound is just off by a factor of 2π ,

which is somewhat close!

With that, we’ll move on to a new topic: that of Stern-Gerlach devices and the spin 1/2 system. Spin 1/2 will

keep us busy for a good chunk of the semester, and we’ll go into a lot of detail – today, we’ll just give the beginning of

the story, and our descriptions will become more elaborate as time goes on. We’ll start with the experiment which led

to the discovery of spin, and we’ll then describe how to construct a physical theory out of that. Afterwards, we’ll spend

some time on linear algebra, which will provide us with some mathematical tools for studying this physical model.
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Fact 11

The Stern-Gerlach experiment was done in 1922 in Frankfurt, and it wasn’t clear for a while why it was being

done. The background is that Pauli thought electrons had two degrees of freedom but didn’t know what they

were. Kronig suggested that it had to do with some kind of rotation, but Pauli thought this made no sense.

Meanwhile, Uhlenbeck and Goudsmit (in 1925) had the same idea, and Ehrenfest (their advisor) also thought this

made no sense but still let them publish it. So that’s why they have credit for discovering the spin of an electron.

Stern and Gerlach were atomic physicists who were actually interested in measuring speed of thermal motion
of ions by using magnetic fields to deflect beams of these ions. Then experts who heard of Bohr, who said that an

electron might have angular momentum, and they tried to detect it. When the experiment was run, they did see

something, but the electrons in the silver atoms of those experiments actually had no angular momentum, only spin!

So there was a lot of confusion – let’s try to describe what exactly they saw and extract the quantum mechanics out

of that.

First of all, we don’t see spin directly in an experiments: we see magnetic moments.

Definition 12

A magnetic moment µ is the magnetic analog of an electric dipole, and it is given by the formula

µ = IA⃗.

Roughly what’s going on here is that we can imagine a loop in the plane with some current I, and there is some

normal vector A⃗ corresponding to the area enclosed by that loop. Looking at units, it turns out that µB has units of

energy, so we can define the units

[µ] =
Joules
Tesla

.

Let’s consider another situation in which a magnetic moment might come up: say we have a ring of charge of radius

R with some total charge Q, which means we have a linear (uniform) charge density λ. In addition, say that this ring

is rotating with some velocity v and has some mass M. Then we want to measure this magnetic moment, because

there happens to be a fundamental relation between angular momentum and magnetic moments!

To understand that, first note that the current satisfies

I = λv =
Q

2πR
v

(the rotating ring creates a charge “moving” through the wire in our frame), and thus the magnetic moment is

µ = IA =
Q

2πR
vπR2 =

1

2
QvR.

This is an okay answer, but it depends on the radius and velocity of our ring. So let’s compare it to the magnitude of

the angular momentum, which is r× p for each individual part of the ring. Thus,

L = MvR =
1

2

Q

M
(MvR) =⇒ µ =

Q

2M
L .

And all of the “incidentals” like the radius and velocity of the ring have dropped out – the relation is thus universal for

any ring, and thus it also holds for any axially symmetric object, like a hollow sphere or ellipsoid!

With this in mind, we can now speculate that a particle might have a magnetic moment if there is a little
ball of charge rotating inside it. This was exactly what Pauli didn’t like about the model, though, so let’s take a
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more quantum mechanical approach to this. We’ll consider a single particle, and now we’ll replace L with S, the spin
angular momentum of the particle (since this particle is no longer rotating around another object). So if this particle

is, for instance, an electron, it’s natural to ask whether we have

µ
?
=

e

2me
=

eℏ
2me

(
S

ℏ

)
.

If this were true, it would be a quantum analog of the classical statement. (The second equality is just to make the S
ℏ

term unitless.) It turns out this equation isn’t quite true, but it’s very close! The actual answer turns out to be that

µ = g
eℏ
2m

S

ℏ
,

where g is sometimes called the Landé factor. We can usually calculate g – it turns out that the electron’s g-factor is

equal to 2. So the magnetic moment is twice what we predict in the classical case (and this is predicted by the Dirac

equation, the relativistic equation of the electron). Defining µB = eℏ
2me
≈ 9.3× 10−24J/Tesla (here B stands for Bohr

magneton), we have

µ⃗ = −2µB
S⃗

ℏ
,

where the negative sign comes from the negatively charged electron.

Remark 13. Protons and neutrons have a more complicated system, because they are made up of quarks interacting

in odd ways. (And the magnetic moment of a proton or neutron is much smaller, because the mass in the denominator

of µB is much larger.

With this, our next question is to think about how these magnetic moments behave under magnetic fields.

Example 14

Suppose we have a loop of charge in the plane, rotating counterclockwise, and magnetic field lines are coming up

out of the plane and diverging (so that the magnetic field is weaker above the loop). Does the loop feel a force

up or down?

To solve this, we look at two diametrically opposite points and calculate the force I× B⃗ at both points. Both have

a vertical component pointing down and the horizontal components cancel out, so the net force is pointing down, and

in fact

F⃗ = ∇(µ⃗ · B⃗)

(which was derived in 8.02). We can indeed see that this equation is consistent: the force goes in the direction that
makes µ⃗ · B⃗ largest. And this problem becomes simpler if the magnetic field is mostly in the z-direction.

But with that, let’s return to the Stern-Gerlach experiment. Recall that silver atoms have 47 electrons – 46 of

these fill out the lower energy levels, and there is a lone 5s electron which is out in its own spherical shell. An s

state electron has zero orbital angular momentum, so throwing a silver atom through an apparatus is essentially like

throwing a single electron (that is, throwing spins), because everything else cancels out!

As far as we’re considered experimentally, what we’re actually throwing is dipole moments: magnetic fields push

these dipole moments up and down. So here’s the apparatus that was being used: silver atoms are shot in a beam,

and we insert a magnet such that the magnetic field lines, mostly in the z-direction, have a slight gradient. Then

these silver atoms hit a screen after the magnet, and we can track where they land.
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In such an apparatus, we can assume that the force will be approximately in the z-direction:

F⃗ = ∇(µ⃗ · B⃗) ≈ µz
∂Bz
∂z

ẑ .

(It turns out that the gradient in the other directions averages out!) So it seems like the magnetic moments will all

be distributed in random directions, so we’ll get a smudge of z-components when the silver hits the screen.

But the shock was that there were actually two separate peaks! The magnetic field being used in this experiment

was about 0.1 Tesla, and the space quantization that was seen between the two peaks was about 0.2 millimeters. So

this was clear enough for everyone to observe it, and this caused a bit of confusion.

At the end of the day, people realized that this didn’t come from angular momentum of the electron around the

atom, and the concept of spin came back. It took a while for the details to be resolved, but the idea is that

µz = −2µB
Sz
ℏ
,

and experiments suggested that the true value of the dimensionless term was

Sz
ℏ
= ±
1

2
.

Such a particle is known as a spin 1/2 particle! With our 8.04 knowledge, we can think of this quantum mechanically

as our states being a superposition of a “spin up” and a “spin down” state. And when the particle goes through the

magnetic field, it splits into these two beams, and the wavefunction collapses when we observe it (that is, when the

silver atom hits a screen).

To finish this lecture, let’s do a few thought experiments with our Stern-Gerlach apparatus. We can represent this

with a box: a beam (an inward arrow) goes in, and two beams (represented by outward arrows) come out, with values

Sz =
ℏ
2 and Sz = − ℏ2 . This box measures the value of Sz , and it splits our beam.

Example 15

Take a Stern-Gerlach device and block the lower beam (so only the Sz = ℏ
2 beam passes through). Feed that

beam into another Stern-Gerlach (z) device – what happens?

We see experimentally that nothing comes out from the bottom of the second Stern-Gerlach device: all particles

have Sz = ℏ
2 . Quantum mechanically, we can think of this as having the quantum states

|z ; +〉 , |z ; +z ;−〉 .

We’ll be thinking of these as our basis states: any other state, even a state that points along the x-direction, is a

superposition of these two states. And this is a big assumption to make: we’re saying that the set of spin states

is a two-dimensional complex vector space, where linear combinations of |z ; +〉 and |z ; +z ;−〉 can represent all

configurations. So in algebra, this means that measuring a |z ; +〉 state will have no minus component, or equivalently

that

〈z ;−|z ; +〉 = 0.

(These are orthogonal basis states.) We can also similarly write that

〈z ; +|z ;−〉 = 0, 〈z ; +|z ; +〉 = 1.

This might seem a little strange to us, because there’s a bit of a conflict with “orthgonality” here – it turns out that

“up” and “down” are orthogonal, not antiparallel! And this is one of the most confusing parts of working with spin 1/2
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particles – we shouldn’t think of this overlap expression above as a regular dot product.

Example 16

Again, start with a z-filter Stern-Gerlach device with the bottom beam blocked, and feed this into an x-filter

Stern-Gerlach device. This turns out to give us Sx = ℏ
2 and Sx = − ℏ2 with equal probability.

This means that spin states along the x and z directions do have some overlap – they aren’t orthogonal! In

particular, we get the expression

〈x ; +|z ; +〉 = 〈x ;−|z ; +〉 6= 0.

(We’ll be more precise with all of this notation later.)

Example 17

Take the system from the previous example, and this time block particles with Sx = ℏ
2 . So the exiting beam has

all particles satisfying Sx = − ℏ2 : what happens when we feed this into a z-filter Stern-Gerlach machine?

It seems possible that all of these particles that we’ve filtered have both Sx = − ℏ2 and Sz = ℏ
2 , since we’ve filtered

for both qualities. But that doesn’t happen! We get both Sz = ± ℏ2 , so the “memory of the state” from the first

Stern-Gerlach device has been destroyed. We’ll talk more formally about all of this next time, and we’ll try to discuss

more about the relations about our different states.

3 Spin One-Half, Bras, Kets, and Operators
Last time, we spoke about the Stern-Gerlach experiment, and we discussed how a sequence of Stern-Gerlach boxes

could help us extract properties of the spin 1/2 system. The biggest surprise was that these Stern-Gerlach devices

split our magnetic moments into two beams (basically forcing them to point in one of two opposite directions). Today,

we’ll talk more about how to represent the set of states as a two-dimensional vector space, and we’ll set up all of

the machinery that will be necessary. Even though we haven’t quite discussed all of the linear algebra concepts, we’ll

assume some vague ideas today – mathematical formalism will come soon.

Recall that the possible states of the silver atom (really, an electron) can be described by the two states |z ; +〉 and

|z ;−〉, corresponding to angular momenta Sz = ℏ
2 and − ℏ2 , respectively. (The z-label here indicates that we’ve passed

our atoms through a z-filter Stern-Gerlach device.) We can ask whether the state |z ; +〉 have an angular momentum

in the x- or y -direction, and we’ll be able to answer that soon.

Proposition 18

Saying that Sz = ℏ
2 really means that there is an operator Ŝz with

Ŝ |z ; +〉 =
ℏ
2
|z ; +〉 .

Operators often come up in quantum mechanics because they represent measurement of some sort! And here Ŝz
also acts on the other state and gives

Ŝ |z ;−〉 = −
ℏ
2
|z ;−〉 .
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Operators on a state give another state, and the nice thing in this case is that the operators on the left and right

are just scalar multiples of each other. This is known as an eigenstate, and such eigenstates have corresponding

eigenvalues (such as the ℏ2 and − ℏ2 above).

As mentioned last time, the underlying assumption we’re using here is that these two states are enough. In other

words, if we do this experiment again with an x-filter Stern-Gerlach device, |x ; +〉 and |x ;−〉 are also valid states. But

we’re postulating a theory of spin in which |z ; +〉 and |z ;−〉 are basis states, so

|ψ〉 = c1 |z ; +〉+ c2 |z ;−〉

(for some complex numbers c1, c2) for any spin state ψ. This is called a two-dimensional complex vector space,

because we have two basis vectors and complex coefficients. (The |z ; +〉 object doesn’t quite look like a vector, but

it’s what we call a ket. and we’ll make the correspondence clear in subsequent lectures.)

Letting |z ; +〉 be the first basis state and |z ;−〉 be the second, we should be clear that these vectors are not

“complex:” a complex vector space means the coefficients, not the vectors, are complex numbers. To be more

concrete, we’ll use a representation (that is, some way of exhibiting a vector in a more familiar way). Then if we

define |z ; +〉 = |1〉 and |z ;−〉 = |2〉, we will represent

|z ; +〉 = |1〉 ⇐⇒

[
1

0

]
, |z ;−〉 = |2〉 ⇐⇒

[
0

1

]
,

and now our states look like column vectors! In particular, we can now represent any state as a two-dimensional

column vector

|ψ〉 = c1 |1〉+ c2 |2〉 ⇐⇒

[
c1

c2

]
.

To proceed, we’ll return to an example of the Stern-Gerlach experiment. One thing we did was filter the first machine

so that all particles are in a |z ; +〉 state – if we feed this beam into another z-filter Stern-Gerlach apparatus, then all

of the states will be in the + state. (There’s zero probability of being in the - state.) The way we’ll represent this in

mathematical terms is that those two states are orthogonal, and to explain that, we’ll need to talk about bras and

kets. For now, though, we’ll just explain the basics.

What we’re saying is that the bra-ket or overlap of the + and - states is zero:

〈z ;−|z ; +〉 = 0.

Similarly, the states are “well-normalized,” so

〈z ; +|z ; +〉 = 1.

We can make analogous equations when the right entry is z ;−, and we can now use the notation |1〉 and |2〉 usefully

by summarizing all four equations as

〈i |j〉 = δi j .

We haven’t really defined what these “bras” are yet – let’s start with a working definition. We associate the ket |1〉

with the column vector

[
1

0

]
, and similarly we’ll associate the bra 〈1| with the row vector

[
1 0

]
. (This means the bra

〈2| will be thought of as the row vector
[
0 1

]
.) In slightly more generality, we can write a state

|α〉 = α1 |1〉+ α2 |2〉 ⇐⇒

[
α1

α2

]
.
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Similarly, we can associate

|β〉 = β1 |1〉+ β2 |2〉 ⇐⇒

[
β1

β2

]
.

And now we can define the corresponding bra for α to be

〈α| = α∗1 〈1|+ α∗2 〈2| =
[
α∗1 α∗2

]
,

where α∗1 denotes the complex conjugate of α1.

Fact 19

We’ll make all of these definitions more axiomatically soon – this is all just to give us some intuition.

And now we can define the bra-ket 〈α|β〉, which is a number – ultimately the reason for the complex conjugation

above is to make sure 〈α|α〉 is a positive number (it’s a “length squared”). And the reasonable way for us to get a

definition of this is to take the matrix multiplication of the representatives

〈α|β〉 =
[
α∗1 α∗2

] [β1
β2

]
= α∗1β1 + α

∗
2β2.

We’ll soon see that this is actually an inner product – vectors that satisfy the above 〈i |j〉 = δi j inner product relation

are known as orthonormal (because they’re normal with respect to each other, and they’re also orthogonal).

Example 20

We can check, for example, that taking inner products like 〈1|2〉 give the same value as our explicit definition.

With this, we can now return to the idea of representing our states as column vectors by thinking about our

operator again. The only object that naturally acts on two-component vectors is a 2 × 2 matrix, so we’re going to

claim that our spin operator can be written as

Ŝz =
ℏ
2

[
1 0

0 −1

]
.

And this can be verified now that we’re writing our states as column vectors: for example,

Ŝz |1〉 =
ℏ
2

[
1 0

0 −1

][
1

0

]
=
ℏ
2

[
1

0

]
=
ℏ
2

[
1

0

]
,

as desired. And we can also check that the action Ŝz |2〉 = − ℏ2 |2〉 is correct, and the idea is that we don’t need
to check any more vectors: since the operator behaves correctly on basis vectors, it will behave correctly on any

arbitrary vector in this space.

But we’re not quite done yet: remember that in one of the experiments from last time, we wanted to know about

what happens when we measure the spin states along the x-direction. In other words, how do we know that we

can come up with numbers c1, c2 such that c1 |z ; +〉 + c2 |z ;−〉 points along the x-direction? So we need to invent

something new – this is always a difficult process, and there’s many different approaches we can take. We won’t be

using Feynman’s approach of rotating Stern-Gerlach machines: instead, we’ll think about angular momentum again.

Basically, we’ll compare spin angular momentum with orbital angular momentum: what we really care about is

the operators Ŝx and Ŝy . Remember that we have, in the classical case, the angular momenta L̂x , L̂y , L̂z . And these
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are a lot easier to work with: they look like x̂ p̂y − ŷ p̂x , and we know how that kind of object works on wave functions.

(This is a lot nicer than Ŝz , which is working in a different kind of space.)

The key idea is that L̂z is a Hermitian operator – this is good, because it means we have a good observable. And

Ŝz is Hermitian as well, which means that its complex conjugate transpose is equal to itself (we’ll talk a lot more about

this later). One useful property of the L’s is that we have the commutator relation

[L̂i , L̂j ] = iℏεi jk L̂k

(where [A,B] = AB − BA), if we denote L̂x , L̂y , L̂z = L̂1, L̂2, L̂3 respectively. This is called the algebra of angular
momentum, and in the relation above we’re using index notation, meaning that we’re summing over k = 1, 2, 3, and

εi jk is 1 for an even permutation, −1 for an odd permutation, and 0 otherwise (we’ll get more practice with this later).

So we can write these formulas out explicitly:

[L̂x , L̂y ] = iℏL̂z , [L̂y , L̂z ] = iℏL̂x , [L̂z , L̂x ] = iℏL̂y .

So our goal will be to find an analogy of this for Ŝx , Ŝy , Ŝz . Specifically, our goal will be that

[Ŝx , Ŝy ] = iℏŜz , [Ŝy , Ŝz ] = iℏŜx , [Ŝz , Ŝx ] = iℏŜy .

So we need to determine what our Hermitian 2 × 2 matrices look like – by definition, we need them to look like[
2c a + ib

a − ib 2d

]
, where a, b, c, d are real (this is because we take the complex conjugate of all entries and then flip

the off-diagonal entries to each other). So being hermitian is some kind of “reality” condition – the 2c and 2d are just

for convenience later on.

To make progress, note that we’re trying to find matrices Ŝx , Ŝy that satisfy commutation relations. If there’s any

identity matrix terms, that will commute with everything (so it doesn’t contribute at all). So we’ll remove the “identity

matrix” part from this: [
2c a + ib

a − ib 2d

]
− (c + d)12×2 =

[
c − d a + ib

a − ib d − c

]
.

Remember that we already have the Hermitian matrix Ŝz : it has a number on the top diagonal entry and the opposite

number on the bottom diagonal entry. We want Ŝx , Ŝy to be “independent” from Ŝz , so we should kill the diagonal

terms. This leaves us with just

[
0 a − ib

a + ib 0

]
, which we can rewrite as

a

[
0 1

1 0

]
+ b

[
0 −i
i 0

]
,

where a and b are real numbers.

Proposition 21

What’s funny here is that we can think of Hermitian spaces as forming a vector space – adding two Hermitian

matrices still gives a Hermitian matrix, and multiplying a Hermitian matrix by a real number still gives us something

Hermitian.

So the set of Hermitian matrices is a real vector space with four basis vectors:[
1 0

0 1

]
,

[
1 0

0 −1

]
,

[
0 1

1 0

]
,

[
0 −i
i 0

]
.
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So these four matrices are the “linearly independent Hermitian matrices” – these are quite famous, but let’s first finish

up our problem. It sounds like we’ve found two potential matrices for Ŝx and Ŝy , but we don’t know what the scale

factor is. So we need a bit of physics: the eigenvalues of the other two operators should also be ℏ2 , because we could

have done all of the Stern-Gerlach experiment by thinking of a different direction.

So there are some sign issues – the answer isn’t completely unique – but luckily, everyone uses the same conven-
tion for these matrices Ŝx , Ŝy (though the identities would be preserved if we used slightly different matrices as well).

And from here, our attention should turn to eigenvalues and eigenvectors. The matrix

[
0 1

1 0

]
has two eigenvalues:

λ = 1 for the eigenvector 1√
2

[
1

1

]
and λ = −1 for the eigenvector 1√

2

[
1

−1

]
. Similarly,

[
0 −i
i 0

]
has λ = 1 for the

eigenvector 1√
2

[
1

i

]
and λ = −1 for 1√

2

[
1

−i

]
. The 1√

2
s here are to make sure our column vectors are normalized –

their lengths should be 1, where length is defined in terms of the bra-ket inner product. And now that our eigenvalues

are ±1 for these matrices, it’s natural to try

Ŝx =
ℏ
2

[
0 1

1 0

]
, Ŝy =

ℏ
2
=

[
0 −i
i 0

]
.

(Multiplying matrices by numbers multiplies the eigenvalues by those numbers as well.) And to check that these indeed

work, we check that commutator relations. Let’s do an example:

Example 22

What is the commutator of Ŝx and Ŝy?

We can pull out the ℏ2 factors to get

ℏ2

4

([
0 1

1 0

][
0 −i
i 0

]
−

[
0 −i
i 0

][
0 1

1 0

])
=
ℏ2

4

([
i 0

0 −i

]
−

[
−i 0
0 i

])
.

Simplifying this indeed yields
ℏ
2

ℏ
2

[
2i 0

0 −2i

]
= iℏ

ℏ
2

[
1 0

0 −1

]
= iℏŜz .

And we can double check that the other commutator relations hold, and now we’ve found our three matrices for our

spin states along the x , y , and z directions! These are extremely important, and they’re important enough that we

have the definition

Ŝi =
ℏ
2
σi ,

where the σi are the Pauli matrices

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
.

This is enough to give us the answer to almost all experiments we could do with the Stern-Gerlach apparatus! For

example, we said that

Ŝx |x ;±〉 = ±
ℏ
2
|x ;±〉 ,
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but we also already know the eigenstates for this operator! And thus

|x ; +〉 =
1√
2

[
1

1

]
=
1√
2
(|z ; +〉+ |z ;−〉)

corresponds to the eigenvector with eigenvalue 1 in σ1, and

|x ;−〉 =
1√
2

[
1

−1

]
=
1√
2
(|z ; +〉 − |z ;−〉)

corresponds to the eigenvector with eigenvalue −1 in σ1. So these aren’t new states that we need to add to the state

space – they’re linear combinations of the states we already have! (And similarly, this means that we can write |z ; +〉
in terms of |x ; +〉 and |z ;−〉 if we want to.)

So let’s return to one of the questions: what happens to a |z ; +〉 state under an x-filter? The overlap of an |x ; +〉
state with the |z ; +〉 is just going to be

〈x ; +|z ; +〉 =
1√
2
,

and the same number comes up for 〈x ;−|z ; +〉. These amplitudes are equal, so the probabilities are indeed 1
2 each,

which is what we want!

And of course, we can construct the y -states in a very similar way: Sy has eigenstates |y ;±〉 such that

Ŝy |y ;±〉 = ±
ℏ
2
|y ;±〉 ,

and this will give us

|y ;±〉 =
1√
2
(|z ; +〉 ± i |z ;−〉) .

It’s very important here that we’re working with complex numbers: that’s the only way we can get so many linear

combinations that are all orthogonal!

So we’ve described a theory, and our goal will be to expand it now. We’re now able to produce a state along the

x , y , and z-directions; let’s see if we can expand this to producing states along any unit vector n⃗ = (nx , ny , nz). To

make some progress on this question, consider the triplet of operators (Ŝx , Ŝy , Ŝz). (We could write this out as

Ŝx e⃗x and so on, but that doesn’t really make any sense other than as an accounting procedure.) The idea now is to

consider the spin operator

Ŝn̂ = n⃗ · S⃗ = nx Ŝx + ny Ŝy + nz Ŝz .

Indeed, if this vector n̂ points in the z-direction, we have (nx , ny , nz) = (0, 0, 1) and we do recover Ŝz . A similar thing

holds for x and y , so this is the spin operator in the direction of the vector n⃗.
We’re going to want Ŝn̂ to have the same eigenvalues of ± ℏ2 as our fundamental spin operators: to make that

clear, we’ll use spherical coordinates

nz = cos θ, nx = sin θ cosϕ, ny = sin θ sinϕ.

Then we can just do some computation:

Ŝn̂ = n⃗ · S⃗ =
ℏ
2
(nxσ1 + nyσ2 + nZσ3) =

ℏ
2

[
nz nx − iny

nx + iny −nz

]
.
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And now plugging in the spherical coordinates makes this simplify very nicely: we actually just have

Ŝn⃗ =
ℏ
2

[
cos θ e−iϕ sin θ

e iϕ sin θ − cos θ

]
.

For completeness, let’s calculate the eigenvectors and eigenvalues here: remember that in order to find an eigenvalue

λ of a matrix A, we solve the equation det(A− λI) = 0. So we want

det

[
ℏ
2 cos θ − λ

ℏ
2e
−iϕ sin θ

ℏ
2e

iϕ sin θ − ℏ2 cos θ − λ

]
= 0.

This turns out to not be very bad – the phases cancel out, and we indeed do get λ = ± ℏ2 . But the eigenvectors are

more nontrivial: to find an eigenvector in the n⃗-direction, we need to find vectors |n⃗;±〉 such that

Ŝn⃗ |n⃗;±〉 = ± |n⃗;±〉 .

In other words, we want to find a vector

[
c1

c2

]
such that

(
Ŝn −

ℏ
2

)[
c1

c2

]
= 0.

We can factor out the ℏ2 , and what we end up needing to solve is that[
cos θ − 1 ℏ

2e
−iϕ sin θ

ℏ
2e

iϕ sin θ − cos θ − 1

][
c1

c2

]
= 0.

This gives two equations that relate c1 and c2, and they actually tell us the same information (this is exactly the

purpose of having our eigenvalues)! Either way, what we find is that

c2 = e
iϕ 1− cos θ
sin θ

c1,

and we can simplify this by using the half-angle identities on both the numerator and denominator of our fraction. We

end up finding that

c2 = e
iϕ sin

θ
2

cos θ2
c1,

and if we want a normalized eigenvector with |c1|2+ |c2|2 = 1, it turns out that we need |c1|2 = cos2 θ2 . And it doesn’t

really matter what phase we choose, so let’s keep it simple:

c1 = cos
θ

2
, c2 = sin

θ

2
e iϕ,

and we’ve found our state

|n⃗; +〉 = cos
θ

2
|z ; +〉+ sin

θ

2
e iϕ |z ;−〉 .

In other words, we’ve found the spin state that points in the n⃗-direction as a linear superposition as our basis states!

And we can check that setting θ = 0 gives us the z-axis, and this does indeed recover the |z ; +〉 state.

A similar calculation seems to tell us that

|n⃗;−〉 = sin
θ

2
|z ; +〉 − cos

θ

2
e iϕ |z ;−〉 .
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But now if we take θ = 0, we’re supposed to end up with the minus state along the direction of the z-axis, which is

the |z ;−〉 state. But now the second term is not so well-defined, because ϕ can be anything! So instead it’s better to

multiply through by the phase so that

|n⃗;−〉 = sin
θ

2
e−iϕ |z ; +〉 − cos

θ

2
|z ;−〉 .

We’ve now basically done everything that’s possible to do without reviewing linear algebra – that’s what we’ll do soon.

Fact 23

Notice that σ21 = σ
2
2 = σ

2
3 = 1, and this actually tells us something about the eigenvalues of these matrices.

In general, if a matrix M satisfies a matrix equation like M2+αM + βI = 0, then the eigenvalues also satisfy the

same equation. This is because we can let both sides of this equation act on an eigenvector v of eigenvalue λ: notice

that M2v = Mλv = λ2v , so

0 = (M2 + αM + βI)v = λ2v + αλv + βv.

Since this is true for a eigenvector v , which is defined to be nonzero, we must have λ2 + αλ + β = 0, which is the

same equation as we had for our matrix equation!

So what this tells us is that σ1’s eigenvalues satisfy λ2 = 1, and thus we have eigenvalues of ±1. It’s possible that

they’re both 1 or both −1, but now we can use the trace: the sum of the diagonal entries of our matrix is also the

sum of the eigenvalues! Since this trace is 0, we must have one eigenvalue be 1 and the other be −1, as we calculated

earlier.

Let’s talk some more about these Pauli matrices now: remember that our spin operators are ℏ
2 times the Pauli

matrices, and we have the algebra for angular momentum

[Ŝi , Ŝj ] = iℏεi jk Ŝk .

Plugging in the corresponding Pauli matrices, we find that

[σi , σj ] = 2iεi jkσk .

It also turns out that there’s a nice property with anticommutators: we have

σ1σ2 = −σ2σ1,

so the two matrices actually anticommute. We denote this with the anticommutator, and the general form of this

identity is that

{σi , σj} = 2δi j I2×2.

Since we can write any matrix product as

AB =
1

2
[A,B] +

1

2
{A,B}

(by direct expansion), we can plug in the Pauli matrices to find that

σiσj = δi j I + iεi jkσk .

To make this look even nicer, we consider the “vector” σ⃗ = (σ1, σ2, σ3). Then we can take the dot product with a
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vector a⃗ = (a1, a2, a3)

a⃗ · σ⃗ = a1σ1 + a2σ2 + a3σ3 = aiσi

with the repeated index notation. Now, if we multiply the boxed equation above by aibj , we find that

aiσibjσj = aibjδi j I + iεi jkajbkσk .

And now we can write this in a neater form: we have

(a⃗ · σ⃗)(b⃗ · σ⃗) = aibi I + iεi jkaibjσk ,

and now the right hand side actually have to do with dot and cross products:

(a⃗ · σ⃗)(b⃗ · σ⃗) = (a⃗ · b⃗)I + i(a⃗ × b⃗) · σ⃗ .

This has now represented a product of Pauli matrices in a geometric way, and this is very useful for doing calculations!

Example 24

Let’s say that a⃗ = b⃗ = n⃗ is a unit vector – how does the above equation simplify?

Plugging everything in, we find that

(n⃗ · σ⃗)2 = 1.

This is useful, because it makes it easier for us to understand the operator Ŝn⃗ from last time (which we defined to be

n⃗ · S⃗ = ℏ
2 n⃗ · σ⃗). If we square this, we end up with

( ℏ
2

)2
I. Note that the trace of the S⃗n operator is also zero – this

is because we’re adding a linear combination of σ1, σ2, σ3, which are all traceless – and thus by the same argument,

we know that the eigenvalues of the matrix Ŝn⃗ have to be ℏ
2 and − ℏ2 . We didn’t need to calculate the eigenvalues

directly!

And this is fundamental because we’ve now discovered a key property of spin: if we measure it along any arbitrary

direction, we’ll always find ℏ
2 or − ℏ2 . (And this makes sense – the universe is isotropic, so the direction should not

matter here.)

We’ll finish with a bit of an aside: if we have two triplets of operators X⃗ = (x̂1, x̂2, x̂3) and Y⃗ = (ŷ1, ŷ2, ŷ3), we

can define their dot product

X⃗ · Y⃗ = Ŝi Ŷi ,

where we sum over i . (Such a dot product may not commute, because operators don’t always commute.) And we

can similarly define the cross-product

(X⃗ × Y⃗ )k = εi jk X̂i Ŷj ,

just like we do with number-valued vectors. Again, this cross product does not need to satisfy the same properties as

the normal cross product – even X⃗× X⃗ may be nonzero! So one thing we’ll be asked to compute is the value of S⃗× S⃗
– it’ll be an interesting result.

4 February 5, 2020
We’ll talk a bit about the axioms of quantum mechanics today, which will be pretty important for us in connection

with the 8.051 material. And we’ll do some practice with the variational principle as well.
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As a reminder, lecture questions are due 9 am before every Monday and Wednesday (except for today). We’ll be

moving now into spin 1/2, and there’s the issue of manipulating indices – we should watch the index manipulation

video if we haven’t worked with this before. Starting next way, there will be a lot of emphasis on linear algebra.

Fact 25

Tentative office hours have been announced (Wednesday 11-12 and Thursday 1:30-2:30).

Here are the axioms of quantum mechanics:

• States exist. A state is a complete description of a physical system, and it is a ray in Hilbert space.

A Hilbert space is a complex vector space – it does not mean the vectors are complex numbers, only the scalars!

Geometrically, a ray in Hilbert space represents a one-dimensional subspace (the collection of all vectors along a specific

line), because ψ and cψ represent the same state for any complex number c . But we’ll mostly work with normalized

wavefunctions, so we’ll pick c so that our vectors have length 1.

We’ll talk more about Hilbert spaces later, but one important thing is that there is an inner product

(ϕ,ψ) ∈ C

which satisfies the properties

(ϕ, ϕ) ∈ R≥0, (ϕ, ϕ) = 0 =⇒ ϕ = 0.

This means that the norm

||ϕ|| =
√
(ϕ, ϕ)

of any state is nonnegative (and only zero if ϕ itself is zero). One last important property is that (ϕ,ψ) = (ψ, ϕ)∗

(conjugates of each other). Hilbert spaces can be finite-dimensional or infinite-dimensional, and the latter makes things

a bit more difficult to work with.

• Observables exist. An observable is a Hermitian operator, meaning that A† = A.

We’ll discuss the spectral theorem later in this class, which is important: eigenstates of Hermitian operators
give an orthonormal basis for the Hilbert space! Basically, we can write any such operator in a finite-dimensional

vector space of dimension N as

A =

N∑
n=1

anEn,

where an are actually the eigenvalues of A and En are called the orthogonal projectors. (A projector P satisfies

P 2 = P .)

• Measurement postulate. Measurement of an observable A results in the system becoming an eigenstate of A.

We’ll end up in a new state
Enψ

||Enψ||
for some fixed n (though we don’t know what n is). Remember that En is a projector, so it moves us to an eigenstate,

and then the denominator normalizes us to unit norm. One important note is that the probability that A measure an
(the eigenvalue for En) is the inner product (ψ,Enψ).

This is a shocking admission that we can’t really know things in quantum mechanics! Supopse we throw linearly

polarized photons into a polarizer at an angle. Then some fraction of the photons will go through, but who decides
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which ones go through and which don’t? There seems to be some irreducible unpredictability in the universe, which

people have trouble with.

• Dynamics. The evolution of any state ψ in time is governed by a unitary operator U(t)

ψ(t) = U(t)ψ(t = 0).

(A unitary operator is an operator that preserves lengths of vectors.) We’ll see in a few weeks that even though we

know the Schrödinger equation governs dynamics, this postulate alone is actually enough to show where the equation

iℏ ∂Ψ∂t = Hψ comes from (we’ll build H from U – it’s Hermitian and has units of energy).

• Composite systems. Say we have two quantum systems A and B in Hilbert spaces HA and HB – if we want to

describe the two systems together, we live in the tensor product HA ⊗HB.

No one has found a logical problem or experimental situation that has contradicted these axioms yet, and so

discussions and attempts at interpretation have been ongoing – no good consensus has been found yet!

We’ll finish today by briefly talking about the variational principle:

Proposition 26 (Variational principle)

If we know the Hamiltonian H for a system, we can use any normalized trial wavefunction ψ(x⃗). Then the ground

state energy satisfies

Egs ≤ (ψ,Hψ).

(Equality holds when ψ is the ground state eigenstate.)

So we can try better and better trial wavefunctions and get better and better bounds for the energy ground state!

The proof is fairly nice, and there are generalizations that will be explored soon.

5 Linear Algebra – Vector Spaces and Operators, Part 1
We’ll be doing linear algebra slightly differently from how it’s been done in 8.05 in the past: MIT uses a book called

Linear Algebra Done Right (by Sheldon Axler) for the 18.700 linear algebra class. It’s a bit difficult to learn things

this way if we haven’t heard of a matrix or determinant or eigenvalue before, but the book is a very nice way of learning

if we’ve heard those words before!

Fact 27

We need to study this book pretty seriously if we want to grab the results that we want out of it. This is because

the book builds up from basic properties and develops theorems and ideas in a logical progression.

So we’ll be introducing linear algebra in the same way in this class – it’s not too clear how much detail we’ll need,

but we’ll try to make the main points about structure in a vector space clear. Otherwise, we might miss some

important basic ideas! (For example, many physicists don’t quite realize that in the matrix representations, we don’t

need bras and kets. And also, there is a big difference between a real and complex vector space, which is a detail that

we might miss otherwise.)

We’ll begin by talking about vector spaces and dimensionality. Throughout this part of the class, we should

remember that the end result is a vector space of states in our physical system, where observables are linear operators.

So we’ll need to understand all of those individual properties to make some more progress.
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In a vector space, we have two kinds of objects: numbers and vectors. If the numbers are real (resp: complex),

we have a real (resp: complex) vector space. (Vectors aren’t “real” or “complex” or anything like that.) There are two

key operations: we can add vectors, and we can multiply vectors by numbers.

It turns out that the set of numbers we’ll be using in this class, often either the real numbers R or complex numbers

C, form a field. We won’t define what this is, but we’ll use the notation F to denote either kind of field. Let’s now

set up our formal definition:

Definition 28

A vector space V is a set of vectors equipped with an addition operation +, which takes in two vectors u, v ∈ V
and gives us a vector u + v ∈ V . We also have a scalar multiplication operation by elements of F, such that

av ∈ V for any a ∈ F and v ∈ V . In addition, these operations must follow the axioms defined in Definition 29.

Here, the vector space is closed under addition: we can’t get out of it if we just keep adding vectors. (And similarly,

it’s also closed under scalar multiplication.)

Definition 29 (Vector space axioms)

A vector space V must satisfy the following properties:

• u + v = v + u (addition is commutative) and u + (v + w) = (u + v) + w (addition is associative) for any

u, v , w,∈ V .

• a(bv) = (ab)v for any a, b ∈ F and v ∈ V .

• There is an additive identity 0 ∈ V such that v +0 = v for all v ∈ V , and a multiplicative identity 1 ∈ F
such that 1 · v = v for all v ∈ V .

• Additive inverses exist: for any v ∈ V , there is a u ∈ V such that u + v = 0.

• We have distributivity between multiplication and addition: a(u + v) = au + av and (a + b)v = ab + bv

for a, b ∈ F and u, v ∈ V .

Remark 30. There can often be a bit of confusion between the 0 number and the 0 vector, so we should watch out

for that.

This seems like a lot of properties, but it’s a good set of “minimal requirements” – from this, we can show lots of

things with little proofs pretty immediately. Here’s a quick example:

Lemma 31

The additive identity 0 ∈ V is unique.

Proof. Suppose there were two zero vectors 0, 0′. Then 0 = 0 + 0′ = 0′, so we must have 0 = 0′.

Similarly, we can show that 0v = 0 for any vector v . Here, we should be careful – the 0 on the left side is in F, and

the 0 on the right side is in V . We can also find that a0 = 0 and so on: basically, the zero vector and zero number do

exactly what we expect them to do.

It also turns out that the additive inverse of v , which we denote −v , is unique and is equal to (−1) · v . This might

seem silly, but it’s worth trying to prove them – these results are not completely trivial!

Let’s do a few examples: the main thing to keep in mind is that vectors are not real or complex.
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Example 32

The N-component vectors


a1

a2
...

aN

, with all entries ai ∈ R, form a vector space over R (a real vector space).

We have to think for a second to see if we believe all of the axioms for vector spaces here, but the definition of

addition and multiplication are pretty easy: we just do everything component-wise. And then it’s easy to find the zero

vector – it’s just the one with all components 0 – and the additive inverse – it’s where we take the negative of each

entry. So if we understand addition and multiplication, the rest is not too difficult.

Example 33

The M × N matrices with complex entries,


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aM1 aM2 · · · aMN

, form a complex vector space.

Addition and multiplication also look pretty familiar here, because everything is done entry by entry again.

Example 34

The set of 2× 2 Hermitian matrices form a real vector space.

This might look a bit surprising, because Hermitian matrices have is in the entries: remember that the most general

matrix looks like

[
c + d a + ib

a − ib c − d

]
, where a, b, c, d are real numbers. The reason that we must have a real vector space

is that multiplying by complex numbers doesn’t preserve Hermiticity (for instance, multiplying by i is not allowed). So

this might feel a bit weird: something like

[
0 i

−i 0

]
is a vector over the real numbers!

Example 35

The set of all polynomials, each of the form p(z) = a0 + a1z + · · · + anzn for ai ∈ F and some nonnegative

integer n, form an F-vector space.

To verify this, note that we sum polynomials by combining terms of the same exponent, and we multiply a polynomial

by a number by multiplying each term by a number. (And we don’t need to worry about multiplying two polynomials

together, because that’s not a thing we need to do with this vector space.)

This vector space looks like it is infinite dimensional: we have the constant, linear, quadratic, cubic, quartic

polynomials, and so on. And we’ll soon see that this is indeed the case.

Example 36

The set of infinite sequences F∞ = (x1, x2, · · · ) (where xi ∈ F) is an F-vector space.

Addition and multiplication are defined the same way as we usually do.
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Example 37

The set of complex-valued functions f (x) on an interval x ∈ [0, L] is a complex vector space.

These last three examples seem to be infinite dimensional, and now we’re going to try to formalize the ideas around

that. We’ll start by understanding the concept of a subspace:

Definition 38

A subspace of a vector space V is a subset W of the vectors of V in which W is also a vector space.

There are some conditions that are necessary for such a subspace to exist: it must contain the zero vector,
because every vector space has a zero vector. In general, we also need to check that our subspace is closed under

vector addition and scalar multiplication – the extra axioms will automatically follow, because W is just a subset.

Example 39

Let’s consider a two-dimensional real vector space V = R2: vectors here can be written as (v1, v2), where

v1, v2 ∈ R. Consider the subset W of vectors where 3v1 + 4v2 = a for some real number a.

When is such a collection of vectors a subspace? First of all, W must contain the zero vector (0, 0), so 3·0+4·0 = 0
– this means W is only a subspace if a = 0. And now we just need to check the closure properties, and those are

pretty easy. For example, if we have a vector (v1, v2) ∈ W and we multiply by λ, then (λv1, λv2) is indeed in W ,

because

3(λv1) + 4(λv2) = λ(3v1 + 4v2) = 0

by the assumption that (v1, v2) is in W .

So once we have the concept of a subspace, we might ask whether we can understand a large, complicated vector

space by just understanding its subspaces? The answer is yes, and the main idea is to “break up the space” as much

as possible. Our goal is to fill up the full vector space with a bunch of different subspaces, and this will become much

more important when we talk about eigenvectors and eigenvalues later!

Definition 40

A vector space V is a direct sum of subspaces U1, · · · , Um, denoted

V = U1 ⊕ U2 ⊕ · · · ⊕ Um,

if any vector in v can be written uniquely as a sum u1 + u2 + · · ·+ um, where each ui ∈ Ui .

One way to think about this decomposition is that picking a vector in V is equivalent to picking a unique repre-

sentative u1, · · · , um from each of the subspaces U1, · · · , Um. So one important property is that the vector spaces
cannot overlap except at the zero vector: we must have

Ui ∩ Uj = {0⃗}

for all i 6= j . It’s worth thinking through why this is true, but the basic idea is that any vector that is in both Ui and

Uj could be put in either one, and we would not have a unique way of writing down v as a sum u1 + · · ·+ um. (Then

we would have a sum, but not a direct sum.)

23



Example 41

Let’s look at the subspaces of V = R2.

We have a two-dimensional subspace, and there’s no way to get a two-dimensional subspace of V other than the

whole space itself – we can convince ourselves that we need the rest of the space if we have two vectors in different

dimensions. So the only other subspaces are one-dimensional, which are just lines through the origin, and zero-

dimensional, which is just the zero vector. Indeed, lines are subspaces, because adding two vectors on the line gives

us another on the line, and so does scaling a vector by a real number.

So now let’s pick U1 to be the “horizontal” axis and U2 to be the “vertical” axis in R2: both of these are one-

dimensional subspaces. And indeed, every vector in R2 can be written uniquely as a sum of a horizontal part and a

vertical part, so we have

R2 = U1 ⊕ U2.

But we can change things a little bit: instead of using the vertical axis U2, let’s use the subspace of vectors (v1, v2)

where v1 = v2, which is a “diagonal line” U ′2. This is a little bit more complicated, but the parallelogram law tells us

that we can indeed decompose any vector in R2 as a sum of a vector in U1 and a vector in U ′2, so we again have

R2 = U1 ⊕ U ′2.

In general, any two lines through the origin (that don’t coincide) will direct sum to R2, but if we try to add in a

third line, we will no longer get a unique representation of a vector in R2. So this is the first step to understanding

the concept of dimension – we can’t have three lines that direct sum to R2, and indeed we’re now going to figure out

why we can call R2 two-dimensional.

Remark 42. This kind of logic will be necessary for understanding dimensionality better in more complicated vector

spaces. For example, the space of states for a particle in a central potential is infinite-dimensional, but we can break

it down into easier-to-understand subspaces to talk about the evolution of the wavefunction!

To understand dimension, we’re going to introduce a few more concepts for rigor, so that we can also talk about

infinite-dimensional vector spaces. Consider a list of vectors, which is just a list (v1, · · · , vn) (which must be of finite
length) where v1, · · · , vn ∈ V . Then there’s a few useful concepst we can extract:

Definition 43

The span of a list of vectors (v1, · · · , vn) is the set of linear combinations of the form

a1v1 + a2v2 + · · ·+ anvn, ai ∈ F.

A list spans the vector space if the span of the list is the whole vector space.

This is basically the set of vectors that we can reach by taking some combination in our list.

Definition 44

A vector space V is finite-dimensional if it’s spanned by some list of vectors. (Otherwise, it is infinite-
dimensional, which means no list spans the whole space.)

This definition has been made in a nice way so that we can work with it:
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Proposition 45

The space of polynomials is infinite-dimensional.

Proof. Suppose otherwise; then there is a list of polynomials that spans our space. But because we have a finite list,

there is some highest degree (perhaps z1000000) in all of our polynomials. And then we can’t use a linear combination

of our polynomials to get anything of higher degree (say z2000000), which is a contradiction. Thus the space must be

infinite-dimensional.

Proposition 46

In contrast, our first example – the set of N-component vectors – is finite-dimensional.

Proof. We just need to produce a list that spans the whole space: we just use

e1 =


1

0
...

0

 , e2 =


0

1
...

0

 , · · · , eN =

0

0
...

1

 .

And then a general vector is just of the form a1e1 + a2e2 + · · ·+ aNeN .

Definition 47

A list of vectors (v1, v2, · · · , vn) is linearly independent if

a1v1 + a2v2 + · · ·+ anvn = 0

only has the solution a1 = a2 = · · · = an = 0.

In other words, if we want to represent the zero vector with our list, we have to set all of the coefficients to 0.

Definition 48

A basis of a vector space V is a list of linearly independent vectors which spans V .

Basically, we need to have enough vectors to span all of V , but we shouldn’t have any “extra vectors” that just

give us redundant information.

It turns out that any finite dimensional vector space has a basis – this is easy to show – and also that any two
bases have the same length. So the length is some quantity independent of our basis, and that’s what we’ll call our

dimension:

Definition 49

The dimension of a vector space V is the length of any basis of V .

Remark 50. At the moment, we don’t have an inner product on our vector space yet: we’re putting the least amount

of structure that is necessary. There’s a lot of properties that we can already extract without needing an inner product!
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So returning to the example above where we created a list that spans our vector space, this list is also linearly

independent: each entry needs to be 0, so all ais are zero. Thus the space of N-component vectors has dimension
N. Similarly, we can prove that the space of M × N matrices has dimension MN.

Example 51

Let’s find the dimensionality of the space of Hermitian matrices.

We’ll use the following list of four “vectors:”

(I, σ1, σ2, σ3).

This is indeed a list of vectors in our space, because all four of these matrices are Hermitian. It also spans our space

by an argument we made earlier on – we can get

[
c + d a + ib

a − ib c − d

]
with the linear combination cI + aσ1 + bσ2 + dσ3.

And to show that this list is linearly independent, we just set our matrix to 0: then we need c + d = c − d = 0, so

c = d = 0, and we also need a + ib = a − ib = 0, so a = b = 0. So indeed, we have a linearly independent list which

also spans, and thus the vector space of Hermitian matrices has dimension 4.

Remark 52. We can try proving that the space F∞ of infinite sequences is infinite-dimensional: it requires a bit of

work!

We’ll now move on to something else: we want to talk about linear maps from a vector space V to another vector

space W . A special case of these is a linear operator, where we map from V to the vector space V again.

Definition 53

A linear operator T on a vector space V is a function T : V → V with the properties

T (u + v) = T (u) + T (v), T (av) = aT (v)

for any u, v ∈ V and a ∈ F.

The quantum mechanical motivation for this is that observables are represented by operators: expectation

values, symmetries, and unitary time-evolution all come from these linear operators.

It’s important for us to realize that T (u) = Tu (both notations are okay) is a vector which is in the image of

our linear operator. In some sense, we can think of T as doing some kind of multiplication – Tu is basically matrix

multiplication on a vector!

The key idea here is that we only need to know how the linear operator works on basis vectors, and that gives us

everything we need to know about the operator! This is because every vector can be obtained by putting together

a linear combination of the basis vectors, the “linearity” of the linear operator tells us the value of T (v) for all other

vectors.

Lemma 54

We have T (⃗0) = 0⃗ for any linear operator T .

Proof. We know that

T (u) = T (u + 0⃗) = T (u) + T (⃗0)

for any vector u, and now subtracting T (u) from both sides yields T (⃗0) = 0. (We’re allowed to subtract because

that’s basically adding the additive inverse!)
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The best way to understand such operators is to give some examples, so that’s what we’ll do now.

Example 55

Let V be the real vector space of polynomials on a real variable x – that is, vectors are real polynomials p(x).

Define the derivative operator T which sends a polynomial p to its derivative: T (p) = p′. Also define the

operator S which multiplies a polynomial by x : S(p) = xp.

It’s indeed true that the derivative of a sum is the sum of the derivatives, and also that we can “take out” constants

from a derivative. So T is indeed a linear operator! Similarly, we can check that S is linear by distributivity.

Example 56

Consider the vector space of infinite sequences F∞ of the form (x1, x2, x3 · · · ). Define the left shift operator L,

which sends such a sequence to (x2, x3, x4, · · · ), and similarly define the right shift R which sends the sequence

to (0, x1, x2, · · · ).

We should try writing out the properties: indeed, L and R are both linear operators if we check all of the properties.

But it’s very important that we need to put the number 0 in the first spot for the right shift R, or else we wouldn’t

have a linear operator!

Remark 57. This is tangentially related to the famous Hilbert’s Hotel problem – doing a right shift opens up a room.

L and R look a little bit like inverse operators, but they’re not quite the same: we lose information about x1 when

we do a left shift.

Example 58

These are the “trivial operators:” the zero operator sends everything to the zero vector, and the identity operator
sends a vector to itself.

The main idea here is that even though our linear operator sends V to itself, it doesn’t have to be one-to-one!

And the zero operator is just an extreme case of this where everything is sent to the same vector in V .

6 February 10, 2020
Hopefully we’re starting to get accustomed to the pace of this class – it’s a bit fast, especially at the beginning,

depending on how much we remember from previous classes. So there’s quite a bit that we need to remember about

bound states and the Schrodinger equation and square wells, but some of us might have just not seen very much of

this. We’ve had a few ideas introduced – spin 1/2, the variational principle, and now we have about a two-week mathy

interlude where we’re talking about linear algebra so that we can do physics precisely.

Some people have said that in 8.05, there’s too much math. It’s a valid viewpoint, but that criticism sometimes

comes from other faculty that already understand quantum mechanics – math just didn’t play much of a role in their

understanding. Professor Zwiebach, though, felt that some parts of his understanding remained fuzzy until he had the

mathematical formalism. So there might be a 10 percent excess of math, but it will be necessary to help us think about

projectors, measurements, tensor products, and so on. And with the ideas of quantum information, linear algebra’s

role has become even more important!
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Fact 59

Lectures 1 and 2 were never due – we have to do them, but there is no associated deadline. But lecture 3 questions

were due today (at 9am) – if we were confused about due dates or had trouble, we should let the 8.051 team

know. (And there’s lecture 4 questions due on Wednesday and pset 1 due on Friday.)

Questions are graded for accuracy, but don’t agonize over grading. These are supposed to help us understand

the material.

The homework has a lot of parts, so we should get started early on. The advantage of this homework is that it’s

all based on 8.04 and last week’s material. On our first problem set, there’s a variational problem where we have a

quartic potential

H =
p2

2m
+ αx̂4.

If the quartic were a quadratic term, it would be a simple harmonic oscillator and we’d know how to solve it. But with

this new potential (α assumed to be positive, by the way), we get a strange oscillator which doesn’t even have the usual

harmonicity. With the harmonic oscillator, the energy levels are equally separated and multiples of the lowest energy,

which tells us that frequencies are also multiples of each other. But adding a quartic term breaks the harmonicity –

energy levels will not be multiples any more.

Is that good or bad? It turns out that for quantum computation, harmonic oscillators are not good – |0〉 and |1〉
usually take up the lowest two energy levels, but the energy difference between those two is the same as the difference

to the next energy level! So the qubit will not be in the |0〉 or |1〉 state anymore, which is bad – that’s one motivation

for why we study different potentials like in this homework problem.

If the Hamiltonian had a harmonic oscillator term

H =
p2

2m
+ αx̂4 +

1

2
mω2x̂2,

the x̂4 term would be a small correction to the harmonic oscillator potential, and then we calculate things using

perturbation theory (this is an 8.06 idea). But for our original problem, we need to use variational methods – the

differential equation can’t be solved analytically. We’ll need to calculate some of the energy eigenstates numerically,

and we do this with the shooting method.

Specifically, we’re trying to solve the equation

−
ℏ2

2m

d2

dx2
ψ + V (x)Ψ = EΨ,

and we want to first get rid of the ℏ, m, α before plugging this into a computer (because the energies depend on those

quantities in a predictable way). Once we do this, we integrate the differential equation from 0 to some distance,

exxpressed in dimensionless units u – for example, we can integrate from 0 to 3.5 and that’s probably enough – and

there are Mathematica instructions on how to do this in the pset PDF.

Fact 60

Energy eigenstates are normalizable, so we can tweak the parameters and look at when the wavefunction “blows

up” or “blows down” and look in between those.

Question 61. On Piazza, there was a question about the axioms of vector spaces – our lecture has the axiom 1v = v

(for all vectors v in the vector space), but Shankar doesn’t have this. So what’s going on here?

Mathematical objects called fields have two special numbers, 0 and 1. They’re the additive and multiplicative
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identity, respectively: this means that a + 0 = a and 1a = a for any a ∈ F . With this, it’s also simple to show that

0 · a = 0, so we don’t need this as an axiom.

Well, the statement 1v = v is completely different, because v is a vector, not an element of our field F! We

can try to prove this statement from the other axioms, but it really doesn’t work out – the best hope is to try using

(ab)v = a(bv), and that isn’t enough. So we need to include it in our set of linear algebra axioms. The main point

here is that we need to keep vectors and scalars separate in our mind.

We can, however, prove that 0 · v = 0, where the 0 on the left side is a scalar and the 0 on the right side is the

zero vector. So we can think about all of this a bit more if we like the mathematical formalism.

Let’s do some examples with the variational principle:

Example 62

Consider two potentials V1(x) and V2(x) which satisfy V2(x) ≤ V1(x) for all x . Can we show that the ground state

energy for V2 is always lower than the ground state energy for V1?

The intuition we have is that “the energy is always higher for V1,” and while this might seem clear, it gives us the

following result. Consider an attractive potential V (x) which is bounded – specifically, it’s nowhere positive, piecewise

continuous, asymptotically zero, and not zero everywhere. Then there’s a famous result that V always has a bound

state – this is true in one dimension but not in three dimensions!

How do we show that? We can try to find the bound state, but if V is an arbitrary potential, this is very difficult.

Instead, we can just “sandwich” a finite square well potential between V (x) and 0 – since the finite square well potential

has a bound state, this example problem would tell us that the attractive potential V (x) has a bound state (with lower

energy).

Okay, so let’s try to show that the ground state energies satisfy Egs2 ≤ E
gs
1 . We have our two Hamiltonians

H1 =
p2

2m
+ V1(x), H2 =

p2

2m
+ V2(x),

and consider the overlap

(ψ,H1ψ), (ψ,H2ψ).

Both of these are numbers – they’re the inner products (ψ1, ψ2) =
∫
ψ∗1ψ2dx – and specifically, because

(ψ,H1ψ) =

(
ψ,

p2

2m
ψ

)
+

∫
ψ∗V1ψ ≥

(
ψ,

p2

2m
ψ

)
+

∫
ψ∗V2ψ = (ψ,H2ψ)

(after all, the boxed p2

2m terms cancel out, the left integral is
∫
V1(x)|ψ|2, and the right integral is

∫
V2(x)|ψ|2), we

have

(ψ,H1ψ) ≥ (ψ,H2ψ) .

So now we want to use this to look at the energy ground states: the variational principle says that

Egs2 ≤ (ψ,H2ψ) ≤ (ψ,H1ψ).

Remember that this holds for any ψ, so we can now pick ψ to be the ground state wavefunction for V1! And that

tells us that

Egs2 ≤ (ψgs,1, H1ψgs,1) = E
gs
1 ,

and we’ve indeed shown that the ground state energies are related in the way that we expect – the lower potential has

a lower energy ground state.
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In the remaining time, we’ll talk a bit about the concept of a direct sum in linear algebra. Recall that a vector

space V is the direct sum

V = V1 ⊕ V2

if we can write any vector V uniquely as a vector in V1 plus a vector in V2. One way we can think about this is that

we’re increasing the dimension of the vector space by adding more axes. In principle, the first vector space V1 has

some basis vectors, and V2 adds some more – the total dimension

dim V = dim V1 + dim V2.

(Soon, we’ll consider the other operation V = V1 ⊗ V2, in which case the total dimension

dim V = dim V1 · dim V2.)

One note – just because V1 ⊕ V2 = V1 ⊕ V3, this doesn’t necessarily mean that V2 = V3. (For example, if V1 is the

x-axis, V2 can be the y -axis and V3 can be the line y = x , and both sides give us the xy -plane.)

So as an example, the energy eigenstates provide a basis for the whole space in the simple harmonic oscillator. We

have a vector |0〉, the ground state, and we have another vector |1〉 = a†|0〉, the first excited state – in general, we

have

|k〉 =
(a†)k√
k!
|0〉,

defined in such a way that these are all orthonormal. Well, let U0 be the 1-dimensional vector space which is the span

of |0〉, let U1 be the span of |1〉, and define Uk in general. Then what we’re saying is that the whole state space

H = U0 ⊕ U1 ⊕ U2 · · · =
∞⊕
k=0

Uk .

And this is true because the general wavefunction is a linear combination (unique superposition) of our energy eigen-

states – we can write

|ψ〉 = α0|0〉+ α1|1〉+ · · · .

7 Linear Algebra – Vector Spaces and Operators, Part 2
Now that we’ve begun to see a few properties and examples of linear operators, let’s try to extract some structure out

of the set of linear operators.

Definition 63

For a vector space V , let L(V ) denote the set of linear operators on V .

It turns out that this set actually forms a new vector space! This is because we can take two operators S, T ∈ L(V )
and define their sum S + T , which is the operator satisfying

(S + T )v = Sv + Tv.

Similarly, we define a scalar multiple of a linear operator by defining that

(aS)v = a · (Sv).
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With this definition, we already have all of the properties that we need in a vector space for our linear operators: we

just need to check that S + T and aS are indeed linear operators by confirming statements of the form

(S + T )(u + v) = (S + T )u + (S + T )v ,

but it all works out. In addition, we do have an additive operator – it’s the zero operator. So L(V ) is a new vector

space that we’ve created, and it’s over the same field F as our vector space V .

Remember that in all of our definitions so far, there hasn’t been an obvious way to multiply vectors together. We

know that there’s a cross product in three dimensions for our ordinary vectors, but there is no such thing in two or

four dimensions. On the other hand, these operators have a very natural multiplication: for two operators S and T ,

define their product via

(ST )u = S(Tu).

In other words, we let T act on our vector first, and then apply S to the result of that. This is a new structure we’ve

added to our vector space! We now need to show that ST is indeed a linear operator – it’s pretty simple to verify, but

it’s worth working it out on our own. And the point now is that we can multiply operators.
There are now a few questions we can ask: is this multiplication commutative or associative, and is there an identity

or inverse element?

• It turns out that associativity is true: this is because S(TU) = (ST )U holds for any three linear operators S, T, U,

and in both cases we just apply U, then T , then S to our vector.

• There is an identity element: it’s the identity operator, which sends every vector to itself. Call this operator I.

• Operators do not always have inverses (for example, consider the zero operator).

• Finally, operators are not always commutative (ST and TS are not always the same).

This last point is pretty important for quantum mechanics, and it’ll relate to the concept of a commutator, which

measures the difference between the two operators AB and BA. Basically, we define the quantity

[A,B] = AB − BA,

and this can often have important physical implications.

Let’s study an illustrative example:

Example 64

Consider the two operators from before on our vector space of polynomials: T differentiates the polynomial, and

S multiplies it by x .

The product of T and S is some linear operator, which we can’t figure out until we see how it acts on a polynomial.

We can try to have it act on a general polynomial, but we don’t need to do that: acting on the simple basis elements
is enough. So let’s apply this on xn:

TS(xn) = T (xn+1) = (n + 1)xn.

On the other hand, we can also look at the other way around: we evaluate the product ST to be

ST (xn) = S(nxn−1) = nxn.
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Indeed, TS and ST are not the same, and the commutator [T, S] = TS − ST is an operator such that

[T, S]xn = (TS − ST )xn = (n + 1)xn − nxn = xn.

In other words, the commutator [T, S] is actually the identity operator I, because we can repeat this argument for any

xn! And this commutation relation has to do with the usual quantum mechanics commutation relation between x̂ and

p̂, which are indeed multiplication by x and an x-derivative (up to constant factors).

So in summary, we’ve now put an extra structure on our linear operators. As a nice exercise, we can try computing

the commutator [L,R] between the left and right shifts on our interesting sequences.

With that out of the way, we’ll now move on to some more linear algebra: we’re going to extract a few more basic

properties out of our operators. There’s always a few basic questions to ask when we encounter a new object, and in

this case knowing these answers tells us a lot about the linear operator!

There are basically two ways to characterize our linear operators T ∈ L(V ), related to injectivity and surjectivity,
respectively.

Definition 65

The null space of a linear operator T is the set of vectors v ∈ V such that T (v) = 0.

These are the objects that are being “nullified” by T , and it turns out this set of vectors is a subspace of V !

So there’s a bit more here than just having a set of vectors. Indeed, we can check that if u, v ∈ null(T ), then

u + v ∈ null(T ) as well, and so is au. This is closely related to the next definition here:

Definition 66

A linear operator T is injective or one-to-one if different vectors end up in different places under T : that is, if

T (u) = T (v), then u = v .

But there might be a more useful way of representing this idea: “one-to-one” might not represent injectivity very

well, because of course T takes in a vector and outputs another vector. So Sean Carroll, a professor at Caltech, has

suggested using the word “two-to-two” instead. Indeed, another way to phrase the above idea is that

u 6= v =⇒ T (u) 6= T (v).

So let’s take the two definitions we’ve just made and link them together:

Theorem 67

A linear operator T is injective if and only if null(T ) = {0⃗}.

We know that the null space always contains the zero vector, and this theorem says that injectivity forces that to

be the entire null space!

Proof. We need to show both directions here. If T is injective, then for any vector u in the null space, T (u) = T (⃗0)

implies that u = 0⃗. And thus the only vector that can be in the null space is 0⃗, as desired.

On the other hand, suppose that we know that the null space is just the zero vector. Then

T (u − v) = 0⃗ =⇒ u − v = 0,
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because u − v is in the null space. But now T (u − v) = T (u)− T (v), so we can restate the above statement as

T (u) = T (v) =⇒ u = v ,

which is indeed the definition of injectivity.

With this, we’ve now related the words “null space” and “injective,” and it’s clear how the two are related.

Definition 68

The range of a linear operator T is the set of vectors of the form Tv , where v ∈ V .

Basically, we try applying T to everything, and we see which vectors we get. This set of vectors again has some

additional structure: it is also a subspace of V ! This requires a little bit of thinking: if two vectors u′, v ′ are in the

range of T , then there are vectors u, v such that T (u) = u′ and T (v) = v ′, so T (u + v) = u′ + v ′. Thus the sum of

two vectors in the range of T is also in the range of T , and the scalar multiplication closure follows similarly.

Definition 69

A linear operator is surjective if range T = V .

In other words, our operator reaches the whole vector space.

Example 70

Consider the left and right shift operators from earlier in the class, defined via

L(x1, x2, · · · ) = (x2, x3, · · · ), R(x1, x2, · · · ) = (0, x1, · · · ).

Let’s try to extract a few of the elementary properties of these operators.

First of all, what is the nullspace of L? We need the final vector to be 0, which means that x2, x3, · · · must all be

0, but x1 can be anything:

null(L) = (x1, 0, 0 · · · ).

In other words, L is not injective, because the null space is nonzero. (For instance, both (1, 0, 0, · · · ) and (3, 0, 0, · · · )
are sent to the same thing.) However, L is surjective, because we can get any vector (a, b, · · · ) by starting with

(0, a, b, · · · ).
Similarly, we can find the null space for R: it is just the zero vector, because we need all of x1, x2, · · · to be zero.

In other words, R is injective. However, R is not surjective: it’s not possible to end up with the vector (1, 0, 0, · · · ).
In other words, the range of R is smaller than V .

This might seem reasonable, but it is actually pretty counterintuitive: in finite-dimensional vector spaces, we won’t

have a situation like this where the operator is surjective but not injective, or injective but not surjective!

Now that we’ve introduced a lot of these ideas, we’re going to introduce a fundamental result which we’ll come

close to proving. The key idea is that the null space null T and the range range T are both vector spaces (subspaces

of V ), so they have a dimension.

Theorem 71 (Rank-nullity theorem)

For any linear operator T on a finite-dimensional vector space V ,

dim(null T ) + dim(range T ) = dim V.
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This theorem actually turns out to hold in a more general sense too: this still holds if we have a linear map that

goes from V into a different vector space W ! So this is a powerful result, and it’s important to keep in mind.

The key idea for proving this theorem is to think about the basis vectors at play here. Since null T is a vector

subspace, there is a basis (u1, u2, · · · , um) for that null space. But this isn’t the full basis – the null space is often

much smaller than V – it’s just a linearly independent set in V . But now we can extend this to a basis for the whole

vector space by adding some elements v1, v2, · · · , vn. It now suffices to show that Tv1, T v2, · · · , T vn actually form a

basis for range T : then we’d know that dim(null T ) is m, dim(range T ) is n, and dim V is (m + n).

Instead of going through the whole proof there, we’ll just do a simple case for illustration.

Example 72

Consider the linear operator T =

[
0 1

0 0

]
on a two-dimensional vector space V = R2.

To find the null space, we just need to find the set of vectors that are killed by T : we need[
0 1

0 0

][
a

b

]
=

[
b

0

]

to be the zero vector, so we need b to be zero (but there are no restrictions on a). Thus the null space is the set of

vectors spanned by e1 =

[
1

0

]
.

On the other hand, the range of T is the set of vectors that come out of applying T : it’s the same boxed expression

above, so it turns out that the range of T is actually spanned by the same vector e1. That might seem a bit confusing,

but remember that the rank-nullity theorem above tells us that some of our basis vectors of V should form a basis for

the null space (in this case just e1), and T applied on the rest of them (in this case just e2) should form a basis for

the range. And indeed, Te2 = e1 is a basis for the range, and we’ve verified that the rank-nullity theorem holds in this

specific case.

With this, we’re now ready to move on to something more concrete: the matrix representation of our linear

operators. This is an interesting phrase – one important idea is that our linear operators already exist, independent
of whether or not we’re representing them. One analogy is that we can take a picture of some object which already

exists, which makes it easier to describe and work with. But we can also take pictures from different angles to get

different pictures, and that corresponds to different matrix representations of the same operator. So mathematicians

don’t always like matrix representations, but they’re practically very helpful.

Fact 73

We need to choose a basis in a vector space before we can construct a matrix representation. And our result

does depend on the basis that we pick.

We’ll abuse some notation here and often say that our linear operators T are “equal” to some matrix. But this is

just a warning that whenever we do this, we should make sure we understand what basis we’re using!

What’s perhaps most confusing about matrices when they are first introduced in a math class is that while we

do add matrices component by component, we don’t do the same for multiplication. So one of the goals of today

is to show why the weird, complicated expression for matrix multiplication (taking the ith row and jth column and

multiplying component-wise there) makes sense!

34



So we’ll start by considering some basis {v} to be a basis for our vector space V . We know that for any vector

vj in our basis, Tvj must still live in our vector space, so we can write it as some linear combination of the basis
vectors:

Tvj = T1jv1 + T2jv2 + · · ·+ Tmjvm =
∑
i

Ti jvi .

These numbers Ti j are going to be the numbers that go into our matrix representation for T , because they carry all

of the information about our operator: we just need to know where all of our basis vectors go! So we’ll write that

T =


T11 T12 · · · T1N

T21 T22 · · · T2N
...

...
. . .

...

TM1 TM2 · · · TMN

 ,

where Ti j goes in the ith row and jth column of our matrix. The whole point of this is that knowing the basis and

knowing the operator will give us the matrix representation, and this might clear up some confusion: we do not need

to know anything about a dual basis or bras and kets to define a matrix representation for T !

Remark 74. If we want to mention that these matrix entries depend on our basis, we may denote the entries as

Ti j({v}).

Let’s use this to start understanding matrix multiplication: first of all, consider some vector

v =
∑
i

aivi =


a1

a2
...

aN

 .

Suppose we have a linear operator T : this will send our vector v to some other vector

b = Tv = T
∑
i

aivi .

Since T is a linear operator, we can break this up into each of the individual parts: thus

b =
∑
i

ai(Tvi) =
∑
i

ai
∑
p

Tpivp,

where in the last equality we’ve written out the expression for Tvi . And now we can just switch the order of summation

so that this looks more familiar to us:

b =
∑
p

∑
i

Tpiaivp.

So now we’ve figured out a way to write down b as a linear combination of the basis vectors! So the coefficients must

satisfy

bp =
∑
i

Tpiai ,

and now we’ve derived the familiar expression for multiplication of a matrix by a vector.
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Fact 75

By the way, note that the identity operator has a nice matrix representation: because Ivi = vi for any basis

vector Ti j is 1 when i = j and 0 otherwise, and thus the operator is a diagonal matrix with 1s on the diagonal and

0s everywhere else. And the zero operator has a simple matrix representation as well: it just has zeros everywhere.

So now we’re ready for the more general case: multiplying two matrices together. Suppose we have two linear

operators T, S acting on the basis vector vj . We can start writing this out: since TS is an operator, we know that (by

definition) ∑
p

(TS)vj = (TS)pjvp.

Our goal is to show that this entry (TS)pj can be written in the usual matrix-multiplication form. To do that, note

that

TSvj = T
∑
k

Skjvk ,

where we’ve done the action of S on vj , and now we can bring the T inside the sum by linearity: this is thus equal to∑
k

SkjTvk =
∑
k

Skj
∑
p

Tpkvp.

We now use the same trick as before: swap the order of summation, and we find that

TSvj =
∑
p

∑
k

TpkSkj vp.

(We flipped the order of Tpk and Skj , which is fine because they’re both numbers.) But the boxed expression here

serves the same purpose as (TS)pj , and thus we have a formula for the entries of TS:

(TS)pj =
∑
k

TpkSkj .

And this is indeed matrix multiplication: we’re looking at the pth row of T and the jth row of S and multiplying

component-wise there! And notice that we’ve now given a natural explanation, using linear algebra, of why matrix

multiplication is defined the way it is: this is the only way to make sure the operator TS is consistent with applying

S, then T .

Our last topic for this lecture will be that of a change of basis. We said earlier that matrices provide a representation

of linear operators on a vector space, but we may want to pick different bases in different scenarios, which lead to

different matrices – thus, we need a way of converting between the bases. And in this study, we’ll find that there is

some information in our matrix that is independent of the basis that we choose!

As we said earlier, we have

Tvj =
∑
i

Ti j({v})vj ,

where this result depends on the basis {v} we’ve chosen for the situation. So now we’ll have two different bases:
{v} = (v1, · · · , vn) and {u} = (u1, · · · , un), and now we need to define some new operators. We’ll let A take {v} to

{u}, and we’ll let B take {u} to {v}: we can write this as

uk = Avk , vk = Buk

for all 1 ≤ k ≤ n. Here A and B are linear operators – for example, they take the third basis vector in {v} to the third
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basis vector in {u}, and vice versa. So now we can calculate

BAvk = Buk = vk ,

and similarly

ABuk = Avk = uk ,

so BA and AB are the identity operators, which means that A and B are in fact inverses of each other.

The point of introducing these operators A and B to see how we can relate the matrix elements Ti j({v}) and

Ti j({u}) – that is, how can we calculate the entries of matrices in one basis, given the entries in the other basis?

First of all, notice that we’ve defined our basis-changing linear operators A and B, and we might want to write

down matrix representations for them. But we have two bases – which one should we use for the representations?

Wonderfully, it doesn’t actually matter:

Proposition 76

The matrix representations of A, B (our basis-changing operators) are the same in {v} and in {u}.

Proof. We know that

Avk =
∑
i

Aik({v})vi

and

Auk =
∑

Aik({u})ui

by definition, and we want to show that these coefficients Aik are the same. To do this, note that

Auk = A(Avk) = A
∑
i

Aik({v})vi

(by plugging in the definition of Avk from earlier), and now Aik({v}) are just numbers, so we can bring the A inside

the sum to get

Auk =
∑
i

Aik({v})(Avi) =
∑
i

Aik({v})ui .

But looking at the two boxed expressions for Auk , they are identical except for the basis that we’re using, so we indeed

have that Aik is the same in both bases, as desired. (The same argument works for B.)

In the same spirit, we know that A and B are inverses of each other, so we know that∑
j

Bi jAjk = δik =
∑
j

Ai jBjk .

And in this kind of statement, we again don’t need to write down the basis that we’re using!

So now we’re ready to answer the main question. We’ll find the matrix entries T ({u}) in terms of T ({v}) and the

matrix A (we could also use the entry B). To unclutter notation, we’ll use the repeated index convention (where a

repeated index means we sum over that index). We’ll need to do a bit of computation: we have the sum

Tuk = Tik({u})ui

by definition, and we need to involve the v -vectors somehow: replacing uk = Avk on the left hand side, we note that
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this expression is also equal to TAvk . And now letting A act on vk , we find that

= TAvk = TAjkvj ,

and now we can have the operator T act on the vjs to find

= AjkTpj({v})vp .

This isn’t quite what we want, though – we have v vectors in the second expression, so we need to rewrite this in

terms of the u vectors. And because vp = Bipui (rewriting so that we match up the indices on the u vectors), this

means that

Tik({u})ui = AjkTpj({v})Bipui ,

and finally using the fact that B is the inverse matrix of A, we arrive at our result (also reshuffling our numbers a bit):

Tik({u})ui = A−1ip ({v})AjkTpjui .

But this means that the matrix T ({u}) in the u-basis is just A−1T ({v})A, since all of the ik-entries line up! And thus

we’ve arrived at our main result:

T ({u}) = A−1T ({v})A ,

where A is the basechange matrix such that uk = Avk . (And this operation of multiplying with the inverse on the left

and the matrix on the right is called conjugation: it’ll come up again.)

With this, we can prove some interesting properties about invariant properties of our linear operators.

Proposition 77

The trace of a matrix representing a linear operator, which is define to be the sum of the diagonal entries of that

matrix, is basis-independent.

Proof. To show this, we need to know a few important properties of trace: in particular, we have

tr(T1T2) = tr(T2T1),

and more generally the trace is actually cyclic – we can show by computing some coefficients of matrix multiplication

that

tr(T1T2 · · ·Tn) = tr(TnT1 · · ·Tn−1).

So we can apply this to our base change formula above:

tr(T{u}) = tr(A−1T{v}A) = tr(AA−1T{v}) = tr(T{v}),

where we’ve used cyclicity in the middle equality.

Proposition 78

The determinant of a matrix representating a linear operator is basis-independent.

Proof. For this, we also need to remember the property that

det(AB) = detA detB
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for two matrices A and B. (In particular, this shows that detA detA−1 = det I = 1.) This generalizes easily to show

that

det(A1 · · ·Am) = detA1 · · · detAm,

and thus we can plug this into our base change formula again:

detT{u} = det(A−1T{v}A) = detA−1 detT{v} detA = detT{v},

as desired.

We’ll see soon that the trace and determinant, along with a few other invariants, carry intrinsic information about

our operators!

8 February 12, 2020
We’re doing a bit more linear algebra now – we’ll practice some of the ideas about matrix representation and linear

operators today during class. (As a reminder, we also have a homework assignment due on Friday.)

Last time, we talked about direct sums of vector spaces, and we’ll illustrate that idea again with the central
potentials. This is a typical situation in three dimensions, where the potential only depends on the magnitude of the

position vector:

V (r⃗) = V (r), r = |r⃗ |.

This means we have a spherical symmetry – the most famous example is the hydrogen atom, but the spherical square

well and Morse potential are key ideas in physics as well. These have all been studied, and the way they work out is

that the basic separable solutions follow the ansatz

ψEℓm(r⃗) =
uℓE(r)

r
· Yℓm(θ, ϕ).

