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1 Introduction

Fact 1

To start off the class, all of the students introduced ourselves (whether we’re an undergrad or grad student, what

department we’re in, and where we’re located).

This is a graduate statistical mechanics class, so it will be taught at a level for first-year graduate students.

Professor Todadri hopes to have a chance to see all of us on campus in the near future, but for now we’re all learning

virtually. His research is in quantum condensed matter physics, and he’s been at MIT for 20 years. Recitations will

be taught by Alex Siegenfeld – his research is about applying concepts from statistical physics to social and economic

systems, particularly COVID-19.

Most of us should have seen the Canvas site by now – most of the course business will be conducted there. We’ll

find some information there about the syllabus, grading, and logistics, most of which will not be repeated. It’s also

good for us to sign up for the Piazza, so that we can ask questions and connect with each other in this virtual format.

(Piazza will mostly be used for chatting, but the course staff may answer questions or refine answers occasionally.)

Homework will be assigned roughly once per week – since this is a graduate class, this will be weighted at 60 percent

of the total grade. In other words, if we’re doing a good job keeping up with the work, we have a good chance of

receiving close to the full 60 percent. There will be three take-home, open book, open notes quizzes (designed to be

more low-stakes) worth 8 percent each, and then there will be a synchronous final exam worth 16 percent. (Logistics

for this will be announced later.)

There will be a variety of resources available to us for this class: many good books are listed on the Canvas site,

but we’ll cover topics from Professor Mehran Kardar’s book. (The organization will be different, but we can find

Professor Kardar’s lectures on MIT OCW.) A particularly sophisticated book is the one by Landau and Lifshitz – we

should consult it only if we have enough maturity to tackle it.

All lecture videos and handwritten class notes will be posted on Canvas, but (per department guidelines) recitations

will not be recorded, so that students feel comfortable speaking up.

2 September 2, 2020
This class will be taught under the assumption that we have had some exposure to statistical mechanics and ther-

modynamics in the past. (For undergraduates, 8.044 is probably the relevant background.) The general question
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to answer for a class like this is how to describe properties of macroscopic objects in terms of certain known
laws describing the physics of atoms. In other words, if we know (at least adequately) how physics describes small

particles, can we describe how systems with many such particles behave?

Such a microscopic description depends on whether we’re treating our particles classically or quantum mechanically

– technically we should treat everything quantum mechanically, but the classical limit is sometimes adequate. In

the classical case, a gas can be described by the coordinate and momentum of each particle, and we want to learn

something based on the time-evolution of those coordinates. (We could theoretically use Newton’s equations of motion

and apply it to our large collection of atoms.) Alternatively, in the quantum case, we could specify the quantum many-

body wavefunction. But in most macroscopic objects, there are O(1023) atoms, and so trying to describe the system

with either of the two treatments above is essentially impossible and also pretty useless.

So what’s useful for physicists is not the exact mathematical description of each atom – instead, we want to extract

information by developing concepts and descriptions which apply to the system as a whole, rather than any one of

its constituents.

Example 2

From past physics experience, we may know that temperature, heat, and pressure are often useful for a macro-

scopic description of a system.

This means that we should understand what temperature, heat, and pressure mean at the microscopic level – how

are they defined, and how do they arise? If we can take a small set of variables like these, and use that to capture the

overall state of the system, then we’ve successfully completed a macroscopic description.

And the point is that the difficulty of describing our large systems at the microscopic level can be turned into an

advantage:

Proposition 3

Statements of a statistical nature (about averages or fluctuations) become useful when systems have lots of

degrees of freedom.

We will simplify our discussion throughout most of these lectures by focusing on equilibrium properties (rather

than the approach to equilibrium) for our systems. To explain what “equilibrium” really means, remember that we’re

describing our large, macroscopic system in terms of a small number of variables.

Definition 4

If all macroscopic variables describing a system have assumed their average values in the absence of external

forces, and those values do not change in time, then our system is at equilibrium.

The “not changing in time” statement will depend on the timescale over which we’re considering or observing our

system – as Feynman describes, this is the time when the “fast things” have happened already, but the “slow things”

have not.

Example 5

A glass of water does not look like it is changing after it has been sitting on a table for a few minutes, but after a

few days, the water will evaporate. So a meaningful notion of equilibrium does need to depend on our timescale.
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It’s important to note that our description of macroscopic systems, like the glass of water above, is often done

while it is constantly interacting with the surrounding environment. This environment is often much larger than the

system we care about – we usually can’t do anything to get rid of it, but it still has some influence on our system. So

this is an extra level of challenge: if we don’t know the nature of the environment, or its explicit interaction with our

system, it will be even more difficult to describe the properties that we care about.

So a tool we’ll be using frequently throughout this class is probability: we want to be able to calculate how likely

it is for our system to be in various possible states. After all, even if we have a completely specified microscopic

description of our initial conditions, there is no way to solve the problem exactly without knowing how our environment

behaves. And even a completely isolated system can be thought of as a large number of (smaller, but still macroscopic)

systems that are interacting with each other: if the length scale for our whole big system is L, and we break it up into

smaller systems of length `, so that L� `� a (where a is a microscopic length scale), it’s believed that (after some

evolution) each of our small subsystems should be “in equilibrium relative to the other subsystems,” at least at short

timescales.

Remark 6. In the past few years, some exceptions to this “ability to internally equilibrate without an environment”

have been found, but they are rare and have only been discovered recently. So it’s interesting that the field is still

evolving and that assumptions are still being challenged.

Proposition 7 (A reasonable statement, not a theorem)

Consider a system in contact with its environment. If this system is sufficiently “generic” (we’ll explain what this

means later), then the probability of being in a certain state with energy E is the same as being in any other state

with energy E.

To explain this, consider two such states a and b with respective energies Ea and Eb. If Ea ≈ Eb, then weak

interaction with the environment can cause transitions between these two states. (This is a general phenomenon –

our environment will provide a perturbation to our system, which can cause this small energy difference ∆ = Eb−Ea.)
Thinking about this quantum mechanically, if we have some potential V (t) applied to our system, that will cause

us to have some rate of transition from the states a to b, and that rate is proportional to |
〈
b
∣∣∫ dt e i∆t/~V (t)

∣∣a〉 |2.
This transition will therefore occur except when the above matrix element “prohibits” it (meaning the rate is 0), and

in large systems in contact with some environment, such transitions will happen between states with the same energy

without needing any energy transfer from the environment. (Since ∆ = 0, the rate is dependent on 〈b|a〉, which is

basically never zero.) So the system will visit different states of the same energy, as long as some set of them isn’t

forbidden.

So when does this “forbidding accessing other states” happen? Certain conservation laws (e.g. conservation of

spin) can come into play here – states of different total spin cannot be “kicked around” by the environment. But

generically, when we assume no other conservation laws are present (here’s our definition), nothing else about

our system can prevent the environment from kicking us between possible states.

This means that the probability of being in a state should only depend on the energy E, and this is the framework

with which we’ll start to study many-body systems.

3 September 4, 2020 (Recitation)
We’ll generally start recitations by discussing any questions from lecture that might come up, and then we’ll discuss

some topic – this week, we’ll do a review of some probability theory.

3



Fact 8

During the proof of the “states with equal energy have equal probabilities” result, we used a formula for transition

rates that is only valid when the two energies are different.

There was indeed a bit of handwaving that occurred during lecture. But the general idea is that quantum me-

chanically, probabilities of transforming from state a to b are the same as probabilities of transforming from state b

back to state a under any given interaction. And if we have two states of unequal energy, the environment needs

to input energy – the point is that “all transitions that can happen will happen” due to the large number of available

microstates.

For a more rigorous proof of this kind of result, we should wait for the microcanonical ensemble to come up. This

is because often in statistical mechanics, we start with closed systems with no attached environment. In such a setup,

all states are equally likely (if the system is at a fixed energy), and then we try to argue from general principles that a

subsystem of it (which we can think of as the actual “system” attached to an environment) behaves as we want.

Fact 9

Our main example of non-equilibrium systems in this class come from hydrodynamics – that is, how a gas or fluid

tends towards equilibrium.

Fact 10

The “matrix element” or Fermi’s golden rule argument has to do with time-dependent perturbation theory in

quantum mechanics, but this is not super related to the material we’ll be covering.

And finally, two answers to logistics questions: homework will be first assigned next week (and we’ll always get a

week to do it), and there will occasionally be extra credit problems on the homework to allow us to bump up our grade

to the full 60 percent allotment. Also, even though +/- grade modifiers are not directly displayed on a transcript, a

B+ specifically will be needed to place out of the physics qualifying exam.

There’s a very formal way of thinking about probability, but mathematicians need to worry more about the details

than physicists when working about infinite spaces. So this won’t be “up to mathematical rigor,” but it’ll give the basic

idea:

Definition 11

A probability space consists of a sample space Ω, such that for (some of the) events E ⊂ Ω, we assign a

probability P (E) ∈ [0, 1] so that

• P (Ω) = 1, and

• if E1 ∩ E2 = ∅ are disjoint events, then P (E1 ∪ E2) = P (E1) + P (E2).

Here, the main idea is that “probabilities add to 1” if we cover the whole space with disjoint events.

Example 12

If we roll a die, the result of that die roll has Ω = {1, 2, 3, 4, 5, 6}, and P(E) = |E|
6 .
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Notice that there is no definition of “randomness” here: we’ve just assigned numbers to mathematical objects. So

randomness is actually more subtle, and we’re abstracting it away. The only case where probability does intersect with

reality is that if we have N independent trials and we measure how many times NE that event E occurs, we should

have

P(E) = lim
N→∞

NE
N

;

that is, we expect that over time, we get the correct fraction of occurrences.

Definition 13

A real random variable is a map X : Ω→ R, which can also be defined by a cumulative distribution function

F (x) = P({ω ∈ Ω : X(ω) ≤ x}) = P(X ≤ x).

Here, the more formal notation is just used for reference: basically, {ω ∈ Ω : X(ω) ≤ x} refers to the “set” or

“event” that X returns a value at most x .

Remark 14. The reason we care about this abstract notion of a sample space (rather than thinking about drawing

numbers from the real line directly) is that we might have different variables with weird correlations (x, y , z).

We can equivalently also define a probability distribution function

p(x) =
dF (x)

dx
,

which we can think of as the “relative probability of finding the value of X near x.” Note that this derivative may not

exist, which means we might have delta functions for discrete random variables, but we’ll often be using continuous

random variables in this class.

From here, we’ll consider functions of random variables: suppose we have some new random variable

Y = g(X),

and we know the probability distribution function pX(x) of X. Our goal is to find the probability distribution function

pY (y), and we do this by noting that (in differential form)

pY (y)dy =
∑

x :g(x)=y

pX(x)dx,

and then solving for pY yields

pY (y) =
∑

x :g(x)=y

pX(x)

|g′(x)| .

The derivative term here basically accounts for the “slantedness” of g – that is, how wide of a range of x ’s maps onto

a small interval around some y .
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Definition 15

The expectation value of a function g(X), denoted 〈g(X)〉, is

〈g(X)〉 =

∫
p(x)g(x)dx.

One specific example is the moments of a random variable X, which are

〈Xm〉 =

∫
p(x)xmdx.

We’ll assume in this class that moments are well-defined, but this is not always true for probability distributions

especially with extreme values.

One way to get a handle on these moments is to combine the moments together:

Definition 16

The characteristic function of a random variable X is

p̃(k) ≡ 〈e−ikX〉 =

∫
p(x)e−ikxdx.

Since this is the form of a Fourier transform, we can also invert this characteristic function to get the distribution

function back:

p(x) =

∫
1

2π
p̃(k)e ikxdk.

If we assume that all moments are indeed well-defined, we can do a Taylor expansion here:

p̃(k) =

∞∑
n=0

(−ik)m

m!
〈Xm〉,

and therefore the mth derivative of the characteristic function

dmp̃

dkm

∣∣∣∣
k=0

= (−i)m〈Xm〉.

(In other words, the characteristic function “determines the moments.”)

Remark 17. The reason to use the characteristic function instead of the moment generating function 〈etX〉 is that
the moment generating function is not always well-defined, because it can take on infinite values.

We can start putting our random variables together now: suppose we have two independent random variables X

and Y , which essentially means that “knowing X tells us nothing about Y , and vice versa.” Now if we want to find the

characteristic function of X + Y , then

p̃X+Y (k) =

∫∫
p(x)p(y)e−ikxe−ikydxdy

which then factors into two components,

= p̃X(k)p̃Y (k).

So this kind of “product structure” indicates that taking logarithms might be helpful, and what we can rewrite here is

ln p̃X+Y (k) = ln p̃X(k) + ln p̃Y (k) .
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And the useful motivation here is that we might want to consider the natural log of the characteristic function, also

called the cumulant generating function.

Definition 18

For all m ≥ 1, the cumulants of a random variable X, denoted 〈Xm〉c , are defined as the coefficients of the

cumulant generating function:

ln p̃(k) =

∞∑
m=1

(−ik)m

m!
〈Xm〉c .

(This sum starts from 1 instead of 0, because the left-hand side takes in a value of 0 at 0 no matter what and

there is no constant term in this Taylor series.)

By using the Taylor expansion of a logarithm ln(1 + ε), we can work out a calculation, and this gives us the mean

〈X〉c = 〈X〉,

the variance
〈X2〉c = 〈X2〉 − 〈X〉2,

the skewness
〈X3〉C = 〈X3〉 − 3〈X2〉〈X〉+ 2〈X〉3,

and the kurtosis
〈X4〉c = 〈X4〉 − 4〈X3〉〈X〉 − 3〈X2〉2 + 12〈X2〉〈X〉2 − 6〈X〉4

of a random variable. The cumulants might look somewhat arbitrarily defined, but they’re important because they add
for two independent variables. (For example, means and variances add, while the expectation values of the squares

does not add in such a simple way.)

And now we can go over a nice trick for relating cumulants to moments: we can imagine the cumulants 〈Xn〉c as

being a bag of n points, and 〈Xn〉 as referring to how to put n points into bags. (Points are distinguishable, but bags

are not.) For example, 〈X〉 = 〈X〉c because a single point goes in a bag,

〈X2〉 = 〈X〉2c + 〈X〉c ,

because two points can be put into the same bag or two different bags, and

〈X3〉 = 〈X〉3c + 3〈X2〉c〈X〉c + 〈X3〉c ,

since either the points go in the different bags, one of them is in its own bag in 3 different ways, or all three go in the

same bag. A similar calculation can be done for 〈X4〉, and notice that we can recursively compute the cumulants in

this way.

We’ll now cover some common probability distributions:

Definition 19

The Gaussian distribution with mean λ and variance σ2 has probability distribution function

p(x) =
1√

2πσ2
e−

(x−λ)2

2σ2
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We can compute the characteristic function of this Gaussian to be

p̃(k) =

∫
e−ikxp(x)dx = e−ikλe−σ

2k2/2,

which means that the power series for the cumulant generating function is

ln p̃(k) = −ikλ+
(−ik)2

2!
σ2,

indeed matching with the mean and variance that we described. (Notice that all higher cumulants 〈Xm〉c for m > 2

are 0.) What’s interesting here, though, is that there is no skewness, kurtosis, or anything “higher” for a Gaussian,

and that Gaussians are the only functions with this property! This means that we can write higher moments 〈Xm〉 in
terms of just the mean and variance, which is a nice property.

Fact 20

We can also do calculations for discrete random variables, but we need to deal with delta functions. For example,

the characteristic function of a random variable which is 1 with probability a and 0 with probability 1− a is

p̃(k) = ae ik + (1− a).

And now we can talk about having multiple random variables that do have some dependence on each other. Suppose

we have a vector of random variables ~X = (X1, · · · , XN), which is a function Ω → RN . Then we can make some

analogous definitions to the work above: we have a joint probability distribution function

p(~x) = lim
∀i ,dxi→0

P( ~X is in the box around ~x of width
∏
i dxi)

dx1dx2 · · · dxN
.

In other words, we take a vanishing volume around ~x and find the “density” of likelihood around that region.

We can then compute the unconditional probability distribution function of the first s variables by integrating

out the other variables:

p(x1, · · · , xs) =

∫ N∏
i=s+1

dxip(x1, · · · , xN).

On the other hand, we can also compute a conditional probability distribution function, assuming that the other

variables take on a specific value: this means we need to put in a normalization factor

p(x1, · · · , xs |xs+1, · · · , xN) =
p(x1, · · · , xN)

A
,

because we’re modifying the sample space of allowed events. This A will depend on the values of xs+1, · · · , xN , and it

is such that

A =

∫ s∏
i=1

dxip(x1, · · · , xN)

(that is, we integrate out the unknown variables X1 through Xs). And this is just the unconditional probability of the

rest of the variables p(xs+1, · · · , xN), so we can put everything together now:

p(~a|~b) =
p(~a and ~b)

p(~b)
,

and this is the well-known Bayes’ theorem, leading us to a more formal definition:

8



Definition 21

Two random variables X and Y are independent if p(x |y) = p(x) and p(y |x) = p(y) (the unconditional and

conditional probabilities are the same).

Bayes’ rule also then tells us that the probability distribution functions factor as

p(x, y) = p(x)p(y).

And a final note, we should be careful to think about the differences between pairwise and mutual independence: just

because any pair of variables in a set are independent does not mean that they are all mutually independent.

4 September 9, 2020
The first homework assignment has been posted – they will be posted weekly on Tuesdays. Office hours for Professor

Todadri and the two TAs are also posted now; we can chat about homework problems or other questions for the

course. (And we can always email if the times don’t work for us.)

By the way, if any of us are taking this class without much physics background, we can ask Hamed (one of the

TAs), who will conduct some informal physics review sessions.

Today’s lecture will cover the microcanonical ensemble, as well as classical Hamiltonian dynamics and Liou-
ville’s theorem. We’ll then begin to discuss density of states for many-body density.

Over the next few lectures, the goal we’re working towards is to deal with a situation where a system is attached

to a much larger environment, and the whole setup is in equilibrium. We want to get to a formula for the probability

that our system is in some particular microscopic state a with energy Ea – namely, that the probability of occupation

is

p(a) ∝ e−βEa ,

where β > 0 is a constant which we can interpret as 1
kBT

, where T is the absolute temperature of the system. (We’ll

call this the central principle – it’s the crucial rule of calculation for equilibrium statistical mechanics, and sometimes

textbooks actually start with a loose justification of this.) Then the constant of proportionality is just a normalization

factor 1
Z such that ∑

a

p(a) = 1 =⇒ Z =
∑
a

e−βEa .

Z here is known as the partition function, and it’ll be important for us to study. But it’ll take us some time to get to

this result and give enough supporting evidence, and that’s what we’ll be developing now.

We’re going to start with the “simplest” theoretical device, where we have a system that is large and strictly
isolated. In such a system, the total energy is strictly conserved, and different parts of this isolated system are in

equilibrium with each other. What we’re interested in here is the values of various macroscopic properties, averaged
over some small (but nonzero) time interval and region of space.

Example 22

If we want to extract a macroscopic quantity out of a gas in a room (such as the temperature), we’ll measure on

time scales longer than the time between collisions for atoms, and we’ll measure on length scales larger than the

distance between atoms. But for a system at equilibrium, we don’t need to wait a year or measure the average

temperature across the entire room to get a good measurement.
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Fact 23

We’ll assume (by tradition) that it’s possible to calculate these averages correctly from a uniform probability
distribution that assigns equal probabilities to all microscopic states with some fixed energy E.

This means that we’re assuming the system is “generic enough” – we’re basically assuming classical dynamics for

generic initial conditions are chaotic. And also, we’re basically extending the postulate we made earlier about an open

system to a closed system (saying that particle trajectories will be fairly random, with the only restriction being that

energy is totally conserved).

Definition 24

For a large, strictly isolated system, let Ω(E) be the total number of microscopic states (also referred to as

microstates) with total energy E.

Then we can state our above assumptions as

p(a) =


1

Ω(Ea) Ea = E

0 otherwise.

We can dig into this assumption more clearly by using a concrete example:

Example 25

Consider a collection of N classical atoms, where N is very large (approaching infinity, and in practice close to

Avogadro’s number).

If we want to specify the state of a given particle, we specify its position and momentum, so when we have N

atoms, we have 6N degrees of freedom (each atom has three real-number components for the position vector and three

real-number components for the momentum vector). That means we can describe our microstate to be a point in a
6N-dimensional vector space known as the phase space. We’ll write this point as (q, p), where q = (~q1, · · · , ~qN)

encodes the coordinates of all N particles, and p = (~p1, · · · , ~pN) encodes the momenta of those particles.

Remark 26. If we stick entirely to classical mechanics, then every point in this phase space can count as a microstate,

and then there are uncountably many microstates. But as we go along, we’ll refine this by using quantum position-

momentum uncertainty. This will then tell us that there’s a “minimum volume” of phase space, set by Planck’s

constant.

Assume now that we put our collection of N atoms into a rigid box. If we’re given some initial condition (q, p),

we can think about the dynamics of the atoms: they’ll evolve according to the laws of classical dynamics, which are

given by the Hamiltonian equations of motion

∂~qi
∂t

=
∂H

∂~pi
,

∂~pi
∂t

= −
∂H

∂~qi
,

where H = H(q, p) is the Hamiltonian of the system, which describes the total energy in terms of our current q, p.

Notably, becomes our energy is conserved, our (q, p) phase space coordinates must move along a surface of constant
energy H(q, p) = c . If we now assume that our system is generic – that is, there are no conservation laws (even

momentum, because bouncing particles off the box will change the total momentum), and our initial conditions are
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generic – then it is reasonable for us to assume that the trajectory will uniformly cover that constant-energy surface.

(In other words, if we take two equal volumes of phase space inside the surface, they will both be visited equally

frequently on average by our trajectory.) Then if we want to calculate physical quantities averaged over a long
time, we can calculate averages over this probability distribution instead.

Remark 27. Mathematicians have tried to prove that this “mixing” occurs, but the regimes where the proofs are

valid are only for impossibly long time scales that don’t correspond to real-life time scales. But we’ll still accept the

assumption.

Some related justification does come from the following result. Suppose we have a large number of copies of

our system, distributed in phase space with some density ρ(q, p, t), so that the number of systems in a volume

dΓ =
∏
i d

3~qid
3~pi is ρ(q, p, t)dΓ. Then after an infinitesimal time δt, our variables evolve via

qα → q′α = qα + q̇αδt, pα → p′α = pα + ṗαδt.

We can imagine a small box in phase space then moving to some other box in phase space. Then our volume

dΓ =
∏
i d

3~qid
3~pi is distorted into

dΓ =
∏
i

d3~q′id
3~p′i .

The question is how this changes under Hamiltonian dynamics. To first order, the changes that affect the volume of

the box dqαdpα are

dqα → dq′α = dqα +
∂q̇α
∂qα

dqαδt, dpα → dp′α = dpα +
∂ṗα
∂pα

dpαδt

(the other terms in the chain rule are “rotations,” so they don’t contribute), and we can multiply the new infinitesimals

together to find

dq′αdp
′
α = dqαdpα

(
1 +

(
∂q̇α
∂qα

+
∂ṗα
∂pα

)
δt + o((δt)2)

)
.

And now we can use the Hamilton equations of motion to write

∂q̇α
∂qα

=
∂

∂qα

(
∂H

∂pα

)
=

∂2H

∂qα∂pα
,

and similarly (but just with a negative sign)

∂ṗα
∂pα

= −
∂

∂pα

(
∂H

∂qα

)
= −

∂2H

∂qα∂pα
,

and we find that the order δt terms cancel out.

Remark 28. We basically don’t need to address second-order terms, because we’re only looking at infinitesimal

transformations, and the result we arrived at is essentially that the Jacobian is the identity matrix.

And therefore dΓ′ = dΓ, and this is the result we’re looking for:

Theorem 29 (Liouville)

The phase space volume does not change under time evolution, so the density of the probability distribution in

phase space has not changed as a function of time.

After all, if we have many copies of our system, we have some number of copies in any given phase space “volume

containers”, and then after an infinitesimal amount of time, we’ll have that same number of copies in the updated
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phase space volume containers. (And because we can run this argument in reverse, it’s not possible for two different

volumes to end up in the same spot in phase space.) Importantly, though, this doesn’t mean the distribution is
uniform, just constant under time-evolution:

dρ

dt
= 0.

(We have a total time-derivative because the value of q and p depend on time “around any point” in phase space.)

This can be written out as
∂ρ

∂t
+

3N∑
α=1

(
∂ρ

∂pα

∂pα
∂t

+
∂ρ

∂qα

∂qα
∂t

)
= 0,

and therefore
∂ρ

∂t
= −

∑
α

(
∂ρ

∂pα

∂H

∂qα
−
∂ρ

∂qα

∂H

∂pα

)
≡ {ρ,H}

is defined to be the Poisson bracket of the density ρ with the Hamiltonian H. Notice that when our system is in
equilibrium, we should also have ∂ρeq

∂t = 0, and that tells us that

{ρeq, H} = 0.

Such a result is always true if ρeq, the equilibrium density, only depends on the energy of our microstate:

ρeq(q, p) = ρeq(H(q, p)),

and that’s a further point of support (though not a proof) for why the distribution is indeed uniform across all

microstates with this fixed energy.

5 September 11, 2020 (Recitation)
We’ll continue our discussion of probability theory today, looking at multiple random variables, and we’ll also discuss

Hamiltonian dynamics and chaos.

Like last time, suppose we have a set of random variables (X1, · · · , Xn), with probability distribution function

p(x1, · · · , xn). We know what it means for two variables to be independent already: two variables X and Y are

independent if p(x |y) = p(x), or equivalently p(x, y) = p(x)p(y), but we need to be more specific when we have more

than two variables at a time.

Remark 30. Technically, there should be subscripts on the different p functions, so p(x) should be pX(x).

Definition 31

Random variables (X1, · · · , Xn) are pairwise independent if Xi and Xj are independent for all i 6= j . In contrast,

the variables are mutually independent if

p(x1, · · · , xn) = p(x1) · · · p(xn).

This last equation can be equivalently written as

p(xi1 , · · · , xin |xj1 , · · · , xjm) = p(xi1 , · · · , xin)

for any two disjoint subsets of the random variables {Xi1 , · · · , Xin} and {Xj1 , · · · , Xjm}.
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Example 32

Consider the three random variables X, Y, Z with the following distribution:

X Y Z p

0 0 0 1
4

0 1 1 1
4

1 0 1 1
4

1 1 0 1
4

Basically, X, Y, Z are binary bits must sum to an even number, but all allowed states have equal probability. And

now we can check that X and Y are independent, and so are X and Z, and so are Y and Z, but it’s not true that

X, Y, Z are mutually independent (knowing X and Y tells us information about Z).

Definition 33

Let X1, · · · , Xn be random variables. The joint characteristic function is the function

p̃(~k) = 〈e−i~k· ~X〉 =

∫ ∏
j

dxjp(x1, · · · , xn)e−i
∑

j kjxj ,

where the argument ~k is an n-dimensional vector.

From this characteristic function, we can generate the moments of our random variable by taking derivatives, just

like in the one-dimensional case:

〈Xm1

1 Xm2

2 · · ·X
mn
n 〉 =

(
∂

∂(−ik1)

)m1

· · ·
(

∂

∂(−ikn)

)mn

p̃(~k)
∣∣∣
~k=0

.

And similarly, we can compute the cumulants in the same way:

〈Xm1

1 Xm2

2 · · ·X
mn
n 〉c =

(
∂

∂(−ik1)

)m1

· · ·
(

∂

∂(−ikn)

)mn

(ln p̃(~k))
∣∣∣
~k=0

.

The same “points in bags” argument for relating cumulants and moments works here: if we want to put two 1s and

one 2 into bags, the different configurations are (112), two ways for (1)(12), one way for (2)(11), and one way for

(1)(1)(2), so

〈X2
1X2〉 = 〈X2

1X2〉c + 2〈X1〉c〈X1X2〉c + 〈X2〉c〈X2
1〉c + 〈X1〉2c〈X2〉c .

Definition 34

The joint Gaussian distribution in N dimensions is given by the probability distribution

p(~x) =
1√

(2π)N detC
exp

[
−

1

2
(~x − ~λ)TC−1(~x − ~λ)

]
,

where ~λ is the “mean vector” and C is a symmetric covariance matrix.

Remark 35. We can write the complicated vector expression as

(~x − ~λ)TC−1(~x − ~λ) =
∑
i ,j

C−1
i j (xi − λi)(xj − λj).
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Since the Ci j and Cj i terms contribute to the same coefficients, it makes sense by convention to make C symmetric.

We can write out the characteristic function of this multivariate Gaussian

p̃(~k) = e−ikiλi−
1
2
Ci jkikj ,

where we are summing over i and j but just omitting the sums in notation (this is the Einstein convention). Therefore,

ln p̃(~k) = −ikiλi −
1

2
Ci jkikj ,

and this tells us (like in the one-variable case) that there are no higher-order cumulants beyond the mean and variance

〈Xi 〉c = λi , 〈Xi , Xj〉c = Ci j .

This leads us to a result that is important in field theories:

Theorem 36 (Wick’s theorem)

Suppose we have a multivariate Gaussian with ~λ = 0. Then

〈Xm1

1 · · ·X
mn
n 〉 =

0
∑
mi is odd

sum over all pairwise contractions otherwise.

For example,

〈X2
1X2X3〉 = 〈X1X1X2X3〉 = 〈X1X1〉〈X2X3〉+ 2〈X1X2〉〈X1X3〉,

because there are three ways to pair up the four indices into two pairs: the first 1 either pairs with the other 1, 2, or 3.

This is particularly important (for example, for Feynman diagrams) because we often sample values from a Gaussian

distribution.

We’ll now consider functions of random variables, and we’ll begin by reviewing the one-dimensional case. If we

have a variable Y = g(X), then the probability distribution of Y can be written as

pY (y) =
∑

x :y(x)=y

pX(x)

∣∣∣∣dxdy
∣∣∣∣ .

(This sum comes up if g is not a one-to-one function.) We’re going to derive this equation in a way that generalizes

well to the multi-dimensional case now. Notice that∫ b

a

pY (y)dy =

∫ ∞
−∞

dxpX(x)1[a,b](g(x))

where 1[a,b] is the indicator function that returns 1 if g(x) is in the range [a, b] and 0 otherwise. We can then rewrite

this as

=

∫ ∞
−∞

dxpX(x)

∫ b

a

δ(g(x)− y)dy

(since we’re “picking out” values where g(x) falls in the range from a to b). This means we can write the density

function as

pY (y) =

∫ ∞
−∞

dxpX(x)δ(g(x)− y) .
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And now we’ll generalize this to the multi-dimensional case: if we have a random variable Y = g(X1, · · · , Xn), then

pY (y) =

∫ (∏
i

dxi

)
p(x1, · · · , xn)δ(g(x1, · · · , xn)− y) .

Remark 37. As a reminder, delta functions are defined so that∫
dx δ(x − a)f (x) = f (a).

So we can compute something like ∫
dx δ(g(x)− a)f (x)

by doing a change of variables:

=

∫
dg(x)

dx

dg(x)
δ(g(x)− a)f (x),

and now we need to be careful about the bounds and order of integration if g is not one-to-one, and also because of

the positive or negative sign of the expression dx
dg(x) .

Example 38

Let Y = X2
1 +X2

2 , where X1, X2 are independent random variables.

Then we can write the probability distribution function as

pY (y) =

∫
dx1dx2p1(x1)p2(x2)δ(x2

1 + x2
2 − y),

and this can be simplified most easily by using a (polar) change of variables: set

r2 = x2
1 + x2

2 =⇒ dx1dx2 = rdrdθ =
1

2
dθd(r2),

so that x1 = r cos θ and x2 = r sin θ. Then

pY (y) =

∫
1

2
dθd(r2)p1(r cos θ)p2(r sin θ)δ(r2 − y),

and now we can plug in r2 = y =⇒ r =
√
y (in polar coordinates, r is always nonnegative) wherever it appears to get

pY (y) =

∫ 2π

0

dθ

2
p1(
√
y cos θ)p2(

√
y sin θ),

and we’ve removed the delta function from the expression.

Our last topic for the recitation is Hamiltonian dynamics. Suppose that we have N particles, and we can represent

the positions and momenta in three dimensions with a 6N-dimensional vector

(q1, p1, · · · , q3N , p3N) ≡ (q, p).

Then a Hamiltonian H gives us the Hamilton’s equations of motion

dpi
dt
≡ ṗi = −

∂H

∂qi
,

dqi
dt
≡ q̇i =

∂H

∂pi
.
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Example 39

Consider the Hamiltonian

H =
∑
i

p2
i

2m
+ V (q),

where the first term is the kinetic energy and the second is the potential energy.

Then the Hamilton’s equations tell us that

ṗi = −
∂V

∂qi

(this is Newton’s second law), and

q̇i =
pi
m

(this connects with our classical definition of position and momentnum). In lecture, we defined the Poisson bracket

{A,B} =
∑
i

∂A

∂qi

∂B

∂pi
−
∂A

∂pi

∂B

∂qi
.

Notice that {A,B} = −{B,A}, and this is useful because it helps us work with the total derivative of a function like

d

dt
f (p, q, t) =

∂f

∂t
+
∑
i

∂f

∂qi
q̇i +

∂f

∂pi
ṗi .

Substituting in with Hamilton’s equations, we find that this becomes

=
∂f

∂t
+
∑
i

∂f

∂qi

∂H

∂pi
−
∂f

∂pi

∂H

∂qi
=
∂f

∂t
+ {f , H}.

So if f has no explicit time-dependence (it just depends on our internal variables p and q), and it commutes with the

Hamiltonian (so {f , H} = 0), then f will be a conserved quantity. And in particular,

dH

dt
=
∂H

∂t
+ {H,H} =

∂H

∂t

(because {H,H} = −{H,H} must be zero). So this tells us that energy is conserved as long as H has no explicit
time-dependence.

Example 40

Consider an ensemble, meaning that we have a collection of separate systems, with a density ρ(p, q, t).

It’s important to note that this density tells us not about the properties of a particular system, but rather the

“density in phase space” of the different possible configurations. Then we can consider the relationship between dρ
dt

(what happens to a density that we follow around a point that we follow evolving according to Hamilton’s equations?)

and ∂ρ
∂t (how does probability density flow at a fixed point?). We proved during lecture that the former is zero, and

we’ll think about that some more here. We have the conservation of number equation

0 =
∂ρ

∂t
+ ~∇ · (ρ~v),

where the second (divergence) term tells us how much stuff is “flowing in or out” at the given point. (Here, ~v is the

phase space velocity, defined as (q̇1, ṗ1, · · · , q̇3N , ṗ3N).) That equation can be rewritten as

0 =
∂ρ

∂t
+ ~v · ~∇ρ+ ρ~∇ · ~v,
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and now the divergence of the velocity is

~∇ · ~v =
∑
i

∂

∂qi
q̇i +

∂

∂pi
ṗi =

∑
i

∂2H

∂qi∂pi
−

∂2H

∂pi∂qi
= 0

by Hamilton’s equations. (In other words, “phase space volume is conserved, because there is no divergence.) And this

argument doesn’t need to worry about “doing first-order calculations,” like we needed in lecture with the chain rule,

since we’re computing a derivative more straightforwardly.

So knowing that phase space is conserved, and that the number of points is conserved, should tell us that the

density is conserved. But we can find that explicitly: from the above equation,

dρ

dt
=
∂ρ

∂t
+
∑
i

q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi
=
∂ρ

∂t
+ ~v · ~∇ρ,

so we have that

0 =
dρ

dt
+ ρ(~∇ · ~v)

(note that this equation now has a total derivative). Since we just found that ~∇ · ~v = 0, dρdt = 0, and therefore

∂ρ

∂t
= −{ρ,H}.

And this is important to us because at equilibrium, we expect ∂ρ
∂t = 0: there should be no average change in the

density of states, and that means that {ρ,H} = 0 at equilibrium. It was mentioned in lecture that

{f (H), H} = f ′(H){H,H} = 0,

so it makes sense for ρ to be just a function of the energy of the system. (If there were other conserved quantities

that had a Poisson bracket of zero with H, then ρ could also be a function of those other quantities, though.)

6 September 14, 2020
Our first homework assignment is due tomorrow evening – each of the course staff will have an office hour before we

need to turn in the assignment. (And if time zones don’t work out for any of us, we should send an email.)

We’ll look more carefully at the microcanonical distribution today, which is a setup where calculating average

macroscopic quantities over short space and time intervals can be done simply: recall that if our system is isolated

with energy E, then we have the probability distribution

p(a) =


1

Ω(E) Ea = E

0 otherwise.

Last time, we showed Liouville’s theorem (a classical dynamics result) as some justification for why this kind of result

makes sense. Liouville’s theorem says that if we have an ensemble (collection) of systems distributed in phase space

with some density ρ(~q, ~p, t), then

dρ

dt
= 0 =⇒

∂ρ

∂t
= −{ρ,H} = −

∑
α

(
∂ρ

∂qα

∂H

∂pα
−
∂ρ

∂pα

∂H

∂qα

)
.

And in particular, at equilibrium, since ∂ρeq
∂t = 0, we must have {ρeq, H} = 0. Then as long as we have a generic system

without any conservation laws, the equilibrium density can be just a function of the Hamiltonian H, and therefore the
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probability density basically “only depends on our energy.”

Remark 41. We’re restricting ourselves to situations here where the Hamiltonian H is conserved, so it makes sense

to define it as the energy of our system. (After all, systems with time-dependence in H are not at equilibrium.)

We’ll now make a few comments about why the microcanonical distribution “actually works:”

• The first thing we might notice is that the microcanonical probability distribution is a δ-function, which is

only nonvanishing in phase space on a specific surface with some specified energy E. So the normalization factor

Ω(E) is just the area (or volume) of the surface that we have. In practice, it’s convenient to assume that this

total energy E has some small uncertainty – maybe we don’t know the exact energy of the state, so we’ll often

consider the distribution to be uniform and nonzero in the shell

E ≤ Ea ≤ E + ∆E.

Our normalization factor then becomes the volume of this shell: Ω′ = Ω∆E (as long as the difference ∆E is

small enough), but practically the answers won’t change very much at the level of thermodynamic quantities.

• The claim that “time averages are ensemble averages” is basically a dynamical statement for the classical many-

body statement: there are different explanations in the classical and quantum cases, so we’ll need to discuss them

separately. In the classical case, we’re saying that dynamics are chaotic, so (except on a set of initial states with

measure zero) we will evolve into a “seemingly-random” state, with that randomness following the microcanonical

distribution. (The phrase “ergodicity” is the idea that phase space trajectories fill the constant-energy surface.)

So it’s reasonable to assume that basically any initial system will reach equilibrium with enough time
(meaning that the time it spends in various different states is roughly the same), and Liouville’s theorem

shapes what that equilibrium distribution looks like.

• For the quantum many-body system argument, consider such a system in a state with energy Ei , with E < Ei <

E + ∆E. Then there are Ω(E)∆E quantum eigenstates in this interval, and when in equilibrium, we know that

averages of observables are given by averaging over a uniform distribution of states in energies [E,E + ∆E]. So

the probability of any eigenstate α is 1
Ω(E)∆E if Eα ∈ [E,E+ ∆E] and 0 otherwise (much like what we’ve had so

far), and we’re saying that the average of any such observable is

〈O〉 =
1

Ω(E)∆E

∑
α:E<Eα<E+∆E

〈α|O|α〉 .

We’ll define this to be 〈O〉micro, E. The reason for the above equality is a topic of current research: the main

question is “what is the nature of quantum many-body chaos?”. Here, we are analyzing eigenstate thermalization
hypothesis (ETH) (Srednicki ’94, Deutsch ’91), which basically states that a state initially far away from

equilibrium will evolve in time to be seemingly in equilibrium:

Proposition 42

If we consider a generic Hamiltonian, and we have some single eigenstate with a finite energy density (per

unit volume), this eigenstate will behave “like a thermal ensemble.”

To be more precise, if |α〉 is such an eigenstate, and we have some observables O which are sums of operators

that can be localized in small regions of space (like the total magnetization or total energy), then

〈α|O|α〉 = 〈O〉micro, Eα + o(e−#N),
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with off-diagonal matrix elements α 6= β (where β is some other energy eigenstate) satisfying

〈α|O|β〉 = o(e−#N).

Because N is being sent to infinity, the exponentially decaying terms go away, and our averages “look like what

we expect” in the microcanonical distribution.

Example 43

If we have a spin 1/2 system with Hamiltonian

H =
∑
i ,j

σzi σ
z
j + σxi σ

y
i ,

the kind of quantity we care about when we say we have a “localized” operator looks like M =
∑

i σ
z
i , rather

than something like an infinite product of operators.

So now if we take some generic state, we can write it in terms of the energy eigenstates

|ψ〉 =
∑
α

cα |α〉 .

Then the time-evolution of this state is

|ψ(t)〉 = e−iHt/~ |ψ〉 =
∑
α

cαe
−iEαt/~ |α〉 ,

and then the expectation of our observable O is

〈ψ(t)|O|ψ(t)〉 =
∑
α,β

c∗αcβe
i(Eα−Eβ)t/~ 〈α|O|β〉 .

And now we use the ETH hypothesis we’ve been mentioning above: due to exponential decay, we can write this

as just

≈
∑
α

|cα|2 〈α|O|α〉 =
∑
α

|cα|2〈O〉micro, Eα .

And if |cα| is prepared so that it is initially sharply peaked with some energy E0, we can use the fact that

〈O〉micro ,E varies slowly with E (which we will explain later in this class), and this tells us that

〈ψ(t)|O|ψ(t)〉 ≈ 〈O〉micro, E=Eα

∑
α

|cα|2 = 〈O〉micro, E=Eα .

So this “thermalization” statement gives us some further foundation for the microcanonical distribution.

Remark 44. Many of the arguments we’ve been presenting here have numerical and physical evidence, but there are

some exceptions. We can search up the example of “many-body localization,” which involves systems with a certain

kind of strong disorder, as well as certain special kinds of cold atomic systems.

From here on, we’ll do “regular stat mech:” we’ll assume the microcanonical distribution works, and we’ll try doing

some calculations with the density of states and systems in contact with each other.
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7 September 16, 2020

Last class, we made some arguments about why the microcanonical distribution works (that is, why it’s a legitimate

way of thinking about the equilibrium state of our system). It’s a complicated subject with lots of subtle aspects, and

specifically, there’s a lot of ongoing work looking into the ETH (eigenstate thermal hypothesis). But we’ll put that
behind us for now, and we’ll take the microcanonical distribution as a way of calculation for granted, looking at what

consequences follow.

Recall that the probability distribution we’ve been talking about requires us to know the value of

Ω(E)∆E = {total number of microstates with energy in [E,E + ∆E]}.

This function Ω(E) actually grows very quickly: for a typical many-body system with N degrees of freedom, we’ll

typically have the order of growth

Ω(E) ∝ EcN

for some constant c > 0. This function is known as the density of states, and we’ll work out an example of this now:

Example 45

Consider N free (quantum mechanical) particles inside a rigid box of side length L.

(The motion of those particles is then described by the free-particle Schrodinger equation.) This system has total

energy

E =

N∑
i=1

~p2
i

2m
,

where ~pi denotes the momentum of the Nth particle. We want to calculate the number of states within some specified

energy level, and we’ll make our life easier by assuming periodic boundary conditions. Then our particles in a box

must satisfy

~pi =
2π~
L
~ni , ~ni = (nix , niy , niz),

where nix , niy , niz are all integers, because we need e i ~pi ·~xi to be periodic under xi → xi +L or similar translations in the

y - and z-direction. So the number of states ω(E) with energy at most E is

ω(E) =
∑
{~pi}

(
all possible ~pi such that

∑
i

~p2
i

2m
≤ E

)
.