This is called a basic solution, and it’s indexed by E, ℓ,m. Here, the function u satisfies the Schrodinger equation

−ℏ22m
d2u

dr2
+

(
ℏ2

2mr2
ℓ(ℓ+ 1) + V (r)

)
u = Eu

(basically, we have an effective potential, which serves as a centrifugal barrier). This is now a one-dimensional problem,

and that’s the advantage of working in this system! There’s only one confusion we should be careful about – the indexing

by m is the quantum number, not the mass. And this holds for any kind of central potential – the general solution is

going to be a superposition of these energy eigenstates.

Remark 79. Where does the centrifugal term come from? The actual Schrodinger equation we want to solve in

general has a Laplacian operator

−
ℏ2

2m
∇2ψ + V ψ = Eψ,

and if we expand out the Laplacian in spherical coordinates, the angular part act on the Yℓms in a particularly nice way.

By the way, what are our bounds for E, ℓ,m? ℓ can be any nonnegative integer 0, 1, · · · , and for any fixed ℓ, m

is an integer between −ℓ and ℓ. And to find the energy, we need to solve the wave equation – this will quantize the

allowed energy states, and it will tell us the indices for E.

One more comment – the reason we have a 1
r term is that uℓE satisfies a nicer wave equation than u(r)

r . A nice

bonus is that when we’re trying to normalize our wavefunction, the r2 in the denominator from |ψ|2 cancels out with

the r2dr term from the spherical d3x , so the wavefunction almost “normalizes itself!”
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So let’s go back to the linear algebra here – we were looking at direct sums. If we fix different values of ℓ, we get

slightly different wave equations, and they each give slightly different allowed (quantized) values of E. We know that

the energy levels will be higher for larger values of ℓ (because the effective potential is larger), but the point is that if

we draw a diagram with ℓ on one axis and E on the other axis, we get the spectrum of all energy eigenstates.

Sometimes, different values of ℓ will give the same value of E, and those give us degeneracies which need to be

explained. But regardless, if we want to represent our total state space, we can write it as

H = Hℓ=0 ⊕Hℓ=1 ⊕ · · · =
∞⊕
ℓ=0

Hℓ,

which means that the whole set of basis vectors (energy eigenstates) can be decomposed into those from ℓ = 0, those

from ℓ = 1, and so on, and they’re all linearly independent. But we can further decompose each Hℓ into its different

energy eigenstates:

Hℓ = Hℓ,E0 ⊕Hℓ,E1 ⊕ · · · =
∞⊕
k=0

Hℓ,Ek .

This means that we can write the whole energy space

H =
∞⊕
ℓ=0

∞⊕
k=0

Hℓ,Ek ,

but we’re still not done breaking everything up: for example, ℓ = 1 allows the quantum number m to be −1, 0, or 1.

So really,

Hℓ,Ek =
ℓ⊕

m=−ℓ
Hℓ,Ek ,m,

and now Hℓ,Ek ,m generates a one-dimensional vector-space – it’s just one basis, and if we substitute this back into our

equation for H, we’ve completely decomposed our state space

H =
∞⊕
ℓ=0

∞⊕
k=0

ℓ⊕
m=−ℓ

Hℓ,Ek ,m.

One question: what if we have an energy degeneracy, so two different eigenstates (with different numbers ℓ,m) have

the same energy E? That doesn’t matter: the Hℓi ,E,mi
and Hℓj ,E,mj

states are still linearly independent, because they’re

different vectors. It’s just important to remember that degenerate states do differ in some way – otherwise, they’d be

indistinguishable from each other!

We’ll now move on to talking about Pauli matrices: we’ll probably have them memorized by the end of 8.051 with

all of the exercises we’re doing with them. We have the universal conventions

σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0

0 −1

]
.

Note that these matrices have a few properties:

• Pauli matrices are Hermitian, which means they are equal to their (complex) conjugate transpose. In fact,

σx , σy , σz , and the identity matrix I form an R-basis for the set of 2× 2 Hermitian matrices (it’s good to think

of these as an R-vector space, because multiplying Hermitian matrices by real numbers still give us Hermitian

matrices, but this is not true for complex numbers). To show that this is true, note that the most general 2× 2
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Hermitian matrix can be written as[
a0 + a3 a1 + a2i

a1 − a2i a0 − a3

]
= a0I + a1σx + a2σy + a3σz .

(The diagonal entries should be real, and the off-diagonal entries should be complex conjugates.) We often refer

to σx , σy , σz as σ1, σ2, σ3, respectively. By the way, the reason we write the diagonal entries as a0 + a3 and

a0−a3 instead of just using two numbers b0 and b3, because we want to write everything as a linear combination

of Hermitian matrices.

It’s important to re-emphasize that this is a real vector space of dimension 4, even though the matrices are full

of imaginary numbers! That’s why we don’t say that the “vectors” (matrices in this case) are real or complex.

• Pauli matrices are traceless – the trace is the sum of the diagonal entries. They all have determinant −1 as well.

Why is it important that these matrices are traceless? we should think of Pauli matrices as spin-1/2 operators,

and they have two kinds of states (spin up and spin down). This means we should have two eigenvalues, and

the trace (which is also the sum of the eigenvalues) being zero tells us that the eigenvalues are +λ and −λ.

• What happens when we square the Pauli matrices? It turns out that σ2i = I, which is a fundamental property as

well. The importance of this property is that if we have a matrix equation, the eigenvalues satisfy the same
equation: this tells us that λ2 = 1.

• Finally, the Pauli matrices are unitary, which means that U†U = I. There are more pictorial properties of this,

but this is a good one to start with. Indeed, we can check that

σ†i σi = σiσi = I

(because σi are Hermitian, σ†i = σi).

One fundamental property of the Pauli matrices that we should internalize is that the product

σiσj = δi j I + iεi jkσk ,

where the repeated index k on the right-hand side is summed.

So let’s think about an operator O acting on spin states |+〉 and |−〉: we can represent them as

[
1

0

]
and

[
0

1

]
,

respectively. Suppose the operator satisfies

O

[
1

0

]
= O|+〉 = α|+〉+ β|−〉 =

[
α

β

]

and

O

[
0

1

]
= O |+〉 = γ |+〉+ δ |−〉 =

[
γ

δ

]
.

Because |+〉 and |−〉 are the basis vectors and O is a linear operator, this tells us everything we want about the

operator. But perhaps we want a formula that tells us how to act on every vector in our vector space: that’s where the

matrices come in. It’s dangerous, though, to say explicitly what the operator does to every vector, because we need to

check linearity! For example, we can prove that no operator exists which reverses every single spin state, because

that would violate linearity. So the representation of an operator should generally just be on our basis vectors.
The best way to write O as a matrix is to just look at the two equations above and see what we need to satisfy:
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we’ll find that we basically put the images of the basis vectors down as our column vectors:

O =

[
α γ

β δ

]
.

As a challenge for next time, we can try to write down a matrix representation for the operator

|n⃗; +〉〈n⃗; +|.

9 Linear Algebra – Vector Spaces and Operators, Part 3
We started talking about linear operators on vector spaces last time, and the main things we discussed were its rough

features – for instance, we’ve discovered a few things about the operator’s null space and range. We now want to ask

a few more questions, primarily centered around eigenvalues and eigenvectors.
The physics motivation here is that our operators are observables, and eigenvalues tell us a specific possible value

of a measurement of that observable. Since these are crucial properties in quantum mechanics, we should make

sure we understand the mathematics here too.

As before, we’ll be working with linear operators T ∈ L(V ) on a vector space V .

Definition 80

A subspace U of a vector space V is an invariant subspace if T (u) ∈ U for all vectors u ∈ U. (Another way to

write this is that the set T (U) ⊆ U.)

The idea here is that applying T keeps us inside a subspace, so we have a more degenerate (but still interesting)

representation of our linear operator. We should remember that being an invariant subspace is an idea connected to

an operator – it doesn’t just exist on its own!

Example 81

We always have two trivial examples of invariant subspaces: the zero vector is an invariant subspace (because it’s

sent to itself), and the whole vector space is also invariant (because T takes a vector space to itself).

These aren’t very interesting, so let’s try to construct an example of a more interesting invariant subspace. We

know that the zero vector is a subspace of dimension 1, while the whole vector space V has full dimension dim V : let’s

try to get something in between by considering one-dimensional invariant subspaces.
Every one-dimensional subspace can be generated by a single vector u ∈ V : the space generated by this vector is

the set U = {cu : c ∈ F} (we can scale the vector by any number, so we have a line through the origin). Because the

basis has one vector, this does indeed have dimension 1 by definition.

Fact 82

It’s important that u is not the zero vector: otherwise, we won’t actually generate a one-dimensional subspace.

So if we want U to be invariant, that means that

Tu ∈ U =⇒ Tu = λu
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for some number λ ∈ F. It turns out this is an extremely important equation: such vectors are invariant up to a scalar

factor under the action of T .

Definition 83

Let T be a linear operator on an F-vector space V . If there is a vector u ∈ V and a scalar λ ∈ F such that

Tu = λu, u 6= 0,

then λ is an eigenvalue of T , and u is its associated eigenvector.

The reason we don’t allow u = 0 is because that’s satisfied for any λ: it’s not an interesting equation. So

eigenvalues need to correspond to nonzero vectors, though it is okay for eigenvalues themselves to be zero. In

fact, 0 is often an interesting eigenvalue – that means that we have some nonzero vector u which is killed by T , and

that tells us something about the null space.

So suppose we have such an eigenvector u: then every vector in the span of u, which is the set of vectors of the

form cu (for c ∈ F), is an eigenvector. After all, if Tu = λu, it’s okay for us to multiply both sides of the equation by

any constant c . That means that we’ll often say that “the span of u is an eigenvector” (even though we don’t actually

want to include the zero vector)

Sometimes we’ll actually get a funny situation: we might have a particular value of λ for which more than one
independent vector solves the equation Tu = λu. Then we have a degeneracy – where a given eigenvalue has more

than one eigenvector – and then our invariant subspace is larger than one dimension! For example, if u1 and u2 both

have eigenvalue λ, then every vector in the span of u1 and u2 will also have eigenvalue λ, and then some interesting

complications will occur. But there’s a lot of physics associated with this idea, so we should keep it in mind.

Definition 84

The spectrum of an operator is its set of eigenvalues.

We will want to find a way to solve for the eigenvalues λ: notice that we can rewrite the equation

Tu = λu =⇒ (T − λI)u = 0.

So the eigenvalue condition actually tells us that there is a nonzero vector u that is killed by the operator T − λI,
and in particular this means that T − λI is not injective – its null space is not just the zero vector. And when we

have a finite-dimensional vector space, this actually means that T − λI is also not surjective and not invertible. And

the eigenvectors of T correspond exactly to the null space of T − λI. (And this explains that since we want the null

space to always include the zero vector, it’s convenient to just include it as a “soft” eigenvector.)

Example 85

When is λ = 0 an eigenvalue of an operator T?

The eigenvectors of eigenvalue 0 are those vectors for which Tu = 0u = 0: thus, the null space of T is the

eigenvectors of eigenvalue 0.

Example 86

We’ve been talking about properties of matrix representations that are basis-independent: are the eigenvalues

and eigenvectors basis-independent? Are invariant subspaces basis-independent?
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All of these concepts do not need to be defined by a basis, so they are indeed basis-independent. However, we

should be careful to note that eigenvectors might be represented differently in different bases.

To summarize this first pass through eigenvectors and eigenvalues, we got to this idea by exploring invariant
subspaces, particularly those with one dimension. Then the eigenvector spans our invariant subspace, and the

eigenvalue tells us how the subspace behaves under the action of our operator T : everything is just scaled. And when

we’re working in complex vector spaces, knowing all of the eigenvalues and eigenvectors tells us a lot of information!

Remark 87. The next few pages are optional material.

Let’s try to gain some intuition for what’s happening geometrically with eigenvalues and eigenvectors:

Example 88

Consider an operator in V = R3 which rotates vectors: explicitly, consider a rotation around the z-axis. What are

the eigenvalues and eigenvectors of this operator?

We know that all vectors that are not along the z-axis will be rotated (so they end up in a different direction), but

all vectors along the z-axis are left invariant. So in R3, there is only one eigenvector: the one along the z-direction

(or more precisely, the span of (0, 0, 1)). This eigenvector has λ = 1, because there is no scaling on the z-axis.

But are there other eigenvectors? The answer is no, as long as we’re working in the real numbers. If we try

calculating eigenvectors and eigenvalues mathematically here, we’ll find that the other potential vectors end up with

complex coefficients: those aren’t allowed when we have a real vector space! Similarly, if we use the example V = R2

and do a rotation T in the plane, we will actually have no invariant vectors and thus no eigenvectors at all! So real

vector spaces have this kind of complication, and that’s a reason why we like complex vector spaces better. We’ll

get some better results – there’s always at least one eigenvalue and often many more if our operators are nice – and

if we restrict ourselves to a special class of operators, the eigenvalues will be real, which is what we need for physical

observables to make sense!

Here’s an important piece of intuition: eigenvectors of different eigenvalues are linearly independent, and we’ll

actually make a stronger statement soon: they’ll be orthogonal once we define an inner product. But let’s prove what

we can for now:

Theorem 89

Let T ∈ L(V ) be a linear operator, and let λ1, · · · , λn be distinct eigenvalues with corresponding (nonzero)

eigenvectors u1, · · · , un. Then the eigenvectors are linearly independent.

The reason we care about this is that we often want our eigenvectors to span our vector space, which can be a

useful thing to have! Again, note that we can’t define orthogonality yet because we don’t have an inner product on

our space yet.

Remark 90. Sometimes, it’s possible that a given eigenvalue λ has more than one eigenvector. Then we can pick any

of those eigenvectors to put in our theorem here. Also, since a dimension n vector space can have at most n linearly

independent vectors, this means that T can have at most n different eigenvalues.

Proof. We’ll work by contradiction. Assume that u1, · · · , un are linearly dependent: then there exists some smallest
k ≤ n such that

uk = a1u1 + · · ·+ ak−1uk−1.
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Basically, follow the following procedure. We look at the first vector – is it linearly independent by itself? Yes. Then

look at the first two vectors together – are they linearly independent? If not, then set k = 2 above, otherwise look

at the first three vectors together and continue on. And in the first place we stop, the contribution from uk must be

nonzero (another way to say this is that uk is in the span of u1 through uk−1), and so the equation above is indeed

valid.

But now uk is nonzero by definition, so some of the aks must be nonzero. Now apply the operator T −λk I to this

equation: since λk is the eigenvalue of uk , the left hand side becomes 0. We can also simplify the right hand side:

T −λk I doesn’t kill any of the other uis, because they all have distinct eigenvalues. Specifically, we’ll get the equation

0 = a1(λ1 − λk)u1 + a2(λ2 − λk)u2 + · · ·+ ak−1(λk−1 − λk)uk−1 = 0.

But remember that u1 through uk−1 were assumed to be linearly independent, so for this equation to hold, we must

have all coefficients be zero, which means a1 = a2 = · · · = ak−1 = 0. And this is a contradiction with the defining

equation for uk above! Thus the eigenvectors must be linearly independent, as desired.

This is a pretty unorthodox proof, but we can now connect this with more standard discussions. We said earlier

that

Tu = λu =⇒ T − λI is not invertible.

And a useful way to restate this is that

det(T − λI) = 0

(here we’re using a fact from linear algebra that an operator that is not invertible has determinant 0). And the best

way to work with such a statement is to find a matrix representation and calculate the determinant explicitly. That

basically looks something like

det


T11 − λ T12 · · · T1N

T21 T22 − λ · · · T2N
...

...
. . .

...

TN1 TN2 · · · TNN − λ

 = 0.
Basically, we put −λs on the diagonal, and then the determinant f (λ) will be an nth degree polynomial in λ. So our

defining equation will look something like

(−λ)N + bN−1λN−1 + · · ·+ b0 = 0.

Such equations will have solutions over the complex numbers C, and this is why we like to work with complex vector

spaces – we can guarantee that this has at least one solution! And most of the time, we will indeed have N solutions,

but occasionally there are repeats: we can always factor this polynomial, called the characteristic polynomial, as

f (λ) = (−1)N(λ− λ1)(λ− λ2) · · · (λ− λN),

where it’s possible that λi and λj are the same. (That would correspond to a degeneracy.)

Definition 91

If all eigenvalues of an operator are distinct, then we say that the spectrum is non-degenerate. On the other

hand, if the characteristic polynomial has (λ − λi) appearing ki times, then λi is a degenerate eigenvalue with

multiplicity ki .
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And now we have a typical strategy for calculating eigenvalues and eigenvectors: use this equation det(T −λI) = 0
to find solutions for λ, and then we will definitely have corresponding eigenvectors (because the operator is not

injective). But to make any more progress at this point, we’re going to need to introduce some additional structure.

In particular, the next question that we might be asked about our vectors in our vector space is their length. And

the object that we’ll now introduce – the inner product – helps us talk about lengths, but it also helps us define lots of

other things that are coming up in the next few lectures – Hermitian, unitary, and orthogonal operators, among many

other things. We’ll start by talking about this for real vector spaces Rn, because that’s what might be more familiar.

In this vector space, we’ll denote vectors in the form

a = (a1, a2, · · · , an), ai ∈ R.

Recall from geometry that the length of a vector is

|a| =
√
a21 + a

2
2 + · · ·+ a2n.

This motivates the definition of a dot product: perhaps we want

|a|2 = a · a = a21 + a22 + · · ·+ a2n.

So this length squared is now some kind of operation of a with itself, so we can generalize this a bit:

Definition 92

The (real) dot product between two vectors a, b ∈ Rn is the number

a · b = a1b1 + a2b2 + · · ·+ anbn ∈ R.

This is a nice definition, because we can explicitly calculate it and also discover some properties. Our goal will be to

do this more axiomatically: find some properties that an inner product should satisfy so that it gives us the appropriate

structure. This way, we know that all inner products, no matter how they’re constructed, will have certain desirable

properties.

Let’s go ahead and state those axioms for a real vector space now:

1. For any vector a, a · a ≥ 0. (Then it’s well-defined to say that we have a length defined by a · a = |a|2.)

2. If a · a = 0, then a = 0. This means that the only vector with zero length is the zero vector.

3. We have distributivity: a(b + c) = ab + ac for vectors a, b, c .

4. a · (αb) = α(a · b) for vectors a, b and real numbers α.

5. a · b = b · a.

The second property is very important – it will help us with maybe half of the proofs that we’ll be doing in this

class related to operators! Indeed, it’s true for the dot product we’ve already defined: the only way for a sum of real

squares to be zero is if they’re all zero.

These dot products do not uniquely determine the definition of a dot product: we can actually define

a · b = c1a1b1 + c2a2b2 + · · ·+ cnanbn,

as long as all of the cis are positive. We can check that it does indeed satisfy all of the above properties.
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Remark 93. It is not okay for the cis to be negative or zero, though – this violates one of the axioms, and it’s good

for us to figure out which one that is.

Theorem 94 (Schwarz inequality)

For any two vectors a, b, we have

|a · b| ≤ |a| · |b|.

This is not an obvious result, and we need to understand what it says. Note that the bars on the right side give us

the lengths of the vectors a and b, but the bars on the left side give us the absolute value of the number a · b. So

bars can mean different things – we should be careful!

One way we might have seen this explained is that a ·b = |a||b| cos θ, where θ is the angle between the two vectors.

And we know that cos has magnitude at most 1, so indeed the magnitude of this dot product is less than |a||b|. But

this isn’t a proof, because that’s not how we defined the dot product above! So let’s do a more rigorous proof: note

that the Schwarz inequality actually follows from our inner product axioms above, so it doesn’t depend on the specific

inner product that we’re using.

Proof. We use the axiom that a · a ≥ 0 for any vector a. Consider the orthogonal projection from a onto b: that is,

split up the vector into components

a = a∥ + a⊥,

such that a∥ is along the direction of b and a⊥ and a∥ are perpendicular to each other. So we know that

a⊥ = a − a∥,

but we also know that (by the projection formula) we have

a∥ =
(a · b)b
b · b =⇒ a⊥ = a −

(a · b)b
b · b ,

because we can think of this as taking the product of a with the unit vector along the b-direction. (Then there is a

factor of “length of b” twice in the numerator and also twice in the denominator, so they cancel out.) As a check to

make sure this correct, note that

a⊥ · b =
(
a −
(a · b)b
b · b

)
· b

(by substitution), which simplifies (by distributivity) to

a · b −
(a · b)(b · b)

b · b = 0.

So indeed a⊥ is perpendicular to b, and now we’re going to use the fact that a⊥ dotted with itself is nonnegative (after

all, the equality case of the Schwarz inequality is when a and b are parallel to each other). Thus

a⊥ · a⊥ =
(
a −
(a · b)b
b · b

)
·
(
a −
(a · b)b
b · b

)
≥ 0,

and expanding this out yields

a · a − 2
(a · b)2

b · b +
(a · b)2

(b · b) ≥ 0.

Combining like terms and multiplying through by (b · b), which is nonnegative, yields

(a · a)(b · b)− (a · b)2 ≥ 0 =⇒ |a|2|b|2 ≥ |a · b|2,
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and taking positive square roots yields the result.

(There will be a version of the Schwarz inequality for complex vector spaces, but we won’t prove that one in class.)

One interesting question is to ask where this inequality is saturated – this means that our inequality is actually an

equality. And this only occurs is if a⊥ is the zero vector, which means a and b are parallel at equality of the Schwarz
inequality.

Again, notice that we never used the formula for the inner product in this proof! So we’ve abstracted away the

important properties, and that will become useful as we transition into complex vector spaces.

Remark 95. Required content now resumes.

So now let’s take the inner product axioms that we’ve been discussing in the real vector space case and transfer it

to our complex vector space. We’ll stop using the dot product notation in favor of a new notation that shows that we

start with two vectors and get out a number: our inner product will now look like 〈 · , · 〉, where the ·s are vectors. As

before, this inner product will be equal to a number, but now it will be a complex number.
This time, the order of our vectors may matter, and for inspiration let’s try to imagine how we might define an

inner product on Cn. In such a vector space, vectors are of the form z = (z1, z2, · · · , zn), where the zis are complex

numbers, and we know that we define a complex number’s length squared by multiplying it by its complex conjugate.

Thus, we’ll want to define

|z |2 = z∗1z1 + z∗2z2 + · · ·+ z∗n zn.

This will be a real number, and it’s always nonnegative – in fact, it only vanishes if all of the components are zero. So

this is a nice model for the length squared of a vector, and it suggests a possible nice definition for an inner product

in general: perhaps we will want

〈w, z〉 = w ∗1 z1 + w ∗2 z2 + · · ·+ wn ∗ zn .

Notice now that the vectors w and z play different roles – we complex conjugate the ws, but we don’t do this for the

zs. And we need to do this so that we can actually define a length for our vectors!

But we want to get a set of axioms that tell us all of the interesting and necessary properties of the inner product,

and that’s what we’re going to do now:

Definition 96

An inner product on a complex vector space is a number-valued function 〈 · , · 〉 which satisfies the following

axioms:

1. 〈v , v〉 ≥ 0 for all vectors v . (In particular, this quantity is always real.)

2. 〈v , v〉 = 0 if and only if v = 0. (This will be useful for proofs of many properties.)

3. 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉.

4. 〈u, αv〉 = α〈u, v〉.

5. 〈u, v〉 = 〈v , u〉∗.

Axioms (3) and (4) are particularly noteworthy here: they’re not actually identical to the real vector space case!

After all, if we switch the order of our vectors, we’re conjugating different components.

Proposition 97

For any vector u, we have 〈u, 0〉 = 0, and similarly 〈0, u〉 = 0.
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Proof. Plug in v2 = 0 into axiom (2) of inner products to find that

〈u, v1〉 = 〈u, v1〉+ 〈u, 0〉,

so indeed 〈u, 0〉 = 0. Take the complex conjugate of both sides to find that 〈0, u〉 = 0 by axiom (5).

Axiom (3) shows linearity in the second argument only, and it turns out that we can use this to also figure out

what happens with the first argument: suppose we want to compute 〈u1 + u2, v〉. We can use axioms (5) and (3) to

say that

〈u1 + u2, v〉 = (〈v , u1 + u2〉)∗ = (〈v , u1〉+ 〈v1, u2〉)∗ = 〈v , u1〉∗ + 〈v , u2〉∗.

And now use axiom (5) again to reverse the inner products, and we’ve found linearity in the first entry as well:

〈u1 + u2, v〉 = 〈u1, v〉 = 〈u2, v〉 .

But what’s most interesting is axiom (4): if we apply the same logic, we find that

〈αu, v〉 = (〈v , αu〉)∗ = (α〈v , u〉)∗ = α∗〈u, v〉 ,

and this is a point of potential mistakes: we have conjugate homogeneity. A complex number comes out of the left

of the bracket with a conjugate, but it comes out of the right of the bracket unaffected! So again, this shows that

the role of the first and second entries in our inner product is not identical.

But now that we’ve defined an inner product, we can do more useful things with it: we can define the length

|v |2 = 〈v , v〉,

and we can also start relating vectors to each other:

Definition 98

Two vectors u, v are orthogonal if 〈u, v〉 = 0 (which also means 〈v , u〉 = 0).

Notice that we’ve set our inner product to be non-degenerate by axiom (2):

Lemma 99

If 〈x, v〉 = 0 for all v , then x = 0.

Proof. Set v = x : then 〈x, x〉 = 0 if and only if x = 0.

We also have two other nice properties: the Schwarz inequality still holds, so we have

〈u, v〉 ≤ |u||v |.

(We’ll see the proof in our homework for the complex-valued case.) This is extremely useful – for example, it’ll be used

to prove the uncertainty principle. And the saturation point of this inequality is where v = cu for a complex number

c : this is the equivalent statement to v and u being parallel.

We also have the triangle inequality
|u + v | ≤ |u|+ |v |.

This is a geometric statement, and it’s saturated when v and u point in the same direction: that is, we have v = cu

for a real positive constant c .
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So we’ve now gotten to a very important point: we can now define a finite dimensional Hilbert space.

Definition 100

A finite-dimensional Hilbert space is a finite-dimensional vector space equipped with an inner product satisfying

the appropriate axioms.

In the infinite-dimensional Hilbert space case, we actually need to add a more subtle condition: any infinite sequence

of vectors with a limit must converge. (This is the mathematical property of being Cauchy.) Luckily, for this class,

we won’t need to worry about this assumption.

With this, it’s time for us to go back to our basis and basis vectors. It will be convenient for us to pick nice bases

in which computations are simple, and that’s what we’ll quantify right now:

Definition 101

A set of vectors (e1, · · · , en) are orthonormal if

〈ei , ej〉 =

1 i = j

0 i 6= j
= δi j .

A basis of vectors which are orthonormal is an orthonormal basis.

Here, “ortho” comes from “orthogonal,” and “normal” comes from “normalized” – any two vectors are orthogonal,

and each vector has length 1.

The reason orthonormal bases are nice is that we can do certain computations easily: for example,

v = a1e1 + · · ·+ anen =⇒ |v |2 = 〈v , v〉

can be expanded out to

= 〈a1e1 + · · ·+ anen, a1e1 + · · ·+ anen〉.

By homogeneity on the right, we can take out the constants on the right, and similarly we can take out constants

(with conjugate factors) from the left. So our terms will look like

=
∑
i ,j

a∗i aj〈ei , ej 〉,

and the only terms that survive this are where i = j , leading us to a final answer of a∗1a1 + a
∗
2a2 + · · ·+ a∗nan : only

the diagonal terms survive. This is a Pythagorean-like theorem: the length squared is the sum of the squares of the

components if we use an orthonormal basis.

Proposition 102

An orthonormal set of vectors is linearly independent.

Proof. Call the vectors in this set e1, · · · , en. Suppose that we know that

a1e1 + · · ·+ anen = 0.

If this vector is equal to 0, then it must have zero length (by axioms of inner products), and thus the length squared,

a∗1a1 + · · ·+ a∗nan, must be zero. So all of the ai are zero, and indeed the vectors are linearly independent.
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So now if (e1, · · · , en) is an orthonormal basis, we can write any vector as some linear combination v =
∑n

i=1 aiei .

And then notice that

〈ej , v〉 =
n∑
i=1

〈ej , aiei 〉

by linearity, and then everything disappears except the j terms:

=

n∑
i=1

aiδi j = aj .

This means that we can write any vector v as

v =

n∑
i=1

〈ei , v〉ei .

Near the beginning of our discussion of linear algebra, we mentioned that a basis always exists for a finite-dimensional

complex (or real) vector space. And it turns out that we can always get an orthonormal basis as well! This

procedure is very practical – it’s known as the Gram-Schmidt procedure, and it goes as follows:

• Assume we’re given a list of linearly independent vectors (v1, · · · , vn) that span some subspace of V : we’ll

construct an orthonormal basis of that same subspace.

• Pick our first vector by normalizing: we let

e1 =
v1
|v1|

.

(This denominator is not zero, because the zero vector can’t be in a linearly independent set.)

• Pick the second vector by starting with v2 and making it orthogonal to e1: because v1 and v2 are linearly

independent, we can use e2 = v2 + αe1 for some α. To figure out what α should be, note that we want

〈e1, e2〉 = 〈e1, v2〉+ α〈e1, e1〉 = 0 =⇒ α = −〈e1, v2〉.

So we subtract off a bit of e1 – we won’t end up with the zero vector because of linear independence – and then

we just need to normalize our vector by dividing by its length:

e2 =
v2 − 〈e1, v2〉e1
|v2 − 〈e1, v2〉e1|

.

• We can do this inductively as well – we just subtract off a bit of each of e1 through ej−1 when we are creating

our jth vector:

ej =
vj − 〈e1, vj〉e1 − · · · − 〈ej−1, vj〉ej−1
|vj − 〈e1, vj〉e1 − · · · − 〈ej−1, vj〉ej−1|

.

Indeed, we can check that (by construction) this vector is orthogonal to all of the first j − 1 basis vectors, and

it also has length 1.

Again, this is a useful procedure, and we’ll get some practice with it soon!

One other thing we can say about the inner product is that it helps us build subspaces. The concept of orthogonality

is very powerful: for example, the set of vectors orthogonal to a given vector v is a subspace (since the sum of

two vectors orthogonal to v , as well as a scalar multiple of a vector orthogonal to v , are still orthogonal to v).
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Definition 103

Let U be a subset of a vector space V . Then U⊥ is the set of vectors v ∈ V such that 〈v , u〉 = 0 for all u ∈ U.

With this, a natural case to consider is that where U is a subspace. What’s nice is that U and U⊥ then decompose

our full vector space nicely:

Theorem 104

Let U be a subspace of a vector space V . Then we can write V as a direct sum

V = U ⊕ U⊥.

Here, U⊥ is known as the orthogonal complement of U. This might be intuitive to us: for example, the xy -plane

and the z axis together give a decomposition of three-dimensional space.

Proof. Concretely, V = U ⊕U⊥ means that every vector in V can be uniquely written as the sum of a vector in U and

a vector in U⊥.

First, we’ll find a way to write V in this way: let (e1, · · · , en) be a basis for U. We can write any vector v as

v = [〈e1, v〉e1 + · · ·+ 〈en, v〉en] + [v − 〈e1, v〉e1 − · · · − 〈en, v〉en]

(everything trivially cancels on the right hand side except v), but now we claim that we already have a way of

representing v : the first bracket term is in U, and the second bracket term is in U⊥. The first term is clearly in

U, and it’s fairly easy to check that the second term is in U⊥ because it’s orthogonal to all of the basis vectors of U!

Finally, we need to show that U ∩ U⊥ only contains the zero vector, so that our representation is unique. Suppose

that v is in both U and U⊥: then 〈v , v〉 is the product of something in U and something in U⊥, so it must be 0. And

thus v = 0 by our inner product axioms.

So any Hilbert space can be written as a direct sum of a subspace and its orthogonal complement – this result will

be very useful in the future. And this brings us to the final idea from this lecture: orthogonal projectors. We’ll start

with a motivating example: in three dimensions, a vector has an x , y , and z-component. Consider a linear operator

which just preserves the x-component: this would be a projection into the x-direction, which is a one-dimensional

subspace. So we should think of projectors as operators which “forget” some things about our vector.

Let’s think about what this projector looks like: it’s a linear operator, so we can represent it as a matrix. If a vector

has components v = (v1, v2, v3), we have the projector into the x-direction

Px =


1 0 0

0 0 0

0 0 0

 .
(Indeed, we can check that Pxv = (v1, 0, 0), as desired.) Similarly, just having a 1 in the middle will give us Py , and a

1 in the bottom right entry will give us Pz .

We do want to understand these projectors in more detail, though, beyond what its matrix looks like. This is because

we have a measurement postulate in quantum mechanics, where our wave function collapses into an eigenstate when

we measure it: that’s actually a projection operator.

So now we’re ready to state things more generally:
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Definition 105

Let U be a subspace of a vector space V . The orthogonal projector PU is defined as follows: we can uniquely

write any vector v ∈ V as u + w , where w ∈ U and w ∈ U⊥, and then we define PU(v) = u.

As we’ve said already, we keep the part of the vector in U and we throw the rest away. This is a linear operator
– we can check this by explicitly verifying the conditions – and note that we can also view this operator as saying that

PU(u + w) = PU(u) + PU(w) = u + 0.

With this more formal definition, we can start thinking about some more properties: it’s called the orthogonal

projector because it uses the orthogonal decomposition U ⊕ U⊥.

Fact 106

The null space of the linear operator PU is U⊥, because these are the vectors with no component in U.

In particular, if U is not the whole vector space, U⊥ is not just the zero vector, so PU is not injective.

Fact 107

The range of the linear operator PU is U – we can’t get any components outside of U, and any vector u ∈ U is

sent to itself.

Let’s restate this last fact in a slightly different way: for any vector u ∈ U, we have PU(u) = u, and for any vector

w ∈ U⊥, we have PU(w) = 0. So we can write a formula for the action of the projection. Letting (e1, · · · , en) be a

basis for U, we have that

PU(v) = 〈e1, v〉e1 + · · ·+ 〈en, v〉en.

(Notice that we’ve dropped the basis vectors for U⊥ here, because they are killed by PU .) Note also that

PU(PU(v)) = PU(u) = u =⇒ PUPU = PU

because we don’t do anything else to our vector after we project once – we’re already in U after one projection.

Fact 108

However, there are linear operators T with T 2 = T that are not orthogonal projectors – this condition is necessary

but not sufficient.

Proposition 109

For any orthogonal projection PU and vector v ,

|PU(v)| ≤ |v |.

This should be intuitively obvious – we’re losing perpendicular components, so the total length is smaller.

Proof. More rigorously, note that

〈v , v〉 = 〈u + w, u + w〉,
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and now we can expand out by linearity. Since u and w are orthogonal by definition, the cross terms disappear, and

we have

|v |2 = |u|2 + |w |2.

This is the Pythagorean theorem, and now |u| = |PU(v)|, so indeed |v | is at least as large as |u| = |PU(v)|, as

desired.

One final way we can describe this projector is in terms of eigenvalues here, and this story is particularly simple –

we should keep it in mind. Remember that eigenvectors correspond to a specific kind of invariant subspace, and the

most obvious invariant subspace of PU is U itself.

Proposition 110

For an orthogonal projector PU , any vector in U has eigenvalue 1, and any vector in U⊥ has eigenvalue 0.

In particular, if we want to find a basis of eigenvectors, we can just pick the orthonormal basis vectors of U and U⊥.

And notice that we could have predicted this from the start: we know that our operator satisfies the equation P 2U = PU ,

so the eigenvalues must also satisfy that equation: λ2 = λ =⇒ λ ∈ {0, 1}. And in this case, the number of ones
depends on the dimension of U, and to understand that better, we can talk again about the matrix representation.

If we want the matrix where we have V = U ⊕ U⊥, and we have an orthonormal basis of V of the form

(e1, · · · , en, f1, · · · , fk),

where the es are a basis for U and the f s are a basis for U⊥, we can represent this with the (n + k)× (n + k) matrix

PU =



1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...

1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


,

where the top left corner forms an n× n identity matrix and we have zeros everywhere else. (There are k rows and k

columns of all zeros.) This is the representation when our first n vectors are in U – we can check that this gives us

back the components in U.

Of course, this matrix will look different in different bases, but there are a few invariant properties. The trace of

this matrix will be n, which is the dimension of the space U – in such a case, what we have is called a rank n projector.
And its determinant is 0 (unless the projector is the identity projector), because our projection operator is not injective

and therefore not invertible.

We’ll only be discussing orthogonal projectors in this class, and the key thing to remember is that these come out

of a decomposition of a vector space as U ⊕ U⊥. And that gives us all of the nice properties that we’ve been talking

about!

10 February 18, 2020
Today, we’re continuing with matters of linear algebra – there are about three more lectures on this topic. As a

reminder, our second problem set is due on Friday.
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We’ll start by completing an exercise from last time: as a review, let’s look some more at the spin-1/2 model. In

about a week, we’ll talk about bra and ket vectors formally, but we’ll start doing some manipulation of them right now.

If we represent our basis states (spin up and down) via |+〉 =

[
1

0

]
and |−〉 =

[
0

1

]
, we can write a general state as

|ψ〉 = c1 |+〉+ c2 |−〉 =

[
c1

c2

]
.

Bra vectors, on the other hand, are the conjugate transpose: we have 〈+| =
[
1 0

]
and 〈−| =

[
0 1

]
, which tells us

that

〈ψ| = c∗1 〈+|+ c∗2 〈−| =
[
c∗1 c∗2

]
.

One special state is the one where the spin points along some normal vector n⃗: we’ve shown in lectures that

|n⃗〉 = cos
θ

2
|+〉+ sin

θ

2
e iϕ |−〉 .

(This is confirmed via the fact that |n⃗〉 is an eigenvector for our operator S⃗n⃗ = n⃗ · S⃗ = ℏ
2 n⃗ · σ⃗.)

So let’s say we have some object |+〉 〈+|: what exactly is this? We should think of this as an operator: this object

acting on |+〉 gives us

|+〉 〈+| |+〉 = |+〉 · 1,

and acting on |−〉 gives

|+〉 〈+| |−〉 = |+〉 · 0,

because {|+〉 , |−〉} form an orthonormal basis. (It takes some getting used to, because |+〉 and |−〉 seem to point in

opposite directions!) So this tells us the matrix representation: we know how it acts on |+〉 and |−〉, and actually one

shortcut we can take is to just take the matrix representations of |+〉 and 〈+| and multiply them together:

|+〉 〈+| =

[
1

0

] [
1 0

]
=

[
1 0

0 0

]
.

A justification for this is that the individual parts |+〉 and 〈+| are operators of some sort, and writing them next to

each other is essentially defined by multiplication.

Example 111

What is the matrix representation of |n⃗〉 〈n⃗|? (This should be a 2× 2 matrix.)

Much like in the example above, note that

|n⃗〉 〈n⃗| |n⃗〉 = |n⃗〉 ,

while

|n⃗〉 〈n⃗| |−n⃗〉 = 0,

so this is a projection operator onto the vector in the n⃗ direction. But we want to use Pauli matrices to represent this

more explicitly.
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Fact 112

Note that it’s good to know the double-angle identities

sin(2x) = 2 sin x cos x, cos(2x) = cos2 x − sin2 x.

One way to derive these is to use the formula e2ix = e ix · e ix and equate real and imaginary parts.

Here’s the right way to do this problem: note that

|n⃗〉 =

[
cos θ2

sin θ2e
iϕ

]
=⇒ 〈n⃗| =

[
cos θ2 sin θ2e

−iϕ
]
,

So now we do the outer product[
cos θ2

sin θ2e
iϕ

] [
cos θ2 sin θ2e

−iϕ
]
=

[
cos2 θ2 cos θ2 sin

θ
2e
−iϕ

sin θ2 cos
θ
2e
iϕ sin2 θ2

]
.

We want to get to the n⃗ vector, which contains sin θ and cos θ (spherical coordinates), so we need to get rid of these
θ
2s. Using the double angle formulas, we have

cos θ = cos2
θ

2
− sin2

θ

2
= 2 cos2

θ

2
− 1 =⇒ cos2

θ

2
=
1 + cos θ

2
.

A similar calculation gives us sin2 θ2 , and we can also use that cos θ2 sin
θ
2 =

sin θ
2 :

|n⃗〉 〈n⃗| =

[
1+cos θ
2

sin θ
2 e

−iϕ

sin θ
2 e

iϕ 1−cos θ
2

]
.

We can now break this up some more into the components of n⃗, which are nx = sin θ cosϕ, ny = sin θ sinϕ, and

nz = cos θ:

sin θe−iϕ = nx − iny , sin θe iϕ = nx + iny ,

so our operator is actually equal to

1

2

[
1 + nz nx − iny
nx + iny 1− nz

]
=
1

2

(
I + nz

[
1 0

0 −1

]
+ nx

[
0 1

1 0

]
+ ny

[
0 −i
i 0

])
,

which gives us what we want:

|n⃗〉 〈n⃗| =
1

2
(I + n⃗ · σ⃗) ,

where σ⃗ = (σx , σy , σz) contains the three Pauli matrices. Indeed, we can now check that if n⃗ points in the z-direction,

we recover our matrix

[
1 0

0 0

]
.

We’ll now move on to another topic: Taylor series for operators. Is this just a notation for physicists, or is this

actually an object in mathematics? We have the famous equation

e iθ = cos θ + i sin θ,

which we can derive in many ways, but one is to use a series expansion and equate real and imaginary parts of the

Taylor series.

So if we have a matrix M, how can we evaluate the function e iMθ? It probably doesn’t make sense to exponentiate
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each entry – this wouldn’t have nice properties, and it would behave badly. So the best hope we can have is to mimic

the power series ex : this is a definition, and that would just tell us that

e iMθ = I + iMθ −
M2θ2

2
−
M3θ3i

2
+ · · · .

Every term here is a matrix, which is why we turn the 1 at the beginning into an identity matrix. And now this sort of

makes sense: if M is actually a diagonal matrix, then eM is just the matrix with the diagonal entries exponentiating.

But one nice thing to notice here: suppose that our matrix M satisfies M2 = I. (For example, this is true for all

of our Pauli matrices.) Then e iMθ will take on a particularly nice form: we derived e iθ = cos θ + i sin θ solely from the

fact that i2 = −1, and since M also splits up nicely between the odd and even terms, we’ll see (on our homework)

that this gives something pretty clean as well, because (iM)2 = −I is the negative identity matrix.

If we’re in two dimensions, things are even nicer: specifically, it’s nice to look at e iM when M is a Hermitian matrix.

Consider an object like

e i a⃗·σ⃗.

We can rewrite this by factoring out the length of a⃗:

= e i(â·σ⃗)|a⃗|.

and it turns out (â · σ⃗)2 = I (this takes a few lines, but it’s not too bad to show), and then we can use the same

“Euler’s identity” expansion. This yields

e i a⃗·σ⃗ = cos |a⃗|+ i(â · σ⃗) sin |a⃗|.

Our final topic for today will be that of inner products, which are an object that we often have to invent. We

usually need to make a definition that satisfies a set of axioms, and here’s an example where that definition may not

be so obvious.

Example 113

Let V = Mn(C) be the vector space of N × N complex-valued matrices: how can we define an inner product?

We know that if we multiply any matrix A (which is a vector in our vector space V ) by a complex number a, then

we just multiply all of the entries by a. So we need to define the quantity 〈A,B〉 in a way that satisfies all of the

axioms: it must be linear on the right entry and antilinear on the left entry, it must be positive definite, and so on.

The most difficult part of this is that 〈A,A〉 has to be some nonnegative real number, so something silly like

〈A,B〉 = A13B57 isn’t going to work. Remember that we have two “machines” that give us numbers out of matrices:

the determinant and the trace. Maybe we want something like

〈A,B〉 = det(AB),

but this is bad – remember that the determinant grows by an if we multiply A by a. Luckily, the trace is much better

– it scales by the right amount, and if we didn’t know anything, we might want to say that we take the squared

magnitude of all entries and add them all up. What’s great is that if the norm is 0, the matrix has to be 0, so we must

be almost correct. So here’s the real answer we’re going for:

〈A,B〉 = tr(A†B).

We can verify that this does give us exactly what we want!

57



11 Linear Algebra – Vector Spaces and Operators, Part 4
Today, we’ll develop the concept of an adjoint or Hermitian conjugate operator. This is a bit subtle, but we’ll work

towards its slowly! To get started, we’ll need a bit of background first.

Definition 114

A linear functional on a vector space V is a linear map ϕ from V to F.

Since this map is linear, we know that

ϕ(v1) + ϕ(v2) = ϕ(v1 + v2), ϕ(av) = aϕ(v),

where both of these are equalities of numbers in our field.

Example 115

A linear functional on R3 can take (x1, x2, x3) to the number 3x1 − x2 + 7x3.

We can also write this in vector notation if we have a (real) inner product:

ϕ(v) = ϕ(v1, v2, v3) = (3,−1, 7) · (v1, v2, v3) = 〈u, v〉,

where u is the vector (3, 1,−7). So what we’ve done with the inner product is extract some vector u out of the linear

functional which “defines” ϕ, and this turns out to be true in general!

Theorem 116

Any linear functional ϕ on a vector space V can be uniquely represented as ϕ(v) = 〈u, v〉 for some vector u ∈ V
(and we denote the functional ϕu).

Proof. We’ll assume V is finite-dimensional. Then let (e1, · · · , en) be an orthonormal basis of V , and we can write

any vector v as

v = 〈e1, v〉e1 + · · ·+ 〈en, v〉en.

Then applying v and using linearity,

ϕ(v) = 〈e1, v〉ϕ(e1) + · · ·+ 〈en, v〉ϕ(en)

(because the inner products here are just numbers and can come out of the ϕ). But now we can bring ϕ(e1), which

is a number, into the inner product:

ϕ(v) + 〈e1ϕ(e1)∗, v〉+ · · ·+ 〈enϕ(en)∗, v〉 = 〈e1ϕ(e1)∗ + · · ·+ enϕ(en)∗, v〉 ,

where we are plugging the constants into the left term so we need to add conjguates. But now this last term is just

an inner product, and we can take u = e1ϕ(e1)∗ + · · ·+ enϕ(en)∗.
Uniqueness is pretty easy: suppose we could write ϕ(v) = 〈u, v〉 = 〈u′, v〉. Then subtracting the two expressions

and using linearity, we must have 〈u − u′, v〉 = 0 for all v , which means u − u′ = 0 (for instance by plugging in

v = u − u′).
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Like with many other proofs, the central idea here is just that we know how the linear map acts on each of the

basis vectors, and then we can determine everything directly.

With that, we can now define the adjoint (physicists use “Hermitian conjugate”, which is more pictorial). This will

be related to the concept of a Hermitian matrix, if we’ve seen that in linear algebra before.

Definition 117

The adjoint or Hermitian conjugate of an operator T ∈ L(V ) is denoted T †, and it is a map satisfying

〈u, T v〉 = 〈= 〈T †u, v〉.

To show that this is actually well-defined, note that 〈u, T v〉 is a linear functional (we can check the linearity axioms

because T is a linear map), so there is some vector u′ such that it is equal to 〈u′, v〉, and here we’re defining T †u = u′.

Now we know that T † is some map from V to V , but we don’t really know that it’s linear yet!

Proposition 118

T † ∈ L(V ) for any linear operator T .

Proof. Notice that

〈u1 + u2, T v〉 = 〈T †(u1 + u2), v〉

by definition, but we also have

〈u1 + u2, T v〉 = 〈u1, T v〉+ 〈u2, T v〉 = 〈T †u1, v〉+ 〈T †u2, v〉 = 〈T †u1 + T †u2, v〉 .

Comparing the two boxed statements shows that we do indeed have T †(u1 + u2) + T †u1 + T †u2. Similarly,

〈au, T v〉 = 〈 T †(au), v〉 ,

but we also have

〈au, T v〉 = a∗〈u, T v〉 = a∗〈T †u, v〉 = 〈aT †u, v〉 ,

and thus T †(au) = aT †u and we’ve verified both linearity conditions.

So T † is doing all of the right things, but we still don’t really know what it’s doing. So we’ll show some more

properties and do some more examples.

Proposition 119

For any two linear operators S, T , we have (ST )† = T †S†.

Proof. This is some more symbol pushing:

〈(ST )†u, v〉 = 〈u, STv〉 = 〈S†u, T v〉 = 〈T †S†u, v〉.

Proposition 120

For any linear operator S, (S†)† = S.
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Proof. Notice that

〈u, S†v〉 = 〈S††u, v〉 ,

but we can also flip the order of our arguments:

〈u, S†v〉 = 〈S†v , u〉∗ = 〈v , Su〉∗ = 〈Su, v〉 ,

and equating the boxed statements gives us what we want.

Example 121

Suppose our vector space is V = C3, where we represent our vectors as (v1, v2, v3). Suppose we have the linear

map

T (v1, v2, v3) = (0v1 + 2v2 + iv3, v1 − iv2 + 0v3, 3iv1 + v2 + 7v3).

(where we’ve written out the linear operator in components).

Our goal will be to find T † and to write the matrix representations for both T and T † in the standard basis (that

is, with the three basis vectors


1

0

0

 ,

0

1

0

, and


0

0

1

).

We’ll find T † by using the basic property 〈u, T v〉 = 〈T †u, v〉. We’ll first compute the left side: letting u =

(u1, u2, u3), and implicitly using the standard inner product 〈u, v〉 = u∗1v1 + u∗2v2 + u∗3v3, we have

〈u, T v〉 = u∗1(2v2 + iv3) + u∗2(v1 − iv2) + u∗3(3iv1 + v2 + 7v3).

Since we want to set this equal to the inner product of (something) with v , we can rewrite this so that we separate
the v -components. Collecting terms, we see that

〈u, T v〉 = (u∗2 + 3iu∗3)v1 + (2u∗1 − iu∗2 + u∗3)v2 + (iu∗1 + 7u∗3)v3.

Since this is the inner product of the vector T †u with v , we must have that the components of T †u are

T †u = (u2 − 3iu3, 2u1 + iu2 + u3,−iu1 + 7u3),

remembering that we need to complex conjugate each entry, so is become −is and we lose all of the conjugates on

our uis!

It’s pretty important for us to understand how to get the matrices out of this – we’ll do a bit of the work here.

First of all, let’s do T : we have

Te1 = T (1, 0, 0) = (0, 1, 3i) = e2 + 3ie3,

and because Tei is supposed to be
∑

k Tkiek , this means that T11 = 0, T21 = 1, T31 = 3i . (In other words, Te1 gives

us the first column.) Repeating this argument, we see that

T =


0 2 i

1 −i 0
3i 1 7

 .
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And finding T † is exactly the same process – we find that

T † =


0 1 −3i
2 i 1

−i 0 7

 .
And now notice that these two matrices are Hermitian conjugates of each other: we get one from the other by

taking the transpose and complex conjugate! And this is not an accident – let’s try to get that more generally.

We know by definition that we always have

〈T †u, v〉 = 〈u, T v〉.

Suppose that u = ei and v = ej are two elements of our orthonormal basis. This tells us that

〈T †ei , ej〉 = 〈ei , T ej〉,

and now we can use the matrix action: since T †ei =
∑

k T
†
kiek (this is an equation worth knowing by heart), the left

and right hand side will become 〈∑
k

T †kiek , ej

〉
=

〈
ei ,
∑
k

Tkjek

〉
.

Now we use orthonormality: the matrix terms are just numbers, so(
T †ki

)∗
δkj = Tkjδik

where the complex conjugate comes from us taking the number out from the left entry. And now the left side is (T †j i)
∗,

and the right side is Ti j , and flipping indices and taking complex conjugates tells us that

T †i j = (Tj i)
∗.

And now we’ve proved it: the (i , j)th entry of the matrix T † comes from the transposed entry in T after taking a

complex conjugate!

Fact 122

Notice that this only worked because we have an orthonormal basis – in other matrix representations, the Hermitian

conjugate will not always be orthonormal! Instead of having that δi j term above on both sides, we’ll now get some

ugly number 〈ei , ej〉 = gi j . And then we have

(T †ki)
∗gkj = Tkjgik ,

where we’re summing over k on both sides, and now we don’t have something quite as nice anymore. But if the

matrix of gi js is at least invertible, we can take the inverse matrix on both sides, and then we get a formula for

T † in terms of g and its inverse and matrix multiplication.

The key point here is that the Hermitian conjugate has a basis-independent definition: it’s not the conjugate

transpose in all bases, so it’s better to use the definition with the inner product above!

We’re now ready for a nice result which is only true in complex vector spaces:
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Theorem 123

Let V be a complex inner product space. Then if 〈v , T v〉 = 0 for all vectors v , then T = 0.

This is not true in real vector spaces: for example, take V = R2 and let T be the operator that rotates us by 90

degrees. Then indeed v and Tv are always orthogonal, so 〈v , T v〉 = 0. So this is another reason why complex vector

spaces are nice, and we’ll be using this result soon!

Proof. It seems at first sight that this will be a difficult proof – we need something that distinguishes real and complex

vector spaces. Our strategy will be to prove that 〈u, T v〉 = 0 for all vectors u, v in V , which is stronger because we

have different vectors on the left and right. Then we can set u = Tv for each v , and that means Tv must always be

zero by the inner product axioms!

To prove such a thing (which does require a leap of faith), the idea is to rewrite 〈u, T v〉 as a combination of

〈w,w〉s. First, we can try

〈u + v , T (u + v)〉 − 〈u − v , T (u − v)〉 ,

and remember that by theorem assumption, both of these must always be zero. Evaluating by expanding cancels the

〈u, Tu〉 and 〈v , T v〉 terms, but we get cross terms of twice each of 〈u, T v〉 and 〈v , Tu〉. So now we introduce the

complex numbers: we try adding in

+〈u + iv , T (u + iv)〉 − 〈u − iv , T (u − iv)〉 .

Again, the terms 〈u, T (u)〉 and 〈iv , T (iv)〉 cancel out, but the cross terms this time are twice each of i〈u, T v〉 and

−i〈v , Tu〉 (the negative sign because of conjugate homogeneity). But now we have a relative negative sign, and now

we can put everything together: it turns out that

〈u, T v〉 =
1

4

(
〈u + v , T (u + v)〉 − 〈u − v , T (u − v)〉+

1

i
〈u + iv , T (u + iv)〉 −

1

i
〈u − iv , T (u − iv)〉

)
.

Indeed, this gives us four terms of 〈u, T v〉 and zero terms of 〈v , Tu〉 inside the parentheses! But by theorem assumption,

the whole right side is always zero, so we’ve indeed shown 〈u, T v〉 = 0 and thus T = 0, as desired.

Let’s come up with an application for this:

Proposition 124

If 〈v , T v〉 is real for all v , then T † = T (the operator is Hermitian or self-adjoint).

Proof. Since this quantity 〈v , T v〉 is real, we know it’s also equal to 〈v , T v〉∗, and thus this is equal to 〈Tv, v〉. But

by the definition of the adjoint, 〈v , T v〉 = 〈T †v , v〉, and thus

〈Tv, v〉 = 〈T †v , v〉 =⇒ 〈(T † − T )v , v〉 = 0

for all vectors v . Alternatively, this means 〈v , (T †−T )v〉 = 0, and now using the above theorem, it means T †−T = 0,
so T † = T .

And this theorem actually goes both ways: the reverse direction is pretty easy to show. What’s important here is

that having a Hermitian operator is the same as saying that 〈v , T v〉, the expectation value of T , is always real. And

that is important because we want to eventually get back to physics!
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We’ll delay a discussion of diagonalization until next lecture – we’ll first prove some basic properties of these

Hermitian operators.

Proposition 125

Eigenvalues of a Hermitian operator are real.

Proof. Start with 〈v , T v〉 . Suppose that v is an eigenvector of T with eigenvalue λ: then Tv = λv , so

〈v , T v〉 = 〈v , λv〉 = λ〈v , v〉 .

But we can also move the T to the other side:

〈v , T v〉 = 〈T †v , v〉 = 〈Tv, v〉

(because T is Hermitian), and then this simplifies to

= 〈λv, v〉 = λ∗〈v , v〉 .

Equating these two expressions, since v is an eigenvector, we can assume it is nonzero, so 〈v , v〉 6= 0. Dividing that

out yields λ = λ∗, and thus λ must be real, as desired.

Proposition 126

Eigenvectors of a Hermitian operator with different eigenvalues are orthogonal.

Proof. Suppose we have two eigenvectors v1, v2 with eigenvalues λ1, λ2 respectively. We’re assuming λ1 6= λ2; the

idea is that we might get degeneracies where higher-dimensional subspaces all have the same eigenvalue. (In that case,

every eigenvector in the subspace with some fixed eigenvalue is orthogonal to every eigenvector in another subspace

with a different fixed eigenvalue!)

We’ll consider the inner product 〈v1, T v2〉. We can evaluate this in two ways: first of all,

〈v1, T v2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉 ,

but we also have that

〈v1, T v2〉 = 〈Tv1, v2〉 = 〈λ1v1, v2〉 = λ1〈v1, v2〉

because our eigenvalues are already real. Since these expressions are equal and λ1 and λ2 are different, this means

〈v1, v2〉 = 0 as desired.

Aside from the class of Hermitian operators, there’s also another class that are as important: unitary operators.
Mathematicians say that such operators are an isometry: they preserve length, which means that

|Su| = |u|

for any vector u ∈ V .
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Example 127

Consider the operator T = λI, which multiplies any vector by λ. If |λ| = 1, lengths are preserved, and we have

an isometry (which is just a rotation in the complex plane). This is because

|Tu| = |λIu| = |λ||u| = |u|.

Notice that any unitary operator S only sends the zero vector to zero, because lengths are preserved! And this

means that the null space of S is trivial, and therefore S is actually invertible.

But to make more progress, let’s work with the equations a little bit more:

|Su| = |u| =⇒ 〈Su, Su〉 = 〈u, u〉.

We can move the S from one side to another and pick up a dagger:

〈u, S†Su〉 = 〈u, u〉 =⇒ 〈u, (S†S − I)u〉 = 0.

Since this is true for all u, we can use our favorite theorem above to find that S†S = I. As a nice property, notice

that this tells us that

〈u, v〉 = 〈u, S†Sv〉 = 〈Su, Sv〉 .

And now we have a way to define unitary operators formally:

Definition 128

An operator U is unitary if U−1 = U†.

(We’ll assume that being an inverse from the left is the same as being an inverse from the right.) Because of the

boxed equation above, this unitary operator preserves the inner product, not just the norms of vectors!

It turns out that unitary operators have particular significance for bases: suppose we have an orthonormal basis

(e1, · · · , en). Then defining the basis

fi = Uei , U unitary,

notice that

〈fi , fj〉 = 〈Uei , Uej〉 = 〈ei , ej〉 = δi j ,

so our new basis is actually orthonormal as well! And playing a bit more with some indices, we can find that the entries

of the unitary matrix

Uki = 〈ek , Uei 〉

can also be written in the f basis:

U
(f )
ki = 〈fk , Ufi 〉 = 〈Uek , Ufi 〉 = 〈ek , fi 〉 = 〈ek , Uei 〉,

which is exactly the same expression! And this means that a unitary operator looks the same in both orthonormal
bases.
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12 February 19, 2020
We’ll start by wrapping up our discussion from last time – at the end, we were trying to define an inner product on

the space of matrices MN(C)
〈A,B〉 = tr(A†B).

To see what this actually is, we can write it out in index notation: we’re summing over all diagonal entries

=
∑
j

(A†B)j j ,

and then the matrix multiplication is another sum

=
∑
j

∑
i

(A+)j iBi j .

Fact 129

It’s good to know how to write out matrix multiplication in index notation: in general,

(A1A2)i j =
∑
k

(A1)ik(A2)kj .

(This is because we’re dotting a row with a column, so the first index should be fixed for the first matrix and the

second index should be fixed for the second matrix.)

As will be discussed (or was discussed in the lecture videos), we have (A+)j i = A∗i j if we’re using an orthonormal

basis (which we’ll assume exists – we’ll prove this later). And now we have the definition of this inner product in plain

English:

=
∑
i j

A∗i jBi j .

Basically, we just take the corresponding elements in the two matrices and multiply them component-wise (with a

conjugate)! This means that

〈A,A〉 =
∑
i j

|Ai j |2

is only zero if all the entries are zero, which is what we want.

It may be convenient to add an extra factor in front when we’re using M2(C): if we define 〈A,B〉 = 1
2 tr(A

†B),

then

〈σ1, σ1〉 = |σ1|2 =
1

2
tr(σ†1σ1) =

1

2
tr(σ21) =

1

2
tr(I) = 1.

(We’ve used here that the Pauli matrices are Hermitian.) And now if we have a general linear combination A =

a1σ1 + a2σ2 + a3σ3, we have that

|A|2 = 〈A,A〉 =
∑
1≤i ,j≤3

a∗i aj〈σi , σj〉.

(We don’t need to take the Hermitian conjugate of the σis, because they are already Hermitian.) Under this basis, we

can check that the σis form an orthonormal basis – for example, because σiσj = δi j I + iεi jkσk – and thus we only get

nonzero contribution from i = j , and we have

|A|2 = |a1|2 + |a2|2 + |a3|2 =⇒ |A| =
√
|a1|2 + |a2|2 + |a3|2.
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Remark 130. It’s okay to put a number like 12 in front in the definition of our inner product, because there isn’t any

physical interpretation of this “length” that we’ve defined yet. And it’s just useful to give us this particular form of the

answer – it’s not directly observable! We’re basically picking our units here.

Let’s talk a bit more about matrix representations – there’s a few different ways they can come up. Suppose that

we’re working in three dimensions: then we can write any vector in terms of the basis vectors

v = v1e1 + v2e2 + v3e3 = (v1, v2, v3).

Sometimes, we’re told what form a matrix takes based on what it does to the basis vectors: for example,

Te1 = a1e1 + b1e2 + c1e3

Te2 = a2e1 + b2e2 + c2e3

Te3 = a3e1 + b3e2 + c3e3.

Then how does this matrix look? Well, the image of e1 is the first column of our matrix (we can check this by

multiplying our matrix with


1

0

0

), so

T =


a1 a2 a3

b1 b2 b3

c1 c2 c3

 .
But there’s another way that we often might see T represented: perhaps we’re told that a vector v has three

components (v1, v2, v3), and then the new three components are

T (v1, v2, v3) = (a1v1 + a2v2 + a3v3, b1v1 + b2v2 + b3v3, c1v1 + c2v2 + c3v3).

Then the matrix looks identical, but notice that our coefficients have been relabeled. This means that acting on the

components gives us the rows instead of the columns (because we need a1, a2, a3 to be dotted with v1, v2, v3). So we

should try not to confuse these two different perspectives!

One last note about unitary operators: the definition of a unitary operator S is that for all vectors v ,

|Sv | = |v | =⇒ 〈Sv, Sv〉 = 〈v , v〉.

Basically, if we have two S’s, we can delete them. And alternatively, we can move one of the S’s over to the other

side, which shows us that

〈v , S†Sv〉 = 〈v , v〉 =⇒ 〈v , (S†S − I)v〉 = 0.

One important result for complex vector spaces:

Proposition 131

If a linear operator T satisfies 〈v , T v〉 = 0 for all vectors v in a complex vector space, then T = 0.

The result here is particularly interesting because it’s not true in real vector spaces! (For example, consider R2 and

the operator T which rotates everything by 90 degrees.)

This means that for any unitary operator,

S†S − I = 0 =⇒ S†S = I.
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We’re working with finite-dimensional vector spaces here, so S† being a left inverse also means that it is also a

right inverse. And this is a nice property to have!

Now, we’ll turn our attention to some of the exercise problems.

Example 132

Suppose e1, e2 form an basis that is not orthonormal: for example, say that

〈e1, e1〉 = 1, 〈e2, e2〉 = b, 〈e1, e2〉 = 0.

For example, say that we have an operator T which satisfies

Te1 = ei + ie2, T e2 = e1 − e2.

Then what can we say about the matrix representation of T †, the adjoint operator?

In an orthonormal basis, the adjoint operator T † has a matrix representation which is just the Hermitian conjugate

of the original. But that’s not quite true here, and we need to work through things again.

Remember that we define the adjoint operator in a basis-independent way: we say that

〈Tu, v〉 = 〈u, T †v〉.

Let’s represent our operators in matrix form though: for example,

T =

[
1 1

i −1

]
.

We can compute things by taking specific values of u and v : for example,

〈Te2, e2〉 = 〈e1 − e2, e2〉 = −b,

but this is also equal to 〈e2, T †e2〉. So that tells us something about one of the entries of T †: we can work things

through, and we’ll see that some extra b terms come through.

Finally, let’s talk a bit about projectors. Suppose we have a vector space V , and we have a subspace U: define

U⊥ = {u′ : 〈u, u′〉 = 0 ∀u ∈ U}.

Basically, any vector in U is perpendicular to any vector in U⊥.

Theorem 133

We can write V as the direct sum

V = U ⊕ U⊥.

To show this, we just need to write down how to break it up into its components in U and U⊥. Assume that

(e1, · · · , en) is a basis in U: first we can rewrite

v = 〈e1, v〉+ · · ·+ 〈en, v〉en + v − 〈e1, v〉 − · · · − 〈en, v〉en.

Now the first sum up to 〈en, v〉en belongs to U, but the remaining part v − 〈e1, v〉 − · · · − 〈en, v〉en is orthogonal to

all basis vectors e1, · · · , en, so it is in U⊥! And the rest of the theorem follows by showing that this decomposition is

unique because U and U⊥ share only the zero vector.
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This allows us to define the projector onto u

Pu(v) = 〈e1, v〉+ · · ·+ 〈en, v〉en.

This says a few things that are actually important:

Pu(e1) = 〈e1, e1〉e1 = e1,

and this is true for all basis vectors. So Pu acts as the identity on U (which makes sense, because we’re just “projecting

down” to it).

On the other hand, say we have a w ∈ U⊥. Then Pu(w) = 0 is the zero vector, because 〈ei , w〉 = 0 for all i . And

with this, we can figure out all of the behavior of Pu! For example,

PuPu(v) = Pu(v),

because the vector Pu(v) is in U and thus it is fixed by the second Pu. And thus the operator PuPu = Pu, which is an

interesting property to have. It’s not true that any operator with this property is an orthogonal projector, but we can

still say something in general: we know that the eigenvalues must satisfy λ2 = λ =⇒ λ = 1, 0 – this means there are

a lot of repeated eigenvalues! And it’s pretty clear what’s happening to the eigenvectors in an orthogonal projector,

too: the vectors in U have λ = 1, and the vectors in U⊥ have λ = 0. The matrix representation in our specific basis

is then (in block form) [
I 0

0 0

]
where I is an identity matrix of size equal to the dimension of U. And that number is also equal to the trace of Pu,

as well as its rank.

13 Dirac’s Bra and Ket Notation
Dirac bra-kets are a notation that is pretty nice for quantum mechanics – it’s very convenient for some physics

problems, but it’s just another way of writing mathematics. We’ll need to take two steps: going from inner

products to bra-kets, and going from bra-kets to bras and kets.

The first of these steps is just a change of notation: instead of denoting an inner product as 〈u, v〉, we’ll denote

it 〈u|v〉. (Basically, we put a vertical bar instead of a comma.) This is called a bra-ket, and recall that these two

objects u and v inside the bra-ket are inside our vector space.

So things aren’t too complicated here, but we can still try doing some practice:

Example 134

By linearity, we know that 〈u, c1v1 + c2v2〉 = c1〈u, v1〉+ c2〈u, v2〉. This becomes

〈u|c1v1 + c2v2〉 = c1 〈u|v1〉+ c2 〈u|v2〉 .

Conjugate homogeneity gives us different constants on the left:

〈c1u1 + c2u2|v〉 = c∗1 〈u1|v〉+ c∗2 〈u2|v〉 .
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Example 135

We can write that the norm of a vector is |v |2 = 〈v |v〉, and now the Schwarz inequality reads | 〈u|v〉 | ≤ |u||v |.

Example 136

In an orthonormal basis (in other words, a basis wehre 〈ei |ej〉 = δi j), we can write an arbitrary vector v as

v =
∑
i

ei 〈ei |v〉 .

Again, there isn’t really much that’s new here – we’re just getting used to a slightly different notation. So let’s

move on to the second part: going from bra-kets to kets and bras. The idea this time is that we want to go from an

inner product to two separate quantities: we’ll spread the object 〈u|v〉 apart to get two objects 〈u| and |v〉, called a

bra and ket respectively.

We’ll start with the kets: these turn out to just be regular vectors. If we have a vector v in our vector space V ,

then we’ll just say that |v〉 is also in that same vector space – the meaning isn’t changing here. So the ket symbol is

kind of like putting an arrow above the letter v : it tells us that we have a vector. And importantly, sometimes we
use different labels which represent properties of the vector instead of the vector itself.

To explain this a bit more, suppose we have a linear operator T acting on a vector v = |v〉. Then we can say that

T |v〉 = |Tv〉: everything is consistent here because all of our labels are regular vectors. But in contrast, consider our

spin states, which we often label |+〉 , |−〉 , |n⃗,+〉, and so on – these labels + and − have nothing to do with the vector

space themselves, so we cannot say that Sx |+〉 = |Sx+〉: Sx acts on the ket vector represented by the + state, but

it can’t act on + itself.

Other than that, though, ket vectors are familiar – they are the usual objects in our vector space. So it just remains

to understand what bras are – recall that we introduced the concept of a linear functional ϕ, which acts on vectors

and gives us numbers. We proved that for every ϕ, we could find a unique vector u in our vector space such that

ϕ(v) = 〈u, v〉. And we even called these functionals ϕu – remember that these form their own vector space, because

they can be added or scaled by constants. So these form some vector space V ∗, called the dual vector space of V .

Notice that this space V ∗ is parameterized by vectors u ∈ V , so it actually has the same dimension as V .

But notice that a bra acts in the same way as one of these linear functionals: a bra 〈u| is labeled by a vector, just

like a linear functional, and it can act on a vector v as well:

〈u| v = 〈u|v〉 .

So let’s just make that our definition: the bra vector 〈u| is the linear functional ϕu.
We can now switch over to a matrix formulation and try to understand bras and kets as row and column vectors,

respectively. Remember that the inner product between two vectors a =

a1... an

 and b =

b1... bn

 is

〈a|b〉 = a∗1b1 + · · ·+ a∗nbn.

But notice that this also works if we think of 〈a| as the row vector (a∗1, · · · , a∗n): then indeed we have matrix multipli-

cation [
a∗1 · · · a∗n

]
b1
...

bn

 ,
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which gives us a single number equal to the inner product 〈a|b〉. So it’s easy to construct a bra row vector: take the

column vector, map it into a row, and take the complex conjugate of all entries.

Note, by the way, that our bra vectors have pretty nice properties (because they are secretly still linear functionals):

for example,

〈u|v〉 = 〈u′|v〉 ∀v ∈ V

implies that u = u′, so 〈u| = 〈u′|. (To prove this, note that the equation can be rewritten as

〈u − u′|v〉 = 0 =⇒ 〈u − u′|u − u′〉 = 0 =⇒ u − u′ = 0.

So now it makes sense to add bra vectors: since

〈v1 + v2|u〉 = 〈v1|u〉+ 〈v2|u〉 = (〈v1|+ 〈v2|) |u〉 ,

for any vector u, we know that 〈v1 + v2| = 〈v1|+ 〈v2|. Similarly, for any a ∈ C, we know that

〈av |u〉 = a∗ 〈v | u = (a∗ 〈v |)u,

which means that the bra 〈av | is also just a∗ 〈v |. What we’ve just derived are properties of linear functionals, and one

related idea is that we often want to turn such a bra into a ket. For instance, if we have v = a1v1 + a2v2, we can say

that

|v〉 = |a1v1 + a2v2〉 a1 |v1〉+ a2 |v2〉 ,

but the dual space bra is slightly more complicated:

〈v | = 〈a1v1 + a2v2| = a∗1 〈v1|+ a∗2 〈v2| .

So passing from a ket to a bra can be done by complex conjugating every coefficient and turning every ket vector into

a bra vector!

And now we can put everything back together: recall from earlier that in an orthonormal basis, we can write any

vector as v =
∑

i ei 〈ei |v〉. We’ll change our notation a little bit: the ket vector |ei 〉 will just be written as |i〉 (so

we’re using the label instead of the vector itself, and this way we can write less). And now we find (in bra-ket notation)

that

|v〉 =
∑
i

|i〉 〈i |v〉 ,

and we’ll soon see the significance of writing our expressions in this way.

Up until now, everything has just been changing notation, but once we introduce operators in bra-ket notation,

we’ll see the properties work out more practically. Recall that in an orthonormal basis, an easy way to get the matrix

coefficients is to find

Ti j = 〈ei , T ej〉.

The indices match easily (so this formula is easy to remember) – if we want to remember how to prove it, note that

Tej = Tkjek summed over k , and then we use orthonormality. But now we can rewrite this in bra-ket notation:

Ti j = 〈ei |Tej〉 = 〈ei |T |ej 〉

(remembering that this is the meaning of |Tej〉), and now we can just label our bra and ket basis vectors with numbers:

we have

Ti j = 〈i |T |j〉 .
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And what’s nice about this is that we can now write the entire operator as a sum:

Proposition 137

For any operator T , we can write

T =
∑
i ,j

|i〉Ti j 〈j | .

Here, the Ti j is just a number – we put it in the middle to be convenient, but it doesn’t really act on the ket or

bra vector here. An important point – an object of the form |u〉 〈v |, where the ket and bra seem to be in the wrong

direction, is an operator. After all, feeding in any vector |w〉 will give us

|u〉 〈v | |w〉 = 〈v |w〉 · |u〉 ,

which is another vector. Here’s where the Dirac notation is helping us out – we can basically just “move bras and kets

close to each other!” And in the proposition above, we’re just summing various operators.

Proof. It suffices to calculate 〈p|T |q〉 for all numbers p, q, and show that this quantity is indeed equal to Tpq.

Plugging in the operator above, we get (moving the 〈p| inside the sum)∑
i ,j

〈p| |i〉Ti j 〈j | |q〉 ,

and now we can let the outside objects become bra-kets:

=
∑
i ,j

δpiTi jδjq,

since we have an orthonormal basis. And this is only nonzero if i = p and j = q, which indeed gives us Tpq as

desired.

Another way to think of this is that each term |i〉Ti j 〈j | corresponds to the (i , j)th entry of the matrix. So each of

these terms is an individual entry, and the object |i〉 〈j | is the matrix with a 1 in the (i , j)th place and zeros everywhere

else. This presentation will be important to keep in mind going forward.

Example 138

Consider the operator |m〉 〈m|.

Applying this operator to any vector |v〉 will give us an object proportional to |m〉, so this projects down to the

subspace spanned by |m〉. If we call this operator Pm, notice that we also have the nice property

P 2m = |m〉 〈m| |m〉 〈m|

and the inner two terms just evaluate to 1 by orthonormality, so this is

= |m〉 〈m| = Pm.

In particular, the matrix representation of this operator is a diagonal matrix with a single 1, so this has trace 1 – it’s

a rank one projector. Similarly, the object

Pmn = |m〉 〈m|+ |n〉 〈n|
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is a rank two projector, because it will give something proportional to |m〉 plus something proportional to |n〉. (This

has two ones in the matrix representation, so the trace is 2.) But if we repeat this logic, eventually we get to the

point where we go through all states: the operator

|1〉 〈1|+ · · ·+ |N〉 〈N|

is just a diagonal matrix with a 1 on every diagonal entry – thus, we’ve found the identity matrix! So this is an

important property:

Proposition 139

If |i〉 index an orthonormal basis, then ∑
i

|i〉 〈i | = I.

This is a completeness relation, and it might actually look familiar: recall that we wrote an arbitrary vector as

v =
∑
i

|i〉 〈i |v〉 .

Even though the interpretation of this is that v is the sum of numbers 〈i |v〉 times basis vectors |i〉, we can also think

of the right hand side as the identity operator acting on v ! So ambiguity of notation actually leads to nontrivial

mathematical results here.

Fact 140

Often, we’ll simplify an expression by introducing this “complete set of states.” We should keep this in mind when

we’re working through problems!

Example 141

Recall the two-dimensional vector space of spin states: since we have |+〉 =

[
1

0

]
and |−〉 =

[
0

1

]
, we should have

I = |+〉 〈+|+ |−〉 〈−| .

Indeed, writing things out in vector form, we have[
1

0

] [
1 0

]
+

[
0

1

]
+
[
0 1

]
=

[
1 0

0 0

]
+

[
0 0

0 1

]
,

which is indeed the identity matrix.

The last basic mathematical idea we’ll talk about is that of the adjoint operator. Recall that the defining property

for an adjoint T † is that

〈T †u, v〉 = 〈u, T v〉 =⇒
〈
T †u

∣∣v〉 = 〈u|Tv〉 .
We can simplify the left hand side by flipping the arguments and taking a complex conjugate: this equation then

simplifies to 〈
v
∣∣T †u〉∗ = 〈u|T |v〉 =⇒ 〈v |T † |u〉∗ = 〈u|T |v〉 ,

and now taking another complex conjugate tells us the defining bra-ket relation for adjoint operators:

〈v |T † |u〉 = 〈u|T |v〉∗ .
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This is useful, because it tells us what we derived earlier: to find the matrix elements of T †, we take the matrix

elements of T , flipping the row and column, and complex conjugate them! Notably, if we look at the right side of this

equation, we can rewrite it as

〈u|Tv〉∗ = 〈Tv |u〉 .

And now we can delete the us on both sides to conclude that

〈Tv | = 〈v |T † .

This is another property of bra vectors, and in this case notice that the corresponding ket vector Tv is |Tv〉 = T |v〉.

Fact 142

In other words, to get the associated bra of T |v〉, we flip the whole object around, remembering to take the

adjoint of T as well.

In this notation, the Hermitian operators still satisfy T † = T , so we have

〈Tu|v〉 = 〈u|Tv〉 ,

which means that we can move a Hermitian operator between bras and kets freely.

Proposition 143

If T = |u〉 〈v |, then T † = |v〉 〈u|.

(This is an exercise that we can check on our own.)

Now that we understand the flexibility of this notation (we can always go back to the conventional definitions of

inner products and linear functions), we’re ready to bring in the physics again with position and momentum states
and the x̂ and p̂ operators, with the idea of a non-denumerable basis. (Everyone likes to use Dirac notation here,

because it helps avoid confusion between similar objects.)

The vector space we’re talking about here is the state space, and we’re going to introduce position states that

look like |x〉. Intuitively, this corresponds to a particle at the position x , and now we have to be careful. For example,

|ax〉 6= a |x〉 ,

because the left hand side represents a particle at the coordinate position ax , while the right hand side represents a

particle at the coordinate position x , but where the wavefunction has a different amplitude! Similarly, |−x〉 6= − |x〉,
and |x1 + x2〉 6= |x1〉+|x2〉 – the fundamental reason for the confusion here is that we’re labeling with x , but our vectors

aren’t that directly connected to the x ’s – they’re wavefunctions! As another way to think about this, suppose we

have a three-dimensional vector x⃗ . Then we have the ket |x⃗〉, which corresponds to the particle at the position x⃗ . But

our vector space isn’t the real R3 that x⃗ lives in – it’s the infinite-dimensional complex vector space of wavefunctions.

So we should be very careful about labels when working in this kind of abstraction – hopefully the introduction of the

bra vector is helping with this!

So the reason we like this Dirac notation is that we can distinguish the number or coordinate x from the vector |x〉.
The states |x〉 form a basis of our state space (where x ∈ R, since we’re working in a single dimension), and while

the xs can be changed by real numbers, our states can be multiplied by complex numbers. So if we want to define

our infinite dimensional vector space, we can’t just make a list of our basis vectors – it’s a nondenumerable basis,
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because there are uncountably many basis elements. So we’ll use a slightly different inner product here: we’ll have

〈x |y〉 = δ(x − y),

and to deal with normalizability issues, we need to manipulate what we did with finite-dimensional vector spaces before:

instead of having I =
∑

i |i〉 〈i |, we now have

I =

∫
dx |x〉 〈x | .

To make sure we have the correct factor in front, let’s have this identity operator act on the vector |y〉: then

|y〉 = I |y〉 =
∫
dx |x〉 〈x |y〉 =

∫
dx |x〉 δ(x − y) = |y〉 ,

as desired. And the basis states are position eigenstates: we can write the equation

x̂ |x〉 = x |x〉 .

So the x̂ operator corresponds to the position observable – the eigenvalue for the state |x〉 is just x .

So now we can make this a bit less abstract: if we have a particle in a state |ψ〉, we can write the wave function as

ψ(x) = 〈x |ψ〉 .

This is the overlap between x and ψ, which tells us some complex number dependent on x . And with this knowledge,

we can rewrite

|ψ〉 = I |ψ〉 =
∫
dx |x〉 〈x |ψ〉 =

∫
dx |x〉ψ(x).

And we can interpret this equation and saying that our state |ψ〉 is a superposition of the basis states, and the weight

of each basis state |x〉 in our sum is just the value of our wavefunction at that point x! And this helps us answer a

slightly more general question: if we have two states ϕ and ψ, we can calculate their overlap via

〈ϕ|ψ〉 = 〈ψ|
∫
dx |x〉 〈x |ψ〉

(putting a copy of the identity in between), and now we can bring everything inside to find

=

∫
dx 〈ϕ|x〉 〈x |ψ〉 =

∫
dxϕ∗(x)ψ(x) .

Indeed, this is what we expect – the inner product on the state space comes from integrating the complex conjugate

of one function against the other function. A

Now if we try to compute a matrix element of the x̂ operator, we’ll put in another copy of the identity:

〈ϕ| x̂ |ψ〉 =
∫
dx 〈ϕ| x̂ |x〉 〈x |ψ〉 =

∫
dx x 〈ϕ|x〉 〈x |ψ〉 .

In other words, we’re just putting an extra x into the integral here, which is again what we expect.

To make this interesting, we’ll introduce momentum states as well: these behave exactly the same way, so we’ll

just list some properties. The basis states are labeled by |p〉, where p ∈ R, and we have the familiar equations

〈p′|p〉 = δ(p − p′), I =

∫
dp |p〉 〈p| , p̂ |p〉 = p |p〉 .

So completeness and normalization work the same way: the only difference is that we now have to establish a relation
between the x-basis and p-basis. The physical assumption here is that a particle with momentum p has the wave
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function

〈x |p〉 = ψp(x) =
1√
2πℏ

e ipx/ℏ.

(Remember that the first equality here is established by the idea of an “overlap” itself.) So now if we want to compute

something like 〈p|ψ〉 in terms of x-wavefunctions, we introduce another complete set of states:

〈p|ψ〉 =
∫
dx 〈p|x〉 〈x |ψ〉 =

1√
2πℏ

∫
dxe−ipx/ℏψ(x),

which is the Fourier transform of the wave function! To distinguish it from the usual wave function, we’ll call it ψ̃(p)

(it lives in the momentum space instead of the coordinate space). In other words, this is the wave function in our p

basis.

Example 144

Now we’re ready for a classic computation, where we have momentum operator states with a coordinate bra: how

can we compute

〈x | p̂ |ψ〉?

This looks like the momentum operator acting on the wave function (that’s p̂ |ψ〉)in the x-basis (that’s the 〈x |
part). So we expect that it’ll be ℏi

d
dxψ(x), but we can check this directly! To manipulate this expression, we need to

figure out what to do with p̂. All we know about this operator is that it has momentum eigenstates, so we’ll introduce

a complete set of states:

〈x | p̂ |ψ〉 =
∫
dp 〈x | p̂ |p〉 〈p|ψ〉 .

And now we can evaluate this a bit: p̂ |p〉 is just p |p〉, so this gives us

=

∫
dp(p 〈x |p〉) 〈p|ψ〉 .

So we don’t need to work too hard from here – the idea is that we can get a p to multiply the 〈x |p〉 = 1√
2πℏe

ipx/ℏ by

applying ℏ
i
d
dx to it. So this is just equal to

=

∫
dp
ℏ
i

d

dx
〈x |p〉 〈p|ψ〉 ,

and now we can take the ℏi
d
dx out of the integral because it’s a p-integral and there’s only a single factor that depends

on x – ψ itself doesn’t have an x dependence explicitly! So now our expression is just

ℏ
i

d

dx

∫
dp 〈x |p〉 〈p|ψ〉 =

ℏ
i

d

dx
〈x |ψ〉

(last step by getting rid of the complete set of states), which is exactly what we claimed. But once we’ve seen this

once, we don’t need to repeat it again: the operator p̂ is indeed what we expect. And if we want to do some more

practice, we can derive the opposite relation

〈p| x̂ |ψ〉 = iℏ
d

dp
ψ̃(p).

14 February 24, 2020
We’re starting to talk about bra-kets now – let’s focus on projectors, and specifically the punchline we should keep

in mind is that in a general projector, we project down onto a subspace U (so every vector is sent to U). But in an
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orthogonal projector, we have an orthogonal subspace U⊥ which is sent to zero under the projection.

Example 145

Pick a line in the plane through the origin: this gives us a one-dimensional subspace U. Then the orthogonal

subspace U⊥ is the perpendicular line to U, and U ⊕ U⊥ is the whole space.

This means that any vector v in the plane, can be written as the sum of a vector in U and a vector in U⊥. What’s

nice about orthogonal projectors in particular is that the component in U⊥ will disappear when wwe project!

Example 146

Pick a plane U through the origin, which is a two-dimensional subspace of our three-dimensional space. One way

to specify this plane is to specify a unit vector n⃗ orthogonal to the plane. Then we can define the plane via

n⃗ · x⃗ = 0 =⇒ n1x1 + n2x2 + n3x3 = 0.

It’s interesting that we’re defining U, instead of U⊥, to be the set of vectors that are “perpendicular” in some sense

instead of U⊥, but hopefully this shows us some of this symmetry here.

Remark 147. A few notes about this: subspaces have to go through the origin because every subspace has the zero

vector. Also, the orthogonal subspace U⊥ is the scalar multiples of n⃗.

Problem 148

So now here’s a challenge: how can we find the projector PUn and describe it as a 3× 3 matrix?

One strategy is that assuming (n1, n2) 6= (0, 0) (the other case is easy because it’s just the projector onto the

xy -plane), we can construct an orthonormal basis x⃗ = 1√
n21+n

2
2

(−n2, n1, 0) and y⃗ = n⃗ × x⃗ (the cross product). And

then

Pv = 〈x⃗ , v〉x⃗ + 〈y⃗ , v〉y⃗ ,

so the matrix P takes the form D =


1 0 0

0 1 0

0 0 0

 in this orthonormal basis, and then we can do a change of basis

B−1DB, where B has columns n⃗, x⃗ , y⃗ , to get the matrix in the standard basis.

But there’s a simpler way: note that

PUnv = v − Pn⃗v =⇒ PUn = I − |n⃗〉 〈n⃗| ,

because we take the vector and subtract off the component projected onto the orthogonal subspace. (Another way

to write this in more standard math notation is that P v⃗ = v⃗ − (v⃗ · n⃗)n⃗.) And this is just
1 0 0

0 1 0

0 0 1

−

n1

n2

n3

[n1 n2 n3

]
=


1− n21 −n1n2 −n1n3
−n1n2 1− n22 −n2n3
−n1n3 −n2n3 1− n23

 .
(an alternative way to arrive at this answer is to write out (v⃗ · n⃗)n⃗ in terms of v1, v2, v3, n1, n2, n3, or to use index

notation to show that Pi j = δi j − ninj .) We can check that this has some of the properties we expect: for example,

the trace is 3− n21 − n22 − n23 = 2, which is indeed the trace of a two-dimensional projector (the rank of the space).
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Remark 149. The main idea here is that if we know that Pv1 is some specific linear combination a1v1 + a2v2 + a3v3,

then a1, a2, a3 are specific elements we can write down in our matrix. But alternatively, we can just use some nice

properties of projectors and calculate easily with bra-ket notation.

Remember that we can write down projectors more generally in bra-ket notation: for example, if ê1 and ê2 form

an orthonormal basis for Un, then

Pun = |ê1〉 〈ê1|+ |ê2〉 〈ê2| .

One important property to check is that our projector is Hermitian: indeed, because bras and kets flip, but we also

look at a list of operators in reverse, projectors are indeed equal to their adjoint.

And finally, we can think a bit more about completeness to bring everything together:

|ê1〉 〈ê1|+ |ê2〉 〈ê2|+ |n⃗〉 〈n⃗| = I.

And so indeed this is another way we could have arrived at the fact that the projector is just I − |n⃗〉 〈n⃗|.

15 Uncertainty Principle and Compatible Observables, Part 1
Today, we’re going to start talking about the uncertainty associated to a Hermitian operator. An important idea is

that uncertainty is always measured relative to a state (mathematically, a deviation is always measured relative

to some center point). So we’ll always have some Hermitian operator A and some state ψ when we’re making our

arguments.

Definition 150

The expectation value of an operator A in a state ψ is

〈A〉ψ = 〈ψ|Aψ〉 = 〈ψ,Aψ〉.

The important point here is that this is always real, because the expectation value of a Hermitian operator is real

(since 〈ψ,Aψ〉 = 〈Aψ,ψ〉 = 〈ψ,Aψ〉∗).
From this, how can we define an uncertainty? We need to make sure this quantity is zero at an eigenstate and

nonzero otherwise.

Definition 151

The uncertainty of an operator A relative to a normalized state ψ is

∆A(ψ) = |(A− 〈A〉I)ψ|.

The idea is that this uncertainty should always be a nonnegative number, and the norm is a natural object that

behaves in that way. In fact, the norm of a vector is only zero if we have the zero vector. So let’s check that we have

what we want: if the uncertainty were zero, then we must have (A− 〈A〉I)ψ = 0, which means that

Aψ − 〈A〉Iψ = 0 =⇒ Aψ = 〈A〉ψ.

And this is an eigenvector equation with the eigenvalue 〈A〉, so we are indeed in an eigenstate when the uncertainty

is zero. In fact, in such a state,

〈ψ,Aψ〉 = 〈ψ, 〈A〉ψ〉 = 〈A〉
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because ψ is normalized, and thus the expectation value of A is indeed 〈A〉, the eigenvalue of this particular eigenstate.

(So everything is nice and consistent!)

Going back to our argument, if we’re in an eigenstate, we indeed have the eigenvalue equation, so the vector

(A − 〈A〉I)ψ is zero, and thus the uncertainty is zero. So we do have an if and only if statement – this second fact,

where the only vector with zero norm is the zero vector, is quite powerful.

Squaring the definition, we’ll find a formula that is more familiar and better for computations. Note that

(∆A(ψ))2 = 〈(A− 〈A〉I)ψ, (A− 〈A〉I)ψ〉

(the norm squared is the inner product of the vector with itself), and now we want to move (A − 〈A〉) from one

argument to the other. We should then take the adjoint of our operator, but A is Hermitian and 〈A〉 is a real number,

so the Hermitian operator is equal to itself! This means that

(∆A(ψ))2 = 〈ψ, (A− 〈A〉I)(A− 〈A〉I)ψ〉.

And now we can simplify the operator in the right argument: expanding out gives us

= 〈ψ, (A2 − A〈A〉 − 〈A〉A+ 〈A〉2)ψ〉

(where we’ve dropped the identity operator for convenience of notation), and now we can expand out the terms

one by one. The first term is 〈ψ,A2ψ〉 = 〈A2〉, and the second term gives us (pulling out the number inside)

−〈A〉〈ψ,Aψ〉 = −〈A〉2. Similarly, the last two terms evaluate to −〈A〉2 and +〈A〉2 respectively, and putting this all

together gives us the important formula:

Proposition 152

The uncertainty of an operator A can be expressed via the equation

(∆A(ψ))2 = 〈A2〉 − 〈A〉2.

(This obviously has connections with standard deviation if we use the probabilistic interpretation!) And in particular,

this tells us that

〈A2〉 ≥ 〈A〉2,

because (∆A(ψ))2 is always nonnegative.

We’ll take a moment to give a geometrical interpretation of the uncertainty here – this isn’t quite as well known

as the rest of the discussion. We can imagine having a vector ψ and an operator A – if ψ is not an eigenstate of A,

Aψ will point in a different direction to ψ. If we think of the vector space Uψ as being the one-dimensional vector

space spanned by ψ, we can make two claims when we do an orthogonal projection of Aψ down to Uψ:

• The result of the orthogonal projector is 〈A〉ψ.

• The orthogonal component ψ⊥ has length equal to the uncertainty of A in the state ψ.

In other words, the amount we’ve moved away from our Uψ tells us about the uncertainty! To prove this, we can

write our orthogonal projector as

Pψ = |ψ〉 〈ψ| ,

and then when we project our state Aψ, we have

Pψ(Aψ) = |ψ〉 〈ψ|A |ψ〉 = |ψ〉 〈A〉,

78



which is the first claim that we made. And the rest is pretty simple: the vector A |ψ〉 − |ψ|〉 〈A〉 is orthogonal to ψ,

because we can put a 〈ψ| on the left to get 〈A〉 − 〈A〉 = 0, so this vector is indeed ψ⊥. And now the norm of this

perpendicular vector is the definition of our uncertainty! So the main point here is that our ideas from orthogonal

projectors help us to understand uncertainty more pictorally.

So now let’s do a computation as an example:

Example 153

Suppose we have a state |ψ〉 = |+〉 which is an eigenstate of Sz . What is the uncertainty ∆Sx in the state ψ?

We know that if we’re in an eigenstate of z , we’re not in an eigenstate of x – in fact, we’re in a superposition of

two eigenstates of x . So there should be some amount of uncertainty – let’s try to figure out the quickest way to do

the problem.

Many times, we’ll just want to use the formula

(∆A(ψ))2 = 〈A2〉ψ − 〈A〉2ψ.

The expectation of Sx in this state is

〈Sx 〉 = 〈+|Sx |+〉 ,

and we should expect this expectation to be zero (because there’s an equal chance to be ℏ2 and − ℏ2 ). But if we didn’t

know that, the best way to do this is to use the matrix representation of Sx (which we don’t need to know by heart):

writing out Sx = ℏ
2

[
0 1

1 0

]
and |+〉 =

[
1

0

]
, and now

Sx |+〉 =
ℏ
2

[
0 1

1 0

][
1

0

]
=
ℏ
2
|−〉 .

Since we’re taking the inner product of this by multiplying it with 〈+| on the left, we’ll indeed get zero (by orthogonality).

Remember, though, that this does not mean the actual uncertainty is zero – we have an 〈Sx 〉2 term, which does

have some uncertainty value. Remember that Sx is a funny matrix: S2x =
( ℏ
2

)2
I, which means that the expectation

value of S2x is just
( ℏ
2

)2
(because the identity always has expectation value 1 on any normalized state). So plugging

everything back in,

(∆Sx)
2 =

(
ℏ
2

)2
− 0 =⇒ ∆Sx =

ℏ
2
.

Now we’re ready to state something more powerful:

Theorem 154 (Uncertainty principle)

For two Hermitian operators A,B and a normalized state ψ,

(∆A)2(∆B)2 ≥
(〈

ψ

∣∣∣∣ 12i [A,B]
∣∣∣∣ψ〉)2

(where the uncertainties are taken relative to ψ).

First of all, we have an inequality, so we need to first make sure that this number on the right side is real.
(Otherwise, it doesn’t make sense to compare the two sides.) And it’s particularly confusing because there seems to

be an i here. But the right idea is to focus on the operator 12i [A,B] =
1
2i (AB −BA). We know that the commutator

[A,B] on its own is not going to give you a real number – for instance, [x, p] = iℏ. So that gives us a hint as to why
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the i is important: the real idea is that the Hermitian conjugate(
1

i
[A,B]

)†
= −
1

i
(AB − BA)† = −

1

i
(B†A† − A†B†),

and now because A and B are Hermitian, this is equal to

= −
1

i
(BA− AB) =

1

i
[A,B].

So indeed this operator is equal to its adjoint, so the operator 12i [A,B] is Hermitian and thus has real expectation
values! And now we don’t need to worry: the right side of the uncertainty equality is indeed a nonnegative real

number, so everything makes sense.

Remark 155. We can also take the square root of both sides above and write

∆A∆B ≥
∣∣∣∣〈ψ ∣∣∣∣ 12i [A,B]

∣∣∣∣ψ〉∣∣∣∣ ,
where the outer bars are just the ordinary absolute value.

Either way, the uncertainty principle is nice because we’ve now defined uncertainties of an observable precisely: we

don’t need to make an approximate order-of-magnitude statement. And this is an important result, so we need to

prove it – not just because it’s mathematically better, but also because many interesting questions are based on the

concept of reducing uncertainty. For example, if the two operators A and B both commute, the uncertainty principle

tell us that the product is at least 0, but it doesn’t actually tell us outright whether we can get equality: we care when

the uncertainty relation is saturated (that is, when we get the equality case), and we’ll figure that out through our

proof.

First, though, we should mention the classic case:

Example 156

Consider the two operators A = x̂ and B = p̂.

Then [A,B] = iℏ, so the uncertainty principle tells us that

(∆x)2(∆p)2 ≥
(〈

ψ

∣∣∣∣ 12i iℏI
∣∣∣∣ψ〉)2 .

Simplifying, the is cancel and ψ is normalized, so we get

(∆x)2(∆p)2 =

(
ℏ
2

)2
,

which is the classic result. The wave functions that saturate this (yielding equality) are the strange functions where

ψ is actually an eigenstate of x (a totally localized particle) or of p (a totally delocalized particle).

Proof of the uncertainty principle. The central idea of this proof is using the Schwarz inequality. We’ll use two auxiliary

variables here:

|f 〉 = (A− 〈A〉I) |ψ〉 , |g〉 = (B − 〈B〉I) |ψ〉 .

By definition, we know that (∆A)2 = 〈f |f 〉, and (∆B)2 = 〈g|g〉. Then Schwarz’s inequality tells us that

(∆A)2(∆B)2 = 〈f |f 〉 〈g|g〉 ≥ | 〈f |g〉 |2,
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where saturation comes when the vectors f and g are parallel to each other. And now we can write this as

(∆A)2(∆B)2 ≥ Re(〈f |g〉)2 + Im(〈f |g〉)2 ,

since 〈f |g〉2 is just some number with a real and imaginary part. Now we can compute

〈f |g〉 = 〈ψ| (A− 〈A〉)(B − 〈B〉) |ψ〉 ,

and we can find the inner operator by directly expanding:

(A− 〈A〉)(B − 〈B〉) = AB − 〈A〉B − A〉B〉+ 〈A〉〈B〉,

and the expectation of each of these terms is 〈AB〉, −〈A〉〈B〉, −〈A〉〈B〉, and 〈A〉〈B〉, respectively (with the middle

two terms, we pull out the constants first). And thus we end up with

〈f |g〉 = 〈AB〉 − 〈A〉〈B〉,

and similarly (so that we can find the real and imaginary parts)

〈g|f 〉 = 〈BA〉 − 〈A〉〈B〉,

just by interchanging the roles of A and B. So now we plug back into the boxed equation above: we have that

Im 〈f |g〉 =
1

2i
(〈f |g〉 − 〈g|f 〉) ,

and now this simplifies very nicely: the product of expectations cancels, and we just end up with the commutator
1
2i 〈ψ| [A,B] |ψ〉. And notice that this is exactly what we want – we can even toss the first term on the right side of

the boxed equation above, because it’s always nonnegative. But let’s compute this for completeness: we have

Re 〈f |g〉 =
1

2
(〈f |g〉+ 〈g|f 〉) ,

and this is 12 of the anticommutator of the two operators Ǎ = A− 〈A〉 and B̌ = B − 〈B〉. So at the end of the day,

the Schwarz inequality gives us

(∆A)2(∆B)2 ≥
(〈

ψ

∣∣∣∣ 12i [A,B]
∣∣∣∣ψ〉)2 + (〈ψ ∣∣∣∣ 12i {Ǎ, B̌}

∣∣∣∣ψ〉)2 ,
which is often called the generalized uncertainty principle. But to finish the proof, the second term on the right side

is a nonnegative real number, so tossing it keeps the inequality, and we’ve arrived at our final result. (And in almost

all physical examples, the second example is not useful.)

So let’s return now to the question of saturation. In order for the uncertainty inequality to actually be an equality,

we need two conditions. First of all, we need the Schwarz inequality to be satured, so f and g must be states

that are proportional to each other: |g〉 = β |f 〉 for some complex number β. But we also need the second term(〈
ψ
∣∣ 1
2i {Ǎ, B̌}

∣∣ψ〉)2 to be zero – that is, the real part of 〈f |g〉 is zero. In other words, we need

〈f |g〉+ 〈g|f 〉 = 0 =⇒ 〈f |βf 〉+ 〈βf |f 〉 = (β + β∗) 〈f |f 〉 = 0.

Since f does not have zero norm – there is some uncertainty in all of this – β + β∗ = 0, which means β is a pure
imaginary number. So the equality condition is actually nice: f and g are parallel with a purely imaginary constant,
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and rewriting this out, our condition for saturation is that

(B − 〈B〉) |ψ〉 = iλ(A− 〈A〉) |ψ〉

for some real number λ. This is a somewhat weird equation to work with, but we’ll often have, for instance, a

differential equation between our two variables (such as in x̂ and p̂) if we use the same coordinate representation for

both operators. Solving for ψ, we can then find 〈B〉 and 〈A〉 and see whether that ansatz allows for a value λ. But

before we try too hard, let’s take the norm of the equation above: we find that

∆B = |λ|∆A,

and thus λ = ±∆B∆A .

In the remainder of this lecture, we’ll talk about some related notions of uncertainty. We’ll start with a handwavy

motivation for energy-time uncertainty, just to get a picture of what’s going on here.

Example 157

Suppose we detect a fluctuation of a waveform in time which suddenly turns on some waves and dies off after a

while: the whole process lasts for a time T .

In such a situation, we can try to count the number of full waves that we see: this will be

N =
ωT

2π
,

where 2πω is the period of the wave. The problem is that the waves begin and end, so we can’t really see the beginning

or end: there’s an uncertainty of order 1 in ∆N. And if there’s no uncertainty in T , there’s, in some sense, the

uncertainty in ω of
T

2π
∆ω = 1 =⇒ ∆ω =

2π

T
.

And now we can associate this with a quantum mechanical object: for a photon, for example, the uncertainty

∆E = ℏ∆ω =⇒ ∆E =
2πℏ
T
.

So now T is the amount of time it took for the photon to go through our detector: we saw the wave for some time

T , and this is now related in some way to the uncertainty of our photon. And now there’s some kind of relationship

between time and energy!

But there’s a delicate issue here: what exactly is “time uncertainty?” We can’t really do this precisely, because

there’s no Hermitian operator for which the eigenstates are times. Instead, we’ll need to do something different – we’ll

use the current uncertainty principle with the Hamiltonian operator A = H, along with some operator B = Q which

has no explicit time dependence. What we find, then, is that

(∆H)2(∆Q)2 ≥
(〈

ψ

∣∣∣∣ 12i [H,Q]
∣∣∣∣ψ〉)2 .

And from here, we’ll need an auxiliary result: this commutator actually has to do with the time derivative! (Even

though Q has no explicit time-dependence, dQ
dt will still be nonzero.) Basically, we can write

〈Q〉 = 〈ψ,Qψ〉

and take the time-derivative of this expectation. Even though Q has no explicit dependence on t, it might depends on
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x and p, which can change as the wavefunction evolves. So

d〈Q〉
dt

= 〈 ∂ψ∂t , Qψ〉+ 〈ψ,Q
∂ψ
∂t 〉

by the product rule, where we’ve used that Q has no explicit time-dependence, and here’s where the Schrodinger

equation comes in:

iℏ
∂ψ

∂t
= Hψ,

and plugging this in yields
d〈Q〉Q
dt

= 〈 1iℏHψ,Qψ〉+ 〈ψ,Q
1
iℏHψ〉.

The constants come out – one as its complex conjugate and one as normal – and we can send H to the other side

because H is Hermitian. Thus, this is

=
1

−iℏ 〈ψ,HQψ〉+
1

iℏ
〈ψ,QHψ〉 =

i

ℏ
〈ψ, (HQ−QH)ψ〉.

And now we’ve arrived at our result:

Proposition 158

For any operator Q with no explicit time-dependence,

d

dt
〈Q〉 =

i

ℏ
〈ψ| [H,Q] |ψ〉 .

We’ll see in a few lectures how to write this in the Heisenberg way as well. But the point is that we can plug this

back into our uncertainty relation betwen H and Q: now we have

(∆H)2(∆Q)2 =

(〈
ψ

∣∣∣∣ 12i ℏi ddt 〈Q〉
∣∣∣∣ψ〉)2 ,

and since we’re taking norms of everything, we find that

(∆H)2(∆Q)2 ≥
(
ℏ
2

)2(
d〈Q〉
dt

)2
=⇒ ∆H∆Q ≥

ℏ
2

∣∣∣∣dQdt
∣∣∣∣ .

This isn’t quite a time uncertainty relation yet, but now we just need to figure out some definitions: we can consider

the quantity

∆t =
∆Q

|d〈Q〉/dt| ,

which has the units of time and can be physically interpreted as the amount of time it takes for 〈Q〉 to change by

some amount ∆Q – that is, it’s a measure of how much time is required for a significant change. If ∆Q is significant

and comparable to Q, this is the time needed for significant change, and now we have that

∆H∆t ≥
ℏ
2
.

And this is the best kind of “time” we can get with our current uncertainty principle. We can make some complaints

about this equation we’ve just written down – for example, ∆t depends on which operator Q we’re using, but we

can try different Q’s and get more precise results. And there’s a version of the uncertainty principle which gives an

alternative picture of all of this: if we have a state ψ which is an eigenstate, then nothing changes (it’s stationary).

Indeed, in such a state, ∆H is zero, and there is an “infinite” time ∆t for things to change. But if we have a state that

is not an eigenstate of energy, perhaps a superposition of two eigenstates at different energies, we can time-evolve our
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state, and we can measure the changes of this state by seeing how long it takes for the state to become orthogonal
to itself. It turns out that we can get another uncertainty principle out of that:

Proposition 159

Suppose ∆t is the quickest possible time it takes for ψ(x, t) to become orthogonal to ψ(x, 0). Then

∆t∆E ≥
h

4
.

The next statement we’ll make is a further comment on this “uncertainty of energy:”

Proposition 160

In an isolated system (that is, one where the Hamiltonian is time-independent), ∆E is constant.

Proof. Take Q = H in Proposition 158 to find that

d

dt
〈H〉 =

i

ℏ
〈ψ| [H,H] |ψ〉 ,

and now [H,H] = 0 (any operator commutes with itself), so the right hand side is zero. So 〈E〉 is constant, and

similarly if we take Q = H2,
d

dt
〈H2〉 =

i

ℏ
〈ψ| [H,H2] |ψ〉 ,

and again H and H2 commute with each other, so this is also zero. Thus

d

dt
(∆H)2 =

d

dt

(
〈H2〉 − 〈H〉2

)
= 0,

because both terms on the right side are zero. Thus ∆H must be constant.

This is useful for thinking about time-independent processes:

Example 161

Consider a decay (transition in an atom) which leads to photon radiation. Basically, an atom decays from an

excited state to a ground state, and it shoots out a photon.

The concept of energy uncertainty helps us organize our thoughts here: there is a typical lifetime τ , corresponding

to the amount of time we need to wait for the excited state to decay. As this lifetime goes through, some observable

Q changes a lot – for example, the position of the electron in our orbit, or its squared momentum, or some other

quantity. So it is indeed reasonable to define a time uncertainty here relative to that Q, and we’ll also have an energy

uncertainty: we’re in some combination of different states in this atom’s excited state, or else we’d be in a stationary

state! So the dynamics are such that the interactions (for example) between the electron and nucleus, or with a

radiation field, makes this state unstable and associates an uncertainty ∆E. So we get

∆Eτ ∼
ℏ
2
,

where ∆E is the “width” of our set of excited states. But later on, the particle goes to the ground state, so the particle

no longer has any uncertainty: conservation of uncertainty means that our photon now has an uncertainty ∆E = ℏ∆ω.

This is related to the hyperfine transition of hydrogen – this is a situation where physicists get very lucky. We’ll

study later in this class that because of proton and electron spins in the hydrogen atom, energies actually split (due
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to the magnetic dipole interaction), and we get a hyperfine splitting. Between the top and bottom states here, we

get a photon with a wavelength of about 21 centimeters, which corresponds to a 1420 MHz frequency and an energy

difference of 5.9× 10−6 eV.

But we shouldn’t apply this energy difference for our uncertainty principle – the uncertainty in energy comes

from how broad the “energy width” of the top state looks, due to interactions. And it turns out that the lifetime τ is

about 10 million years, and this corresponds to an energy uncertainty ∆E which is extremely small:

∆λ

λ
= 10−8.

So the nice thing is that the 21 centimeter wavelength is easy to measure – energy-time uncertainty shows us that

the gap between the bottom and top states will be pretty much exactly constant!

16 February 26, 2020

We’re starting to talk about properties of our (state) vectors and the uncertainty principle. Remember that if we have

a Hermitian operator Â (corresponding to an observable), we can define the uncertainty relative to a state as

∆Â(Ψ) = |(A− 〈A〉)ψ| .

The idea here is that we will measure our operator Â a bunch of times, and this will give us some statistics (such as

the mean and standard deviation). It’s important that the uncertainty is dependent on our state: for example, the

uncertainty in the position depends on how “wide” our wavefunction is; it doesn’t make sense to just say “uncertainty

in position.”

Recall that if Ψ is an eigenstate of Â, we will always measure the same value – the eigenvalue of Â corresponding

to Ψ. Here, 〈A〉 is the expectation value of our measurement of A, and thus if ÂΨ1 = λΨ1 for some eigenvector Ψ,

then

Â(Ψ) = λΨ =⇒ 〈Ψ, ÂΨ〉 = 〈Ψ, λΨ〉 =⇒ 〈A〉 = λ.

So the eigenvalue will also be the expectation value for our operator in an eigenstate! This may explain the notation

ÂΨ = 〈A〉ΨΨ. And remember that the expectation is only zero if the vector inside the norm on the right side is zero:

this means (A− 〈A〉)Ψ = 0, which only occurs for an eigenstate. This gives us a nice characterization:

Corollary 162

The uncertainty of an operator at a state Ψ vanishes if and only if Ψ is an eigenstate for the operator.

A geometric interpretation of this is to think of our states again as vectors. Let Ψ be some state, and let UΨ be

the span of Ψ (all scalar multiples of our original state). Then AΨ will be some other vector – it may not have unit

length, so it need not be normalized. And then one interpretation of our result is that the orthogonal projection of
AΨ into UΨ is 〈A〉Ψ, while the orthogonal part (AΨ)⊥ has length ∆A.

Remark 163. Note that the collapse of the wavefunction doesn’t have to do with this projection onto Ψ unless Ψ

itself is an eigenstate (because the collapse of the wavefunction is probabilistic).

There are some operators which are time-dependent, but generally we can “forget about time.” At any fixed time,

we have a Hermitian operator, and we have a state, which allows us to calculate the uncertainty that time. But later

in time, the state may have changed, which means the uncertainty also may change. Usually our operators Â are

time-independent, which makes our calculations easier, and that’s what we’ll be doing for a while.
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What do we do about degenerate eigenstates? It turns out that it doesn’t really matter: if e1, e2 are two eigenstates

with the same eigenvalue, any linear combination of those states is going to be an eigenstate, too. Remember

that uncertainty is measured with respect to a given state, so the uncertainty can still be zero in a whole plane of

eigenvectors!

Example 164

Let Â be a Hermitian operator with two eigenstates:

Â |ψ1〉 = λ1 |ψ1〉 , Â |ψ2〉 = λ2 |ψ2〉 .

Take an arbitrary superposition |ψ〉 = α1 |ψ1〉+α2 |ψ2〉, and assume that it is normalized. What is the uncertainty

of Â with respect to ψ?

We can use the formula (derived by squaring the definition of ∆Â and then writing out the norm squared on the

right hand side as an inner product)

(∆Â(ψ))2 = 〈Â2〉 − 〈Â〉2.

Remark 165. Before we get too lost in the algebra, note that if α1 = 0 or α2 = 0, we have an eigenstate. This

means ∆Â(Ψ) should be zero if α1 or α2 vanish. Also, if the λs are the same, the uncertainty should also be zero

(because we always measure the same value).

Remember that Â takes on value λ1 with probability |α1|2 and λ2 with probability |α2|2 (where |α1|2+ |α2|2 = 1),
so

〈Â〉 = |α1|2λ1 + |α2|2λ2.

(One way to do this is to think of ψ1 and ψ2 as basis vectors

[
1

0

]
and

[
0

1

]
, so we know that Â =

[
λ1 0

0 λ2

]
in this

basis. Then we can find the expectation of ψ via ψ∗Âψ.) Similarly, we find that

〈Â2〉 = |α1|2λ21 + |α2|2λ22.

So now we can calculate the uncertainty directly, but we can do some thinking first: we know that the uncertainty

should vanish when α1, α2, λ1 − λ2 are zero. But we also need to make sure the quantity is always nonnegative and

real, so a good guess is

∆Â(ψ)
?
= |α1||α2||λ1 − λ2|.

(Remember that the uncertainty should have units of λ.) At this point, we might just be off by a constant factor, but

of course this is just a guess. Anyway, we can calculate now:

(∆A)2 = λ21|α1|2 + λ22|α2|2 −
(
λ21|α1|4 + λ22|α2|4 + 2λ1λ2|α1|2|α22|

)
.

Collecting terms, noting that |α1|2 − |α1|4 = |α1|2(1− |α1|2) = |α1|2|α2|2,

(∆A)2 = λ21|α1|2|α2|2 + λ22|α2|2|α1|2 − 2λ1λ2|α1|2|α2|2

simplifies nicely to

(∆A)2 = (λ1 − λ2)2|α1|2|α2|2,

and indeed our earlier guess is accurate!
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17 Uncertainty Principle and Compatible Observables, Part 2
Last time, we talked about the energy-time uncertainty relations, which tell us something about how fast the state

can change. One interesting way to analyze this is to look at the inner product

〈ψ(0)|ψ(t)〉 =
∫
dx⃗ψ∗(t = 0, x⃗)ψ(t, x⃗).

In a sense, this tells us how quickly a state can change: at t = 0, this overlap is 1, and perhaps after some time

the overlap is 0. (At that point, we can say that the state has changed a lot.) To make this quantity a bit easier

to work with, we might as well take its squared norm |〈ψ(0)|ψ(t)〉|2. If we assume that the system is governed by a

time-independent Hamiltonian (which will help us prove the time-energy uncertainty relationship we established at

the end of last lecture), we can consider the case in which ψ is some energy eigenstate. Such states evolve with a

phase e−iHt/ℏ, so the overlap would remain equal to 1 for all times t.
And in general, we can evaluate ψ(t) as a Taylor series in t – if we go to quadratic order, we’d find that this

overlap only depends on things like ∆H and ∆t. This kind of analysis has to do with quantum computation – in a

quantum computer, we want to change states quickly, and these inequalities limit the speed of a quantum computer!

Now that we’ve discussed a lot of properties of uncertainty, we’ll do an example:

Example 166

Consider the Hamiltonian (for a one-dimensional particle)

H =
p2

2m
+ αx4,

where α > 0.

We know the expectation value of the energy in the ground state, and we used the variational principle to find

an upper bound on the ground state energy. We’re going to use the uncertainty principle now to get a lower bound,

so we have a window for the energy of the ground state. First of all, we know that

〈H2〉gs =
〈p2〉gs

2m
+ α〈x4〉gs,

and now we know that 〈x〉gs = 0, because symmetric potentials have either symmetric or antisymmetric wavefunctions

– it’s not antisymmetric because it’s a ground state. Similarly, the expectation of the momentum 〈p〉gs = 0 as well,

because we can imagine computing it: ∫
ψ
ℏ
i

∂

∂x
ψ,

and this integrand is a total derivative (it’s d
dx of a constant times ψ2), so it evaluates to zero for a bound state where

the value is zero at both ends. So now we can control the 〈p2〉gs term: we know that

(∆p)2 = 〈p2〉 − 〈p〉2,

so in the ground state, we know that (∆p)2gs = 〈p2〉gs, and now we can get a ∆p into our expression. The main

problem is that we need to deal with 〈x4〉, and now we’re going to use the fact that 〈x4〉 ≥ 〈x2〉2 (using the fact that

〈A2〉 ≥ 〈A〉2 for the operator A = x2), and thus we can get a ∆x into our expression as well! So now

〈x4〉gs ≥ (∆x)4gs,
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where we’ve used that 〈x2〉 = (∆x)2 in the ground state, and thus

〈H〉gs =
(∆p)2gs

2m
+ α〈x4〉gs ≥

(∆p)2gs

2m
+ α(∆x)4gs.

And this is all good – we’re on track to get a lower bound for 〈H〉 – and now we’re ready to use the uncertainty

principle! Since ∆p∆x ≥ ℏ
2 in any state, this holds for the ground state, and thus ∆p ≥ ℏ

2∆x . Plugging this in, we find

that

〈H〉gs ≥
ℏ2

8m(∆x)2gs
+ α(∆x)4gs.

And now we have an inequality, but we don’t know the actual value of ∆x . Fortunately, if we minimize the right
hand side over all ∆x , we’ll get a bound that’s true regardless of what ∆x actually is! So

〈H〉gs ≥ min
∆x

(
ℏ2

8m(∆x)2gs
+ α(∆x)4gs

)
,

and this is now just a calculus problem – we can take the derivative with respect to ∆x and set it equal to 0. It turns

out that A
x2 + Bx

4 is minimized at x2 = 1
21/3

(
A
B

)1/3
, and the value of the function is 21/3 32A

2/3B1/3. So plugging in

the coefficients, we find our final answer:

〈H〉gs ≥ 21/3
3

8

(
ℏ2
√
α

m

)2/3
≈ 0.4724

(
ℏ2
√
α

m

)2/3
.

This turns out to be an okay bound – the actual answer has a constant of 0.668, and the variational principle gave

something like 0.69. But this gave us something, and the point is that this is completely rigorous! Sometimes

the uncertainty principle is used to make a handwavy argument which is basically just dimensional analysis, but every

inequality we’ve established here is exact.

This concludes our initial discussion of uncertainty, and we’re going to move on to a new topic now: diagonalization
of operators. Essentially, suppose we have some operator which is important to us. To understand it better, we want

to find an ideal basis so that the operator is as simple as possible in this basis.

Definition 167

An operator T is diagonalizable if there is a basis in which the matrix representation of T is diagonal (only the

diagonal entries are allowed to be nonzero).

Conceptually, suppose we have a diagonal matrix for T in some basis (u1, · · · , un): then the matrix action on our

basis looks like

Tui = Tkiuk ,

but the only nonzero term here is the one where i = k , so this is actually just equal to Ti iui . This is some number

times ui – call it λi – and now we know that Tu1 = λ1u1, Tu2 = λ2u2, and so on, which means that the basis vectors
are eigenvectors of our operator. But the logic goes both ways here – if we have a set of eigenvectors spanning the

space, we can just pick that to be our basis. That gives us the following result:

Proposition 168

An operator is diagonalizable if and only if it has a set of eigenvectors that span the vector space.
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Example 169

We know that

[
0 0

1 0

]
is not diagonalizable.

This is because the characteristic equation is λ2 = 0, so the only eigenvalue is λ = 0. But the only eigenvectors

there are of the form [
0 0

1 0

][
a

b

]
=

[
b

0

]
=

[
0

0

]
,

which means we’re forced to have b = 0. Thus there is only one dimension of eigenvectors (along

[
1

0

]
), but we have

a two-dimensional vector space. So it’s impossible to diagonalize this linear operator!

So now we’ll be a bit more concrete: say we have a vector space with some basis (v1, · · · , vn), and we have some

linear operator T . Its matrix representation Ti j({v}) has no particular reason to be diagonal, and we want to figure

out a concrete condition to understand whether we can change bases to make the matrix diagonal. Recall that we

use an invertible linear operator A to change the vectors such that our new basis is uk = Avk (for all 1 ≤ k ≤ n). We

proved that there is a relationship between the matrix elements in the two bases: we have

T ({u}) = A−1T ({v})A,

or more explicitly, the element

Ti j({u}) = A−1ik Tkp({v})Apj ,

where we’re summing over p and k . So we want to find a matrix A where this works out, and an important idea at

this point is that there are two different ways to think about diagonalization: one is that we’re changing bases to

make our operator diagonal in the new basis, and the other is that we’re finding a new operator such that A−1TA is

diagonal in our original basis. We can write this out more explicitly: suppose that Tui = λiui , where the ui are our

eigenvectors for T . (We’re not summing over i here – this is a problem with notation.) Then to show that A−1TA is

diagonal in our vi basis, we know that

Tui = λui =⇒ TAvi = λiAvi =⇒ A−1TAvi = λivi .

And now, indeed A−1TA has eigenvectors equal to our basis elements, so A−1TA is diagonal in our v basis.

Fact 170

Notice that the columns of A are the eigenvectors of T . This is because uk = Avk , and A acting on vk gives us∑
i Aikvi . And indeed, this tells us that the kth column of A should be uk , as long as we think of vk as a column

vector with a 1 in the kth entry and a 0 everywhere else.

Beyond the idea of diagonalization, though, we want to talk about a more relevant term for our Hermitian operators:

Definition 171

A matrix is unitarily diagonalizable if there exists an orthonormal basis of eigenvectors.

This is a stronger condition than just being diagonalizable, and being able to achieve this is very good – this is

because we’ve then broken down our vector space into basis spaces that are all orthonormal! Concretely, imagine that
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we start with some orthonormal basis {v}: we can then pass to some other orthonormal basis {u} with some operator

(analogous to the A above), and remember that we achieve this with a unitary operator. So a matrix that is unitarily

diagonalizable must be of the form

T ({u}) = U−1T ({v})U

for a unitary operator U – in words, this means there is a unitary operator which takes us to the “privileged basis”
in which our operator is diagonalizable.

And the main theorem of this subject is one of the most important theorems of linear algebra – we can characterize

the set of operators for which we can have an orthonormal basis of eigenvectors. It turns out that Hermitian operators

are indeed unitarily diagonalizable, but that’s not actually the complete result. Here’s the class of operators we care

about:

Definition 172

An operator M is normal if [M†,M] = 0.

So Hermitian operators are normal, because M† and M are the same matrix. Similarly, anti-Hermitian operators

are also normal, because M† is −M, and unitary operators are normal because U†U and UU† are both the identity

matrix. So many of the nice classes of operators we’ve been talking about are all normal!

Proposition 173

If M is a normal operator, and |w〉 is an eigenvector of M with eigenvalue λ ∈ C, then M†w is an eigenvalue of

M† with eigenvalue λ∗.

The usual strategy for proving something like this is to show that (M† − λ∗)w is the zero vector, because it has

zero norm. And with this, we’re ready to get to the result that we’ve been working towards:

Theorem 174 (Spectral theorem)

Let M be an operator in a complex vector space V . Then V has an orthonormal basis of eigenvectors if and only

if M is normal.

To prove this, we need to prove that any unitary diagonalizable operator is normal, and also that any normal

operator can be unitarily diagonalized.

Proof sketch. Suppose M is unitarily diagonalizable. Then there is a unitary operator U such that U†MU = DM for

some diagonal matrix DM , which means that

M = UDMU
†.

Therefore,

M† = (UDMU
†)† = UD†MU.

Now to check that the matrix is normal, we need to check that the computator is zero:

M†M = UD†MDMU
†,

where we’ve used that the middle U†U are just the identity matrix, and

MM† = UDMD
†
MU

†.
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But these are the same, because any two diagonal matrices commute – we multiply elements along the diagonal! So

indeed M is normal.

The other part of the proof – showing that a normal operator is unitarily diagonalizable – is done by induction, and

the idea is that any matrix in a complex vector space has at least one eigenvalue with a corresponding eigenvector.

Use that eigenvector as our first basis vector, and show that we can reduce the matrix so that there are zeros in the

first row and column – now do this again step by step with the remaining smaller matrix. The point is that normality

allows us to show that we can indeed get zeros in the off-diagonal entries, and eventually we’ll have a diagonal matrix

as desired. (It’s good for us to read through the proof, because it will make a lot of what’s going on more clear!)

Our final topic of this lecture is simultaneous diagonalization, and we’re going to focus on Hermitian operators

from here on out. This is one of the most important ideas in quantum mechanics, because it’s what allows us to label

and understand a state system! For example, if we have a set of energy eigenstates, but there is a degeneracy in the

eigenvalues, we might have a lot of states with the same energy. And we need to be able to distinguish these states –

they are different, or else they’d be the same state – so there is likely some other physical property corresponding to

some other operator, and we’ll want to simultaneously diagonalize these two operators so that we can characterize

with the two properties at the same time.

Definition 175

Two linear operators S and T are simultaneously diagonalizable if there is a basis in which every basis vector is

an eigenstate of both S and T .

Proposition 176

If S and T are simultaneously diagonalizable, S and T must commute.

Proof. The fact that two operators commute (or don’t) is a basis-independent statement. If S and T are simulta-

neously diagonalizable, there is a basis in which both S and T have diagonal matrices – since diagonal matrices always

commute, S and T must commute in any basis.

This is not a sufficient statement, though – not every matrix is diagonalizable. But we do know that normal

operators are diagonalizable, and now we can make a plausible claim:

Theorem 177

If S and T are commuting Hermitian operators, then they can be simultaneously diagonalized.

This result is easy to prove in the case where there are no degeneracies. Remember that a degenerate spectrum
is a situation where an eigenvalue is repeated – then we have three different cases. Either (1) both are non-degenerate,

(2) one is non-degenerate, or (3) both are degenerate. We can prove cases (1) and (2) together, and we’ll do that

first: suppose that the operator with a non-degenerate spectrum is T .

Proof when T ’s spectrum is non-degenerate. In this case, there exists an orthonormal basis (u1, · · · , un) by the spec-

tral theorem, such that

Tui = λiui

for all i , and λi 6= λj for all i 6= j . So now each of the ui eigenvectors generate one-dimensional invariant subspaces:
we now want to know what happens to these uis under S. Note that

STui = λiSui ,
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but S and T commute, so we also have

STui = TSui .

So the vector Sui must belong to the invariant subspace for ui , because it’s an eigenvector of T with eigenvalue λi (and

there’s only one dimension of eigenvalues for which this is true)! So Sui = wiui for some wi , and indeed we’ve shown

that ui is also an eigenvector of S (possibly with a different eigenvalue). So eigenstates of T are also eigenstates
of S, and we’ve indeed shown that S and T have a common set of eigenvectors, as desired.

The other case is a bit more interesting:

Proof when operators have degeneracies. If S has degeneracies, we will have eigenstates that generate subspaces with

dimension larger than 1. Let Uk denote the set of all vectors such that Su = λku, and say that this space Uk has

dimension dk . In other words, the kth eigenvalue has a corresponding space Uk such that the entire space is getting

scaled by the same amount λk . And our vector space can be decomposed as

V = U1 ⊕ U2 ⊕ · · · ⊕ Um,

where all of these subspaces Ui have different dimensions – some might have no degeneracy, while others have

degeneracy three.

Regardless, we can denote the basis of eigenvectors for Uk as (u(k)1 , u
(k)
2 , · · · , u(k)dk ) – by the spectral theorem, this

is an orthonormal basis. So we have a basis for V by putting all of these basis elements together: we can thus say that

(u
(1)
1 , u

(1)
2 , · · · , u(1)d1 , · · · , u

(m)
1 , u

(m)
2 , · · · , u(m)dm

)

is a basis for V . And we know that S is indeed diagonal in this basis, because every vector is an eigenvector of S by

construction – the first d1 diagonal entries are λ1, the next d2 are λ2, and so on.

So this is a good basis, but there’s another basis that also works well: we can consider the basis

(V1u
(1)
1 , V1u

(1)
2 , · · · , V1u(1)d1 , · · · , Vmu

(m)
1 , Vmu

(m)
2 , · · · , Vmu(m)dm

),

where V1, · · · , Vm are some arbitrary unitary operators acting on the spaces U1, · · · , Um. Basically, we take the

subspace U1 and act with a unitary operator V1 on it, take the subspace U2 and act with a unitary operator V2 on it,

and so on. Because our operators are unitary, we still have an orthonormal basis for each Ui , and thus we still have

an orthonormal basis of V here (because the different spaces with different eigenvalues are already orthogonal)!

So now here’s the catch: the spaces Uk are S-invariant subspaces, and we want to show that they are also

T -invariant! Suppose that u ∈ Uk : then

S(Tu) = T (Su) = λk(Tu),

so the vector Tu also has eigenvalue λk . Since we defined Uk to be the space of eigenvectors with eigenvalue λk ,

Tu ∈ Uk as well! So the idea now is that T keeps the invariant subspaces: it’s in the block form


D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dm

,

where Di is a di by di block matrix. Right now, we haven’t simultaneously diagonalized T yet, but now we can take

those arbitrary unitary operators Vi that we defined above. Since T is Hermitian, it’s also Hermitian on each diagonal

block matrix, so we can diagonalize each block: those are the Vis that we use! So once we do this for each block

matrix, we can diagonalize T without destroying the diagonalization of S, as desired.
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This argument also extends to an arbitrary number of operators: if S1, · · · , Sn are all mutually commuting Hermitian

operators, then we can simultaneously diagonalize them.

18 March 2, 2020

There’s a test next week, Wednesday night at 7:30 (in our regular recitation room). MIT regulations require lec-

ture/recitations to be canceled on the day of an exam, so we will not have class on Wednesday, March 11. It should

take about an hour and a half long, but the room is booked for two hours.

We’ll get a formula sheet with main results – a good way to start studying is to read over the formulas and make

sure we understand everything there. The exam itself will have some wave mechanics, spin 1/2, uncertainty, and some

(about a third) linear algebra.

Today, we’ll discuss operators, bras and kets, and other related topics. We’ll start a real treatment of time evolution

soon – next lecture, we’ll see an argument why having a unitary operator that evolves states implies the Schrodinger

equation.

Example 178

Consider a time-independent Hamiltonian H: that means that there is no explicit t. Then how can we solve the

Schrodinger equation iℏ ∂Ψ∂t = HΨ? (Note that Ψ denotes “full” wavefunctions in terms of both x and t.)

The idea is that we can write the energy eigenstates in the separable form

Ψ(x, t) = ψ(x̂)e−iEt/ℏ

as long as Hψ = Eψ. The time-independent phase e−iEt/ℏ only comes up in the final form of the solution: it does

not directly affect the ψ(x) component! And now this means that if we can write our initial wavefunction as a linear

combination of energy eigenstates

Ψ(x, 0) =
∑
n

αnψn(x), Hψn(x) = Eψn(x),

then we can just evolve the “basic solutions” individually:

Ψ(x, t) =
∑
n

αnψn(x)e
−iEnt/ℏ.

Another way to say this is that we have a unitary operator U(t) = e−iHt/ℏ which does the time evolution for us. This

operator has the property that

Ψ(t) = U(t)Ψ(t = 0).

Specifically, what’s happening is that when we have e−iHt/ℏ acting on our eigenstate ψn(x), H always gives En. So

the exponential of H hitting ψn just gives the exponential of En instead!

Remark 179. Things will get a bit more sophisticated starting next lecture, where we’ll consider the time-evolution

operator in general. If H depends on time, this can look much more complicated. But if H depends on time, but H

commutes at different times, we have a simple generalized formula. (And if H rotates from one component of spin to

another or does something else crazy, the formula is just messy.)

Let’s discuss a little now about some of the diagonalization arguments we’ve been making. There’s a few points

to pay attention to for the Spectral Theorem:
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• The theorem is usually stated for Hermitian operators, but it’s more generally true for normal operators: that

is, operators M such that [M†,M] = 0.

• The result says that there is an orthonormal basis of eigenvectors, which actually tells us a lot: it gives

as many eigenvectors as the dimension of our vector space. In addition, this basis has very nice properties,

because all of the eigenvectors are perpendicular. (Note that there isn’t a unique orthonormal basis, because of

degeneracies in eigenvalues. For example, if we have a plane of eigenvectors with the same eigenvalue, then we

can pick any two orthonormal vectors in that plane.)

We’ve probably heard the phrase unitarily diagonalizable: what this really means is that if we start with a normal

(but not diagonal) operator M on an orthonormal basis (e1, · · · , en), we can apply a unitary transformation to turn

our basis into (ẽ1, · · · , ẽn), in which M is diagonal:

U†MU = DM .

And it makes sense that we want a unitary operator U: such operators are those that preserve the inner product.

Fact 180

By the way, we know that any operator has at least one eigenvector: this is because the eigenvalues λ of an

operator satisfy

det |M − λI| = 0.

This gives a degree n polynomial equation in λ, and the Fundamental Theorem of Algebra says that this always

has a solution.

This is particularly important, because we show the Spectral Theorem by induction, extracting one eigenvalue at a

time and showing that we can diagonalize the resulting matrix.

Problem 181

Is the matrix M =


1 1 1

0 1 1

0 0 1

 diagonalizable?

Because the determinant of M − λI is just (1− λ)3, the only eigenvalue of this matrix is 1. But then if we try to

solve the equation v = Mv ,

v =


v1

v2

v3

 =

v1 + v2 + v3

v2 + v3

v3

 = Mv
only has solutions where v2 = v3 = 0, so we only have one (set of) eigenvector(s). Basically, what’s going on is that

we have a “shear matrix,” so things aren’t being scaled in the same way as they would in (for example) a Hermitian

operator.

Another way to think of this is that if we had three eigenvalues of 1, we would want to diagonalize our matrix

into


1 0 0

0 1 0

0 0 1

, the identity matrix. But this is definitely not going to happen, because for any unitary operator,

U†IU = U†U = U−1U = I is just the identity matrix, so it can’t turn into M.

We’ll finish with some exercises involving bra-ket notation:

94



Problem 182

Consider the operator T = |u〉 〈v |. What is the operator T †, and what is the trace of T?

We know that T applied to any vector will give a c |u〉 for some complex number c . (Specifically, we have

T |w〉 = |u〉 〈v |w〉). Thus, this is a projection onto the space spanned by |u〉: the only nonzero eigenvalue is

T |u〉 = |u〉 〈v | |u〉 =⇒ λ = 〈v , u〉 ,

so that is also the trace (sum of the eigenvalues) of T . Another way is to write

tr(T ) =
∑

Ti i =
∑
〈i |T |i〉 =

∑
i

〈i |u〉〈v |i〉,

which we then rewrite as ∑
i

〈v |i〉〈i |u〉 = 〈v |
∑
i

|i〉 〈i | |u〉 = 〈v | |u〉 = 〈v , u〉.

Bra-ket notation helps us find the adjoint as well:

T |w〉 = |u〉 〈v |w〉 =⇒ 〈w |T † = 〈u| 〈w |v〉

(because 〈v |w〉 is just a complex number, so the adjoint turns it into its conjugate). And now we can just move things

around:

〈w |T † = 〈w |v〉 〈u| ,

so we have a simple form T † = |v〉 〈u| .

19 Quantum Dynamics
In a lot of our study so far, we’re working with a vector space of states, and our states are wavefunctions. But there’s

been no time in this vector space, but we do care about time in physics because we have clocks! So we can wait some

time, and we will see that our vector has moved to some other vector in our state space. So this is the concept of

dynamics in quantum mechanics: we need a picture to describe time evolution.

A picture to keep in mind is that we have a vector space H (for Hilbert space), and we’ll have some state |ψ, t0〉 at

time t0. Then |ψ, t〉 is some other state in our Hilbert space, but it should definitely have unit length if we normalize

our states. So we can think of having a unit sphere on which all our vector tips live, and then our vector moves in

time and traces out a trajectory, all while preserving the norm of the vector. (And if we don’t use a normalized

vector, we’ll still preserve the norm – it’ll just be a different value from 1.) We proved earlier on that an operator

which preserves the length of all vectors is a unitary operator, and now we’re going to make a physical postulate:

Proposition 183

The state |ψ, t〉 is obtained by the action of a unitary operator from the state |ψ, t0〉:

|ψ, t〉 = U(t, t0) |ψ, t0〉 .

Here, |ψ, t0〉 is some arbitrary state, so if we use some other arbitrary starting state |ψ′, t0〉, it also evolves with

this formula, and the unitary operator U is the same for all states! If we give this unitary operator U any state, it’ll

tell us how it evolves in time.
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This is actually a very big assumption – it turns out that this postulate already gives us the Schrodinger equation!

We’ll see that shortly.

Proposition 184

The unitary operator U(t, t0) is unique (if it exists).

Proof. If two operators do the same thing to all vectors in our vector space, then they are the same operator.

We also know that if U(t, t0) is a unitary operator, we have

(U(t, t0))
†(U(t, t0)) = I.

This notation is a bit cumbersome, so we’ll just write (U(t, t0))† as U†(t, t0): it means the same thing.

We can now establish a few important properties of this operator U:

• U(t0, t0) = I: just plug in t = t0 in our defining equation, and the only operator that leaves all states the same

is the identity operator.

• Since we have

|ψ, t2〉 = U(t2, t1) |ψ, t1〉 = U(t2, t1)U(t1, t0) |ψ, t0〉

but also

|ψ, t2〉 = U(t2, t0) |ψ, t0〉 ,

we must have U(t2, t0) = U(t2, t1)U(t1, t0) . In other words, time composition works like matrix multiplication:

we go from t0 to t1, then from t1 to t2.

• If we take t2 = t0 in the above equation, we find that

I = U(t0, t0) = U(t0, t1)U(t1, t0).

Thus U(t0, t) and U(t, t0) are inverses for all t, and we can also write this as

U−1(t, t0) = U(t0, t) = U
†(t, t0)

(because U is unitary). This means that we can delete the “inverse” or “dagger” from our operator by just flipping

the order of the arguments.

With this, we’re now ready to find the Schrodinger equation. Since the Schrodinger equation is a differential

equation, we’ll try to use time evolution. We have that

∂

∂t
|ψ, t〉 =

(
∂

∂t
U(t, t0)

)
|ψ, t0〉 ,

where we only differentiate the operator because |ψ, t0〉 is a fixed state independent of t. We want to get an equation

for |ψ, t〉 out of this, and we have |ψ, t0〉 on the right side of the equation, so we can rewrite this as

=
∂U(t, t0)

∂t
U(t0, t) |ψ, t〉 .

So we now have a complicated operator acting on |ψ, t〉, but we can rewrite this as

=
∂U(t, t0)

∂t
U†(t, t0) |ψ, t〉
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(so that we have t and t0 in the same order), and we’ll call this operator Λ(t, t0). So now we have

∂

∂t
|ψ, t〉 = Λ(t, t0) |ψ, t〉 .

We want to learn some important properties of Λ at this point, so that we can turn this more into the Schrodinger

equation:

Lemma 185

The operator Λ is anti-Hermitian.

Proof. Note that (to apply a dagger, we reverse all the operators in a product and put daggers on them)

Λ† = U(t, t0)
∂U†

∂t
(t − t0).

because the time-derivative doesn’t interfere with daggers. To justify this last point, we’re taking an operator at

two slightly different times and subtracting them – since A† − B† = (A − B)†, the dagger indeed goes through the

derivative. And now this is −Λ, and we can show that by noting that

U(t, t0)U
†(t, t0) = I,

and now differentiating this with respect to time: the product rule tells us that

∂U

∂t
(t, t0)U

†(t, t0) + U(t, t0)
∂U†

∂t
(t, t0) = 0 =⇒ Λ + Λ† = 0,

as desired.

The next point of business is to get rid of the t0 in Λ:

Proposition 186

The operator Λ is independent of t0: that is, Λ(t, t0) = λ(t, t1) for any t0, t1.

What this allows us to do is to take t1 = t0 + ε and take the limit as ε → 0, which means the derivative is zero

everywhere – that means that Λ is indeed absolutely independent of the second argument.

Proof. We know that

Λ(t, t0) =
∂U(t, t0)

∂t
U†(t, t0) =

∂U(t, t0)

∂t
U(t0, t1)U

†(t0, t1)U
†(t, t0),

where we’ve introduced an identity operator between the two terms. But now we can group the first two terms

together: even though the derivative only acts on the first term, it’s also okay for it to act on the first two terms

(because there’s no time dependence anyway). And similarly, we can rewrite the last two terms:

=
∂

∂t
(U(t, t0)U(t0, t1))U(t1, t0)U(t0, t).

Now by composition, this is equal to

=
∂

∂t
U(t, t1)U(t1, t) =

∂

∂t
U(t, t1)U

†(t, t1) = Λ(t, t1)

as desired.
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So now we have an operator Λ which is anti-Hermitian and only depends on t: we’ll multiply it by i to make this

into a Hermitian operator. Also, since Λ of units of 1
time (because unitary operators U have no units and we take a

single time derivative), we can actually replace Λ by iℏΛ to get a Hermitian operator with units of energy. And now

there isn’t much more we have to do: if we define H = iℏΛ

∂

∂t
|ψ, t〉 = Λ(t) |ψ, t〉 =⇒ iℏ

∂

∂t
|ψ〉 = H(t) |ψ, t〉 ,

and we’ve derived the Schrodinger equation! This is basically most of the information in the Schrodinger equation:
it’s just unitary time evolution.

Fact 187

There’s a clear correspondence between the operator Λ and the Poisson brackets from classical mechanics, which

we should read about if we’re curious.

When we want to invent a quantum system, we don’t really know how to find the operator U, but we do know

how to find the Hamiltonian H from U: it’s just iℏ ∂U∂t (t, t0)U
†(t, t0). And the Hamiltonians are nice – we know energy

functionals of systems, so often we can write down an explicit H.

But we should also think about the opposite problem: how can we get U from H? It’s easier to invent a quantum

system with H, but we do care about how the unitary evolution operator looks.

To do that, first multiply both sides of the defining equation of H by U: we have

iℏ
∂U

∂t
(t, t0) = H(t)U(t, t0)

(where the U† and U terms cancel on the right hand side above, and then we’ve switched around the two sides).

There’s no confusion with derivatives between partial and total derivatives, so we have

iℏ
d

dt
U(t, t0) = H(t)U(t, t0).

And we should be able to see the Schrodinger equation in here: if we put in a |ψ, t0〉, the right side becomes H(t)

acting on |ψ(t)〉, and the left hand side becomes iℏ ddt |ψ(t)〉 (because we can bring |ψ, t0〉 into the derivative). To

solve further, there are three cases here:

• In our first case, H is time-independent, so H(t) = H for some operator H. Then

iℏ
dU

dt
= HU ,

and we’ll try to write down a solution of the form U = e−iHt/ℏU0. Plugging this in, we find that

iℏ
dU

dt
= iℏ

(
−
iH

ℏ

)
e−iHt/ℏU0.

Here, we’ve used the fact that H doesn’t depend on time – H acts like a number, so the derivative just lets us

take the H out of the exponential (for example, we can imagine taking the power series expansion). So canceling

constant terms, we find that the left side of our boxed equation above is

iℏ
dU

dt
= He−iHt/ℏU0,
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which is exactly HU as desired! So we know that our unitary operator

U(t, t0) = e
−iHt/ℏU0

for some constant matrix U0. Plugging in t = t0, the operator should be the unit matrix, so 1 = e−iHt0/ℏU0, and

thus U0 = e iHt0/ℏ. Substituting everything back, we get our final answer:

U(t, t0) = e
− iH
ℏ (t−t0) ,

as long as H is time-independent. And if we have U act on any energy eigenstate (which is an eigenstate of

H), we can just substitute in the eigenvalue E: that is,

eαH |ψn〉 = eαEn |ψn〉

as long as H |ψn〉 = En |ψn〉.

• In our second case, H has a little bit of time-dependence: we design this case so that it’s still possible to solve

the equation. We’ll assume that

[Ĥ(t1), Ĥ(t2)] = 0

for all t1, t2 (that is, the Hamiltonians at different times always commute). For example, a particle in a magnetic

spin has H = −γB̂(t) · ŝ, and it’s possible to have a time-dependent magnetic field B(t). But if the direction

is fixed, so we have something like H = −γBz(t)Sz , then the Hamiltonians at different times will commute

because Sz commutes with itself. (But later in the class, we’ll do things like nuclear magnetic resonance, and

then the system is more complicated than this.)

Well, the claim we have in this case is that U(t, t0) ends up being something generalized from the above case.

We want to put e−iHt/ℏ like before, but the time derivative dU
dt isn’t quite so simple now because H does depend

on time. So we can fix this by trying an ansatz of

U(t, t0) = exp

[
−
i

ℏ

∫ t

t0

H(t ′)dt ′
]
.

(Notice that if H is time-independent, this reduces to the boxed equation for U(t, t0) in the first case.) To verify

this, we’ll call the expression inside the exponential R(t). We have

Ṙ(t) = −
i

ℏ
H(t)

by the fundamental theorem of calculus, and now we want to differentiate

U = eR =⇒
dU

dt
= (1 + R +

1

2!
RR +

1

3!
RRR + · · · ),

and this simplifies to

dU

dt
= Ṙ +

1

2!
(ṘR + RṘ) +

1

3!
(ṘRR + RṘR + RRṘ) + · · · ,

but now Ṙ commutes with R, because Ṙ depends on H, while R is an integral of H’s – we’re assuming that

the Hs at different times commute. So the expression simplifies by moving all of the Ṙs to the left, and we just

end up with
dU

dt
= ṘeR = −

i

ℏ
H(t)U,
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which means the unitary operator U that we’ve established is the correct one for time-evolution, as long as the
Hs commute at different times.

• In the general case, the idea is that Ṙ and R may not commute with each other. There’s not very much we can

do, but there is one way to get something that makes sense.

Our answer will look like

U(t, t0) = T exp

[
−
i

ℏ

∫ t

t0

dt ′H(t ′)

]
,

where T is defined to be the time-ordered exponential. Basically, we expand the exponential term by term: we

start with the usual expansion, but then we change the limits of integration:

= 1 +

(
−
i

ℏ

)∫ t

t0

dt1H(t1) +
1

2

(
−
i

ℏ

)2 ∫ t

t0

dt1H(t1)

∫ t1

t0

dt2H(t2) + · · · ,

where the idea is that the second integral in the “squared” term always has t1 > t2. The next term will be similar:

it’ll look like

+
1

3!

(
−
i

ℏ

)3 ∫ t

t0

dt1H(t1)

∫ t1

t0

dt2H(t2)

∫ t2

t0

dt3H(t3),

and we can check on our own that the time-derivative works exactly as it should: specifically, if this time-ordered

exponential is our U, then iℏ dUdt will end up being equal to HU.

So it’s reassuring that a solution exists, but this isn’t a very practical way to find a solution U. And when we do

the rotating magnetic field problem for magnetic resonance, this isn’t what we’ll be doing! But we’ll see a bit

more of this in 8.06.

And now we’re ready for an alternate formulation of all of this, known as the Heisenberg picture of quantum

mechanics. This isn’t something that we formulate on its own – the idea is to start with a Schrodinger picture in

which we’ve already defined all of our operators x̂ , P̂ , Ŝx , Ĥ and wave functions ψ, and we’ll think about them in a
new way.

To get started, we first consider a Schrodinger operator ÂS (S stands for Schrodinger here). The motivation for

the Heisenberg picture is that we have two independent time-dependent states |α, t〉 and |β, t〉, and we might want

to understand the quantity

〈α, t| ÂS |β, t〉 .

We know, though, that we can represent the bra and ket vectors here by using unitary operators:

= 〈α, 0|U†(t, 0)ÂsU(t, 0) |β, 0〉 .

So instead of having time-dependence in α and β, we can use the unitary operators to say that we have a time-dependent

operator U†(t, 0)ÂsU(t, 0) between the initial states. And this object is very important:

Definition 188

The Heisenberg version of the Schrodinger operator ÂS is

ÂH(t) = U
†(t, 0)ÂSU(t, 0).

So any Schrodinger operator corresponds to a Heisenberg operator – we just act with U from both the left and the

right (which is the natural way for operators to act on operators). There’s a lot of things we can say about this new

operator that we’ve established:
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• At t = 0, ÂH(t = 0) = ÂS. This is because U(t, 0) is the unitary time-evolution operator, and when t = 0, this

is just the identity – nothing is changing. So our two operators (Schrodinger and Heisenberg) start off being

exactly the same.

• The unit operator in the Heisenberg picture is

U†(t, 0)IU(t, 0),

but I doesn’t do anything and U† and U multiply to the identity, and indeed the unit operator doesn’t change
in the Heisenberg picture.

• Suppose ĈS = ÂSB̂S. Then we can find the Heisenberg operator for Ĉ:

ĈH = U
†ĈSU = U

†ÂSB̂SU = U
†ÂSUU

†B̂SU,

and now this is just the product of the Heisenberg operators ÂHB̂H ! Similarly, this tells us that commutators

also behave nicely:

ĈS = [ÂS, B̂S] =⇒ ĈH = [ÂH, B̂H].

The key thing to keep in mind is that

[x, p] = iℏI =⇒ [xH(t), pH(t)] = iℏI

(because iℏ is just a constant, and the unit operator stays the same in the Heisenberg picture). So any

commutation relation in Schrodinger is also a commutation relation in Heisenberg.

• Let’s now look at Hamiltonians: by definition, we have

ĤH(t) = U
†(t, 0)ĤSU(t, 0).

If the Schrodinger Hamiltonian commutes at all times, meaning that [Hs(t1), Hs(t2)] = 0 for all t1, t2, then the

unitary operator is built by an exponential in terms of H. But then we can move the U†(t, 0) past the ĤS, and

we find that

ĤH(t) = ĤSU
†(t, 0)U(t, 0) = ĤS(t);

that is, the Schrodinger and Heisenberg Hamiltonians are equal if the Hamiltonians commute at all times.
(We’ll be able to check this in a nice example as well!)

Note that whenever HS(t) is a function of x , p, and t (for example), we can turn it into a Heisenberg operator by

putting a U† on the left and a U on the right. But then the Us will work its way inside – x ’s become Heisenberg

x ’s, and so on. So what we’re claiming is that

ĤH(t) = U
†ĤS(x̂S, p̂S, t)U = ĤS(x̂H, p̂H, t),

which means that we get the Heisenberg Hamiltonian by replacing the Schrodinger variables with their
Heisenberg versions. So if we’re in the case above where the Hamiltonians commute at all times, then

ĤS(x̂H, p̂H, t) = ĤS(x̂S, p̂S, t) :

somehow putting in Heisenberg operators into the Schrodinger Hamiltonian gives us exactly the same thing.

This will be a useful identity, and we’ll use it later on!
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• Our last point is about expectation values: remember that we started this discussion with two arbitrary states

|α, t〉 and |β, t〉. If we set those states equal to ψ, we find that

〈ψ, t| ÂS |ψ, t〉 = 〈ψ, 0| ÂH(t) |ψ, 0〉 .

This is an equation which tells us that the Schrodinger operator’s expectation value at a time t is just the

Heisenberg operator’s expectation value at time 0, and we can write this schematically as

〈AS〉 = 〈AH〉.

We just have to be careful to understand how to interpret this equation: in the left side, we’re using time-

independent states, but in the right side, we’re using the t = 0 states.

So far, these Heisenberg operators are a little bit difficult to work with – they’re hard to calculate, so we want to

find an equation satisfied by the Heisenberg operator. The reason for this is that we seldom know U, and even when

we know it, it’s a bit difficult to do the simplification U†ÂSU.

The idea is to calculate the quantity

iℏ
d

dt
ÂH,

which is also equal to iℏ ddt
(
U†ÂSU

)
. We should remember that the Schrodinger operator can have some explicit time

dependence, so we should apply the product rule to all three terms: this is equal to

iℏ
∂U†

∂t
ÂSU + iℏU†ÂS

∂U

∂t
+ iℏU†

∂ÂS
∂t

U,

where U is always U(t, t0).

Remark 189. It may be confusing why we have partial derivatives in one expression and total derivatives in the other

– the important thing to keep in mind is whether we’re fixing the Heisenberg or the Schrodinger variables. For the first

two terms in the product rule, it doesn’t matter whether we use a partial or total derivative – in both cases it’s the

same – but we need to use the partial derivative for the last term so that we’re fixing Schrodinger observables, while

we need to take the total derivative for the initial expression because ÂH is written in terms of Heisenberg variables,

which can have some additional time dependence (and we want to fix Schrodinger variables throughout everything).

But we also know how to find the derivatives of U and U†: since iℏ ∂U∂t = HU, we also know that (taking the dagger

of that equation and moving the negative sign over) iℏ ∂U†∂t = −U
†HS. So plugging those in, we find that

iℏ
d

dt
ÂH = −U†ĤSÂSU + U†ÂSĤSU + iℏ

∂ÂH
∂t

.

(The last term will be 0 if ÂS doesn’t have any explicit time dependence, so we’ll just leave it as it is and rewrite it as

its Heisenberg version.) And now we can turn the first two terms into their Heisenberg versions as well:

iℏ
d

dt
ÂH(t) = [ÂH, ĤH] + iℏ

∂ÂH
∂t

.

This is the Heisenberg equation of motion, and solving this differential equation is often the simplest way we can

calculate ÂH! Again, we’ll consider some particular cases:

• If ÂS has no explicit time dependence, then the second term disappears because ∂ÂS
∂t = 0, and the equation

simplifies to

iℏ
d

dt
ÂH(t) = [ÂH, ĤH].
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And the Heisenberg operator is simple – if the Schrodinger operator is time-independent (or commutes at different

times), then ĤH = ĤS. But we’ll leave it as is so that we have an equation in terms of ÂH itself.

Now suppose we want to compute how the expectation value of a Schrodinger operator depends on time: we

can calculate

iℏ
d

dt
〈ψ, t| ÂS |ψ, t〉 = iℏ

d

dt
〈ψ, 0| ÂH |ψ, 0〉 .

Now putting the derivative between the bra and ket, we get

〈ψ, 0| iℏ
d

dt
ÂH |ψ, 0〉 ,

and assuming still that Â has no time-dependence, this is equal to

〈ψ, 0| [ÂH, ĤH] |ψ, 0〉 .

So the time derivative of the expectation value satisfies

iℏ
d

dt
〈ÂH(t)〉 = 〈[ÂH, ĤH]〉 .

We say that Heisenberg expectation values are the same as Schrodinger expectation values – this can also be

written as

iℏ
d

dt
〈ÂS〉 = 〈[ÂS, ĤS]〉 ,

which we derived a few classes ago. So this means that the expectation values of Schrodinger operators are the

same as the expectation values of Heisenberg operators, except that we take the states at t = 0 in the latter

case.

• Now consider the case where ÂS is time-independent and conserved (meaning that it commutes with the

Schrodinger Hamiltonian). Then [ÂS, ĤS] = 0, which also means that [ÂH, ĤH] = 0, which means that

dÂH
dt
= 0.