And now this sum can be approximated with an integral if we have a large enough box length L. For example, if we’re

summing up the x-components of one specific particle’s momentum, we can replace with∑
px

=⇒
∫

dpx
2π~/L

(because 2π~
L is the spacing in phase space between our states, and we’re using a Riemann sum). That means we can

also write

ω(E) =

(
L

2π~

)3N ∫ ∏
i

d3pi θ

E −∑
j

~p2
j

2m

 ,
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where θ is the Heaviside step function

θ(x) =

1 x > 0,

0 x < 0.

This integral is also

ω(E) =

(
L

2π~

)3N ∫
∑

j p
2
j ≤2mE

∏
i

d3pi

and now we want to understand the E-dependence of this quantity. To do this, we make a change of variables: if we

let ~pi =
√

2mE~ui , then

ω(E) =

(
L

2π~

)3N

(2mE)3N/2

∫
∑

j p
2
j ≤1

∏
i

d3pi ,

and now the integral is a unitless quantity: it’s the volume of a unit sphere in 3N dimensions, so it’s some constant
that’s independent of the energy E. Therefore, the total number of states

ω(E) ∝
(
L

2π~

)3N

(2mE)3N/2 ∝ E3N/2.

Now, we want to count the number of states that are around some certain energy E – this is similar to finding the

probability density function from the cumulative density function. Then the density of states is obtained by taking a

derivative, since

Ω(E)dE = ω(E + dE)−Ω(E)

(and then taking the limit as dE → 0), and therefore we have

Ω(E) =
dω(E)

dE
∝ E3N/2−1.

The −1 in the exponent doesn’t really play a role as N goes to infinity, and the point is that we’ve shown the rapid
growth of Ω as a function of E for our special example. This enables us to make certain approximations that are

exact in the limit N →∞, which will be useful for us.

Remark 46. Note that not all systems exhibit this rapid growth: in our homework assignment, we’ll be able to look

at a system of spins in a magnetic field, which behaves very differently.

Because this quantity Ω(E) grows so quickly, it’s easier and useful for us to extract a slower-growing quantity out

of it, which is

S = kB ln Ω(E).

Here, kB is some constant which we identify with the Boltzmann constant, and S is now some function of the energy,

the number of particles in our system, the volume, and so on. Later on in this class, we’ll identify S with the entropy

(from thermodynamics), but we’ll work with its properties and understand why S plays this kind of descriptive role.

Our next goal of this class will be to establish what the term thermal equilibrium means when we have two (large)

systems in contact with each other – we’ll do that using the microcanonical distribution.

Example 47

Suppose two large systems A1, A2 are next to each other, each with N particles, so that energy can be exchanged

between them but nothing else (not particles or volume).

In this setting, our combined system (A1 and A2) is still isolated from the outside environment, so the total energy
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E will be fixed. We’ll assume that any interaction between these systems is weak, so that we can make the assumption

E = E1 + E2,

where E1 is the energy of system A1 and E2 is the energy of system A2. (This basically means that we don’t need to

worry about particles in A1 and A2 having gravitational interactions and so on.) The strength of this interaction does

influence how long it takes for the two systems A1 and A2 to equilibrate, but we’ll just assume we’re in equilibrium
and try to calculate what’s going on.

We know that A1 + A2 is an isolated system, so it follows the microcanonical distribution at equilibrium, meaning

that a microstate (a1, a2) of the joint system occurs with probability 1
Ω(E) if E1 + E2 = E and 0 otherwise. And

furthermore,

Ω(E) =

∫
dE1Ω1(E1)Ω2(E − E1),

since we’re only interested in states where the total energy sums to E. And now defining Ωi to be the density of states

of system Ai , and using that

Ωi = eSi/kB ,

we can rewrite the above integral as

Ω(E) =

∫
dE1e

1/kB(S1(E1)+S2(E−E1)).

But remember that the entropy S is of order N if the density of states Ω1(E) is of order EcN . So we are really

evaluating something that looks like ∫
dx eNφ(x),

where N is very large and φ is some function of x , and such integrals can be evaluated with saddle-point approximation,
which we’ll describe now. Notice that Ω1(E1) is extremely rapidly increasing as a function of E1, while Ω2(E −E1) is

extremely rapidly decreasing (because E − E1 rapidly decreases). Therefore, their product will be very sharply peaked

at a specific value for E1, and we will equate the integral to the maximum value of the integrand.
And the saddle point approximation is what helps us do this calculation: if we want to compute

I =

∫
dx eNφ(x)

for a real function φ and a very large value of N, notice that any differences in φ are amplified both by the multiplication

by N and by the subsequent exponentiation. So if we let x = xmax be the maximum value of φ, we can expand in a

Taylor series

φ(x) ≈ φ(xmax)−
1

2
|φ′′(xmax)|(x − xmax)2 + · · · ,

and plugging this in yields

I =

∫
dx eN(φ(xmax)− 1

2
|φ′′(xmax)|(x−xmax)2+··· ).

The first term in the exponent doesn’t depend on x , so we can take it out of the integral, and that leaves us with

= eNφ(xmax)

∫
dx e−

N
2
|φ′′(xmax)|(x−xmax)2+···.

We can now extend the limits of integration to go from −∞ to ∞, because the contributions on the tails basically

don’t matter – the largest contributions are coming near the middle. And we’ll make the further approximation

≈ eNφ(xmax)

∫ ∞
−∞

dx e−
N
2
|φ′′(xmax)|(x−xmax)2

.
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by ignoring higher-order terms. (This is okay because (x − xmax) is of order 1√
N
, and thus the higher power terms have

corrections in a power series in 1√
N
, which we can ignore in the limit.) This is now just a Gaussian integral, and we

get the answer

I ≈

√
2π

N|φ′′(xmax)|e
Nφ(xmax) .

Note that if there are a few different local maxima for our function φ(x), we can (in principle) do the same approximation

for each of them. But then we have

I =
∑
xmax

√
2π

N|φ′′(xmax)|e
Nφ(xmax),

but any unique global maximum will dominate the sum, so this is not necessary unless there are two different values

of x which both reach the global maximum. And restricting only to the global maxima also helps us deal with the

validity of our approximations – we won’t get any weird tail behavior.

Fact 48

This kind of saddle-point integration can help us compute an asymptotic expression for the factorial N!, which

we’ll see during recitation.

So returning to the integrand we actually care about, we need to first find the maximum value of the integrand

e1/kB(S1(E1)+S2(E−E1).

This occurs when the derivative of the exponent is zero, which happens at the value E∗1 where

∂S1

∂E1

∣∣∣∣
E1=E∗1

=
∂S2

∂E2

∣∣∣∣
E2=E−E∗1

,

and then replacing the integral with the integrand gives us the density of states

Ω(E) = e
1
kB

(S1(E∗1 )+S2(E−E∗1 ))
.

So the boxed expression above is now the condition for systems A1 and A2 to be in equilibrium with each other.
Since the left-hand side only depends on system A1, and the right-hand side only depends on system A2, we’re dealing

with a “matching of properties” between the two systems:

Definition 49

The temperature T of a system is defined via

∂S

∂E
=

1

T
.

In other words, two systems are at (thermal) equilibrium if T1 = T2, and this agrees with the usual description.

(The reason for the reciprocal is a convention will make sense later.) Then the entropy of the full system satisfies

S(E) = kB ln Ω(E) = kB (ln(Ω1(E∗1)) + ln(Ω2(E − E∗1))) = S1(E∗1) + S2(E∗2),

and therefore entropy is additive at equilibrium for large systems. (This is already something we’ve been implicitly

assuming when we say that the density of states increases as ecN .)
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Finally, we can now return to the gas of free particles from earlier again: since Ω(E) ∝ E3N/2−1, the entropy of

the system is

S(E,N) =
3

2
NkB lnE + C

for some constant C. (We’re ignoring the −1 because it’s negligible compared to the N term.) Therefore,

1

T
=
∂S

∂E
=

3

2

NkB
E

=⇒ E =
3

2
NkBT.

This is the familiar formula for the energy of an ideal gas in 3 space dimensions. This means that we’ve obtained a

macroscopic statement just by knowing how to calculate the density of states of our system.

8 September 18, 2020 (Recitation)
Today, we’ll talk about some mathematical details and examples related to the material from lecture.

The first topic of the recitation is the saddle-point approximation, which is one of the core reasons “all of

statistical mechanics works.” We’ll start with the sum version: suppose we have an expression

Ω =

n∑
i=1

eNφi .

Then the loose claim we’re making is that Ω ∼ eNφmax when N is large, where φmax was the largest value of φ over all

indices. More rigorously, we’re claiming that

lim
N→∞

ln Ω

N
=

ln eNφmax

N
= φmax.

Proof of the asymptotic result. We know that the sum is at most equal to the quantity when all terms in the sum are

equal to the maximum value, so

eNφmax ≤ Ω ≤ neNφmax ,

so taking the natural log and dividing by N gives us

φmax ≤
ln Ω

N
≤ φmax +

ln n

N
.

So as long as the number of terms n is, for example, polynomial in N, the log term ln n
N will go to 0, and the sandwich

theorem gives us the result.

This sum version helps us out when we go to the integral version and have multiple global maxima, but we’ll now

look at the actual saddle-point approximation that we care about. If we start with an integral of the form

I =

∫
dx eNφ(x),

then we can rewrite this as a Taylor series around a (local or global) maximum x = xm as

=

∫
dx eN[φ(xm)+ 1

2
φ′′(xm)(x−xm)2+ 1

6
φ′′′(xm)(x−xm)3+··· ].

(There’s no first derivative because we’re at a maximum.) The second derivative is negative, and we can pull out the

constant and write this as

eNφ(xm)

∫
dx e−

N
2
|φ′′(xm)|(x−xm)2

(
1 +

N

6
φ′′′(x0)(x − xm)3 +

N

24
φ′′′′(xm)(x − xm)4 + · · ·

)
,
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where we’ve pulled the higher order (x − xm) terms out of the exponential and expanded the Taylor series. So now we

can evaluate this integral – we take the limits of integration to ±∞, which is a small correction. Then the cubic term

goes away in the integral because it is odd (and being integrated against the Gaussian from −∞ to ∞). Furthermore,

because the expected value of (x − xm) in the Gaussian is of order 1
N (since the width of the Gaussian is of order 1√

N
),

the quartic term (that is, the term corresponding to N
24φ

′′′′(xm)(x − xm)4) is again only a small correction of order

N ·
(

1√
N

)4

= 1
N :

= eNφ(xm)

√
2π

N|φ′′(xm)|

(
1 +O

(
1

N

))
.

And now if we do the same thing as before, where we take the log and then divide by N,

ln I

N
= φ(xm) +

1

2N
ln

(
2π

N|φ′′(xn)|

)
+O

(
1

N2

)
(here we use the fact that ln(1 + ε) ∝ ε), and so really we don’t even care about the prefactor term: as N →∞, this

quantity just approaches φ(xm).

Remark 50. This looks somewhat similar to the central limit theorem: if we have a bunch of identically distributed

random variables Xi with probability distribution

pX(x) ∼ eφ(x),

we could consider N such random variables. Then we’re drawing some connections to the fact that we get something

close to a Gaussian when adding a bunch of these random variables together.

Our next topic is an application of the saddle-point approximation: our goal is to calculate an approximate value

of the factorial N!, which we’ll do with an auxiliary definition:

Definition 51

The gamma function is defined via the integral

Γ(N + 1) =

∫ ∞
0

xNe−xdx

for all real numbers N.

We actually have that Γ(N + 1) = N! when N is an integer. To see that, we integrate by parts to see that∫ ∞
0

xNd(−e−x) = −xNe−x
∣∣∞
0

+

∫
d(xN)e−x = N

∫
xN−1e−xdx.

Thus, Γ(N + 1) = NΓ(N), which gives us the familiar recursive formula N! = N(N − 1)!. And now we can use this to

show Stirling’s approximation:

N! =

∫ ∞
0

eN ln x−xdx =

∫ ∞
0

eNφ(x)dx,

where φ(x) = ln x − x
N . And now we want to find the maximum value of φ: now the function φ does actually depend

on N, but we can check that the predominant scaling of φ isn’t changing, so this approximation is still fine. (The

point is to not create any weird dependencies.) The maximum value of φ here occurs when

0 = φ′(x) =
1

x
−

1

N
=⇒ x = N,
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so the maximum value of φ here is

φ(xm) = lnN − 1.

(Again, this does depend on N, but it’s not as rapid as the growth of N, so it turns out this is fine. If we wanted to

be rigorous, we’d have to check the above bounding a bit more carefully.) And now plugging this into our saddle point

approximation, we find

φ′′(xm) = −
1

x2
m

=⇒ |φ′′(xm)| =
1

N2
,

and therefore,

N! =

(
1 +O

(
1

N

))
·

√
2π

N|φ′′(xm)|e
Nφ(xm),

which evaluates to

N! ∼
√

2πNeN lnN−N =
√

2πN

(
N

e

)N
.

Looking at the natural log instead, we find that

lnN! = N lnN − N +
1

2
ln(2πN) +O

(
1

N

)
,

and the first two terms here grow much faster than everything else, so we often don’t even need more than that.

Remark 52. For a more rigorous mathematical proof of Stirling’s approximation, we can check Wikipedia or some

other source. But we can check that the first three terms of this approximation (that we’ve displayed) do a pretty

good job even for something like N = 10.

We’ll spend the rest of this class on some calculations, first in information theory:

Example 53

Consider a message of length N � 1, where each letter can be chosen from the m letters {x1, · · · , xm} with

frequency p1, · · · , pm, respectively.

In other words, we are given that exactly piN of the total letters of the message must be xi . Then the quantity

Ω =
N!∏n

i=1(piN)!

tracks the number of total messages we can have (this is actually asymptotically the “same” number of messages we

get if the pi are probabilities instead of frequencies, at least in the limit N → ∞ – we should see the asymptotic
equipartition theorem if we’re curious), and we can use Stirling’s approximation to find that

ln Ω = lnN!−
m∑
i=1

ln((piN)!).

We’ll drop everything except the first two terms, so that

ln Ω ∼ N lnN − N −
∑
i

(Npi ln(Npi)− Npi).

The terms without logs cancel out, because
∑
pi = 1, and then we’re left with

ln Ω ∼ N lnN −
∑
i

(Npi lnN + Npi ln pi).
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And now the terms with lnNs also cancel out, so this further simplifies to

ln Ω ∼ −N
∑
i

pi ln pi .

This is really only rigorous at the level that

lim
N→∞

ln Ω

N
= −

∑
i

pi ln pi ,

but now the right hand is what is called the information entropy of the probability distribution.

For example, if we take pi = 1
m for all m, then

lim
N→∞

ln Ω

N
= −

m∑
i=1

1

m
ln

1

m
= lnM,

which means that we get lnM “bits” of information per letter. But furthermore, lnM = lnMN

N , so in the case where all

pis are equal, the number of states Ω is essentially MN (the set of all possible messages)! So “the total number of all
messages is more-or-less the same as the number of messages where all letters occur with equal frequency,”
and we can see that this is a kind of saddle-point approximation being made again: making the change from “all

configurations” to “most likely configurations” in the form∑
{ni}

N!∏m
i=1 ni !

→
N!∏m

i=1(N/m)!
,

is negligible as long as we’re taking the log of both quantities and dividing by N.

Remark 54. And this is a very rough justification of the microcanonical ensemble: “assuming everything is equally

likely is the same as saying that anything goes.” We still need assumptions like ergodicity, because we only have one

system in real life, but we’re saying that our ignorance almost allows us to sample from all equally likely states.

And we’ll finish with a discussion of equilibrium and temperature:

Example 55

Suppose we have two systems at energy E1 and E2. If the two systems are isolated from each other and everything

else, then

Ω = Ω1(E1)Ω2(E2),

so S = S1 +S2 and entropy is additive. But we want to look at how this works when our systems do interact and

exchange energy.

In the case where the two systems are allowed to exchange energy, but we’re still bound to a total energy of

E = E1 + E2, then the total number of states becomes

Ω =
∑

E1+E2=E

Ω1(E1)Ω2(E2) =
∑

E1+E2=E

Ω1(E1)Ω2(E − E1) =
∑

E1+E2=E

exp

[
N

(
N1

N

S1(E1)

N1
+
N2

N

S2(E2)

N2

)]
,

where we’ve written this in a “saddle-point form” and taken kB = 1. So now the saddle-point approximation lets us

say that

Ω(E) ∼ Ω1(E∗1)Ω2(E∗2)

(as always, with ∼ valid after taking the ln and dividing by N, which goes to ∞ in the limit). This is again saying that
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“equilibrium means we just look at the most likely states:” we now actually have an expression

lim
N→∞

S(E)

N
=
N1

N

S1(E∗1)

N1
+
N2

N

S2(E∗2)

N2
,

but we really only care about the extensive parts of the system that scale with N, so physicists are okay with writing

down an expression like

S(E) = S1(E∗1) + S2(E∗2).

From here, we define the inverse temperature β so that

kBβ =
1

T
=
∂S

∂E
.

(This is a more natural variable to use in statistical physics than T , for example if we need to work with negative tem-

peratures.) And we say that equilibrium is reached when T1 = T2 (this is the point where the value of Ω1(E1)Ω2(E2)

is maximized) – unless there are multiple maxima or other quantities that are being exchanged, T1 = T2 is a sufficient

condition for equilibrium.

9 September 21, 2020
Our final exam date has now been announced to be Thursday, December 17. The standard timeslot is 9am-noon, but

our exam won’t take that long since everyone is at home – it’ll be designed to take about 1.5 hours instead, so that

people in Pacific Time can still wake up earlier to take the exam. (We won’t need to turn on our video or anything,

but the course staff will be available during the exam time period to answer questions if they come up.) Our first quiz

will be on September 30, and more details about that are to be posted later.

Remark 56. We should expect a survey to be sent out about the class soon (as suggested by the department).

Today, we’re going to continue exploring the equilibrium state of two systems that are in contact with each other.

As before, suppose we have these two systems A1 and A2, which can be in certain microstates (a1, a2) with energies

(E1, E2). If these two systems are allowed to exchange energy, and we allow this system to evolve towards equilibrium,

we will settle into amicrocanonical distribution of the full systems. (We aren’t thinking very much about the evolution

towards equilibrium, which depends on the detailed dynamics of the two systems.)

And as we showed with the saddle-point approximation, this combined system at equilibrium will spend most of its

time at a specific energy level – what we’re basically saying is that we can pick some (E∗1 , E
∗
2) energies for our systems

so that for all E1 + E2 = E,

Ω1(E∗1)Ω2(E∗2) ≥ Ω1(E1)Ω2(E2),

where (E∗1 , E
∗
2) are the energies for (A1, A2) in the final equilibrium state. In other words, the entropy of the final

system will satisfy

Sfinal = kB ln(Ω1(E∗1)Ω2(E∗2)) ≥ Sinitial = kB ln(Ω1(E1)Ω2(E2)) .

This means that entropy has increased from the initial to final state: over the next few weeks, we’ll formulate this

into a more coherent law of thermodynamics. And we calculated this energy E∗1 by finding the maximum value of

S1(E1) + S2(E − E1). At such a point, the first derivative must vanish, and the second derivative must be negative,

so
∂2S1

∂E2
1

∣∣∣∣
E1=E∗1

+
∂2S2

∂E2
2

∣∣∣∣
E2=E∗2

< 0.
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This is a “stability condition” for our equilibrium, and an analogous condition needs to be true if we have other conserved

quantities in our system as well (such as spin).

Fact 57

We can relate this second derivative of S to a measurable quantity, but we’ll postpone that discussion for now.

Example 58

For now, let’s return to the (canonical) ideal gas system from last lecture. We’re going to be more careful about
the density of states calculation from last class this time, looking at prefactors and being more exact.

We showed that Ω(E) ∼ EcN for a gas with N particles, but we want an actual formula for the density of states of

our non-relativistic gas here. Recall that we had the following integral expression for the number of states with energy

at most E:

ω(E) =

(
L

2π~

)3N ∫
~p2

1 +···+~p2
N≤2mE

∏
i

d3pi .

We then made the change of variables ~pi =
√

2mE~ui , so that the integral became a dimensionless quantity in terms

of N:

ω(E) =

(
L

2π~

)3N

(2mE)3N/2V,

where V is the volume of a unit sphere in 3N dimensions. To calculate this V , note that a sphere in d dimensions of

radius R has volume ∫ R

0

rd−1drsd =
Rd

d
sd

where sd is the solid angle. We calculate this solid angle with a trick: if we consider the integral

Id =

(∫ ∞
−∞

e−x
2

dx

)d
= (
√
π)d = πd/2,

we can also compute it in the alternative manner

=

∫ ∞
−∞

dx1 · · · dxde−(x2
1 +···+x2

d ).

But this integrand is also spherically symmetric in d dimensions, so we can evaluate it in radial coordinates: letting

r2 = x2
1 + · · ·+ x2

d , we find that

Id =

∫ ∞
0

drrd−1sde
−r2

=
sd
2

∫ ∞
0

dyyd/2−1e−y

where we’ve made the substitution y = r2, and where sd is the same solid angle in d dimensions as before. And now

the integral is the Gamma function discussed in recitation, so it’s exactly
(
d
2 − 1

)
! (If d is odd, we just use the Gamma

function instead of the factorial.) And therefore

πd/2 =
sd
2

(
d

2
− 1

)
! =⇒ sd =

2πd/2(
d
2 − 1

)
!
.