So the Heisenberg operator is also time-independent – if the Schrodinger operator has no t’s and is conserved,

the Heisenberg operator doesn’t actually have any t’s either.

We’ll finish this class with a nice example:

Example 190

Consider the harmonic oscillator with the Schrodinger Hamiltonian

ĤS =
p̂2

2m
+
1

2
mω2x̂2,

where x̂ and p̂ are the usual Schrodinger operators.

Now the Heisenberg Hamiltonian should be identical, because we have a time-independent Hamiltonian. But we’ll

write it in general first, where we have U† and U coming in from the left and right: we get that

ĤH =
p̂2H
2m
+
1

2
mω2x̂2H.

We’ll check that this is time-independent, but first we need to evaluate the operators x̂H and p̂H. The most straight-
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forward way is to plug in the e−iHt/ℏ operators and multiply everything through, but this is a little bit complicated:

we’ll use the Heisenberg equation of motion instead! Since x̂ and p̂ are time-independent Schrodinger operators,

iℏ
dx̂H
dt
= [x̂H, ĤH] =

[
x̂H,

p̂2H
2m

]
.

And now this commutator gives us 1
2m p̂H[x̂H, x̂P ] · 2 =

iℏ
m p̂H, and plugging this in yields

dx̂H
dt
=
1

m
p̂H .

So this looks like an equation in classical mechanics – we have dx
dt =

p
m , and that’s another good point of Heisenberg

equations of motion – they look like ordinary dynamical variable equations! Similarly, we find that

iℏ
dp̂H
dt
= [p̂H, ĤH] =

1

2
mω2[p̂H, x̂

2
H] = mω

2x̂H · (−iℏ),

and thus we have
dp̂H
dt
= −mω2x̂H .

We can now solve for these in the same way that we classically: taking a second derivative of the first boxed equation,

we have that
d2x̂H
dt2

=
1

m

dp̂H
dt
=
1

m
(−mω2x̂H),

so we just get the simple harmonic oscillator equation of motion

d2x̂H
dt2

= −ω2x̂H.

Here, what we should notice about the Heisenberg picture is that we’re solving for the Heisenberg operators, which

tells us about the time evolution of all states at the same time! So we know that we have

x̂H = Â cos(ωt) + B̂ sin(ωt),

and then similarly the momentum

p̂H = m
dx̂H
dt
= −mω sin(ωt)Â+mω cos(ωt)B̂.

But we can figure out what these operators Â and B̂ are: at time t = 0, the Heisenberg operators should be identical

to the Schrodinger operators, so x̂H(t) = Â = x̂ (the Schrodinger operator), and p̂H(t) = mωB̂ = p̂. So we know

that B̂ = p̂
mω , and now we get our equations:

x̂H(t) = x̂ cos(ωt) +
p̂

mω
sin(ωt) , p̂H(t) = p̂ cos(ωt)−mωx̂ sin(ωt) .

So now any expectation of a combination of x̂ and p̂ can be found by plugging things in at time t = 0! So now we

can find the Heisenberg Hamiltonian:

ĤH =
p̂2H
2m
+
1

2
mω2x̂2H =

1

2m
(p̂ cos(ωt)−mωx̂ sin(ωt))2 +

1

2
mω2

(
x̂ cos(ωt) +

p̂

mω
sin(ωt)

)2
,

and expanding out yields

=

[
1

2m
cos2 ωt p̂2 +

1

2m
m2ω2 sin2 ωt x̂2 −

1

2m
(mω sinωt cosωt(p̂x̂ + x̂ p̂))

]
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+

[
1

2

mω2

m2ω2
sin2 ωt p̂2 +

1

2
mω2 cos2 ωt x̂2 +

1

2

mω2

mω
(cosωt sinωtt(x̂ p̂ + p̂x̂))

]
.

And now everything cancels very nicely: the p̂2 coefficients evaluate to 1
2m (cos

2 ωt + sin2 ωt) = 1
2m , and the x̂2

coefficients evaluate to 1
2mω

2x̂2 similarly. The cross-terms cancel, and we get a final expression which is identical
to the Schrodinger Hamiltonian! So what this means is that the when we substitute in the expression for the

Heisenberg operators into the Heisenberg Hamiltonian, we get an expression which is exactly equal to the Schrodinger

Hamiltonian.

20 March 4, 2020

(Two) practice tests for the exam next week will be posted, so that we can get an idea of what it will be like. Solving

problems from previous tests is a good way to study; another one is to review past homework and recitation material!

And it is good to read the lecture notes as well if we’ve only been using the videos. (By the way, the material for

today’s lecture on the Heisenberg picture will not be on the exam – we just need to understand concepts up to problem

set 4.)

Problem 191

Suppose Â and B̂ are Hermitian operators. How can we check if they are simultaneously diagonalizable?

We know that Hermitian operators are normal, and all normal operators are diagonalizable. (In fact, they are

unitarily diagonalizable, so we can get an orthonormal basis.) So we just need to know whether the eigenvectors line

up.

Well, the most important thing is to check the commutator [Â, B̂] = ÂB̂ − B̂Â. If this is equal to zero, it will be

equal to zero under any linear transformation:

Â′ = P−1ÂP =⇒ Â′B̂′ = P−1ÂPP−1B̂P = P−1ÂB̂P.

So [Â′, B̂′] = P−1[Â, B̂]P , and thus one commutator is zero if and only if the other is zero. Because diagonal

matrices commute, this means that if Â and B̂ must be diagonalizable in the original basis as well.

On the other hand, if Â and B̂ do not commute, then we cannot end up with a zero commutator. Thus the two

operators are not simultaneously diagonalizable.

Remark 192. Using this same idea, note that an operator proportional to the identity looks the same in all bases,

because

P−1(cI)P = cP−1P = cI.

So if we’re given two operators that commute, how should we proceed? The idea is that we should check the

eigenvalues of each matrix, and try to work with the one with less degeneracies (ideally none)! (This is because

having no degeneracy in eigenvalues makes it more clear what the (simultaneous) eigenvectors are.) Remember that if

an eigenvalue shows up twice for our operator Â, there is a whole plane of eigenvectors that would all work – however,

it takes some work to see which of those actually diagonalize the other operator B̂. Specifically, if we didn’t pick the

right ones, we’d have some invariant subspace of dimension 2 for B̂, which we’d have to diagonalize separately in B̂

to give us the final answer.

Remark 193. Remember that a lot of quantities and properties for our operators are basis-independent: for example,

the eigenvalues of Â or whether Â is Hermitian do not depend on our choice of basis.
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We’ll continue on with some practice for a different topic:

Problem 194

We have the uncertainty inequality

∆A∆B ≥
∣∣∣∣〈Ψ ∣∣∣∣ 12i [Â, B̂]

∣∣∣∣Ψ〉∣∣∣∣
(we can put the hats above the operators if we want, but it’s not that important). When is this inequality
saturated, meaning we have an equality case?

This was analyzed in the lecture videos: it requires

(B̂ − 〈B̂〉) |Ψ〉 = iγ(Â− 〈A〉) |Ψ〉 .

At the end of the day, we care about the state |Ψ〉 where the identity is indeed saturated. And we need to also find γ

as well – it’s some real number. But there’s more we don’t know here – the expectation values 〈A〉 and 〈B〉 are also

taken with respect to a state Ψ!

So if we expand out the equation in terms of Ψ, we have cubic terms:

BΨ− 〈Ψ|B|Ψ〉Ψ = iγ
(
ÂΨ− 〈Ψ|A|Ψ〉Ψ

)
.

But we can be a bit clever. If we want to solve the equation AΨ = 〈A〉Ψ, this looks ugly to expand out. But we can

instead first find the eigenvalues of Â and B̂, and we can just think of 〈A〉 and 〈B〉 as numbers a, b. (It’s not true that

Ψ is an eigenvector of Â and B̂, but this is showing us a general method.) And now our equation just becomes

(B̂ − b) |Ψ〉 = iγ(Â− a) |Ψ〉 .

And now we can rearrange some terms:

(B̂ − iγÂ) |Ψ〉 = (b − iγa) |Ψ〉 .

And now we have something that looks like an eigenvector equation! The operator B̂ − iγÂ is not Hermitian, so

eigenvalues can be complex (not just real). But now let’s add 〈Ψ| to the left hand side: this now gives us

〈B〉 − iγ〈A〉 = b − iγa.

And now equating real and imaginary parts (A,B are hermitian), we find that we indeed have b = 〈B̂〉, a = 〈Â〉. So

it’s okay to replace the expectation values with a, b, because they will turn out to be equal to the expectation values!

We have likely seen the concept of coherent states in the harmonic oscillator:

â |α〉 = α |α〉 , â = x̂ −
i p̂

ℏω
.

Here, â (and â†) are non-Hermitian operators, so when we solve for coherent states, we’re solving this kind of boxed

equation above.

Remark 195. By the way, if we take the norms of our uncertainty saturation relation, we find that

∆B = |γ|∆A.

This is something we solve for later on – we shouldn’t write it in terms of ∆B∆A in our equation.
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In the homework, we do this with the operators Â = x̂ , B̂ = p̂. Then we have

(p̂ − iγx̂)Ψ = (p0 − iγx0)Ψ,

so in coordinate space,
ℏ
i

dΨ

dx
− iγ(x)Ψ(x) = (p0 − i )Ψ,

so
dΨ

dx
=
i

ℏ
(iγx + p0 − iγx0)Ψ.

We can now write this in a separable form

dΨ

Ψ
=

(
ip0
ℏ
−
γ

ℏ
(x − x0)

)
dx,

and then integrating both sides will give us

logΨ =
ip0x

ℏ
−
γ

2ℏ
(x − x0)2.

And thus Ψ is a Gaussian – these are exactly the states that saturate the uncertainty! They take the form

Ψ(x) = c ′e ip0x/ℏe−γ(x−x0)
2/(2ℏ).

21 Coherent States
First of all, we’ll do a little bit of review. We learned how to calculate the Heisenberg operators, where we subject

a Schrodinger operator to the transformation U†(t, 0)AsU(t, 0). The resulting operator AH has a few important

properties: if the Hamiltonian H is time-independent, we just have AH = e iHt/ℏAse
−iHt/ℏ, and in general we have

the Heisenberg equations of motion to help us solve for AH. Our main achievement of last time was developing a

formula for the time-development of x̂H and p̂H for the harmonic oscillator, and we’ll see today that these Heisenberg

operators contain all of the information about the dynamics of this whole system.

Remark 196. We should read up on creation and annihilation operators: the idea is that â and â† are linear combinations

of x̂ and p̂, so they also have no time dependence, and in the Heisenberg picture they are also time-independent

operators: we have âH(t) = e−iωt â and â†H(t) = e
iωt â†.

The important thing is that we can write x̂ and p̂ as linear combinations of â and â† as well:

x̂ =

√
ℏ
2mω

(â + â†), p̂ = i

√
mωℏ
2
(â† − â).

And indeed, if we take the Heisenberg version of this operator (making every x̂ into a x̂H and so on), the equation still

holds, and then we can substitute in our new creation and annihilation operators and we’ll recover the familiar

x̂H(t) = x̂ cosωt +
p̂

mω
sinωt, p̂H(t) = p̂ cosωt −mωx̂ sinωt.

Today, we’ll use these concepts to understand the coherent states of the harmonic oscillator. The motivation here

is that in any energy eigenstate of the harmonic oscillator, operators have constant expectation values! So if we ask

about the position or momentum or other property of our particle, it will look the same at all times. This is still an

interesting state, but we want to construct quantum mechanical states that behave somewhat classically. And

this will have applications to light and photons soon!
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The first step we’ll take is to understand translation operators. We’ll start with the unitary translation operator

Tx0 = e
−i p̂x0/ℏ :

we’ve seen these operators a lot in the homework. This is unitary, because x0 is a real number, p̂ is a Hermitian

operator, so the exponent −i p̂x0/ℏ is anti-Hermitian. And then the exponential of any anti-Hermitian operator is

unitary.

The reason these operators are particularly nice is that the multiplication of two such operators

Tx0Ty0 = e
−i p̂x0/ℏe−i p̂y0/ℏ,

and now the two operators in the exponents are just multiples of each other, so they commute – thus this is just

= e−i p̂(x0+y0)/ℏ = Tx0+y0 .

So we don’t need Campbell–Baker–Hausdorff here! We can also get a simple expression for the inverse: plugging in

y0 = −x0), we find that

Tx0T−x0 = T0 = I,

so the operators Tx0 and T−x0 are inverses. But to get more intuition, we need to do a bit more computation by having

our operator act on x̂ and p̂ – that is, we want to compute the two quantities

T †x0 x̂Tx0 , T †x0 p̂Tx0 .

We’ve already shown in our own work that these are actually x̂ + x0I and p̂, respectively (the second expression is

simple because everything commutes). So if we have a state ψ, we can ask for the expectation value 〈x̂〉ψ, and if this

is a particle that is somewhat localized, the expectation will be roughly where the particle is. But then we can also

compute 〈x̂〉Tx0ψ – that is, what Tx0 is really doing – and this expectation is

〈ψ|T †x0 x̂Tx0 |ψ〉 = 〈ψ| (x̂ + x0) |ψ〉 = 〈x̂〉ψ + x0.

In other words, the expectation value in the new state Tx0ψ is the expectation value in ψ, except we’ve translated
everything by a displacement of x0. (And that explains the name “translation operator!) We should re-verify that

we have

Tx0 |x〉 = |x + x0〉 , Tx0 |ψ〉 = ψ(x − x0),

because ψ(x − x0) is the wave function translated to the right by x0 units (by function transformation rules).

So now we can use this translation operator to get our coherent states. We’ll start by taking the ground state of

the harmonic oscillator, and we’ll displace it by some x0: the resulting state looks like

|x̃0〉 = Tx0 |0〉 = e−i p̂x0/ℏ |0〉 .

Intuitively, we should imagine the ground state wave function in the harmonic oscillator potential, except we translate

it so that its center is at some position x0 instead of 0. We have no time dependence so far – we’ll first understand a

few more properties of this state, and then we’ll time-evolve it.

Example 197

What is the value of 〈x̃0|x̃0〉?
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We should be careful to note that this is not a position eigenstate, so we can’t use the formula 〈x |y〉 = δ(x−y).
But we do know that x̃0 is the result of a unitary operator acting on |0〉, which preserves length. Thus,

〈x̃0|x̃0〉 = 〈0|0〉 = 1.

The ψ associated to this state is then ψ0(x − x0), where 〈x |0〉 = ψ0(x) is the ground state wave function.

We can now proceed with a few other calculations: if we want to compute the expectation value of any operator
A on our coherent state, we want to calculate it in a vacuum, so

〈x̃0|A |x̃0〉 = 〈0|T †x0ATx0 |0〉 .

Basically, we’re tracing the problem back to what the regular ground state (vacuum) is doing. For example, if A = x̂ ,

we have that

〈x̃0| x̂ |x̃0〉 = 〈0|T †x0 x̂Tx0 |0〉 = 〈0| (x̂ + x0) |0〉 = x0,

as we expect, and similarly

〈x̃0| p̂ |x̃0〉 = 〈0|T †x0 p̂Tx0 |0〉 = 〈0| (p̂) |0〉 = 0.

Putting these together, we can find the expectation value of the Hamiltonian: because the p̂ is unchanged while the

x̂ becomes (x̂ + x0), we have

〈x̃0|H |x̃0〉 =
〈
0

∣∣∣∣ p̂22m + 12mω2(x̂ + x0)2
∣∣∣∣ 0〉 .

To avoid computing too hard, we can take the original Hamiltonian and separate it from the other terms here: this

evaluates to

= 〈0|H |0〉+
〈
0

∣∣∣∣12mω2(2x̂x0) + 12mω2x20
∣∣∣∣ 0〉 .

The first term here is a constant times an expectation of x̂ , so it is just zero, and then the last term is just some

constant. Putting everything together and using that the expectation of the Hamiltonian in the vacuum (ground state)

is ℏω2 , we have that

〈x̃0|H |x̃0〉 =
1

2
ℏω +

1

2
mω2x20 .

But this is now looking very classical: the expectation value of the energy is a small quantum term, plus the cost of

stretching everything out to x0, which is 12kx
2
0 . In other words, for large enough x0, we can think of the second term

as being the “cost” of having the particle being off to the side in a potential!

Remark 198. As small exercises, it’s worth calculating that

〈x̃0| x̂2 |x̃0〉 = x20 +
ℏ
2mω

, 〈x̃0| p̂2 |x̃0〉 =
mℏω
2

, 〈x̃0| x̂ p̂ + p̂x̂ |x̃0〉 = 0.

The idea we’re approaching now is that of time-evolution: it’s going to turn out that even though this coherent

state is not an energy eigenstate, the wavefunction will not actually change shape – it’ll just move back and forth!

This is surprising – usually superimposing only two energy eigenstates will change the shape, but this is an exceptional

case. Let’s use the notation that a state |x̃0〉 looks like |x̃0, t〉 at some time t: to explore what this looks like, we’ll

take some expectation values with the Heisenberg operator:

〈A〉t = 〈x̃0, t|A |x̃0, t〉 = 〈x̃0|AH |x̃0〉 ,

and if we wanted, we could also write this as 〈0|T †x0AHTx0 |0〉, so everything can be computed from expectation values

on the vacuum.
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Example 199

What is the expectation value of x̂ as a function of time on this x0 coherent state?

We plug in the Heisenberg operator x̂H to find that

〈x̂〉x̃0(t) =
〈
x̃0

∣∣∣∣(x̂ cosωt + p̂

mω
sinωt

)∣∣∣∣x̃0〉
(remember that the key idea is to evolve the operators, not the states), and now we know the expectation values of

x̂ and p̂ in the coherent state: they’re x0 and 0 respectively, so this just evaluates to

〈x̂〉x̃0(t) = x0 cosωt .

In other words, this object oscillates classically – we again have classical behavior of a quantum state!

Example 200

What is the expectation value of p̂ as a function of time?

This expectation should not just be zero for all time, since an object that is oscillating must move and therefore

must have some momentum. We plug in the Heisenberg operator p̂H to find that

〈p̂〉x̃0(t) = 〈x̃0|(p̂ cosωt −mωx̂ sinωt)|x̃0〉 = −mωx0 sinωt .

Indeed, we now find that

〈p̂〉x̃0(t) = m
d

dt
〈x̂〉x̃0(t),

so we get classical behavior in the momentum as well.

But now here’s the key calculation: we want to show that we have coherent evolution. In the harmonic oscillator

ground state, we have a minimum uncertainty packet – the ground state has some ∆x and ∆p, where their product

saturates the uncertainty principle. But to make sure we have coherency, we just need to make sure that the uncer-

tainties remain the same and that they’re saturated. That would imply that the shape is always Gaussian, so we do

have the same shape moving around in this classical manner.

Example 201

What are the uncertainties ∆x and ∆p as a function of time?

This is an example now where the calculation becomes a nightmare if we don’t have the Heisenberg picture. We

know that (using the ususla formula for uncertainty)

(∆x)2(t) =
〈
x̃0, t

∣∣x̂2∣∣x̃0, t〉− 〈x̃0, t|x̂ |x̃0, t〉2 ,
and we’ve calculated the second term already: we have

(∆x)2(t) =
〈
x̃0
∣∣x2H(t)∣∣x̃0〉− x20 cos2 ωt.

And now we focus on the first term: expanding out the expression for xH, we have

〈
x̃0
∣∣x2H(t)∣∣x̃0〉 = 〈x̃0∣∣∣∣x̂2 cos2 ωt + p̂2

m2ω2
sin2 ωt +

1

mω
cosωt sinωt(x̂ p̂ + p̂x̂)

∣∣∣∣x̃0〉 ,
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and now we can calculate each of these terms by referring to the “small exercises” above: all of this simplifies to

=

(
x20 +

ℏ
2mω

)
cos2 ωt +

mℏω
2m2ω2

sin2 ωt + 0,

so plugging this into our uncertainty, the x20 terms cancel and we just have

(∆x)2(t) =
ℏ
2mω

(cos2 ωt + sin2 ωt) =
ℏ
2mω

.

So the time dependence disappears – the uncertainty ∆x remains the same throughout the process! As an exercise,

we can verify that we indeed have

(∆p)2(t) =
mℏω
2

,

and now ∆p∆x = ℏ
2 is a saturation of the uncertainty principle, so our state maintains its shape through time-

evolution.

So we’ll now turn our attention to looking at this coherent state in the energy basis. Somehow, we’ve created a

superposition of different energy states that move nicely together – if we can understand where this comes from, we’ll

be able to generalize our coherent states completely.

If we write

|x̃0〉 = exp
(
−
i p̂x0
ℏ

)
|0〉 ,

there is a famous length scale in the harmonic oscillator

d20 =
ℏ
mω

.

This is basically the uncertainty of the position in the ground state up to a factor of
√
2, and this is the only way we

can really construct a length by dimensional analysis. So let’s plug in the expression for p̂ into our coherent state: we

have that

|x̃0〉 = exp
(

x0√
2d0
(â† − â)

)
|0〉 .

So now this is nicer because x0
d0

has no units, and the operators â and â† have no units either. (And remember that

because â† − â is anti-Hermitian, so it makes sense that we have no i in the exponent.) We’re going to reorder this

exponential, which is a job for our Baker–Campbell–Hausdorff formula:

eX+Y = eXeY e−
1
2
[X,Y ]

as long as [X, Y ] commutes with both X and Y . The idea here is that we want to split up the creation and annihiliation

operators – we want them in separate exponentials – because we don’t want to have to expand powers of â† − â. But

if we use the formula, we have that (letting X = x0√
2d0
â† and Y = − x0√

2d0
â)

e
x0√
2d0
â†− x0√

2d0
â

(note that we choose things in this order so that the â annihiliators act on |0〉 first, because instead of creating

states, we can kill the vacuum!) can be rewritten as

e
x0√
2d0
â†
e
− x0√

2d0
â
e−

1
2
[X,Y ],

and [X, Y ] is now a number (which is good, because it now commutes with X and Y ) equal to x20
2d20

, where we’ve used

111



that [â†, â] = −1. This gives us a final coherent state of the form

|x̃0〉 = e
x0√
2d0
â†
e
− x0√

2d0
â
e
− 1
4

x2
0
d2
0 |0〉 .

Now the e
− 1
4

x2
0
d2
0 is just some number, and then the exponential of the annihilator operator is 1 plus some annihiliator

terms – everything except the 1 kills the vacuum! So the annihilator exponential acts as the identity on |0〉, and

now we can write that

|x̃0〉 = e
− 1
4

x2
0
d2
0 e

x0√
2d0
â† |0〉 .

To talk about our energy eigenstates, we can now expand our exponential:

|x̃0〉 = e
− 1
4

x2
0
d2
0

∞∑
n=0

1

n!

(
x0
2d0

)n
â† |0〉 ,

and now we plug in our nth energy eigenstates:

|n〉 =
(a†)n√
n!
|0〉 ,

so we now have an expression for our coherent state in terms of the energy eigenstates:

|x̃0〉 = e
− 1
4

x2
0
d2
0

∞∑
n=0

1√
n!

(
x0
2d0

)n
|n〉 .

If we think of this as a sum
∑∞

n=0 cn |n〉, we have a precise combination of energy eigenstates, and we can calculate

|cn|2, which tells us the probability to find the coherent state in the nth eigenstate. We find that

|cn|2 = exp
(
−
1

2

x20
d20

)
1

n!

(
x20
2d20

)n
.

And now we have the same expression inside the exponential and the power: if we define λ = x20
2d20

, we now have that

|cn|2 = e−λ
λn

n!
.

This is called the Poisson distribution! In other words, the energy is (in some sense) Poisson distributed in a coherent

state.

Remark 202. Poisson distributions come up when we, for example, have a radioactive material of a certain lifetime.

Then the number of events that happen in a week is Poisson distributed.

We’ll first check that we do have a probability distribution:

∞∑
n=0

|cn|2 = e−λ
∞∑
n=0

λn

n!
,

and now the infinite sum is the power series for eλ, so this does evaluate to 1. One relevant property of any probability

distribution is its expectation value – this isn’t necessarily the most probable n, but we can still find it:

∞∑
n=0

n|cn|2 = e−λ
∞∑
n=0

n
λn

n!
,
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and we can get this by applying a λ-derivative:

= e−λλ
d

dλ

∞∑
n=0

λn

n!
= e−λλ

d

dλ
eλ = λ.

Example 203

Remembering that λ = x20
2d20

, this tells us that if we have x0 = 1000d0 (that is, we’ve moved the particle 1000

times the quantum uncertainty), the most strongly occupied levels are on the order of 1 million.

And we can think of our occupation number by using the expectation value of the number operator:〈
x̃0
∣∣N̂∣∣x̃0〉 =∑

m,n

c∗m
〈
m
∣∣N̂∣∣n〉 cn,

where we’ve substituted in the values of |x̃0〉 and its corresponding bra. Since |n〉 is an eigenvector of N̂ with eigenvalue

n, and c∗m = cm, this all just reduces to

=
∑
n,m

cmcnnδmn =
∑
n

c2n ,

which is again the λ we were just talking about. From here, we can do some more calculations: we’ve found the

expectation value of the energy, and it’s worth also thinking about the uncertainty as well – is the set of energies

sharply peaked or more spread out? This is left as an exercise for us – it turns out that

(∆E)x̃0 = ℏω
x0√
2d
=⇒

∆E

ℏω
=
x0
d
.

So the energy uncertainty for a classical-looking coherent state – that is, where x0 � d – has ∆E large compared to

the spacing of the harmonic oscillator. So lots of different energy levels will be excited, but we also know that

〈E〉
∆E
≈
1
2mω

2x20
ℏω x02

=
x0√
2d
.

So this state has an interesting property: the energy uncertainty corresponds to many different levels of energy

eigenstates, but this uncertainty is still much smaller (in fact by the same factor) compared to the actual average

energy. In other words, we have a state with an almost definite energy, containing many levels in the oscillator.
And now we’re ready to generalize our coherent states in a way that makes them more flexible:

Definition 204

The α coherent state for α ∈ C is defined to be

|α〉 = D(α) |0〉 = exp
(
αα̂† − α∗α̂

)
|0〉 .

The operator D(α) is unitary: its exponent is

αâ† − α∗â,

which is equal to its own dagger, so the exponent is anti-Hermitian and therefore the exponential is unitary. And we

can check that when α is real, this will reduce to the previous case.

First of all, let’s calculate

â |α〉 = â exp
(
αα̂† − α∗α̂

)
|0〉 .
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We know that â kills the vacuum, so we would want to switch around the two terms: we can replace the product with

a commutator

=
[
â, exp

(
αα̂† − α∗α̂

]
|0〉
]
.

This is again in the formula sheet Campbell–Baker–Hausdroff says that

[A, eB] = [A,B]eB

as long as [A,B] commutes with B. So taking A = â and B = αâ† − α∗â, their commutator is just a number, and

we find that

â |α〉 = α |α〉 .

So we’ve now diagonalized a non-Hermitian operator – we found its eigenvalues! Unfortunately, we don’t get any

of the nice theorems about Hermitian operators – states of different eigenvalues aren’t orthogonal, and we don’t have

completeness, so nothing works quite as nicely as we want. But this is still pretty remarkable – coherent states are
eigenstates of the annihiliator operator.

The physical interpretation of such a state is that |α〉 is a coherent state with some initial momentum (in the

real case where our position is x0 cosωt, the particle starts off with zero momentum). Indeed, we can check that

〈α|x̂ |α〉 =
d√
2

〈
α
∣∣â + â†∣∣α〉 .

We can now apply â on the |α〉 ket and â† on the 〈α| bra, and we find that this is equal to

=
d√
2
(α+ α∗) = d

√
2Re(α).

Similarly, we can calculate the expectation value of the momentum: we find that

〈α|p̂|α〉 =
√
2ℏ
d
Im(α).

The formulas are a bit messy, but the main point is that the real part of α corresponds to the position of the coherent

state, while the imaginary part of α tells us the initial momentum. And we can describe this geometrically by

considering the complex α-plane: this α vector will then evolve in time in a nice way, because

|α, t〉 = e−iHt/ℏeαa†−α∗ae iHt/ℏe−iHt/ℏ |0〉

(where we’ve added the blue terms to make computation nicer), and now the last two terms evaluate to e−iωt/2 |0〉
(we have an energy eigenstate for H of the ground state energy ℏω

2 ), while the first three terms are basically the

Heisenberg operator, except that we have opposite signs for the t. Thus, we have the Heisenberg operator at time

−t:
|α, t〉 = eαâ

†
H(−t)−α

∗âH(−t)e−iωt/2 |0〉 .

But we have the formula for the Heisenberg operators âH and â†H: plugging those in (which just gives us an additional

phase) yields

|α, t〉 = eαe−iωt â†−α∗e iωt âe−iωt/2 |0〉 .

So α has now become αe iωt ! In other words,

|α, t〉 = e−iωt/2
∣∣e−iωtα〉 .

The e−iωt/2 in the front is an irrelevant phase for the whole state: all that’s happening is that α is rotating in a circle
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with frequency ω in our complex plane, and at any time, the real part is proportional to the expectation value of the

position, while the imaginary part is proportional to the expectation value of the momentum.

Fact 205

We do need to choose appropriate units on our real and imaginary axes: the length scale for the real axis is ⟨x⟩√
2d0

,

and the length scale for the imaginary axis is ⟨p⟩d0√
2ℏ . This way, we do indeed rotate in a circle, rather than just an

ellipse.

So in summary of everything we’ve been discussing: coherent states came out of taking the ground states of our

harmonic oscillator and displacing them with some translation operator. But ultimately, the reason this all works out

is that this operator is actually that we have an exponential of something depending on our creation and annihiliation

operators, which allowed us to define a more general α coherent state. Because our operator D(α) is unitary, our

state |α〉 is indeed well-normalized, and in fact this state remains a coherent state with a value of α rotating with

some angular velocity ω in the complex plane.

We’ll finish by developing one more idea here. α coherent states are not position, momentum, or energy eigenstates,

so there are measures of uncertainty in each of these observables. So we should really draw α as a kind of Gaussian

blob: while we know the exact value of the expectation value of x̂ and p̂, that’s not necessarily going to be the exact

value that we measure.

And we’ll relate that to the concept of an electromagnetic wave. Suppose this EM wave has energy E, and its

electric field is described by a function A cosωt. Earlier, we discussed briefly the idea of energy-time uncertainty –

let’s do a handwavy argument first. The phase of this wave ϕ = ωt has some error

∆ϕ

ω
= ∆t,

and now this wave has an energy

E = Nℏω =⇒ ∆E = ∆Nℏω,

where N is the number of photons. Then

∆E∆t ∼
ℏ
2
=⇒ ∆Nℏω

∆ϕ

ω
∼
ℏ
2
=⇒ ∆N∆ϕ ∼ 1 .

This last relation is actually taken somewhat seriously: comparing the uncertainty in the number of photons and the

phase in a wave in quantum optics does yield a result that looks like this. Of course, our derivation is bad – we haven’t

really explained what ∆t means, but this gives us a bit of intuition.

So let’s do a more explicit calculation: in our coherent state, we know that

〈N̂〉α =
〈
α
∣∣â†â∣∣α〉 ,

and now we can have â† act on the left and â act on the right to get

〈α|α∗α|α〉 = |α|2 〈α|α〉 = |α|2.

So in a harmonic oscillator, the expectation of the number operator is the squared length of α. Similarly, we can find

that

〈N̂〉α =
〈
α
∣∣â†ââ†â∣∣α〉 = |α|2 〈α∣∣ââ†∣∣α〉 .

Now â and â† are kind of in the wrong order – we want â to act on a ket, but it’s acting on a bra – so we replace this
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object by the commutator plus its reverse order: this yields

= |α|2(1 +
〈
α
∣∣â†â∣∣α〉) = |α|2(1 + |α|2) .

And this allows us to calculate the uncertainty in N:

∆N =
√
|α|4 + |α|2 − |α|4 = |α|.

In other words, the uncertainty in N is the square root of the expected value of N – thus the “length” of α in our

complex plane is actually ∆N, not 〈N〉.
And now we can be more precise with our uncertainty relation. α is rotating in our complex plane, and the

uncertainty of the position, and also the momentum, in a coherent state are just the uncertainty in the ground state:

∆x =
d0√
2
, ∆p =

ℏ√
2d0

.

Remembering how we chose the units on our real and imaginary axis, we find that our Gaussian “blob” of α spans an

uncertainty on the order of 12 in the real axis, as well as in the imaginary axis. So we can say that the diameter of the

Gaussian blob is on the order of 1, so the phase of α in the complex plane has some amount of uncertainty as
well! Since the length of α is ∆N, and the blob covers a length of 1 along the circumference of the circle, this tells

us that the uncertainty in the angle is 1
∆N . So this at least gives us a picture of where the equation

∆N∆ϕ ∼ 1,

the phase uncertainty relation, originates from.

22 March 9, 2020
We’ve now started talking about Heisenberg operators and coherent states – questions on this material were postponed

last lecture, but we can talk about them now. And we’ll do some practice problems to help prepare for the exam.

(There will be a formula sheet, but the test is closed book, closed notes. If we have a request for a particular equation,

we should let the 8.051 instructors know.)

As a general rule, we should not rely too much on trying to memorize equations and principles, but we should know

by heart things like the harmonic oscillator Hamiltonian or Schrodinger equation because we’ve worked with them

repeatedly. For example, if we know that we can write

H =
p̂2

2m
+
1

2
mω2x̂2 = hω

(
N̂ +

1

2

)
,

where the number operator N̂ = â†â, we can know that x̂ and p̂ are some constants times â+ â† and â− â†. We know

that ℏ
mω is a helpful length scale, because p̂ has units of ℏL , which means H has units of ℏ2

mL2 = mω
2L2 (by comparing

it to the kinetic energy term). And this tells us that

L4 =

(
h

mω

)2
=⇒ L2 =

ℏ
mω

,

which tells us that the x̂ operator should have a
√

ℏ
mω term, plus some additional constants. And if we’re not sure,

we can always check them by using [â, â†] = 1. And this means that we can find out what the explicit formulas for â

and â† look like by taking linear combinations of x̂ and p̂.
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So in this example, knowing that we should write the Hamiltonian as ℏω
(
N̂ + 12

)
is important on an intuitive level

to help us find the direction of how to proceed. But then the rest can be deduced step by step!

Similarly, if we’ve been practicing, we should know the Pauli matrices pretty well (maybe knowing σz and σx). But

also important is knowing their properties: they’re Hermitian, traceless, and so on.

Example 206

Consider an infinite square well with

V (x) =

0 −L2 ≤ x ≤
L
2

∞ otherwise.

Show that ∆x ≤ L
2 . Can this be saturated?

Note that

(∆x)2 = 〈x2〉 − 〈x〉2 ≤ 〈x2〉,

and since |x | ≤ L
2 everywhere, 〈x2〉 ≤

(
L

2

)2
. Taking square roots on both sides yields the desired result. But

equality would occur if the particle is only found at −L2 or L
2 (with equal probability of each so that 〈x〉 = 0), and this

would give us a discontinuous wavefunction. So it is not possible to saturate the inequality.

By the way, a state with zero position uncertainty is a delta function, which is not normalizable (because we have

to square it)! So that’s a kind of degenerate state on the other end.

Example 207

Consider position eigenstates in the simple harmonic oscillator: we wish to construct a state

x̂ |x〉 = x |x〉 .

As a hint, x̂ =
√

ℏ
2mω (â + â

+), and we should use the ansatz

|x〉 = N(x) exp
(
βâ† −

1

2
γâ†â†

)
|0〉

where β, γ are constants to be determined with the eigenstate condition and N(x) is determined with the overlap

〈0| |x〉.

First, we use the eigenstate condition: this tells us (plugging in the definition of x̂) that

x̂ |x〉
√
ℏ
2mω

(â + â+)N(x) exp

(
βâ† −

1

2
γâ†â†

)
|0〉 = xN(x) exp

(
βâ† −

1

2
γâ†â†

)
|0〉 .

We wish to move that (â) past the exponential term, but this makes us pick up a commutator term for the â: since

[A, eB] = [A,B]eB if [A,B] is a constant (more generally, when [[A,B], B] = 0), we start this problem by doing the

side calculation

âeβâ
†− 1
2
γâ†â† = eβâ

†− 1
2
γâ†â† â +

[
â, betaâ† −

1

2
γâ†â†

]
ebetaâ

†− 1
2
γâ†â† .

The whole point is that plugging everything back in, we require

β − γa† + a†,

117



so γ = 1 and β
√

ℏ
2mω = x . We can see the rest of the solutions online.

Here’s one more problem we can think about:

Example 208

Consider the uncertainty relation

∆Sx∆Sy ≥ C.

Find C, and rewrite it as ∆σx∆σy ≥ C′. Find the states that saturate this inequality (with |γ| ≤ 1)

(Â− 〈Â〉) |ψ〉 = −iγ(B̂ − 〈B̂〉) |ψ〉 .

23 Photon States and Two State Systems, Part 1
Today, we’re going to talk about a new kind of system – quantum states of the electromagnetic field. A photon

is a discrete quantum of that field, so in some sense, this is a first introduction to quantum field theory! It turns out

that the harmonic oscillator plays a pretty important role here, and a key idea will be the set of coherent states that

we defined last time:

|α〉 = D(α) |0〉 , D(α) = eαâ
†−α∗â.

(These states have the property that â |α〉 = α |α〉.) So photon states have to do with the electric and magnetic field,

and we’re going to try to do a quantum description of this by starting with a description of its energy. Recall that the

energy E can be evaluated by an integral of the form

E =
1

2

∫
d3xε0

[
E⃗2(r⃗ , t) + c2B⃗2(r⃗ , t)

]
.

We’ll focus on a particular mode of this that we’ve seen from 8.02, where we have a finite volume cavity and a single

plane wave with some wavelength and some frequency. Suppose this wave is along the z-direction – then we can write

our field as

Ex(z, t) =

√
2

ε0V
ωq(t) sin(kz),

where V is the volume of the cavity (we can think of it as a large box, or we can imagine it being almost infinite), and

ω and k = ω
c are the frequency and wavenumber of our electromagnetic wave, respectively. (The factor in the front is

just for normalization.) Here, q(t) is some arbitrary function of time that we’ll determine later, and the ω will make

more sense soon. By Maxwell’s equations, this corresponds to a magnetic component in the y direction

cBy (z, t) =

√
2

ε0V
p(t) cos kz,

where p(t) is some other arbitrary function of time (related to q(t) by Maxwell’s equations). We can check this

configuration more carefully, but for now the important thing is for us to think about the energy of such a system:

since we’re squaring the E and B fields and integrating over the whole box of volume V , the prefactors will actually

disappear – this is because the average value of sin2 kz and cos2 kz is 12 , and this is a valid approximation for us to

use if our box is large enough. Putting everything together, we’ll find that our energy is

E =
1

2

(
p(t)2 + ω2q(t)2

)
.
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So now our ω makes a bit more sense – we’re getting something that looks a lot like a harmonic oscillator, except

we’re missing the mass terms: this means that we have different units for p and q as we do for a usual harmonic

oscillator.

Fact 209

Notice, though, that we couldn’t have done any better – photons have no mass, and we’re trying to describe an

electromagnetic field with photons.

So we’ll just resolve the units ourselves – p must have units [p] =
√
E, and q must have units [q] = T

√
E (where

the extra time factor T comes from ω having units of 1T ). So at the end of the day, pq has the units of [T ][E],

which are the units of ℏ – that’s a good sign! This perhaps motivates us, because there is a natural correspondence
between a mode of vibration of a classical electromagnetic field and an energy functional that looks like the harmonic

oscillator.

Proposition 210

We’ll say that

E =
1

2

(
p(t)2 + ω2q(t)2

)
is a Hamiltonian, where p and q are the Heisenberg operators of the electromagnetic field.

So now we can say that

H =
1

2

(
p̂2 + ω2q̂2

)
is our time-independent Hamiltonian – even though p and q are functions of t, that’s because we’re taking those to

be the Heisenberg versions of our operator – and while this might seem speculative, we can do some checks to make

sure that this is indeed reasonable. First of all, we should look at the Heisenberg equations of motion and compare

them to the classical equations of motion:

iℏ
d

dt
pH(t) = [p̂H, H]

for a time-independent Hamiltonian, and we can also plug in Maxwell’s equations and see what relations we get for

q(t) and p(t). It turns out (when we do this for homework), those two sets of equations are exactly equivalent! So

it is indeed valid to think of our dynamical system with q̂ and p̂ as our quantum operators.

So remembering that we’re using a harmonic oscillator, except replacing mass m go to 1 (this is okay because

we found that p and q have units that multiply to ℏ), we now have expressions for our two operators in terms of
creation and annihilation operators:

q̂ =

√
ℏ
2ω
(â + â†), p̂ =

1

i

√
ωℏ
2
(â − â†)

just by setting m = 1. Indeed, the units match up over here, and then we can also write the Hamiltonian in terms of

of our number operator:

H = ℏω
(
â†â +

1

2

)
,

because m doesn’t show up in this formula in the harmonic oscillator case anyway, and therefore we can also write this

in terms of the number operator

H = ℏω
(
N̂ +

1

2

)
.

We’ll now physically interpret this as saying that a state with some number of photons n has the energy nℏω (plus

the extra 1
2ℏω). This is actually a huge assumption, because what we’re doing is taking x̂ and p̂ and replacing them
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with q̂ and p̂, but they have nothing to do with the usual position and momentum – they should represent the electric

and magnetic field. So really, E⃗ and B⃗ are becoming quantum operators! Quantum field theory is the whole idea that

fields are operators, and it seems to be a valid idea in this case: a state with N photons is viewed as a state of a

“harmonic oscillator” with mass 1.

So now let’s go to our Heisenberg form for our operators: we have equations above that tell us p̂ and q̂ in terms

of â and â†, and just replacing everything with its Heisenberg counterpart now tells us that

q(t) =

√
ℏ
2ω

(
e−iωt â + e iωt â†

)
.

(Each operator on the right hand side just gains a phase.) And now substituting this back into our electric field, we

find that

Êx(z, t) = E0
(
e−iωt â + e iωt â†

)
sin kz ,

where t is the time in a Heisenberg operator and E0 =
√
ℏω
ε0V

. And the main point here is that this is now an

electromagnetic field operator!

Example 211

Let’s find the expectation value of this electric field operator to get a bit more intuition.

Suppose we have some photon energy eigenstate |n〉, so now we have a state with n photons and a total enregy

of nℏω + 12ℏω. We now want to compute

〈Ex 〉|n⟩ = E0
(
e−iωt 〈n|â|n〉+ e iωt

〈
n
∣∣â†∣∣n〉) sin kz,

and the idea is that this tells us how the electric field should look in this state |n〉. But â reduces |n〉 to |n − 1〉, which

is orthogonal to |n〉, and similarly â† raises |n〉 to an orthogonal state as well. So the expectation value is zero, but

this isn’t that surprising – in an energy eigenstate, the wavefunction doesn’t change in time, so nothing interesting

happens.

So let’s pick a more imaginative state – we’ve said many times that coherent states act like classical states, so

let’s try putting in the state |α〉 instead. Then

〈Ex 〉|α⟩ = E0
(
e−iωt 〈α|â|α〉+ e iωt

〈
α
∣∣â†∣∣α〉) sin kz,

and this time things are better: 〈α|â|α〉 = α 〈α|α〉 = α, and similarly the other term evaluates to α∗ (we evaluate on

the bra instead), and this all simplifies to

= E0
(
e−iωtα+ e iωtα∗

)
sin kz,

and now this is great: the expectation value of the electromagnetic wave look like traveling or stationary waves that

we see in 8.02! So a classical wave that resonates in a finite-volume cavity really is just a coherent state of the

electromagnetic field: even though this state of photons is not an eigenstate for energy, position, or momentum, we

still have a nice classical picture that looks like a normal wave. (And that also explains that lasers are coherent states

of the electromagnetic field – if the number uncertainty is large, the phase uncertainty can be very small.)

And now we can do this more explicitly: this can also be written as

〈Ê〉|α⟩ = 2E0 Re(αe−iωt) sin kz,

120



and now if we write α = |α|e iθ, this simplifies to

= 2E0|α| cos(ωt − θ) sin kz,

which is a standing wave with a fixed spatial distribution, and it has a nice classical description as well as a good

quantum description. And if we want to find the energy of this state, it’s the expectation value of the Hamiltonian:

〈H〉 = ℏω
(
〈N̂〉+

1

2

)
,

and in a coherent state, we know that N̂ = |α|2. So the coherent state α has |α|2 photons.
This is basically all we will talk about with photon states – we could put together different superpositions of modes

and discuss commutation relations of the field operators and so on, but that’s what quantum field theory is for. In

summary, the main point of this discussion is that the harmonic oscillator has entered in an interesting way, such

that we have an uncertainty between the E and B fields. The different energy levels of this oscillator correspond to

different numbers of photons, and we get a classical description by considering coherent states – this is how we can

recover the classical wave oscillations that are familiar from 8.02.

We’ll now spend the next few lectures on two-state systems, and the first topic of interest is that of spin
precession. It seems like this is a very particular kind of problem when we have spins in magnetic fields, but it’ll turn

out that any two-state system can be thought of as a spin in a magnetic field, even if we’re talking about an

electron shared between two atoms or an ammonia molecule – mathematically, spins are what we’ve already become

familiar with.

Recall that this whole concept of spin precession comes up when we try to relate a particle’s magnetic moment

with its angular momentum. We made an argument earlier on in class that

µ⃗ =
q

2m
S⃗,

where S⃗ is the classical angular momentum. But we also claim that this is true in quantum mechanics as well, except

for a few small modifications: we get a slightly different magnetic moment in the Hamiltonian, which gives us an

additional g factor on the right side, and the S⃗ is now an intrinsic spin angular momentum. It’s a bit abstract, and

the best way for us to view this object is as an operator! The magnetic dipole moment is then also an operator (since

it’s a constant times the spin operator).

Recall that g = 2 for the electron – this is predicted both by Dirac’s relativistic equation for the electron and by

experimental results – and particles like the proton or neutron have different values of g. For example, a neutron has

three quarks – two with some charge, one with the opposite – and it’s possible that this can have a positive angular

magnetic moment. At the end of the day, we’ll simplify this with some notation and just write

µ⃗ = γS⃗ ,

where the constant γ summarizes all of the factors that we gain throughout this process. The Hamiltonian for such a

system is just (subscript s for spin)

Ĥs = −µ⃗ · B⃗,

and here B⃗ will typically be a static magnetic field, so that we don’t have to quantize it and think of it as a quantum

field (as discussed above). And we’ll typically write this also as

= −γS⃗ · B⃗ = −γB⃗ · S⃗ = −γ[Bx Ŝx + By Ŝy + Bz Ŝz ].
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Example 212

When the magnetic field only points in the z-direction (and is of the form Bẑ), our Hamiltonian simplifies to

Ĥs = −γBŜz .

Then the unitary operator that generates time evolution of states (for a time-independent Hamiltonian) is

exp

(
−
iHst

ℏ

)
= exp

(
−i(−γBt)Ŝz

ℏ

)
.

Now we’re going to use a property that we’ve justified in homework but will understand in more detail in the next few

lectures: we talked about the operator

R̂n⃗(α) = exp

(
−
iαŜn
ℏ

)
,

where n⃗ is a unit vector and Ŝn⃗ = n⃗ · Ŝ. This was called the rotation operator – we verified with some calculations

that this rotates a spin state by an angle α around the axis n⃗. But any spin state also corresponds to a vector n⃗′ –

we’re going to verify that this vector n⃗′ is indeed rotated by an angle α.

So if we now look at the operators Ĥs and R̂n⃗, notice that the Hamiltonian just has −γBt playing the role α and

Ŝz playing the role of Ŝn⃗. So we must do some kind of rotation here as well, and that’s the calculation we’ll do now.

Example 213

Our magnetic field is still in the z-direction. Consider some arbitrary spin state in the direction in some direction

n⃗ with spherical coordinates θ0, ϕ0 (note that this is not the same as the vector ẑ around which we’re rotating

the states).

Our spin state is thus in the direction n⃗ at time t = 0, and its general formula is

|ψ, 0〉 = cos
θ0
2
|+〉+ sin

θ0
2
e iϕ0 |−〉 .

Now we’ll apply the time-evolution operator to this state, but first we’ll do a preliminary calculation:

Hs |+〉 = −γBSz |+〉 = −γB
ℏ
2
|+〉 ,

and similarly

Hs |−〉 = −γBSz |−〉 = +γB
ℏ
2
|−〉 .

So now the state at any time is governed by our unitary time evolution operator:

|ψ, t〉 = e−iHs t/ℏ |ψ, 0〉 ,

and now we can write |ψ, 0〉 out as a linear combination: because the exponent H acts on |+〉 with some eigenvalue,

we can put that eigenvalue into the exponent instead! And thus

|ψ, t〉 = cos
θ0
2
e−i(−γBℏ/2)t/ℏ |+〉+ sin

θ0
2
e iϕ0e−i(+γBℏ/2)t/ℏ |−〉 ,

where we’ve just replaced H with its eigenvalues, and this simplifies to

|ψ, t〉 = cos
θ0
2
e iγBt/2 |+〉+ sin

θ0
2
e iϕ0e−iγBt/2 |−〉 .
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We have some extra phase terms, so we need to factor those out to get them into our generic phase state: factoring

out e iγBt/2 yields an irrelevant phase, and this is just

e iγBt/2
(
cos

θ0
2
|+〉+ sin

θ0
2
e iϕ0e−iγBt |−〉

)
.

So now the exponential term is exp (i(ϕ0 − γBt)), and now we know exactly what’s going on here: we have a spin
state where θ = θ0 is fixed, while ϕ = ϕ0 − γBt is precessing at some linear rate. Indeed, this is what we claimed

with the rotation operator Rn⃗ earlier on in the class! And the negative sign means that ϕ decreases in time.

And now that we’ve done a calculation, we’ll also present the general result so that this all becomes more clear.

Spin precession is both a quantum and a classical phenomenon – in the classical case, if we have a magnetic moment

µ⃗ in a magnetic field B⃗, we have a torque

τ⃗ = µ⃗× B⃗

(this is the computation where we have a square wire not aligned with a magnetic field from 8.02). But the rate of

change of angular momentum is this torque, so

dS⃗

dt
= τ⃗ = µ⃗× B⃗ = γS⃗ × B⃗ = −(γB⃗)× S⃗ .

This equation is a particular case of a famous equation in classical mechanics where we have a rotating vector

dx⃗

dt
= ω⃗ × x⃗ :

the solution is that a vector x⃗ rotates with angular frequency ω around the axis defined by ω. So in the specific

case we’re talking about, S⃗ plays the role of x⃗ , and γB⃗ plays the role of ω⃗. This gives us what’s called the Larmor
frequency

ω⃗L = −γB⃗.

Indeed, this is the same Larmor frequency that we derived in the phase ϕ in the quantum state – we now have

derivations in both cases! And this isn’t a coincidence – we just made our classical variables into quantum operators,

and none of the physics is changing. µ · B⃗, the energy, just became the Hamiltonian, and now we can rewrite our

Hamiltonian in terms of the Larmor frequency:

ĤS = −µ⃗ · B⃗ = −γB⃗ · S⃗ = ω⃗L · S⃗.

What’s important to keep in mind here is the main form of this equation: if a Hamiltonian is some vector dotted with

S⃗, that vector will be the Larmor frequency of rotation, and the spin states will rotate with a frequency of ωL.

We’ll finish by generalizing one level further so that we can understand why any system can be thought of as a

spin system – this is maybe the best way to understand the physical effects of any Hamiltonian.

Example 214

Consider a time-independent Hamiltonian for a two-state system

H =

[
g0 + g3 g1 − ig2
g1 + ig2 g0 − g3

]
,

where g0, g1, g2, g3 ∈ R.

Remember that “two-state system” means we have “two basis states,” so a Hamiltonian is a Hermitian 2×2 matrix
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– indeed, the above matrix is the most general form allowed. But we’ve arranged our coefficients in such a way that

we can rewrite

H = g0I + g1σ1 + g2σ2 + g3σ3,

because the Pauli matrices, along with the identity matrix, form a basis for all Hermitian 2× 2 matrices. And now we

can write this Hamiltonian as

H = g0I + g⃗ · σ⃗,

where g⃗ is (g1, g2, g3). And now if we write the g⃗ vector as

g⃗ = gn⃗

for some unit vector, we’re saying that a general Hamiltonian can be understood as

H = g0I + gn⃗ · σ⃗.

And we know how to work with this – we can diagonalize the matrix and find its eigenvalues and eigenvectors, but

we’ve already done that work earlier on in the class! The eigenstates for such a Hamiltonian are

n · σ⃗ |n;±〉 = ± ⃗n;±,

and now we can replace σ⃗ with our spin operator S⃗ (just picking up a factor of ℏ2 ) to get that

n · S⃗ |n;±〉 = ±
ℏ
2
|n;±〉 .

These vectors |n;±〉 are exactly the basis in which H is diagonalized, so we’ve found our eigenstates! And the values

of our energy are just

H |n;±〉 = (g0I + gn⃗ · σ⃗) |n;±〉 = (g0 ± g) |n;±〉 .

So we’ve figured out both the energies and the eigenstates for the most general two-state system: we have a state

|n; +〉 with energy g0 + g , as well as a state |n;−〉 with energy g0 − g . We don’t have to do any diagonalization

by hand, as long as we know the values of g0, g1, g2, g3.

Here, |n; +〉 is the excited state and |n;−〉 is the ground state: there is a splitting of 2g, so the energy gap

between our two eigenstates actually corresponds to the twice the length of the vector (g1, g2, g3). And there’s just one

more thing we want to do with this: time-evolving the system. But we know that the second term of H = g0I+ gn⃗ · σ⃗
can be identified with the ω⃗L · S⃗ expression we had before: we can write the second term as

gn⃗ · σ⃗ =
2g⃗

ℏ
S⃗,

so our Larmor frequency in this case is

ω⃗L =
2g⃗

ℏ
.

So the non-identity part of the Hamiltonian does precession, and the identity part only produces a pure phase – it

doesn’t change the direction of our state! That pure phase will give us an extra factor of e−ig0t/ℏ through all of our

states, but this g0I term is generally almost never important.

In summary, we’ve taken our general Hamiltonian and identified it with the physical phenomenon of the Larmor

frequency. And now knowing g⃗ for any system will tell us how our states evolve in time – we just take our two basis

states as the |+〉 and |−〉 of some “spin,” and we can then describe a physical picture of how the state is evolving in

time.
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24 March 30, 2020
Recitations are now online over Zoom. This is a bit unusual, but we’ll see how we can proceed for the rest of the

semester.

Because we have an exam in a few hours, we can discuss a few topics related to it. First of all, the test is going

to be 3 hours long: the test opens at 12pm Eastern and stays open for 24 hours, and we have to do it in one sitting

(so we should pick an uninterrupted time). Professor Zwiebach doesn’t think it’ll take us the whole time, but we can

use the full time if we keep reviewing and checking our answers.

We might worry about partial credit on this exam – the computer will grade everything as being right or wrong.

But we’ll alleviate this worry by dividing the questions in a lot of pieces, where some pieces are quite independent from

the parts before. So we should still sometimes be able to do later parts of the problem even if we can’t do an earlier

part.

The formula sheet is available for us – we can print it or have it on a different screen. It’s not an exam with heavy

use of the formula sheet, but it will be useful to have as a reference point. Usually, MITx will give us a red cross or a

green button – this time, we will not know if we got the right answer or not. But when we enter a short answer into

a box, it’ll check the syntax to make sure it’s valid. Until we finish the exam, we can change all of our answers – it’s

always better to save them all the time. (All of this is in the information page before we go into the exam.)

The exam will have 4 problems: one multiple choice, one about the “mathy” things we’ve discussed in the early

part of the class, and two on things like oscillators, the variational principle, and spin states. A few topics that have

been discussed recently – time evolution, Heisenberg operators, coherent states, photon states, and two-state systems

– won’t be relevant to this exam. Let’s do a little bit of review:

• We’ve studied a lot about spin-1/2 systems, discussing Pauli matrices and their properties, explicit formula for

spin states, and so on. In general, when we take the operator

σ⃗ · n⃗ = σ1n1 + σ2n2 + σ3n3

for a vector n⃗ of unit length, we’ll have eigenvalues of ±1 corresponding to the two spin states |n; +〉 and |n;−〉.

• We’ve also discussed the matrix representation of an operator: when we act on the kth basis vector, we learn

about the kth column of the matrix representation.

• An important idea was that of an invariant subspace – an example is that eigenvectors of our linear operators

generate one-dimensional invariant subspaces. There may be others as well – in general, we find an invariant

subspace U by looking at a general vector v ∈ U and seeing if Tv is still in U. An important example of this

is that degeneracies in the spectrum (that is, the set of eigenvalues) correspond to higher-dimensional invariant

subspaces. For example, if there are three linearly independent eigenvectors with the same eigenvalue λ, those

three eigenvectors generate a three-dimensional invariant subspace, corresponding to the set of vectors where

Tv = λv . (Basically, in this subspace, every vector gets multiplied by λ, so every vector in the subspace is an
eigenvector.)

On the other hand, if we take two eigenvectors v1, v2 with different eigenvalues, their span is indeed an invariant

subspace – any linear combination of v1 and v2 will still be a linear combination of v1 and v2 after we apply our

linear operator T . But this is not a nice invariant subspace, because not every vector will be an eigenvector! (In

fact, only those along the direction of v1 or v2 will be.)

And we can say something more concretely by thinking about our operators as matrices: suppose that the span

of e1 and e2 is an invariant subspace in our vector space V . If we let a matrix (operator) act on our vector space,
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then this condition tells us something about the first two columns of the matrix: they must have all zero entries

except for the first two rows.

• One important topic is that of diagonalization. We discussed that certain classes of nice operators are unitarily

diagonalizable – these are the normal operators, and they include the Hermitian, anti-Hermitian, and unitary

operators. When talking about trying to diagonalize different operators, it’s important that they commute. An

example of this is a system with a (spherical symmetric) central potential: we often need to find a set of states

for each value of ℓ, and the spectrum is degenerate in ℓ (there are multiple states with a given value of ℓ). Then

if we want to distinguish those states with a given ℓ (corresponding to the energy) by comparing their values of a

different operator, we need to make sure the new operator commutes with the first one, so that diagonalization

of one operator doesn’t mess up diagonalization of the other one.

One idea that’s worth reviewing is how we deal with degenerate sets of eigenvalues when trying to simultaneously

diagonalize two different matrices A and B. For example, if A is diagonalized and looks like


1 0 0

0 2 0

0 0 2

 (so there

is a degeneracy with the eigenvalue λ = 2), the matrix B will look like


λ 0 0

0 ∗ ∗
0 ∗ ∗

. And to turn the ∗ parts into

a diagonal matrix, we apply another unitary transformation to the invariant subspace for λ = 2.

• The variational principle says that we can estimate the ground state energy by calculating the expectation of the

Hamiltonian in a test function: this tells us an upper bound on the true ground state energy.

• The trace of a matrix tr(A) is an important linear operator: it is formally defined as

tr(A) =
∑
i

Ai i ,

the sum of the diagonal matrix entries. It turns out that this definition doesn’t depend on the basis that we use

– even though the diagonal entries can change between different matrix representations, it turns out that the

sum of the diagonal entries is always constant. Note that when we have an orthonormal basis, we can also write

this trace in bra-ket notation as

=
∑
i

〈i |A|i〉 .

The trace is linear: tr(aA) = atr(A), and tr(A + B) = tr(A) + tr(B). We also have the nice property that

tr(AB) = tr(BA), which gives us something called cyclicity of trace:

tr(ABCD) = tr((ABC)(D)) = tr(DABC).

This also means that the trace of any commutator is zero, because

tr([A,B]) = tr(AB − BA) = tr(AB)− tr(BA) = 0.

For complex-valued vector spaces, a more intrinsic way to think about the trace is that it is the sum of the
eigenvalues: it’s not true in real vector spaces, because we have cases where operators don’t have any eigenvalues

at all.
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25 Two State Systems, Part 2
Recall that last time, we talked about general Hamiltonians for a two-state system: they’re specified by four real

numbers and can be written in the form

H = g0I + g⃗ · σ⃗ = g0I + ω⃗L · S⃗.

Here, ω⃗L =
2g⃗
ℏ is the Larmor frequency – we mentioned last time that spins will rotate with an angular velocity |ωL|

around the vector ω⃗L. (In the case of a magnetic field,this looks like µ⃗ = γS⃗.) There are at most two energy levels

in a two-state system, because we have a two-dimensional vector space: then there are two energy levels g0 ± g,
corresponding to the spin states |n⃗;±〉. And we can think of any system specified by such a Hamiltonian as having

two basis vectors, corresponding to “spin up” and “spin down,” even if the system itself has nothing to do with spins!

With that, we’ll start talking about the ammonia molecule.

Fact 215

Ammonia is a molecule with chemical formula NH3 – it’s a colorless gas used as a fertilizer or in cleaning products.

Its shape is a flattened tetrahedron with a nitrogen atom at one corner and a base of three hydrogen atoms.

If the atom were totally flat, the angles N–H–N would be 120 degrees, and if the atom were a regular tetraheron,

that angle would be 60 degrees (because we’d have an equilateral triangle). The angle turns out to be 108 degrees in

this particular molecule.

And we can think of this as a two-state system, because the nitrogen atom can be “up” above the hydrogen base

or “down” below it. Thus, there are two configurations of this system – both states are stable – and we can think of

this as having a potential V (z) in the z-direction (where the equilateral triangle base of hydrogens is in the xy -plane)

that looks something like this:

z

V (z)

We’ll try to describe this as a two-state system, and we’ll need some notation for that. Let our basis states be

|1〉 = |↑〉, corresponding to the nitrogen atom being up, and |2〉 = |↓〉, corresponding to the nitrogen atom being down.

We can now write down a Hamiltonian for the system – this potential does not correspond to a two-state system

because there can be many energy eigenstates, but we can use our quantum mechanics intuition here. The ground

state is some wavefunction with two peaks (at the two points where V = 0), and the first excited state looks basically

like that but with one of the peaks flipped, so that we have an odd function.

If the middle barrier is high enough, we can assume that the energy levels are close to each other – let’s call the

ground state energy E0, and let’s try to write down a Hamiltonian. If our basis states are |↑〉 =

[
1

0

]
and |↓〉 =

[
0

1

]
, our
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Hamiltonian can’t just look like

[
E0 0

0 E0

]
: there aren’t two degenerate energy eigenstates for this one-dimensional

potential, so we need more to describe the physics here. Instead, we’ll try

H =

[
E0 −∆
−∆ E0

]
,

where ∆ > 0. (The choice of sign doesn’t change the physics that we’re using: we could get a positive ∆ if we replaced

|2〉 with − |2〉.) But now |↑〉 and |↓〉 are no longer our energy eigenstates, so we should try to figure out how this

compares to previous models. First, let’s write the Hamiltonian as

H = E0I − ∆σ1.

Comparing this to our generic Hamiltonian above yields the g⃗ vector in the x-direction (because we have the matrix

σ1) with magnitude ∆:

g⃗ = −∆êx =⇒ g = ∆.

To find the ground and excited states, we just need to find the eigenvalues and eigenvectors of this matrix, and we’ll

see if this matches the actual physics of the system. It turns out that the energies are g0 ± g = E0 ± ∆, and the

energy gap here is 2∆. So that’s a good first step: we have two energy eigenstates, E0 + ∆ and E0 − ∆, and they

correspond to eigenvectors of
1√
2

[
1

−1

]
and

1√
2

[
1

1

]
, respectively. In terms of our basis states, this means that the

energy eigenstates are

|E〉 =
1√
2
(|↑〉 − |↓〉) , |G〉 =

1√
2
(|↑〉+ |↓〉) .

So now we can think back to how this relates to our spin states: in this nitrogen atom, only one direction matters

(the z-direction, corresponding to up and down orientation of the N atom), while for our spin states, three different

dimensions matter. So we need to be a bit more abstract: remember that the vector g⃗ = −∆êx points in the

x-direction, and the excited and lower states correspond to |n⃗; +〉 and |n⃗;−〉, respectively. So the excited state is

supposed to correspond to a vector in the +n⃗ direction, while the ground state should correspond to a vector in the

−n⃗ direction. So in spin language, we can say that

|E〉 = (|+〉 − |−〉)/
√
2, |G〉 = (|+〉+ |−〉)/

√
2.

And indeed |+〉+ |−〉 is along the positive x-direction in our original spin state model (pointing in the same direction

as g⃗), and |+〉 − |−〉 is along the negative x-direction (pointing opposite from g⃗).

Fact 216

Since this energy gap is 2∆, the transition energy can be written as

2∆ = ℏω,

and this corresponds to a frequency of about ν = 23.827 GHz, which corresponds to a wavelength of about 1.26

cm.

So we haven’t introduced too much complexity, and we already have a nice model of the ammonia molecule.

Example 217

How does the |↑〉 state evolve in time?
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(Remember that this is not a stationary state, because it is not an energy eigenvector.) The fastest way for us to

do thi in principle is to think of this with spins, though it is a little painful. Recall that the Larmor frequency vector

ω⃗L points in the direction of g⃗, so we have a starting vector |↑〉 which begins in the z-direction and precesses around

g⃗, which is in the −x̂ direction. So the state rotates in the yz-plane, and now we can calculate a little bit by writing

this in terms of energy eigenstates. The initial state is

|ψ, 0〉 = |↑〉 =
1√
2
(|E〉+ |G〉),

and we know how the energy eigenstates evolve in time (using the unitary time evolution operator e−iHt/ℏ, we can

then convert from |E〉 and |G〉 to the up and down states (which is the intuition that we wanted in the first place).

The final result is that

ψ(t) = e−iEt/ℏ
(
cos

t∆

ℏ
|↑〉+ i sin

t∆

ℏ
|↓〉
)
,

and we can also use this to find the probabilities of being in the up and down states: they’re just the squared magnitudes,

or cos2 t∆ℏ and sin2 t∆ℏ respectively. In other words, this nitrogen-up molecule will rotate even if we don’t do anything,

and this is happening 23 billion times a second, because it’s not in a stationary eigenstate!

Note that the frequency of rotation here is ∆ℏ , while we have a Larmor frequency of 2gℏ =
2∆
ℏ , the frequency of

the photons that we found above. But there’s no contradiction between the Larmor frequency and the frequency of

rotation: remember that in a spin state we had an expression with a cos θ2 . So the physical angle of rotation changes

twice as fast as the angle corresponding to the up and down ket vectors, and this is the same confusion with the 12
factors that we had when we first saw spin states!

We’ll now move on to a different time-dependent problem, that of nuclear magnetic resonance. This problem

begins when we have a magnetic field with a large component B0 in the z-direction, plus some smaller magnetic field

rotating with some angular frequency ω in the xy -plane. In other words, we have

B⃗ = B0ẑ + B1(cos(ωt)x̂ − sin(ωt)ŷ).

Our goal is to see what spins do in this field – since B⃗ is time-dependent, it’s possible that H is time-dependent. We

know that

Hs(t) = −γB⃗(t) · Ŝ = −γ
[
B)Ŝz + B1Ŝx cos(ωt)− Ŝy sin(ωt)

]
.

And indeed H is time-dependent, and in fact the Hamiltonian doesn’t even commute at different times! (Sometimes

we have Ŝz and Ŝx , and at other times we have Ŝz and Ŝy .) So we need to figure out this problem in a new way.

We’ll start by trying to get the main intuition for what’s going on. Our Schrodinger equation is very complicated

– it has a time-dependent Hamiltonian, and we have the equation

iℏ∂t |ψ〉 = H |ψ〉 .

We’ll try to change the Hamiltonian while keeping the physics: one way we can do that is by trying to apply a unitary

transformation U to our states |ψ〉, and we’ll hope that the Hamiltonian on these new states |ψ′〉 will simplify the

Hamiltonian. Unitary transformations are basically just a change of basis unless the unitary transformation has time-

dependence, and then we even mess up the ∂t term on the left side. But this is our only real chance of getting a

time-independent Hamiltonian of the form U†HsU, so we’ll go ahead with this idea.

Example 218

Suppose we start with a system with a Hamiltonian of 0.
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Since we have a rotating magnetic field in our original problem, we’ll think about what happens to our physics in

this “nothing is happening” system if we have the xy -plane rotating with angular velocity ω. In our “nothing” system,

Hs = 0, and any spin state stays in place. But when we jump into our rotating frame, all of the spin states that started

off being static are not rotating – they’re precessing around the z-axis! So there is some nonzero Hamiltonian in
our rotating frame: it should be such that the spins rotate around the z-axis with angular velocity ω, and this is done

by the unitary (rotation) operator

U = e−iωtŜz/ℏ.

Thus, the rotating Hamiltonian must be

HR = ωŜz

(to make the unitary operator e−iHt/ℏ). Let’s now think about how our Hamiltonian changes when we don’t just start

with 0, and we’ll do this with a different calculation:

Example 219

Suppose we have a rotating wavefunction defined by

|ψR〉 = U |ψ〉 .

What is the Schrodinger equation for ψR if we know the equation for ψ?

We start with the usual equation

iℏ∂t |ψ〉 = Hs |ψ〉 .

Evaluating the left hand side for ψR, we have

iℏ∂t |ψR〉 = iℏ∂t(U |ψ〉) = iℏ(∂tU) |ψ〉+ iℏU∂t |ψ〉

by the product rule, and then we can simplify the first term by adding a U†U between U and |ψ〉 and simplify the

second by applying the Schrodinger equation:

= iℏ(∂tU)U† |ψR〉+ UHs |ψ〉 .

But now we put another U†U in the second term and we’ll find that we have a new Schrodinger equation:

iℏ∂t |ψR〉 = iℏ
(
UHsU

† + (∂tU)U
†) |ψR〉

This is essentially the “rotating Hamiltonian” that we’ve been trying to figure out, and this is what we hope is simpler

than our original Hs ! The first term UHSU
† corresponds to a “similarity transformation” of the Hamiltonian, and the

second term has to do with the time-change affecting the original left side of the Schrodinger equation. Recall the

above argument: when Hs = 0, we want our new Hamiltonian to be ωŜz , so we’ll pick a U such that

iℏ(∂tU)U† = ωŜz =⇒ U = e−iωtŜz/ℏ,

which is indeed the rotation transformation we had above! So our new Hamiltonian is

HR = UHsU
† + iℏ(∂tU)U†, U = e−iωtŜz/ℏ,

and our new state is

|ψ, t〉 = e iωtŜz/ℏ |ψR, t〉
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by taking the inverse of the unitary operator. So we now have a problem for |ψR〉 with a Schrodinger equation involving

a Hamiltonian HR where the second term is just ωŜz : our hope now is that we have a time-independent Hamiltonian

in this new rotating frame.

Example 220

Before we look at time-independence, here’s another way we can find the Schrodinger Hamiltonian for |ψR, t〉,
our rotating wavefunction.

We can say that

|ψR, t〉 = U(t)Us(t) |ψ, 0〉 ,

where Us is the unitary operator for the spin system itself (associated to the ordinary Hamiltonian). Then UUs is the

total unitary operator that evolves the state, and then we know that

HR = iℏ∂t(U(t)Us(t))(U(t)Us(t))†,

because the Hamiltonian associated to any unitary time-evolution operator A is iℏ(∂tA)A†. Then we just evaluate the

derivative by the product rule – this yields

= iℏ(∂tU)U† + iℏ∂tU(t)iℏ(∂tUs(t))U†sU†(t).

And now the middle of this second term is the Hamiltonian associated to Us , and either way this means we can write

down the following formula which summarizes everything:

HR = HU + U(t)Hs(t)U
†(t) ,

where HR is the rotated Hamiltonian, HU is the Hamiltonian associated to the unitary operator U, and Hs is our

original Schrodinger Hamiltonian.

So let’s bring this back to our original example. We chose U = e−iωtŜz/ℏ so that HU is just ωŜz , and now plugging

everything in (including our original Hamiltonian), we find that

HR = ωŜz = e
−iωtŜz/ℏ

[
−γ(B0Ŝz + B1(cos(ωt)Ŝx − sin(ωt)Ŝy ))

]
e iωtŜz/ℏ.

To simplify this further, the B0Ŝz term can go outside of the conjugation by e−iωtŜz/ℏ (also called a similarity
transformation) because both just have Ŝzs, so they commute. This contributes a term of −γB0Ŝz , and then the

rest looks like

−γB1 e−iωtŜz/ℏ
[
cos(ωt)Ŝx − sin(ωt)Ŝy

]
e iωtŜz/ℏ .

There are two ways we can simplify from here: since we have two exponentials, we can expand them and multiply

or we can use the formula for eABe−A. But here’s another idea: we know the function U(t), so knowing ψ means

that we know ψR as long as we can make HR less complicated. So we’ll call that boxed term m(t), and we’ll take its

time derivative (this is a good idea if we’re in a rush). Then we use the product rule: the derivatives of the outside

terms bring terms down from the exponentials, which gives us a commutator, and the other term is just evaluating

the derivative in the middle:

d

dt
M(t) = e−iωtŜz/ℏ

(
−
iω

ℏ
[
Ŝz , cos(ωt)Ŝx − sin(ωt)Ŝy

]
− ω sin(ωt)Ŝx − ω(cosωt)Ŝy

)
e iωtŜz/ℏ.

131



Now we just evaluate the commutator with our known relations:

= e−iωtŜz/ℏ
(
−
iω

ℏ
(iℏSy cos(ωt) + iℏSx sin(ωt))− ω sin(ωt)Ŝx − ω(cosωt)Ŝy

)
e iωtŜz/ℏ

and now all of the terms cancel, and we’re just left with zero! This means that M(t) has no time dependence, since

its derivative is zero, and now we can just evaluate it at t = 0. Then the exponentials disappear, and the whole boxed

expression is just Ŝx !

So plugging everything back in gives us our final rotated Hamiltonian:

HR = (−γB0 + ω)Ŝz − γB1Ŝx .

This now just has two pieces: the Ŝz coefficient got an extra ω term from the rotation, and the rotating xy -magnetic

field just became a static one in the x-direction (as it was at time 0).

To make this look nicer, ω0 = γB0 is the Larmor frequency for B0, so this can also be written as

= −γ
[(
B0 −

ω

γ

)
Ŝz + B1Ŝx

]
= −γ

[
B0

(
1−

ω

ω0

)
Ŝz + B1Ŝx

]
.

So now we can think of this Hamiltonian as being in the form −γB⃗R · S⃗, where the magnetic field points in the direction

B⃗R = B0

(
1−

ω

ω0

)
ẑ + B1x̂ .

So we can finally answer our additional problem: we wanted to know how a state time-evolves, and we just have

|ψ, t〉 = U† |ψR, t〉 = e iωtŜz/ℏe−iHRt/ℏ |ψ, 0〉 ,

where the whole point of all of this is that the second exponential is very simple because HR is time-independent!

Plugging in the value we know for HR, this gives us the equation

|ψ, t〉 = e iωtŜz/ℏe iγ(B⃗r ·S⃗)t/ℏ |ψ, 0〉 .

(Remember that the states ψR and ψ are the same at t = 0.) This is the complete solution for our rotating spin

problem!

With this, it’s time for us to talk about applications. In practical examples, we always have B1 � B0.

Example 221

Let’s look at the case where ω � ω0.

The ω0 frequency is the Larmor frequency, and because B0 is very large, this means ω0 is also very large. So it’s

reasonable for ω to be very small (the B field rotates very slowly compared to the rotation that it is creating) – in

such a case, we can approximate

B⃗R ≈ B0ẑ + B1x̂ .

So this magnetic field is mostly along the z-axis, and let’s also look at the case where the spin is up in the +z
direction at time t = 0. This magnetic field will rotate our spins around the axis of B⃗R, and since B⃗R is very close

to ẑ , the path is a small cone near the z-axis. But we should make sure not to forget the e iωtŜz/ℏ term, which is also

producing a rotation around the z-axis. In this case, since ω � ω0, the “rotating cone” behavior is much faster than

the precession of the whole process around the z-axis.
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Example 222

Let’s now do the resonance case, where ω = ω0.

Basically, we know what ω0 looks like for the spins themselves, and then we set up our system so that ω completely

lines up with ω0. Then the ẑ component of the magnetic field disappears: we just have BR = B1x̂ , which means that

our spin state now precess around the x-direction. (Since we’re actually missing a negative sign here, the spin rotates

around the −x̂ direction.) Now B1 � B0, meaning that the rotation operator e iωtŜz/ℏ will rotate our spin around the

z-axis faster than we can precess around the x-axis: thus we create a spiral!
And now as the spin fills out the spiral, it’s an interesting question to time the signals: we care about when the

spin is perpendicular to the original direction (so in the xy -plane for the first time). To do this, we’ll choose

ω1T =
π

2
,

where ω1 = γB1 is the Larmor frequency. Thus T =
π

2γB1
is called the 90 degree pulse: after this much time, the

spin has gone from the x-axis to the equator of the sphere, and the B1 term is negligible for a while. (As an exercise,

it’s worth figuring out the spiral equation that comes out of all of this!)