And now we can plug this into the volume V we’re trying to find (setting R = 1 and plugging in d = 3N), and this

gives us that

ω(E) =

(
L

2π~

)3N
(2mE)3N/2

3N

2π3N/2(
3N
2 − 1

)
!
.
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This time, we can obtain a formula for the density of states, which is

Ω(E) =
dω

dE
=

2m

2

(
L

2π~

)3N

(2mE)3N/2−1 2π3N/2(
3N
2 − 1

)
!

Remark 59. There’s a slight notational difference here than in Kardar’s book, in which ΩKardar(E) is defined to be the

number of states in an energy window from E −∆ to E + ∆. So there’s an extra factor of 2∆ in ΩKardar(E) compared

to our Ω(E). (But this is a factor of order 1 which doesn’t plan into the final calculations.)

Recall that our ideal gas system is inside a cubic box of length L, so we can define the volume V = L3 to find the

density of states in terms of the energy E, volume V , and number of particles N:

Ω(E, V, N) =
V N

(2π~)3N
m

2π3N/2(
3N
2 − 1

)
!
(2mE)3N/2−1.

We can then find the entropy by calculating

S(E, V, N) = kB ln Ω(E, V, N).

If we take N → ∞, V → ∞, E → ∞ while keeping the ratios E
N and V

N finite – this is called the thermodynamic
limit, and we’ll be taking this limit often – then we can use Stirling’s approximation and only keep the terms of leading

order in N. Then

S(E, V, N) = kB

[
N ln

V

(2π~)3
+

3N

2
ln(2πmE)−

3N

2
ln

3N

2
+

3N

2

]
,

which simplifies to

= NkB ln

[
V

(2π~)3

(
4πemE

3N

)3/2
]
.

(Here, e is Euler’s constant, and it comes from the 3N
2 in the entropy.) But something isn’t quite right here: this

answer is not extensive, because there’s an weird dependence on the scale of our system inside the log term. We can

be more formal about what we mean:

Definition 60

A quantity f (E, V, N) is extensive if the transformation (E, V, N)→ (λE, λV, λN) takes f to λf .

(It makes sense for entropy to be extensive in the large N limit, based on the idea that “entropy basically adds

when two systems combine.”) We can check that doing this transformation to our above entropy expression sends S

to λ(S + NkB lnλ), instead of λS, and this was an issue that Gibbs (one of the founders of statistical mechanics)

noticed when thinking about thermodynamic considerations of two identical gases mixing with each other – this issue

goes by the name of the Gibbs paradox.
The way Gibbs got around this issue was to propose that gases are made out of indistinguishable particles. In

other words, we should count the number of states ω(E) (and subseqeuntly the density of states Ω(E)) by allowing

permutations of the particles to be the same state. Since a gas with N particles has N! such permutations, the

actual correct expression is

Ω(E, V, N) =
1

N!

V N

(2π~)3N
m

2π3N/2(
3N
2 − 1

)
!
(2mE)3N/2−1 .
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The modified entropy then becomes (using Stirling’s approximation on the N! term)

S(E, V, N) = NkB ln

[
eV

N(2π~)3

(
4πemE

3N

)3/2
]
,

and this time the log argument only involves the finite constant ratios V
N and E

N . So now entropy is actually an
extensive quantity: S is now proportional to N, as expected.

Fact 61

This idea of treating different atoms as indistingiushable is really just a “hack” at first, and in classical statistical

mechanics, it is just a postulate that we’re asserting. But in quantum mechanics, we need this indistinguishability

for determining which Hilbert space our particle wavefunctions live in (for instance, symmetric wavefunctions

for bosons and antisymmetric ones for fermions), so we do (unavoidably) need the 1
N! factor for an accurate

description of different states. (Basically, we can’t “tag” individual particles and separate out which one is which

in quantum mechanics.)

In other words, we get a sensible result in this case when we regard the classical gas as an approximation to the

quantum gas.

Remark 62. Note that if we were a physicist pre-quantum-mechanics, we would need some quantity that helped deal

with the dimensionful volume in phase space. So the entropy depends on the units being used in classical mechanics,

but in quantum statmech, we have a 2π~ to help balance out that volume factor. And this helps us remove ambiguity

from the classical statmech description – we should think about it as the limit of the quantum description.

10 September 23, 2020
Our next homework assignment has been posted – it’s longer than previous homework assignments and carries twice

the weight, because there is a quiz next week. So the pset will be due in two weeks, and we can pace ourselves

accordingly.

Example 63

Today, we’re going to consider a situation where our system is connected to a (much larger) bath. (The system

and bath can still only interact by exchanging energy, though.)

Label the system of interest A1 and the bath A2 – we’ll assume the number of degrees of freedom for the two

systems satisfy NA2 � NA1 � 1. Much like before, we’re taking the combined system A1 +A2 to be isolated from the

rest of the world, so that it can be described by the usual microcanonical distribution when it’s in equilibrium. Our

goal is then to derive the probability distribution for the microstates of our system A1.

To do this, suppose we have some particular microstate n of A1 with energy En. If the total energy of the

combined system A1 + A2 is E0, then the probability of n is

p(n) = P(A1 is in state n) ∝ Ω2(E0 − En),

because Ω2(E0 − En) tracks the density of states for our bath and therefore how many microstates can exist at this

given (complementary) energy in the system.

31



Remark 64. This is basically a conditional probability: we’re taking the number of possible combined states Ω1(En)Ω2(E0−
En), and dividing through by Ω1(En) because we’re conditioning on an energy En for the first system.

If we have a large bath, lots of the energy of the total system will be in the bath. This means that E0 � En, and

Ω2(E0 − En) is a rapidly decreasing function of En. From our above argument, we also know that

ln p(n) = ln(Ω2(E0 − En)) + constant,

and we can Taylor expand this to leading order as

≈ const− EN
∂

∂E0
ln Ω2(E0).

If our system A1 is in equilibrium with the bath A2, then we know that

∂

∂E0
ln Ω2(E0) =

1

kBT
,

where T is the common temperature of our system and bath. Therefore, we find that

ln p(n) = c − βEn,

where β = 1
kBT

, which can be rewritten in the following statement:

Proposition 65 (Canonical ensemble)

The probability that a system is in a state n with energy En satisfies

p(n) ∝ e−βEn .

In order to make this a valid probability distribution, our normalization constant, obtained via
∑

n p(n) = 1, must

be the partition function
Z =

∑
n

e−βEn ,

and therefore the probability of a state n is explicitly

p(n) =
1

Z
e−βEn .

We’ll see that being able to calculate Z as a function of external variables, like T or V , will help us extract information
about equilibrium properties.

Example 66

Let’s calculate the average energy of our system A1. (This is often called the internal energy and is denoted U.)

We know that E1 is not fixed in this situation, because we can exchange energy between A1 and A2. But we can

write out the average energy explicitly as

U = 〈E1〉 =
∑
n

p(n)En =
∑
n

Ene
−βEn

Z
=

∑
n Ene

−βEn∑
n e
−βEn ,

and now a slight trick (taking advantage of the similarity of the numerator and denominator) yields

U = −
∂

∂β
ln(
∑
n

e−βEn) = −
∂

∂β
(lnZ) .
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So taking a single derivative gives us a useful macroscopic quantity!

Definition 67

Define the (Helmholtz) free energy via the equation

Z = e−βF .

This turns out to be usefully related to the other quantities

F = −
1

β
lnZ =⇒ U =

∂

∂β
(βF ).

Knowing the free energy is equivalent to know the partition function, and the reason for introducing this expression is

that derivatives of F are easy to measure (for example, as we’ve just shown, it’s closely connected to U). We’ll be

able to extract macroscopic equilibrium behavior just from this quantity F , and we’ll see many more applications and

a sense of how it’s an actual “energy” throughout the course.

One good step is to look at this internal or average energy U – basically, how close our measurements of the energy

will be to the average value. For a large system, we claim that the internal energy U is essentially given exactly by
its average, with very small fluctuations. This is something we’ll develop a better understanding of as we discuss

the central limit theorem, which we’ll discuss at the end of this lecture.

For now, we can rewrite the partition function Z in terms of an integral, since a large system essentially has

continuous possible values of energy:

Z =
∑
n

e−βEn →
∫

Ω(E)e−βEdE =

∫
eS/kB−βEdE.

Because we know that Ω(E) scales as EcN , meaning that our entropy S is of order N (it is extensive), Ω is a rapidly

increasing function of E, while e−βE is a rapidly decreasing function. So the saddle-point approximation works well

here, and we expect that the integral is dominated by the maximum value of the integrand, meaning

Z ∼ Ω(〈E〉)e−β〈E〉.

(We’re saying that we expect to have a Gaussian-like shape after multiplying the rapidly increasing and rapidly decreasing

functions, so the average is also the highest point.) Therefore, taking a log tells us that

F = U −
1

β
ln Ω +O

(
1

N

)
=⇒ F = U − TS .

Notice now that the internal energy is extensive (U ∼ N), and we also know that S ∼ N from earlier lectures. So

because T is just some constant, F itself must be extensive as well. This means that Z = e−βF exponentially decays

in N – this makes sense because each term in the sum
∑

n e
−βEn is of order 1. (And we can often make sure F is

indeed positive, by defining all energies relative to the ground state energy.)

Our next step is to take a closer look at the entropy and obtain it from the probability distribution directly. We

know that

p(n) =
e−βEn

Z
=⇒ ln p(n) = −βEn − lnZ.

Now taking averages, we find that (because lnZ is just a number)

〈ln p(n)〉 = −βU = βF,
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and plugging in our F = U − TS tells us that

〈ln p(n)〉 = −
1

kB
S =⇒ S = −kB

∑
n

pn ln pn .

Fact 68

This last equality is often the way that the entropy of a probability distribution is defined (for example, in

information theory). Often, this is actually used as the starting principle of statistical mechanics, since the

equilibrium state can be thought of as the state with the maximum entropy with certain constraints. Doing those

calculations turns out to give us the same answers as our description here.

From here, we can be more careful about the energy distribution (beyond just looking at its average U) by considering

the width and fluctuations of the probability distribution. (The goal is that this will allow us to show, by direct

calculation instead of a qualititative argument, that the probability distribution is peaked at U.) Remember that this

canonical distribution, while sharply peaked at its mean, has a nonzero probability of being at any energy, unlike the

micocanonical distribution.

To do that, we’ll calculate the variance
〈E2〉 − 〈E〉2

of our energy distribution. The second term is already known to be U2, because U = 〈E〉 = − ∂
∂β lnZ. This motivates

us to consider a further derivative
∂2

∂β2
(lnZ) =

∂

∂β

(
1

Z

∂Z

∂β

)
,

which can be written out with the product rule as

1

Z

∂2Z

∂β2
−
(

1

Z

∂Z

∂β

)2

.

But now this is just

=
1

Z

∑
n

E2
ne
−βEn −

(
1

Z

∑
n

Ene
−βEn

)2

= 〈E2〉 − 〈E〉2,

so we find that the variance of our energy is just

−
∂2

∂β2
lnZ = −

∂

∂β
〈E〉 = −

∂U

∂β
= kBT

2 ∂U

∂T

(just making a change of variables in the last step). Here, ∂U∂T , denoted CV , is called the heat capacity of our system,

and the reason for the subscript V is that we’ve been considering systems at fixed volume. (We’ll connect this to the

thermodynamic definition of CV when we start talking about heat later on.) In summary,

〈E2〉 − 〈E〉2 = kBT
2CV ,

and because we can measure T and CV in experiments (the latter is a measurement of how much energy we need to

add to our system to raise its temperature), we can find out how the fluctuations behave explicitly. Since U is of order

N, we find that CV is also of order N, which means that the width of the distribution

σ =
√
〈E2〉 − 〈E〉2 ∝

√
N.

Even though
√
N is a big number, we should be comparing this to the actual value of energies around the mean: as
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we take N →∞, we find that
width energy
mean energy

∝
√
N

N
→ 0.

So fluctuations are extraordinarily small, and in the large N limit, the width is just a small perturbation. Since

〈E2〉 − 〈E〉2 is nonnegative – it can always be written as 〈(E − 〈E〉)2〉 – we find that the heat capacity CV is always
positive.

We’ll finish this lecture with a (self-contained) discussion of the mathematical central limit theorem. Suppose

we have N real-valued random variables X1, · · · , XN , with joint probability distribution p(x1, · · · , xN) (meaning that

the probability of being in a volume
∏
i dxi is p(x1, · · · , xN)dx1 · · · dxN , and

∫
dx1 · · · dxNp(x1, · · · , xN) = 1). We’re

going to assume that our N random variables are independent (this is a special case of the more general central limit

theorem), so that

p(x1, · · · , xN) = p1(x1) · · · pN(xN).

We know that the average value of any function f (x1, · · · , xN) is

〈f 〉 =

∫
dx1 · · · dxNp(x1, · · · , xN)f (x1, · · · , xN),

and we’re interested in looking at the distribution of u = 1
N

∑N
i=1 xi for large N. This variable’s probability distribution

function can be written as

P (u) =

∫
dx1 · · · dxNp(x1, · · · , xN)δ

(
u −

1

N

N∑
i=1

xi

)
,

and we’ll handle the delta function by writing it as an integral of its own:

=
1

2π

∫ ∞
−∞

dλ

∫
dx1 · · · dxN)p(x1, · · · , xN)e iλ(u− 1

N

∑
i xi ).

Specializing to the case where our variables are independent, we find that

P (u) =
1

2π

∫ ∞
−∞

dλ

[
N∏
i=1

(∫
dxipi(xi)e

−iλxi/N
)]

e iλu .

But notice that we have characteristic functions in the inner integrals, which we can Taylor expand (right here, we’re

defining it with a negative sign, which is different from in the recitation):

p̃i

(
λ

N

)
=

∫
dxipi(xi)e

−iλxi/N =

∫
dxipi(xi)

(
1−

iλ

N
xi −

λ2

2N2
x2
i +O

(
1

N3

))
,

and the integrals turn the variables into moments:

= 1−
iλ

N
〈Xi 〉 −

λ2

2N2
〈X2

i 〉+O

(
1

N3

)
.

We can rewrite this expression as an exponential to the same order of approximation to find

p̃i

(
λ

N

)
=

∫
dxipi(xi)e

−iλxi/N = e−
iλ
N
〈Xi 〉− λ2

2N2 (〈X2
i 〉−〈Xi 〉

2)+O( 1

N3 ).

Doing this makes it easier to multiply all of the individual integrals together when we plug back into the boxed expression

above: we now have

P (u) =
1

2π

∫ ∞
−∞

dλ e iλu
∏
i

p̃i

(
λ

N

)
=

1

2π

∫ ∞
−∞

dλe−
iλ
N

∑
i 〈Xi 〉−

λ2

2N2

∑
i (〈X2

i 〉−〈Xi 〉
2)+O( 1

N3 )e iλu.
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But also remember that some of these quantities are also in terms of u:

〈u〉 =
1

N

∑
i

〈Xi 〉, 〈u2〉 =
1

N2

∑
i

(〈X2
i 〉 − 〈Xi 〉2) +

∑
i ,j

〈Xi 〉〈Xj 〉


(since 〈XiXj〉 = 〈Xi 〉〈Xj〉 whenever i 6= j for our independent variables). Therefore, we can check that

∆ ≡ 〈u2〉 − 〈u〉2 =
1

N2

∑
i

(〈X2
i 〉 − 〈Xi 〉2),

and we can plug everything back into the probability distribution function for u to find (in the limit N →∞)

P (u) =
1

2π

∫ ∞
−∞

dλe iλ(u−〈u〉− λ2∆
2

+O( 1

N3 )).

Now, evaluating the integral gives us a final answer in the limit N →∞ of

P (u) ≈
1√

2π∆
e−

(u−〈u〉)2

2∆ .

And notice here that ∆ is of order 1
N , and what we’ve found is a Gaussian distribution with mean 〈u〉 of order 1 and

width (standard deviation)
√

∆ of order 1√
N
. So just like before, we recover a sharply peaked distribution as long as N

is large.

11 September 25, 2020 (Recitation)
We’ll talk today about a variety of topics, possibly including Gibbs’ paradox, free energy and fluctuations, the Central

Limit Theorem, and Lagrange multipliers.

First of all, a clarification about Stirling’s approximation: recall that we talked about how in the integral

N! =

∫ ∞
0

dxeN ln x−x ,

we can’t exactly use the saddle-point approximation with a fixed function φ(x), because the integrand isn’t perfectly

a multiple of N. The way to get around this is to make the substitution x = Ny to turn this into

=

∫ ∞
0

dyeN ln(Ny)−Ny = NeN lnN

∫ ∞
0

dyeN(ln y−y ,

and now we can use the saddle-point approximation on the remaining function φ(y) = ln y − y : this will give us the

answer NeN lnN
√

2π
N e
−N (since the integrand is maximized at y = 1), and this is indeed the same approximation we

derived last time.

Also, there have been questions about the difference between Ω(E) and Ω(E)∆E: as mentioned during lecture,

we should technically use the latter because we want a unitless quantity, and Ω(E) has units of inverse energy. But

ln Ω(E)∆E

N
=

ln Ω(E)

N
+

ln ∆E

N
,

and the second term goes to 0 regardless of whatever units we’re using, as long as ∆E is constant as N changes. And

we’re often taking derivatives of this natural log, which would make the second term go away anyway! So the whole

point is that we can always ignore the arbitrary ∆E in our picture, as long as it’s small enough to make sure the density

of states is essentially constant within the interval [E,E + ∆E].

36



Example 69

Gibbs’ paradox comes up when we mix two systems together. Suppose that we have two gases A and B (in the

left and right side of a box, respectively) with a divider between them, such that the two gases are distinguishable

– if we lift the divider, then entropy should increase.

But entropy increasing means we must be able to measure something about the change, and thus we must be able

to distinguish between the two gases. Suppose, for example, that there exists some permeable boundary that allows B

to pass through but not A. Then as the B particles move to the left, the pressure will move the divider all the way to

the right, and the point is that we can “take advantage of the entropy” to do some work by moving the divider.
(And this process is reversible – we could put in energy to move the divider back to its original position.)

On the other hand, if there is the same gas A in the two sides, there’s a sense in which there is no way to “use”

the extra entropy when we lift the divider. So even if we defined our entropy in a way where we’re just count states,

there isn’t really any physical significance of the “extra entropy” obtained by lifting the divider – for instance, there’s

no way to create a reversible process which allows a noticeable heat transfer

dS =
dQrev

dT
.

So it makes sense to have this factor of indistinguishability of 1
N! when we define our entropy for the identical gases.

Remark 70. Note that putting the barrier down in the gas with all A particles does force us to have some fixed number

of particles on the left side (at equilibrium, basically an equal amount on each side), but the point of the saddle-point

approximation here means we only need to consider the most probable configuration of the number of particles to

leading order, instead of considering all possibilities.

Our next topic centers around the free energy, which comes out of a closer look at the partition function

Z =
∑
α

e−βEα =⇒ U = 〈E〉 = −
1

Z

∂Z

∂β
.

We can keep taking derivatives to find that the moments of the energy E satisfy

〈En〉 =
1

Z

∂nZ

∂(−β)n

for all n ≥ 1, but we want to try writing this in another way that feels less like a trick. To do that, we’ll look at the

characteristic function

〈e−ikE〉 =
1

Z

∑
α

e−(β+ik)Eα ,

and now we can rewrite this by thinking of our partition function Z as a function of β:

=
Z(β + ik)

Z(β)
.

Then the moments are supposed to be related the nth derivatives of the characteristic function via

〈En〉 =
∂n〈e−ikE〉
∂(−ik)n

∣∣∣∣
k=0

=
1

Z(β)

∂nZ(β + ik)

∂(−ik)n

∣∣∣∣
k=0

,

and now taking the partial derivative with respect to −ik is the same as taking it with respect to −β, because the
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arguments have the same dependence in Z:

=
1

Z(β)

∂nZ(β + ik)

∂(−β)n

∣∣∣∣
k=0

=
1

Z

∂nZ

∂(−β)n
.

If we only cared about the moments, this wouldn’t give us very much, but we also care about the cumulants. And now

we access the cumulants easily, because

〈En〉c =
∂n ln〈e−ikE〉
∂(−ik)n

∣∣∣∣
k=0

=
∂n

∂(−ik)n
(lnZ(β + ik)− lnZ(β))|k=0 =

∂n

∂(−ik)n
lnZ(β + ik)

∣∣∣∣
k=0

=
∂n lnZ

∂(−β)n
.

This indeed shows us that the cumulants come from derivatives of lnZ – the cumulants turn out to be much more

useful than the moments, because we care about the variance of energy rather than the second moment. We expect

lnZ ∼ N to be an extensive quantity if the different parts of the system are essentially independent of each other,

because then the partition function will multiply across different subsystems (as long as energies add together): if our

total system comes from two subsystems X and Y ,

Ztotal =
∑
x,y

e−β(Ex+Ey ) =
∑
x

e−βEx
∑
y

e−βEy = ZXZY .

So that means that the cumulants will all be proportional to N as well, meaning that the energy, variance, and so

on have this same N-independence. And we’ll find something that our system scales higher cumulants like〈(
E

N

)n〉
c

∼
N

Nn
= N1−n,

which is good – in fact, higher cumulants go to 0 fast, so we’re really only left with the lowest order cumulants, and

this gives us a Gaussian distribution with standard deviation proportional to 1√
N
.

And now this is where free energy comes into the picture! If we write our partition function as an integral

Z =

∫
dEΩ(E)e−βE =

∫
dE eS(E)/kB−βE ,

we can then make a change of coordinates to get

=

∫
d

(
E

N

)
Ne−Nβf (

E
N ),

where f = F
N is the “free energy per unit particle:

f

(
E

N

)
=
E

N
−
S(E)

βNkB
.