This turns out to be the technique used for magnetic resonance imaging (MRIs), which is one of the interesting

applications of quantum mechanics to technology. This device goes beyond what we can do with an x-ray: basically,

a person is put inside a solenoid with a magnetic field of 2 Tesla. (It’s not dangerous, but if we forget metal or have

iron ink in a tattoo, that can cause some problems.)

The purpose of this MRI is to figure out the local concentration of water. The magnetic fields from the solenoid

interact with the magnetic dipole moments in the protons of hydrogen atoms, and these protons get roughly aligned

to this B0 magnetic field. (Not all of the protons get aligned – maybe just one in a million – but that’s enough.)

But then this 90 degree pulse is sent, so the proton will start spiraling, and this rotating dipole moment will generate
electromagnetic waves. The MRI’s detectors then picks up this signal: the strength of that signal is proportional to

the concentration of water (or other kinds of liquid) that we have.

This is useful because we can compare signals from different areas: we can then distinguish different kinds of tissues

(some have more water than others).

But this rotation of the proton has a relaxation time T2 for the rotation (in which the spin interacts with other

spins), and there is also a time T1 that it takes for the spin to return to its original position (in which the atom interacts

with a set of neighboring atoms). These two measurements, T1 and T2, are very good for our applications, because

we can measure any liquid’s T1 and T2 and compare it to the numbers that we measure in our own MRI! For example,

the value of T2 is good enough to distinguish white matter, grey matter, and fluids in our brain.

And one final note: an MRI often makes large noises when we first go into the machine. This comes from gradient
magnets: the value of B0 is adjusted as a function of position, which also changes the ω0 for our spins. This technology

has gotten sophisticated enough that we can get spatial resolution: we can tell where a signal is coming from in our

body, up to a resolution of half a millimeter. (This is a junior lab experiment as well!)

26 April 1, 2020
We’ve now finished with the first exam – it was mentioned in an email what we need to do to pass the class this

semester with a PE grade (60 percent or above). There are lots of different parts of this class, and that boundary can
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be possibly lowered but not raised.

In the next few days, we’ll do an anonymous poll to see how we felt about the exam – feedback is always appreciated!

Doing things online definitely requires different skills, so there’s something new for all of us. The second midterm and

final will be in this kind of format as well; the idea is to mitigate any difficulties before those tests.

In this recitation, we’ll talk about some of the concepts needed to move forward with this class. There’s several

things we’ll have to discuss, but let’s talk about the main subject. Since we last discussed recent material, we’ve

explored a lot about unitary time evolution: we know that we can write the wavefunction at a time t as

|ψ, t〉 = U(t, t0) |ψ, t0〉 .

It is important to emphasize that this works for all t and t0, and in fact we can use any wavefunction ψ in our system

and we’ll have the same unitary operator U.

There are a few other important properties that we should remember about our unitary time-evolution operator:

• U(t0, t0) = I is the identity operator.

• Composition of times works as nicely as we’d like:

U(t2, t1)U(t1, t0) = U(t2, t0).

(Going from time t0 to t1 to t2 is the same as skipping over the middle time.) And we should remember that if

we plug in t2 = t0, we have found that the inverse of U(t1, t0) is U(t0, t1), which makes sense. This can also be

written (because a unitary operator has U† = U−1) in the form

(U(t0, t1))
† = U(t1, t0)

• We can find the Hamiltonian associated to the unitary operator U:

H = iℏ
(
∂U

∂t
(t, t0)

)
U(t0, t).

(We might have seen this last term usually written as U†(t0, t).) Usually, we have a lot of intuition on how

to write Hamiltonians, but we have less intuition on how to write unitary operators, so we often go from H to

U. But if we know how the system evolves in time, then we can use this tool to reconstruct the Hamiltonian

(go from U to H)! And we can use the last equation as a differential equation for U: multiplying both sides by

U(t, t0) yields

iℏ
∂U

∂t
(t, t0) = HU(t, t0).

• There are some important special cases where it’s easy to solve for the unitary time evolution operator. If H is

time-independent, then we can write

U(t, t0) = e
− i
ℏH(t−t0),

and if H isn’t necessarily time-independent but still commutes at different times, we have

U(t, t0) = e
− i
ℏ
∫ t
t0
H(t ′)dt ′

.

This property of the Hamiltonian makes it much simpler, so it’s a good thing. The reason this formula doesn’t

work in general for a Hamiltonian that doesn’t commute in time can be seen if we try to write out this expression
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as an exponential: then we have terms of the form(
−
i

ℏ

∫ t

t0

H(t ′)dt ′
)(
−
i

ℏ

∫ t

t0

H(t ′)dt ′
)
· · ·
(
−
i

ℏ

∫ t

t0

H(t ′)dt ′
)
.

Then when we take the derivative and use the product rule, we get H(t) terms replacing one of the terms in

this product. But in order for us to factor this nicely, we need to be able to move H(t) past the integral, so we

need H to commute at different times! The main idea is that in general, we do not have

d

dt
eM(t) = ˙M(t)eM(t)

for a matrix M(t).

Unitary operators are used to help us transition from the Schrodinger picture to the Heisenberg picture of quantum

mechanics. The idea is to start with an expectation value (or a matrix element if we’d like to think of it that way)〈
ψ1, t

∣∣Âs ∣∣ψ2, t〉 .
When we think about Schrodinger operators, we should just think x̂ , p̂, and so on: usually these are time-independent,

and we can have Schrodinger operators with time-dependence only if we write in a specific time t. By time evolution,

we know that we can write the above expression as〈
ψ1, 0

∣∣U†(t, 0)ÂsU(t, 0)∣∣ψ2, 0〉 .
We call this middle term the Heisenberg operator: it’s a similarity transformation of our usual operator Âs . This has

a few nice properties for us to remember:

• ÂH = ÂS at time t = 0.

• The “algebra of operators” is preserved, because of the way that U is acting on our operators. For example, the

identity operator and the commutators stay the same. Specifically, if we have a Lie algebra, then [As , Bs ] = Cs
means that [AH(t), BH(t)] = CH(t), and also that (AB)H = AHBH. We can check this ourself:

(AB)H = U
†ABU = U†AUU†BU = AHBH.

• A Schrodinger Hamiltonian of the formH(p̂, x̂ ; t) gives rise to a Heisenberg HamiltonianHH = H(p̂H(t), x̂H(t); t).

And this statement is true for any operator that depends on just these variables: basically, to get the Heisenberg

Hamiltonian, we just plug in the Heisenberg versions of our operators.

• One special property for the Hamiltonian, though: if [Hs(t), Hs(t ′)] = 0 – that is, the Schrodinger Hamiltonian

commutes at different times – then we actually have HH(t) = HS for all t. In other words, they are identical

operators – they are the same function, and in particular this means HH doesn’t actually have time-dependence.

• We have the important Heisenberg equation of motion

iℏ
dÂH
dt
= [ÂH(t), HH(t)] + iℏ

(
∂ÂS
∂t

)
H

.

The last term is often irrelevant – it means we’re taking the Heisenberg version of the time-derivative of our
Schrodinger operator (note that this is not the same as the time-derivative of the Heisenberg operator). And

often ÂS doesn’t depend explicitly on time, so that last term just goes away. And an explanation for

An important example of this Heisenberg formulation is the simple harmonic oscillator. We derived that the
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Heisenberg operators for x̂ and p̂ look like

x̂H = x̂ cos(ωt) +
1

mω
p̂ sin(ωt), p̂H = p̂ cos(ωt)−mωx̂ sin(ωt).

We can check that this gives us Heisenberg operators for the creation and annihilation operators

â(t) + e−iωt â, â†(t) = e iωt â†.

This is fairly fundamental, so we should make sure we can follow along with all of the logic here.

We’ll close with a few remarks about coherent states: this concept arises out of the translation operator

Tx0 = e
−i p̂x0/ℏ,

which is a unitary operator. (In general, any operator of the form e iA, where A is Hermitian, is a unitary operator.)

So Tx0 ’s inverse is also its adjoint:

(Tx0)
† = T−x0 ,

and we can also combine exponentials because they all commute:

Tx0Tx1 = Tx0+x1 .

There are a few ways of justifying the name “translation operator”: recall that

T †x0 x̂Tx0 = x̂ + x0I,

and therefore

〈x̂〉Tx0ψ = 〈x̂〉ψ + x0, Tx0 |x〉 = |x + x0〉 .

(Note, though, that 〈x |Tx0 is 〈x − x0| instead, because we can take the dagger of the above boxed expression and

then replace x0 with −x0.) With this, we define the coherent state with label x0 to be

|x̃0〉 = e−i p̂x0/ℏ |0〉 .

We can verify that the wavefunction is just the ordinary ground state wavefunction translated by x0:

ψx̃0(x) = ϕ0(x − x0).

This is because the wavefunction is defined to be 〈x |x̃0〉, and then we just expand this out with the definition:

= 〈x |Tx0 |0〉 = 〈x − x0|0〉 = ϕ0(x − x0).

We’ve only gotten through some of the new ideas, and we’ll continue to work towards catching up on our concepts

over the next few recitations.

27 Multiparticle States, Part 1

We’re now shifting to more complicated systems: for example, suppose we have two particles in a system (it doesn’t

matter yet whether they’re distinguishable or indistinguishable; that’s more of an 8.06 topic). Then the two particles

can be described with their own physics: particle 1 might have a complex vector space V for its state space, along

with some operators T1, T2, and particle 2 might have some other vector space W , along with some operators S1, S2.
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(These operators are things like position, momentum, and so on.) Our first question will be how to describe the
composite system – that is, the system of the two particles together, especially when the two particles can interact

with each other.

Since particle 1 is described by some v ∈ V , and particle 2 is described by some w ∈ W , it’s reasonable to imagine

that (v , w) describes the composite system. It turns out that this is a bit naive – it doesn’t represent everything we

want in our system just yet – but we do need to encode the two systems together.

So we’ll use a specific notation: we’ll encode those pairs of vectors as v⊗w , where ⊗ represents a tensor product.
Here, we’re not multiplying the two vectors in any obvious way – we’re just saying that this is an object that puts

together our information from V and from W . This object v ⊗ w is going to be an element of the new (complex)
vector space V ⊕W , called the tensor product of the two vector spaces.

Let’s try to extract some properties for this object that we’ve just introduced. We know that states can have

constants in front of them, so we’ll allow ourselves to put constants in front of the v : this gives us (αv) ⊗ w . We

want to relate this object to v ⊗w – otherwise, we have a much larger space, and we get what’s mathematically called

a direct product. Essentially, we don’t want (αv) ⊗ w to be linearly independent to v ⊗ w (since αv and v are the

same state in V ), so we’re going to say that the αs can come out of the product:

(αv)⊗ w = α(v ⊗ w) = v ⊗ (αw).

(Notably, these don’t come out with a complex conjugate.) We can impose this property on the object we defined,

and now we can make some more progress: if v1 ⊗w1 and v2 ⊗w2 are two vectors in our tensor product vector space

V ⊗W , any linear combination of them should also be in the space:

α(v1 ⊗ w1) + β(v2 ⊗ w2) ∈ V ⊗W.

Notice now that we can’t just treat our v and w separately from each other in the tensor product, because quantum

mechanics now seems to require us to be in a superposition between (v1 ⊗ w1) and (v2 ⊗ w2), and there’s some kind

of connection between the two particles in general! This is where entanglement comes from, and we’ll see that soon.

And there’s one more constraint we need to impose: for the sake of linearity, we’ll also say that

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w.

The reason for this is that both sides of this equation represent the first particle being in a superposition of one of

two possibilities, while the second particle is in some specific state. Again, this is different from the direct product, in

which we just put the two vectors side by side – in that case, we would add the two ws together as well, which isn’t

what we want to do here. And similarly, we’ll want to say that

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

and now we have all of the axioms we need for our tensor product: just read off the equations above.

To add a bit more intuition for this, the space V ⊗W is spanned by vectors of the form vi ×wi . Specifically, if we

choose a basis (e1, · · · , en) for V and a basis (f1, · · · , fm) for W , then we have a basis for V ⊗W of the form ei ⊗ fj .
Since there are mn such vectors of this form, we multiply the dimensions for a tensor product, not add them:

dim(V ⊗W ) = (dim V )(dimW ).

Indeed, because of the axioms that we introduced, we can get any vector in V on the left and any vector in W on the

right! (This, for example, wouldn’t have been possible with a direct product.)
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Fact 223

There are a lot of subtle facts about this tensor product, so it might feel at some points that we are taking a long

time to explain things, and it might feel at others that something is confusing.

We’ll now try to introduce operators to our spaces V ⊗W . Say that T is an operator on V , and S is an operator

on W : we’ll define an operator T ⊗ S ∈ L(V ⊗W ), and let’s see what properties this must have. It suffice to show

how T ⊗ S will act on any element of the form (v ⊗ w), and then we’ll be able to extend it to any superposition of

such vectors by linearity. We’re going to make a definition, but it won’t have very much to do with anything else we’re

talking about today: the most natural way is to say that

T ⊗ S(v ⊗ w) = (Tv)⊗ (Sw).

In other words, everything acts in the space where it can, and there isn’t much more to say here. Since T and S are

linear, T ⊗ S will be linear as well.

But now suppose T1 ∈ L(V ), and we want to get an operator on V ⊗ W without having an operator on W .

Then we’ll need to upgrade our operator by just using the identity operator on W : we end up with the object

T1⊗ I ∈ L(V ⊗W ). (Similarly, we can upgrade a vector S1 ∈ L(W ) by turning it into I⊗S1.) And now one important

idea is that these two operators will commute:

(T1 ⊗ I)(I ⊗ S1)(v ⊗ w) = (T1 ⊗ I)(v ⊗ S1w) = T1v ⊗ S1w,

and similarly

(I ⊗ S1)(T1 ⊗ I)(v ⊗ w) = (I ⊗ S1)(T1v ⊗ w) = T1v ⊗ S1w.

Essentially, operators that originate from different particles still commute – “they don’t know anything about each

other.” So this is helpful, because writing the Hamiltonian of the whole system HT is just

HT = H1 ⊗ I + I ⊗H2,

where H1, H2 are the Hamiltonians of the original two systems.

We’ll now show an example for all of this: it’s famous and important, because it’s how we can think about

combining angular momenta.

Example 224

Consider two spin 1/2 particles: the first one has basis states |+〉1 , |−〉1, while the second has basis states

|+〉2 , |−〉2.

To form the tensor product, we need the four basis vectors where we take the product of the basis vectors: our

space is

span (|+〉1 ⊗ |+〉2 , |+〉1 ⊗ |−〉2 , |−〉1 ⊗ |+〉2 , |−〉1 ⊗ |−〉2) .

In other words, two spin states form a four-dimensional complex vector space: a general state in this space looks

like

|ψ〉 = α1(|+〉1 ⊗ |+〉2) + α2(|+〉1 ⊗ |−〉2) + α3(|−〉1 ⊗ |+〉2) + α4(|−〉1 ⊗ |−〉2).

We can do a simple computation with this: let’s act with the “total z-component of angular momentum” on this state

ψ. This total z-component is just the z-component of the first particle’s angular momentum plus the z-component
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of the second particle’s angular momentum, so our operator is

ŜTz = Ŝ
(1)
z + Ŝ

(2)
z = Ŝ

(1)
z ⊗ I + I ⊗ Ŝ(2)z .

Essentially, we’re constructing a new operator ŜTz on the new (larger) vector space. And now we can calculate this

term by term: since Ŝ(1)z ⊗ I acts on our state, it acts on each term of the vector |ψ〉. We can pull out the constants

and then just apply Ŝ(1)z to the v -vectors: thus,

(Ŝ(1)z ⊗ I) |ψ〉 = α1Ŝz |+〉 ⊗ |+〉+ α2Ŝz |+〉 ⊗ |−〉+ α3Ŝz |−〉 ⊗ |+〉+ α4Ŝz |−〉 ⊗ |−〉 .

(We’ve dropped the subscripts for convenience.) And now we know that Ŝz |+〉 = ℏ
2 |+〉, so the number comes out of

the tensor:

(Ŝ(1)z ⊗ I) |ψ〉 =
ℏ
2
(α1 |+〉 ⊗ |+〉+ α2 |+〉 ⊗ |−〉 − α3 |−〉 ⊗ |+〉 − α4 |−〉 ⊗ |−〉) .

We can do the other one pretty quickly as well:

(I ⊗ Ŝ(2)z ) |ψ〉 =
ℏ
2
(α1 |+〉 ⊗ |+〉 − α2 |+〉 ⊗ |−〉+ α3 |−〉 ⊗ |+〉 − α4 |−〉 ⊗ |−〉) .

So if we add these together, we get the total operator ŜTz , and thus

ŜTz |ψ〉 =
ℏ
2
(2α1 |+〉 ⊗ |+〉+ 2α4 |−〉 ⊗ |−〉)

And now any state with total z-angular momentum ŜTz = 0, we must have α1 = α4 = 0 (because those two vectors

on the right hand side are independent). We will see soon that there is a state whose total angular momentum in all

three directions is zero.

One thing that we haven’t said very much about is the zero vector of this tensor space. We know that there is a

zero vector in V ⊗W , and in this case, it looks a bit more complicated than usual. Consider the vector

0⊗ wi , wi ∈ W.

This is actually the zero vector for any vector wi , and similarly vi ⊗0 is the zero vector for any vI ∈ V . This is because

we can pick a = 0 in the statement a(v ⊗w) = av ⊗w : then the left side is just 0, while the right side is 0⊗w . This

means that having 0 in either input guarantees that we have the zero vector.

We can now try to get numbers out of our tensor space: specifically, we can define a new inner product. As always,

we should define this object to our best ability and hope it satisfies the axioms we want: we’ll require the inner product

to have 〈∑
ai jvi ⊗ wj ,

∑
p,q

bpqvp ⊗ wq

〉
=
∑
i ,j

a∗i j
∑
p,q

bpq〈vi ⊗ wj , vp ⊗ wq〉.

Essentially, we’re assuming the linearity on the right inputs and anti-linearity on the left-inputs, just like our usual inner

product. To get a final number, the best thing for us to do is to use an inner product from v and an inner product

from w :

〈vi ⊗ wj , vp ⊗ wq〉 = 〈vi , vp〉V 〈wj , wq〉W .

This last step is the most interesting one: we do need to multiply, because setting vi = 0 must yield zero – in that

case, we’re taking the inner product of zero with some other vector. And this does indeed happen here, because

〈vi , vp〉V = 0.
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Example 225

Let’s now return to the state

|ψ〉 = α(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉).

(Sometimes we put subscripts 1 and 2 for the ket vectors, so we’re careful that we’re looking at the right vector

spaces. In particular, |+〉(1) ⊗ |−〉(2) and |−〉(2) ⊗ |+〉(1) are the same things – commutativity isn’t really a problem –

and then we do care about the labels.) This is an example of an entangled state of spin 1/2 particles – we haven’t

quite defined that yet, but the idea is that we should try to normalize this state. Like with any other vector space, we

take the inner product of the state with itself:

〈ψ,ψ〉 = α∗α〈|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉 , |+〉 ⊗ |−〉 − |−〉 ⊗ |+〉〉.

But every term inside the inner product is now part of an orthonormal basis for the tensor space: the squared terms

give 〈+|+〉 〈−|−〉 = 1, while the other terms give nothing because 〈+|−〉 = 〈−|+〉 = 0. (One way to visualize this is

that we can turn all the kets on the left argument into bras.) Either wway, this means that 〈ψ,ψ〉 = 2|α|2, so

normalizing the state yields

ψ =
1√
2
(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉).

It turns out this state actually is the one with zero total angular momentum (in the x , y , and z directions). This state

is rotationally invariant – if we apply a rotation operator to this state by rotating both spaces, the state that comes

out is the same!

So now we’re ready to talk about the concept of entanglement: entangled states are those where we cannot say

that “the first particle does something and the second particle does something else.” We know that V ⊗W includes

superpositions (that is, sums) of αi jvi ⊗wj . If we’re given such a superposition, a good question to ask is whether we

can write it in the form v∗ ⊗ w∗ for some v∗ ∈ V, w∗ ∈ W . If we could say that, then we would know that the first

particle is in the state v∗ and the second particle is in the state w∗: the two particles are not actually entangled if we
can factor our state.

It seems like this is a complicated factorization problem – it might take some time to see whether a state is an

entangled state or not. (Note that being entangled is a basis-independent problem!) Let’s illustrate how this would

work with an example:

Example 226

Suppose V , W are two-dimensional complex vector spaces with bases (e1, e2) and (f1, f2), respectively.

The most general state looks like

a11e1f1 + a12e1f2 + a21e2f1 + a22e2f2.

There are 2× 2 = 4 basis states, and we want to ask whether we can write this as (a1e1 + a2e2)⊗ (b1f1 + b2f2) (this

is the most general way to write a vector in V and a vector in W ). Luckily, it’s pretty easy to see when these numbers

a11, a12, a21, a22 exist: distributing out, this means that

a11 = a1b1, a12 = a1b2, a21 = a2b1, a22 = a2b2.
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This gives us a consistency condition for the four equations: note that

a11a22 = a1b1a2b2 = a12a21,

so four numbers a11, a12, a21, a21 can only factor if the determinant of the matrix

[
a11 a12

a21 a22

]
is zero. And with a

quick argument, we can check that whenever the determinant is zero, there exists a solution! So in this case, the
determinant of the matrix is zero exactly when the two particles are not entangled.

However, there are many entangled states, and there’s “enough of them” that we can construct a basis of our

tensor product space such that all basis vectors are entangled states. To do that, we’ll use our spin 1/2 system again:

let V be the state system for a spin 1/2 particle, and consider a two-particle system V ⊗ V . We’ll take

|Φ0〉 =
1√
2
(|+〉 |+〉+ |−〉 |−〉)

(note that we’ve dropped the ⊗ symbol, and eventually we’re also going to make the ket simpler and just write |++〉
– our notation will evolve as our calculations get more complicated). This is similar to the state that we just built –

it’s already normalized, and we can check that by taking the dual and directly evaluating the inner product. Indeed,

this is an entangled state, because we have a matrix representation of

[
a11 a12

a21 a22

]
= 1√

2

[
1 0

0 1

]
, and the determinant

is nonzero.

We still need four other basis states, and we’ll write them in the following form:

|Φi 〉 = (I ⊗ σi) |Φ0〉 .

For example,

Φ1 = (I ⊗ σ1) |Φ0〉 = (I ⊗ σ1)
1√
2
(|+〉 |+〉+ |−〉 |−〉),

and now the I acts on the first ket, while the σ acts on the second ket, and we’re left with

1√
2
(|+〉σ1 |+〉+ |−〉σ1 |−〉) =

1√
2
(|+〉 |−〉+ |−〉 |+〉),

because σ1 is the matrix

[
0 1

1 0

]
. We can check that Φ1 is orthogonal to Φ0 – none of the terms have both labels

matching, so the inner product is just zero. Similarly, we have that

|Φ2〉 =
i√
2
(|+〉 |−〉 − |−〉 |+〉),

and

|Φ3〉 =
1√
2
(|+〉 |+〉 − |−〉 |−〉).

We can indeed verify that these are all orthogonal to |Φ0〉, and we also need to do the calculation for 〈Φi |Φj 〉. But

this time, we don’t need to do everything by inspection: since the Pauli matrices are Hermitian, we have

〈Φi |Φj 〉 = 〈Φ0|(I ⊗ σi)(I ⊗ σj)Φ0〉

since “moving from one argument to the other” is the definition of a Hermitian operator in terms of the inner product.

And now we can make progress using the Pauli identities: operators multiply in the most direct way, so II is just the
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identity operator, while σiσj is the identity plus a Pauli matrix: it’ll be Iδi j + iεi jkσk . So plugging this in,

〈Φi |Φj〉 = 〈Φ0|(Iδi j + iεi jkσk)Φ0〉 ,

and now the Iδi j term just gives us a δi j , while σkΦ0 = σk is orthogonal to Φ0 (as we just showed)! Thus,

〈Φi |Φj〉 = δi j ,

and we’ve indeed shown that we have an orthonormal basis of the tensor product of two spin 1/2 particles! We can

now write down our conventional basis states in terms of the entangled states:

|+〉 |+〉 =
1√
2
(|Φ0〉+ |Φ3〉).

Similarly, we can find the others by a direct inspection:

|+〉 |−〉 =
1√
2
(|Φ1〉 − i |Φ2〉),

|−〉 |+〉 =
1√
2
(|Φ1〉+ |Φ2〉),

|−〉 |−〉 =
1√
2
(|Φ0〉 − |Φ3〉).

The vectors |Φ0〉 , |Φ1〉 , |Φ2〉, and |Φ3〉 are known as the Bell basis for this system.

We’ll now move on to the concepts of measurement and teleportation. Recall that that there is a postulate that in

an orthonormal basis, we can find the probabilities of our states being along these basis states after a measurement.

Before our experiment, the state is in a superposition of these basis states, but it will collapse into one of them, each

with some probability. For example, in the Stern-Gerlach experiment, we picked two basis states, |+〉 and |−〉 and the

device collapses our state into one of those two – what we’re saying here is slightly more general. Specifically, if we

have any orthonormal basis (|e1〉 , · · · , |en〉), we can construct a machine to measure a state |ψ〉 to be in the state

|ei 〉 with probability | 〈ei |ψ〉 |2, and then after that measurement, we’ll be in some state |ek〉.
The other point that we should note is that Pauli matrices are Hermitian and square to 1, so they’re actually

unitary, and thus they can govern time-evolution of a system! For example, multiplying a state by σ1 doesn’t need to

be very mathematical – because it’s unitary, we can construct a suitable Hamiltonian that evolves the state through

some time. For example, with our spin states, we can take a magnetic field that exists for a few picoseconds, and that

will implement σ1! Indeed, we can check that

e i
π
2
(−1+σi ) = e−iπ/2e iπσ1/2 = −i

(
I cos

π

2
+ iσi sin

π

2

)
= σi ,

and thus we’ve written σi as the exponential of i times a Hermitian operator, so we can just pick a Hamiltonian H

such that π
2 (−1 + σi) =

tH
ℏ . In other words, we can physically realize σs with a machine.

So now we’re ready to discuss teleportation: this is a hot topic of science fiction, and it was an idea that was

impossible classically. But in quantum mechanics, we can do much better, and we’ll be explaining this now!

Fact 227

This discovery actually came from 1993, so this hasn’t been known for a long time. Quantum mechanics is a

Renaissance of physics in some sense, because now we can do lots of cool experiments.

The following idea came from Bennett (IBM), Brassard, Crepeau, Jozsa (Montreal), Peres (Technion), and Woot-

ters (Williams) – it was a big collaboration. Here’s the setup:
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Example 228

Two people, Alice and Bob, play a game. Alice has a quantum state – it’s an unmeasured state of a spin 1/2

particle, α |+〉+ β |−〉. Her goal is to teleport the state to Bob, who is far away. (A spin state in this context is

also sometimes called a qubit.)

First of all, we might ask why we don’t just make a copy of our state. The issue is that there’s a no cloning idea:

we can’t create a copy of a state like this. Similarly, we can’t measure our state to find α and β, because she only

has one copy of the state – the Stern-Gerlach experiment would just give us a single |+〉 or |−〉, and then our qubit is

gone. So no matter what, Alice should not measure the state.

On the other hand, perhaps Alice created this state with a specific Hamiltonian, so she knows what α and β are.

So she could tell Bob those numbers, but if α is some irrational number which requires an infinite string of information

to transmit, that’s not good either! So instead, we’ll try to produce an experiment in which Bob will get the state on

the other side – our state will teleport.
Basically, let’s let this state space be C: we’ll write that Alice’s original state is

|ψ〉 = α |+〉C + β |−〉C .

The whole idea with teleportation is to use an entangled state here! We can product an entangled pair of two

particles, where one particle is given to Alice and the other to Bob. Entanglement occurs instantaneously – there’s

no way to send information through entanglement in general. If we wanted to teleport a person, we’d have to create

a reservoir of billions of entangled pairs in two different locations, and then we’d have to take these billions of pairs

and do a bunch of measurements so that every quantum state in the person’s body is measured with some entangled

state. And that’s essentially what’s happening here – Alice will do a measurement so that the particle will become the

state we wanted to teleport initially!

Fact 229

Alice will need to send some additional information as well: suppose Alice has a console with four lights, labeled

0, 1, 2, 3. Alice will need to send two bits of information – which of those four lights lit up during the measurement

– and then Bob will use that information to send B into one of four machines, labeled 0, 1, 2, 3.

It turns out that after this replication, Alice’s state will be destroyed, but Bob will have a copy of the state, and

that’s what we’ll explain now. We’ll start with the AB pair (this explains the name C for the teleported state), which

is the entangled state

|ϕ0〉AB =
1√
2
(|+〉A |+〉B + |−〉A |−〉B).

Even though the particles Alice and Bob have can be very far apart, they’re still entangled. So we can take the total

tensor product of the particles from A, B, and C: this yields

|ϕ0〉AB ⊗ (α |+〉C + β |−〉C).

Here’s the key point: Alice will do a sneaky measurement with the particles A and C. (Remember that the particle

A and the state A are different, because A and B are entangled.) Since Alice has these two particles, she can pick

any orthonormal basis of the two-particle state space, because of the earlier notion that we can measure with any

orthonormal basis! We’ll use the Bell basis for A and C. First, we can rewrite our above tensor product as

|ψT 〉 =
1√
2
(|+〉A |+〉B + |−〉A |−〉B)⊗ (α |+〉C + β |−〉C),
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and now we can multiply everything out: this evaluates to

=
1√
2
[α |+〉A |+〉C |+〉B + β |+〉A |−〉C |+〉B + α |−〉A |+〉C |−〉B + β |−〉A |−〉C |−〉B]

(the order of multiplication doesn’t matter, as long as we keep the labels). We’ve written this so that we have

A-and-C vectors that are orthonormal to each other. However, our basis isn’t entangled between the particles A and

C yet – instead, we’ll mathematically rewrite it using the formulas for |±〉 |±〉 in terms of the |Ψi 〉s that we derived

above. This is a bit of algebra, but our result is

1

2
(|Φ0〉AC + |Φ3〉AC)α |+〉B +

1

2
(|Φ1〉AC − i |Φ2〉AC)β |+〉B

+
1

2
(|Φ1〉AC + i |Φ2〉AC)α |−〉B +

1

2
(|Φ0〉AC − |Φ3〉AC)β |−〉B ,

and now we can collect terms across the Φs to find

=
1

2
|ϕ0〉AC (α |+〉B+β |−〉B)+

1

2
|ϕ1〉AC (β |+〉B+α |−〉B)+

1

2
|ϕ2〉AC (iα |−〉B−iβ |+〉B)+

1

2
|ϕ3〉AC (α |+〉B−β |−〉B).

Remember that we haven’t done anything yet – we’re just rewriting the state mathematically. But something funny

has happened – the state that we wanted to transmit, which was originally in particle C, not shows up in particle B in

various funny linear combinations. Specifically, we have a |ψ〉B term for the |Ψ0〉 coefficient (where ψ was the original

α |+〉 + β |−〉 that we wanted), and we also have a σ3 |Ψ〉B term for the |Ψ3〉 coefficient, because σ3 is of the form[
1 0

0 −1

]
– it gives a +1 eigenvalue for the |+〉 state and a −1 eigenvalue for the |−〉 state. Similarly, the other states

simplify too: we actually just have that the total state is

|ψT 〉 =
1

2
|ϕ0〉AC |ψ〉B +

1

2
|ϕ1〉AC σ1 |ψ〉B +

1

2
|ϕ2〉AC σ2 |ψ〉B +

1

2
|ϕ3〉AC σ3 |ψ〉B .

And now comes the physics! Alice measures in the Bell space of A and C – specifically, we measure one of the four

basis states in the equation above. The wave function will collapse into one of these basis states – the 0 basis state

makes the 0-labeled light light up, the 1 basis state makes the 1-labeled light light up, and so on. In any case, we

now have an entangled set of particles |ψ〉AC which have no memory at all of the original state C, but now B has the

information instead! Whenever light i lights up, this means that Bob now has the particle in the state σi |ψ〉B, and

now Bob just needs to apply the σi operator to his state (remember that σ2i = I). This just means that Bob puts his

system into the ith machine, which has some specific Hamiltonian, and the state will time-evolve into |ψ〉B. Indeed,

we’ve now teleported our state from Alice to Bob – all we needed to send was the information of which light shined.

28 April 6, 2020
There are a few announcements regarding grades – the main thing to keep in mind is that each of our tests is now

15 percent of the total grade, and the homework and lecture questions are now more heavily weighted. This should

make passing the course more focused on our weekly work, but hopefully we’ll still take the tests seriously.

Remark 230. There’s two ways to approach practice problems: some are better for doing better in exams, and others

are better for giving physics insight. It’s unfortunately hard to find problems of the former type, except for the unused

edX problems. But Griffiths (3rd edition) is the best source for problems in general, though not all of them are relevant.

Another set of good books are Cohen-Tannoudji’s “Quantum Mechanics,” volumes 1 and 2, which have a lot of worked

exercises – every problem is done very slowly, but it’s very well explained.
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We’ll spend some time today putting together the ideas about two-state systems, being a bit more direct and to

the point.

We should always remember that two-state systems have two basis states, not two states in general! A good way

to summarize a system like this is with a magnetic dipole moment

µ⃗ = γS⃗,

where γ is positive for a positive charge and negative for a negative charge – for example, µ⃗ = − e
mec

S⃗ for an electron

(where we’re using Gaussian units – the c in the denominator is a matter of convention). The Hamiltonian for such a

system looks like

H = −µ⃗ · B⃗ = −γB⃗ · S⃗,

where B is the magnetic field that the dipole moment is in. Further simplifying for our purposes in the case where the

field B is constant, we can write B⃗ = Bn⃗, where B = |B⃗| is the (nonnegative) magnitude of our magnetic field – this

gives us yet another expression

H = −γBn⃗ · S⃗.

We can then write down the unitary time-evolution operator:

e iHt/ℏ = e−i(−γBt)(n⃗·S⃗)/ℏ .

To understand how this affects our states, recall that there is a rotation operator

Rn⃗(α) = e−iαn⃗·S⃗/ℏ .

parameterized by a rotation axis n⃗ and an angle α – we rotate counterclockwise (with the right-hand rule) around n⃗

with angle α. But these last boxed expressions can be identified with each other: we can use the same n⃗s, and our

angle of rotation is now α = −γBt. α is a number – it doesn’t have a direction – and thus we can describe our states

as rotating around n⃗ with angular velocity

ω⃗ =
dα

dt
n⃗ = −γBn⃗.

Rewriting Bn⃗ as the vector B⃗, this is the Larmor frequency ω⃗L = −γB⃗, and we can use this to rewrite our Hamiltonian

as

H = ω⃗L · S⃗ .

To make this more explicit, we can consider the most general Hamiltonian for a two-state system

H = g0I +
∑
i

giσi = g0I + g⃗ · σ⃗.

where g0, g1, g2, g3 in general can be time-independent. Then the Larmor frequency can be written by replacing σ⃗ with
2
ℏ S⃗: this tells us that

ω⃗L =
2

ℏ
g⃗

for our general-form Hamiltonian. Similarly to the magnetic field, we can write g⃗ = gn⃗, where g is the magnitude of

g⃗: remember that the operator n⃗ · σ⃗ has energy eigenstates |n;±〉, so the Hamiltonian

H = g0I + g(n⃗ · σ⃗)

will have energy eigenstates of g0 + g and g0 − g, corresponding to |n; +〉 and |n;−〉 respectively. (Here, we should
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think of the g0I term as not really doing anything, except shifting all of the energies. We do have to be careful,

though: adding a g0I term to a Hamiltonian will add a phase e ict to our wavefunction. This is not something we can

observe if the g0I term shows up in the whole system, but it can be relevant if this is only a subsystem!)

We’ll spend some time trying some exercises now:

Problem 231

Recall the expression for our coherent state

|α〉 = e−|α|2/2eαa† |0〉 .

Use this expression to calculate the overlap 〈β|α〉.

We have that

〈β|α〉 = 〈0| (e−|β|2/2eβa†)†e−|α|2/2eαa† |0〉 .

Since e−|α|
2

and e−|β|
2

are both real numbers, we can pull them out of the bra-ket expression (the dagger doesn’t

affect the e−|β|
2/2 term), leaving

= e−|α|
2/2−|β2|/2

〈
0
∣∣∣eβ∗aeαa†∣∣∣0〉 .

We can now expand the exponentials as ∑
i ,j

(β∗)i

i !

αj

j!

〈
0
∣∣âi(â†)j ∣∣0〉 ,

and then we can put a factor of
√
i ! and

√
j! into the denominators of the bra-ket so that we get orthonormal energy

eigenstates: thus this expansion will yield

=
∑
i ,j

(β∗)i√
i !

αj√
j!
δi j .

Working a bit more will yield an answer of e−|α|
2/2−|β2|/2+β∗α .

Problem 232

Suppose we have a two-body Hamiltonian H = H1 ⊗ I + I ⊗ H2. Show that we can write the time-evolution

operator e−iHt/ℏ can be written as a tensor product.

Note that a Hamiltonian can’t really look like H1 ⊗ H2, because that would have units of squared energy. So the

above expression is actually the natural Hamiltonian for two particles that don’t talk to each other!

The idea is to first plug in directly, yielding

e−
it
ℏ (H1⊗I)−

it
ℏ (I⊗H2).

The operators in the exponent here do commute: they act on different worlds, so we can rewrite this as a product of

exponentials

= e−
it
ℏ (H1⊗I)e−

it
ℏ (I⊗H2).

This is an ordinary product – both expressions are operators on the tensor product space, so we should not take their

tensor product. We can then rewrite this as(
e−iH1t/ℏ ⊗ I

)
·
(
I ⊗ e−iH2t/ℏ

)
,
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and now we can multiply the two operators by composition to yield
(
e−iH1t/ℏ ⊗ e−iH2t/ℏ

)
. This is a fundamental

result: we just tensor product the time-evolution operators for the two spaces! (It’s good to make sure we can

understand the logic here – that means we’re on our way to understanding tensor product spaces.)

29 Multiparticle States, Part 2
Last lecture, we started discussing the singlet state

|ψ〉 =
1√
2
(|+〉1 |−〉2 − |−〉1 |+〉2).

This state has a few interesting properties: its total angular momentum is zero (in the x , y , and z directions), so it is

a rotationally invariant state. It is also an entangled state (which we used when discussing quantum teleportation),

and it isn’t hard to realize physically.

Example 233

Particles can decay in such an entangled state physically: for example, a meson called an η0 is an interacting

particle, which decays into a µ+ and a µ− particle.

Since η0 has zero angular momentum (it doesn’t spin), conservation of angular momentum tells us that the µ±

particles will be in a state like |ψ〉, as long as there is no orbital angular momentum. So it’s pretty easy to create such

an entangled state!

We have also showed that

|ψ〉 =
1√
2
(|n⃗; +〉1 |n⃗;−〉2 − |n⃗;−〉1 |n⃗; +〉2)

for any direction n⃗ because of rotational invariance. We can use this to talk about probability:

Definition 234

Let P(a⃗+, b⃗+) be the probability that we find the first particle to be in state |a⃗; +〉 and the second particle to be

in state
∣∣∣⃗b; +〉 when we measure the singlet state along the a⃗, b⃗ directions respectively.

Calculating such a probability is nontrivial, but we can use the fact that our state |ψ〉 is rotationally invariant.

Picking our normal vector to be a⃗, we know that

|ψ〉 =
1√
2
(|a⃗; +〉1 |a⃗;−〉2 − |a⃗;−〉1 |a⃗; +〉2) ,

and now finding the probability comes from computing the numerical overlap and squaring:

P(a⃗+, b⃗+) =
∣∣∣∣〈a⃗; +| ⊗ 〈b⃗; +∣∣∣ ( 1√2(|a⃗; +〉1 |a⃗;−〉2 − |a⃗;−〉1 |a⃗; +〉2)

)∣∣∣∣ .
We can evaluate each of these terms – remember that we evaluate the inner product for a tensor product by doing the

inner products in the individual spaces. The second term drops out, because 〈a⃗; +|a⃗;−〉 is zero, and this just leaves

us with

P(a⃗+, b⃗+) =
∣∣∣∣ 1√2

〈
b⃗; +

∣∣∣ ⃗a;−〉∣∣∣∣2 = 12 ∣∣∣〈b⃗; +∣∣∣a⃗;−〉∣∣∣2 .
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To finish simplifying this, we can calculate the overlap between two spin states n⃗ and n⃗′: recall from early on in the

class that this is cos2 γ2 , where γ is the angle between the two spin states. Since we have a minus sign above, we

should use the −a⃗ vector instead, meaning that our angle is π−θab instead of θab (the angle between the two vectors).

Thus, our final answer is

P(a⃗+, b⃗+) =
1

2
cos2

1

2
(π − θab) =

1

2
sin2

θab
2
.

For example, if the second particle is being measured along b⃗ = −a⃗ (they point in completely opposite directions), then

the overlap should be 1
2 , because we can look at the boxed expression for |ψ〉 above: the first term, |a⃗; +〉1 |a⃗;−〉2,

corresponds to a⃗ and b⃗ both being positive, while the second term corresponds to them both being negative. And

indeed, πab = π in this case, and our probability is 12 .

Another interesting case is to consider P(ẑ+, x̂+): these two vectors have πab = π
2 , so the probability that they

are both measured to be positive is 12 sin
2 π
4 =

1

4
.

With this, we can discuss the EPR paradox – we might have seen this in 8.04, but now we have the mathematics

to appreciate it more completely. And this will lead to the Bell inequalities soon after.

Fact 235

The EPR story began when Einstein, Podolsky, and Rosen wrote a paper about local realism.

This sounds like philosophy, and people thought the question was undecidable for a while. While it’s difficult

to pin down the actual definition of local realism, one main idea regards two assumptions that we make about
measurement results:

• When we measure something and get a number, this measurement corresponds to “some aspect of reality.” In

other words, there is something real about our object.

• Measurements that we do (for example, in a lab) are not affected by measurements or other actions that are

done far away (for instance, on the moon) at the same time, because there’s no time for the information to

propagate between the two actions.

Einstein was very vocal about insisting that physics must satisfy both of these assumptions – while he was correct

and insightful about the photoelectric effect and relativity, he was unfortunately wrong in this case.

It seems very reasonable that the first assumption would be true – Einstein would perhaps say that a spin up particle

is always spin up, and we discover that fact through measurement. Then a way to get around us not knowing whether

a particle exits the Stern-Gerlach machine spin up or down is to try using hidden variables: perhaps there are some

properties of our particles that we just don’t know, but if we knew those properties, we could predict the result of our

experiment. This might sound like an untestable hypothesis, but it isn’t – we’ll see this soon!

And the second assumption breaking seems even more disturbing – we’ve gotten used to the idea that simultaneous

events cannot affect each other because light cannot be exchanged between them. It then seems that we could send

information faster than light if this assumption were false – people have discussed many questions here, and it’s worth

thinking about. But it turns out at the end of the day that there isn’t a way to get real information faster than the

speed of light.

So let’s now review the EPR thought experiments and try to see how they relate to the two assumptions we’re

trying to make.
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Example 236

Suppose Alice and Bob are measuring states, both along the z-axis, in such a way that if Alice measures spin up,

Bob measures spin down and vice versa.

This is some kind of a correlation between Alice and Bob’s experiments, and it seems like we’d know information

from Alice’s experiment about Bob’s experiment. But EPR claims that when we do this experiment, we’ve already

created entangled particles with definite spin vectors. Specifically, the claim would be that 50 percent of Alice’s

particles are definitely spin up (so Bob’s corresponding particles are spin down), and the other 50 percent of her

particles are spin down. This does indeed give us correlation, and what EPR says is that there is no quantum

superposition there!

Mathematically, there isn’t a problem here – we’re just claiming that the (definite) spins depend on some hidden

variables that we don’t know. So let’s look at a more complicated example:

Example 237

Suppose Alice and Bob each have two Stern-Gerlach machines, one in the z and one in the x-direction.

Einstein would say that in such an example, we shouldn’t talk about making one measurement after the other: we

can measure either in z or in x , and there will be a definite answer for each particle’s spin. Let’s say for example that

we have a particle (ẑ+, x̂−) – in other words, if we measure the z-spin, we get +, and if we measure the x-spin, we

get −. So EPR is saying here that the particles look like this instead of a strange superposition of |+〉 and |−〉: there

is some reality, and we measure that reality for each particle.

So suppose we have entangled particles for Alice and Bob: say that Alice’s particle is (ẑ+, x̂+). Then Bob’s

corresponding entangled particles must look like (ẑ−; x̂−). Indeed, we’d find that we would have correlation if we

measure in either the z- or the x-direction. Similarly, if Alice’s particle is (ẑ−, x̂+), Bob’s would be (ẑ+, x̂−), and

we can also produce pairs of particles with (ẑ+, x̂−) and (ẑ−, x̂+) or with (ẑ−, x̂−) and (ẑ+, x̂+). There are four
different possibilities here, and what EPR is saying is that 25 percent of the entangled pairs that are formed are of

each type.

And now we can ask EPR some questions: for example, the probability

P(z+A, z−B)

(which is the probability Alice measures + and Bob measures −) is 50 percent, because there are two of the four

cases which correspond to this reality. (And this is the same prediction that we would make from the entangled state

formulation.) Similarly, we can ask for the probability

P(z+A, x+B),

and this time there is only one of the four cases that works: thus the probability is 25 percent. Again, this matches

our quantum results, and it seems like everything is consistent.

So everything so far has not required quantum mechanics at all: it wasn’t until Bell that we tried three directions

and made a breakthrough towards disproving the EPR theory!

Example 238

Now Alice and Bob have three Stern-Gerlach machines in directions a, b, c , and our particles now need to be

labeled with a + or − label for each of x, y , z .
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So an example of a label for a particle would be (a+, b−, c+): in other words, measuring in the a-direction yields

an spin of ℏ2 , measuring in the b-direction yields − ℏ2 , and measuring in the c-direction yields ℏ2 . So we’re doing a single
measurement here (not doing anything with simultaneity), and we’ll always ask for probabilities of events like “Alice

measures a+ and Bob measures c+.”

Let’s quickly list the different possibilities for our entangled particles:

Particle 1 (Alice) Particle 2 (Bob)

(a+, b+, c+) (a−, b−, c−)
(a+, b+, c−) (a−, b−, c+)
(a+, b−, c+) (a−, b+, c−)
(a+, b−, c−) (a−, b+, c+)
(a−, b+, c+) (a+, b−, c−)
(a−, b+, c−) (a+, b−, c+)
(a−, b−, c+) (a+, b+, c−)
(a−, b−, c−) (a+, b+, c+)

(The particles that Alice and Bob have always have different measurements along each of a, b, c – that’s the way

that they’re correlated.) It might seem like we want to put 18 of the particles in each of these states, but the argument

that we’ll be making here doesn’t require this: let’s say that there are N total particle pairs in our system, and there

are N1, N2, · · · , N8 particle pairs in the eight states of our table above.

What we’re going to do is run into a contradiction: we need to make our quantum mechanical formula 1
2 sin

2 θab
2

go wrong in this model with all of the different measurements we can try. The idea is to try to combine the three
directions into a single equation. First of all,

P(a+, b+) =
N3 + N4
N

,

because only the third and fourth cases have the first particle in the a+ state and the second particle in the b+ state.

Similarly,

P(a+, c+) =
N2 + N4
N

,

and

P(c+, b+) =
N3 + N7
N

.

Now we can make a silly-looking inequality: because N3 +N4 ≤ N3 +N7 +N4 +N2, we can divide that by N, and we

now know that under the assumption of local realism, we have

P(a+, b+) ≤ P(a+, c+) + P(c+, b+) .

This is Bell’s inequality – we’ve turned an assumption of realism into a mathematical fact! We didn’t write down

specific probabilities here, but what’s interesting is that we can pick any populations that we want here, and we can

try to use any a, b, c to get a contradiction. But we know that quantum mechanics has a formula for each of these

expressions in Bell’s inequality! If quantum mechanics is true, then the left hand side is equal to

P(a+, b+) =
1

2
sin2

θAB
2
,

while the right hand side is

P(a+, c+) + P(c+, b+) =
1

2

(
sin2

θAC
2
+ sin2

θBC
2

)
.

And it’s actually pretty easy to find vectors a, b, c such that the left hand side here is larger than the right hand side:
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put them all in the same plane with c between a and b, such that there is an angle θ between a and c , as well as

between c and b. Then local realism claims that

1

2
sin2 θ

??
≤
1

2
sin2

θ

2
· 2 = sin2

θ

2
.

And if we make θ sufficiently small, this inequality is not satisfied: the left side is approximately θ2

2 , while the right

hand side is approximately θ2

4 . In general, this inequality fails for any θ ≤ π
2 ! So we now have a measurement that we

can do in quantum mechanics with correlated entangled particles, and this actually contradicts local realism.

Therefore, what this tells us is that there’s no way to use hidden variables to get around the issues of quantum

mechanics – local realism is incorrect.

Fact 239

And Alain Aspect and others did the physical experiments in the 1980s, and this confirmed that Bell’s inequality

is indeed violated.

We’ll finish this lecture by discussing angular momentum and an elegant vector notation that will help us under-

stand this better. Let’s summarize some of the things that we already know about it! The orbital angular momentum
operators are defined to be

L̂x = ŷ p̂z − ẑ p̂y , L̂y = ẑ p̂x − x̂ p̂z , L̂z = x̂ p̂y − ŷ p̂x .

In many cases, it’s better to use labels x̂1, x̂2, x̂3 instead of x̂ , ŷ , ẑ (and analogously for p̂). That’s because we can

write commutation relations like

[x̂i , p̂j ] = iℏδi j , [x̂i , x̂j ] = [p̂i , p̂j ] = 0.

But the main idea we want to explore here is using vector notation. There are two ways to do this – we can construct

triplets of objects, which are vectors, or we can form the vectors ourselves. This second option often leads to objects

that are a bit confusing, but we try our best to avoid this. For example, instead of thinking of the r⃗ operator as

(x̂ , ŷ , ẑ), we’ll write

r⃗ = x̂ e⃗1 + ŷ e⃗2 + ẑ e⃗3 = x̂1e⃗1 + x̂2e⃗2 + x̂3e⃗3.

We should understand that the basis vectors e⃗i are useful for writing expressions instead of triplets, but that they’re

not really interacting with the x̂ , ŷ , ẑ operators. Similarly, we can define a momentum operator

p⃗ = p̂1e⃗1 + p̂2e⃗2 + p̂3e⃗3,

as well as the angular momentum operator

L⃗ = L̂1e⃗1 + L̂2e⃗2 + L̂3e⃗3.

These vectors are unusual, because their components are vectors, not numbers. So we need to understand how

these operator vectors can be modified – we’ll define the dot product and cross product like we usually do, though

we need to be careful not to make mistakes.
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Definition 240

Let a⃗, b⃗ be vector operators. The dot product of the two operators is defined to be

a⃗ · b⃗ =
∑

aibi .

Similarly, the cross operator of the two operators is a vector operator defined via

(a⃗ × b⃗)i = εi jkajbk .

The order matters here – a and b are operators, so they might not commute.

Definition 241

For a vector-valued operator, define a⃗2 = a⃗ · a⃗ =
∑
aiai .

We can now start doing some calculations. For example,

a⃗ · b⃗ 6= b⃗ · a⃗,

because our vectors now have non-commuting operators: specifically, we know that

a⃗ · b⃗ = aibi = [ai , bi ] + biai ,

where we’re using the repeated index convention. But biai is b · a, so we get a formula

a⃗ · b⃗ = b⃗ · a⃗ + [ai , bi ] .

Example 242

Plugging in the operators r⃗ , p⃗, we find that

r⃗ · p⃗ = p⃗ · r⃗ + 3iℏ .

(We should remember that the commutator [xi , pi ] is summed over i , so we pick up a factor of 3.) This means

that the dot product is no longer symmetric, and similarly the cross product is no longer antisymmetric! Indeed,

(a⃗ × b⃗)i = εi jkajbk = εi jk([aj , bk ] + bkaj).

The first term here stays put, and we can swap the indices j and k in the εi jk on the second term, picking up a minus

sign: thus

(a⃗ × b⃗)i = εikjbkaj − εi jk [aj , bk ] = −(b⃗ × a⃗)i + εi jk [aj , bk ] .

In other words, the cross product will no longer be antisymmetric unless we’re lucky.

Example 243

If we try to compute r⃗ × r⃗ , we can plug it into our identity above to find that

r⃗ × r⃗ = −r⃗ × r⃗ + εi jk [x̂j , x̂k ] = −r⃗ × r⃗ + 0,

so we do have r⃗ × r⃗ = 0.
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We can similarly find that p⃗× p⃗ = 0, but something like L⃗× L⃗ will not be zero! This is because [L̂j , L̂k ] is nonzero,

and we’ll end up finding that

L⃗× L⃗ = iℏL⃗.

On the other hand, if we try computing

(r⃗ × p⃗)i = −(p⃗ × r⃗)i + εi jk [x̂j , p̂k ] = −(p⃗ × r⃗)i + εi jkδjk ,

the last term is zero. It’s true because δ requires j and k to be the same while ε requires them to be different, but

a more general principle is that multiplying an antisymmetric and a symmetric object will yield zero! (To show that,

we can just relabel j and k by swapping: then we get the same quantity with a negative sign.) Therefore, we actually

have

(r⃗ × p⃗)i = −(p⃗ × r⃗)i =⇒ r⃗ × p⃗ = −p⃗ × r⃗ ,

and this is the object that we call the angular momentum.

Example 244

We know that the angular momentum L⃗ is classically perpendicular to both r⃗ and p⃗ – is this true in the quantum

mechanical case?

We’ll first compute r⃗ · L⃗. By definition, we know that

r⃗ · L⃗ = r⃗ · (r⃗ × p⃗) = x̂iεi jk x̂j p̂k = εi jk x̂i x̂j p̂k ,

and now the operators x̂i and x̂j commute, but εi jk is antisymmetric, so the whole expression will collapse to 0.

Therefore, r⃗ · L⃗ is indeed 0.

On the other hand, let’s find p⃗ · L⃗. There’s two ways to do this problem, and we’ll do it by writing out the indices:

p⃗ · L⃗ = p̂iεi jk x̂j p̂k .

There is a temptation to say that the operator part of this is symmetric in i and k , because there are two operators

p̂i and p̂k , but this is incorrect! We have to move the p̂ operators together, and there’s an x̂ operator in the middle

that might screw things up. So we’ll be a bit more careful: this evaluates to

εi jk p̂i x̂j p̂k = εi jk x̂j p̂i p̂k

because the commutator of p̂i and x̂j vanishes, and now it is okay to say that εi jk is antisymmetric in i and k , while

the rest of the expression is symmetric in i and k : thus everything vanishes and we’re left with zero again.

Remark 245. Note that we could have also used that L = −p⃗ × r⃗ , which would have simplified things a lot.)

So now we know that r⃗ · L⃗ = p⃗ · L⃗ = 0, and doing a few analogous calculations allows us to find that L⃗ · r⃗ = L⃗ · p⃗ = 0
as well.

30 April 8, 2020
Concepts of multiparticle states and tensor products have been coming at us pretty quickly! We’ll try to talk about

some of the important ideas.
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The idea of a tensor product is both physical and mathematical – there’s lots of physical ideas that are reflected

in the way we construct the mathematical axioms. Recall that we are trying to create a new space V ⊗W from two

vector spaces V , W , and the initial idea is that we want to just write down ordered pairs (v , w), where v ∈ V and

w ∈ W , and make these the objects of our new vector space. But on its own, this doesn’t give us very much insight,

and it doesn’t actually reflect the physics that we care about here – here, we get what is called the direct product
instead.

One of the main problems is the multiplicative structure of this new vector space: in a direct product, the vectors

(v , w) and (av, w) are linearly independent. But in quantum mechanics, we have a single wavefunction for any system

– even if we have two or three particles, there’s still just one wavefunction. So picking up multiplicative factors of a

independently in the v - and w -entries means we’re constructing “separate” wavefunctions for v and w , which we don’t

like.

So that motivates us to say that

a(v , w) = (av, w) = (v , aw)

for any complex number a (there’s no complex conjugation here – we treat V and W the same, so this isn’t like having

a dual space). And now we introduce the notation v ⊗w instead of (v , w) to emphasize that we’re putting the vectors

in V and W together with a kind of structure.

And once we introduce linearity in the form

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

we have a rigorous definition of the tensor product space! In general, if v ⊗ w is an element of V ⊗W , then we can

have objects of the form ∑
i

vi ⊗ wi ∈ V ⊗W.

Fact 246

In relativity, there are objects called tensors (which have indices and transform in specific ways). They have some

relations with tensor products, but it’s not very immediate – the tensor products we’re writing here represent

objects with two indices.

To be more specific, we can form a basis for our tensor product space V ⊗W of the form {ei ⊗ fj}, where the ei
are basis elements of V and the fJ are basis elements of W . So a general vector in this space will look like∑

i ,j

hi j(ei ⊗ fj),

and now the object hi j can be thought of as a two-index tensor. (The position of the indices being “up” instead of

“down” is more important when we discuss transformations, though it’s not important for our purposes here.) And if

we rotate the basis vectors, that will affect the components of hi j , and then we’ll need to think a bit more about how

tensors transform.

Recall from last lecture that we defined the operator

HT = H1 ⊗ I + I ⊗H2,
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and we found that we could write the time-evolution operator

e−itHT /ℏ = e−iH1t/ℏ ⊗ e−iH2t/ℏ.

Let’s consider some wavefunction in our tensor product space: naively, it might be of the form ψ1 ⊗ ψ2. (Practically,

we end up dropping the tensor symbol.) If we apply the time-evolution operator, it seems like the first factor acts on

the first wavefunction, and the second factor acts on the second wavefunction. But this isn’t quite precise because of

entanglement! A general wavefunction might look like∑
i

ψi1 ⊗ ψi2,

constructed in such a way that we might not be able to rewrite it as ψ1 ⊗ ψ2 at all. So it doesn’t make sense for an

operator to act on the individual components of the tensor product, even when we have a Hamiltonian which is acting

separately on the two parts.

And tensor products are often used to combine different properties of a single particle: for example, an electron

with a position wavefunction might also be a spin 1/2 particle, so we’d have to deal with terms like ψ(x⃗) ⊗

[
c1

c2

]
.

It’s good to remember that Hamiltonians on this tensor product space might make the spin and the position function

interact in complicated ways!

Let’s take a moment now to look at Bell’s inequality, statistical mixtures, and EPR. Everything starts when we

start with our singlet spin state
|ψ〉 =

1√
2
(|+〉 |−〉 − |−〉 |+〉)

This is going to show up when we study angular momentum soon: what’s important about it is that the total angular

momenta Sx , Sy , Sz are all zero (this requires a bit of computation), which means that we can write it as

|ψ〉 =
1√
2
(|n⃗; +〉 |n⃗;−〉 − |n⃗;−〉 |n⃗; +〉)

for any direction n⃗ – since we’re getting the same state in any direction, it’s a rotationally invariant state! So it’s very

nice to work with and analyze, and now let’s turn to the quantity

P(a⃗, b⃗).

To explain what this means, suppose Alice and Bob have the two particles of the singlet state, and Alice measures along

a⃗ while Bob measures along b⃗. Then we’re defining that probability above to be the probability that Alice measures a

state along +a⃗ (instead of −a⃗), and Bob measures a state along +b⃗ (instead of −b⃗). We’ve derived the value of this

before – it’s
1

2
sin2

θab
2

, where θab is the angle between the vectors a⃗ and b⃗.

For example, if the angle is 180◦, so that Alice and Bob measure along a⃗ and −a⃗ respectively (which is basically

measuring along the same axis), the two particles will always be in opposite directions, so either they will both measure

(+) or they will both measure (−) (because their orientations are different). As a different example, if Alice and Bob

measure along the x̂ and ẑ directions, we have that P(x̂ , ẑ) = 1
2 sin

2 π
4 =

1
4 . In this case, the measurements are

essentially independent for Alice and Bob.

The statistical mixtures idea from Einstein is basically claiming that we don’t actually need any of this probability

idea: when we have a bunch of entangled states of this singlet state form, EPR claims that the results that we see

are already inherent in the particles before measurement. For example, a (ẑ ,−x̂) particle has attributes that are

deterministically prepared, and whenever we put it into a z-direction Stern-Gerlach machine, it will always come out
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with a + ℏ2 .

To make this consistent with an equation like P(x̂ , ẑ) = 1
4 (which is experimentally verified), we need to give

a different explanation than quantum mechanics does: instead, we say that one-quarter of the particle pairs in our

ensemble of entangled states have particle 1 in the (ẑ , x̂) direction and particle 2 in the (−ẑ ,−x̂) direction. And this

is consistent with the fact that whenever we measure the two particles along some given axis, they are in opposite
directions (the signs are correlated). And we’ll also need to have another quarter of our particle pairs have particle

1 in the [ẑ ,−x̂ ] state and particle 2 in the [−ẑ , x̂ ] state, and so on. If we set up such an ensemble, this EPR model

is indeed consistent with our quantum mechanical observations: there’s only one of these four groups such that Alice

would measure −z and Bob would measure +x , and so on.

The EPR model holds up well whenever we look in two dimensions: we can set up an ensemble of particle pairs

along any two directions a⃗, b⃗. It’s not until we introduce a third dimension that the problem comes up!

we’ll finish with an idea regarding operators on a tensor product space: we claim that

L(U ⊗ V ) = L(U)⊗ L(V ).

This will require a lot of thinking if we haven’t seen a tensor product space before. One point that might be puzzling:

if dimU = dim V , we can consider the swap operator

S(u ⊗ v) = v ⊗ u.

If the two vector spaces have the same dimension, this is a valid operator. But how can an operator in L(U)⊗ L(V )
swap vectors between the vector spaces?

31 Angular Momentum, Part 1
Last time, we introduced the quantity of angular momentum, which we showed could be written as

L⃗ = r⃗ × p⃗ = −p⃗ × r⃗ .

When we work with angular momentum, we often think about how a vector behaves with rotations.

Definition 247

A vector operator u⃗ is a vector under rotation if

[L̂i , uj ] = iℏεi jkuk .

We’ve verified that r⃗ and p⃗ are indeed vectors under rotation in our homework. This gives us an important theorem:

Theorem 248

If u⃗, v⃗ are vectors under rotations, then u⃗ · v⃗ is a scalar and u⃗ × v⃗ is a vector, both under rotation.

Recall here that u⃗ · v⃗ being a scalar means that

[L̂i , u⃗ · v⃗ ] = 0.

This, for example, shows that if we plug in u, v = r⃗ or p⃗, we have that

[L̂i , r⃗
2] = [L̂i , p⃗

2] = [L̂i , r⃗ · p⃗] = 0.

156



We can also plug in r⃗ or p⃗ into the equation

[L̂i , (u × v)j ] = iℏεi jk(u × v)k .

For example, we can plug in u = r⃗ , v = p⃗ (to yield the vector L⃗), and we’ll find that

[L̂i , L̂j ] = iℏεi jk L̂k .

This time, we didn’t need to verify the complicated calculations by moving the xs and ps past each other – we just

used the theorem above! And now that L⃗ is a vector under rotations, we know that

[L̂i , L⃗
2] = 0

(because L⃗ · L⃗ is a scalar). This last property is very important, and we can indeed check that it works by using the

algebra directly (we’re encouraged to try this out ourselves).

Remark 249. We know that the spins have basically the same algebra:

[Si , Sj ] = iℏεi jkSk ,

and in that case Ŝ2 is just S2x + S
2
y + S

2
z = 3

( ℏ
2

)2
I. So in that case, it was clear that Si always commutes with S⃗2.

The point is that whenever we look at any kind of angular momentum, we’ll use a generic name J. We’ll always

have the algebra of angular momentum
[Ji , Jj ] = iℏεi jkJk ,

and that will let us extract the properties of this algebra alone, rather than the specific physics of the system – we’ll

always have

[Ji , J⃗
2] = [Ji , J

2
1 + J

2
2 + J

2
3 ] = 0.

This algebra also tells us (in fact equivalently) that

J⃗ × J⃗ = iℏJ⃗,

and in fact a vector u⃗ being a vector under rotation tells us that

J⃗ × u⃗ + u⃗ × J⃗ = 2iℏu⃗ .

(To derive this, we just expand out the left hand side using index notation.)

Now that we’ve established some basic identities for vectors under rotations, let’s move on to the question of

computing

(a⃗ × b⃗) · (a⃗ × b⃗).

We have classical formulas for this, but there are some correction terms: it’s not a⃗2b⃗2− (a⃗ · b⃗)2, which is the quantity

that we get if we do things classically. To understand what the extra terms are, we’ll look at the special case of

a⃗ × b⃗ = r⃗ × p⃗: indeed, we have

L⃗2 = r⃗2p⃗2 − (r⃗ · p⃗)2 + iℏr⃗ · p⃗.

We can then solve for p⃗2 to find

p⃗2 =
1

r⃗2
(
(r⃗ · p⃗)2 − iℏ(r⃗ · p⃗

)
+
1

r⃗2
L⃗2.

(Note here that we’ve multiplied 1
r⃗2 by having it multiplied on the left instead of the right.) But now remember that
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p⃗ = ℏ
i ∇⃗, which means that r⃗ · p⃗ = ℏ

i r
∂
∂r (since we plug in r⃗ = r r̂). We can then simplify the first term on the right

hand side above, and we end up with

p⃗2 = −ℏ2
1

r

∂2

∂r2
r +
1

r⃗2
L⃗2.

(We can verify that this is the correct operator by it to a test function f (r)). But we also know that this function

p⃗2 = −ℏ2∇2

is the Laplacian, which we can expand out as

= −ℏ2
(
1

r

∂2

∂r2
r +
1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+
1

sin2 θ

∂2

∂ϕ2

))
.

Comparing these two expressions for p⃗2 gives us an explicit formula for L⃗2: we have the scalar operator

L⃗2 = −ℏ2
(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+
1

sin2 θ

∂2

∂ϕ2

)
.

This means L⃗2 only depends on the angular variables, and this makes sense intuitively – it’s a rotation, so it shouldn’t

change r⃗ , and we can say that it acts on functions on the unit sphere! And this isn’t something that we can easily

find by direct computation: we would have had to write this out in terms of L̂2x , L̂
2
y , L̂

2
z and then subsequently write

this in terms of x̂ and p̂ and simplify to angular variables.

What’s important is that this gives us an understanding of the Hamiltonian for a central potential

H =
p⃗2

2m
+ V (r)

(here the potential only depends on r = |r⃗ |). We know the expression for p⃗2, and plugging it in here gives us

H =
ℏ2

2m

1

r

∂2

∂r2
r +

1

2mr2
L⃗2 + V (r)

This will be the starting point for helping us write the Schrodinger equation for our central potentials – it does indeed

depend on our operator L⃗2.

Remark 250. No parentheses in an operator means that an operator acts on everything to its right. For example,

r
∂

∂r
=

∂

∂r
r − 1

(by using it on a test function f (r)).

We can now discuss the concept of a set of commuting observables. Forming such a set helps us understand the

physics attached to a particular Hamiltonian: the first thing in the list should be the Hamiltonian H itself, since

we do care about the energy of our states.

Now, we know that the x̂1, x̂2, x̂3 operators commute with each other, but they don’t commute with the Hamiltonian

– there’s a p⃗2 term. Similarly, we can’t use p̂1, p̂2, p̂3, because there’s an x-dependence in the potential and there’s no

reason in general for this to commute. Similarly r⃗2 or p⃗2 or r · p are bad, but the operator r⃗ × p⃗ is interesting: let’s

try using the operators

L̂1, L̂2, L̂3.

We can check that the angular momentum commutes with the Hamiltonian: remember that the L̂is commute with

p⃗2 from the discussion above, and V (r) is a function of r⃗2 = |r⃗ |2. So anything that is a function of r must commute

with all of the L̂is, so our Hamiltonian commutes with the angular momentum operators. This is then an angular
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momentum conservation statement, because we know that

d

dt
〈L̂i 〉 = 〈[H, L̂i ]〉 = 0.

So now we want to add L̂1, L̂2, L̂3 to our list of observables, but they don’t commute with each other! We can only

add one, and the convention is to use L̂3 . Finally, we can add the operator L⃗2 : this indeed commutes with all of

the L̂is.

Proposition 251

The universal set of commuting observables for a central potential is

{H, L̂3, L⃗2}.

And we can always add funny observables to this set, like spin, if that’s a property of the particles themselves.

(We’ll see that there are many states with the same L̂3 but different total angular momenta, so we do indeed need L⃗2

to describe our system. But it’s important to note that we can’t actually measure different components of the angular

momentum at once, because the operators don’t commute!)

We want to learn about the kind of states that can exist in a system with the action of operators that behave like

Ji , which are also Hermitian. We’ll be able to derive powerful results, even in the case where systems have nothing

to do with angular momentum. The first step is to introduce the operators

Ĵ± = J1 ± iJ2,

and note that

J+J− = (J1 + iJ2)(J1 − iJ2) = J21 + J22 + i [J2, J1] = J21 + J
2
2 + ℏJ3 .

Similarly, we have that

J−J+ = J
2
1 + J

2
2 − ℏJ3 ,

and we can use these to find the commutator

[J+, J−] = (J
2
1 + J

2
2 + ℏJ3)− (J21 + J22 − ℏJ3) = 2ℏJ3,

as well as

J⃗2 = J21 + J
2
2 + J

2
3 = J+J− + J

2
3 − ℏJ3.

These kinds of identities are pretty simple – we’re deciding that we like J+ and J− more than J1 and J2, and we’re

trying to figure out everything we can about them. Two other nice results we can find are

[J3, J+] = [J3, J1 + iJ2] = iℏJ2 + ℏJ1 = ℏJ+,

and similarly

[J3, J−] = −ℏJ−.

This should look similar to the harmonic oscillator commutator

[N, a†] = a†, [N, a] = −a.

(Here, we’ve used the fact that our operators J1, J2 are Hermitian, so J+ and J− are actually adjoints of each other.)

In the harmonic oscillator case, a† increased the number eigenvalue of N, and a decreased it – we’ll see something
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similar in our new system – J+ will increase the z-component of angular momentum, and J− will decrease it.

Here’s where we need to make a physical declaration: there exist states in this setup that we’ve been creating. In

the harmonic oscillator case, we create infinitely many states above the ground state – this is connected to the idea

that the operators x̂ and p̂ cannot be represented with finite-dimensional matrices. But in the angular momentum

case, we’re actually going to find that there are finite-dimensional matrix representations!
So our set of commuting Hermitian operators contains (replacing J3 with Jz now)

J2, Jz .

Since these are Hermitian commuting operators, they are simultaneously diagonalizable, and we’re saying that there
are states that represent this diagonalization: our vector space should contain a list of orthogonal vectors that are

eigenstates of both operators, and in fact we can make an orthonormal basis for the whole vector space.

Definition 252

Define the orthonormal basis states |j, m〉 such that

J⃗2 |j, m〉 = ℏ2j(j + 1) |j, m〉 , J⃗z |j, m〉 = ℏm |j, m〉 ,

where j, m ∈ R.

It seems reasonable at first to put

J⃗2 |j, m〉 = ℏ2j2 |j, m〉 , J⃗z |j, m〉 = ℏm |j, m〉 .

But this isn’t very convenient – we’ll see later why our definition makes the algebra work out better. And we’ll see

soon also that j, m will get quantized.

To understand our definition a little more, we can evaluate〈
j, m

∣∣J2∣∣j, m〉 = ℏ2j(j + 1).
(We’re sort of assuming that our states will be quantized so we don’t need a delta function normalization factor.) But

we also know that 〈
j, m

∣∣J2∣∣j, m〉 =∑
i

〈j, m| JiJi |j, m〉 =
∑
i

||Ji |j, m〉||2 ≥ 0,

where we’ve used the fact that Ji is Hermitian, so by definition we must have

j(j + 1) ≥ 0,

which means that we can label (parameterize) our states uniquely by either restricting our domain to j ≥ 0 or j ≤ −1.
The next step is to understand how J+ and J− act on these states: first, note that J+ and J− commute with J2,

because J1, J2, J3 commute with J2 and we just have linear combinations of them, which means that J+, J− do not
change the eigenvalue of J2 for a given state:

J2(J± |j, m〉) = J±(J2 |j, m〉) = ℏ2j(j + 1)J± |j, m〉 .

So J± |j, m〉 is also a state with the same (eigen)value of J2, which means it must correspond to the same value of j :

J± |j, m〉 ∼ |j, m′〉 .
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So we want to see how J± affect m, and here’s where we have a bit of a calculation. Introducing a Jz into the

expression,

JzJ± |j, m〉 = ([Jz , J±] + J±Jz) |j, m〉 ,

and we’ve calculated the commutator before, and we can let Jz act on the state, to find that

= (±ℏJ± + ℏmJ±) |j, m〉 = ℏ(m ± 1)J± |j, m〉 .

Therefore, the operator Jz acts on J± |j, m〉 to get an eigenvalue of ℏ(m ± 1), which means by definition of Jz that

our state satisfies

J± |j, m〉 = c±(j, m) |j, m ± 1〉

for some constant of proportionality c±(j, m) to be determined. (We can label our states so that the js line up.) To

find these constants, we take the dagger of the equation above:

〈j, m| J∓ = c∗±(j, m) 〈j ;m ± 1| ,

and now putting these together to yield an inner product tells us that

〈j, m|J∓J±|j, m〉 = |c±(j, m)|2 · 1.

The left hand side can be calculated by using the formulas we’ve derived before:

|c±(j, m)2|2 =
〈
j, m

∣∣J2 − J23 ∓ ℏJ3∣∣j, m〉 = ℏ2(j(j + 1)− (m2 ±m)).
We’ve now found our constants, and taking the square root yields

c±(j, m) = ℏ
√
j(j + 1)−m(m ± 1)

(we can ignore the extra phase terms, since they don’t do anything physically). And this is the reason why we use

j(j+1) – it makes it easier to compare ms and js – and now what’s important is that this quantity j(j+1)−m(m+1)
must be nonnegative, so that ||J+ |j, m〉 ||2 is a nonnegative number. This means

j(j + 1)−m(m + 1) ≥ 0 =⇒ m(m + 1) ≤ j(j + 1).

The right hand side of this is some nonnegative number, and the left hand side is a quadratic function of m. We have

equality when m = j but also when m = −j − 1, so the required condition is that m must be between the two points:

−j − 1 ≤ m ≤ j.

Similarly, the states J− |j, m〉 must also have nonnegative norm, which means that

j(j + 1)−m(m − 1) ≥ 0.

An analogous argument tells us that we must have

−j ≤ m ≤ j + 1,

and now both inequalities must hold:

−j ≤ m ≤ j .

But we can say a little more than that: J+ is supposed to increase m, so we run into trouble at some point. (Intuitively,
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we should think of j as the “length” of the J2 vector, and m is the Jz component.) Indeed, when m = j , we have that

j(j + 1)−m(m + 1) = 0, which means that our state vanishes completely beyond that point! The same thing is true

for m = −j – we can’t get to smaller values of m.

And now, we can think of this as having a ladder of states from m ∈ [−j, j ], where J+ and J− increase or decrease

m by 1. Any state in our system created in this way must terminate at −j or j on the ends for consistency, which in

particular means that the distance j − (−j) = 2j must be an integer. And now we’ve gotten the discretization of our

states – this indeed tells us that our particles can have spin or angular momentum of 0, 12 , 1, and so on! And now

we’ve arrived at the main result of angular momentum:

Theorem 253

The values of the angular momentum can be j = 0, 12 , 1,
3
2 , · · · , with a total of 1, 2, 3, 4, · · · possible values for m,

respectively.

For example, the only state for j = 0 is |0, 0〉, the only two states for j = 1
2 are

∣∣ 1
2 ,−

1
2

〉
and

∣∣ 1
2 ,
1
2

〉
, the only three

states for j = 1 are |1,−1〉 , |1, 0〉 , |1, 1〉, and so on.

The punchline of this is that we were working with an infinite-dimensional vector space, but it breaks down into

states of half-integer j , and we need to figure out which values of j are actually possible. Central potentials will have

0, 1, 2, 4, spins will have 12 , and so on.

Example 254

Consider a two-dimensional simple harmonic oscillator, where we have ax , ay , a
†
x , a

†
y as our operators.

This may seem strange – we have a two-dimensional oscillator even though we’ve been talking about three-

dimensional angular momentum. But we’re going to get an angular momentum that pops out here – it’s abstract, but

it has important properties!

We can start by looking at the spectrum: we have the ground state |0〉, the first excited states a†x |0〉 and a†y |0〉,
the second excited states a†xa

†
x |0〉, a†xa†y |0〉, and a†ya

†
y |0〉, and so on. In general, there are (n + 1) states in the nth

excited level

(a†x)
n |0〉 , (a†x)

n−1a†y |0〉 , · · · , (a†y )
n |0〉 .

And this actually relates to having 1, 2, 3, 4, · · · states in the varying levels of j – let’s see how that plays out. We can

start by introducing the operators

aR =
1√
2
(ax − iay ), aL =

1

2
(ax + iay ),

as well as the number operators

NR = a
†
RaR, NL = a

†
LaL.

These new “left” and “right” operators don’t mix, and now we can rewrite our excited states: we have the ground state

|0〉, the first excited states a†R |0〉 and a†L |0〉, the second excited states a†Ra
†
R |0〉, a

†
Ra
†
L |0〉, and a†La

†
L |0〉, and so on.