This quantity can be thought of as an “effective energy:” even though different states get counted numbers of times,

this value of f is the energy we should expect to have if each energy level only has one state, and we want our partition

function to remain the same. Then the probability distribution of E
N becomes

p

(
E

N

)
=
N

Z
e−βNf (E/N);

since N is large, we can do a Taylor series expansion around the point which minimizes the free energy f (and therefore

maximizes the integrand). Our function will look symmetric around the minimum, and it’ll be approximately Gaussian,

so the average is also the minimum:

≈
N

Z
exp (−βNf (〈E/N〉)) exp

(
−

(E/N − 〈E/N〉)2

2〈(E/N)2〉c

)
.
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Then we know that

1 =

∫
d

(
E

N

)
p

(
E

N

)
=
N

Z
e−βNf (〈E/N〉)

√
2π〈(E/N)2〉c ,

and now taking a logarithm gives us

lnZ = −βF + lnN + ln

√
2π〈E2〉c
N2

= −βF + ln
√

2πkBT 2CV .

So the second term is a correction here – CV is proportional to the size of the system, but it’s not extensive, so the

first term is the largest contribution. And in this argument, our key assumption was hidden: we assumed that S was
extensive, so that the total entropy is N times the entropy of an individual small component. (In other words,

in the second term of the definition of f (E/N), we’re assuming that as E and N scale at the same rate, S(E)
N also

stays constant.)

Fact 71

A case where the entropy S does not scale with the size of the system is where a bunch of electrons have

interactions such that all are either spin up or spin down. In general, systems that can magnetize will not have

entropies coming from the sum of the individual particles’ entropies. So we should be careful not to describe such

systems just with a few “average values!”

We’ll conclude with a few mathematical tricks that are good to know. First of all, looking at the Central Limit

Theorem, if we have a vector of random variables ~X = (X1, · · · , Xn), we want to consider the characteristic function

ln〈e−i~k· ~X = −i
∑
i

ki 〈Xi 〉c +
(−i)2

2

∑
i ,j

kikj 〈XiXj〉c +
(−i)3

3!

∑
i ,j,`

kikjk`〈XiXjX`〉c .

If the variables are independent, then we know that expectations are multiplicative, meaning that everything will just

simplify to (after some calculation)

ln〈e i~k· ~X〉 = ln

N∏
i=1

〈e−ikiXi =

N∑
i=1

(
−iki 〈Xi 〉c +

(−i)2

2!
k2
i 〈X2

i 〉c +
(−i)3

3!
k3
i 〈X3

i 〉C + · · ·
)
.

This doesn’t help us deal with the sum of the random variables as we need in CLT, but it’ll help get us started.

Finally, we’ll do some intuition refreshers for Lagrange multipliers. Suppose that we’re trying to maximize a scalar

function f (~x) given some constraint g(~x) = 0: then we can consider the following Lagrangian

L(~x, λ) = f (~x)− λg(~x).

If we try to maximize this quantity instead, then we need ∂L
∂λ = 0, which enforces our constraint g(~x) = 0, as well as

∂L
∂~x

= 0 =⇒
∂f (~x)

∂~x
= λ

∂g(~x)

∂~x
.

This means that our gradients must point in the same direction: using a physical analogy of energy, potential, and

forces, we can think of f (~x) exerting a gradient force pulling us towards the maximum value, and at equilibrium, the

force is balanced out by a “normal force” of some sort, which is always perpendicular to our constraint.
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12 September 28, 2020

About half of us have completed the survey from last week, and the rest of us are urged to do so as well (so that

we can give feedback on what’s working for learning). And as a reminder, there will be a take-home exam posted

on Wednesday, with two questions on the microcanonical ensemble and earlier topics. (We can consult class-related

materials, but not each other, for the exam.)

We’ll start today by talking a little about the central limit theorem, before looking at ideal gases and other

thermodynamic concepts. Recall that the central limit theorem tell us that when we have N real-valued random variables

Xi (for 1 ≤ i ≤ N) with some probability distribution p(x1, · · · , xN), and when we make the simplifying assumption that

the Xis are independent random variables, so that p(X1, · · · , XN) = p1(x1) · · · pN(xN), then u = 1
N

∑
i xi is distributed,

in the limit N →∞, according to

P (u)→
1√

2π∆
exp

(
−

(u − 〈u〉)2

2∆

)
,

where ∆ = 〈u2〉−〈u〉2 is the variance of the distribution and is order 1
N . In other words, the average of the measurements

u becomes (universally) Gaussian, with mean 〈u〉 ∼ O(1) and width
√

∆ ∼ O
(

1√
N

)
.

Remark 72. It’s sufficient that the cumulants 〈Xi1 · · ·Xim〉c grow slower than Nm/2, instead of assuming that the Xis

are independent. But we won’t go through the proof of this more general case.

We can notice that this theorem is related to how we discussed the internal energy in the canonical ensemble – the

result there was that the mean value of E is very sharply peaked around the average U. And these two concepts can be

connected as follows: suppose we break up a large system of length scale L into smaller subsystems of length scale `,

so that L� `� a for a microscopic length scale a. If we’re trying to find the total energy of our system, we have an

integral over the energy density by essentially summming over energies of subregions. And if the cross-correlations

of energies between different parts of the systems are small enough, we expect a “central limit theorem type result” to

hold: as we saw, the energy will be of order N, while the width will be of order
√
N.

Fact 73

We should keep in mind that the Boltzmann distribution applies to a single microstate of the system or to the

velocity of a single particle, not the total energy distribution.

Remark 74. There are situations where the assumptions of the central limit theorem are violated – phenomena where

“tail effects” dominate, which happens in some glassy dynamics. But there are ways to deal with those as well.

For now, we’ll move on to concepts of heat and pressure, two important thermodynamic quantities.

Example 75

Consider a system at equilibrium with a bath at some temperature T . If the temperature is changed to another

temperature T ′ (for example, some energy gets injected into the bath), but external parameters like V and N for

the system are fixed, the mean energy of the system must change.

Because the system and bath are isolated from the rest of the world, there must be some given energy transfer

between the system and the bath, and this is called heat transferred to or from the system. In fact, we can relate the

heat transfer to changes in the entropy of the system, which we’ll derive now.
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We start with an infinitesimal change in the state of our system, and we keep our external variables V, · · · fixed (so

that no work is done on the system), so that the entropy S = S(E, V, · · · ) satisfies

∆S =
∆E

T

(because our temperature is defined as 1
T = ∂S

∂E ). Thus, the heat transfer is ∆E = T∆S, and we’ll denote this quantity

in general by ∆Q. In other words, we can write down the equation

∆Q = T∆S ,

where T is a function of S and E, to define the heat transfer – again, remember that this transfer happens when we

change the temperature while keeping any specific external variables for the system fixed.

And now we’ll try a contrasting calculation: instead of fixing V and modifying T , we can try changing the volume

while keeping the temperature fixed. Intuitively, this should also lead to a change in mean energy of the system, because

compression takes pressure and so on. (Microscopically, what’s going on is that a particle in a box has different energy

eigenvalues when the volume gets larger.)

Definition 76

The pressure of a system is negative of the average change in energy per unit volume change:

P = −
∑
n

pn
∂En
∂V

,

where pn is the probability of a microstate n, and En is its energy.

Usually, pressure is defined to be the force per unit area, but we can imagine a cubic box where we change the

z-direction’s length. Then the work done (which is the change in energy) is the force applied times the distance of

particle movement, and now we can notice that the two definitions are equivalent.

From here, notice that we can calculate pressure from the free energy:

P = −
1

Z

∑
n

e−βEn
∂En
∂V

=
kBT

Z

∂

∂V

(∑
n

e−βEn

)
= kBT

1

Z

∂Z

∂V

where the partial derivative is done at constant temperature. This then leads us to

P = kBT

(
∂

∂V
lnZ

)
T

= −
(
∂F

∂V

)
T

.

Since we have a useful quantity out of one partial derivative of F (T, V ), it makes sense to consider the other quantity(
∂F
∂T

)
V
. We can calculate this directly via(

∂F

∂T

)
V

=
∂

∂T
(−kBT lnZ) = −kB lnZ − kBT

∂

∂T
lnZ

by the chain rule, and now we can convert this to a derivative with respect to β:

= −kB lnZ + kBβ
∂

∂β
lnZ.

But both terms now look familiar, and we are left with

=
F

T
−
U

T
= −S,
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which means we’ve arrived at the entropy! So putting this together,

P = −
(
∂F

∂V

)
T

, S = −
(
∂F

∂T

)
V

,

and now we can consider arbitrary infinitesimal changes in T and V :

dF =

(
∂F

∂T

)
V

dT +

(
∂F

∂V

)
T

dV = −SdT − PdV.

Therefore, if we have an internal energy U = F + TS, we have that

dU = −PdV − SdT + d(TS) = −PdV + TdS .

Therefore, we can write down partial derivative relations like

P = −
(
∂U

∂V

)
S

, T =

(
∂U

∂S

)
V

.

We also know that −PdV is the work done on our system, so we have

dU = dW when there is no change in entropy (and thus no heat flow).

We should remember that these calculations have been done while ensuring that we are still in equilibrium, but they

allow us to think about how certain thermodynamic quantities vary with others, as long as we specify what variables

are fixed.

Before we continue down the path of thermodynamics, we’ll illustrate the use of these ideas by revisiting an earlier

example:

Example 77

Let’s calculate the free energy F of a classical ideal gas explicitly in terms of V and T . Our Hamiltonian will again

be H =
∑N

i=1
~p2
i

2m .

We can first describe some statistical properties with the microcanonical distribution: recall that the density of

states here is

Ω(E, V, N) = A

(
eV

N

)N (
E

N

)3N/2

,

where A is just some constant, and thus the entropy is

S = kB ln Ω = kB ln

((
V

N

)N (
E

N

)3N/2
)

+ c,

meaning that
1

T
=

(
∂S

∂E

)
V

=
3NkB

2E
=⇒ E =

3

2
NkBT.

If we now want to calculate the pressure, we know that

dU = TdS − PdV =⇒ dS =
1

T
dU +

P

T
dV.

This means that
P

T
=

(
∂S

∂V

)
U

,
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but U is the symbol for the average energy of the system in the canonical distribution, so it really is equivalent to E.

We can then find that
P

T
=
NkB
V

=⇒ PV = NkBT .

This mostly illustrates that we’ve defined the pressure correctly, but what’s more useful is to try arriving at these

results using the canonical distribution. We care then about the partition function, which we’ll now explicitly calculate:

Z =
1

N!

∑
{~pi}

e−β
∑

i ~p
2
i /2m,

where the 1
N! is the Gibbs factor and

~pi =
2π~
L

(nix , niy , niz),

for integers nix , niy , niz and a cubic box of length L (which we’ll take to infinity eventually). We can convert this sum

into an integral for large L to get

Z =

(
L

2π~

)3N
1

N!

∫ ∏
i

d3pie
−β

∑
i ~p

2
i /2m.

If we do a similar change of variables ~pi =
√

2mkBT ~ui , then

Z =
V N

(2π~)3NN!
(2mkBT )3N/2

∫ ∏
i

d3uie
−u2

i .

We can do the Gaussian integral, which is unitless, and we end up with a final answer of

Z =
V N

(2π~)3N

1

N!
(2πmkBT )3N/2.

From here, we can extract the free energy by using Stirling’s approximation: we arrive at

F = −kBT lnZ = −NkBT ln

((
eV

N

)(
(2mπkBT )3/2

(2π~)3

))
.

We can now confirm that

P = −
(
∂F

∂V

)
T

=
NkBT

V
,

which is the right answer, and the entropy S also works out to the correct value we calculated above. At the end of

the day, this means that using the microcanonical and canonical ensembles give us the same values for these “average

extensive quantities,” which is what we expect.

13 September 30, 2020
First of all, those of us who haven’t completed the course survey should do so as soon as possible so that “what is

most helpful for the majority of the class” is most clear. And to make a quick note about last lecture: in the ideal gas,

the canonical and microcanonical distributions giving us the same results wasn’t a coincidence. We should expect this

kind of behavior to work for statmech systems in general, because the energy is almost always peaked sharply around

the mean value.

Today, we’ll be talking about (classical) non-ideal gases at a very high level. The first step for doing this is writing
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the Hamiltonian for our gas of atoms via

H =

(∑
i

~p2
i

2m

)
+ U({~qi}),

where the potential energy of interaction U({~qi}) could have one-body, two-body, or other interactions. To start, we’ll

assume the system can be treated classically – then our partition function will look like

Z = A

∫ N∏
i=1

(d3pid
3qi)e

−βH(p,q),

where A is some undetermined constant when we’re working within classical mechanics (because we don’t have a

well-defined “spacing” in phase space). But if we treat this classical system as an approximation to the underlying

quantum system, then

A =
1

N!

(
1

2π~

)3N

,

where 1
N! comes from the Gibbs factor, and the other term comes from the uncertainty principle (atoms cannot be

found infinitely close to each other).

Remark 78. To explain the (2π~) factor in situations where we don’t just have a fixed spacing between allowed

eigenstates, the idea is that we are putting our system into a large box, and ultimately the system will not depend on

boundary conditions very much for large volumes.

If we know the form of U, for example if we know that atoms interact via the van der Waals interaction, then this

partition function Z (and its derivatives and related quantities) can tell us lots of important information about the

system, like its pressure or entropy. (However, in practice, having to do a large or infinite number of integrals for an

integrand that can’t be done exactly can be very difficult.)

We can solve half the problem completely generally for any system of this form, though, because given a Hamiltonian

H of the form above where the potential energy U doesn’t depend on the momentum, we can separate out the

exponential e−βH into two terms. And we can do the momentum integral, which will always be the same as that for

the ideal gas – this term always factors out. So we can deal with the kinetic energy component of the Hamiltonian

for all classical systems at the same time, which we will do right now.

So now

Z = A

∫ ∏
i

(d3pi)e
−β~p2

i /2m

∫ ∏
i

(d3qi)e
−βU({~qi}),

and if we define Z0 to be the partition function of the classical ideal gas (where U = 0), which is

Z0 = AV n
∫ ∏

i

d3pie
−β

∑
i ~p

2
i /2m,

then the non-ideal gas must be written as

Z =
1

V N
Z0

∫ ∏
i

d3qie
−βU({qi}) .

Rephrased, this means the kinetic and potential energy contributions to the free energy completely separately:

F = −kBT lnZ = F0 − kBT ln

[
1

V N

∫ ∏
i

d3qie
−βU({qi})

]
,
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where F0 = −kBT lnZ0 is the free energy of the classical ideal gas.

Fact 79

This kind of calculation is only an artifact of the classical treatment, though – it’s not true in quantum statistical

mechanics! This is because the partition function there looks like

Z =
∑
n

e−βEn = Tr(e−βĤ),

where Ĥ is the Hamiltonian operator, and we can’t separate the exponential in the same way because p̂ and q̂ do
not commute.

This will come up again when we study quantum ideal gases, and then we’ll be able to think about “when we

can treat atomic motion as being classical.” Essentially, classical statistical mechanics says that we can separate

out thermodynamical properties from the dynamical ones, while quantum statistical mechanics says that they are

“intimately linked.”

So now if we look at the special case where U is a one-dimensional integral (for example, if the whole system is

in some external potential), we can do the integrals separately and see how it gives us an explicit partition function.

We’ll do this calculation at some point later in the class, for instance for a harmonic oscillator potential. (It isn’t too

difficult, because the integrals end up being Gaussians.)

For now, we’re going to use the formalism we’ve been building up to arrive at the laws of thermodynamics.

Proposition 80 (Zeroth law)

If two systems A2, A2 are in thermal equilibrium with a third system B, then they are in equilibrium with each

other.

This is a statement that is “almost obvious,” in the sense that we’ve been considering a lot of systems attached

to external systems where only energy can be exchanged. Then the condition for equilibrium is that temperatures are

equal between A1 and B, and also between A2 and B, so it seems like we then must have A1 and A2 at equilibrium

because their temperatures are the same.

But we could ask what happens if other things are allowed to be exchanged as well (for example, some volume can

be transferred into or out of A1 from B, instead of just heat). To deal with this case, we can repeat the derivation

by looking at the maximum density of states for the joint distribution for our system, and we find then that we must

have an additional condition about the partial derivatives ∂S
∂V , and that tells us then that the pressures must match.

So this means we have an additional condition on top of temperature, and this should make sense to us: if two gases

are in a box with a partition between them, the partition can only stay stationary if the pressures are equal on both

sides. And then equality of pressure is transitive, so the zeroth law holds analogously.

Remark 81. The laws of thermodynamics were established before statistical mechanics, so it was harder to find solid

reasoning for a lot of them back then. But now hopefully those laws are easier to justify from our point of view.
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Proposition 82 (First law)

Energy is conserved; specifically, the change in the total energy of a system can be written as

dU = −PdV + TdS.

Here, −PdV is known as the work done, and TdS is the increase in heat (corresponding to random internal

microscopic motion).

Proposition 83 (Second law)

For a closed system, we have dS
dt ≥ 0.

We’ll reiterate the calculation we did a few lectures ago to justify this law. Again, consider two isolated systems

A1 and A2 that are initially separated and in internal equilibrium, and then we bring them together and allow energy to

flow. Initially, if the total energies of our systems are E0
1 and E0

2 , then the densities of states are Ω1(E0
1 ) and Ω2(E0

2 ),

respectively, and thus the total initial entropy is

S0
i = kB ln Ωi(E

0
i ).

But now if we bring A1 and A2 in contact with each other, then the probability distribution of the joint system will

evolve from the initial distribution to its final equilibrium distribution, and this process will occur so that the sequence
of states traversed runs through more and more probable distributions of the total energy as it approaches

equilibrium. (Here’s where ergodicity is being used, but we’re really assuming that when we ask for the microcanonical

distribution to work in the first place.) Then the probability that A1 has energy E1 and A2 has energy E2, given a

constraint on the total E1 + E2 = E0
1 + E0

2 , is proportional to Ω1(E1)Ω2(E2), so the value of

Ω1(E1)Ω2(E2) = e1/kB(S1(E1)+S2(E2)

must be maximized in the final equilibrium state, meaning that entropy indeed (almost) never decreases, especially in

the thermodynamic limit.

We can consider this setup in another way as well: suppose we have two systems A1 and A2 in fixed volumes next

to each other, and then the heat absorbed by system α ∈ {1, 2} is

∆Qα = Ef α − Eiα

(the final energy minus the initial energy when a system is at a fixed volume). We know we must have ∆Q1 + ∆Q2 = 0

by energy conservation, and let’s consider the case if we only have an infinitesimal amount of heat transferred. Then

the change in entropy of system Aα is

Sα(Ef α)− Sα(Eiα) =
∂Sα
∂Eα

∣∣∣∣
E|lpha=Eiα

dQα =
dQα
Tα

.

This means that if the total change in entropy of the combined system is nonnegative as the second law suggests,

then (using the fact that dQ1 = −dQ2)

dQ1

T1
+
dQ2

T2
≥ 0 ⇐⇒ dQ1

(
1

T1
−

1

T2

)
≥ 0.

In other words, if T2 > T1 > 0, then dQ1 > 0, meaning that heat flows from the hotter to the colder body, as we
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expect. (This has implications for systems like heat engines, but we won’t cover those in this class.)

Proposition 84 (Third law)

For every macroscopic system, the entropy per particle limN→∞
S
N goes to 0 as the temperature T goes to 0.

This statement cannot be true within classical statistical mechanics, since we only know the entropy up to an

additive constant, so we cannot know its exact value at T = 0. So the justification needs to come from quantum

statmech arguments. The idea (that we’re not explicitly proving) is that quantum systems with a large number
of particles has a unique ground state, or at least one with a small degeneracy g. As T → 0, our system then

settles into a ground state (because e−βEn goes to 0 as β →∞), so

pn =

0 n is an excited state

1
g n is one of the g degenerate ground states.

Then

S = kB
∑
n

pn ln pn = kB ln g,

so the necessary condition is that limN →∞ ln g
N = 0 (meaning g just needs to grow slower than exponential in N). And

this is a reasonable thing to believe generically (we won’t have exponentially many ground states in typical systems).

Remark 85. The third law is an empirically correct statement – when we have symmetries that create degeneracy in

our systems, we will indeed see that g grows much more slowly than exponentially in N.

14 September 2, 2020 (Recitation)
One topic of today’s class is heat engines and the second law, but we’ll start with a few clarifications of recent

material first.

First of all, we know from classical mechanics that the pressure is defined as

P =
~F · ~n
A

,

where ~n is the normal vector to our area A, and this can be rewritten as

=
1

A

(
−
∂E

∂x

)
dQ=0

,

where we need to make sure the change in energy comes from changes in volume, not transfer of heat. And if we do

this process slowly, we can rewrite this as a derivative at constant entropy −
(
∂E
∂V

)
S
, because the change in volume

dV = Adx . Remembering that dE = TdS − PdV , we find that

dF = d(E − TS) = −SdT − PdV,

so we can also define pressure as

P = −
(
∂F

∂V

)
T

.

So we can measure pressure at constant temperature or entropy – it depends on whether we’re looking at the free

energy or the energy, but this explains to us why we often like working with F . (Keeping a system at constant

temperature is much easier than doing so at constant entropy.)
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Remark 86. One way of thinking of the free energy is a way of quantifying how much energy we release (as heat)

when we let our system settle into its ground state – it accounts for the fact that certain energy states might have

more entropy than others.

Specifically, if the change in entropy is

∆Suniverse = ∆Senv + ∆S,

some of the change in entropy comes from heat transfer and others from the entropy of our excited states, so we can

rewrite this as

= −
∆E

T
+ ∆S = ∆(lnZ),

which is a constant times the change in free energy F = −kBT lnZ. So maximizing entropy is related to minimizing
the free energy.