(This is completely analogous to the result above.) But remember that we can compute the angular momentum in

the z-direction

L̂z = x̂ p̂y − ŷ p̂x = ℏ(NR − NL),

and now we can see what values of L̂z we have here. The ground state |0〉 has L̂z = 0, the first excited states

have ℏ and −ℏ respectively, the second excited states have 2ℏ, 0,−2ℏ respectively, and so on. This isn’t exactly the
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correct values of m that we derived earlier, but we can turn to another aspect of this theory: remember that J+ keeps

increasing the angular momentum until we annihilate our state |j, j〉, so we should see if something similar happens

here. So our corresponding J+ operator should actually be

L+ = a
†
RaL,

which kills the top state (a†R)
n |0〉 for any n, and then the corresponding dagger operator is

L− = a
†
LaR.

Indeed, this kills the bottom state (a†L)
n |0〉 for any n, and now we have all of the important parts except for one

conceptual step: there is no angular momentum in the two-dimensional plane, so we’ll instead introduce an abstract
angular momentum

Ĵz =
ℏ
2
(NR − NL).

And now things seem to fit: the magnitude of of Jz is 0 on our ground state, − ℏ2 and ℏ
2 on the first excited states,

and −ℏ, 0, ℏ on the second excited states. This now means we can introduce our other angular momentum operators

J+ = βa
†
RaL, J− = βa

†
LaR,

such that we have Jx , Jy , Jz satisfying the algebra of angular momentum. Once we verify that we can find such a

β, our states do indeed need to organize themselves into representations of that angular momentum! So our two-

dimensional harmonic oscillator has all spin representations: j = 0, 12 , 1, · · · . And the only thing we have to check is

that the Jis commute with the Hamiltonian NL + NR. This is the first example of a hidden symmetry in a physical

problem that we’ve encountered, and it allows us to explain how the degeneracies in energy levels can fall into angular

momentum representations.

32 April 13, 2020
We’ve been discussing tensor products recently, and there’s a lot of properties that we’ll want to go over and understand

well. Because of the homework due tomorrow, we’ll finish some of the discussion from last time first.

As a reminder, we were discussing operators on tensor product spaces last time: for example, the operator H⊗ I ∈
L(V ⊗W ) acts on a vector in our space via

(H ⊗ I)(v ⊗ w) = Hv ⊗ w.

Last time, we stated a general result:

Proposition 255

L(U ⊗ V ) = L(U)⊗ L(V ) : The vector space of linear operators can be written as the tensor product of the

individual linear operator spaces of V and W .

This might be a bit disorienting, but it’s important if we (for example) care about finding the most general operator

on a vector space.

We’ll explain this in the case of a finite-dimensional vector space. We can think of linear operators on a vector
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space U of dimension N as matrices, spanned by the basis matrices:

L(U) = span
{∣∣eUi 〉 〈eUj ∣∣} , 1 ≤ i , j ≤ N.

Here,
∣∣eUi 〉 〈eUj ∣∣ represents the matrix with a 1 in the (i , j) entry and a 0 everywhere else. Similarly, we can write

L(V ) = span
{∣∣eVk 〉 〈eVℓ ∣∣} , 1 ≤ k, ℓ ≤ M.

And now if we try to write down the basis vectors for L(U)⊗L(V ), recall that we should tensor the basis vectors for

L(U) and L(V ) together: this gives us MN basis vectors in total. Thus,

L(U)⊗ L(V ) = span
{∣∣eUi 〉 〈eUj ∣∣⊗ ∣∣eVk 〉 〈eVℓ ∣∣} , 1 ≤ k, ℓ ≤ M, 1 ≤ i , j ≤ N.

So the most general linear operator in L(U)⊗ L(V ) is a linear combination of the basis vectors, meaning it is of the

form

S =
∑
i ,j,k,ℓ

ci ,j,k,ℓ
∣∣eUi 〉 〈eUj ∣∣⊗ ∣∣eVk 〉 〈eVℓ ∣∣ ,

where the ci ,j,k,ℓ are numbers.

That accounts for the right hand side in the proposition above, and now let’s try to look at the left side. An

example we gave last time of an operator on U ⊗ V is the swap operator in the case where U = V .

T (u ⊗ v) = v ⊗ u.

A good way to understand linear operators is to let them act on basis vectors: thus, let’s apply T to
∣∣eUp 〉 ⊗ ∣∣eVq 〉.

Then

T
∣∣eUp 〉⊗ ∣∣eVq 〉 = ∣∣eUq 〉⊗ ∣∣eVp 〉

basically just swaps the indices, which means that in general, we have

T (u ⊗ v) = T
(
up
∣∣eUp 〉⊗ vq ∣∣eVq 〉)

(where we’re summing over p, q) and then we can bring the constants up, v q outside and swap the indices to get

= upvqT
(∣∣eUp 〉⊗ ∣∣eVq 〉) = upvq ∣∣eUq 〉 ∣∣eVp 〉 .

Looking at the two inner terms, notice that vq
∣∣eUq 〉 represents a vector v in the vector space V . Similarly, the two

outer terms up
∣∣eVp 〉 represents the vector u in the vector space U, and now we indeed have T (u ⊗ v) = v ⊗ u, as

desired!

What this illustrates is that we indeed only need to define T on the basis vectors, which (we’ll soon show) means

we just need to define our linear operator on U and V separately. The punchline now is that because the operator

A = |j〉 〈i | gets us from |i〉 to |j〉, we can write

T =
∑
p,q

∣∣eUq 〉⊗ ∣∣eVp 〉 〈eUp ∣∣⊗ 〈eVq ∣∣ .
But comparing this to the boxed equation for S above might make this look more familiar: we can rearrange this

as

=
∑
p,q

∣∣eUq 〉 〈eUp ∣∣⊗ ∣∣eVp 〉 〈eVq ∣∣
(by the definition of composition of linear operators). But now we’ve understood what’s going on: (1) the boxed
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equation for T represents our linear operator as an element of L(U ⊗ V ), because we put a ket basis vector next to a

bra basis vector and sum over all possibilities. But (2) the line immediately below that has rewritten the linear operator

so that we’re actually tensoring together a linear operator in L(U) and a linear operator in L(V ) (and taking linear

combinations)! In generality, any operator

S =
∑
i ,j,k,ℓ

ci ,j,k,ℓ
∣∣eUi 〉 〈eUj ∣∣⊗ ∣∣eVk 〉 〈eVℓ ∣∣ ,

which lives in L(U)⊗ L(V ), can be rewritten as

S =
∑
i ,j,k,ℓ

ci ,j,k,ℓ
(∣∣eUi 〉⊗ ∣∣eVk 〉) (〈eUj ∣∣⊗ 〈eVℓ ∣∣) ,

and now the ⊗ symbol is “tensoring our vectors, not our operators,” so this now lives in L(U ⊗ V ).

Fact 256

Remember that when we write L(U) ⊗ L(V ), we mean that we take linear combinations of (operators in U)

tensored with (operators in V). We can’t always write any operator as S ⊗ T for S ∈ L(U) and T ∈ L(V ), just

like in the case with entangled particles.

An interesting question: what are the coefficients ci ,j,k,ℓ for our swap operator T here? Remember that coefficients

correspond to matrix entries, so we’ll write our swap operator T in matrix form. Let’s do the case d = 2, so our basis

vectors are |+〉 and |−〉. We know that one term of T looks like

|+〉 ⊗ |+〉 〈+| ⊗ 〈+| = |+〉 〈+| ⊗ |+〉 〈+| ,

and the other three terms look like (dropping the ⊗ on the left side now)

|−〉 |+〉 〈+| 〈−| = |−〉 〈+| ⊗ |+〉 〈−| ,

|+〉 |−〉 〈−| 〈+| = |+〉 〈−| ⊗ |−〉 〈+| ,

|−〉 |−〉 〈−| 〈−| = |−〉 〈−| ⊗ |−〉 〈−| .

Adding these four things together gives us the whole operator T – remember that this is telling us the action on each

of the 2× 2 = 4 basis vectors, so it determines everything. And now we can write everything in matrix form using the

right hand sides:

T =

[
1 0

0 0

]
⊗

[
1 0

0 0

]
+

[
0 0

1 0

]
⊗

[
0 1

0 0

]
+

[
0 1

0 0

]
⊗

[
0 0

1 0

]
+

[
0 0

0 1

]
⊗

[
0 0

0 1

]
,

and we have a definition for the tensor product of matrices (which is consistent with the way we define our tensor

product): the idea is that A⊗ B can be thought of as multiplying in copies of B with each entry of A. This gives us

=


1 0 · ·
0 0 · ·
· · · ·
· · · ·

+

· · · ·
· · · ·
0 1 · ·
0 0 · ·

+

· · 0 0

· · 1 0

· · · ·
· · · ·

+

· · · ·
· · · ·
· · 0 0

· · 0 1

 .
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where the dots represent A having component 0, so the whole copy of B vanishes. So

T =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,
and thus this tells us that four of the sixteen coefficients ci ,j,k,ℓ are 1s, while the other twelve are 0s.

To finish, we can talk a bit about cloning: we’ve studied teleportation in lecture, in which Alice can teleport a

quantum state to Bob by just sending two bits. In such a case, Alice does not have the state anymore – Bob’s state

is rearranged at the same time that Alice’s state is damaged beyond repair. So if we want to talk about a cloning

machine, we would take a state |ψ〉 = a |+〉 + b |−〉, put it through a machine, and end up with two copies of that

state.

Well, the machine cannot create new particles out of thin air, so we must start with a second particle in some fixed

blank state |α〉 (just like with a photocopy machine). So this machine takes in two particles |ψ〉 and |α〉, and we need

a linear operator U such that we end up with two identical states:

U |ψ〉 ⊗ |α〉 = |ψ〉 ⊗ |ψ〉 .

Then the no cloning theorem tell us that there is no such unitary operator U that can do this for all states! We’ll

discuss this more later on.

33 Angular Momentum, Part 2

Last lecture, we discussed (with an algebraic analysis) states |j, m〉, which we’ll now label with |ℓ,m〉 because we’re

talking about orbital angular momentum. With orbital angular momentum, we can’t actually have half-integer values

of j . In fact, systems like spin states don’t have wavefunctions in this sense; only states of integer angular momentum

have wavefunctions, and those are the spherical harmonics we’ll be discussing today.

Remember that our indexing |ℓ,m〉 has ℓ ≥ 0 and −ℓ ≤ m ≤ ℓ, both integers: then we know that

L2 |ℓ,m〉 = ℏ2ℓ(ℓ+ 1) |ℓ,m〉 , Lz |ℓ,m〉 = ℏm |ℓ,m〉 .

To approach the problem of finding these wavefunctions, remember that we already did some work in constructing the

L2 operator. Specifically, we have

L⃗2 = −ℏ2
(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+
1

sin2 θ

∂2

∂ϕ2

)
and (we didn’t do this explicitly, but it’s a similar derivation)

Lz =
ℏ
i

(
x
∂

∂y
− y

∂

∂x

)
=
ℏ
i

∂

∂ϕ
.

(We should think of this as rotating around the z-axis, so it changes phi but not theta.) We also defined the operators

L± last time, and we can also write those in angular form:

L± = ℏe±iϕ
(
i
cos θ

sin θ

∂

∂ϕ
±
∂

∂θ

)
.

This takes a bit of algebra, but we can find it in various books, and the whole point is that we have differential operators
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that act on theta and phi and don’t care about the radius. So mathematical physicists invent spherical harmonics
of the form Yℓm(θ, ϕ), defined such that

L2Yℓm = ℏ2ℓ(ℓ+ 1)Yℓm

and

LzYℓm = ℏmYℓm,

where we think of L2 and Lz as the differential operators in θ, ϕ. We can think of these functions as being wavefunctions

for our states |ℓ,m〉, and this is the natural way to think of them:

Yℓm = 〈θ, ϕ|ℓ,m〉 ,

which is the analogous idea of saying that ψ(x) = 〈x |ψ〉, only with angular coordinates. In order to extract some more

properties so that the identification here is natural, we can start with the completeness relation. In three dimensions,

we know that ∫
d3x⃗ |x⃗〉 〈x⃗ | = 1

is a completeness relation for position states, and our goal is to do this for spherical coordinates: we find that∫
dr(rdθ)(r sin θdϕ) |rθϕ〉 〈rθϕ| = 1.

We want to ignore the part that happens with r , so we’ll write this as∫
dθ sin θdϕ |θϕ〉 〈θϕ|

∫
drr2 |r〉 〈r | = 1,

where we’re basically “splitting up” the states in the orthogonal angular directions and the radial direction. But the

two integrals here don’t talk to each other, so we can say that the first integral acts as a completeness relation for

things that just depend on θ and ϕ: in other words, we’ll postulate that we have a completeness relation∫
dθ sin θdϕ |θϕ〉 〈θϕ| = 1.

Rewriting, since we know that ∫ π

0

dθ sin θdϕ

∫ 2π
0

dϕ = −
∫ −1
1

d(cos θ)

∫ 2π
0

dϕ,

we can rewrite the term
∫ 1
−1 d(cos θ)

∫ 2π
0 dϕ =

∫
dΩ as the integral over solid angle, and now we just know that∫
dΩ |θϕ〉 〈θϕ| = 1.

So when we’re trying to define spherical harmonics – the |ℓ,m〉 states – we know they are orthogonal, meaning

〈ℓ′m′|ℓm〉 = δℓℓ′δmm′ .

Remember that orthogonality is guaranteed here because we have Hermiticity and distinct eigenvalues. Specifically,

we can always ask the overlap to be

〈ℓ′m′|ℓm〉 =
∫
dΩ 〈ℓ′m′|θϕ〉 〈θϕ|ℓm〉 =

∫
dΩY ∗ℓ′m′(θ, ϕ)Yℓm(θ, ϕ) = δℓℓ′δmm′ .

And from here, we can construct the wavefunctions in various ways from the quantum mechanical intuition: we can

start by building the state Yℓℓ, because L+ kills this state, meaning the differential equation is particularly simple.
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From there, we can find Yℓ,ℓ−1 and so on, using the lowering operator repeatedly. But the formulas are messy and

normalization is annoying, so we won’t talk about that much – if we ever need a special harmonic, we can just look in

a textbook.

So now we can discuss the radial equation: suppose we have a Hamiltonian

H =
p⃗2

2m
+ V (r),

which we can rewrite as

−
ℏ2

2m

1

r

∂2

∂r2
+
1

2mr2
L⃗2 + V (r).

We’ll solve the Schrodinger equation for this Hamiltonian using separation of variables: we’ll write our wavefunctions

satisfying Hψ = Eψ as

ψE,ℓ,m(x⃗),

in terms of its energy and two angular momentum parameters. This isn’t going to be exactly correct, but we’ll do the

following idea first: we want to rewrite this as a product

fE,ℓ,m(r)Yℓm(θ, ϕ).

This is our initial ansatz, and we can try plugging this into the Schrodinger equation: we can cancel a Yℓm term
throughout, and we’re left with

−
ℏ2

2m

1

r

d2

dr2
(r fEℓm) +

ℏ2

2mr2
ℓ(ℓ+ 1)fEℓm + V (r)fE,ℓ,m = EfEℓm.

where the second term comes from the definition of Yℓm. But now this differential equation doesn’t depend on m at

all (the m in the denominator is a mass, not the label m for our states), so ψ is a function of r , indexed by E and ℓ,

and now we can multiply through by r to find that

−
ℏ2

2m

d2

dr2
(r fEℓ) +

ℏ2ℓ(ℓ+ 1)
2mr2

(r fEℓ) + V (r)(r fEℓ) = E(r fEℓ).

This motivates the definition of

UEℓ(r) = r fEℓ(r),

and now our differential equation is

−
ℏ2

2m

d2uEℓ
dr2

+

(
V (r) +

ℏ2ℓ(ℓ+ 1)
2mr2

)
UEℓ = EUEℓ .

This is known as the radial equation, and the expression
(
V (r) + ℏ

2ℓ(ℓ+1)
2mr2

)
is often called the effective potential.

The function f is now of the form UEℓ(r)Yℓm(θ,ϕ)
r , and we can find U by solving a one-dimensional Schrodinger equation

with effective potential depending on ℓ. So the central potential question is actually infinitely many Schrodinger

equations!

From here, the first thing we’ll discuss is the question of normalization and boundary conditions. If we want to

normalize a wavefunction, we want ∫
d3x |ψEℓm(x⃗)|2 = 1,

and we can convert this into angular variables and plug in our separated functional form f to get∫
dΩ

∫
r2dr

|UE,ℓ|2

r2
Y ∗ℓm(θ, ϕ)Yℓ,m(θ, ϕ) = 1.
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(The r2 in the denominator comes from squaring U(r)
r .) But now the angular integral is just 1 by orthonormality –

it corresponds to the case where ℓ = ℓ′ and m = m′. And the r2s cancel out, and we have a nice condition for

normalization: ∫ ∞
0

dr |UEℓ(r)|2 = 1.

So in a way, U does really play the role of a wavefunction on a line – its squared integral should be 1.

Proposition 257

This leads us to a main point, which is something that should stick in our head: when we want to organize our

spectrum for such a problem, we should draw a plot with ℓ on the horizontal axis and E on the vertical.

Most of the time, we’ll have bound states, and that means we’ll have states for values of ℓ,m and some energies

E. For each of ℓ = 0, 1, 2, 3, · · · (which we can draw along the horizontal axis as a histogram), we’ll typically have E

being quantized, and we won’t have any degeneracies because we have a nondegenerate spectrum for bound states.
This means that we can draw a discrete set of lines for each value of ℓ, with each one corresponding to an eigenstate:

we’ll end up with a sequence of horizontal lines above each value of ℓ.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

E (energy)

For the first column ℓ = 0, we can then label the energies starting from the ground state as E1,0, E2,0, · · · , and we

find these energies by solving the Schrodinger equation with ℓ = 0. And then we can do the same with the second

column, ℓ = 1: since the ℓ potentials are larger, the energies will be higher (or at least the ground state energy will be

higher). We can then label them E1,1, E2,1, · · · , and then we can repeat with higher and higher levels of ℓ. And no two

lines will coincide in each column, because no two bound states with the same value of ℓ will have the same energy as

well.

But that doesn’t mean that there’s only one state for each line that we draw! For example, remember that ℓ = 1

comes with three different possible values of m, and the energy doesn’t depend on m. So the energy of the E1,1
multiplet actually corresponds to three states. Similarly, E1,2 corresponds to five states, and so on.

Fact 258

From here, our next question will be studying the behavior of the wavefunction more carefully: we’ll see what

happens when r → 0.

It seems like normalization is the main thing we care about – perhaps, as long as the function doesn’t diverge near 0,

anything will be okay. But it turns out this is false, and we actually need lim
r→0

UEℓ(r) = 0 as well. To understand why

this is the case, let’s look at a simple case where something goes wrong: suppose that

lim
r→0

UEℓ(r) = c.
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Normalization isn’t a problem here, so something else must be the problem – let’s look at the case where ℓ = 0 for

simplicity, and now our wavefunction corresponding to UE0 looks like

ψE00 = c
UE0
r

(m = 0 if ℓ = 0), where we’ve used the fact that Y00 is just a constant. But now ψ looks like c ′

r as ψ approaches 0, and

this is bad: the Schrodinger equation tells us that Hψ = − ℏ22m∇
2ψ + · · · , and the Laplacian term is ∇2 1r = −4πδ(x⃗).

An there’s no reason to expect there to be a delta function in the potential, because that gives us infinitely many

bound states. Thus we can’t cancel that term in the Schrodinger equation, and thus we can’t get wavefunctions to

work out in this case.

We can say something more about these potentials, too:

Fact 259

We’re going to look at cases where centrifugal barrier, which is the ℏ
2ℓ(ℓ+1)
2mr2 term of the effective potential, must

dominate when r goes to 0.

So V (r) might look like 1r , but it’s not 1
r3 or something worse. Then we can look at the differential equation, and

now V (r) and U are less important than U
r2 as r goes to 0. Thus, at leading order, we just keep the kinetic term:

−
ℏ2

2m

d2

dr2
UEℓ +

ℏ2ℓ(ℓ+ 1)
2mr2

= 0.

Simplifying constants, we end up with
d2UEℓ
dr2

=
ℓ(ℓ+ 1)

r2
UEℓ.

It turns out that the solution here is of the ansatz UEℓ = r s , and plugging this in yields either s = ℓ + 1 or s = −ℓ.
But the latter case looks like Uℓ ∼ 1

r ℓ
, and this does not go to 0 as r → 0 as long as ℓ ≥ 1.

Proposition 260

When the centrifugal barrier dominates, the wavefunction will look like UEℓ ∼ r ℓ+1 near r = 0.

And because our wavefunction is in terms of f = U
r , this means that

fEℓ ∼ r ℓ,

which means that f behaves like a constant for ℓ = 0. Physically, this means that when we have zero orbital angular

momentum, there is some chance of having the particle near the origin. However, for any ℓ > 0, f must vanish, and

this explains the name centrifugal barrier – we can’t get too close to r = 0.

Fact 261

Next, we can consider the case where r goes to infinity: again, we need to be careful what we’re assuming, and

the analysis here is richer than we can state quickly.

We’ll just consider some simple cases: in the case where V (r) = 0 for all r > r0, or when rV (r)→ 0 as r goes
to infinity, we can ignore the contribution for V at large r .

Remark 262. These two cases do not account for the hydrogen atom, which has a potential of 1r , so we’ll need to

figure out how to deal with that separately (and we will soon).
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The point of this special case is that V (r) dependence is less important than the centrifugal term, and now we just

have

−
ℏ2

2m

d2

dr2
UEℓ = EUEℓ.

There are now two cases: when E < 0, we have a decaying exponential

Ueℓ ∼ exp

(
−
√
2m|E|
ℏ2

r

)

(it turns out that the hydrogen atom will get a power of r multiplied in here somewhere), and when E > 0, we have

oscillating solutions

UE = exp (±ikr) , k =

√
2mE

ℏ2
.

With this, it’s easy to make qualitative plots of how our solutions look: we know how it looks at the origin (proportional

to r ℓ), and far away (they then decay exponentially), and this is the kind of study that we do in 8.04.

Example 263

We’ll now start to solve the radial equation with specific potentials: we’ll begin with the free particle.

This is more nontrivial in spherical coordinates than it is in the Cartesian case! We know that particles in the usual

case have a fixed energy and momentum, so we usually label them by three momenta or with an energy and direction.

But we won’t be using momentum eigenstates for our spherical coordinates, and this method will help us solve more

complicated problems too.

To be more precise, we can label the states of a free particle with three numbers: sometimes we use p1, p2, p3 (for

the momentum) or E, θ, ϕ (for the energy). In our case, we’ll be using (E, ℓ,m), and it turns out that we’ll end up

with the same number of states anyway.

Our differential equation here looks like

−
ℏ2

2m

d2UEℓ
dr2

+
ℏ2ℓ(ℓ+ 1)
2mr2

UEℓ = EUEℓ.

(Remember that the V term is just zero, but the effective potential is still nonzero.) Canceling the constants, this

just becomes

−
d2UEℓ
dr2

+
ℓ(ℓ+ 1)

r2
UEℓ = k

2UEℓ ,

where E is a positive energy, meaning k is defined as above. This equation is interesting – it looks like a typical

one-dimensional Schrodinger equation, so the energy seems like it should be quantized. But we also know that the

energy shouldn’t be quantized because we have a free particle, and the way to resolve this is that energy doesn’t
actually appear in the differential equation. To explain this, we define a new variable ρ = kr , and this will clear

out all of the energy terms: changing variables yields

−
d2UEℓ
dρ2

+
ℓ(ℓ+ 1)

ρ2
UEℓ = UEℓ,

and our rescaling has removed the energy E from the equation! It still makes its way into our solution, because ρ = kr

does still depend on energy, but we get no quantization in solving the differential equation itself.

But then we can look more carefully at the differential equation, and it turns out this is pretty nasty. Without any

of the terms here, the equation is easy, but whenever we have two derivatives of a function f , a 1
x2 f term, and an f

term, we’re in the Bessel function world.
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And spherical Bessel functions are not that bad, but they’re a little bit complicated. It’s easiest to find solutions

of the form

UEℓ = r · jℓ(kr)

where we don’t care about the constant difference between ρ = kr and r because of normalization, and jℓ is the

spherical Bessel function. This means that a complete solution looks like

ψEℓm = jℓ(kr)Yℓm(θ, ϕ),

where we’ve just divided U by r to get the familiar form of ψ.

Remark 264. There is a J-type and an N-type Bessel function, but the latter is singular at the origin, so it doesn’t

matter here.

From this, we can extract some well-known behavior: as ρ→ 0, one property of the Bessel function is that

ρ · jℓ(ρ) ∼
ρℓ+1

(2ℓ+ 1)!!
.

This is indeed consistent with UEℓ behaving as r ℓ+1 for small r . We also know that as r → ∞, the Bessel function

behaves as

ρ · jℓ(ρ) ∼ sin
(
ρ−

ℓπ

2

)
.

So this behaves like a trigonometric function, because this is the superposition of a sine and cosine. And the ℓπ
2 factor

here is just a phase, which is fixed by the fact that our function needs to vanish at the origin.

This gives physicists a lot of opportunities – the free particle should behave like sin
(
kr − ℓπ

2

)
for large r , so we

can consider a localized potential. The solution far away from that localized potential is a superposition of sines and

cosines, so it’s a phase difference away from the Ue,ℓ we’re talking about here. Therefore, we’ll have

UEℓ = sin

(
kr −

ℓπ

2
+ δℓ(E)

)
,

and thus we can see the effect of our potential through the phase shift δ! In particular, if we do an experiment

with particle scattering, we can use that shift to understand more about the potential that sends waves affecting our

potentials.

Example 265

If we have an attractive potential, this “pulls the wave function in,” so it corresponds to a positive δ. On the other

hand, if the potential is repulsive, we “push the wave function out” and get a negative δ.

We’ll finish by introducing another example, which is the square well. We studied the infinite square well in the

one-dimensional case – it’s easy, and it’s just a combination of sines and cosines. Then the analogous idea in the

three-dimensional case is to take a spherical cavity, in which the particle is free to move for all r < a but has infinite

potential past that point. So

V (r) =

0 r < a

∞ r > a,

and we can solve this by just imposing boundary conditions: inside the cavity, solutions will look like

UEℓ ∼ r · jℓ(kr),
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and we just need to make sure we satisfy the boundary condition

jℓ(ka) = 0.

This seems like the most symmetric potential possible, but there isn’t really much to say about this physical system:

we won’t get a lot of energy deneracies. On the other hand, if we look at something like

V (r) = βr2,

we’ll end up with lots of degeneracies in energy: we’ll understand in the coming lectures why that’s true!

34 April 15, 2020
There’s been a lot of new ideas with the multiparticle states and tensor products, and we’ve most recently been talking

about angular momentum. We’ll still spend time today talking about the former topic, and then angular momentum

is basically the main topic of the rest of the semester.

There will be two more problem sets for this class: one due next Friday (Bell inequalities, EPR, some angular

momentum) and one due two weeks after that (on addition of angular momentum). We’ll have a second test in two

weeks – it’ll be similar to the first one.

Fact 266

There will be an anonymous survey about the changes made to this class, and we should fill that out if we have

any comments.

We started discussing the no cloning theorem last time. Recall that the idea is that we start with an arbitrary spin

state: here, we’ll call it a+ |+〉+ a− |−〉. We’re trying to make a photocopy of this state, so we’ll also put in a generic

|+〉 spin state. Then a cloning machine would start with these two particles, and we’d end up with two particles that

are both in the a+ |+〉+ a− |−〉 state. This is a deterministic machine, and the no cloning theorem states that under

the assumption that our cloning machine is unitary time evolution, we will not be able to clone our particle in

general, other than a few select states. (It’s true that we can also do measurements, and that would be an interesting

research project to look at. But then we start introducing probabilities, and our output becomes nondeterministic.)

If V is the vector space of spin states for each particle, our initial and final states are both in V ⊗ V , so our cloning

machine must be a linear operator in L(V ⊗ V ). Specifically, if we call the blank state |b〉, we must have

U : |ψ〉 ⊗ |b〉 → e iϕ |ψ〉 ⊗ |ψ〉

be the action of our machine U for all |ψ〉 ∈ V . (Here, we might as well assume our states are well-normalized:

〈ψ|ψ〉 = 〈b|b〉 = 1.) The ϕ here is a phase – it can depend on |ψ〉 or |b〉, but it won’t end up being very helpful here.

Let’s state the result we’re trying to prove:

Theorem 267 (No cloning)

There is no unitary operator U sending |ψ〉 ⊗ |b〉 → |ψ〉 ⊗ |ψ〉 (for some ϕ a function of |ψ〉 and |b〉) for all

|ψ〉 ∈ V .

Proof. We’ll stop writing the tensor product ⊗ symbol from here. Suppose that there is a single state which can be
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cloned: that means our operator U looks like

U : |ψ1〉 |b〉 → |ψ1〉 |ψ1〉 e iϕ1 .

Take norms of the initial and final states: we start with

〈ψ1|ψ1〉 〈b|b〉 = 1,

and we end up with

e−iϕ1 〈ψ1|ψ1〉 〈ψ1|ψ1〉 e iϕ1 = 1.

(We found both of these by writing the bra versions next to the ket versions and doing some rearrangement.) So

there’s no crazy obstacle here – this preserves the norm in our tensor product space.

Now, there’s always a unitary operator which takes a vector |e1〉 of length 1 to another vector |f1〉 of length 1.

The idea here is that we can construct a unitary operator out of this: the operator |f1〉 〈e1|, which will send |e1〉 to

|f1〉, is not quite unitary yet, but we can use Gram-Schmidt to get orthonormal bases |e1〉 , · · · , |en〉 and |f1〉 , · · · , |fn〉.
Now the operator

U =
∑
i

|fi 〉 〈ei |

is indeed unitary, because it’s a change of basis between two orthonormal bases! And we can also check that

U†U =
∑
|ei 〉 〈ei | = I.

And now we can generalize this: suppose we have two orthonormal states |e1〉 , |e2〉, and we want to send them to

two orthonormal states |f1〉 , |f2〉 respectively. The same Gram-Schmidt argument tells us, again, that extending the

bases gives us a unitary operator that does the job. In our original problem, this means that we can indeed clone two

orthonormal states in V :

|ψ1〉 |b〉 → |ψ1〉 |ψ1〉 e iϕ1 , |ψ2〉 |b〉 → |ψ2〉 |ψ2〉 e iϕ2 .

Further generalizing, this means that we can have n orthonormal basis vectors in a space of dimension n, and we
can clone all of these n states (because they are an orthonormal set and are being mapped to an orthonormal set).

So now we’re getting to the punchline: suppose the two states that are boxed above are arbitrary, so they’re not

necessarily orthonormal. We know that the unitary operator should preserve inner products: since 〈Uv, Uw〉 = 〈v , w〉,
we should have that the inner product of |ψ1〉 |ψ1〉 e iϕ1 with |ψ2〉 |ψ2〉 e iϕ2 (the final states) is the same as the inner

product of |ψ1〉 |b〉 with |ψ2〉 |b〉 (the initial states). This means that

〈ψ1|ψ2〉 〈b|b〉 = e−ϕ1eϕ2 〈ψ1|ψ2〉2 =⇒ 〈ψ1|ψ2〉 (1− e−i(ϕ1−ϕ2) 〈ψ1|ψ2〉) = 0 ,

so this only works if ψ1 and ψ2 have overlap zero (this is the orthonormal case we’re already talking about) or if

〈ψ1|ψ2〉 = e i(ϕ1−ϕ2) =⇒ | 〈ψ1|ψ2〉 |2 = 1.

But the Schwarz inequality tells us that

| 〈ψ1|ψ2〉 |2 ≤ | 〈ψ1|ψ1〉 || 〈ψ2|ψ2〉 | = 1

only has saturation when ψ1 and ψ2 are different by a constant e ix , which means that they are the same state!

And now we have our result: any two states that can both be cloned must be orthogonal, so vector spaces can only

allow us to clone up to n orthonormal basis vectors. (We can pick any n such states, but then the cloning machine
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won’t work for any others.)

Corollary 268

In a vector space of dimension n, there are only n states that can be cloned.

We’ll conclude with an application to quantum computation. Normally, we use two bits 0 and 1, but quantum bits

(or qubits) are quantum states in a two-state system spanned by |0〉 and |1〉.
Consider the classical CNOT quantum gate, which takes in two (classical) states (x, y) and outputs (x, y ⊕ x),

where ⊕ denotes addition mod 2. (In other words, if x = 0, nothing happens, and if x = 1, we flip the state of y : the

top bit x “controls the gate.”)

The analogous quantum gate does something similar: for the basis states x, y ∈ {0, 1}, we take in two states |x〉
and |y〉 and we output |x〉 and |y ⊕ x〉. In other words, there is some unitary operator U such that

U : |x〉 ⊗ |y〉 → |x〉 ⊗ |y ⊕ x〉 .

So now imagine feeding in the state

(a0 |0〉+ a1 |1〉)⊗ |0〉

into our state. It looks like the CNOT gate might actually clone the first particle (if we naively write it out like in the

classical case, saying that the second state is now |y ⊕ x〉 = |x〉), but we can’t use that logic! We have to instead

write out the initial state as

a0 |0〉 |0〉+ a1 |1〉 |0〉 ,

and now the gate replaces the first expression with a0 |0〉 |0〉 and the second with a1 |1〉 |1〉. So now this gate doesn’t

copy what’s in the top – it gives us an entangled state! Indeed, this circuit only clones the |0〉 and |1〉 vectors, but

it cannot clone anything else.

35 Angular Momentum, Part 3
Today, we’ll start by solving the square spherical wall problem. Recall that this means we want to solve the radial

equation

−
ℏ2

2m

d2UEℓ
dr2

+ Veff(r)UEℓ = EUEℓ,

where U = r f (r), for the potential

Veff(r) = V (r) +
ℏ2ℓ(ℓ+ 1)
2mr2

, V (r) =

0 r < a

∞ r > a.

The first step is to look at the inside of the well – the particle is free in the region r < a, which is why we considered

the free particle as our first example last time. in the range r < a, defining k =
√
2mE
ℏ2 and ρ = kr , our differential

equation simplifies to

−
d2UEℓ
dρ2

+
ℓ(ℓ+ 1)

ρ2
UEℓ = UEℓ.

(We’ve just changed the constants a bit, so that the rescaling gets rid of the explicit energy-dependence.) As we

mentioned last time, this equation has Bessel function solutions – it’s not a simple sinusoidal or power solution. We’ll
look at the special case ℓ = 0, because this is the only case where we don’t need Bessel functions: then our equation
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is

−
d2UE0
dρ2

= UE0 =⇒ UE0 = A sin ρ+ B cos ρ.

Remember from last time that UEℓ must behave like r ℓ+1 near the origin, which indeed happens here as long as the

cosine term disappears. And thus

UE0(r) ∼ ρ = sin(kr).

Because the potential goes to infinity at r = a, we need to satisfy the boundary condition UE0(a) = 0. This means

that kr = nπ, so

k = kn =
nπ

a

for some positive integer n. So far, everything here is analogous to the one-dimensional infinite square well, and the

energies will look like (solving the equation k =
√
2mE
ℏ2 for E)

En,0 =
ℏ2k2n
2m

=
ℏ2

2ma2
(kna)

2 =
ℏ2

2ma2
(nπ)2.

(These are the energy levels for the ℓ = 0 state.) Most of these constants are irrelevant, and the important thing to

remember is that the constant fraction is the “typical energy” for a system of length scale a, and we’re just scaling by

(nπ)2. This motivates the rescaling:

Definition 269

Define the unitless quantity (for any n, ℓ)

εn,ℓ =
En,ℓ(
ℏ2
2ma2

) .

This tells us how much bigger an energy level is compared to the natural energy scale for our system.

From here, let’s look at the general case: we’ll now need to know the zeros of the spherical Bessel function. For

example, j1(ρ) has zeros when tan ρ = ρ, which requires a numerical calculation to solve, and in general the Bessel

function zeros can be found online if we need them. We’ll use the notation

zn,ℓ = nth zero of jℓ,

where all z ’s are nonzero and n is indexed by positive integers. And now, the energy eigenstates corresponding to an

angular momentum ℓ yield a boundary condition of

UEℓ(a) = 0 =⇒ kn,ℓa = zn,ℓ.

So our energies look like

En,ℓ =
ℏ2knℓ
2ma2

=
ℏ2(kn,ℓa)2

2ma2
,

so

εn,ℓ = (kn,ℓa)
2 = z2n,ℓ,

which are just the squares of the zeros of the Bessel function! Here’s a small table of εn,ℓ values for small n and ℓ:

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

n = 0 9.87 20.2 33.2 48.83

n = 1 39.48 59.7 82.7 108.5

n = 2 88.82 119 · · · · · ·
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The purpose of looking at all of these numbers is to compare the energies in a plot: remember that we do this by

plotting one column for each ℓ, and drawing horizontal marks at various energy levels for each one. Indeed, the ground

state energy levels (corresponding to n = 2) do get larger for larger ℓ, as we predicted, but there are never matching
energies for two different pairs (n, ℓ), which may be surprising for a round, seemingly-symmetric potential!

Example 270

The next system we’ll solve is the three-dimensional (isotropic) harmonic oscillator.

This system has the potential

V =
1

2
mω2(x2 + y2 + z2) =

1

2
mω2r2.

It turns out that there is much more symmetry in this system than there was in the spherical well! To start building

our spectrum, note that the Hamiltonian looks like

H = ℏω
(
N̂1 + N̂2 + N̂3 +

3

2

)
,

where N̂s are the number operators in the three directions. Note that the state space of our system can be derived

from H1, the state space of the one-dimensional harmonic oscillator. Conceptually, a 3-D SHO comes from the

creation and annihilation operators for x , y , and z , so building a state of a three-dimensional oscillator depends on

finding the number of a†xs, a
†
y s, and a†zs: thus, we actually have a tensor product

H3D SHO = H1 ⊗H1 ⊗H1,

where any basis vector comes from picking some number of a†xs, a
†
y s, and a†zs. So even though we introduced tensor

products as corresponding to multiparticle systems, we’re tensoring different attributes for the same particle here

– this is just the correct way to combine data in quantum mechanics.

But now we can understand the energies En,ℓ by plotting them in an energy diagram.

• Our ground state |0〉 has number eigenvalues N1 = N2 = N3 = 0, and the energy is E = 3
2ℏω: this is the single

ground state with the lowest possible energy, and because it is spherically symmetric, it must come from the

angular momentum equation. We want to know what the value of ℓ is, but there’s a single state here – there’s

no multiplicity, while (for example) ℓ = 1 corresponds to three linearly independent states for m = −1, 0, 1. So

our ground state energy must have angular momentum ℓ = 0 .

• For the next energy level, there are three different states: a†x |0〉 , a†y |0〉 , a†z |0〉. Each of these states has energy

ℏω
(
1 + 32

)
= 5
2ℏω, and the multiplicity of 3 means we can argue that this corresponds to ℓ = 1 . After all,

ℓ = 0, 1, 2, 3, · · · have a 1, 3, 5, 7, · · · -fold degeneracy in m, so the only way to get three states is the second of

these options.

• The level after that, with E = 7
2ℏω, has six states:

(a†x)
2 |0〉 , (a†y )

2 |0〉 , (a†z)
2 |0〉 , a†xa

†
y |0〉 , a†xa

†
z |0〉 , a†ya

†
z |0〉 .

Each of these has N = N1 + N2 + N3 = 2, and the six states must organize themselves into various different

values of ℓ. We can’t use ℓ = 3 (that yields seven states), so we must either have two different sets of ℓ = 1

states (3+3) or a set of ℓ = 2 and a set of ℓ = 0 states (5+1). But we can’t build with two ℓ = 1 states, because

that means we’d need to put two horizontal lines at the same spot on our energy diagram for the same value of

ℓ, and this is not allowed! So we instead split our states of N = 2 into five of ℓ = 2 , and one state of ℓ = 0 .
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(We can write this as a direct sum of the two spaces.) So this is already interesting: we get an identical energy

in different columns of ℓ. (We’ll understand where this matching comes from later on in the course.)

• Finally, let’s consider N = 3. This case has ten possible states: we can cube one of the raising operators (3

options), use one of each raising operator (1 option), or use two of one and one of another (6 options) to get a

state of energy 92ℏω. This can either originate out of (ℓ = 4)⊕ (ℓ = 0) (with 9+1 states) or (ℓ = 3)⊕ (ℓ = 1)
(with 7+3 states). It turns out to be the latter (the best way to understand this is to look at the lowest energies

for each value of ℓ, which go up in step).

• If we want to count the number of states for N = 4 or higher N, note that we just need to find nonnegative

integers nx , ny , nz with nx+ny +nz = N. (This corresponds to the state (a†x)nx (a
†
y )
ny (a†z)

nz |0〉.) Doing casework

on the value of nz , this yields a total of

1 + 2 + · · ·+ (N + 1) =
(N + 1)(N + 2)

2

states of a given sum of number operators N. And we can carry out the same argument to understand that

N = 4 most likely corresponds to ℓ = 4, 2, 0, N = 5 corresponds to ℓ = 5, 3, 1, and so on.

So the above analysis told us the ℓ-values at a given energy, and we can also use this to see the energy levels at a

given ℓ. Basically, we do two jumps of ℏω between energy levels at a given ℓ:

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

E

3
2ℏω

5
2ℏω

7
2ℏω

9
2ℏω

11
2 ℏω

To understand this system better, remember that we discussed that we can replace the operators ax , ay with aR, aL,

which allows us to write

Lz = ℏ(NR − NL)

(we derived this for a two-dimensional oscillator, but it’s still true in three dimensions). It’s a bit harder to find the

angular momentum operators Lx , Ly , but we can do that, and this time this is an actual momentum, not an abstract

one like in the 2D case.

From here, we’ll build states in the same way as before, doing casework on the value of N = NL + NR + N3.

• For N = 1, there are three states: a†R |0〉 , a
†
z |0〉 , a†L |0〉, which correspond to angular momenta Lz of ℏ, 0,−ℏ

respectively. So that gives us all of the structure for the ℓ = 1 multiplet: we get the three states with m values

of +1, 0,−1.

• Looking at the extreme cases, for N = 2, we have a†Ra
†
R |0〉 with an angular momentum Lz = 2ℏ, and this is the

highest possible value of Lz – in general, Lz = Nℏ is the maximum possible value for a state with total number

N, because each a†R adds 1ℏ to Lz , each a†L removes 1ℏ, and each a†z does nothing. So there are going to be

2N + 1 different values of Lz for each N (from −Nℏ to Nℏ).
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• So the only state with maximum angular momentum is (a†R)
N |0〉, the only state with one unit less of angular

momentum is (a†R)
N−1a†z |0〉, and then the next unit of angular momentum has two states: (a†R)

N−2(a†z)
2 |0〉, as

well as (a†R)
N−1a†L |0〉. But the point is that because we have some state with maximum angular momentum,

we’ll get a multiplet corresponding to ℓ = N: this uses up the state of Lz = nℏ, Lz = (N − 1)ℏ, and one of the

states of Lz = (N − 2)ℏ. And now the highest angular momentum left is Lz = (N − 2)ℏ, so that corresponds

to ℓ = N − 2: this explains the jump by two energy levels!

Indeed, we’ll find two states that we can write at Lz = (N − 3)ℏ, three states at Lz = (N − 4)ℏ (which explains

why we have an ℓ = N−4, and so on. And we can conclude study of this system by understanding how we could have

come up with this from the beginning without building it up: the answer is that certain operators commute with the

Hamiltonian (meaning they don’t change energy) and indeed move us from one value of ℓ to another (in other words,

moves us to the right or the left by two values of ℓ in our above diagram). As a hint, the operators of the form a†xay

does not change the energy, because it destroys one level in the y -direction and adds one in the x-direction. There’s

lots of hidden symmetries in the operators of this form!

Example 271

Our next system is that of the hydrogen atom: we have

H =
p2

2m
−
e2

r
.

Here, m is the reduced mass of the proton-electron system: it’s roughly equal to me (the mass of the electron).

There is a natural length scale in this system, known as the Bohr radius. We find this by setting p = ℏ
a0

for some

length a0, and then we set the two terms of the Hamiltonian equal (ignoring constants because we care about units):

ℏ2

ma20
=
e2

a0
=⇒ a0 =

ℏ2

me2
≈ 0.529× 10−10 m.

The 1
e2 is important: this means that if we make the interaction between the electron and proton small, then the

hydrogen atom’s radius gets large. The corresponding energy scale is e2

a0
, and half of that quantity, e2

2a0
, is a famous

number – 13.6 eV.

Our main question here will be finding the (energy) spectrum: there’s an elegant method for finding the ground

state. We can write (for some specific constants γ, β) the Hamiltonian as

H = γ +
1

2m

3∑
k=1

(
p̂k + iβ

x̂k
r

)(
p̂k − iβ

x̂k
r

)
:

this is basically a factorized version of our above expression. (Remember that we need to be careful, because the

operators x̂k and p̂k don’t commute.) But now we can view the second term
(
p̂k − iβ x̂kr

)
as an operator and the first

term
(
p̂k + iβ

x̂k
r

)
as its dagger: in a way analogous to the harmonic oscillator, the ground state should be killed by

our operator, meaning (
p̂k − iβ

x̂k
r

)
|ψgs〉 = 0,

and the energy of this ground state is just the constant γ. (This looks like three equations, but it’s just a single

equation if we have a spherically symmetric state.)

Looking at the whole spectrum, there are interesting degeneracies just like in the 3-dimensional harmonic oscillator:

we’ll claim this result for now, and we’ll show where this structure comes from later in the class.
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ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

E

If we label the states for each ℓ with ν = 0, ν = 1, · · · from bottom to top, notice that the states with the same

n = ν + ℓ have the same energy. That energy turns out to be

En,ℓ = −
e2

2a0
·
1

n2
, n = ν + ℓ,

where 0 ≤ ℓ ≤ n− 1, and in order to understand more of the structure here, we’re going to need to introduce the idea

of the Runge-Lenz vector.

Example 272

The Runge-Lenz vector comes from classical mechanics: consider a Hamiltonian for an elliptical orbit

H = −
p2

2m
+ V (r),

where the (classical) force is F⃗ = −V ′(r) r⃗r .

In this classical situation, we know that

F⃗ =
dp⃗

dt
= −V ′(r)

r⃗

r
,

and because we have a central potential V (r),
dL⃗

dt
= 0

(there is no torque on the particle). It turns out that there is a (surprising) quantity here that is conserved: we start

with the quantity p⃗× L⃗ (this is a bit unmotivated, but it yields an interesting result), and then we can do some algebra

to find
d

dt
(p⃗ × L⃗) = mV ′(r)r2

d

dt

(
r⃗

r

)
.

So this gives us a conservation law when V ′(r)r2 is a constant, which we’ll call e2. And this occurs exactly when

V ′(r) =
e2

r2
=⇒ V (r) = −

e2

r
,

which is the potential of the hydrogen atom: it’s a 1
r2 force field. In such a situation, there is a conservation law

d

dt

(
p⃗ × L⃗−

me2r⃗

r

)
= 0.

For the sake of convenience, defining

R =
p⃗ × L⃗
me2

−
r⃗

r
,

we know that dR
dt = 0, and we have a conserved quantity that is unitless. This R turns out to be conserved in the
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quantum mechanical case too: R is an operator that commutes with the Hamiltonian H. (We’d have to hermiticize

p⃗ × L⃗ for things to work out.) But what’s important here is that this conservation law helps us understand the

degeneracies in the hydrogen atom!

If we first consider a circular orbit, p⃗ is tangential and L⃗ is out of the plane of the orbit, so p⃗×L⃗
me2 points radially out

of the circle. Combining this with the radial vector means that R is some vector that points radially outward, and it

must be conserved: thus, R must actually be the zero vector in the circular case.

But R isn’t zero in an elliptical orbit: if we repeat the same argument, it turns out that the vector will always point

along the major axis of the ellipse! (And this always happens in a 1r potential, though it’s good to note that Einstein’s

theory of gravity has a different potential, so the ellipse precesses.) And the magnitude of this unitless R⃗ turns out to

be exactly the eccentricity of our ellipse.

36 April 22, 2020
Our second midterm will be in a week – some materials, including past tests and a formula sheet, have been posted

for us to work on. We’ll discuss test review next recitation, and it’s recommended that we look at the formula sheet

to study – there’s a lot more formulas than last time. (Basically, we should be able to realize what each one means

and what it can be used for.) Logistics will be pretty similar to the first test, and we’ll experiment a bit more with

partial credit.

Fact 273

Everything we’ve learned up to today’s lecture and Friday’s problem set is fair game for the test. Monday’s

lecture will begin discussing addition of angular momentum, but it won’t be on the test.

Each midterm, as well as the final, are now worth 15 percent of our grade. (And the final will not be uniformly

covered, because we just don’t have enough time.) We should expect a set of true/false questions on each test as

well.

With that, we’ll move to class material: first of all, to answer a question posed, we’ll consider the identity

L2 = r2p2 − (r · p)2 + iℏr · p.

The Hamiltonian of the hydrogen atom looks like

H =
p2

2m
+ V (r), V (r) = −

e2

r
,

so we need to write p2 in terms of L2 in the identity above to get the Laplacian term (involving p2). We want to

divide by r2, and the idea is that the operator 1r2 acts on the wavefunction ψ by just multiplying by the operator 1r2 on
the left, since r, p do not commute. This yields

1

r2
(
L2 + (r · p)2 − iℏr · p

)
= p2,

and we can then substitute that into the Hamiltonian, which yields

p2

2m
=

1

2mr2
(
L2
)
+
1

2mr2
(
(r · p)2 − iℏr · p

)
.

Remark 274. When we see a fraction of operators A
B , this is usually ill-defined: it could either mean B−1A or AB−1,

so we shouldn’t write fractions unless we have something like L2

r2 , because the operators L2 and 1
r2 commute. Similarly,
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we should be careful with things like

1

(AB)
= (AB)−1 = B−1A−1 =

1

B
·
1

A
.

We’ll discuss some aspects of EPR now, using work by Greenberg, Horne, and Zeilinger (GHZ).

Example 275

Suppose we have three particles A,B, C in an entangled state (emerging from some kind of a elementary particle

decay), and they go to Alice, Bob, and Charlie.

EPR’s logic would tell us that these particles have attributes – we can measure the x-component or y -component

of some particle, and we always get the same result for a given particle because these observables are properties. Even

if we don’t know why the particles have these values for the observables, there are some hidden variables or attributes

that determine all physical properties of the state. Call these hidden variables λ.

Suppose, for example, that Alice measures the spin of her particle along the x⃗ state: then the result she will get

looks like

A(x⃗ ;λ) ∈ {±1},

where we’re measuring σx instead of Sx . Here, we’re saying that given λ, the value of A is determined: there’s no

probability going on. Similarly, Alice can measure A(y⃗ ;λ) ∈ {±1}, and Bob and Charlie can also measure along the

x⃗- and y⃗ -directions to get answers of 1 or −1, depending on λ.

The main result we care about is that we can produce an entangled state such that we have the following x⃗ y⃗ y⃗

correlations:

A(x⃗ , λ)B(y⃗ , λ)C(y⃗ , λ) = 1.

A(y⃗ , λ)B(x⃗ , λ)C(y⃗ , λ) = 1.

A(y⃗ , λ)B(y⃗ , λ)C(x⃗ , λ) = 1.

In other words, when one of our particles is measured in the x-direction and the other two particles are measured in

the y -direction, their product is always 1 (either all +1s, or one +1 and two −1s). But now we can multiply these

equations together to find

A(x⃗ , λ)B(x⃗ , λ)C(x⃗ , λ) = 1,

since the square of any measurement we make here is always 1, so the y -terms all go away. But let’s see what quantum

mechanics predicts about this: consider the state

Φ =
1√
2
(|+〉 |+〉 |+〉 − |−〉 |−〉 |−〉) .

We can see the analog of the x⃗ y⃗ y⃗ correlations now: if we consider the operator

σAx ⊗ σBy ⊗ σCy ,

this operator acts on Φ (because it acts on the three particles), and it is Hermitian (because each of the three operators

is Hermitian), meaning it is something that can be measured. But remember that

σx |±〉 = |∓〉 , σy |±〉 = ±i |∓〉 ,

so the operator will turn |+〉 |+〉 |+〉 into |−〉 |−〉 |−〉, except with two factors of i from the two σy s, meaning it will

turn into − |−〉 |−〉 |−〉. Similarly, the − |−〉 |−〉 |−〉 will become + |+〉 |+〉 |+〉, so Φ is actually an eigenstate of our
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operator: (
σAx ⊗ σBy ⊗ σCy

)
|Φ〉 = |Φ〉

with eigenvalue 1. The same logic works for the other two operators, and thus we’ve verified the x⃗ y⃗ y⃗ correlation

property for this GHZ state.

But now we can try seeing what happens when we measure all three particles along the x-direction:(
σAx ⊗ σBx ⊗ σCx

)
|Φ〉 =

1√
2
(|−〉 |−〉 |−〉 − |+〉 |+〉 |+〉) = − |Φ〉 ,

so we actually get an eigenvalue of −1! So the answer is exactly opposite from what we see in the classical case, and

thus we’ve already found a way to violate the classical assumptions. And we don’t even need to repeat this argument:

any one single measurement gives the wrong answer. And one thing to learn here is that

(σx ⊗ σy ⊗ σy )⊗ (σy ⊗ σx ⊗ σy )⊗ (σy ⊗ σy ⊗ σx) = (σxσyσy )⊗ (σyσxσy )⊗ (σyσyσx),

and the reason this doesn’t reduce to σx ⊗ σx ⊗ σx is that the matrices don’t commute in the second term. In fact,

we just end up with

σx ⊗ (−σx)⊗ σx = −(σx ⊗ σx ⊗ σx),

as we’ve already demonstrated.

37 Addition of Angular Momentum, Part 1
We’ll start this new topic by introducing some elements of perturbation theory, which is discussed much more in

8.06. The idea is that many of the results of perturbation theory will be important for understanding various examples

that come up in this last part of the class. (We won’t do any derivations here, just a general primer of results.)

Suppose that we have a Hamiltonian

H = H(0) + δH,

where H(0) is known and δH is some small perturbation. Suppose that our eigenstates of the known Hamiltonian are

indexed by k , such that

H(0)
∣∣∣k(0)〉 = E(0k ∣∣∣k(0〉 .

(The (0)s reflect the fact that we’re working with the original Hamiltonian.) This means we know the (degenerate or

nondegenerate) spectrum of H(0), and we want to understand what the perturbation does to this spectrum.

Each of the nondegenerate states will be perturbed a little, and the degenerate states will typically split apart from

each other as well: δH may move the energies up more than others. We’ll look at each of these cases now.

In the nondegenerate case, there is a single eigenstate indexed by k , and the state
∣∣k(0)〉, as well as the energy Ek ,

will change by a bit:

Ek = E
(0)
k + δEk +O((δH)

2).

Here, we’re making a first-order approximation of the Hamiltonian correction δH. It turns out the formula is of the

form

δEk =
〈
k(0
∣∣∣δH∣∣∣k(0〉 .

what’s striking here is that the correction to the energy doesn’t require the exact form of the eigenvectors: we just

need to look at the expectation value on the original eigenstate.

On the other hand, when we have degenerate states (meaning they have the same value of Ek), we can understand
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what happens to the splitting at first order. Suppose that our energy level is E(0)n , and there are N total degenerate

energy eigenstates at that level: we’ll label them as
∣∣n(0), ℓ〉, where we have the additional indexing by the integer

1 ≤ ℓ ≤ N. Assume that we’ve also chosen these states to be orthonormal, so that
〈
n(0), ℓ

∣∣n(0), k〉 = δℓk .
To lowest (zeroth) order, all of these states have the same energy, which is the eigenvalue

H(0)
∣∣∣n(0), ℓ〉 = E(0)n ∣∣∣n(0), ℓ〉 .

To understand what happens to the splitting, note that our N states span a vector space VN : what we need to do is

compute the matrix for δH in our space VN . This means we need the matrix elements

(δH)kℓ =
〈
n(0), k

∣∣∣δH∣∣∣n(0), ℓ〉 :
this gives us an N × N matrix.

And then we get our answer by diagonalizing that N×N matrix. We need to find the eigenvalues and eigenvectors

of this (Hermitian by definition) matrix, and if the energies split, some of the eigenvalues will be different. Labeling

those N eigenvectors
∣∣∣ψ(0)I 〉 (where 1 ≤ I ≤ N) and the corresponding N eigenvalues δEnI , we can think of each

eigenvector as a column vector, which corresponds to a linear combination of our original basis states
∣∣n(0), k〉:∣∣∣ψ(0)I 〉 =∑

k

∣∣∣n(0), k〉 a(0)Ik .
These

∣∣∣ψ(0)I 〉s are then the (approximate) new energy eigenstates for our perturbed Hamiltonian, and the energies

are EnI = E
(0)
n +δEnI+O(δH

2). So it takes a bit more time to state what happens, but we just diagonalize the matrix

that explains the matrix elements of δH, which allows us to separate the corrections to the energy E(0)n .

Now, we’re ready to move on to addition of angular momentum, and we’ll start by stating the fundamental result:

Theorem 276

Suppose there are a set of operators J(1)i on the state space V1 satisfying the algebra of angular momentum (that

is, [J(1)i , J
(1)
j ] = iℏεi jkJ

(1)
k ), as well as another set of operators J(2)2 on the state space V2. Then there is a new

angular momentum

Ji = J
(1)
i ⊗ I + I ⊗ J

(2)
i

which satisfies the algebra of angular momentum in the space V1 ⊗ V2.

Note that we needed to state this in terms of the tensor product space, because J(1)i cannot act on V2 (and vice

versa). But soon we’ll just call this operator J(1)i + J
(2)
i to make the notation easier. Note that if we had tried to add

any other linear combination of these two angular momenta, it wouldn’t work!

Proof. We need to verify the angular momentum relation:

[Ji , Jj ] =
[
J
(1)
i ⊗ I + I ⊗ J

(2)
i , J

(1)
j ⊗ I + I ⊗ J

(2)
j

]
.

But now if we look at the cross terms, the commutator will be zero, because (for example)

(J
(1)
i ⊗ I)(I ⊗ J

(2)
j ) = (I ⊗ J

(2)
j )(J

(1)
i ⊗ I) = J

(1)
i ⊗ J

(2)
j .

So operators originally living in different vector spaces will commute, and what we’re left with is[
J
(1)
i ⊗ I, J

(1)
j ⊗ I

]
+
[
I ⊗ J(2)i , I ⊗ J(2)j

]
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and then the I’s don’t really do anything: we just get

[J
(1)
i , J

(1)
j ]⊗ I + I ⊗ [J

(2)
i , J

(2)
j ]

by the formulas for angular momentum in the individual vector spaces, and this is exactly what we want: it evaluates

to iℏεi jk
(
J
(1)
k ⊗ I + I ⊗ J

(2)
k

)
= iℏεi jkJk .

And with a bit more practice, we won’t need to use the tensor products when we’re working with these objects.

Example 277

Our first example will be spin-orbit coupling: we’ll have a hydrogen atom, with an additional term ∆H = −µ⃗ · B⃗.

We didn’t have a B⃗ in the original hydrogen atom, but we’ll say that µ⃗ is the magnetic dipole moment for the

electron:

µ⃗ = −
e

m
S⃗,

where S⃗ is the spin. We’re using Gaussian units, we can instead state this as

µ⃗ = −
ge

2mc
S⃗,

because this allows us to estimate terms more easily. And the magnetic field B⃗ comes from the electron’s interaction
with the proton: since the proton is going around the electron (in the electron’s frame), we have an “current that

generates a magnetic field,” and this current is then going to be proportional to the angular momentum L⃗.

Specifically, let’s fix coordinates so that the electron is at the origin at some point in time, moving into the plane

with some velocity v⃗ , and the proton is to the left of the electron so that there is an electric field E⃗ pointing to the

right (remember that electric field is not the same as electric force). Relativistically, the electric and magnetic fields

that we see in different reference frames are actually different: thus, the magnetic field from the point of view of the

electron will be

B⃗′ = −
v⃗ × E⃗
c

,

and this (by the right-hand rule) yields a magnetic field pointing upward: this is consistent with the picture of having

a proton going around in circles and creating a current. We’ll remove the negative sign by using E⃗ × v⃗ instead, and

we can calculate the electric field by looking at the scalar potential

V (r) = −
e2

r
=⇒ V ′(r) =

e2

r2
=⇒ E⃗ =

V ′(r)

e

r⃗

r
,

where the last step comes from replacing electric force with electric field and also noting that the electric field points

radially outward. And now plugging things in,

B⃗′ =
1

ec

1

r
V ′(r)(r⃗ × v⃗),

and borrow a factor of m to write this in terms of the angular momentum:

=
1

ecm

1

r

dv

dr
L⃗.

Thus, we can finally calculate the perturbation:

∆H = −µ⃗ · b⃗B =
ge

2mc

(
S⃗ · L⃗

) 1

ecm

1

r

dV

dr
.
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Unfortunately, it turns out there’s a relativistic error here: Thomas precession tells us that we must replace g with

g − 1 (because the interactions of magnetic fields and dipoles change the precession rate when we don’t have an

inertial system), which means that we basically lose a factor of 2: plugging everything in, we end up with

∆H =
e2

2m2c2r3
(S⃗ · L⃗) .

To estimate this, recall that we have the Bohr radius a0 = ℏ2
me2 , and we also have the fine structure constant

α =
e2

ℏc
≈
1

137
.

Since S⃗ has multiples of ℏ and so does L⃗, we can estimate the dot product to be on the order of ℏ, and we end up

with

∆H ∼
1

m2c2
(ℏ2)
1

r

e2

r2
≈

1

m2c2
e2

a30
ℏ2.

The ground state energy of the hydrogen atom is Egs =
e2

2a0
, and now

∆H

Egs
==

ℏ2

m2c2a20
=

ℏ2

m2c2 ℏ
4

m2e4

=
e4

ℏ2c2
= α2.

This means the ratio of the spin orbit coupling energy with the ground state energy is 1
1372 , which is pretty small. This

is called the fine structure of the hydrogen atom: the splitting of energies is therefore going to be pretty small.

Remark 278. Note that we’ve been using Gaussian units this whole time: in SI units, we instead have

∆H =
e2

8πε0

1

m2c2r3
(S⃗ · L⃗),

where we’ve already replaced g with g − 1 in this expression.

Now that we have the perturbation ∆H, we can work with this a bit more to understand what happens to the

hydrogen spectrum. We’ll start with the simplest state of angular momentum, the state of ℓ = 1, n = 2 (recall that

n = ℓ + ν, so this is the lowest energy state for ℓ = 1). Remember that this is actually a multiplet of states: ℓ = 1

has states of m = −1, 0, and 1, and our states can also be up or down, so we actually have 3 × 2 = 6 total states
of the form

|ℓ,m〉 ⊗ |s,ms〉 ,

where we’re fixing ℓ = 1 and s = 1
2 , but we can have m = −1, 0, 1, and we can have ms = ± 12 . Remember that |ℓ,m〉

denote the angular part of our wavefunction, though there is also a radial dependence ψ1(r) which luckily only depends

on ℓ (so it basically factors out of any consideration we’re doing here). All in all, this means we have six degenerate

states, and we’ll need to use the perturbation Feynman–Hellmann result carefully: we need to select the correct basis

of eigenstates from our 6× 6 matrix δH. Theoretically, we could find 〈i |∆H|j〉 for all matrix elements 1 ≤ i , j ≤ 6 and

find the eigenvectors as δH goes to 0: basically, we want to find a basis |1′〉 , |2′〉 , · · · , |6′〉 of this energy level such

that the matrix ∆H′ becomes diagonal, so that the changes of energies are just those diagonal entries.

What we’ll find is that we can relate the basis of states |ℓ = 1, m〉 ⊗
∣∣s = 1

2 , ms
〉

to a basis which tracks total
angular momentum. To understand this, let’s look some more at the L⃗ · S⃗ operator: it acts on our tensor product,

and it’s actually defined as

L1 ⊗ S1 + L2 ⊗ S2 + L3 ⊗ S3 =
∑
i

Li ⊗ Si ,
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and we also have the sum of the angular momenta

Ji = Li ⊗ I + I ⊗ Si .

The idea is to square J:

J2 =
∑
i

Ji · Ji

(this is not a tensor product – we’re applying Ji twice), which can be written as

=
∑
i

(Li ⊗ I + I ⊗ Si) (Li ⊗ I + I ⊗ Si) =
∑
i

(LiLi ⊗ I + 2Li ⊗ Si + I ⊗ SiSi) ,

and now we can rewrite this as

J2 = L2 ⊗ I + 2
∑
i

Li ⊗ Si + 1⊗ S2

(and when we have more practice, this can basically just be written as J2 = L2 + S2 + 2L⃗ · S⃗, though that can

be confusing when we think about how it acts on states). Therefore, we have the formula for that term of our

Hamiltonian:

L⃗ · S⃗ =
1

2
(J2 − L2 − S2).

And now L2 is a diagonal matrix in our original basis, because the eigenstates we’re choosing all have ℓ = 1, and

similarly S2 is a diagonal matrix – both are actually constants times the identity. That means that L⃗ · S⃗ is basically

just a linear transformation of J2, and thus the total angular momentum is indeed the important quantity here.

We’ll call the original basis states |1, m〉 ⊗
∣∣ 1
2 , m

〉
uncoupled states (there’s no entanglement going on), and all

of these uncoupled states are eigenvectors of L2, S2. But because all of the eigenvalues are actually equal – each one

has an eigenvalue of ℏ2ℓ(ℓ + 1) = 2ℏ2 for L2 and 3 ·
( ℏ
2

)2
= 3ℏ2

4 for S2 – if we take any linear combination of our

uncoupled states, we will still have eigenvectors of both L2 and S2 (with the same eigenvalues). Thus, we just need

to select specific linear combinations that are also eigenstates of J2, and then we’ll be happy.

Remember that L2 and S2 commute with all Li and Si , respectively, and Ls and Ss always commute because

they act on different state spaces. So L2 is known as a Casimir operator – it commutes with everything that is

rotationally invariant constructed with Ls and Ss. So when we consider our matrix elements 〈i |∆H|j〉, remember that

we’re considering overlaps of the states |i〉, which have a radial component as well as an angular and spin wavefunction,

which we’ll call |i〉. Since

∆H = β
1

r3
(L⃗ · S⃗)

for some constant β, the inner product calculation 〈i |∆H|j〉 looks like

β

∫
r2drψ∗1(r)ψ1(r) ·

1

r3

〈
i
∣∣∣L⃗ · S⃗∣∣∣j〉 .

So we just select these i , j to be eigenstates of L⃗ · S⃗, which will give us

=

〈
1

r3

〉
ℓ=1,n=2

·
〈
i
∣∣∣L⃗ · S⃗∣∣∣j〉 ,

and the inner product will be diagonal and indicate the relevant energy corections ∆E.

We’ll now turn our attention back to our complete set of commuting observables: normally for an unperturbed

hydrogen atom, we have H0, L2, and Lz (where L tells us about the orbital angular momentum), and we can’t add

any more operators because Lx and Ly do not commute with Lz . But now adding in the spin term, we can now have
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the complete set

{H0, L2, Lz , S2, Sz},

because the original Hamiltonian doesn’t actually know about the spin at all. On the other hand, if we have L⃗ · S⃗
coupling, we now have a full Hamiltonian H′ instead of H0. We want to check whether L2 and Lz can be put in our

complete set again – we know that L2 commutes with H0, and we just need to check whether it commutes with L⃗ · S⃗,

which is does. But the Lis do not actually commute with L⃗ · S⃗, so this time we can’t keep Lz anymore. Similarly, S2

is okay, but Sz is not, and so our new set currently sits at

{H′, L2, S2}.

But we can actually add something new this time: the total angular momentum in the form of J2. To check this, note

the following:

• J2 is built with Lis and Sis, which commute with H0, so J2 and H0 commute.

• J2 commutes with L⃗ · S⃗, because we can remember that

[J2, L⃗ · S⃗] =
[
J2,
1

2
(J2 − L2 − S2)

]
and each term commutes.

• Similarly, J2 commutes with L2, S2.

So we can add J2 to this, and the natural question is whether we can also add Ji (analogous to adding Lz or Sz).

We go through the argument again: Ji = Li + Si commutes with H0 because both Li and Si do, Ji commutes with

the remaining operators because it commutes with J2, L2, S2. We can’t add multiple Jis, so we get our final set of

Hermitian commuting observables which we can simultaneously diagonalize:

H′, L2, S2, J2, Jz .

But in our analysis, we won’t be finding exact energy eigenstates: we’ll use the Feynman-Hellmann method of diago-

nalizing J2 instead. Remember that L⃗ and S⃗ have eigenvalues proportional to ℏ, so we often divide through to get rid

of that. We have the very useful formula, which is the action of our lowering and raising operators J±:

J± |j, m〉 = ℏ
√
j(j + 1)−m(m ± 1) |j, m ± 1〉 .

We can write our uncoupled states in the following groups:

Jz
ℏ
=
3

2
: |1, 1〉 ⊗

∣∣∣∣12 , 12
〉

Jz
ℏ
=
1

2
: |1, 0〉 ⊗

∣∣∣∣12 , 12
〉
, |1, 1〉 ⊗

∣∣∣∣12 ,−12
〉

Jz
ℏ
= −
1

2
: |1, 0〉 ⊗

∣∣∣∣12 ,−12
〉
, |1,−1〉 ⊗

∣∣∣∣12 , 12
〉

Jz
ℏ
= −
3

2
: |1,−1〉 ⊗

∣∣∣∣12 ,−12
〉
.

This is because the value of Jz
ℏ is basically just m + sm, where m is one of 1, 0,−1 and sm is either 12 or − 12 . So

Jz can be diagonalized without forming linear combinations, but we haven’t diagonalized J2 yet: we want to find the

eigenstates |j, m〉 which have eigenvalue from Jz = ℏm and eigenvalue from J2 = ℏ(j(j + 1).
And now we think about this by thinking about Jz as an abstract angular momentum. We know that Jz is at most
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3
2 here, and −j ≤ m ≤ j , so we must have an eigenstate of J2 which has j = 3

2 we couldn’t have something like j = 5
2 ,

because that would require us to have a state with Jz = 5
2ℏ in the multiplet, which we definitely cannot have from our

above listing. So there are four states here:

j =
3

2
=⇒ m =

3

2
,
1

2
,−
1

2
,−
3

2
.

We must have m = 3
2 only coming from the top state by our above argument, so∣∣∣∣j = 32 , m = 32

〉
= |1, 1〉 ⊗

∣∣∣∣12 , 12
〉
.

Similarly, for m = − 32 , we can only use the bottom state:∣∣∣∣j = 32 , m = −32
〉
= |1,−1〉 ⊗

∣∣∣∣12 ,−12
〉
.

But for each of m = ± 12 , we’ll need to take some linear combination of the states in each of the rows for Jz
ℏ – it’s not

so easy to describe them directly right now. And this accounts for four states, and the remaining two states must live

in a j = 1
2 multiplet (it can’t be j = 0 because all of our m-eigenvalues are ± 12). Therefore, we can write what we’ve

found as

(ℓ = 1)⊗
(
s =
1

2

)
=

(
j =
3

2

)
⊕
(
j =
1

2

)
:

both vector spaces have dimension 3×2 = 4+2 = 6. Before we find the energy splittings, let’s try to finish constructing

the other four coupled states in our j = 1
2 and j = 3

2 multiplets. We’ll act with the operator J− = L− + S− on the

boxed expression for
∣∣j = 3

2 , m =
3
2

〉
: for the left side, we have an equation for how J− acts on this state, which is

ℏ
√
3

2
·
5

2
−
3

2
·
1

2

∣∣∣∣32 , 12
〉
= ℏ
√
3

∣∣∣∣32 , 12
〉
.

To deal with the right hand side, we’ll act with the operator J− = L− ⊗ I + I ⊗ S−. This yields

J−

(
|1, 1〉 ⊗

∣∣∣∣12 , 12
〉)
= L− |1, 1〉 ⊗

∣∣∣∣12 , 12
〉
+ |1, 1〉 ⊗ S−

∣∣∣∣12 , 12
〉
,

and now we use the formula for lowering operators again:

= ℏ
√
1 · 2− 1× 0 |1, 0〉 ⊗

∣∣∣∣12 , 12
〉
+ |1, 1〉 ⊗ ℏ

√
1

2
·
3

2
−
1

2
· −
1

2

∣∣∣∣12 ,−12
〉
,

which evaluates to

ℏ
√
2 |1, 0〉 ⊗

∣∣∣∣12 , 12
〉
+ ℏ |1, 1〉 ⊗

∣∣∣∣12 ,−12
〉
.

So now we can set the two sides equal, and we find that∣∣∣∣j = 32 , m = 12
〉
=

√
2

3
|1, 0〉 ⊗

∣∣∣∣12 , 12
〉
+
1√
3
ℏ |1, 1〉 ⊗

∣∣∣∣12 ,−12
〉
.

We can do a similar thing to find
∣∣j = 3

2 , m = −
1
2

〉
by raising

∣∣j = 3
2 , m = −

3
2

〉
with the J+ operator: the calculations
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are very similar, and we end up with∣∣∣∣j = 32 , m = −12
〉
=

√
2

3
|1, 0〉 ⊗

∣∣∣∣12 ,−12
〉
+
1√
3
ℏ |1,−1〉 ⊗

∣∣∣∣12 , 12
〉
.

Indeed, these ended up being linear combinations of the states where Jz
ℏ are ± 12 , respectively, and the states have

ended up normalized as well.

This means we’ve now constructed the entire j = 3
2 multiplet: this isn’t necessary if we just care about the energy

splittings, but it’s nice to have a concrete expression.

Now we just need to build the j = 1
2 multiplet, and we can do that in a few different ways. We want

∣∣ 1
2 ,
1
2

〉
and∣∣ 1

2 ,−
1
2

〉
, which are going to use the same uncoupled states as

∣∣ 3
2 ,
1
2

〉
and

∣∣ 3
2 ,−

1
2

〉
, but the key idea is that we’re

forming an orthonormal basis (because eigenstates of Hermitian operators with different eigenvalues are orthogonal).

So up to a sign, there’s only one possible solution: it’s going to be∣∣∣∣j = 12 , m = 12
〉
= −

1√
3
|1, 0〉 ⊗

∣∣∣∣12 , 12
〉
+

√
2

3
ℏ |1, 1〉 ⊗

∣∣∣∣12 ,−12
〉
,

∣∣∣∣j = 12 , m = −12
〉
= −

1√
3
|1, 0〉 ⊗

∣∣∣∣12 ,−12
〉
−
√
2

3
ℏ |1,−1〉 ⊗

∣∣∣∣12 , 12
〉
.

(The central idea here is that the vector

[
a

b

]
is orthogonal to

[
−b
a

]
, so that’s all we need to do to our coefficients.)

And we can indeed check that these are states with j = 1
2 – we’ve chosen our signs so that having J− act on∣∣j = 1

2 , m =
1
2

〉
will yield

∣∣j = 1
2 , m = −

1
2

〉
.

And now we can wrap everything up: remember that our energy perturbation looks like

∆H =
e2

8πε0

1

m2c2
1

r3
1

2
(J2 − L2 − S2),

but because we’re looking at the ℓ = 1 case, the eigenvalue of L2 is always ℏ2 ·1 ·2 = 2ℏ2, and similarly the eigenvalue

of S2 is always 3 · ℏ24 . Thus,

∆H =
e2

8πε0

1

m2c2
1

r3
ℏ2

2

(
J2

ℏ2
− 2−

3

4

)
.

Since we’re working with eigenstates of J2 in our coupled basis, this parenthetical term is just j(j + 1) − 11
4 . The

matrix ∆H is now a diagonal matrix because our new states are orthogonal and eigenstates of J2, which is what we

were trying to achieve all along – now we can finally write down the perturbation of energy in our new state, which is

∆Ej,m =
e2

8πε0

1

m2c2

(∫ ∞
0

r2drψ∗1(r)ψ1(r)
1

r3

)
·
ℏ2

2

(
j(j + 1)−

11

4

)
=

e2

8πε0

1

m2c2

〈
1

r3

〉
ℓ=1,n=2

·
(
j(j + 1)−

11

4

)
.

The expectation value of 1r3 is known: in general, it turns out that〈
1

r3

〉
ℓ,n

=
1

ℓ
(
ℓ+ 12

)
(ℓ+ 1)

·
1

n3
·
1

a30
.

But we’ll just set

∆E0 =
e2

8πε0

1

m2c2

〈
1

r3

〉
ℓ=1,n=2

,

which is some energy which is on the order of α2 compared to the ground state energy of the hydrogen atom, and
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now

∆Ej,m = ∆E0

(
j(j + 1)−

11

4

)
.

This means that we started off with six degenerate states at this level ℓ = 1, n = 2. Four of them have the same

energy after splitting: plugging in j = 3
2 , we find that those four states go up by ∆E0. THe other two states have

a different energy after splitting: plugging in j = − 12 , those two states will go down by 2∆E0. And we’ve solved an

interesting problem without needing to write down the complicated six-by-six matrix! In general, we’ll figure out how

to figure out the right hand sides of tensor product equations like

1⊗
1

2
=
3

2
+
1

2
,

and if we care about energy splittings, that’s all we will need to know.