So now let’s look back at pressure and connect it to the derivation from class: we said that

P =

〈
−
(
∂E

∂V

)
S

〉
= −

∑
α

pα
∂Eα
∂V

,

where “constant entropy” essentially that “we keep the probability distribution the same.” This can be rewritten as

−
∂

∂V

(∑
α

pαEα

)
pα

= −
(
∂〈E〉
∂V

)
S

,

since we’re claiming that the pαs are just constant here, meaning we can pull the derivative out of the sum.

Remark 87. Quantum mechanically, justification for doing this comes from the adiabatic theorem in quantum me-

chanics, which says that slow enough evolution does not have us jump between eigenstates. And in the classical

description, even if the Hamiltonian changes slowly with time, we can use Liouville’s theorem to “trap” our states.

Note that this is a different derivation from the one we did in class, in which we said that the canonical distribution

allows us to do an explicit mathematical calculation:

P = −
∑
α

e−βEα

Z

∂Eα
∂V

=
1

βZ

(
∂Z

∂V

)
T

= −
(
∂F

∂V

)
T

.

Fact 88

Let’s clarify what the zeroth law means, and why it actually historically only refers to temperature (not other

variables).

The idea is that this is the only postulate we actually need to assume – statements like “if two systems can

exchange volume, then they must settle at the same pressure” is a basic property of Newtonian mechanics. The idea

is that being at thermal equilibrium (that is, no longer exchanging heat) is a transitive property – we can think of this

as saying that if a thermometer A is in equilibrium with a system B, and also with a system C, then B and C must

actually be in thermal equilibrium if we put the two next to each other. This was something that we could observe but

not prove (without understanding things at the microscopic level or knowing what heat is), and it’s why the zeroth law

exists as a postulate. Then we can define temperature by looking at the equivalence classes of thermal equilibrium.

On the other hand, pressure is already a well-defined quantity – there’s no “mysterious process of heat,” so there

is no law to posit.
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Fact 89

A final clarification before we talk about heat engines: the first law of thermodynamics is basically conservation

of energy, and basically all energy we know of can be written as work.

This means our “mysterious heat” is written as

∆Q = ∆E − ∆W =⇒ dE = d̄W + d̄Q

The reason for the notation of d̄ here is that work W and heat Q are not state variables – the amount of work a

system does when it transfers between two states depends on the path. And if we have a quasi-static process, we
can write

d̄W =
∑
i

JidXi ,

where the Xi represent extensive properties of our system, like volume or length or area, and the Ji represent intensive
properties, like pressure or force or surface tension. (So an example of a pair (Ji , Xi) is (F, L), or (σ, A), or (−P, V .)
And we need to keep in mind that some of these pairs have negative signs, like in the expression −PdV , and that

can be thought of as “what happens when we put energy into a system.” Essentially, we can think of Jis as the
derivatives of energy with respect to the Xis.

And now we’re ready to look at heat engines, and it’ll make sense why we treat the TdS term in a special way

when looking at changes in energy.

Example 90

Consider two heat reservoirs at temperature TH and TC : is it possible to use this temperature difference to do

useful work?

During the Industrial Revolution, there were important practical considerations about how efficient systems could

be. Any heat engine takes in some heat QH from the TH reservoir and expels some heat QC from the TC reservoir

(we can assume the temperatures TH and TC stay constant because the environment is big), and in the process we do

some work W . So then we know that

W +QC = QH,

and we want to maximize the efficiency of our energy

η =
W

QH
= 1−

QC
QH

.

On a microscopic level, the second law of thermodynamics makes sense, but from a macroscopic perspective, we

basically have to postulate the second law in some way. From here, Kelvin formulated (1) that η < 1, while Clausius

claims (2) that if W = 0, then QC ≥ 0 (we can’t transfer energy from a cold place to a hot place). Both of these

statements really tell us the same thing, which is that “heat flows from hot to cold.”

Proposition 91

Kelvin’s law and Clausius’s law are equivalent.

Proof. To show that Clausius’s law implies Kelvin’s law, suppose that the latter is false. Then we can construct an

engine that converts heat directly into work, and then we can use that work to move some heat from the cold system

to the hot system, which means Clausius’s law is not true.
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On the other hand, suppose Clausius’s law does not hold, and we can transfer some amount of heat Q from the

cold reservoir to the hot reservoir. Then we can run another (possibly inefficient) heat engine so that the heat going

in and coming out of the cold reservoir amounts to 0, and the net effect becomes that all of the net loss of energy

from the high-temperature reservoir gets made into heat, which breaks Kelvin’s law.

Example 92

Consider a Carnot engine, which is a specific example of a reversible heat engine.

We perform the following steps, starting from some point in a diagram that tracks our pressure P versus our

temperature T , and ending up back where we started:

• Isothermal expansion (by taking in some energy)

• Adiabatic expansion (no heat exchanged),

• Isothermal contraction (by expelling some energy),

• Adiabatic contraction (work is done on the gas, but no heat is exchanged.

If we do all of these steps very slowly, so that we’re always in equilibrium and doing work in a reversible way, we

would be able to reverse this whole process. This means that we have a reversible process here.

Proposition 93

No heat engine between temperatures TC and TH is more efficient than the Carnot engine.

Proof. Suppose we have a hypothetically more efficient engine than the Carnot engine. Then we can use the more

efficient engine’s outputted work to run the Carnot engine in reverse, and that means that we could use less heat

QC than the Q′C that is drawn by the Carnot engine. And this means that we’re sending net heat from the cold

temperature bath to the hot temperature bath, breaking Clausius’ law.

In other words, reversible heat engines must all be at max efficiency, and thus we can define the maximum efficiency

for our engines as η(TH, TC) just by looking at how the Carnot engine does.

And if we now consider a tiered heat engine system, so that one Carnot engine works between temperatures T1

and T2 and another works between temperatures T2 and T3, chosen to run at a rate so that the neat heat flowing into

the T2 bath is zero, we’ll notice that

Q2 = Q1(1− η(T1, T2)), Q3 = Q2(1− η(T2, T3)),

and substituting values in yields

= Q1(1− η(T1, T2))(1− η(T2, T3)).

But the joint system is also a Carnot engine between T1 and T3, so this expression is also Q1(1 − η(T1, T3)). Thus,

defining F (TA, TB) = 1− η(TA, TB), we have

F (T1, T3) = F (T1, T2)F (T2, T3),

and this implies mathematically that

F (TA, TB) =
f (TB)

f (TA)
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for some function f . And now we’ve gotten back to the idea of defining temperature – we know that we have some

freedom in our definition of temperature beyond just having equivalence classes, so we can choose f (T ) = T . (We

know f (T ) must be increasing as function of T , or else we end up with weird results if we are allowed to combine

heat engines and get net effects of heat being transferred from lower to higher energies.) So this tells us what the

efficiency of our heat engines looks like:

QC
QH

= 1− η(TH, TC) =
TC
TN
.

Remark 94. We have a physical understanding of what “temperature” looks like, beyond the microscopic definition or

this weird definition in terms of heat engines: another way to define temperature is to look at an ideal gas and consider

(experimentally)

T = lim
V→∞

PV

NkB
.

It turns out this new definition is equivalent to our currently existing definitions, and we do this by running the Carnot

cycle on an ideal gas and calculating the resulting efficiency. So this is indeed temperature as we know it.

In general, if we have a non-reversible engine, we know that we must have

QC
QH
≥
TC
TH

(a general engine must have lower efficiency), meaning that

QC
TC
−
QH
TH
≥ 0.

And now this is starting to look like the second law of thermodynamics: we know that we could associate these with

entropy changes if we had a reversible process. (And we can think about the least efficient possible heat engine as

well: if QC = QH, meaning that we do no work, we do indeed get a nonnegative quantity on the left side.) We can

generalize this equation some more:

Theorem 95 (Clausius)

The heat inputted into a system over one cycle satisfies∮
d̄Q

T
≤ 0.

Proof. Consider a heat bath at a constant temperature T0, and suppose our system is at some temperature T (which

can change over the cycle). This heat bath will put some heat d̄QR into a Carnot engine, which does some work d̄W

and puts some heat d̄Q into our system. Over a cycle, we know that

∆QR =

∮
d̄QR =

∮
T0

T
d̄Q

because we are working with a (maximally-efficient) Carnot engine. Now Kelvin’s law tells us that ∆QR ≤ 0, because

we can’t just convert heat to work (there’s no bottom bath, so after the engine runs in a cycle, no heat can be expelled

to a different bath. And therefore ∮
T0

T
d̄Q ≤ 0 =⇒

∮
d̄Q

T
≤ 0,

as desired.
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If every step here is reversible, we can run this argument in reverse as well, which proves that∮
d̄Qrev

T
= 0 .

15 October 5, 2020

Our quiz has been graded and returned to us. (Because of the shared Dropbox folder, it couldn’t be returned by

Canvas, so we should check our email.) The last part of the first problem was supposed to be the most challenging

part of the quiz, but hopefully the rest of it was reasonably straightforward for us. (Looking at grading, most of us got

those parts correct, and we did pretty well as a class.) A lot of students mentioned that the quiz took much longer

than one hour, though.

One other logistical comment comes from the results of the survey sent out last week. Specifically, in response

to “what comes in the way of doing well in this class,” the majority of us said that it was difficult to find time to do

justice to this class and also handling other expectations from other courses and responsibilities. For first-year graduate

students, this may not be something specific to remote learning, but it is definitely a difficult transition. The main

suggestion here from Professor Todadri is to “get the coursework out of the way” – since there are no qualifying exams

being offered on entry, it makes sense to focus on coursework so that the second semester can focus on research.

(And for the undergrads in the class, we’re taking this voluntarily, so we should make the most of it.)

The other point that was getting in the way of the course for many people was finding it difficult to focus given

what’s going on in the world. And the main suggestion there is that structure is particularly important for our lives –

forcing us to focus on work can help us avoid the news. (What this means is that our homework load will basically be

the same as it would be in a non-virtual setting.)

We’ll start the physics today with some comments on the third law of thermodynamics. Recall that the idea is that

every quantum system with a large number of particles N has a unique ground state or a small degeneracy g � N,

so that when T → 0, our system will settle into (one of) the ground state(s) because of the canonical ensemble

calculations (β goes to infinity). Then the probability of occupation at T = 0 is

pn =

0 n is an excited state

1
g n is one of the ground states,

and therefore the entropy is

S = −kB
∑
n

pn ln pn = kB ln g.

Therefore the entropy per particle S
N of a quantum many-body system goes to zero as N → ∞, and this is the

third law of thermodynamics we’re working with.

Remark 96. Remember that we can only make this statement in the quantum statmech situation, because S is only

defined up to additive shifts in the classical case. And if we want to compare different systems, the arbitrary additive

constant can be different in the classical case, but not in the quantum one.

We’re working with this third law at the level of “it’s reasonable that this happens:” any special degeneracies of the

ground state should be lifted if our Hamiltonian is generic enough, or if we perturb any “accidents” that come up from

an accidentally degenerate Hamiltonian. And the third law holds empirically, so we want to understand how to use it.
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Fact 97

We know that we can compare the entropy difference between two different temperatures by integrating a quantity

related to the heat capacity (which we can measure). And the idea is that this allows us to actually compute
the entropy T , because we know the entropy at temperature 0.

There’s a small subtlety with this approach – in order to use this result, we need to make sure equilibrium as been

reached. But as we go to lower temperatures, equilibration times can become very large (in the limit T → 0). So

the relevant question for us is how small the temperature T needs to be before the entropy becomes sufficiently
small, and this depends on the system we’re working with.

Example 98

Consider a solid with atomic nuclei having nonzero spin (say 1/2). This solid also has electronic degrees of

freedom, either in moving around in a metal or from spin degrees of freedom. Then the nuclear spins are very

weakly coupled to the electronic degrees of freedom, and also to each other.

For example, the strength of the hyperfine coupling in Hydrogen is related to the famous 21 cm line, and the

differences are indeed very small in comparison. The point is that each nuclear spin talks to everything in its environment

very weakly, so even down to very low temperatures the nuclear spins may remain disordered. At some temperature T0,

the entropy of the other degrees of freedom, like electronic excitations or translational degrees of freedom or lattice

vibrations, have settled down and become negligible. And if the nuclear spins (which we’re assuming to be 1/2) are

completely disordered, and we have N nuclei, then the entropy in the spins is S0 = NkB ln 2.

So the entropy must go to S0 as T → T0, and then once T drops below T0, those weak interactions will eventually

order themselves, leading to a final loss of entropy, so that S → 0 as T → 0 as we expect. So the idea is that we’ll

forget about nuclear spins (because they’re weakly coupled compared to whatever we’re actually trying to probe), and

the “practical form” of the third law is that S → S0 as we decrease T but still keep it larger than T0.

Proposition 99

The third law implies that heat capacity CV =
(
∂U
∂T

)
V
goes to 0 as T → 0.

Proof. We know that changes in energy are related to changes in volume and entropy by the equation

dU = −PdV + TdS,

so

CV =

(
∂U

∂T

)
V

= T

(
∂S

∂T

)
V

(because dV = 0 when we take these derivatives). And now if we integrate CV
T , we get the entropy difference between

different temperatures, as mentioned, and if S goes to a constant (possibly zero, but it doesn’t matter if we do

something like in the above example), then T
(
∂S
∂T

)
V
must go to 0 as long as our derivative is well-behaved.

We can also write

T

(
∂S

∂T

)
V

=

(
∂S

∂(lnT )

)
V

,

and then we’re saying that S, if we treat it as a function of lnT , goes to a constant as − lnT goes to infinity. We

can similarly show that the specific heat CP = T
(
∂S
∂T

)
P
at constant pressure, as well as the the thermal expansion

coefficient
(
∂V
∂T

)
P
, go to 0, but we won’t show that here. We can try deriving this on our own.
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Remark 100. We can check that in a polymer (like on our quiz) or in other materials, it’s possible for
(
∂V
∂T

)
P
to be

negative, because systems can have more entropy when coiled than when stretched out. (This is sometimes called an

entropic force, and this comes up in many situations.)

We’re going to shift gears now to a concrete example, so that we can illustrate the use of the canonical ensemble.

Example 101

In a “classical” ideal gas, the translational motion of atoms or particles is classical, but the internal motion within

those particles may not be classical.

We’ll start by proving an important result from classical statistical mechanics. To start, let xi be any of the pi or

qi degrees of freedom in a system, and consider〈
xi
∂H

∂xj

〉
=

1

N!

1

Z

∫ ∏
i

d3qid
3pi

(2π~)3
xi
∂H

∂xj
e−βH,

and now
∂

∂xj
e−βH = −β

∂H

∂xj
e−βH,

meaning that 〈
xi
∂H

∂xj

〉
= −

kBT

N!Z

∫ ∏
i

d3qid
3pi

(2π~)3
xi
∂

∂xj
(e−βH).

We can now integrate this by parts – we put the xj -derivative on the xi , and that gives us

=
kBT

N!Z

∫ ∏
i

d3qid
3pi

(2π~)3
δi je

−βH.

(The boundary term is gone, because e−βH makes those contributions negligible. We can object about the potential

energy not being large at the boundary, but in any case these are boundary calculations which will not scale with N in

the same way. We’re going to apply this to Hamiltonians that are quadratic in the p and q, anyway.) So now the xi
is either pi or qi , so we’ll specialize to two certain situations: if xi = xj = pi , we find that〈

pi
∂H

∂pi

〉
= kBT

(because this integral defines the partition function and we cancel out the Z in the denominator), meaning that〈
p2
i

2m

〉
=
kBT

2
.

This means we can, for example, calculate the average kinetic energy in the x-direction for our system for a single

particle. And now let’s specialize to Hamiltonians of the form

H =
∑
i

p2
i

2m
+

1

2

∑
i ,j

ui jqiqj ,

which is a generalized simple harmonic oscillator. (This is a good approximation for systems that are near their

minimum potential energy.) Then we find that

〈H〉 =
∑
i

〈
p2
i

2m

〉
+

1

2

∑
i j

ui j 〈qiqj 〉,
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and now we can use the fact that 〈
qi
∂H

∂qj

〉
= ui j 〈qiqj〉 = δi jkBT.

Therefore, we find that ∑
i ,j

1

2
ui j 〈qiqj〉 =

3NkBT

2
,

and putting together all of our calculations leads us to the following result:

Theorem 102 (Equipartition theorem of classical stat mech)

Each quadratic degree of freedom contributes kBT
2 to the total energy:

〈H〉 = 3NkBT.

In particular, this tells us that the heat capacity is CV = 3NkB for such a system C, at least within classical

statistical mechanics. And this is important because we can calculate a measurable quantity – the specific heat – for

a broad range of Hamiltonians. But perhaps we should be worried – this seems to mean that if we make a model for

a single atom, where we just have an electron moving in a quadratic potential around the atomic nucleus, we might

be able to keep adding more degrees of freedom and considering internal motion at various energy scales – when do

they contribute to thermodynamics? And this concern was only resolved through quantum mechanics – this was one

of the spots in pre-quantum physics where people realized the theory had serious structural issues.

Next class, we’ll see how quantum mechanics helps us resolve this, and then we’ll look at some more examples.

16 October 7, 2020
An extension has been granted for problem set 3 until Friday at noon, and the next problem set will be due on

Wednesday instead of the usual Tuesday. Next Monday is a holiday (Indigenous People’s Day), so we won’t have

class, but Tuesday will follow the Monday schedule. (So we’ll have classes on Tuesday and Wednesday next week, and

recitation on Friday as usual.) Office hours are adjusted accordingly – there was also a request for additional office

hours, so there will be a new one added on Thursdays, either in the morning or evening.

We’ll continue to examine the “classical” ideal gas today. Last time, we discussed the classical equipartition theorem

for quadratic Hamiltonians, which holds when we have

H =
∑
i

p2
i

2m
+

1

2

∑
i j

ui jqiqj ,

where we’re summing over the degrees of freedom. What we found then was that 〈H〉 = U = 3NkBT , meaning that

the heat capacity is C = 3NkB: one way to state this equipartition theorem is that “each quadratic degree of freedom

contributes kBT
2 to the total energy.”

This theorem doesn’t hold in a quantum description of the same system, though – if we have a system like

H =
∑
i

p2
i

2m
+

1

2
mω2

∑
i

q2
i ,

meaning we have 3N identical simple harmonic oscillators, then each oscillator has a spectrum Eni =
(
ni + 1

2

)
~ω, and

now we can calculate the thermodynamic properties by looking at these energy levels.

First of all, because the oscillators are decoupled, the total partition function is the partition function of a single
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simple harmonic oscillator, raised to the 3Nth power:

Z =

( ∞∑
n=0

e−β(n+ 1
2 )~ω

)3N

.

Remark 103. We don’t include the 1
N! Gibbs factor here, because we’re thinking about a situation where the 3N

oscillators are all distinguishable (they sit in different orientations in phase space). This is different from having two

electrons which can be swapped around because they are completely indistinguishable.

This inner term is a geometric series:

ZSHO =

∞∑
n=0

e−β(n+ 1
2 )e−β~ω/2(1 + e−β~ω + e−2β~ω + · · · ) =

e−β~ω/2

1− e−β~ω .

Therefore, the internal energy of a single simple harmonic oscillator is

USHO = −
∂

∂β
lnZSHO =

~ω
2

+
~ωe−β~ω

1− e−β~ω .

The first term here is the ground state energy, and the second is the energy of our thermally excited states (since the

harmonic oscillator can be in each of those higher-energy states with some probability). And the internal energy of

the whole system of simple harmonic oscillators is the sum of the individual internal energies.

Next, we can also find that

CSHO =
dUSHO
dT

= kB

(
~ω
kBT

)2
e−β~ω

(1− e−β~ω)2
.

This is a complicated expression, but we can understand it by looking at the limits of high and low temperature. When

we take T →∞, we have T � ~ω
kB
, and β → 0. So the numerator of the last term can be approximated to 1, and we

keep the first two terms of the expansion of e−β~ω ≈ 1− β~ω in the denominator. This gives us

CSHO(T →∞) ≈ kB
(
~ω
kBT

)2
1

(β~ω)2
= kB.

This is indeed in agreement with classical equipartition. But in the limit T → 0, we have T � ~ω
kB
, and we have

β →∞. So then the denominator of the last term goes to 1, and what we end up with is

CSHO(T → 0) ≈ kB
(
~ω
kBT

)2

e−β~ω.

The blowing up of the ~ω
kBT

term is less significant than the exponential decay here at large β, so this expression goes
to 0 rapidly. But now this second result is in disagreement with classical equipartition, and this is happening

because we have discretized energy states. To understand that, notice that when kBT � ~ω, the differences of energy
~ω are negligible compared to our energy scale, so we get our classical result back again. On the other hand, when

kBT � ~ω, levels are very pronounced, and we have very low population at any excited energy states. In fact, the

probability of occupation satisfies
P (n = 1)

P (n = 0)
= e−~ω/kBT � 1.

So it’s only the ground state that is substantially occupied, and there is very little thermal energy in the system. We

expect then that CSHO should go to zero when kBT � ~ω, and this is the regime where classical equipartition fails.

(In words, at low temperatures, we need very little heat to increase the temperature.)
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Fact 104

If we graph CSHO versus T , the value starts at 0 at T = 0 and approach kB as T gets larger. And the other way

to look at this is that below the scale T = ~ω
kB
, our heat capacity starts to drop noticeably.

And this also helps us turn to the question of “why we don’t care about internal degrees of freedom” (for example,

if there are moving parts inside an atom or molecule). Classical equipartition would tell us that we should get an

order-1 contribution from each of these, giving us an infinite heat capacity if we keep looking deeper, but quantum

mechanics tells us that we suppress contributions of modes with arbitrarily high energy scales (we can assume

those degrees of freedom have settled into their ground states, and we just focus on things active at the temperature

we’re working with). This resolved some of the 19th century issues with classical statistical mechanics.

Example 105

Let’s consider the specific heat of a diatomic gas, which is something that could be measured in the 19th century

but not properly explained by statistical mechanics. We’ll assume the two atoms in the molecule are distinct (like

carbon monoxide).

Such a diatomic molecule has various degrees of freedom: translations of the whole molecule, rotations of the

molecule axis, vibrations of the two nuclei about their mean separation, and excitations of the internal electronic

structure. But the electronic excitations tend to have a high energy – the energy scale in a small molecule is on the

order of an electron-volt (eV), but we’re considering the diatomic molecule at temperatures around room temperature.

And an electron volt corresponds to 104 Kelvin (since 1 eV
kB
≈ 104 K), so experiments at order room temperature (give

or take an order of magnitude) will treat 104 Kelvin as a huge number. So we’ll forget about electronic excitations
completely here, for the same qualitative description as we described in the SHO just now.

Our molecule is then essentially two balls connected with a spring, and what matters to us at our given temperatures

is the nuclear motion. This means we can write the Hamiltonian of our diatomic gas as

H = Ht +Hr +Hv +He ,

corresponding to translations, rotations, vibrations, and electronic excitations, respectively, and use that to get our

partition function

Z = ZtZrZvZe .

• By assumption that we’re working at kBT � (electronic excitation energy), we can set Ze to a constant 1.

• We can now look at the rotational Hamiltonian, which corresponds to the rotation of the vector connecting the

center of the two atoms. Then

Hr =
~L2

2I
,

where ~L is the angular momentum of the rotations, and I is the moment of inertia. Then remember that ~L2 has

eigenvalues `(`+ 1), where each ` ∈ {0, 1, 2, · · · } has degeneracy 2`+ 1. Therefore, our rotational energies are

Er =
~2`(`+ 1)

2I

with (2`+ 1)-fold degeneracy, and now we can calculate the partition function

Zr =

∞∑
`=0

(2`+ 1)e
−β~2`(`+1)

2I .
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Instead of calculating this explicitly, we’ll look at the high and low temperature limits directly. If kBT � ~2

2I , then

only the ` = 0 state will be occupied, and our partition function will be approximately 1. (At small temperatures,

the corrections are exponentially small, so the heat capacity contributions are exponentially small as well.) On

the other hand, when kBT � ~2

2I , many levels are thermally excited, meaning we can approximate with the

classical limit by converting the sum over ` into an integral. Then

Zr (T ) ≈
∫ ∞

0

d`(2`+ 1)e
−β~2`(`+1)

2I ,

and we’ll change variables x = `(`+ 1) =⇒ dx = (2`+ 1)d`, meaning that at high temperaure,

Zr (T ) ≈
∫ ∞

0

dxe−β~
2x/2I =

2IkBT

~2
.

We can also calculate the average rotational energy for high

Ur (T ) = 〈Er 〉 = kBT.

This is again consistent with classical equipartition.

So what matters is the actual energy scale, and for a typical molecule, the spacing between energy levels is on

the order of ~
2

I , which is on the order of 10−4 eV. And since this corresponds to a few degrees Kelvin, we are

typically working in the limit where kBT � ~2

I at room temperature, so we do want to factor in this factor of

kBT into our heat capacity.

• Now we turn to the vibrational Hamiltonian Hv as a one-dimensional simple harmonic oscillator, in which

Hv =
p2

2µ
+

1

2
µω2x2,

where x and p are the relative position and momenta of the vibration to center-of-mass equilibrium, and µ is the

reduced mass. Then we have that

En =

(
n +

1

2

)
~ω,

and what matters to us here is the typical frequency of the vibration. It turns out ~ω is on the order of 0.1 eV,

corresponding to 103 K, which is still larger than room temperature. So whenever T � 103K, we do not treat

this vibration classically, and we have Z ≈ e−β~ω/2 – no contribution to the specific heat is made here.

And just like we’ve been doing in this class so far, translational motion is being treated classically. (As long as

our temperature is above the “degeneracy tempreature” that we’ll talk about for the quantum ideal gas later in this

class, this is okay.) So we get a factor of 3N
2 kB from translation, and at room temperature, we ignore vibrational and

electronic excitations, but we treat the rotations as significant, giving us an additional factor of NkB. This gives us a

final answer of

C =
3N

2
kB + NkB =

5N

2
kB .

And if the temperature drops enough, C will drop to 3N
2 kB when the rotational degrees of freedom become insignificant,

and then further to 0 after that. But that’s something for us to study another time.
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17 October 9, 2020 (Recitation)
Today, we’ll start by finishing our discussion on heat engines and entropy, and then we’ll talk about some ideas related

to the third law and rotational degrees of freedom.

Last time, we discussed Clausius’ theorem, which tells us that over a cycle, the total heat∮
d̄Q

T
≤ 0.

Since reversible processes can be performed in the opposite direction, leading to the negative amount of heat being

transferred, we must have ∮
d̄Qrev

T
= 0.

This allows us to make a state variable definition, independent of path taken:

Definition 106

The difference in entropy between two states is defined as

S(B)− S(A) =

∫ B

A

d̄Qrev

T
.

In particular, this tells us that dS = d̄Qrev
T . We already know by the first law of thermodynamics that

dE = d̄W + d̄Q.

For reversible processes, we have d̄Q = TdS, and we can write d̄W =
∑

i Jidxi (for example, −PdV is one such

possible term in this sum). So then

dE = TdS +
∑
i

Jidxi ,

where we can have terms corresponding to surface tension or magnetic fields or other state variables. The point is

that this equation must be true even if we don’t take a reversible path – it’s possible that d̄W and d̄Q aren’t equal

to
∑

i Jidxi and TdS, respectively, but their sum must still be the total energy change.

Example 107

Suppose we have a gas in a box, and a divider is lifted up so that the gas can do a (non-reversible) free expansion,

where no heat is transferred

But we can also find another way to expand this gas slowly: if we want dE = 0 at all times,

dE = TdS − PdV =⇒ TdS = PdV.

The idea is that we use the gas to push our divider slowly so that heat is transferred, but work is also done. We’ll end

up in the same final state, and we can take the work that we’ve “saved” to push the divider back to the middle of the

box.

And we can say that if we take a (possibly non-reversible) path from A to B, and then we take the reversible path

back, Clausius’ theorem tells us that ∫ B

A

d̄Q

T
+

∫ A

B

d̄Qrev

T
≤ 0,
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and then taking differentials simplifies this equation to

d̄Q

T
− dS ≤ 0 =⇒ dS ≥

d̄Q

T
= 0.

So this gives us a minimum amount of entropy increase, and in particular if we have an adiabatic process where

d̄Q = 0, we must have dS ≥ 0. (And we’ve arrived back at the second law of thermodynamics!)

We’ll take this opportunity to make a few more connections between concepts of the class. We first defined entropy

in terms of the number of microstates: S = kB ln Ω, and now we can write out

dS =

(
∂S

∂E

)
V

dE +

(
∂S

∂V

)
E

dV =
1

T
dE +

P

T
dV.

Fact 108

The reason for the equality of the second terms is that P = −
(
∂E
∂V

)
S
, and at constant S, we can rearrange our

partial derivatives as

0 = dS =

(
∂S

∂E

)
V

dE +

(
∂S

∂V

)
E

dV =⇒
(
∂E

∂V

)
S

= −
(
∂S
∂V

)
E(

∂S
∂E

)
V

.

Plugging in our definitions, this means

−P = −
(
∂S
∂V

)
E

1/T
.

(And this is the “cyclical property” of partial derivatives:
(
∂X
∂Y

)
Z

(
∂Y
∂Z

)
X

(
∂Z
∂X

)
Y

= −1.)

Rearranging, we find that

dS =
1

T
(dE + PdV ) =

1

T
((d̄Q+ d̄W ) + PdV ).

In a reversible process, we know that d̄Wrev = −PdV , so as long as the work is being done reversibly, this equation

above reduces to dS = d̄Q
T . But in general, we have d̄W > −PdV for a not necessarily reversible process, and this

gives us dS > d̄Q
T . (We can think of the right-hand side of this inequality as “how much entropy the bath loses in heat

transfer.”)

Our next topic will be the third law of thermodynamics – remember that classically, we can’t find the exact value

of S, so the formulation of the law in a classical setting is

lim
T→0

S(T, x) = constant.

(In other words, if we cool down a system, the entropy goes to a constant which doesn’t depend on the volume or

pressure of our system.) In particular, this tells us that

lim
T→0

(
∂S

∂x

)
T

= 0

for any other variable x . Then we can say that

S(T, x)− S(0, x) =

∫ T

0

(
∂S

∂T

)
x

dT =

∫ T

0

Cx(T )

T
dT,

where Cx(T ) is the heat capacity at constant x . And we know that integral is finite, so we must have Cx(T )→ 0 as

T → 0 so that the integral doesn’t blow up.

And now with this behavior of heat capacity Cx in mind, we’ll try to relate CP and CV to each other. First, if we
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use V as our variable x , we can take the equation

d̄Qrev = TdS = dE + PdV,

and we can check that the heat capacity at constant volume is

CV =

(
d̄Qrev

dT

)
V

= T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

,

because at constant volume, we have no work and thus no PdV term. Similarly,

CP =

(
d̄Qrev

dT

)
P

= T

(
∂S

∂T

)
P

.

But TdS = dE + PdV , so we can rewrite this as

=

(
∂E

∂T

)
P

+ P

(
∂V

∂T

)
P

,

and now we know that because E is a function of V and T , which we can vary independently,

dE =

(
∂E

∂T

)
V

dT +

(
∂E

∂V

)
T

dV =⇒
(
∂E

∂T

)
P

=

(
∂E

∂T

)
V

+

(
∂E

∂V

)
T

(
∂V

∂T

)
P

(where we’ve essentially “divided by dT at constant pressure”). At this point, we can substitute the blue expressions

to find that

CP =

(
∂E

∂T

)
V

+

(
∂E

∂V

)
T

(
∂V

∂T

)
P

+ P

(
∂V

∂T

)
P

.

Substituting in our expression for CV above gives us

CP = CV +

((
∂E

∂V

)
T

+ P

)(
∂V

∂T

)
P

.

For an ideal gas, we have
(
∂E
∂V

)
T

= 0, and
(
∂V
∂T

)
P

= NkB
P because PV = NkBT . So ideal gases satisfy

CP = CV + NkB .

We expect both CP and CV go to zero as T → 0, though, so that means that one of the two red terms should go to

zero, and the ideal gas approximation is not valid at zero temperature. (We’ll soon see that both of the red terms

vanish, too.)

Remark 109. What’s breaking down in our classical formulation is that we can only derive something like PV = NkBT

from the classical Hamiltonian of an ideal gas, and the system is not described well at low temperature by this

Hamiltonian. But the other arguments with derivatives are general and work for basically any system.

To bring this back to the third law, we can write S as a function of V and T to find

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV =⇒ CP = T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

(where again we’ve “divided by dT at constant pressure”). Substituting in this time gives us

CP = CV + T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

.
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So we have two different ways to relate CP and CV together, and in fact the “correction” error terms needs to line

up. But in this latter case, it’s more clear that the correction goes to 0 as T → 0, because we have an explicit T term

showing up.

We can notice that the expansivity term
(
∂V
∂T

)
P
shows up in both red terms, and we’re interested in how it behaves

as T → 0. Notice that

dE = TdS − PdV =⇒ dG = d(E − TS + PV ) = −SdT + V dP,

where G is the Gibbs free energy. This is useful for us because it leads us to a Maxwell relation: taking the mixed

partials of E in either order gives us (
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

.

And since S goes to a constant as T → 0, S cannot vary as a function of P in the limit, and therefore this is indeed

0 (as long as we ignore smoothness concerns). Maxwell’s relations (which we get by taking mixed partial derivatives)

may not be super intuitive, but their point is to give us connections between different state variables changing in

different ways.

Fact 110

The point is that we can describe a system like an ideal gas with any two variables, even though we have variables

P, S, T, V, E, G and so on. So that gives us a lot of connected constraints, and that’s why we work with so many

partial derivatives. (And if we introduce new variables in pairs, like the number of particles and chemical potential,

that will usually give us two more variables, but only one more degree of freedom. So we will always have added

structure in that sense!)

We’ll finish this recitation with some small comments. First of all, we’ll talk about rotational degrees of freedom

– suppose we have N atoms, meaning that we have 3N position degrees of freedom (along with their conjugate

momenta). We can track the number of translational, rotational, and vibrational degrees of freedom in the following

table:

# atoms T R V

1 3 0 0

2 3 2 1

3 collinear 3 2 4

3 non-col. 3 3 3

N ≥ 3 collinear 3 2 3N − 5

N ≥ 3 non-col. 3 3 3N − 6

We can confirm that the sum always adds up to 3N, but we can explicitly check in each of these cases where

each of the translational and rotational degrees of freedom are coming from. If we’re in the classical limit, we know

that translational and rotational degrees of freedom each contribute 1
2kBT to the total energy, while the vibrational

degrees of freedom each contribute kBT (because we also get energy from the momentum, since we have a harmonic

oscillator). For example, when we write down the rotation Hamiltonian for the non-collinear case,

Hrot =
1

2

(
L2
x

Ix
+
L2
y

Iy
+
L2
z

Iz

)
,

we’re doing this in body-fixed coordinates (meaning that Lx is always referring to the same type of rotation with
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respect to the object Ix). On the other hand, we often write down the rotation Hamiltonian for the collinear case

Hrot =
1

2I
L2

in space-fixed coordinates, because everything is in a line and the orientation doesn’t matter. The point is that

quantizing the collinear Hamiltonian is much easier than doing so for the body-fixed non-collinear Hamiltonian, so we

need to be a lot more careful in the latter case.

Finally, let’s consider an adiabatic expansion of an ideal gas to connect some of today’s topics together: since

energy can be written as α(PV ) for some constant α,

0 = d̄Q = dE − d̄W = αd(PV ) + PdV.

This tells us that

αV dP + (α+ 1)PdV = 0,

or

0 =
dP

P
+
α+ 1

α

dV

V
,

and therefore PV γ is a constant, where γ = α+1
α . And if f is the number of degrees of freedom that we have in our

system, we have α = f
2 by equipartition, so γ =

α+ 1

α
=
f + 2

f
=
CP
CV

. This argument only works for an ideal gas,

so it isn’t a general statement, but it’s commonly used. And this ratio CP
CV

can be defined for any gas, and we’ll see its

uses later on as well.

For example, when N = 1 (a single atom), we have γ = 5
3 , and when N = 2 (a diatomic gas), and we assume only

rotational and translational degrees of freedom are engaged, γ = 7
5 . The idea is that the more degrees of freedom we

have, the more it doesn’t matter whether we heat at constant pressure or constant volume – the heat is just going

towards internal degrees of freedom, and how the work is being done externally doesn’t contribute very much.

18 October 13, 2020
We’ll talk about equilibration of systems that can exchange particles, introducing the concepts of chemical potential

and the grand canonical ensemble. From here, we’ll discuss the kinetic theory of gases, but before that, we’ll make a

clean break and take some time to answer general questions about the material so far.

Example 111

Consider a cup of hot water sitting outside, which evaporates slowly into the atmosphere. Then the system (cup)

is exchanging particles with its surrounding environment, and we want to be able to describe that.

Our first step is to determine what conditions must hold at equilibrium – for example, we’ve already seen constraints

on temperature or pressure if we allow for energy or volume to be exchanged. The analysis will look similar in this case

– we start from the microcanonical ensemble.
Call our large system A1, and suppose it’s in contact with a larger system A2 (a bath) with which it can exchange

energy and particles. As always, we say that A2 typically has many more degrees of freedom than A1. Then if we

want to describe some given microstate r of A1, we need to specify its energy Er and particle number Nr . Letting E0

and N0 be the total energy and number of particles in the (isolated) composite system A1 + A2, just like before, we
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can write that

P(A1 in state r) ∝ Ω2(E0 − Er , N0 − Nr ),

and we can write this (as usual) in terms of the entropy as

= exp

(
1

kB
S2(E0 − Er , N0 − Nr )

)
.

We can Taylor expand this exponent, since Er � E0 and Nr � N0 when A1 is “small” compared to A2. This yields

1

kB
S2(E0 − Er , N0 − Nr ) ≈

1

kB
S2(E0, N0)− βEr − αNr + · · · ,

where β = 1
kB

∂S2

∂E is the usual inverse temperature, and we define α = 1
kB

∂S2

∂N0
. So this tells us that

p(r) ∝ e−βEr−αNr ,

and therefore we can write the probability distribution explicitly as

p(r) =
1

ZG
e−βEr−αNr ,

where ZG is the grand partition function
ZG =

∑
r

e−βEr−αNr .

(This is naturally called the grand canonical distribution / ensemble.) It turns out that using this probability

distribution for calculations is just as valid as using either the microcanonical or canonical ensemble, and the justification

for the switch will be similar as the passage from microcanonical to canonical ensemble. But certain calculations will

be easier in certain frameworks than others, and we’ll see it in great effect when we deal with quantum ideal gases.

We traditionally write the probability in a slightly different form

pr =
1

ZG
e−β(Er−µNr ) ,

where µ = −kBTα is the chemical potential of the system. So just like in the canonical ensemble, we can define

equilibrium between our systems A1 and A2 to be where β, α (if they can exchange particles), P (if they can exchange

volume), and other variables are all equal for the two systems, meaning that

T1 = T2, P1 = P2, µ1 = µ2.

Fact 112

We will soon see that the equations of state tell us more about how these different state variables are related –

for example, P will be a function of T and µ in a gas, so whenever this condition can be satisfied, we must have

the same equation of state everywhere to actually reach equilibrium.

We can do a similar calculation as with the canonical distribution to find that the grand canonical probability

distribution is sharply peaked for both energy and particle number around the mean values 〈E〉 and 〈N〉. (In other

words, we have that
width of distribution
mean of distribution

∼
1√
N
→ 0

in the limit N → ∞.) This will show up on our homework, and the consequence is that we can work in either the

microcanonical, canonical, or grand canonical ensembles in the thermodynamic limit.
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We can write down the definition of the chemical potential as a partial derivative

µ = −kBTα = −T
(
∂S

∂N

)
V,E

.

And we can write our grand partition function as an integral

ZG =

∫
dE
∑
Nr

Ω(Er , Nr )e
−β(Er−µNr ) =

∫
dE
∑
Nr

exp

(
1

kB
S(Er , Nr )− β(Er , Nr )

)
.

If we do the
∫
dE
∑

Nr
in a saddle-point approximation, we find that the integral is dominated by its maximum value,

which occurs when Er , Nr are at their mean 〈E〉 and 〈N〉. So in the thermodynamic limit,

ZG = exp

(
1

kB
S − β(〈E〉 − µ〈N〉)

)
= e−β(〈E〉−TS−µ〈N〉,

where we’re defining S to take on its value at the equilibrium E = 〈E〉, N = 〈N〉. This leads us to define a new energy,

much like the Helmholtz free energy, via

ZG = e−βg =⇒ g = U − TS − µN .

(Here, g is called the grand potential.) Because fluctuations are small, we’ll use the same symbol for N and 〈N〉.
Now, we’ll spend some time doing calculations in the grand canonical distribution, obtaining formulas in terms of

the partition function. First of all, we know that

〈N〉 =
1

ZG

∑
r

Nre
−β(Er−µNr ) =

1

ZG

1

β

∂

∂µ
lnZG .

Plugging in a definition tells us that

〈N〉 = −
∂g

∂µ
.

Similarly, we can try to calculate the average energy via

〈E〉 =
1

ZG

∑
r

Ere
−βEr−µNr =

1

ZG

∑
r

(Er − µNr )e−β(Er−µNr ) + µNre
−βEr−µNr .

This reduces, using the previous result, to

=
1

ZG

(
−
∂

∂β
ZG

)
+ µ〈N〉,

so

〈E〉 =
∂

∂β
(βg) + µ〈N〉 = g − T

∂g

∂T
+ µ〈N〉 .

And now we can look at the alternate definition of our entropy in terms of the probability distribution:

S = −kB
∑
r

pr ln pr = −kB
∑
r

pr (−β(Er − µNr )− lnZG) ,

which can be written further as

= βkB〈E〉 − µkBβ〈N〉 − βgkB.

Putting this all together, we find that

S =
U

T
−
µN

T
−
g

T
,

and indeed rearranging this recovers the same g = U −TS−µN that we defined thermodynamically using the saddle-
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point approximation. Remembering our definition of the Helmholtz free energy F = U − TS from the canonical

partition function, we can also write down the equation g = F −µN. Since g is a function of variables T, V, µ, we can

first understand how g varies as we vary each of those quantities. (This gave us relations between other thermodynamic

quantities, like dF = −SdT − PdV , and we want to do the same thing here.) Notice that (we’ll use E for energy

instead of U)

µ = −T
(
∂S

∂N

)
E,V

and we also know that
1

T
=

(
∂S

∂E

)
N,V

.

Since S is generally a function of E, V, N, and we know that(
∂S

∂V

)
E,N

=
P

T

from previous work, we know all three derivatives of entropy, and thus we can write

dS =
1

T
dE +

P

T
dV −

µ

T
dN =⇒ dE = TdS − PdV + µdN .

So when we’re allowed to vary the number of particles that we have, we get an extra term +µdN which can also

change the total energy of our system. (Even though N is always an integer, because it is very large, it’s okay to take

dN here.) Then

dF = d(E − TS) = −SdT − PdV + µdN,

again generalizing what we had earlier at fixed particle number, and finally

dG = d(F − µN) = −SdT − PdV − Ndµ.

And now we have the equation for how G varies in terms of T, V, µ – all the derivatives are just thermodynamic

quantities that we’ve already seen. In particular, this tells us that

N = −
(
∂g

∂µ

)
T,V

,

which is in agreement with earlier results, and similarly

S = −
(
∂g

∂T

)
µ,V

, P = −
(
∂g

∂V

)
T,µ

.