38 April 27, 2020
We’ll be spending most of the time in the rest of this class on addition of angular momentum, but today we’ll mostly

focus on the upcoming test for Wednesday. (As a housekeeping reminder, we have just one more homework assignment

– it’s due next Friday. The general pace of this class will go down in the last two weeks because of this exam.)

Problems on uncertainty and compatible observables will be the first explicitly covered topic on this exam, and

questions up to problem set 7 are fair game (so up to angular momentum). We’ll spend this recitation doing some

practice problems.

Problem 279

What are the traces of Jx and J2 for the j = 3
2 multiplet?

We know that there are four different allowed values of m for this value of j , meaning there are four basis vectors

that span the multiplet: they are
∣∣j = 3

2 , m
〉

for m = 3
2 ,
1
2 ,−

1
2 ,−

3
2 . Thus, the matrices Jx and J2 are both 4 × 4

matrices, meaning the trace of any operator A looks like

tr(A) =
∑
m

〈
3

2
, m

∣∣∣∣Â∣∣∣∣32 , m
〉
,

where we sum over the values of m above.

We know that all states here are eigenvectors of J2 with eigenvalue ℏ2j(j + 1) = 15ℏ2
4 (so the matrix is diagonal

with all diagonal entries 15ℏ
2

4 ), so the trace for J2 will be 4 · 15ℏ24 = 15ℏ
2 . To find the trace for Jx , we can write it as

J++J−
2 and find the traces of the raising and lowering operators: since no state is left invariant, both of those traces

are zero, so the answer is just 0 for Jx .

Alternatively, remember that Jz is the operator
3
2ℏ 0 0 0

0 ℏ
2 0 0

0 0 − ℏ2 0

0 0 0 − 3ℏ2


(the eigenvalues of Jz are ℏm, so we have a diagonal matrix). And the trace of this matrix is 0, so we should

expect that the trace of Jx is also zero. Indeed, we can write this as a commutator, which always has trace zero for
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finite-dimensional vector spaces:

tr(Jx) = tr
(
1

iℏ
[Jy , Jz ]

)
= tr

(
1

iℏ
(JyJz − JzJy )

)
= 0.

Indeed, this means that any angular momentum operator will always have zero trace.

One thing to keep in mind is that the identity operator

I =
1

iℏ
[x̂ , p̂]

does have infinite trace, even though it is written as a commutator. But this is just because we’re working with infinite

dimensional vector spaces, where we have to be more careful.

Problem 280

Define (for any γ ∈ R)

S(γ) = exp
(
−
γ

2
(â†â† − ââ

)
.

Calculate f (γ) = S†(γ)âS(γ) in terms of â† and â.

We know that S(γ) is a unitary operator, because − γ2 (â
†â† − ââ (the expression inside the exponential) is anti-

Hermitian. (One notable thing that we can verify is that (eA)† = e(A
†).) That means that one way we can calculate

this is to commute the commutator in

S†(γ)âS(γ) = S†(γ)S(γ)â + S†(γ)[â, S(γ)],

or to use the formula eABe−A = B + [A,B] + 1
2! [A, [A,B]] +

1
3! [A, [A, [A,B]]] + · · · . But another way is to consider

the derivative
d

dγ
f (γ) =

dS†

dγ
âS(γ) + S†(γ)â

dS(γ)

γ
:

bringing down the terms in the chain rule (by putting them next to the middle term) yield the commutator

= S†(γ)

[
−
1

2
(â†â† − ââ), â

]
S(γ),

and this commutator turns out to be â†. And taking a second derivative yields

d2f

dγ
= S†(γ)âS(γ) = f ,

which means that f = A cosh γ + B sinh γ for some A,B. Using the initial conditions yields f = cosh γâ − sinh γâ† .

Problem 281

What is 〈β|H|α〉, where α, β are coherent states and H is the (one-dimensional) simple harmonic oscillator

Hamiltonian?

We can rewrite the Hamiltonian so this expression becomes〈
β

∣∣∣∣ℏω(â†â + 12
)∣∣∣∣α〉 .

This can then be rewritten as

= ℏω
(〈
β
∣∣â†â∣∣α〉+ 1

2
〈β|α〉

)
,
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and now remember that |α〉 is an eigenvector for â, so we can let the â act on the |α〉 and the |a〉† act on the 〈β|
(remembering the complex conjugate):

ℏω
(
〈β|β∗α|α〉+

1

2
〈β|α〉

)
And now all that’s left is to compute the bra-ket 〈β|α〉, and that’s given in our formula sheet: it’s

e−
1
2
|α−β|2+i Im(β∗α).

Here’s one final problem to think about on our own:

Problem 282

Alice and Bob share an entangled pair of particles in the singlet state. Suppose Bob has a cloning machine: how

can Alice and Bob use this to communicate a yes-no message without sending any information?

(This gives us a method of instantaneous communication, which is not physically allowed – that’s why we have the

no cloning theorem.) Basically, just have Alice measure along x if the answer is “Yes” and along z if the answer is “No.”

Afterward, Bob can clone many copies of his (now edited) state, and try measuring along the x and z-directions: only

one of these will always yield the same answer.

39 Addition of Angular Momentum, Part 2
We’ll begin discussing addition of angular momentum more generally now, and we’ll start with the most important and

simplest example:

Example 283

Consider the addition of angular momentum for two spin 1/2 particles.

As always, we label angular momentum states with two labels – we’ll use |s,m〉 here (because we have spin and

not orbital angular momentum here), and we have the operator S2 (analogous to J2) such that

S2 |s,m〉 = ℏ2s(s + 1) |s,m〉 ,

and also the operator Sz (analogous to Jz)

Sz |s,m〉 = ℏm |s,m〉 .

So |s,m〉 are the simultaneous eigenstates for S2 and Sz for a single particle. When we want to introduce two particles,

we’ll end up with two vector spaces V1, V2 and two sets of spin operators S⃗(1) and S⃗(2): thus, we need to write things

in the tensor product formalism here.

In the case with spin 1/2, the particles’ individual states can be written with basis∣∣∣∣12 ,±12
〉
1

,

∣∣∣∣12 ,±12
〉
2

.

When we take the tensor product, we’ll now have four basis states (pick one of the states for particle 1 and one of

the states for particle 2), and in this space we’ll have the total angular momentum operator

Ŝi = S⃗
(1)
i ⊗ I + I ⊗ S⃗

(2)
i .
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We’ll organize our states with respect to this tensor product: we know that∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

have both particles spin up, ∣∣∣∣12 ,−12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

,

∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 ,−12

〉
2

have one particle spin up and one particle spin down, and∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

have both particles spin down. We’ll want to look at our states in terms of total angular momentum in the z-
direction, which we find by adding up the angular momentum of the first and second particles: since the z-component

for a single particle |s,m〉 is ℏm, we can just add up the contributions for our four states, and we find that

Sz = S
(1)
z ⊗ I + I ⊗ S(2)z

will be ℏ for the first state, 0 for the two middle states, and −ℏ for the last two states.

Our next step is to rearrange this uncoupled basis, much like we did last lecture, so that we can have eigenstates

for the total angular momentum as well. Since one of our states has m = 1, we need an s = 1 multiplet here (which

gives us m = 1, 0,−1), and then we’ll also need an s = 0 multiplet (which is the only value of s that yields a singlet).

So our total space

V1 ⊗ V2 = (s = 1)⊕ (s = 0),

which means we can write (
s =
1

2

)
⊗
(
s =
1

2

)
= (s = 1)⊕ (s = 0) .

So now let’s go ahead and find these new basis states |s,m〉, where we’re now labeling our states by total angular

momentum. Remember the formula for our raising and lowering operators for a general angular momentum J:

J± |j, m〉 = ℏ
√
j(j + 1)−m(m ± 1) |j, m ± 1〉 .

For example,

J−

∣∣∣∣12 , 12
〉
= ℏ

√
1

2
·
3

2
−
1

2
· −
1

2

∣∣∣∣12 ,−12
〉
= ℏ

∣∣∣∣12 ,−12
〉
,

so the lowering operator acts in a simple way on the top state for Jz . We can also find that (now looking at the top

state for j = 1)

J− |1, 1〉 = ℏ
√
1 · 2− 1 · 0 |1, 0〉 = ℏ

√
2 |1, 0〉 .

So now we’ll specialize to the identification for spin 1/2: we’re looking for a multiplet of total spin s = 1, and this

must contain the top state (the only state with m = 1)

|s = 1, m = 1〉 =
∣∣∣∣12 , 12

〉
1

⊗
∣∣∣∣12 , 12

〉
2

.

Similarly, we know that we must have

|s = 1, m = −1〉 =
∣∣∣∣12 ,−12

〉
1

⊗
∣∣∣∣12 ,−12

〉
2

,
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because this is the only state with m = −1. So we need to figure out which state corresponds to |1, 0〉 and which

corresponds to |0, 0〉, and we just need to use the lowering operator on |1, 1〉:

S− |s = 1, m = 1〉 = S−
(∣∣∣∣12 , 12

〉
1

⊗
∣∣∣∣12 , 12

〉
2

)
,

and because the total lowering operator can be written as S− = S
(1)
− ⊗ I + I ⊗ S

(2)
− , we have

ℏ
√
2 |s = 1, m = 0〉 =

∣∣∣∣12 , 12
〉
1

⊗ S−
∣∣∣∣12 , 12

〉
2

+ S−

∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

,

and evaluating the lowering operators on the individual vector spaces with our usual formula yields

= ℏ
(∣∣∣∣12 , 12

〉
1

⊗
∣∣∣∣12 ,−12

〉
2

+

∣∣∣∣12 ,−12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

)
.

So moving the constants around, we find that

|s = 1, m = 0〉 =
1√
2

∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 ,−12

〉
2

+
1√
2

∣∣∣∣12 ,−12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

,

and now we have the full s = 1 multiplet. To finish identifying the s = 0 singlet, we need to take some linear

combination of the m = 0 states which is orthogonal to the |1, 0〉 state (this is because they’re eigenstates of a

Hermitian operator S2 with different eigenvalues). We can achieve this by switching the sign of one of the terms

above, and we’ll take

|s = 0, m = 0〉 =
1√
2

∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 ,−12

〉
2

−
1√
2

∣∣∣∣12 ,−12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

to get the singlet state (remember that this actually made an appearance when we talked about the Bell inequality!).

Indeed, looking at these four basis vectors, notice that they are all already normalized, and for example we can verify

that (dropping the ⊗ for notational convenience)

〈0, 0|1, 0〉 =
1√
2

(〈
1

2
,
1

2

∣∣∣∣
1

〈
1

2
,−
1

2

∣∣∣∣
2

−
1√
2

〈
1

2
,−
1

2

∣∣∣∣
1

〈
1

2
,
1

2

∣∣∣∣
2

)
1√
2

(∣∣∣∣12 , 12
〉
1

∣∣∣∣12 ,−12
〉
2

+
1√
2

∣∣∣∣12 ,−12
〉
1

∣∣∣∣12 , 12
〉
2

)
just simplifies to 0. And there are many other tests we can do on these states: for instance, if we act with the raising

operator or lowering operator on |0, 0〉, the state will be killed.

So we have solved our problem, but the notation is a bit complicated. Instead, we’ll denote
∣∣ 1
2 ,
1
2

〉
= |↑〉 and∣∣ 1

2 ,−
1
2

〉
= |↓〉, which will make our states look much cleaner:

|1, 1〉 = |↑〉1 ⊗ |↑〉2 = |↑↑〉 ,

|1, 0〉 =
1√
2
(|↑〉1 ⊗ |↓〉2 + |↓〉1 ⊗ |↑〉2) =

1√
2
(|↑↓〉+ |↓↑〉) ,

|1,−1〉 = |↓〉1 ⊗ |↓〉2 = |↓↓〉 ,

|0, 0〉 =
1√
2
(|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) =

1√
2
(|↑↓〉 − |↓↑〉) .

(The first arrow will tell us about particle 1, and the second arrow about particle 2 – we’ve simplified the tensor product

notation.) And now we’re done with this problem: we’ve figured out what kind of angular momenta occur when we

add two spin 1/2 particles.
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Example 284

An application of the problem we just considered is the hyperfine splitting in the ground state of the hydrogen

atom.

We discussed some of these ideas in the previous lecture as well: physically, this happens because the electron can

have a spin up or down, which means that the ground state |n = 1, ℓ = 0, m = 0〉 is actually (double-fold) degenerate.

If we also consider the proton’s spin as well, our hydrogen atom now has two spin 1/2 particles. It turns out that

what’s relevant is the interaction between the two spins: the proton’s magnetic dipole creates a magnetic field for

the electron.

We’ll see through this calculation that some subtle complications will come up when we try to look at the spin 1/2

addition. First of all, remember that the important quantities are the the proton’s magnetic dipole

µ⃗p = gp
e

2mp
S⃗p,

as well as the electron’s magnetic dipole

µ⃗e = −
e

me
S⃗e .

Remember that ge = 2 cancels out with the 2 in the denominator, and this g factor tells us what we need to multiply

the classical dipole value by to get the quantum value. Because the proton is composed of different parts, it has a weird

gp constant, which is about 5.59. (Even the neutron, which is supposed to be neutral, has a nonzero gp because the

charge isn’t symmetrically distributed between its three quarks.) So now we care about the new perturbed Hamiltonian

with respect to the reduced-mass nucleus:

∆H = −µ⃗e · B⃗p =
e

me
S⃗e · B⃗p,

where B⃗p is the magnetic field due to the proton at the electron’s current position. We know that this magnetic field

due to a dipole usually has a 1
r3 dependence, but one thing we may learn in a (later) electromagnetism class is that we

need to add a delta function at r = 0. (Intuitively, we can produce a dipole by rotating a sphere of charge and taking

that radius to 0.) So the point is that we’ll have

B⃗p(r⃗) =
1

r3
[(usual dot product term)] +

2µ0
3
µpδ(x⃗),

where µ0 is the SI permeability of the vacuum.

Remember from last class that the Feynman-Hellmann theorem (in perturbation theory) tells us to look at the

expectation value of this extra term ∆H to see how the energy shifts from the ground state. Because there are four

generate states (due to up/down spins of the proton and electron), we’ll need to diagonalize the matrix of ∆H matrix

elements.

We’ll start with the four states

ψ1,0,0 ⊗


↑↑
↑↓
↓↑
↓↓

 ,
where ψ1,0,0 is the spatial (radial) wave function for the ground state, and we need to figure out how to find eigenstates

of our Hamiltonian that we’ve introduced. All of our states have the same spatial part, so the spin part is what we

need to worry about when we diagonalize.
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In principle, we should just evaluate 〈i |∆H|j〉 in all states i , j , and it turns out the first 1r3 (dot product) term vanishes

whenever ℓ = 0, so we can ignore it – only the delta function is relevant here. So plugging in our magnetic field, the

relevant term that contributes to energy differences is

∆H =
2e

me

µ0
3

gpe

2mp
S⃗e · S⃗pδ(x⃗) =

gpµ0e
2

3memp
S⃗e · S⃗pδ(x⃗).

If we try to evaluate this expectation value in any state ψ, we find that because nothing else besides ψ,ψ∗, and our

delta function have spatial dependence, we’ll end up with

〈ψ|∆H|ψ〉 =
g0µ0e

2

3memp
|ψ1,0,0(0)|2S⃗e · S⃗p

(the delta function means we just evaluate ψ∗ from the bra and ψ on the ket at zero), and we can further simplify by

plugging in the wave function for the ground state of hydrogen: we end up with

=
gpµ0e

2

3πmemp

1

a30
S⃗e · S⃗p.

Our next task will be to deal with this product of spin operators, and the main identity we care about is

S⃗e · S⃗p =
1

2
(S2 − S2e − S2p).

(We should remember that there are secretly tensor products here: for example, S⃗e · S⃗p is really |sumi S⃗ei ⊗ S⃗pi .) And

we know the eigenvalues of S2e and S2p (because these are just ordinary spin 1/2 things – we’ll have ℏ2 · 12 ·
3
2 =

3
4ℏ
2, no

matter what state we’re in). So again, this issue is the addition of angular momentum term S2. We want to find

states that are diagonal for the Hamiltonian contribution ∆H, so we need to find the eigenstates for the total angular

momentum operator S2.

This means that we must turn our attention back to the triplet and singlet state that we found earlier in this

lecture. These states will have eigenvalue for S⃗e · S⃗p of (plugging in the values we already know)

1

2
ℏ2
(
S2

ℏ2
−
3

2

)
.

Thus, the states in the triplet, corresponding to s = 1, will have eigenvalue for S2 of 2ℏ2 and therefore a total

eigenvalue ℏ
2

4 . Meanwhile, the state in the singlet will have eigenvalue − 3ℏ24 . And because these are eigenstates for

∆H, we now know our energy shifts:

∆H = ∆E ·
S⃗e · S⃗p
ℏ2

,

where ∆E is the difference in energy between the top and bottom splittings (because some states go up by 14∆E,

and the other goes down by − 34∆E, so the difference is indeed ∆E). And now we know the answer we’re looking for:

the triplet with total angular momentum s = 1 goes up in energy by ∆E4 , and the singlet goes down in energy by 3∆E4 .

We can plug in all of the constants now:

∆E =
gpµ0e

2

3πmemp

ℏ2

a30
,

and we can simplify this by using the fact that a0 = 4πε0ℏ2
mee2

in SI units, as well as µ0ε0 = 1
c2 , and everything simplifies

to

∆E =
4gpℏ4

3mpm2ec
2

1

a40
.

This is still not easy to understand, and plugging numbers in won’t really tell us much. Instead, the point is to introduce

the fine structure constant α = e2

ℏc ≈
1
137 in Gaussian units: then aG0 (a0, but in Gaussian units) is just ℏ2

mee2
, and we’ll
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end up with

∆E =
4

3
gp
me
mp
α4(mec

2).

We already know the units work out: mec2 has units of energy (in fact, it is the rest mass of the electron) and

everything else is unitless. To understand why this is small, note that

α2(mec
2) ∼ Bohr energy

(the 13.6 eV constant), and then multiplying by another α2 ≈ 1
20000 gives us the spin-orbit coupling energy, which

is again much smaller. Then including the ratio of masses makes this ∆E smaller still: now we can plug in all the

numbers, and we end up with

∆E = 5.88× 10−6 eV.

To understand the significance of this, suppose that a photon transitions between this splitting of energy levels – we’ll

get an emitted wavelength of

λ =
c

ν
=

c

∆E/h
=
2πℏc
δE

≈
2π · 197 MeV · fm
5.88× 10−6 eV

,

where 1 fm is 10−13 centimeters, and then simplifying out the units yields an answer around 21.1 centimeters – this

means that measuring the decay from this hyperfine splitting will give us a hyperfine splitting line for a wave around

1420 MHz.

But it turns out that the probability of the hydrogen decay is extremely small: the lifetime is about 13 × 10
15

seconds, which is about 10 million years. And this phenomenon has useful applications: it helps us measure how fast

galaxies are rotating (by looking at how the line moves), and the line is extremely sharp because of the uncertainty

arguments we made earlier in the class.

Let’s move on: we’ll now try to make more general statements about adding angular momentum, and we’ll develop

a systematic way of discussing this kind of problem. Suppose we consider the vector space of two-state systems

containing all possible angular momenta: write the individual vector spaces as

H1 =
⊕
j1

H(j1)1 ,H2 =
⊕
j2

H(j2)2 ,

and our goal will be to construct tensor products between H1 and H2. Remember that each value of j corresponds to

a subspace which we can also write as a direct sum (it’s some j multiplet):

H(j1)1 =
⊕
m1

|j1, m1〉 , H(j2)2 =
⊕
m2

|j2, m2〉 .

We know that we already have angular momentum operators J⃗1, J⃗2 on the two spaces, and we’re going to tensor some

states in H1 and H2 together. For a fixed j1, j2, consider the tensor product space

Vj1,j2 = H
(j1)
1 ⊗H

(j2)
2 ,

which means we are considering a spin from each vector space. Since j1, j2 are fixed here, we can define the “sum of

angular momentum” operator. To understand how it acts on the vector space Vj1,j2 , we use a basis defined via

|j1, j2, m1, m2〉 = |j1, m1〉 ⊗ |j2, m2〉

(we keep the notation with j1, j2 just to remind ourselves what space we’re looking at).
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Definition 285

The uncoupled basis for a vector space Vj1,j2 is the set of vectors |j1, j2, m1, m2〉 (where m1 and m2 range over

all allowed values).

Because there are 2j1 + 1 possible values for m1 and 2j2 + 1 possible values for m2, we have that

dim Vj1,j2 = (2j1 + 1)(2j2 + 1).

These uncoupled basis states are relevant because they tell us the eigenvectors of operators for the individual states

V1 and V2: after all, associated with these uncoupled states, we have a complete set of commuting observables, which

includes J21 , J
2
2 , J1z and J2z . But we want to recognize our states in terms of the total angular momentum instead, so

we need to reconstruct our basis in general to have eigenvectors of the total angular momentum operators. Now we’ll

define our total angular momentum operator

J⃗ = J⃗(1) ⊗ I + I ⊗ J⃗(2),

which acts on Vj1,j2 , and we’ll try to construct a new orthonormal basis consisting of eigenvalues of a new set of

commuting observables. That set of observables will be

{J21 , J22 , J2, Jz}.

We first check that these indeed commute with each other – indeed, J21 commutes with everything in the first vector

space, and it doesn’t need to interact with anything in the second vector space. Since J2 and Jz are built from J1 and

J2s, we indeed show that J21 commutes with everything, and we can continue this logic for the other observables.

Then we can check that we can’t add other commuting observables either – for example, J1z won’t commute with

J2. But ultimately, what this set of commuting observables allows us to do is to label our coupled basis states with

the indices

|j1, j2, j, m〉 .

(Here, j1 corresponds to the eigenvalue ℏ2j1(j1 + 1) of J21 , j2 corresponds to that of J22 , and similarly j and m tell

us the eigenvalues of J2 and Jz .) So what we’re claiming physically is that the total angular momentum operator
keeps us inside the state space Vj1,j2 , and we can in fact break up the space into (a direct sum of) subspaces, each

of which corresponds to a specific representation of total angular momentum.

But we do need to figure out how to find the possible values of j and m (that is, which ones appear for a given

j1 and j2), and we also need to understand how we get a given coupled state with some j and m from our uncoupled

states (which have some j1 and m1). This means we need to understand how to start with the completeness relation∑
m1,m2

|j1, j2;m1, m2〉 〈j1, j2;m1, m2| = I

(which says that our uncoupled basis states span the space) and turn it into a statement about our coupled basis

states by multiplying both sides by |j1, j2, j, m〉, which gives us∑
m1,m2

|j1, j2;m1, m2〉 〈j1, j2;m1, m2|j1, j2, j, m〉 = |j1, j2, j, m〉 .

But now this bra-ket term is just a number, so figuring out how to evaluate it will tell us how to get the coupled basis

states as a linear combination of the uncoupled basis states! That’s what we’ve been doing out explicitly in the past
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few examples, and now we want to speak in more generality:

Definition 286

The numbers

〈j1, j2;m1, m2|j1, j2, j, m〉

are called the Clebsch-Gordon coefficients.

We’ve already seen a few examples of how to find these coefficients – it involves using raising and lowering

operators to get a recursive formula, and there isn’t really a simple way of finding the values without going through

that computation. So there are actually tables for this, and we’ll also get some practice for doing everything out

ourselves, but we’ll focus now on the question of when these coefficients are zero and which js appear in this
addition of angular momentum.

Proposition 287

Whenever m 6= m1 +m2,
〈j1, j2, m1, m2|j1, j2, j, m〉 = 0.

In other words, we only get a contribution from a state if the angular momenta in the z-direction add up properly.

Proof. We know that

〈j1, j2, m1, m2|Jz |j1, j2, j, m〉 = 〈j1, j2, m1, m2|J1z + J2z |j1, j2, j, m〉 ,

and because we know that our states are eigenvalues of the relevant operators we’ve included in this equation, we can

replace everything with its eigenvalue:

〈j1, j2, m1, m2|ℏm|j1, j2, j, m〉 = 〈j1, j2, m1, m2|ℏ(m1 +m2)|j1, j2, j, m〉

(where we’ve had the J1z + J2z act on the bra vector and used the fact that all eigenvalues are real). Therefore, we

can move everything to one side to get

ℏ(m −m1 −m2) 〈j1, j2, m1, m2|j1, j2, j, m〉 = 0,

which is exactly the result we want (at least one of the terms in the product must be zero).

In other words, the quantum number m is easy to deal with, and now we’ll move on to understanding which j values

appear.

Proposition 288

The values of j that come in the addition of angular momentum are

|j1 − j2| ≤ j ≤ j1 + j2,

where we go down by 1 each time starting from j1 + j2.

This can be thought of in a “triangle inequality” way: the largest possible j value we can get is if j1 and j2 line up,

and the smallest is if they point in opposite directions. Another way to write this is that

J1 ⊗ J2 = (J1 + J2)⊕ (J1 + J2 − 1)⊕ · · · ⊕ (|J1 − J2|).
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We can check that this is consistent with the simple cases we already have, and also it is nice that the dimensions
actually match up: the dimension on the left side is (2j1 + 1)(2j2 + 1), and if we add up the dimensions on the right

side, we will also end up with that same constant. We’ll check that fact:

Proposition 289

For half-integers j1, j2 > 0, we have

(2j1 + 1)(2j2 + 1) = (2(j1 + j2) + 1) + · · ·+ (2(|j1 − j2|+ 1).

Proof. Without loss of generality assume j1 > j2 (relabel otherwise). The right side is an arithmetic sequence with

average 2j1 + 1 and a total of 2j2 + 1 terms, and that yields the result.

We’ll finish by explaining pictorally how our uncoupled states |j1, j2, m1, m2〉 break down into the j-multiplets. First

of all, if we take j1 > j2, we will draw each of the groups with a fixed m2 in its own column, with vertical height

corresponding to the value of m = m1 +m2. Then there are 2j2 + 1 total columns, each with 2j1 + 1 different values

of m1, and they’re arranged in the following kind of pattern:

1 state, m = j1 + j2
2 states, m = j1 + j2 − 1

...
2j2 + 1 states, m = j1 − j2

1 state, m = −j1 − j2
2 states, m = −j1 − j2 + 1

...

2j2 + 1 states, m = −(j1 − j2)

...

Notice that the number of states goes up to 2j2 + 1, stays there for a while, and then goes back down. But now

we know that j-multiplets are groups of these states from top to bottom, and (for example) the topmost state must

be in a multiplet with j = j1 + j2. Rearrange as shown:

1 state, m = j1 + j2
2 states, m = j1 + j2 − 1

...
2j2 + 1 states, m = j1 − j2

1 state, m = −j1 − j2
2 states, m = −j1 − j2 + 1

...

2j2 + 1 states, m = −(j1 − j2)

...

And now the vertical lines correspond exactly to the j-multiplets that we want! The left-most has states ranging

from m = −(j1+ j2) to (j1+ j2), so j = j1+ j2, and the right-most has states ranging from m = −(j1− j2) to (j1− j2),
so it has j = j1 − j2. And because we’ve verified that the dimensions add up, this is indeed the correct set of j-values

to use.
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40 May 4, 2020

The distribution of grades on the test was pretty broad (average around 70, standard deviation around 20). We’re

nearing the end of the class now – addition of angular momentum is our final main topic. (We’ll still discuss density

matrices in the last lecture, which is a new addition to the course – they used to be in 8.06, but they’ve disappeared

from the cUrriculum over the years.) There will be one last assignment for this Friday, and then we will have our final

exam.

Fact 290

We don’t cover path integrals in 8.05 or 8.06, because they don’t help very much in more elementary study and

require lots of work to find use in quantum field theory. But we can write our term paper on them when we get

to 8.06.

We’ll start today by discussing the basics of angular momentum. We can start by thinking about the hydrogen

atom

H =
p⃗2

2m
−
e2

r
,

where a0 = ℏ2
me2 is the Bohr radius, and E = − e2

2a0
1
n2 is the ground state energy (where n = ℓ + ν is the principal

quantum number). If we let L̂i be the orbital angular momentum operators, then we have

[H, L̂i ] = 0,

because the L̂is “generate rotations,” the p⃗2

2m always commutes (it’s a vector under rotations), and then the − e2r is a

central potential. Meanwhile, with the new theory we’ve been discussing

[H, Ŝi ] = 0,

where Ŝis are the electron’s spin operators, because the H affects the spatial component of the wavefunction, not

the spin – therefore, the two operators live in different tensor product spaces. One way we can write this is that

H =
(
p2

2m −
e2

r

)
⊗ I2×2, but we can also suppress the tensor product symbol itself.

So we want to come up with a complete set of commuting observables (to give us freedom in diagonalizing multiple

operators at once). We always want energy eigenstates, so we always want to include H, and we want L2 and Lz
because introducing Lz allows us to label our states with values of m, and introducing L2 allows us to label with values

of ℓ (so that we can get a state |ℓ,m〉). And if we have a spin for the electron, we also need to introduce Ŝ2 and Sz .

It might seem like Ŝ2 is trivial or that it isn’t useful – any spin 1/2 state has eigenvalue ℏ
2

4 +
ℏ2
4 +

ℏ2
4 =

3ℏ2
4 , but the

purpose is to start developing a system for adding together angular momentum, and we don’t quite need to label all

of our states with a value of s (since it’s always 12 in this case). So we just label our states in the hydrogen atom +

spin system with

|n, ℓ,m,ms〉 ,

which fully characterize our new system.

We know that the ℓ = 0 states start with n = 1, the ℓ = 1 states start with n = 2, and so on. But remember that

we have multiplets for each (n, ℓ). Whenever ℓ = 0, there are two states (up and down for the spin). Then whenever

ℓ = 1, we have six states (three possibilities for m, two possibilities for ms), and whenever ℓ = 2, there are ten states.

And each of these states can be thought of as eigenstates for our operators, but interpreting what these quantum

numbers n, ℓ,m mean also has significance in chemistry.
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To analyze this system more, note that we’re using uncoupled basis states – the spin and orbital angular momentum

are not being related to each other, and in fact nothing is really talking to the ms . But there is in fact a correction we

should be making to the Hamiltonian, related to the fine structure, which comes up because of relativistic movement:

as we saw in lecture, spin-orbit coupling means that some of our states in each multiplet (n, ℓ) move up or down in

energy and split apart.

To study this more complicated system, we need to be more careful about how which operators actually commute.

We now have a new (fine-structure) Hamiltonian

HT = H +Hf .s.,

where we’ve introduced a S⃗ · L⃗ term, and we now care about whether our operators still commute. [HT , L⃗2] = 0

works out, because L⃗2 commutes with everything made up of Ss and Ls, and similarly [HT , S⃗2] = 0. But we should

remember that there are secretly tensor products everywhere:

S⃗ · L⃗ = Sx ⊗ Lx + Sy ⊗ Ly + Sz ⊗ Lz ,

and now we know that we do not have [HT , L̂z ] = 0: even though L̂z commutes with the original Hamiltonian, the

different Li operators don’t commute. And similarly [HT , Ŝz ] 6= 0, so our list of commuting observables only contains

{HT , L2, S2} right now – we need to more to properly characterize our states.

So here’s where addition of angular momentum comes in: we construct the operator

J2 = (L+ S)2 = L2 + S2 + 2L⃗ · S⃗.

We can now check whether our new Hamiltonian commutes with Ji = Li + Si . The original Hamiltonian works with

all of these operators, and now we just need to check whether

[L⃗ · S⃗, Li + Si ]
?
= 0.

But we can solve for the dot product: we know that 2S⃗ · L⃗ = J2 − L2 − S2, so it’s equivalent to ask whether

[J2 − L2 − S2, Ji ] = 0.

L2 and S2 commnute with anything here, and J2 commutes with Ji by the algebra of angular momentum. So this

does indeed work out, and now we can expand our set of commuting operators to

[HT , L
2, S2, J2, Jz ].

And now these five operators mean that we can label our states via

|n, ℓ, j, mj〉

(again we supress s = 1
2 because it’s the same for all states). These are the labels for the observables relevant to

our perturbed Hamiltonian, and now we have coupled basis states: we keep ℓ, but we replace m,ms (the individual

azimuthal quantum numbers) with j, mj (the numbers related to the addition of angular momentum). As we have seen

in the lectures now, this allows us to make statements like

2⊗
1

2
=
5

2
⊕
3

2
,

where the left side represents (m,ms) representations and the right side represents (j, mj) representations. And then
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we use the notation (nLj) to denote these subspaces, using the letters S, P,D, · · · for ℓ = 0, 1, 2, · · · – for example,

the ten states at n = 3, ℓ = 2 organize themselves into a 3D5/2 group and a 3D3/2 group. And we’ll learn in 8.06 that

the perturbations of energy ∆E are actually just functions of n and j alone.

41 Addition of Angular Momentum, Part 3
We’ll start with a review of some important ideas: recall that J1 ⊗ J2 means we have some states in an angular

momentum in a J1 = j1 multiplet, and we also have some states in a J2 = j2 multiplet, and we have these two

(commuting) angular momenta act on different particles or different degrees of freedom in a single particle. The key

identity to remember is that

J1 ⊗ J2 = (J1 + J2)⊕ (J1 + J2 − 1)⊕ · · · ⊕ (|J1 − J2|),

where all representations on the right live in the tensor product space and are multiplets of our new angular momentum

J⃗ = J⃗1+ J⃗2. The basis states on the left form the uncoupled basis, and the basis states on the right form the coupled

basis.

Our first goal for this lecture will be to understand the spectrum of the hydrogen atom. Recall that the spectrum

when we don’t care about spin looks like the following:

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

E

n = 1

n = 2
n = 3
n = 4

Here, the energies at level n are

En = −
e2

2a0

1

n2
,

where a0 is the usual Bohr radius, and for each n we have states for each of ℓ = 0, 1, 2, · · · , (n− 1). This means that

for each level n, we have a total of n2 energy states (we can verify this by adding up the states for each ℓ). Our current

goal is to understand why we have these n2 states in this configuration, and we’ll need to return to the Runge-Lenz

vector to do that.

Recall that the Hamiltonian and Runge-Lenz vector we are working with are

H =
p⃗2

2m
−
e2

r
, R⃗ =

1

2me2
(p⃗ × L⃗− L⃗× p⃗)−

r⃗

r
.

Here, recall that R⃗ is a constant, unitless vector which points in a fixed direction – classically, that direction is the

major axis of the ellipse of rotation. Remember that the classical operator is just 1
me2 (p⃗× L⃗): the corrections we make

above account for the fact that L⃗ and p⃗ don’t commute as operators, and also to make sure that we have

[H, R⃗] = 0.
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There are a few other useful properties for this vector operator as well: note that we have the identity

p⃗ × L⃗ = −L⃗× p⃗ + 2iℏp⃗,

and we can plug this into our expression for R⃗ (in either direction) to find

R⃗ =
1

me2
(p⃗ × L⃗− iℏp⃗)−

r⃗

r
=
1

me2
(−L⃗× p⃗ + iℏp⃗)−

r⃗

r
.

But we still need to understand this conserved quantity better, and here is where we do something trickier. Since R⃗

is conserved, so is R⃗2, and doing out the computation yields the conserved quantity

R⃗2 = 1 +
2H

me4
(L⃗2 + ℏ2).

(Indeed, H and L⃗2 are both conserved, so everything checks out here.) To make more progress, we’ll need to learn a

bit more about these operators we’re constructing: in order to relate the Runge-Lenz vector to something we already

know well, let’s try to evaluate R⃗ · L⃗. Remember that we already showed earlier in the class that

r⃗ · L⃗ = p⃗ · L⃗ = 0

(this was clear classically but required a bit more symbol pushing in the quantum case), which means that most terms

in

R⃗ · L⃗ =
(
1

me2
(p⃗ × L⃗− iℏp⃗)−

r⃗

r

)
· L⃗

disappear immediately – we’re just left with the term that is proportional to (p⃗ × L⃗) · L⃗. If there aren’t any identities

that immediately come to mind, we can just bash this with index notation: we get

(p⃗ × L⃗)i L⃗i = εi jkpjLkLi .

From here, it’s tempting to say that k and i are symmetric in the L operators while εi jk is antisymmetric, so everything

cancels out. The expression is indeed zero, but the explanation is incorrect – remember that Lk and Li don’t commute!

So we need to be more careful: we can write this expression as

= εjkipjLkLi = pj(L⃗× L⃗)j ,

and now remember that we have the commutation relation L⃗× L⃗ = iℏL⃗, so this then simplifies to

= p⃗ · (iℏL⃗) = 0.

So all of the terms in the expression R⃗ · L⃗ vanish, and we’re left with R⃗ · L⃗ = 0 . This doesn’t necessarily imply that

L⃗ · R⃗ = 0, but we’ll see shortly that this is also true.

To proceed, recall that we have the important defining property for a vector under rotation

[Li , vj ] = iℏεi jkvk ,

which can be rewritten in terms of cross products as(
L⃗× v⃗ + v⃗ × L⃗

)
i
= εi jk(Ljvk + vjLk) = εi jk(Ljvk − vkLj),

where we’ve swapped j and k in the second term at the cost of a negative sign in the εi jk symbol. But now this is just
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a commutator (
L⃗× v⃗ + v⃗ × L⃗

)
i
= εi jk [Lj , vk ] = iℏεi jkεjkℓvℓ,

where we’ve used the vector under rotations property in the last step. And now we can use the identity when we have

two such ε symbols: we first reorder to get

= iℏεjkiεjkℓvℓ = 2iℏδiℓvℓ = 2iℏvi .

Since the relation holds for all indices i , this actually gives us the identity

L⃗× v⃗ + v⃗ × L⃗ = 2iℏv⃗

whenever v⃗ is a vector under rotations. And we can apply this to our Runge-Lenz vector R⃗ – this is because the cross

product of two vectors under rotations is still a vector under rotations, meaning all three terms of R⃗ are vectors under

rotations. So we know that

L⃗× R⃗ + R⃗ × L⃗ = 2iℏR⃗,

and now this is getting us towards the commutation relations that we want. Writing out the above statement index

by index yields

[Li , Rj ] = iℏεi jkRk ,

and now we finally know why R⃗ · L⃗ and L⃗ · R⃗ are actually equal: whenever we plug in i = j , we have [Li , Ri ] = 0, so

each pair of operators in the dot product L1R1+L2R2+L3R3 commute. So we have indeed checked that L⃗ · R⃗ = 0 .

But now we’ll turn our attention to the last set of commutators we haven’t considered, which is [Ri , Rj ]. Doing

this by brute force is difficult – there are lots of terms, and remember that operators like 1r don’t commute with p⃗. So

what we’ll do is make an argument to show what the answer can be, and then we’ll be left with an easier calculation

(which we can verify on our own). Essentially, our goal is to compute

R⃗ × R⃗.

Here there’s no real reason that we should expect R⃗ to be an angular momentum – the expression is more complicated

than that for L⃗.

Proposition 291

We know that R⃗ × R⃗ is a vector, and in fact the components [Ri , Rj ] should be proportional to a conserved
quantity.

This line of reasoning is interesting: if S1 and S2 are symmetries, meaning that [S1, H] = [S2, H] = 0, then [S1, S2]

is also a symmetry – that is, [[S1, S2], H] = 0. This follows from the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

for operators A,B, C (where we plug in S1, S2, and H). So we can keep taking commutators to get new conserved

quantities, and sometimes (when we’re lucky) we get all of the conserved quantities in our system.

So in this system, the conserved vectors are L⃗, R⃗, and L⃗× R⃗, but it’s possible that R⃗× R⃗ is proportional to some

linear combination of these. Here we’ll use a trick by Schwinger (who also invented the trick for the two-dimensional

harmonic oscillator): if we do a parity transformation and replace r⃗ with −r⃗ , then the momentum p⃗ also changes

sign (because it is related to the rate of change of r⃗), and L⃗ = r⃗ × p⃗ stays fixed. This means that R⃗ changes sign,

because one operator in each term of the definition changes sign, so R⃗ changes sign as well.
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But now notice that R⃗ × R⃗ will not change sign (both R⃗s pick up a negative sign), so out of the operators that

could potentially be our conserved quantities, only L⃗ is left! So

R⃗ × R⃗ ∼ L⃗,

and we can derive the constants to find that our identity is

R⃗ × R⃗ = iℏ
(
−
2H

me4

)
L⃗ .

So now we know all of the relations between L and R, including the commutators and products, and now we want

to apply this to our hydrogen atom problem. The idea is that we’re going to come up with two sets of angular
momenta, even though R⃗ is not an angular momentum.

Proposition 292

We’ll start by restricting our problem to a specific subspace of degenerate energy: this subspace can have one,

two, or more states, but we’ll analyze this problem at some fixed energy.

The reason this is a valuable approach is that the operator R⃗2 has an H term, and because H commutes with

all of our operators here, we can always treat H as a constant (the energy eigenvalue that we’re working with in our

degenerate subspace), and that will make our calculations easier. So from here on, we’ll consider the fixed energy

H = −
me4

2ℏ2
1

ν2
,

where ν is some arbitrary real number. (We write the energy in this specific way because we know that ν will end up

being an integer, and this will make our algebra easier later on.) So now we have that

−
2H

me4
=
1

ℏ2ν2
,

which means we have the simpler-looking formulas

R⃗ × R⃗ =
i

ℏν2
L⃗, R⃗2 = 1−

1

ℏν2
(L⃗2 + ℏ2) .

To make this look even nicer, we can put an ℏν next to each R⃗, which yields

(ℏνR⃗)× (ℏνR⃗) = iℏL⃗, ℏ2ν2R⃗2 = ℏ2(ν2 − 1)− L2.

Writing this in terms of indices and commutators, this also means that we have

[ℏνRi , ℏνRj ] = iℏεi jkLk ,

and we can notice that we can derive these formulas in the same way that we derived the identity L⃗× L⃗ = iℏL⃗.

And now we’re ready to introduce our two angular momenta: we want to take ℏνR⃗, which has the right units, and

add it to something else to get an angular momentum.

Definition 293

Define the angular momenta

J1 =
1

2
(L⃗+ ℏνR⃗), J2 =

1

2
(L⃗− ℏνR⃗).
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We don’t actually know that these are angular momenta yet, but the units match up and we have some hope. (We

can recover L⃗ by adding J1 and J2, and we can recover ℏνR⃗ by subtracting them.)

First of all, note that J1 and J2 commute with each other:

[J1i , J2j ] =
1

4
[Li + ℏνRi , Lj − ℏνRj ],

and now we can expand out the commutator and use the commutators we already know to get

=
1

4
(iℏεi jkLk − ℏν[Li , Rj ] + ℏν[Ri , Lj ]− iℏεi jkLk) .

The first and last term cancel, and the middle two terms also cancel out (because [Li , Rj ]−[Ri , Lj ] = [Li , Rj ]+[Lj , Ri ],
and now both of these commutators are Rk but with opposite signs in the εi jk symbol). So we have verified that the

commutator of J1i and J2j is zero, meaning they commute for all i , j .

Now we need to show that J1 and J2 are indeed angular momenta by showing that they form the appropriate

algebra. It suffices to calculate J1 × J1 and J2 × J2: this yields

1

4
(L⃗± ℏνR⃗)× (L⃗± ℏνR⃗),

and now this isn’t too bad to work with, because we already have all of our formulas for products of L⃗ and R⃗. Plugging

in the expressions we’ve derived for each of the terms here, we end up with

1

4

(
iℏL⃗± (L⃗× ℏνR⃗ + ℏνR⃗ × L⃗) + iℏL⃗

)
=
1

4

(
2iℏL⃗± 2iℏ · ℏνR⃗

)
.

And indeed, this simplifies to

= iℏ
1

2
(L⃗+ ℏνR⃗),

which is either J1 or J2 based on the sign we chose at the beginning. So we’ve indeed shown that we have two
independent angular momenta in the hydrogen atom!

And now we’re almost done. We know how to write L⃗ and R⃗ in terms of our angular momenta, so

L⃗ · ℏνR⃗ = 0 =⇒ (J⃗1 + J⃗2) · (J⃗1 − J⃗2) = 0.

Because J⃗1 and J⃗2 commute, the cross terms will cancel, and this yields

J⃗1
2 − J⃗2

2
= 0 =⇒ J⃗1

2
= J⃗2

2
.

The squares being equal is interesting, and if we square the definition of J1, we get

J⃗1
2
=
1

4
(L⃗2 + ℏνR⃗2)

(again the cross terms cancel because L⃗ · R⃗ = 0), and now we can use our expression for ℏνR⃗2 to find that this is

=
1

4
(L⃗2 + ℏ2(ν2 − 1)− L⃗2) =

1

4
ℏ2(ν2 − 1) .

And now we’ve actually solved our problem! We’ve been working with a degenerate energy subspace in which we have

two angular momenta with equal squares: in such a system, we have angular momentum eigenstates with eigenvalues

for J21 and J22 being ℏ2j(j + 1) (where j is a half-integer). Therefore,

J21 = J
2
2 =
1

4
ℏ2(ν2 − 1) = ℏ2j(j + 1),
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and solving for ν yields

ν2 = 1 + 4j(j + 1) = (2j + 1)2.

This means that because j takes on one of the values 0, 12 , 1, · · · , ν must take on one of the values 1, 2, 3, · · · ,
respectively! (This means we can write it with the principal quantum number n we’ve been using in the hydrogen

atom.) And because n characterized the allowed energies of our hydrogen atom, we have indeed ended up with the

correct allowed energies, which are −me42ℏ2
1
n2 for integer n. Notice that in this problem, we are not using a spin for

the proton or electron: the angular momenta have just popped out of the representations of our eigenstates. And

now we can even recover the structure in the picture above for our spectrum: we’ve invented the degenerate subspace

consisting of vectors

|j, m1〉 ⊗ |j, m2〉 ,

where we use the same j for both operators J1 and J2 because their squares are equal. So this is just the tensor

product of a j-multiplet with another j-multiplet, and we know how those play out:

j ⊗ j = (2j)⊕ (2j − 1)⊕ · · · ⊕ 0.

And the subspaces on the right are of the total angular momentum J1 + J2, which is exactly that of our ordinary

angular momentum L⃗! So everything falls into place: we have that n = 2j + 1, and the energy eigenspace at energy

level n has states with ℓ = 0 up to 2j = n − 1, which is exactly what we want.

42 May 6, 2020
We’ve now seen how we can use the Runge-Lenz vector to construct angular momenta, which helps us predict the

structure of every level of the hydrogen atom. Remember that for each principal quantum level n, we have states that

run from ℓ = 0 to ℓ = n − 1, and the Runge-Lenz vector actually helps us move across the various ℓ-multiplets.

Remember that this solution is only valid for the original hydrogen Hamiltonian – the degeneracy is broken once

we add the fine structure from the spin-orbit coupling. When we add this extra term to the Hamiltonian, all of the

energy levels adjust according to the total angular momentum.

We’ll have a lecture about density matrices for next week, which we should read. It’s still part of our course, but

we won’t have any homework problems on it, so we’ll only get conceptual questions about it on the final. (The final

will not be completely cumulative – it will focus on the later part of the course.)

Today, we’ll start with a conceptual discussion related to one of the problem set problems:

Example 294

Suppose we have a particle X, in the rest frame of the lab, which decays into two particles A and B (for instance,

a pion π0 decaying into two photons 2γ).

We can consider the angular momenta of our particles before and after the decay. Even though X is at rest, it

may have some spin SX , and similarly particles A and B have some spin SA, SB. We expect that the total angular

momentum might be conserved: we can define the quantity

J⃗ =

S⃗X t < 0

S⃗A + S⃗B + L⃗ t ≥ 0.

Basically, because our particle X is sitting at the center of our frame of reference, there is no orbital angular momentum
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at first. But after the decay, it’s possible the two particles also have some orbital angular momentum (like with the

hydrogen proton and electron) in addition to the spin. But we can put that into a single quantity L⃗, much like we

did with the spin-orbit coupling problem. (And the main thing to keep in mind is that orbital angular momentum isn’t

always conserved – only the total angular momentum!)

Let’s suppose that we are in some initial eigenstate

|SX , mSX 〉 ,

so that J2 has eigenvalue ℏ2SX(SX +1) and Jz has eigenvalue ℏmSX . Then these eigenvalues must be the same after
the decay as well.

Problem 295

Suppose someone claims a neutron decays into a proton and an electron.

The first thing we can check is energy conservation – it is indeed possible, because the neutron is slightly heavier

than the proton. Momentum conservation also looks possible – we just need to pick the velocities of our particles

accordingly. And charge conservation holds too, so everything here looks like it is consistent so far.

But it turns out this can’t actually happen: we know that the neutron, proton, and electron are all spin 1/2 particles,

meaning they can be in the states
∣∣ 1
2 ,
1
2

〉
or
∣∣ 1
2 ,−

1
2

〉
. So the total angular momentum after the decay, S⃗p + S⃗e− + L⃗,

must be the same as the total angular momentum before the decay. A typical state of the decay product will look like∣∣∣∣12 , mp
〉
⊗
∣∣∣∣12 , me

〉
⊗ |ℓ,m〉

where mp, me are the azimuthal quantum numbers for the proton and electron, respectively, and ℓ,m characterize the

orbital angular momentum. More abstractly, our states live in the tensor product space

1

2
⊗
1

2
⊗ ℓ.

We can simplify this product: the tensor product is associative, so we can look at 12 ⊗
1
2 first – it evaluates to 1⊕ 0

– so we end up with

= (1⊕ 0)⊗ ℓ = (1⊗ ℓ)⊕ (0⊗ ℓ)

(where we’ve now used distributivity), and this finally evaluates to

= (ℓ+ 1)⊕ (ℓ− 1)⊕ ℓ.

But we need to get a state of total angular momentum 1
2 , and no matter what the value of ℓ is, the angular momenta

will always be integers after the decay! So conservation of angular momentum doesn’t work, and this is not possible.

Fact 296

Physicists initially thought that such a decay was observed, but we can add a particle called an antineutrino to

the products, and now the decay works: our tensor product space becomes

1

2
⊗
1

2
⊗
1

2
⊗ ℓ,

which does have fractional angular momenta.

Remark 297. We may hear about “highly forbidden processes,” which can only happen from the action of a highly
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oppressed operator. In those cases, the process may still occur very rarely, but in this case we’re saying this particular

process will never happen.

Problem 298

Suppose we have three spin 1/2 particles in the Hamiltonian

H =
∆

ℏ2
(
S⃗1 · S⃗2 + S⃗2 · S⃗3 + S⃗3 · S⃗1

)
.

What are the explicit energy eigenstates?

First of all, we know the dimensionality of our state space is 2× 2× 2 = 8. To get the highest contribution to this

Hamiltonian, we should have all of our spins point in the same direction, meaning that |+++〉 and |− − −〉 should

have the highest energy eigenvalue. We can see, for example, that the operator S⃗1 · S⃗2 acting on |+++〉 yields

S⃗1 · S⃗2 |+++〉 =
(
1

2
S1+S2− +

1

2
S1−S2+ + S1zS2z

)
|+++〉 ,

but now the first two terms both kill the state (because we can’t raise the |+〉 state, so only the last term contributes

and gives us something proportional to |+++〉. (And the same thing occur with |− − −〉 – the product of S1zS2z
still yields a positive eigenvalue).

In order to understand the energy levels of this 8-dimensional vector space, we can define a total angular momentum

S⃗T = S⃗1 + S⃗2 + S⃗3 and rewrite the Hamiltonian as

H =
∆

ℏ2
·
1

2

(
S2T − S21 − S22 − S23

)
.

(Note that we can do this because the S1, S2, S3’s x, y , z operators commute with each other.) But now the eigenvalues

for S21 , S
2
2 , S

2
3 are each always 3ℏ

2

4 , so the only thing that the system’s energy level depends on is the total spin angular

momentum s: in particular, our energy eigenvalue is

E =
∆

2ℏ2

(
ℏ2s(s + 1)− 3 ·

3

4
ℏ2
)
=
∆

2

(
s(s + 1)−

9

4

)
.

To understand the possible values of s, we just do the calculation

1

2
⊗
1

2
⊗
1

2
= (1⊕ 0)⊗

1

2
= 1⊗

1

2
⊕ 0⊗

1

2
=
3

2
⊕
1

2
⊕
1

2
,

which means the representations can be at spin 32 (4 states) or 12 (another 2+2 = 4 states), corresponding to energies

of 34∆ and − 34∆, respectively.

43 Density Matrices
In this last set of lectures, we’ll discuss ensembles and mixed states, and we’ll be able to appreciate again that

probability plays a role in quantum mechanics. Remember that classical mechanics, probability just comes up due to

a lack of knowledge – if we roll dice, we can theoretically always predict the result if we have enough information.

But this is not true in quantum mechanics anymore: even with perfect knowledge of our state |ψ〉, we will still need

probability every time we measure any observable.

One way we can measure this probability is to make many copies of our state |ψ〉, measure our observable many

times, and form a probability distribution with enough testing. But now, we are introducing a new source of randomness
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in our system.

Definition 299

Let V be a vector space of states. A pure state is just some |ψ〉 ∈ V , while a mixed state introduces some extra

randomness which we will describe now.

For a concrete example, consider the following:

Example 300

Suppose we have an oven which spits out silver atoms towards a Stern-Gerlach machine which causes deflections

of those atoms.

In such a system, every atom behaves like a spin 1/2 particle: we eventually find that they are either in the |n⃗; +〉
or |n⃗;−〉 state, but before going in the machine, they are polarized in all possible directions n⃗ (distributed randomly).

It’s natural to ask whether this randomness is already accounted for – that is, can we write down a state |ψ〉 whose

intrinsic randomness describes the particles coming out of our atom before they hit the Stern-Gerlach machine?

We do know that any spin 1/2 state is in a superposition of the up and down states:

|ψ〉 = a+ |+〉+ a− |−〉 , a+, a− ∈ C.

But we know that specifying these coefficients tells us the angles ϕ, θ for the normal vector n⃗, so this fixes the direction

of the spin state, rather than picking it from a distribution! So we do need some additional randomness.

So we’ll first consider the simple case where the atoms aren’t completely uniformly distributed: instead, each particle

has a 50 percent chance of being spin up and a 50 percent chance of being spin down, always in the z-direction. We’ll

describe this with an ordered pair

(pa, |ψa〉),

which means that the particle comes out with the state |ψa〉 with probability pa. So this oven that we’ve just described

can be written as

Ez =

{(
1

2
, |+〉

)
,

(
1

2
, |−〉

)}
.

This is now an example of a mixed state: not all of our particles come out with the same wavefunction even before

they hit the Stern-Gerlach machine, which means they are not in the same quantum state. In other words, we may

have an ensemble where we take 2000 copies of this state, where 1000 copies are in the |+〉 state and the other 1000

are in the |−〉. Then when we test a measurement, we work with this enesemble instead. Let’s make this definition

more generally:

Definition 301

An ensemble E is defined by

{(p1, |ψ1〉), · · · , (pn, |ψn〉)}

where the probabilities pi are all positive and sum to 1, which dictate the likelihood of the corresponding normalized
(but not necessarily orthonormal) states |ψi 〉.

Note that the dimension dim V of the vector space has nothing to do with the number of states n we have in

our ensemble: we’re not trying to form a basis or anything like that. Then n = 1 yields a pure state (the ensemble

collapses to a single known state |ψ1〉 = (1, |ψ1〉), so all particles are in this state), and n ≥ 2 yields a mixed state.
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So now suppose that we have some Hermitian operator Q̂, and we want to measure the expectation value of Q̂.

Then we can let

〈Q̂〉E =
∑
i

pi
〈
ψi
∣∣Q̂∣∣ψi〉 ,

since we should take the weighted average of the expectation values for each of the possible states we can have in our

ensemble.

Example 302

In the example ensemble Ez above, the expectation value is

〈Q̂〉Ez =
1

2

〈
+
∣∣Q̂∣∣+〉+ 1

2

〈
−
∣∣Q̂∣∣−〉 .

To make this interesting, suppose that we have another ensemble

Ex =

{(
1

2
, |x ; +〉

)
,

(
1

2
, |x ;−〉

)}
.

(Half of our particles start off pointing in the +x-direction, and the other half in the −x-direction.) Similarly, we’ll

have

〈Q̂〉Ex =
1

2

〈
x ; +

∣∣Q̂∣∣x ; +〉+ 1
2

〈
x ;−

∣∣Q̂∣∣x ;−〉 .
But now we can write the expectation value in the states |x ;±〉 in terms of the expectation in the states |±〉 via

|x ;±〉 =
1√
2
(|+〉 ± |−〉),

and now we can plug in to find

〈Q̂〉Ex =
1

2
·
1

2
(〈+|+ 〈−|)Q̂(|+〉+ |−〉) +

1

2
·
1

2
(〈+| − 〈−|)Q̂(|+〉 − |−〉).

Now the
〈
+
∣∣Q̂∣∣+〉 and

〈
−
∣∣Q̂∣∣−〉 terms will combine, but the cross terms will cancel out, and we’re left with

=
1

2

〈
+
∣∣Q̂∣∣+〉+ 1

2

〈
−
∣∣Q̂∣∣−〉 = 〈Q̂〉Ez .

So the expectation value for any Hermitian operator Q̂ always looks the same in both ensembles, even though the

ensembles are different! So if we try to measure anything at all, there’s no way to get a different answer between

these two ensembles Ez and Ex , and thus these are actually indistinguishable from each other quantum mechanically.

We can also consider an unpolarized ensemble, where the spins all point in various directions. Then we will need

an infinite (in fact uncountable) list to describe the whole system, but we can still describe this as

Eunp =
⋃
dΩ

dΩ

4π
|n⃗(Ω);+〉 ,

where we’re adding over all solid angles, and the total solid angle is 4π. Similarly, we can consider the ensemble

En⃗ =

{(
1

2
, |n⃗; +〉

)
,

(
1

2
, |n⃗;−〉

)}
.

for some fixed vector n⃗. This is analogous to the ensembles Ez and Ex that we’ve defined earlier, and we can check

with a similar argument that both the unpolarized ensemble and En⃗ will be indistinguishable from Ex and Ez as

well. In other words, we can always describe an unpolarized ensemble by choosing the particles to point half-and-half

in some fixed direction.
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From here, let’s see another instance where mixed states come up:

Example 303

Suppose we have an entangled state of two particles belonging to Alice and Bob, with state

|ψAB〉 =
1√
2
(|+〉A |−〉B − |−〉A |+〉B).

This is the usual spin singlet state (which has total spin angular momentum 0, so it’s rotationally invariant). We

know that if both Alice and Bob have full knowledge and measure along the z-axis, they will measure their particles

to be in opposite directions. But now suppose that Bob does not know what Alice’s measurement is: then Bob’s

particle is operationally in a mixed state

EBob =

{(
1

2
, |+〉

)
,

(
1

2
, |−〉

)}
(because if we have many copies of our entangled state, Alice will measure + half the time and − the other half of the

time). In fact, if Alice measures in an arbitrary direction n⃗, we can use rotational invariance to rewrite our entangled

state as

|ψAB〉 =
1√
2
(|n⃗; +〉A |n⃗;−〉B − |n⃗;−〉A |n⃗; +〉B),

and now if Alice measures along the n⃗-direction and Bob doesn’t know what the result is, Bob ends up in the state

EBob =

{(
1

2
, |n⃗; +〉

)
,

(
1

2
, |n⃗;−〉

)}
,

which we know is physically the same ensemble as the ensemble we initially had. In other words, Alice’s measurement

axis does not affect the ensemble for Bob, even though it does affect the particles! (And this is the more satisfactory

explanation for why we don’t have instantaneous communication.)

And we can confirm that there is no way to avoid using mixed states here: suppose that we have some pure state

|ψA〉 that describes Alice’s particle when it is entangled (if we only care about Alice’s particle and not Bob’s). Then

we would know that the expectation of an operator is given by〈
ψA
∣∣Q̂∣∣ψA〉 = 〈ψAB∣∣Q̂⊗ I∣∣ψAB〉

(since we don’t really do anything to Bob’s particle). So now if we look at the case where our operator Q̂ is σx , we

know that we flip |+〉 and |−〉 to each other, so we have that

〈ψAB|σx ⊗ I|ψAB〉 =
1√
2
·
1√
2
(〈+|A 〈−|B − 〈−|A 〈+|B)(|−〉A |−〉B − |+〉A |+〉B),

and now there is no overlap because there is no |+〉 |+〉 or |−〉 |−〉 in the original singlet state. Similarly, we can

calculate in the cases where Q̂ = σy and Q̂ = σz that the expectation is also zero, so any pure state that describes

Alice’s particle in the singlet state must satisfy

〈ψA|σx |ψA〉 = 〈ψA|σy |ψA〉 = 〈ψA|σz |ψA〉 = 0.

And this isn’t possible, because any pure spin state points in some direction, so there is some n⃗ such that

〈ψA|n⃗ · σ⃗|ψA〉 6= 0.

But then n⃗ · σ⃗ is a linear combination of the σis, so if each of the individual σis has expectation value zero, so must
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n⃗ · σ⃗, and this is a contradiction. So no pure state represents one particle of an entangled state, and we will

now need ensembles to describe something like the singlet state – the point now is to introduce a tool that helps us

describes such systems nicely. One of the ideas is that we want to avoid the issue where different-looking ensembles

actually correspond to the same situation.

Recall that an ensemble E = {(p1, |ψ1〉), · · · , (pn, |ψn〉)} corresponds to an expectation value

〈Q̂〉E =
n∑
i=1

pa
〈
ψa
∣∣Q̂∣∣ψa〉 = n∑

i=1

patr
(
Q̂ |ψa〉 〈ψa|

)
.

Here, we use the fact that tr(|u〉 〈v |) = 〈v |u〉 (this is a manipulation we did in the past), and we can also use the fact

that the sum of traces is the trace of the sum for a set of matrices to rewrite this as

= tr

(
Q̂
∑
a

pa |ψa〉 〈ψa|

)
.

So we have Q̂, and then we have some operator which is only dependent on our ensemble E. That’s the operator

we’re about to introduce in the general case:

Definition 304

A density matrix is a linear operator ρE ∈ L(V ) associated to an ensemble E via

pE =

n∑
a=1

pa |ψa〉 〈ψa| .

In other words, we’re describing our states with matrices instead of vectors, and we get the helpful fact that

〈Q̂〉E = tr(Q̂ρE).

We can use this to look at our previous ensembles now: our ensemble Ez can now be represented with the operator

pEz =
1

2
|+〉 〈+|+

1

2
|−〉 〈−| =

1

2
I,

because in general summing over an orthonormal basis yields the identity
∑

i |i〉 〈i | = I. So we also have

pEx =
1

2
|x ; +〉 〈x ; +|+

1

2
|x ;−〉 〈x ;−| =

1

2
I,

because |x ; +〉 and |x ;−〉 form an orthonormal basis as well. We find that ρEunp is also described by this matrix, and

now we can see that the density matrix is describing our states more powerfully than just using the ensemble – we can

easily tell when two ensembles are indistinguishable.

We can now check a few properties:

• ρ is a Hermitian operator, because each term in the sum
∑

a pa |ψa〉 〈ψa| is a Hermitian operator. (Remember

that the adjoint of |u〉 〈v | is |v〉 〈u|.) Therefore, it can be diagonalized, and it will have real eigenvalues.

• ρE is known as a positive semidefinite matrix, which means that all of its eigenvalues are nonnegative. In

mathematicians’ language, a matrix M is positive semidefinite if 〈v ,Mv〉 ≥ 0 for all v ∈ V . Therefore, if we take

an eigenvector v of unit length, (v ,Mv) = (v , λv) = λ ≥ 0. (As an exercise, we can show that any positive

semidefinite matrix must be Hermitian.) And this means that for any state ψ in our state space V ,

〈ψ|ρE |ψ〉 ≥ 0.
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This is because we can rewrite the above expression as

=

n∑
a=1

pa 〈ψ|ψa〉 〈ψa|ψ〉 =
n∑
a=1

pa| 〈ψ|ψa〉 |2,

and because the lengths are nonnegative and pa are probabilities, this expression has all terms at least 0.

• The trace of ρE is 1 for any density matrix. This is because

tr(ρE) = tr

(∑
a

pa |ψa〉 〈ψa|

)
=
∑
a

patr(|ψa〉 〈ψa|) =
∑
a

pa 〈ψa|ψa〉 =
∑
a

pa = 1,

because the ψas are defined to be of unit length.

• As already mentioned, the density matrix removes redundancy in ensembles: no matter what combination of

states we choose in a state space of dimension n, we always end up with a Hermitian n × n matrix, which is

always specified by n2 real constants (minus one if we fix the trace to be 1).

• Phases in the definitions of our states |ψa〉 do not affect ρE , because replacing |ψa〉 with e iϕa |ψa〉 will make the

ket-bra look like

e iϕa |ψa〉 e−iϕa 〈ψa| = |ψa〉 〈ψa| ,

which is identical to what we start with.

In general, the density matrix is the best way to describe mixed states, and we often call it the state of our system

or state operator.

Example 305

To help us study this object a bit more, let’s consider the case where we have a pure state.

This means we have an ensemble

E = {(1, |ψ〉)},

and plugging in the definition, we just have

ρE = |ψ〉 〈ψ| .

Because our state ψ is normalized, this actually gives us a rank-1 orthogonal projector (of trace 1) into the space

spanned by the vector |ψ〉: we can check that ρ2 = ρ and ρ† = ρ. In other words, for a pure state, we have the

property that

tr(ρ2) = tr(ρ) = 1.

But in general, the trace of ρ2 won’t always be 1 when we have a mixed state:

Theorem 306

For any density matrix ρ, we have tr(ρ2) ≤ 1, and saturation of this inequality only occurs when we have a pure

state.

Proof. We know that

tr(ρ2) = tr

(∑
a

pa |ψa〉 〈ψa|
∑
b

pb |ψb〉 〈ψb|

)
=
∑
a,b

papb 〈ψa|ψb〉 tr(|ψa〉 〈ψb|)
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by pulling out all of the constants from our trace matrix and using linearity. But now the trace of |ψa〉 〈ψb| is 〈ψb|ψa〉,
which is the complex conjugagte of 〈ψa|ψb〉. Thus, substituting this back in yields

=
∑
a,b

papb| 〈ψa|ψb〉 |2.

Schwarz’s inequality now tells us that

| 〈ψa|ψb〉 |2 ≤ 〈ψa|ψa〉 〈ψb|ψb〉 = 1,

and thus our sum simplifies to

≤
∑
a,b

papb =
∑
a

pa
∑
b

pb = 1,

with saturation only if ψa and ψb are always pointing in the same direction for all overlaps, which only occurs if all

| 〈ψa|ψb〉 | = 1. Since our states are normalized, this means our states only differ by a phase which we can ignore.

Thus, at equality, we can combine all terms and we just have a pure state, as desired.

Definition 307

For any density matrix ρ, define the purity of the state to be

ζ(p) = tr(ρ2).

A minimally mixed (or pure) state will then have highest possible purity (1), and a maximally mixed state will be

one with minimum purity. It turns out this minimum purity is helpful in dealing with unitary time-evolution, since it

stays constant even though ρ may not.

Proposition 308

The maximally mixed state ρ is

ρ =
1

dim V
I,

which has a purity of 1
dim V .

This should remind us with the characteristic examples from the beginning of this lecture.

Proof. Because the density matrix ρ is Hermitian, we can diagonalize it, and we’ll work with a basis in which ρ only

has diagonal entries

ρ = diag(p1, · · · , pn),

where n = dim V . We know that the pi are nonnegative and sum to 1 (because the trace of ρ is 1). Then

ρ2 = diag(p21, · · · , p2n) =⇒ tr(ρ2) =
n∑
i=1

p2i ,

and now we can minimize this by being clever and using Cauchy-Schwarz. Alternatively, we can consider the function

L(p1, · · · , pn, λ) =
N∑
i=1

p2i − λ(−1 +
∑
i

pi),

where λ is a free parameter, and now taking the derivative with respect to λ yields our constraint
∑
pi = 1. So now
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we can find a minimum by taking the derivative with respect to any pi :

∂L

∂pi
= 2pi − λ,

and since this holds for all pi , all pi must be equal at the minimum, meaning that each pi is equal to 1n . So the density

matrix of lowest purity is the diagonal matrix with entries 1n , which is just 1
dim V I, as desired. And indeed the trace of

ρ2, which is a diagonal matrix with entries 1
n2 , is n · 1n2 =

1
n =

1
dim V .

In conclusion, ensembles determine density matrices, which are linear operators with certain useful properties. Our

next step will be to consider certain spin 1/2 density matrices and then understand more properties of the theory.

44 May 11, 2020
Our final exam will be next Wednesday – there should be enough time to review, and it’s recommended that we go

over everything that we’re uncomfortable with in the course.

Last time, we discussed the Hamiltonian of a system of three spin 1/2 particles – we did half of the work, and we’ll

finish the discussion of that problem today.

Problem 309

As a reminder, we were working with the equation

H =
∆

ℏ2
(
S⃗1 · S⃗2 + S⃗2 · S⃗3 + S⃗3 · S⃗1

)
.

In this class, we aren’t dealing with issues of distinguishability: all particles are distinguishable.

The main trick here is to use the total angular momentum S⃗T = S⃗1 + S⃗2 + S⃗3 (where the secret meaning of the

right side is a tensor product S⃗1 ⊗ I ⊗ I + I ⊗ S⃗2I + I ⊗ S⃗3 ⊗ I). Then we can expand out

S2T = S
2
1 + S

2
2 + S

2
3 + 2

(
S⃗1 · S⃗2 + S⃗2 · S⃗3 + S⃗3 · S⃗1

)
=⇒ H =

∆

2ℏ2
(
S2T − S21 − S22 − S23

)
.

From here, the idea is to work with basis states that are eigenstates |s,m〉 of the total angular momentum ST instead

of our uncoupled states, meaning that we have

S2T |s,m〉 = ℏ2s(s + 1) |s,m〉 , SzT |s,m〉 = ℏm |s,m〉 .

An important point to keep in mind here is that in a spin 1/2 system, we have equations like

S2x =

(
ℏ
2

)2
σ2x =

ℏ2

4
I,

and we get the same result for Sy and Sz , so the squared operators S21 , S
2
2 , S

2
3 can all be treated as numbers in this

Hamiltonian. And in general, when we have an angular momentum operator L2 acting on an ℓ multiplet, we know that

L2 |ℓ,m〉 = ℏ2ℓ(ℓ + 1) |ℓ,m〉, so the operator L2 can be treated as a number ℏ2ℓ(ℓ + 1) (times the identity matrix).

But this does not mean L2x , L
2
y , L

2
z are necessarily proportional to the identity – that’s something special to the spin

1/2 particle.

So if we’re doing an angular momentum problem where we combine states |j1, m1〉 ⊗ |j2, m2〉, all such states (for

a fixed j1, j2) are eigenstates of both J21 and J22 . So when we rearrange them in terms of total angular momentum,

so the operators that we care about are now J2T and JzT , all states will be eigenstates of J21 and J22 as well. And
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now if we look back at our original three-state problem, but we imagine that we’re combining states of the form

|s1, m1〉 ⊗ |s2, m2〉 ⊗ |s3, m3〉 where s1, s2, s3 are definite, S21 , S
2
2 , and S23 can still be treated as just numbers.

As another example of this, we can describe states of the hydrogen atom as either (n, ℓ,m, s,ms) or (n, ℓ, j, s,mj):

the fact that ℓ and s are being kept here is noting the fact that L2 and S2 can be thought of as numbers in both the

coupled and the uncoupled basis.

So returning to the problem, we did a calculation last time to show that

1

2
⊗
1

2
⊗
1

2
=
3

2
⊕
1

2
⊕
1

2

(where we have a 23 = 4 + 2 + 2 = 8 dimensional vector space). Then the total energy of our coupled eigenstates

was calculated last time: it’s ∆2
(
ST (ST + 1)− 94

)
, since the operators S21 , S

2
2 , S

2
3 are each 3ℏ2

4 times the identity, so

four states go up by 34∆ and the other four go down by 34∆.

Problem 310

What are the states of the 32 multiplet for total angular momentum (in terms of the spin 1/2 states)?

We can condense notation by writing∣∣∣∣12 , 12
〉
⊗
∣∣∣∣12 ,−12

〉
⊗
∣∣∣∣12 ,−12

〉
→ |+−−〉 .

We know that |+++〉 and |− − −〉 both have a total z-component of angular momentum that is larger than 1
2 , so

both of them must be included in the multiplet (they are the states |j, m〉 =
∣∣ 3
2 ,
3
2

〉
and

∣∣ 3
2 ,−

3
2

〉
, respectively). To

find the others, we can apply the lowering operator J− = J1− + J2− + J3− on |+++〉, noting that |+〉 becomes ℏ |−〉
under a lowering operator to find

J− |+++〉 = ℏ |−++〉+ ℏ |+−+〉+ ℏ |++−〉 ,

but also

J− |+++〉 = J−
∣∣∣∣32 , 32

〉
= ℏ
√
3

∣∣∣∣32 , 12
〉
.

Setting these equal yields ∣∣∣∣32 , 12
〉
=
1√
3
(|−++〉+ |+−+〉+ |++−〉)

(and notice that we also didn’t need to actually keep track of the constants, since we know that |−++〉 , |+−+〉 , |++−〉
have equal contribution). Similarly, we can raise the |− − −〉 state to find that∣∣∣∣32 ,−12

〉
=
1√
3
(|+−−〉+ |−+−〉+ |− −+〉) .

Remark 311. One important thing to keep in mind is that directly acting with the operators J± don’t produce

normalized states, because

J± |j, m〉 = ℏ
√
j(j + 1)−m(m ± 1) |j, m ± 1〉

and we have an extra ℏ and other constant here.

Problem 312

From here, a natural extension is to find the states in each of the j = 1
2 multiplets.
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Note here that because both j multiplets have equal j , there is not a unique answer. We can start each multiplet

by finding a state
∣∣ 1
2 ,
1
2

〉
1

(the top state of one of the multiplets) which is orthogonal to
∣∣ 3
2 ,
1
2

〉
. Such a state is of the

form α |−++〉+β |+−+〉+γ |++−〉, where α+β+γ = 0 is the orthogonality condition: for example, we can use∣∣∣∣12 , 12
〉
1

=
1√
2
(|−++〉 − |+−+〉) ,

and then lowering this state yields
∣∣ 1
2 ,−

1
2

〉
1
. Finally, we can find the last m = 1

2 state orthogonal to the first two,

which is a more complicated calculation: for instance, we can use∣∣∣∣12 , 12
〉
2

=
1√
6
(|−++〉+ |+−+〉 − 2 |++−〉) ,

and then lower again to finish the multiplet with
∣∣ 1
2 ,−

1
2

〉
2
.

Fact 313

These last two lectures are not part of the 8.051 class for this semester due to COVID-19, but the notes are still

included below. (There is also more content in each of these last two lectures.)

45 Density Matrices: Decoherence
Now that we’ve described density matrices generally, we’ll do an example to help us discuss some more properties of

these objects.

Example 314

Suppose we have a density matrix for a pure state of a spin 1/2 particle.

We know that this density matrix must be a projector operator to some state |n⃗; +〉, so it takes the form

|n⃗〉 〈n⃗| .

If we want to write this as a (Hermitian) matrix, we can write it as a superposition of the four basis Hermitian matrices:

we’ll say it takes the form

=
1

2
a0I +

1

2

3∑
i=1

aiσi ,

where the 12 is to make the normalization a bit nicer. Taking the trace of both expressions, we find that

1 =
1

2
a0 · 2 +

1

2

3∑
i=1

ai · 0 = a0 ,

because the Pauli matrices are traceless. In order to find the other coefficients, we can multiply both sides by σk and

then take the trace:

tr(σk |n⃗〉 〈n⃗|) = tr

(
1

2
σk +

1

2

∑
i

ai iσiσk

)
.

Again, Pauli matrices are traceless, and because σiσk = δik I+(Pauli matrix), the only contribution to the trace comes

from i = k , meaning

tr(σk |n⃗〉 〈n⃗|) =
1

2
trak I =

ak
2
· 2 = ak .
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In other words, we can write the coefficients ak in terms of an expectation value: the trace of |a〉 〈b| is just 〈a|b〉, so

plugging in a = σk n⃗ and b = 〈n⃗|,
ak = 〈n⃗|σk |n⃗〉 .

And now we can calculate this using the general formula for the spin state pointing in the direction (θ, ϕ): we end

up with nk , the kth component of the normal vector n⃗. So now we know how to write down the density matrix of a

general pure state:

|n⃗〉 〈n⃗| =
1

2
(I + n⃗ · σ⃗) .

To figure out the density matrix for a general mixed state, we can use this result, but first we should make sure we

understand how to build such a mixed state. We know that we can go from an ensemble to a Hermitian, positive

semidefinite matrix with trace 1: it turns out a kind of converse is also true.

Theorem 315

Given a Hermitian, unit trace, positive semidefinite matrix M, we can always view it as a density matrix for some

associated ensemble EM , such that M = ρEM .

In other words, we just need to check a few properties to see if an operator is indeed a valid density matrix.

Proof. Since M is Hermitian and positive semidefinite, it can be diagonalized, and it will have eigenvalues λ1, · · · , λN ≥
0, such that λ1 + · · ·+ λN = 1. Let |ei 〉 be the eigenvector with eigenvalue λi , so M |ei 〉 = λ |ei 〉. So we can write

M = λi |ei 〉 〈ei |

as the diagonal matrix with entries λi in the (i , i) spot, and now this is the exact form of the density matrix for the

ensemble

EM = {(p1, |ψ1〉), · · · , (pn, |ψn〉)} ,

where pi = λi and |ψi 〉 = |ei 〉. (Indeed, the probabilities add to 1 and are nonnegative.)

This is nice, because it gives us a clean way to describe a general density matrix in any system.

Example 316

Now we’re ready to construct density matrices for mixed states of a spin 1/2 particle.

A general mixed state is still supposed to be a Hermitian operator acting on the two-dimensional vector space, so

we can still write it as

ρ =
1

2
a0I +

1

2

3∑
i=1

aiσi .

We can still take the trace of both sides, and because tr(ρ) = 1, we still have a0 = 1 by the same argument as above,

meaning

ρ =
1

2
(I + a⃗ · σ⃗)

for some unknown components of a⃗. In order to ensure that this is a valid density matrix, we just need to check the

last property now, which is that its eigenvalues are all nonnegative. The eigenvalues of a⃗ · σ⃗ are ±|a⃗| (because the

eigenvalues of n⃗ · σ⃗ are ±1 for a unit vector n⃗), which means the eigenvalues of I+ a⃗ · σ⃗ are just 1±|a⃗|. (This is because

any vector is an eigenvector of the identity matrix I, so in particular the eigenvectors of a⃗ · σ⃗ will work.) Therefore,
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the eigenvalues of ρ are

λ± =
1

2
(1± |a⃗|) ,

meaning the necessary condition on our coefficients (for eigenvalues to be nonnegative) is |a⃗| ≤ 1 . And now we’ve

guaranteed positive semidefiniteness, and therefore any Hermitian matrix with this condition will be a valid density

matrix: the most general mixed state looks like

ρ =
1

2
(I + a⃗ · σ⃗), |a⃗| ≤ 1 .

In other words, a⃗ = (a1, a2, a3) must live inside the closed sphere a21 + a
2
2 + a

2
3 ≤ 1. Notably, when we’re on the

boundary |a⃗| = 1, the density matrix becomes a pure state (as above), and when we take the zero vector for a⃗, we get

the maximally mixed state: indeed, we end up with 1
2 I, which is exactly the state with lowest purity that we derived

last time.

From here, we’ll move on and talk about the effect of measurements on density matrices.

Example 317

Suppose that we make a measurement along an orthonormal basis {|1〉 , · · · |n〉}.

Remember that if we start with a single state |ψ〉, then the probability that we end up in the basis state |i〉 is

P(i) = | 〈i |ψ〉 |2.

So now suppose we have a mixed state of an ensemble E = {(p1, |ψ1〉), · · · , (pm, |ψm〉)}. Since we can be in various

states with different probabilities, we now have to take a weighted average:

P(i) =
∑
a

pa| 〈i |ψa〉 |2.

We should be able to write this as a quantity that only depends on the density matrix, and that’s what we’ll work

towards. Rewriting this expression more explicitly, we have that

P(i) =
∑
a

pa 〈i |ψa〉 〈ψa|i〉 .

Since the is have nothing to do with the sum, we can pull them out of the sum and rewrite as

= 〈i |
∑
a

pa |ψa〉 〈ψa| |i〉 .

And now the middle term is just the definition of the density matrix, and we have a nice result:

P(i) = 〈i |ρ|i〉 .

But if we want to ask about the density matrix after measurement, notice that we’ll end up in one of the states |i〉
with some probability. So our measurement is some operator which sends density matrices to other density matrices!

Specifically, we know that ending up in the state |i〉 corresponds to the density matrix Ei = |i〉 〈i |, and this is nice to

work with because E†i = Ei and EiEi = Ei (so we have an orthogonal projector), and
∑

i Ei = I. So doing a general

measurement (where we don’t focus on what state we actually end up in) will give us a mixed state

Ẽ = {(P(1), |1〉), (P(n), |n〉)},
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meaning that we get a post-measurement density matrix

ρ̃ =

n∑
i=1

P(i) |i〉 〈i | =
n∑
i=1

|i〉P(i) 〈i | =
n∑
i=1

|i〉 〈i |ρ|i〉 〈i | ,

which we can write in terms of our orthogonal projectors as

ρ̃ =

n∑
i=1

EiρEi .

With this, we’re now ready to examine the dynamics of the density matrix:

Example 318

Our initial focus will be on unitary time-evolution (similar to the dynamics that we discussed earlier in this class).

In order to describe this time-evolved ρ(t), we’ll again think about the density matrix in terms of a corresponding

ensemble. We can start with the Schrodinger equation

∂

∂t
|ψ〉 = −

i

ℏ
H |ψ〉 ,

and then taking the adjoint of both sides yields

∂

∂t
〈ψ| =

i

ℏ
〈ψ|H

(where nothing happens to H because it is Hermitian). So we can already see what time-evolution looks like for a pure

state density matrix: by the product rule,

∂

∂t
(|ψ〉 〈ψ|) = −

i

ℏ
H |ψ〉 〈ψ|+ |ψ〉

i

ℏ
〈ψ|H = −

i

ℏ
[H, |ψ〉 〈ψ|].

In other words, the time-evolution can be written in terms of the commutator, and this may look familiar (it looks sort

of like the Heisenberg equation of motion). But now we can generalize to a mixed state:

∂ρ

∂t
=
∂

∂t

∑
a

pa |ψa〉 〈ψa| ,

and now applying the formula we derived for a pure state to each of the terms here yields

= −
i

ℏ
∑
a

pa[H, |ψa〉 〈ψa|] .

Rearranging and bringing the sum inside the commutator, we can now write everything in terms of the density matrix

itself:

iℏ
∂ρ

∂t
=

[
H,
∑
a

pa |ψa〉 〈ψa|

]
= [H, ρ] .

This is a clean differential equation, but it will turn out that not all density matrices evolve in this unitary manner (for

instance, if we just look at a subsystem that is in contact with the rest of the system). We can say a few more things

about this unitary time evolution, though: in the Schrodinger picture, we know that our wavefunction evolves via

|ψ, t〉 = U(t) |ψ, 0〉 ,
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and now if we think of ρ(t = 0) =
∑
pa |ψa, 0〉 〈ψa, 0|, we can apply the unitary operator to find

ρ(t) =
∑
a

pa |ψa, t〉 〈ψa, t| =
∑
a

paU(t) |ψa, 0〉 〈ψa, 0|U†(t).

Since U(t) and U†(t) are in every term of the sum, this tells us that

ρ(t) = U(t)
∑
a

pa |ψa, 0〉 〈ψa, 0|U†(t) = U(t)ρ(t = 0)U†(t) .

So just like the discussion we had earlier in the class, we can get both a differential equation for time evolution and an

explicit formula in terms of the unitary operator U(t): since our density matrix has a ket and a bra, we hit it with a U

from the left (for the ket) and a U† from the right (for the bra). As a consequence of this, ρ will remain Hermitian, unit

trace, and positive semidefinite at all times if it starts off Hermitian, unit trace, and positive semidefinite, respectively

(all of these can be easily seen by examining the expression for ρ(t) that we’ve just derived).

And we can even take a look at how the purity of our state evolves in time: since ζ = tr(ρ2), we know that (trace

commutes with the derivative)

dζ

dt
= tr

(
ρ
dρ

dt
+
dρ

dt
ρ

)
= tr

(
ρ
dρ

dt
+ ρ

dρ

dt

)
= 2 tr

(
ρ
dρ

dt

)
by cyclicity of trace, and now we can substitute in the expression we have above for the time-evolution of ρ to find

that this is

=
2

iℏ
tr(ρ[H, ρ]) =

2

iℏ
tr(ρHρ− ρ2H),

and again by cyclicity of trace we can turn this into

=
2

iℏ
tr(ρHρ− ρHρ) = 0.

In other words, the purity of a state does not change in time – in fact, this argument generalizes to tell us that

tr(ρ3), tr(ρ4), and so on are all time-independent as well.

Example 319

We’ll now turn our attention to the case where we have a density matrices for a subsystem.

Here is where the density matrix becomes more interesting: we’ll be considering bipartite systems, where a system

can be broken up into two parts A and B. Basically, these two subsystems make up an isolated system (so the joint

system evolves unitarily), but A and B can interact with each other.

We saw an example of this earlier with two entangled particles A and B, and we found that we couldn’t describe

one particle with a single pure state. That idea will be generalized now: basically, we can describe A and B with density

matrices, and these matrices will satisfy all of the fundamental properties, though the time-evolution will not be as

simple because we don’t have isolated subsystems.

Let the dA-dimensional Hilbert space for system A beHA, and suppose there are orthonormal basis states eA1 , · · · eAdA .
Similarly, let the dB-dimensional Hilbert space for system B be HB, and suppose there are orthonormal basis states

eB1 , · · · , eBdB . Then the joint system AB is bipartite, where A and B are generically entangled (so there isn’t a pure

state description for the subsystem A). It’s possible AB is in a pure state, or it’s possible that AB was prepared in

such a way that it can only be represented as an ensemble or density matrix. Either way, we’re claiming that we
have a density matrix description for our subsystem, and here’s how we’ll phrase this point:
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Proposition 320

Suppose we have a density matrix ρAB ∈ L(HA ⊗HB). Then

ρA = trB(ρAB) =
∑
k

〈
eBk
∣∣ρAB∣∣eBk 〉

is a valid density matrix that describes the subsystem A.

(We’ll denote the trace of the whole system AB to be tr, the trace of the subsystem A to be trA, and the trace

of the subsystem B to be trB.)

Proof. We need to check if this density matrix is an operator on the subsystem A and satisfies the characteristic

properties. For the calculations, a useful fact to recall is that

tr = trA trB = trB trA

(as an important property of the tensor product space), so

trA ρA = trA trB ρAB = tr ρAB = 1

since ρAB is a valid density matrix. Similarly, we can see that A is positive semidefinite and Hermitian, and now we

turn our attention to the main question: why does A need to be a density matrix for the subsystem?

To answer this, recall the example we had with our entangled particles last lecture: if we have an operator OA
acting on the space HA, then its extension to the tensor product space AB should be OA ⊗ IB. In other words, we

need to check that

trA(ρAOA)
?
= tr(ρABOA ⊗ IB)

for any operator OA, which would tell us that whenever we want to compute an observable OA for the subsystem A

(right side of the equation), we can indeed use the density matrix ρA (left side of the equation).

To prove this, we can do an explicit calculation: we write down the most general form for our density matrix ρAB,

which is

ρAB =
∑
I,J

ρ̃I,J |eI〉 〈eJ |

where ρ̃I,J are matrix elements, and we sum over all indices I, J of the tensor product space HA ⊗HB. So each one

should really correspond to two indices: letting I run over (i , ℓ) and J run over (j, m), we have

ρAB =
∑
i ,j,ℓ,m

ρ̃iℓ,jm
∣∣eAi 〉⊗ ∣∣eBℓ 〉 〈eAj ∣∣⊗ 〈eBm∣∣ .

Reorganizing the notation a bit, this can also be written as

=
∑
i ,j,ℓ,m

ρ̃i j,ℓm
∣∣eAi 〉 〈eAj ∣∣⊗ ∣∣eBℓ 〉 〈eBm∣∣ ,

where the tensor product separates out the action of the linear operator on the A and B Hilbert spaces. We’ve now

written down the most general density matrix for ρAB, and now let’s try to verify the property we want for ρA: by

definition,

ρA = trB ρAB,
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and now trB acts only on the B-side of our above expression and moves the ket from one side to the other:

ρA =
∑
i ,j,ℓ,m

ρ̃i j,ℓm
∣∣eAi 〉 〈eAj ∣∣⊗ 〈eBm∣∣ ∣∣eBℓ 〉 =∑

i ,j,m

ρ̃i j,mm
∣∣eAi 〉 〈eAj ∣∣

because our basis vectors eB are orthonormal. And now this is indeed an operator on the subsystem A, satisfying

tr(ρAOA) =
∑
i ,j,m

ρ̃i j,mm
〈
eAj
∣∣OA∣∣eAi 〉

by the same computation of the trace we’ve seen before (we move the ket to the right of the bra). So now we have

the left hand side of the boxed equation we’re trying to derive, and now we can compute the right hand side: plugging

in the definition of our general density matrix yields

tr(ρABOA ⊗ IB) = tr
∑
i ,j,ℓ,m

ρ̃i j,ℓm
∣∣eAi 〉 〈eAj ∣∣OA ⊗ ∣∣eBℓ 〉 〈eBm∣∣ I.

Since trace is linear, we bring it inside and take the trace for each of A and B, yielding

=
∑
i ,j,ℓ,m

ρ̃i ,j,ℓ,m
〈
eAj
∣∣OA∣∣eAi 〉 δℓm.

And now setting ℓ = m to get rid of the Kronecker delta indeed makes this reduce to the same expression, as

desired.

So the density matrix ρA for our subsystem behaves consistently with how we think observables should act, and in

some sense it just “erases” the information associated with the other system B.

Example 321

We’ll return to the entangled particles for Alice and Bob

|ψAB〉 =
1√
2
(|+〉A |−〉B − |−〉A |+〉B).

What is the density matrix ρB that Bob sees?

Because ρAB is a pure state of the bipartite system, we know that

ρAB = |ψAB〉 〈ψAB| =
1√
2
(|+〉A |−〉B − |−〉A |+〉B) ·

1√
2
(〈+|A 〈−|B − 〈−|A 〈+|B).

We can expand and find the four terms, writing the A and B parts next to each other: this yields

ρAB =
1

2
(|+〉A 〈+|A)⊗ (|−〉B 〈−|B) +

1

2
(|−〉A 〈−|A)⊗ (|+〉B 〈+|B)

−
1

2
(|+〉A 〈−|A)⊗ (|−〉B 〈+|B)−

1

2
(|−〉A 〈+|A)⊗ (|+〉B 〈−|B) .

Our goal is to find

ρB = trA ρAB,

but the A-trace of the first two terms are 1 each, while the A-trace of the last two are 0 each, so we just end up with

ρB =
1

2
|−〉B 〈−|B +

1

2
|+〉B 〈+|B .

In other words, B is maximally mixed when we take the “maximally entangled” state of AB and assume that Alice
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does nothing. But notice that even when Alice does make a measurement along any axis (and we don’t know what

the result is), Bob will also end up with a density matrix corresponding exactly to the one we’ve just found! So the

description of B looks the same when Alice measures or does nothing, and we’ll understand this a bit more in the

coming discussion.

Problem 322

Our next point of discussion is how to write down a nice description of a pure bipartite state |ψAB〉 in terms of

the density matrices ρA and ρB, known as the Schmidt decomposition (this is the same mathematician as the

Gram-Schmidt decomposition).

We know that |ψAB〉 lives in the tensor product space HA⊗HB, so we can write it in terms of an orthonormal basis

for each of HA and HB – call them {|kA〉} and {|kB〉}, respectively (where k ranges from 1 to dA or dB, respectively).

Specifically, pick the bases such that ρA and ρB, the Hermitian density matrices of the subsystems, are diagonal (so

pick the eigenvectors of ρA and ρB).

This allows us to write |ψAB〉 nicely as follows: we know that its density matrix is

ρAB = |ψAB〉 〈ψAB|

because we have a pure state, and we know that

ρA = trB ρAB

is a dA × dA Hermitian matrix with some eigenvectors |kA〉 and eigenvalues pk – in fact, with our choice of basis, ρA
will be diagonal, since

ρA =
∑
k

pk |kA〉 〈kA| .

Remark 323. Note, however, that we don’t always actually have dA different terms in this sum – many of them may

turn out to be 0. So we’re going to assume that we order the eigenvalues such that all of the zero pks occur at the

end.

And for this reason, we can say that we sum from 1 to r for some r ≤ dA in the above expression. (Without loss

of generality, we can assume dA ≤ dB for now.) And we’ll use this to write down an ansatz for |ψAB〉: it’s some linear

combination of the basis states in our tensor product space, so we can write

|ψAB〉 =
?∑
k=1

|kA〉 ⊗
∣∣ψBk 〉

for some states ψBk ∈ HB indexed by k as well. And now remember that we should get ρA when we take the B-trace

of this expression, but the resulting density matrix only has ks appearing for 1 ≤ k ≤ r . So we should only sum up
to r in this expression, and to make more progress we should use this ansatz to compute the density matrix ρAB:

this yields

ρAB = |ψAB〉 〈ψAB| =
r∑

k,k̃=1

|kA〉
∣∣ψBk 〉 〈k̃A∣∣ 〈ψBk̃ ∣∣ .

Plugging this into the definition of ρA, we find that (again sliding the B-kets to the right of the B-bras)

ρA = trB ρAB =

r∑
k,k̃=1

|kA〉
〈
k̃A
∣∣ 〈ψB

k̃

∣∣ψBk 〉 .
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And now in order for this to be consistent with the boxed expression above, we must have the same matrix elements,
meaning that 〈

ψB
k̃

∣∣ψBk 〉 = pkδkk̃ .
(so that the diagonal entries are pk and all off-diagonal entries are zero). So the different

∣∣ψB〉s that show up in the

expression for our pure bipartite state must be orthogonal.

With this notation, we can now define ∣∣ψBk 〉 = √pk |kB〉 ,
so that we have an orthonormal set of states |kB〉 (where 1‘ ≤ k ≤ r). And now we get the result we’ve been working

towards:

Proposition 324 (Schmidt decomposition)

A pure bipartite state can be written as

|ψAB〉 =
r∑

k=1

√
pk |kA〉 ⊗ |kB〉 ,

where we have r ≤ min(dA, dB),
∑
pk = 1, and orthonormal bases

〈
kA
∣∣k ′A〉 = 〈kB∣∣k ′B〉 = δkk ′ , so that

ρA =

r∑
k=1

pk |kA〉 〈kA| , ρB =

r∑
k=1

pk |kB〉 〈kB| .

(And the Gram-Schmidt procedure tells us that even when r < dA and r < dB, we can still finish constructing an

orthonormal basis for the entire state spaces HA and HB.) In words, if we diagonalize the density matrices ρA and ρB,

that lets us write down the pure state |ψAB〉 nicely as well.

There are a few things we can observe about this representation:

• Because the coefficients pk are the same for the density matrices of A and B, those density matrices ρA, ρB have

the same set of nonzero eigenvalues. (It’s possible that the spaces are of different dimension, so we might

have a higher multiplicity of 0 in one case than the other.)

• The integer r is known as the Schmidt number of the decomposition: this is the number of terms in the density

matrices, as well as the number of terms in the representation of the pure state |ψAB〉 itself. Here, r can range

from 1 to min(dA, dB): when r = 1, we have pure (that is, not entangled) states in the subsystems A and B,

and otherwise we have entangled particles, meaning we can’t factor into a state of A and a state of B because

the density matrices ρA, ρB are mixed states.

• The purity of ρA and ρB are the same: both of them are just

ζ = tr(ρ2) =

r∑
k=1

p2k .

So now let’s return to our canonical example of Alice and Bob sharing an entangled pair of particles: recall that

the density matrix for Bob is unaffected under a measurement by Alice, unless we know the exact value of Alice’s

measurement. (In both cases, we get the same maximally mixed state.) We’ll make this result more general, and this

is what is known as the no signaling or no communication result.
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As discussed above, our density matrix evolves after a measurement via

ρ 7→ ρ̃ =
∑
i

EiρEi

when we’re measuring along n orthonormal basis {|i〉} and we define Ei = |i〉 〈i |. We’ve discussed this in the context

of a single system (not entangled), but now we want to extend this to a bipartite system.

More specifically, suppose we have a system AB, and suppose Alice measures along an orthonormal basis {|i〉A}.
Then we have orthonormal projectors EAi = |i〉A 〈i |A which satisfy the usual properties (EAi )

† = EAi , E
A
i E

A
i , and∑

I e
A
i = IA, and now (in a completely analogous way as before) we have

ρAB 7→ ρ̃AB =
∑
i

(EAi ⊗ IB)ρAB(EAi ⊗ IB).

(We can check this as an exercise.)

Proposition 325 (No signaling)

Under the above transformation, the density matrix ρ̃B = trA ρ̃AB is invariant (it is equal to ρB).

So the density matrix of the composite system will change, but Bob’s will not.

Proof. First, write our density matrix as a general sum

ρAB =
∑
j

OAj ⊗OBj ,

where OAj and OBj are some general operators in the HA and HB spaces. (This is possible because the tensor product

space is spanned by vectors |i〉A ⊗ |j〉B.) Then

ρ̃B = trA ρ̃AB = trA
∑
i ,j

(EAi ⊗ IB)(OAj ⊗OBj )(EAi ⊗ IB)

which can be simplified by taking the product of operators as

= trA
∑
i ,j

EAi O
A
j E

A
i ⊗OBj .

But now if we take the trace term by term, we end up with the operator in the HB space

=
∑
i ,j

tr(EAi O
A
j E

A
i )O

B
j .

But now cyclicity of trace and the property of the projection operator tells us that∑
i

tr(EAi O
A
j E

A
i ) =

∑
i

tr(EAi E
A
j O

A
i ) =

∑
i

tr(EiO
A
j ),

and now we can bring the sum inside the trace:

= tr

(∑
i

EiO
A
j

)
= tr(OAJ ).

So the introduction of the Eis has not contributed to the trace: bringing it back to the original expression, we’re left
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with

ρ̃B =
∑
j

tr(OAj )O
B
j ,

which is indeed what we obtain if we take trA of the original density matrix ρAB.

Problem 326

We’re now ready to return to the question of time evolution, now that we have an “open” system (or subsystem

of the whole world).

We’re still focusing on bipartite systems here, but we’ll call our system AE this time (where A is what we care

about, and E is the outside environment). E is often larger than A (for example, when we have a thermal ensemble),

but because AE is still a quantum system, it still evolves unitarily. A is known here as an open system.

The whole system can be described with a density matrix ρAE , and what we care about is our subsystem

ρA = trE ρAE .

We want to know about ρA’s evolution in time, and we’ll first show that it’s not necessarily unitary. To understand

this, consider a bipartite system of two unentangled spins in a pure state at time t = 0: in other words, both A and

B have pure state descriptions at first.

But it’s possible that interactions between A and B can cause the two particles to become entangled, meaning

that A’s description is now only possible with a mixed state. This transition from a pure state to a (nontrivial) density

matrix is called decoherence, and it’s only possible when we don’t have unitary time evolution (because the purity

has changed, which isn’t allowed in unitary time evolution).

So in general, we can’t actually say very much about the evolution of ρA, other than that the environment’s behavior

can lead to decoherence. (Typically, we go from a pure to a mixed state and stay mixed forever if the environment is

large enough.) But we can say that

ρA(t) = trE ρAE(t),

and because AE evolves unitarily, this is

trE
(
U(t)ρAE(0)U

†(t)
)

for some unitary operator U. And that’s about as much as we can say – since we’re taking the partial trace over E,

not the whole matrix, we can’t use cyclicity of trace.

So suppose we have a pure state at time t = 0, where the system A and environment E are in pure (unentangled)

states |ϕA〉 and |E〉, respectively. Then the density matrix for the whole system takes on a simple form

ρAE(t) = |ϕA〉 〈ϕA| ⊗ |E〉 〈E| ,

and we can plug this into the formula above, assuming we know the Hamiltonian of our combined system. But there’s

still a possibility of decoherence even in this case, and that’s best illustrated with an example.
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Example 327

Suppose a box has two spins, and we have a Hamiltonian of

H = −ℏωσ(1)z σ(2)z .

Also, suppose we start with an initial condition

|ψ12(0)〉 = |x ; +〉1 ⊗ |x ; +〉2 .

In this case, the energy is minimized if the two spins point in the same z-direction (so there is indeed an interaction

between the two particles). We know that we have an initial pure state of two particles that are not entangled, and

our question is basically “what can we say about the density matrix of particle 1?”.

To approach this question, we know that

ρ12(0) = |ψ12(0)〉 〈ψ12(0)|

because we have a pure (total) state, which means that

ρ12(t) = e
−iHt/ℏρ12(0)e

iHt/ℏ

because we have a time-independent Hamiltonian. And from here, we find that

ρ1(t) = tr2 ρ12(t),

and now we just need to go through all of the calculations to figure out how the density matrix evolves in time. We’ll

skip to the answer for now (we can try doing out the math ourselves) – the result is that

ρ1(t) =
1

2
|↑〉 〈↑|+

1

2
|↓〉 〈↓|+

1

2
cos(2ωt) (|↑〉 〈↓|+ |↓〉 〈↑|) .

At time t = 0, we have four equally weighted terms, so the density matrix looks like

[
1/2 1/2

1/2 1/2

]
– another way to

phrase this is that if we measured the two particles along the z-direction, we’d get a probability of 14 of any result

{++,+−,−+,−−} (because particles along the x-direction have equal chance to be +z or −z when we measure,

and the two particles in our system started off independent). Notably, this is a pure state, and it’s only a pure state

because of the nonzero off-diagonal terms.

But a little later (at time t = π
4ω ), the cos(2ωt) term disappears, and then our matrix will look like

[
1/2 0

0 1/2

]
,

and now we have a maximally mixed state for A! And we can check that as a function of time,

ζ = tr(ρ21) = 1−
1

2
sin2(ωt).

So the purity oscillates between 1 (a pure state) and 1
2 (a maximally mixed state) for all time. This is a toy model

where we can see decoherence happening – it’s too simple to understand something like decoherence in quantum

computers – but it does illustrate that pure states do not need to stay pure for subsystems.

So now we can return to the unitary time evolution equation

iℏ
∂ρ

∂t
= [H, ρ] =⇒

∂ρ

∂t

1

iℏ
[H, ρ].
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This does not suffice for describing subsystems that do not evolve with a unitary operator, but the last topic of today

is generalizing this equation to something called the Lindblad equation. It’s not completely general, but it is able

to modify the above equation in a way that preserves the Hermiticity, unit trace, and semi-definiteness of ρ, while

removing the assumption of unitary time evolution.

We’ve just noticed that going from a pure to a mixed state is not always easy to do, and our approach here will be

to construct a phenomenological equation – that is, it is not derived from first principles, but it is consistent with

our observations. Basically, we’ll make the argument that a small open system can have its coherence and information

“dissipated” into a large environment without disrupting that environment very much.

Proposition 328 (Lindblad equation)

In certain systems, we have the governing equation

∂ρ

∂t
=
1

iℏ
[H, ρ] +

∑
k

(
LkρL

†
k −
1

2
{L†kLk , ρ}

)
,

where Lk are the Lindblad operators and k depends on the system.

(Recall that {A,B} is the anticommutator AB + BA). Here, the right hand side is constructed so that it is

Hermitian – the Lks do not talk to each other, and indeed every term that we see here is Hermitian because it’s equal

to its dagger.

Understanding the other parts of this equation, such as why we have a − 12 constant in this equation, will come

about when we verify that this matrix has a constant unit trace: we wish to show that

d

dt
tr(ρ) = tr

(
∂ρ

∂t

)
= tr

(
1

iℏ
[H, ρ] +

∑
k

(
LkρL

†
k −
1

2
{L†kLk , ρ}

))
.

is equal to zero. But trace of a commutator vanishes by cyclicity, so the first term goes away. Then we just need to

check that the contribution from each Lk is zero: indeed,

tr

(
LkρL

†
k −
1

2
{L†kLk , ρ}

)
= tr

(
LkρL

†
k −
1

2
L†kLkρ−

1

2
ρL†kLk

)
and now all of these three terms are just cyclic shifts of each other, so we can reorder and get tr(0) = 0. So we have
verified that the trace is constant in time.

Showing positive semidefiniteness is also not too difficult: we show that in a time dt, a positive semidefinite matrix

will stay positive semidefinite through this evolution. And this is left as an exercise for us.

Example 329

A classic case of decoherence we’ve already started studying earlier in the class is nuclear magnetic resonance.

Remember that in this system, we have a spin, and we have a magnetic field in the z-direction. We then introduce

an additional signal which makes this spin state rotate, and that’s the rotation that is picked up by detectors in practical

applications. But it turns out the lattice of surrounding atoms interacts with the spin in question, which will cause

decoherence of the circular motion, known as transverse relaxation.

The constant T2 measures how long it takes for this to occur: once this happens, the spin behavior is destroyed

(and the particle basically stops spinning). We also have a related constant T1, which is the longitudinal relaxation
time. What we discover there is that the spin stops rotating and starts being described by a probability of being spin up

or down – due to thermal effects from the surroundings, we will eventually get some proportion of the states pointing
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up versus down (based on the Boltzmann distribution from statistical physics), and T1 controls how long it takes for

this to happen.

Often T2 < T1 in most materials, and these are the times that we can detect for different materials with a physical

machine. So studying this example more carefully is important both practically and for our current understanding.

Suppose that our state points in the x-direction at some time: then our wavefunction looks like

|ψ〉 =
1√
2
(|↑〉+ |↓〉),

which corresponds to a density matrix of

ρ =
1

2
(|↑〉 〈↑|+ |↑〉 〈↓|+ |↓〉 〈↑|+ |↓〉 〈↓|)→

[
1/2 1/2

1/2 1/2

]
.

(This is a pure state.) In such a matrix, the off-diagonal 12 terms are called coherences – after all, if those two terms

were zero, we would have a maximally mixed state, which has no coherence at all. So transverse relaxation affecting

this rotation means that by the time our coherences are suppressed, we have complete decoherence (the diagonal

density matrix corresponds to a particle that has a 1
2 chance to be in +z and a 1

2 chance to be in the −z). It’s also

possible that the probabilities at the end of the day are not quite 50−50: it’s possible that he diagonal terms are 0.52

and 0.48 or something, due to the magnetic field. (And this is where T1 comes into play.)

So now let’s talk about this in more generality – suppose our initial matrix looks like

ρ(t = 0) =

[
ρ++(0) ρ+−(0)

ρ−+(0) ρ−−(0)

]
.

Intuitively, what we should expect to happen is that the transverse relaxation eventually kills the off-diagonal terms,

so we are always going to go into a mixed state (eventually corresponding to a near-diagonal matrix). And T1 should

adjust the diagonal terms according to the Boltzmann distribution, and we want to know what kind of Lindblad
equation can model this to get us the correct form that we want. (One way to phrase this is that Lindblad operators

drive our time evolution.)

It turns out that we’ll use three Lindblad operators: we’ll make the simplification that we have no magnetic field,

so B = 0 and we’ll eventually end up with a maximally mixed state

[
1/2 0

0 1/2

]
. Define

L1 = α |+〉 〈−| , L2 = α |−〉 〈+| ,

so L1 and L2 basically swap + and −, meaning they mostly affect the longitudinal relaxation – they change the

population of our eventual + and − states. We say that α is some real number – since we always have L and L†

appearing at the same time, we just end up with a contribution of |α|2 anyway. And we’ll also need

L3 = βσz :

the purpose of this operator is that

L3ρL3 =∼ σzρσz

changes the signs of the off-diagonal term, so in our Lindblad equation we are driving the off-diagonal terms to zero

(because this L3ρL3 is a term that affects ∂ρ
∂t ). So now our matrix in general will look like

ρ(t) =

[
ρ++(t) ρ+−(t)

ρ−+(t) ρ−−(t)

]
,
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and we now need to plug everything in to the Lindblad equation by calculating matrix products: what we end up with

is that [
ρ̇++(t) ρ̇+−(t)

ρ̇−+(t) ρ̇−−(t)

]
=

[
−α2(ρ++ − ρ−−) −(α2 + 2β2)ρ+−
−(α2 + 2β2)ρ−+ −α2(ρ−− − ρ++)

]
(the left side is the partial derivative of the density matrix, and we’re computing the right side explicitly, skipping the

calculations).

Looking at this equation, we can already see some of the physics: α should affect longitudinal relaxation, and

indeed the diagonal terms will be driven towards
(
1
2 ,
1
2

)
, because a larger ρ++ than ρ−− drives the top left expression

down and the bottom right expression up. (In the case where B = 0, this means equilibrium occurs when the terms of

ρ++ and ρ−− are the same.)

But also β (along with some help from α) give us a simple exponential decay of the off-diagonal terms, because

the time-derivative of each term is just proportional to its value! We’ll find that the off-diagonal terms evolve via

ρ+−(t) = ρ+−(0)e
−t/T2 , ρ−+(t) = ρ−+(0)e

−t/T2 , T2 =
1

α2 + 2β2

(this is a short time if we make β very large, but we can also consider the case where β = 0 and the constant of decay

for longitudinal and transverse relaxation is of the same order). Similarly, the diagonal terms evolve via

ρ++(t) =
1

2
+ e−t/T1

(
ρ++(0)−

1

2

)
, ρ−−(t) =

1

2
+ e−t/T1

(
ρ−−(0)−

1

2

)
(as t gets large, the extra terms decay exponentially), and T1 = 1

2α2 . (And now we see that a large β is indeed

necessary for us to have a physically correct model).

In summary, we’ve now concluded the study of a simple open system (nuclear magnetic resonance for B = 0) using

the Lindblad operators. Basically, this is a nice way of approaching a problem without needing to understand all of the

dynamics of the whole quantum mechanical system.

46 Density Matrices: Measurement
Now that we’ve discussed some interesting ideas of density matrices, we’ll now reexamine the problem of measurement

in quantum mechanics. There’s lots of questions that come up at the foundational level – so far, we’ve been following

the Copenhagen interpretation of quantum mechanics, developed from 1925–1927. Here are the main points of that

interpretation:

• States evolve unitarily via the Schrodinger equation.

• Measurements can be described mathematically in a simple way: states are projected (non-unitarily) by mea-

surements into invariant spaces of observables (Hermitian operators), such as eigenspaces.

• The possible values of a measurement are the eigenvalues of the corresponding operator, with probabilities given

by the Born rule.

(There is no uncertainty once we make a measurement, and we’re taking all of these as axioms of the theory.)

We’ve discussed measurement in various ways – measuring along a basis, looking at a partial space or subspace of the

Hilbert space, and so on. But the interesting point is that of measurement being non-unitary: what is this specific

measurement apparatus doing which is different from a normal evolution?

Despite lots of work and many debates, not very much insight has been obtained here, but it’s still worth considering

these questions to get a better understanding. One way in which this happens is in the reading of Bohr and Heisenberg’s
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original papers, trying to understand how they understood these concepts.

Fact 330

The orthodox reading of the Copenhagen interpretation is that our measuring devices are classical: this means

that the fundamental laws don’t actually apply to them in some way.

Often, this type of reading is associated with a Heisenberg cut between the quantum and classical domains: the

idea is that at the microscopic level, quantum mechanics takes effect, but we need classical mechanics to make sense

of all of the measurements.

Fact 331

But the modern reading is that the Heisenberg cut doesn’t really make sense: in fact, we can now build very

large quantum systems, where we have a billion charge carriers in a superposition of two different states.

In other words, classical physics is now essentially thought of as “what quantum physics looks like at large scales:”

there aren’t fundamental differences in the two domains.

So there are a few proposals for how to interpret measurement in this framework, and we’ll discuss one that has

to do with decoherence, as well as one centered around the many-worlds interpretation.

We’ll start with a more accessible question: what does it mean for the wavelength to collapse? It should

be possible to look inside of our measurement apparatus and see when this non-unitary transformation occurs, and

perhaps that will give us a clearer picture.

Example 332

Suppose we are trying to detect a photon by using a photomultiplier tube.

Basically, a photon can go into a box, and there is a cathode (electrically charged) near the entrance. The photon

will hit the cathode, which will release an electron because of the photoelectric effect, and this electron will hit another

plate along the box, which ejects more electrons. This process continues to the anode, and by this point there are

many, many electrons – we will have a macroscopic current. So then our photomultiplier tube will be able to detect a

photon when we measure a nonzero current.

The direction of the incoming photon beam is not completely certain here – if we have a few different boxes next

to each other, then there is a superposition of different states that this photon could be in (based on which detector

it entered). But only one of these detectors will actually go off, and when that happens, we will have collapsed the

wavefunction.

Example 333

Suppose we have a calcite crystal (in which the index of refraction depends on the angle and polarization of the

incoming beam).

Then when a photon enters this crystal, it can exit in one of two possible basis states: |H〉, corresponding to the

exit angle from a horizontal polarization, or |V 〉, corresponding to the exit angle from a vertical polarization. Then

when we send a photon in, it can be in an arbitrary superposition of a |H〉 and |V 〉 state, and when it comes out, it

doesn’t actually need to be in one of those two basis states. In fact, the wavefunction will still be spread out over

the possible angles (it still lives in some superposition, and this is known as pre-measurement), but once we put a
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photon detector along the |H〉 and |V 〉 directions, exactly one of the two detectors will go off, and the position is

known. So having this measurement apparatus forces the wavefunction to collapse, and the act of measuring with our

detectors is what we usually mean when we say that we “measure along a basis.”

Example 334

Suppose we want to measure the momentum of a charged particle.

We can send in the particle through a small slit in a wall: at that point, it can be in a superposition of many

momentum states. If we put a uniform magnetic field, then the Lorentz force is proportional to the particle’s velocity,

so it will bend into a circular orbit. But again, the act of interacting with the magnetic field does not constitute a

measurement – our particle is put into a superposition of orbits, and it isn’t until the particle curves back and hits a

detector in the wall that we know the velocity, and that’s when the wavefunction collapses.

These three examples are all a bit different from the measurements we’ve been talking about earlier in this class,

though, where we end up in an eigenstate and will get the same result if we measure again and again. In the examples

above, the particle is actually destroyed or irreparably changed, which is why some other experiments, known as

quantum non-demolition measurements, have also been considered.

So we’ve now thought about how measurements can be done in a few experimental setups, and now we’ll think

about how these measurements can be established quantum mechanically. The ideas here are due to von Neumann

– it doesn’t really remove the mystery of measurement, but it does explicitly suggest how certain systems actually

behave.

Example 335

Suppose we have a system S and an apparatus A, where S and A interact with each other. A is a quantum system

with pointer states (for example, in a Stern-Gerlach system, they could point to +z or −z).

Even if the apparatus may be macroscopic, we’ll still think of it as a quantum system. Say that our system S has

an observable OS and eigenvectors |si 〉 for it, such that we have a finite number of possible states:

OS |si 〉 = si |si 〉 , 1 ≤ i ≤ n.

In other words, we wish to “measure” with OS to see which of the n possible states we’re living in. So now we can say

that our apparatus A has an observable OA and pointer states |aj 〉, such that

Oa |aj 〉 = aj |aj〉 , 1 ≤ j ≤ m, m ≥ n.

Basically, we want each pointer state to correspond to a configuration |si 〉 of our system, so we must have at least as

many pointer states as we have OS eigenstates.

At time t = 0, we must be in some state |ψ(0)〉 for our system, and this is in some superposition of the basis

states:

|ψ(0)〉S =
n∑
i=1

ci |si 〉 .

But because our system is connected to an apparatus, we should really be thinking about this in terms of the composite

system: then we have the apparatus in some initial state, meaning we can write

|ψ(0)〉SA =

(∑
i

ci |si 〉

)
⊗ |ψ(0)〉A .
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But we want to design the apparatus in a way so that there is an interaction between S and A, so there is also an

interaction Hamiltonian HSA.

Proposition 336

We can pick a Hamiltonian such that at some later time τ , |ψ(τ)〉 has achieved pre-measurement, meaning

that we are in an entangled state

|ψ(τ)〉 =
∑
i

cie
ipi |si 〉 ⊗ |ai 〉 ,

where pi is an arbitrary phase.

What we’re saying is that we’ve essentially coupled the system with the measurement apparatus: if the state

of the system is |si 〉, then our apparatus is in the |ai 〉 state. And this is really as far as we can go – we can create this

correlation, and then the apparatus allows us to measure things at a classical level, but it doesn’t solve the mystery of

the non-unitary transformation.

Instead of proving in general that we can go from |ψ(0)〉 to |ψ(τ)〉 by picking some appropriate Hamiltonian or

unitary time-evolution U, we’ll do an interesting example:

Example 337

Suppose S and A both have Hilbert space V = C2 (that is, the spin 1/2 vector space), where the operators are

OS = σ
S
z , OA = σAz .

We claim that the Hamiltonian

HSA =
1

2
ℏω(1 + σSz )⊗ σAx

will be able to establish the desired interaction between S and A. Let’s start with the wavefunction

|ψ(0)〉SA = (c+ |+〉S + c− |−〉S)⊗ |−〉A

(so we start off in a single state of the apparatus, just like in the discussion above). Then we need to figure out the

unitary time-evolution of this state, so that the |+〉s and |−〉s line up in the system and apparatus. Since we have a

σAx in the Hamiltonian, it’s convenient to rewrite

|−〉A =
1√
2
(|x ; +〉A − |x ;−〉A),

and then plugging this back in, we can rewrite our initial state as

|ψ(0)〉SA =
1√
2
(c+ |+〉S |x ; +〉A − c+ |+〉S |x ;−〉A) + c− |−〉S |−〉A .

Let’s now see how the Hamiltonian given evolves our composite system: the unitary time-evolution operator is

U(t) = e iHSAt/ℏ = exp

(
−
i

2
ωt(1 + σSz )⊗ σAx

)
,

which means that our state at a later time is

|ψ(t)〉SA = U(t) |ψ(0)〉SA .

Note that in the last term of the boxed expression above, because the system is in the − state (and therefore has an

eigenvalue of −1 for σSz ), the exponential term will collapse, and therefore the last term is left invariant. Since this
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last term is of the desired “coupled” form that we are looking for, we’ve chosen a good Hamiltonian, and now we just

need to apply the unitary operator on the first two terms. Notice that because our states are already eigenstates of

the unitary operator, we have

U(t) |+〉S |x ;±〉 = e−
1
2
iωt(1+1)·±1 |+〉S |x ;±〉 = e∓iωt ,

so

|ψ(t)〉SA =
1√
2
e−iωtc+ |+〉S |x ; +〉A −

1√
2
e iωtc+ |+〉S |x ;−〉A + c− |−〉S |−〉A .

And now we just rewrite everything in terms of the z-eigenstates: rewriting |x ;±〉 as 1√
2
(|+〉 ± |−〉), we find that

|ψ(t)〉SA =
1

2
c+(e

−iωt − e iωt) |+〉S |+〉A +
1

2
c+(e

−iωt + e iωt) |+〉S |−〉A + c− |−〉S |−〉A ,

which we can rewrite as

|ψ(t)〉SA = −i sin(ωt)c+ |+〉S |+〉A + cos(ωt)c+ |+〉S |−〉A + c− |−〉S |−〉A

The |+〉 |−〉 is the bad term that we’re trying to remove through time evolution, and indeed after some time t∗ = π
2ω ,

the cross term goes away, and we’ll have

|ψ(t∗)〉SA = −ic+ |+〉S |+〉A + c− |−〉S |−〉A .

This means that after a time of t∗ spent evolving unitarily, our states in the system and apparatus have been entangled

perfectly (up to some changes in phase, but not amplitude). And now if we measure our apparatus to be in the |+〉
state, we will also find the system in the |+〉 state, and same with |−〉.

At the end of the day, though, our system still hasn’t actually found a way to collapse into one of the two states:

we’ve reached pre-measurement, but we haven’t solved the mystery of how the measurement is actually made. So our

focus now will be on the modern viewpoint of this issue and the crux of this measurement problem at hand.

Fact 338

Here is where decoherence really comes in to play: remember that an open system does not evolve unitarily, so

we can try to claim that the non-unitary nature of projectors comes from the non-unitary evolution of an open

system.

To expand on this idea, suppose that our SA composite system is now connected to an environment E. Then

|ψ(t∗)〉SA =
∑
i

ci |si 〉 ⊗ |ai 〉

is in the pre-measurement state, but when we introduce the environment, we can now write the states as

|ψ(t∗)〉SAE =
∑
i

ci |si 〉 ⊗ |ai 〉 ⊗ |ei 〉 .

The |ei 〉 states can be very different from each other, but what we have is still a pure state for SAE. To introduce

something interesting (and get the decoherence in the picture), let’s look at the density matrix of SA, which is

ρSA = trE ρSAE = trE
∑
i ,j

cic
∗
j |si 〉 |ai 〉 |ei 〉 〈sj | 〈aj | 〈ej | .
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This then simplifies (with the usual rule) to∑
i ,j

cic
∗
j |si 〉 |[〉 ai ] 〈sj | 〈aj | 〈ej |ei 〉 .

Because there are many degrees of freedom in the environment, we can approximate 〈ej |ei 〉 as δi j (one possible

explanation is that pointer states could couple to different orthogonal environment states, and another is that the

total overlap ends up being small), and thus this expression becomes

=
∑
i

|ci |2 |si 〉 |ai 〉 〈si | 〈ai | ,

and given the normalization of our states, we must have
∑
|ci |2 = 1. So this is indeed a valid density matrix,

corresponding to an ensemble

E = {(|c1|2, |s1〉 |a1〉), · · · , (|cn|2, |sn〉 |an〉)}.

In words, this means that when we measure if we don’t know about the environment, our SA composite system has

a probability |ci |2 of being in the state |si 〉 ⊗ |ai 〉. (So density matrices indeed give a motivation for why we have the

familiar-looking probabilities!)

Example 339

One instance in which we might have seen a system like this is Schrodinger’s cat.

In such a system, it may seem plausible to start with a superposition

1√
2
(|,〉+ |/〉)⊗ |E0〉

where the cat is either alive or dead (Schrodinger describes a contraption which puts the cat in this state), and there’s

definitely an environment around the cat. But it doesn’t actually make sense to have the same |E0〉 environment

state attached to both the live and dead cat: the live cat (for example) needs to breathe, so it interacts with the

environment in a different way from the dead cat. Therefore, we will eventually end up (after basically any instant in

time) in the state
1√
2
(|,〉 |E1〉+ |/〉 |E2〉).

So now if we assume that E1 and E2 are orthogonal, the density matrix of the cat should be

ρcat =
1

2
|,〉 〈,|+ 1

2
|/〉 〈/| ,

and now it seems to makes sense that decoherence can lead us to a mixed state.

Unfortunately, what we’ve been discussing with decoherence actually raises more questions than it answers: intro-
ducing the environment still yields some issues with measurement. It’s not clear that the environment states |ei 〉
need to couple to the SA states in the way that they do – instead, it’s possible that they couple to linear combinations

of the SA states, in which case we have a different-looking density matrix. In addition, we know that different-looking

ensembles can give the same density matrix – that is, the resulting ensemble E can be ambiguous.

So now we’ll turn our attention to the other idea, which is the many-worlds interpretation, proposed by Everett.

In this theory, the wavefunction doesn’t collapse in the same way that it does in our previous discussion. Instead, upon

measurement, the universe splits (based on the result of that measurement).
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Example 340

Suppose Alice has a spin 1/2 particle in the state

|ψ〉 = c+ |+〉+ c− |−〉 .

As always, |c+|2 + |c−|2 = 1, so the Copenhagen interpretation tells us that we have a |c+|2 probability of ending

up in the |+〉 state and a |c−|2 probability of ending up in the |−〉 state after a measurement along the z-axis.

The many-worlds interpretation accounts for this by requiring us to include the measurement apparatus (and in

particular Alice) in the wavefunction, so that we have

|+〉 = (c+ |+〉+ c− |−〉)⊗ |Alice〉 .

Then when Alice does a measurement, we claim that the state factors into

=⇒ c+ |+〉 |Alice sees +〉+ c− |Alice sees −〉 .

So Alice is “acting like a pointer state” like in the von Neumann argument above, and from here the idea is that there

are two independent branches of the universe: in one of them, Alice sees + and the state is in |+〉, and in the other,

Alice sees − and the state is in |−〉. Those two branches then never interact with each other, so further experiments

in each branch will just keep splitting our universe into different paths.

So if everything happens in some path of the universe, we need another interpretation of probability: one argument

is that before Alice observes the measurement, she has some self-location probability of ending up in the different

branches, dictated by the coefficients c±. But this idea is a big conceptual departure from what we’ve been discussing

so far – we don’t really know what we’re talking about when we write down a ket like |Alice sees +〉, and we need

more evidence to make this a valuable theory. (If we read the literature and compare the ideas, we can think through

these thoughts ourselves as well.)

To finish off the class, we’ll discuss the topic of quantum computation, an area of ongoing research. Basically,

quantum computers are able to do computations in a different way from normal computers, exploiting the properties

of superposition and interference, which often makes computations go faster.

Definition 341

A bit is the basic unit of information: it is an object with two possible states, 0 and 1. A qubit is a quantum

object with two possible basis states, |0〉 and |1〉.

As we’ve mentioned before, there are infinitely many possible states that a qubit can be in (corresponding to the

different linear superpositions of |0〉 and |1〉), but only finitely many states that a bit can be in. A qubit can be created

in many physical manifestations – a spin 1/2 particle, a particle in a potential with two energy levels, and so on – but

the point is that we’ll be using qubits to do calculations faster than bits.

Fact 342

In 2019, Google did a computation with a 53-qubit computer that took 200 seconds, which a normal computer

takes a few days to do.

One concept stronger than just “being faster” is quantum supremacy, which is the idea that a quantum computer

can solve problems that normal computers cannot. The idea of having a “programmable computer” (made precise by
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Turing, so they’re called Turing machines) is connected to the Church-Turing thesis, which says that any algorithm

we can do with a computer can be done with a Turing machine (the simplest possible programmable computer). This

result is widely believed, but there’s a stronger version of the thesis which claims that any algorithm on any computer

can be recreated efficiently on that Turing machine.

In other words, if we have a problem of (for example) input size N, an efficient algorithm takes a polynomial

number of operations in N. (A non-efficient algorithm would be, for example, one that takes exponential time.) So the

stronger Church-Turing thesis basically says that we can be equally efficient with a computer and a Turing machine,

and the question here is whether this is true for quantum computers as well. At the moment, it does seem like

quantum computation may be able to do calculations (like prime factorization) efficiently, while classical computers

can not. But a quantum computer has limitations due to decoherence, and at some level this is unavoidable (so we

need to build in error correction). That means that quantum computation algorithms are more complicated, and thus

we don’t actually know how much that error correction will affect the efficiency of our algorithm.

What we’ll spend time on here is to understand theoretically how a quantum computer takes advantage of

superposition, and one main idea is that we can simulate many quantum particles (which is very difficult in a classical

computer).

Let’s start with the qubits themselves. By convention, the notation we often use here is

|0〉 = |z ; +〉 =

[
1

0

]
, |1〉 = |z ;−〉 =

[
0

1

]
.

(These are sometimes called the computational basis states.) Then a general arbitrary state of the qubit is

|ψ〉 = a0 |0〉+ a1 |1〉 =

[
a0

a1

]
,

where a0, a1 ∈ C and |a0|2 + |a1|2 = 1, as usual. We can measure the value of the qubit along a basis, which

corresponds to “reading the bit and seeing if it is 0 or 1:” if we measure along the computational basis states, we get

|0〉, corresponding to the bit 0, or |1〉, corresponding to the bit 1.

So now, suppose we have two qubits instead of one: we can describe a general state as

|ψ〉 = a00 |0〉 ⊗ |0〉+ a01 |0〉 ⊗ |1〉+ a10 |1〉 ⊗ |0〉+ a11 |1〉 ⊗ |1〉 ,

where ai j ∈ C and
∑

i ,j |ai j |2 = 1. To make the notation a little nicer, we’ll just rewrite this as

|ψ〉 = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉 ,

and now we have four computational basis states (corresponding to the tensor product of the basis states of the

individual qubits). And again, measuring along this basis means that we can read the two bits as 00, 01, 10, or 11.

One useful rule to keep in mind here is that we can identify states with binary numbers, so that

|00〉 → 0, |01〉 → 1, |10〉 → 2, |11〉 → 3

in this case. And we can generalize this to a system of n qubits, which corresponds to a tensor product space of

dimension N = 2n: we write the computational basis states here as

|x1〉 ⊗ · · · ⊗ |xn〉 = |x1 · · · xn〉 , xi ∈ {0, 1},
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And then a sequence x1 · · · xn represents a binary number, which then corresponds to a nonnegative integer:

|x1 · · · xn〉 = x1 · · · xn2 ∈ [0, 2n − 1].

A typical state of this state space is then

ψ = a0···0 |0 · · · 0〉+ a0···1 |0 · · · 1〉+ · · ·+ a1···1 |1 · · · 1〉 ,

where there are N = 2n total coefficients that need to be stored.

So here we can see the drastic difference already: if we consider a 53-bit quantum computer like Google used, the

state space has dimension 253, which is on the order of 1016. So specifying a state of a 53-bit classical computer

requires us to write down a list of 53 numbers, each of which is 0 or 1, while specifying a state of a 53-qubit classical

computer requires us to write down a list of 253 numbers, each of which is some complex number! So the memory

needed to store the state of a quantum computer grows exponentially.

Remark 343. If we store each coefficient using 8 bytes (a byte is 8 bits), we’ll need 253 ·23 = 256 bytes just to specify

a single state. This is 64 petabytes, which is about a quarter of IBM’s largest supercomputer’s storage. So working

with this state is very difficult – just going from 53 qubits to 60 qubits means that our supercomputers can’t deal with

this anymore, especially when we need to time-evolve the state forward as well.

So now we want to do operations on our qubits: these are the calculations that make normal computation possible,

and they’re interesting to study in the quantum case as well.

Definition 344

A (quantum) gate is a unitary operator on qubits.

Example 345

The simplest gates act on a single qubit, meaning that they are unitary operators on a 2-dimensional vector space.

Remember that the Pauli matrices are Hermitian and square to the identity matrix I, so they are also unitary: thus,

we have the matrices

X = σx =

[
0 1

1 0

]
, Y = σy =

[
0 −i
i 0

]
, Z = σz =

[
1 0

0 −1

]
.

Notice, for example, that

X |0〉 = |1〉 , X |1〉 = |0〉

(don’t forget that we’re zero-indexing), so this can be described as the NOT gate, which reverses a bit. Another way

to write this is that the output of the NOT gate is

x = NOT(x) = x ⊕ 1,

where the ⊕ symbol means addition mod 2. We like to represent these gates with diagrams: here’s a representation

of the NOT gate.

Xx x

input output|x〉 |x〉
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(In one sentence, the X gate takes |x〉 into |x〉 = |x ⊕ 1〉.) In the classical case, we can only have an input of 0 or

1, but in the quantum case, we can also send in some superposition and find its NOT value:

Xa0 |0〉+ a1 |1〉 a0 |1〉+ a1 |0〉

(Basically, linearity means that it’s easy to write down the result of any superposition of |0〉 and |1〉.) We can

also write down the action of the Y and Z gates, but there’s another gate which is more interesting, known as the

Hadamard gate H:

H =
1√
2

[
1 1

1 −1

]
.

Then we can calculate

H |0〉 =
1√
2
(|0〉+ |1〉), H |1〉 =

1√
2
(|0〉 − |1〉),

and we will see soon why this is useful.

Example 346

Now let’s look at unitary operators on two qubits, which means we now need unitary matrices acting on a 4-

dimensional vector space.

Here, it is still possible to visualize the 4 × 4 matrices, but we’ll need to describe them with clear language. One

well-known gate is the controlled NOT or cNOT gate, and in the classical case, it looks like this:

x

y

x

y ⊕ x
⊕

Here, x is known as the “control bit,” while y is known as the “target bit” – the control bit remains unchanged, but

y is changed based on the value of x . To transfer this into the quantum case, we will need a control and target qubit,

and we’ll transform on the basis states in the exact same way:

|x〉

|y〉

|x〉

|y ⊕ x〉
⊕

This is called a “controlled NOT” gate, because it acts like a NOT whenever the control bit x is |1〉, but it does

nothing when the control bit x is |0〉. And remember that the quantum gate only acts like this on computational
states: we get the rest by linearity.

Since the two qubits live in a tensor product space, another way to describe the action here is that

|x〉 ⊗ |y〉 c-NOT→ |x〉 ⊗ |y ⊕ x〉 .

We can ask whether the cNOT gate is unitary, and the way to check this is to look at the matrix representation of

the gate: choose basis vectors in the tensor product space to be

|00〉 , |01〉 , |10〉 , |11〉

in that order (so that the numbers are ascending in binary), and notice that the basis elements are sent to

|00〉 , |01〉 , |11〉 , |10〉
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respectively. So the matrix corresponding to cNOT is

UcNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



which is

[
1 0

0 X

]
in block form. And this block matrix form is a nice way of thinking about the cNOT gate intuitively

– the action depends on the state of the first bit – and now this matrix is indeed unitary because it is Hermitian and

squares to the identity matrix I (by block multiplication).

Example 347

Our next step is to try to construct a function using these types of unitary gates.

For example, we may want to take one of the four (classical) functions f (x) : {0, 1} → {0, 1}, which sends each

bit to some bit, and write it in terms of our quantum gates. In other words, does there exist a gate G such that

G |x〉 = |f (x)〉?

Somewhat surprisingly, it’s not always possible to do this! One function that we can construct is the identity function

(where f (0) = 0, f (1) = 1), since we can just act with the identity matrix, which is certainly a unitary operator.

Similarly, we can construct the function such that f (0) = 1, f (1) = 0 by using the NOT gate that we described above.

But the other two functions are constant functions (which send either bit to 0 or to 1), and that’s not a unitary

transformation (since it’s not invertible), so we can’t find a gate G that does the job here. That means that not all

functions f can be “unitarily implemented” like this for even this simple domain and range, and thus we should not

expect to be able to represent functions f in general: after all, unitary operators are always injective.

So if we want to be able to use gates to implement a function f and do general computation, all such computations
must be reversible. One trick to address this issue is to enlarge the state space: even when our function f only acts

on a single qubit, we can use a gate Uf that takes in two inputs and also spits out two outputs:

Uf

|x〉 |x〉

|y〉 |y〉 ⊕ |f (x)〉

In other words, this is the unitary operator

Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f (x)〉 ,

and now |x〉 serves as a kind of “control bit” for the function because it’s unchanged, but it is also the bit that is being

evaluated by f . A slightly cleaner way of writing the above equation is

Uf |x, y〉 = |x, y ⊕ f (x)〉 ,

and we’ll choose to use this kind of notation from here. (Notice that when y = 0, we have Uf |x, 0〉 = |x, f (x)〉, so

plugging in y = 0 will give us back the function reading f (x) on the bottom bit.)
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Indeed, this function is reversible – in fact, applying it twice yields

Uf Uf |x, y〉 = Uf |x, y ⊕ f (x)〉 = |x, y ⊕ f (x)⊕ f (x)〉

but f (x) + f (x) is always 0 mod 2 (whether f (x) = 0 or 1), so this is just |x, y〉 back again. So this gate squares to

itself (meaning it is its own inverse), and we want to make sure it’s Hermitian as well. We can do this by constructing

the matrix representation again, but let’s try something different this time: note that we can write Uf in terms of

“matrix elements” by considering the operator

Uf =
∑

(x,y)∈{0,1}2
|x, y ⊕ f (x)〉 〈x, y | .

(We can check that this has the correct action on each of the computational basis states, because they are are

orthonormal.) Then the Hermitian conjugate flips the kets and the bras, so we now have

U†f =
∑

(x,y)∈{0,1}2
|x, y〉 〈x, y ⊕ f (x)| .

To show that U†f = Uf , we do a change of variables: let x ′ = x, y ′ = y ⊕ f (x) (we can check that this is a reversible

change of variables, because it is injective). Then y = y ′⊕ f (x) as well (because everything is taken mod 2), meaning

we can rewrite the above expression:

=
∑

(x ′,y ′)∈{0,1}2
|x ′, y ′ ⊕ f (x ′)〉 〈x ′, y ′| ,

which is the same expression as Uf with different dummy variables. Thus Uf is indeed Hermitian (so combined with

the above information, it’s unitary), and we’ve now found a way to describe our function f using a unitary gate, just

by using a larger state space.

So now we have seen how to represent a classical function f with one input, using a two-qubit quantum gate.

Fact 348

It turns out that if we have a function f with an n-bit domain and a 1-bit range

f (x1, · · · , xn) ∈ {0, 1}n

(which is clearly not going to be injective in general because we have 2n possible inputs and 2 possible outputs),

we can always construct a quantum Uf with (n + 1) inputs |x1〉 , · · · , |xn〉 , |xn+1〉, such that

(|x1〉 , · · · , |xn〉 , |y〉)→ (|x1〉 , · · · , |xn〉 , |y ⊕ f (x1, · · · , xn)〉).

In other words, the first n inputs are the inputs to our function – the gate won’t change them – and the last input

will “carry the answer” – it will change based on the value of our function. (It is rather striking that we can fix all of

the non-injectivity issues with just a single additional bit as input!)

Example 349

So now we’re ready to see a simple quantum algorithm, known as Deutsch’s algorithm, in action.

We’ll suppose that we have access to an oracle, which can tell us the value of a function given any input. If we

want to know about a function f with a one-bit input and output, we need to make two calls to the oracle (asking for
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the values of f (0) and f (1)) in an ordinary computer. But now suppose that we care about the value of f (0)⊕ f (1)
(mod 2): in the classical setting, we will need to make the two calls for f (0) and f (1) separately, but there is actually

a way to get around that in the quantum case – we will only need one call of the oracle!
We’ll need to use the quantum gate that we constructed above:

Uf

|x〉 |x〉

|y〉 |y〉 ⊕ |f (x)〉

Applying Uf is our oracle here (because that’s what tells us the value of the function f ), and we claim here that

we will only need to apply Uf once to get f (0)⊕ f (1). And this makes some sense when we think about Uf as a linear

operator: consider the action of Uf on the state

|ψ〉 = H |0〉 ⊗ |0〉 =
1√
2
(|0〉+ |1〉)⊗ |0〉 .

Since our first input |x〉 is a superposition of |0〉 and |1〉, it almost seems like we’re evaluating x simultaneously at

both of those values here. By linearity, we have that

Uf |ψ〉 =
1√
2
(|0〉 |f (0)〉+ |1〉 |f (1)〉) ,

and we now have entanglement of the two qubits (between the argument and the function), meaning that we’ve

extracted the information of f (0) and f (1) simultaneously. But notice that we cannot actually extract both of those

pieces of information at once, because measuring the value of the first bit will collapse us into either |0〉 |f (0)〉 or

|1〉 |f (1)〉, and the other information is destroyed.

Nevertheless, we can get composite information like f (0)⊕ f (1), and here’s the quantum computer that does the

job:

Uf
HH

H

|0〉

|1〉

Proposition 350

The output of this computer will give us a state where we can read off the value of f (0)⊕ f (1).

Proof. Call the initial state |ψ0〉, the state after the first two Hadamard operators |ψ1〉, the state after the Uf “oracle

query” |ψ2〉, and the state after the final Hadamard operator |ψout〉. We know that

|ψ0〉 = |0〉 ⊗ |1〉 ,

which means that

|ψ1〉 = H |0〉 ⊗H |1〉 =
1

2
(|0〉+ |1〉)⊗ (|0〉 − |1〉) =

1

2
|0〉 ⊗ (|0〉 − |1〉) +

1

2
|1〉 ⊗ (|0〉 − |1〉).

(Expanding out in this way will become useful soon.) We now want to act on this function with Uf : we have

|ψ2〉 = Uf |ψ1〉 =
1

2
|0〉 ⊗ (|f (0)〉 − |1⊕ f (0)〉) +

1

2
|1〉 ⊗ (|f (1)〉 − |1⊕ f (1)〉),
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because Uf leaves the first bit invariant. Finally, acting with H on the first output yields

|ψout〉 =
1

2
H |0〉 ⊗ (|f (0)〉 − |1⊕ f (0)〉) +

1

2
H |1〉 ⊗ (|f (1)〉 − |1⊕ f (1)〉),

and expanding this out yields

=
1

2
√
2
|0〉 ⊗ (|f (0)〉 − |1⊕ f (0)〉+ |f (1)〉 − |1⊕ f (1)〉) +

1

2
√
2
|1〉 ⊗ (|f (0)〉 − |1⊕ f (0)〉 − |f (1)〉+ |1⊕ f (1)〉) .

We’re trying to find the value of f (0) ⊕ f (1), but it doesn’t seem to pop out obviously from our calculations – we’ll

need to be a bit more careful. Notice that whenever f (0) = f (1), we have f (0) ⊕ f (1) = 0, and otherwise we have

f (0)⊕ f (1) = 1. And now let’s consider each of these two cases: if f (0) and f (1) are equal, then everything in the
second group cancels out in the above boxed expression, and whenever f (0) and f (1) are different, everything in
the first group cancels out. So in both cases, the amplitude of one of our two terms will disappear – more specifically,

the expression for our final state simplifies to

|ψout〉 =

|0〉 ⊗
1√
2
(|f (0)〉 − |1⊕ f (0)〉) when f (0) = f (1) =⇒ f (0)⊕ f (1) = 0,

|1〉 ⊗ 1√
2
(|f (0)〉 − |1⊕ f (0)〉) when f (0) 6= f (1) =⇒ f (0)⊕ f (1) = 1.

(Notice that f (0) and 1⊕ f (0) always take on different values, so neither case has a wavefunction that is just zero.)

So now we just need to measure along the computational basis states of the first qubit: whatever answer we end

up with must be the value of f (0) ⊕ f (1), and we’re done. (And we end up with a ±(|0〉 − |1〉) no matter what the

value of f (0) is, so we cannot extract any more information beyond what we have described.)

We have now seen a bit of the power of quantum computation, but now we’ll do another example that is a bit

more interesting:

Example 351

Grover’s algorithm helps us solve a search problem of the sort where we are (figuratively) trying to find a black

marble in a bag otherwise containing white marbles.

Normally, we have to examine the marbles one by one, so in a large bag of N marbles, it will take about N
2 tries to

find the marble on average. But it turns out that we’re only going to need about
√
N calls in the quantum case! (There

are even more drastic improvements that we can make with quantum computation, such as with Shor’s algorithm, but

this example here is illustrative enough.)

So let’s describe this problem more formally: suppose we have a set of size N = 2n (where n ≥ 1 is some usually

large positive integer). We can correspond the elements of the set X = {0, 1, · · · , N−1}, and we can then correspond

those with the binary strings of length n, {x1 · · · xn}.
We now have a function

f (x) = f (x1, x2, · · · , xn) ∈ {0, 1}

which can be thought of as the oracle in this problem: for each integer x from 0 to N − 1, we have either f (x) = 0 or

1. Then the problem we’re facing is to identify some element with f (x) = 1: suppose we’re told that there M such

values of x (so there are (N −M) non-solutions where f (x) = 0), and we’re going to assume M � N here (because

that’s when the problem is “hardest”). Again, we need about N
2 queries of the oracle for M = 1, but it turns out a

quantum computer will only take about π
4

√
N steps.
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Remark 352. When we say that we have an oracle, the idea is that the formula or method of finding f (x) is not

transparent to us (so we can’t just solve the equation f (x) = 1 ourselves): all we’re told is the final value.

The idea is that when we feed in a label |x〉 (which is a set of n qubits), we’re getting a reading of the oracle as

follows:

Of

|x1〉 |x1〉
...

...

|xn〉 |xn〉
|q〉 |q〉 ⊕ |f (x1, · · · , xn)〉

|x〉

As usual, the first n qubits are inputs and stay unchanged, and the last input is changed by the value of f . So the

operator Of takes the state |x〉 |q〉 into the state |x〉 |q ⊕ f (x)〉, where we’re (again) using the condensed notation

that x = (x1, · · · , xn). And this time, the idea is that we’re going to pick a particularly nice starting state |q〉 so that

our computation turns out nicer: we’ll use

|q〉 = H |1〉 =
1√
2
(|0〉 − |1〉).

Then the action of Of on our input will look like

Of (|x〉 ⊗H |1〉) = |x〉 ⊗
1√
2
(|f (x)〉 − |1⊕ f (x)〉)

by linearity, and now we want to exploit that this last expression only depends up to a sign f (x) (we’ll either have

|f (0)〉 − |f (1)〉 or |f (1)〉 − |f (0)〉). Specifically, the second term of the tensor product is H |1〉 if f (x) = 0 and −H |1〉
if f (x) = 1: another way to write this is that our final state is very similar to our initial state:

Of (|x〉 ⊗H |1〉) = |x〉 ⊗ (−1)f (x)H |1〉 = (−1)f (x)(|x〉 ⊗H |1〉) .

So now we now have information about our function in a “sign” or “phase,” rather than the ket itself, and that’s nice when

we’re trying to do things with interference. And since this last qubit |q〉 = H |1〉 is unaffected by our transformation

Of , we will omit it from the notation from now on (we’ll just write things like Of |x〉 = (−1)f (x) |x〉).
The next idea is to choose an input |x〉 which works well with our operator, and the idea here is that the Hadamard

gate is very useful when combining information together. We will start with an initial state

|ψ0〉 = (H |0〉)⊗n = H |0〉 ⊗H |0〉 ⊗ · · · ⊗H |0〉

(n terms in total), and if we write out the definition of H |0〉 = 1√
2
(|0〉+ |1〉), this initial state turns out to be

=
1√
2n
(|0〉+ |1〉)n =

1√
N
(|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉).

So each of the n terms in this final tensor product corresponds to one of the qubits, and thus if we expand all of the

products, we will find an equal contribution from each of the N computational basis states (each of the n-digit binary

numbers from 0 to N − 1):

=
1√
N
(|0 · · · 0〉+ |0 · · · 1〉+ · · ·+ |1 · · · 1〉) =

1√
N

N−1∑
x=0

|x〉 .

Because this initial state “represents all of the states at the same time,” having the oracle act on this will give us

“information about all of the states” (though we can’t disentangle that information easily, which is why the problem is
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difficult). To prepare for the action of Of , we can rewrite this state in a slightly different way, splitting based on the

value of f :

=
1√
N

∑
x :f (x)=0

|x〉+
1√
N

∑
x :f (x)=1

|x〉 .

We now want to “normalize each of these components separately:” since there are (N −M) states in the first sum

and M states in the second sum, we can rewrite this as

|ψ0〉 =
√
N −M
N

1√
N −M

∑
x :f (x)=0

|x〉+
√
M

N

1√
M

∑
x :f (x)=1

|x〉 ,

so that we have a superposition of two normalized states: let’s call them |α〉 and |β〉 respectively, so that

|ψ0〉 =
√
N −M
N

|α〉+
√
M

N
|β〉 .

By construction, we know that 〈α|α〉 = 〈β|β〉 = 1, and also 〈α|β〉 = 0 because the (computational basis) kets that

appear in the definition of |α〉 are disjoint from those that appear in |β〉. And now we’re going to work in the vector

space

R2 = span(|α〉 , |β〉)

(note that we have a real vector space because our coefficients are all going to be real in this case), which is nice

because we can visualize |α〉 and |β〉 as the orthonormal basis vectors along the x- and y -axis of an ordinary regular

xy -plane (where |α〉 represents the “non-solutions” and |β〉 represents the “solutions” that we’re trying to find). |ψ0〉
is then a normalized vector pointing “mostly” in the |α〉 direction, because M � N: this means we can write it as a

unit vector
|ψ0〉 = cos θ0 |α〉+ sin θ0 |β〉

for some small angle θ0 = sin−1
√

M
N . Intuitively, our quantum circuit is going to slowly move this unit vector towards

the |β〉-axis (at which point we can just measure the state to get a solution) and that’s what we’ll describe now.

Notice that Of takes |α〉 (a superposition of non-solutions) to itself (because (−1)f (x) = (−1)0 = 1 for every term

in |α〉), but it takes |β〉 to − |β〉 (because (−1)f (x) = (−1)1 = −1 for every term). Therefore, applying Of preserves

the |α〉-component and flips the |β〉-component, meaning that

Of |ψ0〉 = Of (cos θ0 |α〉+ sin θ0 |β〉) = cos θ0 |α〉 − sin θ0 |β〉 .

But now |ψ0〉 and Of |ψ0〉 are reflections across the |α〉 or x-axis, so they are separated by an angle of 2θ0. This

means that we’d be in good shape if we figured out how to reflect about our initial state |ψ0〉: the result would have

a larger angle to the horizontal, moving us towards the |β〉-axis. And it turns out the operator that we want is

R0 = 2 |ψ0〉 〈ψ0| − I .

To check that this is indeed what we want, we can rewrite the identity term as |ψ0〉 〈ψ0|+
∣∣ψ⊥0 〉 〈ψ⊥0 ∣∣ (for some vector∣∣ψ⊥0 〉 perpendicular in the plane to our original state), and then we have

R0 = 2 |ψ0〉 〈ψ0| − (|ψ0〉 〈ψ0|+
∣∣ψ⊥0 〉 〈ψ⊥0 ∣∣) = |ψ0〉 〈ψ0| − ∣∣ψ⊥0 〉 〈ψ⊥0 ∣∣ ,

which is an operator that preserves the |ψ0〉 component and flips the
∣∣ψ⊥0 〉 component, so it is indeed a reflection of

the desired type (and is also unitary, so it’s a valid operator to use here). Because we started with the state

|ψ0〉 = (H |0〉)⊗n = H⊗n |0〉 ,
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(in this last equality we changed from using qubits 0 to the actual n-digit binary string 0), we can also rewrite our

reflection operator as

R0 = H
⊗n(2 |0〉 〈0| − I)H⊗n.

(We can check that this is valid, because the H⊗n on the left acts on the ket, the H⊗n on the right acts on the bra,

and the two do nothing to the identity because H2 = I.) So our quantum computer realizes the reflection R0 by using

a series of three gates:

H⊗n

|x1〉
...

|xn〉
R H⊗n

The first and third of the gates are just qubit-wise Hadamard gates, and we need to figure out the second gate.

That middle gate R is the same expression at R0, but we’re now reflecting around the |0〉-axis, so it sends |0〉 → |0〉

and |x〉 → − |x〉 for all x 6= 0. (Remember that 0 still represents the n-digit binary integer here, so all 2n − 1 other

computational basis vectors are flipped – just not |0〉.) This kind of gate can indeed be implemented using NAND

gates, and thus we’ve indeed managed to construct an R0 gate.

So thinking geometrically again, we can now return to the state

R0Of |ψ0〉 .

(Remember that Of does take in an extra qubit |q〉 as input, while R0 does not.) The oracle Of reflects ψ0 over the

|α〉-axis, moving us to an angle of −θ0 in the |α〉 |β〉-plane, and then R0 reflects the result over the |ψ0〉 state. Since

the difference in angle is 2θ0, our final result will have an angle of θ1 = 3θ0 in the |α〉 |β〉 plane.

And we can just iterate this again and again: letting G = R0Of be the Grover operator, we can just act with
G on |ψ0〉 repeatedly. If we have some arbitrary state |ψ〉 at an angle γ from the horizontal |α〉-axis, then Of |ψ〉
will be at an angle of −γ, so applying R0 (rotating about the |ψ0〉 state) to this state will give us G |ψ〉 at an angle

of γ + 2θ0 , because Of |ψ〉 is an angle (γ + θ0) away from |ψ0〉.

|β〉

|α〉
|ψ0〉

θ0

|ψ〉

Of |ψ〉

γ

γ
=⇒

|β〉

|α〉
|ψ0〉

G |ψ〉

γ + θ0

γ + θ0

θ0

Of |ψ〉

In summary, R0θf just rotates our vector by an angle 2θ0 in the |α〉 |β〉-plane for any arbitrary unit vector, so

applying the Grover operator k times to |ψ0〉 gives us a vector at an angle of

θk = (2k + 1)θ0 = (2k + 1) sin
−1
√
M

N

to the horizontal. And now we know how to carry out our quantum algorithm: if θ0 is very small, we can apply G
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enough times to get |ψk〉 to point very close to vertical, meaning that we’re in a superposition of mostly states that

have f (x) = 1. And then measuring along the computational basis states will give us one of the solutions, as desired.

When M � N, we can approximate the number of steps via

π

2
= θk ≈ (2k + 1)

√
M

N
,

and solving for k yields k ≈
π

4

√
N

M
, which is the result that we promised at the beginning! And this quantum

algorithm has given us an answer in O(
√
N) queries of the oracle, rather than O(N) as we would have in the classical

case.

Fact 353

Suppose that N = 230 ≈ 109 and M = 1. Then it takes about 500 million queries with a classical computer to

find our solution, while it only takes about 26000 calls with the quantum computer.

But also remember that the quantum algorithm gives us a probability of success very close to 1, but not exactly

equal to 1: specifically, the probability of success after we apply the Grover operator k times is

Pk = | 〈β|ψk〉 |2,

and this is basically asking us for the squared |β〉-component of |ψk〉, which is sin2(θk).

Example 354

Let’s examine the probability of success for our quantum algorithm when N = 25 = 32 and M = 1.

Then our starting state has an angle of

θ0 = sin
−1
√
M

N
= sin−1

√
1

32
≈ 10.18◦,

and since 9θ0 is about 90 degrees, we’ll want to take 2k + 1 = 9 =⇒ k = 4, and four calls of the oracle result in

θ4 = 91.64
◦ =⇒ |ψ4〉 ≈ −0.03 |α〉+ 0.9996 |β〉 .

(Remember that in this case, |β〉 is just a single computational basis state, and |α〉 is an equal superposition of the

other 31 computational basis states.) This yields a probability of

P4 = sin2(91.64◦) = 0.99962 ≈ 0.9991.

So more than 99.9 percent of the time, four calls to the oracle will get us the value of x such that f (x) = 1: much

better than the classical case, where we need sixteen calls on average to get the answer!
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