But we know that g = g(T, V, µ) is an extensive quantity – it’s proportional to V in the thermodynamic limit – and V

is obviously extensive, while T and µ are not. So we must be able to write down

g = V g(T, µ)

for some function g, and therefore

P = −
(
∂g

∂V

)
T,µ

= −g(T, µ) = −
g

V
.

This means that PV = −g – being able to calculate the grand potential g indeed gives us an explicit equation of

state.
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Example 113

Let’s calculate the grand partition function for a classical ideal gas.

We have that

ZG =

∞∑
N=0

1

N!

∫ ∏
i

d3qid
3pi

(2π~)3
exp

(
−β

~p2
i

2m
+ βµN

)
(the Gibbs factor becomes even more important now). For any fixed N, this should be familiar to us, because it’s the

same answer as for our canonical ensemble. We end up with

ZG =

∞∑
N=0

(
eβµN

N!

)
V N

λ3N
,

where λ = h√
2πmkBT

is the thermal de Broglie wavelength. And now this is really an exponential series when we sum

over N: we end up with the answer

ZG =

∞∑
N=0

1

N!

(
eβµV

λ3

)N
= exp

(
eβµV/λ3

)
.

So the grand potential

g = −
1

β
lnZG = −

1

β
eβµ

V

λ3
,

and now we notice that our volume only appears as a prefactor, exactly as we asserted earlier. And

N = −
(
∂g

∂µ

)
V,T

= eβµ
V

λ3
,

which also tells us how to think about the chemical potential

µ = kBT ln
Nλ3

V
= kBT ln(nλ3) ,

where n = N
V is the particle density.

Remark 114. We’ll see that this classical treatment is appropriate (at high temperature) as long as nλ3 � 1, so that

µ < 0 in a classical ideal gas. But in a quantum ideal gas, at low temperature when nλ3 becomes comparable to 1,

we need to start thinking about quantum statistics. Then the chemical potential will sometimes evolve in such a way

that µ can be positive (for example, for fermions).

From here, we can calculate the pressure by taking a volume-derivative, and we find that for a classical ideal gas,

P = −
(
∂g

∂V

)
µ,T

=
kBTe

βµ

V λ3
= nkBT =

NkBT

V
,

again recovering the usual result.

19 October 14, 2020
Today’s class is spending the first half an hour on questions from students.

• First, we should make sure to keep track of our fundamental assumptions – the laws of thermodynamics come

from statistical mechanics, and they’re statements about average quantities, so we don’t need to assume them
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separately. And stat mech generally lets us calculate fluctuations, rather than just average values, which is much

more powerful.

• We’ve seen a lot of state functions that are “functions of different things” – to get some intuition for why S

is naturally a function of U, V, N, while g is naturally a function of other variables, we can think about what

we’ve discussed so far in a general manner. Microscopically, we don’t know anything about pressure or chemical

potential, but we do know about the values of conserved quantities like energy or particle number if we’re looking

from a totally microscopic point of view (such as the microcanonical distribution). So defining S = kB ln Ω(E)

means that it makes sense our entropy is naturally a function of conserved quantities.

And from here, we do thermodynamics: putting systems in contact with heat baths, allowing us to exchange

these conserved quantities, give us new state variables that can be written as partial derivatives. Defining

partition functions based on our newly established probability distributions will naturally lead us to define Z in

terms of new “free energies,” which explains why we end up using the thermodynamic conjguate variables (for
example, N versus µ in yesterday’s class).

• The point of going to this generalized probabiltiy distribution is (1) that it represents a real physical system,

or that (2) (even if our system is sort-of isolated, so it can’t actually exchange quantities with a bath) it’s

convenient to pretend we can exchange particles and energy and use the grand canonical distribution to do

calculations.

• Including the Gibbs factor or not in the calculation of the partition function depends on whether we have

distinguishability – it’s a question about the structure of the underlying Hilbert space. We’ll discuss more details

of this later in the course.

• If we have a mixture of two different atoms in a gas, the third law of thermodynamics doesn’t actually tell us

that the two types of atoms need to spatially separate – it just says that the system will evolve in some way that

makes the entropy go to 0. (In this case, the two different types of atoms will form solids, which indeed have

zero entropy at absolute zero.)

(Some discussion also occurred about exams and problem sets, which has been omitted here.)

For the next few weeks, we’ll be talking about the kinetic theory of gases and the approach to equilibrium, and

then we’ll return to studying equilibrium of quantum gases, photons, phonons, Fermi and Bose gases, and so on. But

the framework established in the past few lectures is the basic framework for statistical mechanics.

We’re going to start looking at dynamics of our systems now, which we’ve been ignoring so far in our study.

Fact 115

The specific model that kinetic theory of gases is concerned with is a dilute gas of N atoms in a box of volume

V which we can describe with classical mechanics, where two atoms interact only at close range.

If we consider the distribution of our particles in position-momentum phase space, and we look at a small volume

d3qd3p (note that “small” here means that the spacing is small compared to macroscopic dimensions, but still large

compared to h3). Then we’ll define f (~q, ~p, t) to be the distribution of atoms, so that our small-volume box contains

f (~q, ~p, t)d3qd3p total atoms.

So far, we’ve been assuming that in the absence of external time-dependent forces, we’ll reach an equilibrium:

lim
t→∞

f (~q, ~p, t) = feq(~q, ~p).
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Throughout this time-evolution, the total number of particles in our entire gas,

N =

∫
d3qd3p f (~q, ~p, t)

must stay constant. But f (~q, ~p, t) may evolve because of changes in (~q, ~p), either due to (1) collisions between

particles or (2) external forces.

Fact 116

We’ll ignore the first factor for now and try to write down an equation for f (~q, ~p, t), and then later we’ll take into

account interparticle collisions.

After a time δt passes, we know that f (~q, ~p, t)d3qd3p evolves into f (~q′, ~p′, t + δt)d3q′d3p′, where

~q′ = ~q + ~̇q δt, ~p′ = ~p + ~̇p δt,

and ~̇q, ~̇p are determined by the dynamics of the system. But we know from an earlier lecture that d3q′d3p′ = d3qd3p

(phase space volume stays constant), so we must have

f (~q′, ~p′, t + δt) = f (~q, ~p, t).

(In other words, if we look at the value of our density f in our time-evolving coordinates, it will stay the same.) Taylor

expanding, we find that to first order,

δt

(
~̇q ·
∂f

∂~q
+ ~̇p ·

∂f

∂~p
+
∂f

∂t

)
= 0.

And now we have ~̇q = ~p
m by definition, and also the only way momentum can change is due to external forces (since

we’re ignoring collisions), meaning that ~̇p = ~F . (Again, we’re lumping in close-range interactions into “collisions,” so

for now we’re assuming the particles move independently of each other.) So this tells us that (we’re basically looking

at the total time-derivative of f )
∂f

∂t
+
~p

m

∂f

∂~q
+ ~F ·

∂f

∂~p
= 0.

Our next step is to modify this equation in terms of collisions, which can “kick” particles in and out of our given volume

element d3qd3p. Our equation then becomes

∂f

∂t
+
~p

m

∂f

∂~q
+ ~F ·

∂f

∂~p
=

(
∂f

∂t

)
coll.

,

where
(
∂f
∂t

)
coll. d

3qd3p is the net rate of flow of particles into our volume element d3qd3p. In order to calculate this,

we’ll need to make a few simplifying assumptions:

• We only have binary collisions (particles intersect pairwise), which is a reasonable assumption if our gas is dilute

and the range of interaction is small enough.

• We ignore the effects of the wall of the container for our gas (these are just boundary condtiions).

• We’ll also ignore the effects of external forces on the collision cross-section:
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Definition 117

The collision cross-section σ(Ω) is define via

σ(Ω)dΩ =
number of atoms deflected with a solid angle between Ω and Ω + dΩ per unit time

incident flux
,

where the incident flux is the number of atoms that cross a unit area perpendicular to the incident beam

per unit time.

In other words, we have an incoming flux of a beam of particles that scatter off of some object, and then we

care about the density of appearance at each angle off of the object. (This is useful for calculating the strength

of a scattering interaction.)

• The momentum of two atoms in the same volume element d3q are uncorrelated with each other. More explicitly,

if we condition two atoms’ probability distributions such that they’re near each other in position, then their

momenta are independent.

This last assumption tells us that “collisions between particles generate enough randomness,” and it’s a bit harder

to justify than the other ones. We may find more information about it under the name “molecular chaos.” (We only

need to make the assumption about momentum at short range to calculate f as a function of time, but we’ll see soon

why this is useful.)

20 October 16, 2020 (Recitation)
A poll for office hours was sent out, and the most popular time was Monday at 1pm, so that will be the new time.

Example 118

We’ll start this recitation by discussing chemical reactions, seeing how high-school chemistry connects to the

physics we’ve been doing.

First of all, consider the equation

dS =
1

T
dE +

P

T
dV −

∑
α

µα
T
dNα,

where we’re defining different kinds of particles α that can change into one another, but no particles can be exchanged
with the environment. (Here, µα is the chemical potential for particle type α.) We reach equilibrium when Stotal =

S + SE is maximized, where SE is the entropy of the environment, meaning that dS + dSE = 0.

But notice that

dSE = −
1

T
dE −

P

T
dV

(the negative signs because these are for the environment, not the system), so at constant energy E and volume V ,

equilibrium is equivalent to dS = 0, and that’s the same as saying that∑
α

µαdNα = 0

if dE, dV = 0. And in fact, this condition is equivalent regardless of whether E and V are constant, because the

entropy changes from the system and environment cancel out with each other.
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And now remember that
µα
T

=

(
∂S

∂Nα

)
E,V

,

but working with constant E and V is inconvenient, so we want to try to work with different state variables. First of

all, because TdStotal = TdS + TdSE , we have

TdStotal = TdS − dE − PdV = −dF − SdT − PdV

using the definition of free energy (because d(TS) = TdS+SdT ), so at equilibrium, we can alternatively say that at

constant T and V , dF = 0. And similarly, we can write things in terms of the Gibbs free energy: because G = F +PV ,

and d(PV ) = PdV + V dP , we have

TdStotal = −dG − SdT + V dP.

So at constant temperature and pressure, equilibrium is equivalent to dG = 0. (And maximizing entropy is equivalent

to dF or dG being minimized here.) Chemical experiments are easiest to do at constant temperature and pressure,

because keeping volume constant requires a strong surrounding apparatus and so on. (And this helps us deal with

intensive variables, which are potentially nicer than extensive ones – the only relevant extensive quantity is now the

number of atoms for each of our different substances.)

Fact 119

Unless the entropy of a system is constant, we won’t really be wanting to minimize energy E (we’d have the

constraints that V, S are constant, which is a hard thing to do physically). And fundamentally, the point is that

we’re writing in terms of different variables.

So suppose that we have some chemical equation of the form

a1A1 + a2A2 + · · ·
 b1B1 + b2B2 + · · · .

(The a1, a2, · · · , b1, b2, · · · are coefficients, and the A1, A2, · · · , B1, B2, · · · are the different molecules in the balanced

equation.) If this is the only way our particles can exchange with each other, then

dNAj = −ajdx, dNBi = bidx,

where x is the reaction coordinate tracking how far along our reaction has moved. On the other hand, we also know

that (copying an equation from above)

0 = dG = −SdT + V dP +
∑
α

µαdNα,

and we’re working at constant temperature and pressure, so

0 =
∑
α

µαdNα =

∑
i

µBibi −
∑
j

µAjaj

 dx,
which means equilibrium is achieved at ∑

i

µBibi =
∑
j

µAj aj .
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We know that µα is defined to be
(
∂G
∂Nα

)
T,P

For an ideal gas, it turns out that

µα = ∆G0
α + kBT ln

P

P0
,

where P0 is standard pressure, T is measured in Kelvin, and ∆G0
α = µ0

α is the Gibbs free energy per atom at standard

pressure. We’ll prove this at the end of class (this turns out to also work for “ideal solutions” if we replace P
P0

with the

concentration [α]).

Remark 120. Everything here is being measured “per atom,” which is why we have kBT instead of RT in the boxed

equation.

The reason these equations are useful is because values of ∆G0 is usually listed in a table or on Wikipedia for

various materials, and we can look them up when needed. But we can substitute these values into our equilibrium

condition to find that ∑
i

bi(∆G0
Bi

+ kBT ln[Bi ]) =
∑
j

aj(∆G0
Aj

+ kBT ln[Aj ]).

(The terms with natural logs of the concentrations can be thought of as “entropy factors” – remember that we’re

using units so that the concentrations are 1 at standard pressure.) And now the quantity

∆G0
rxn = −kBT ln

(∏
i [Bi ]

bi∏
j [Aj ]

aj

)
= −kBT lnKeq,

can be calculated by looking up the individual G0s for our particles (and scaling by the coefficients). This Keq is exactly

the equilibrium constant we’re used to from high school chemistry, and now we have a proof of this fact.

Note that we’ve used the ideal gas assumption here, and we always do this in high school chemistry – it allows us to

calculate the exact chemical potential in terms of the concentration of our species. But that’s an approximation, and

if we’re being more precise, we need to replace the concentration with an effective concentration called the activity.

Example 121

Let’s now turn to the microcanonical, canonical, and grand canonical ensembles and compare how they behave.

In a microcanonical ensemble, we have a function Ω = Ω(E, V, n), which is a function of all conserved (extensive)

quantities, and we define S = kB ln Ω . In the canonical ensemble, we consider a partition function instead, which can

be written as ∫
dEΩ(E, V, N)e−βE =

∫
dEeS/kB−βE ≈

∫
dEe−βF

in the thermodynamic limit. Then F plays a similar role as entropy, because −βF = lnZ .

The Gibbs canonical ensemble wasn’t explicitly mentioned in lecture, but it’s a system where we fix the pressure

instead of the volume. We can write the partition function as (using the same notation as grand canonical ensemble

from lecture, but they’re different)

ZG(T, P,N) =

∫
dV Z(T, V, N)e−βPV .

(Notice that we’re converting extensive quantities to intensive quantities one by one.) We’re basically using e−βPV to

penalize volumes based on their effect on the environmental entropy here, and now we can rewrite as

= dV e−β(F+PV ) ∼ e−βG .
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So this means that −βG = lnZG for the Gibbs partition function ZG . And more generally, we can write

ZG(T, J, N) =

∫
dxZ(T, x, N)eβJx ,

where J and x form a conjugate pair of variables. This simplifies to

=

∫
dxe−β(F−Jx),

and now remembering that like we found in the canonical ensemble,

〈Em〉c = (−i)m
∂m lnZ

∂βm
,

we can also find the cumulants of x via

〈xm〉c =
1

βm
∂m lnZG
∂Jn

.

And finally, let’s consider the grand partition function, which we’ll denote

Q(T, V, µ) =

∫
dNZ(T, V, N)eβµN .

(Here, the idea with the “penalty” factor is that exchanging particles changes the entropy of the environment as well.)

Similarly, we write this as

=

∫
dNe−β(F−µN) = e−βg,

where g is the Gibbs potential.

Example 122

By this point, we’ve made energy, volume, and number of particles all intensive, but not all at the same time –

we may want to ask what happens if we did this process not to Z, but to ZG .

Then we will find that we have a function R where all variables are intensive:

R(T, P, µ) =

∫
dV Q(T, V, µ)e−βPV =

∫
dV e−β(g+PV ).

But this is not an ensemble – the issue is with this g + PV term, and remember that we found g = −PV from

lecture! The argument here is that we must have

g(T, V, µ) = g(T, µ)V =

(
∂G

∂V

)
T,µ

= −¶(T, µ)V,

and plugging this in either gives us an exponent of zero (if we chose the correct pressure P in terms of T, µ in our

function R), or some constant P − P (T, µ) times V , meaning that the most likely volume is either 0 or infinite. So

the issue is that only one pressure is allowed for given T, µ, and we can’t really use three intensive quantities for

that reason. (And this makes sense – we need to fix the system size in some way to describe it.)

This brings us to our final topic of today, extensivity. If we have an equation like

dE = TdS − PdV + µdN,

writing E as a function of S, V, N, our variables being extensive tells us that

E(λS, λV, λN) = λE(S, V, N).

73



(That is, if our system gets twice as large, we have twice as much entropy, volume, energy, and twice as many

particles.) Taking the derivative with respect to λ at λ = 1, we find that

∂

∂λ

∣∣∣∣
λ=1

= S

(
∂E

∂S

)
V,N

+ V

(
∂E

∂V

)
S,N

+ N

(
∂E

∂N

)
S,V

= E(S, V, N).

But this can be rewritten as

E = ST − V P + Nµ,

meaning that the energy has a very simple form because of extensivity. Then we can derive very simple expressions for

our other state functions:

F = E − TS = −PV + µN,

G = F + PV = µN,

g = F − µN = −PV.

(Alternatively, we could have taken the λ-derivative directly from the definition of extensivity for F,G, or g.) Further-

more, we notice that the product rule gives us

dE = SdT + TdS − V dP − PdV + Ndµ+ µdN,

but we also know that dE = TdS − PdV + µdN by definition, so

SdT − V dP + Ndµ = 0.

And this is the constraint of extensivity: we can’t vary T, P, µ independently of each other, because the contributions

need to cancel out. And now we can write down relations like(
∂µ

∂P

)
T

=
V

N
.

(There’s a small technicality here. If we’re only fixing T , we haven’t actually fixed our system here – we can instead

take
(
∂µ
∂P

)
T,V

or
(
∂µ
∂P

)
T,N

, but neither of those matter because intensive relations are independent of the size of the

system. ) And we can use this to derive the chemical potential for an ideal gas, as promised: then(
∂µ

∂P

)
T

=
kBT

P
=⇒ µ(P ) = µ(P0) + kBT ln

P

P0
,

which is exactly what we wanted to show.

21 October 19, 2020

Our next quiz will be on Monday, October 26, with similar logistics as before (submit by 9am). The only difference from

the previous quiz is that because of the upcoming election, the homework posted tomorrow will be a normal-length

homework, due in two weeks (Monday, November 2). Topics included go up to the kinetic theory of gases.

First of all, answering a question from the class: if we take the energy eigenvalues for the hydrogen atom and

calculate the partition function, we can calculate the partition function and find that the sum diverges. So this tells

us that a single hydrogen atom in thermal equilibrium with a big bath at any nonzero temperature T will be ionized

with probability one, and the bound state is not stable. But usually hydrogen atoms are not alone, and interactions

with other particles will change this behavior in real life (except in outer space!).
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In today’s lecture, we’ll discuss the kinetic theory of gases some more. Recall that we derived the following equation

for the distribution f (~q, ~p, t) of particles:

∂f

∂t
+
~p

m
·
∂f

∂~q
+ ~F ·

∂f

∂~p
=

(
∂f

∂t

)
coll
,

where ~F is the external force and the right-hand side of the equation describes changes due to particle collisions. We

wish to write down an expression for the right-hand side using the particle distribution f itself, and recall that we do

this with the following assumptions:

• Only binary collisions occur.

• We ignore the boundary-condition effects of the walls.

• We also ignore the effects of any external forces ~F on the collision cross-section.

• The momenta of two atoms that are in the same spatial volume element are uncorrelated (this is the

assumption of molecular chaos).

In other words, the number of pairs of atoms in a spatial volume d3q with momenta (~p1, ~p2) factorizes into a

product of the form (
f (~q, ~p1, t)d

3q d3p1

) (
f (~q, ~p2, t)d

3q d3p2

)
.

We’re going to run with this as an assumption and try to extract information about the collision of particles in our

system. We know that
(
∂f
∂t

)
coll depends both on particles leaving (~p, ~q) because they collide (short-range) with another

particle, and also on particles that enter a given ~p because of collisions at other positions or momenta into our given

(~p, ~q).

We’ll consider the rate of leaving our given phase volume first. Suppose another particle with momentum ~p1

hits our particle with momentum ~p, and after the collision the particles are scattered into momenta of ~p2 and ~p3,

respectively. Conservation of momentum and energy tell us that

~p1 + ~p = ~p2 + ~p3,
~p2

1

2m
+
~p2

2m
=
~p2

2

2m
+
~p2

3

2m
,

because all of the interactions happen during a short time of collision, and external interactions don’t affect this by

assumption. So if we define the center-of-mass momentum

~P =
~p + ~p1

2
=
~p2 + ~p3

2
,

then the relative momenta are

~prel, i = ~p1 − ~p, ~prel, f = ~p2 − ~p3.

Lemma 123

With the above definitions, the magnitude of the initial and final relative momenta are the same:

|~prel, i| = |~prel, f|.

Proof. We have that (in our usual frame)

~p2 + ~p2
1 =

1

2

[
(~p + ~p1)2 + (~p − ~p1)2

]
.
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The right simplifies to 2~P 2 + |~prel, i|2
2 , but we also know that ~p2 + ~p2

1 = ~p2
2 + ~p2

3. So repeating the argument gives us

2~P 2 +
|~prel, i|2

2
= 2~P 2 +

|~prel, f|2

2
,

and canceling gives the result.

In other words, the direction of the initial and final momenta can be different, but the magnitude must stay the

same in this center-of-mass frame. So now if we have an atom in a phase space volume d3qd3p around (~q, ~p), there

are other atoms within the same spatial volume that can collide with it (we’re using the short-range assumption

here). So the incident flux of such atoms is proportional to the relative velocity:

f (~q, ~p1, t)d
3~p1
|~p − ~p1|
m

.

Therefore, the rate of collisions that deflect a single atom (~p, ~p1) into (~p2, ~p3) is(
f (~q, ~p1, t)d

3p1
|~p − ~p1|
m

)
(σ(Ω)dΩ),

where Ω is the solid angle between ~prel, f = ~p2 − ~p3 and ~prel, i = ~p1 − ~p. Multiplying by the number of atoms that exist

at the (~q, ~p) that we care about, we find that

d3q d3p Rout = (d3q d3p f (~q, ~p, t))

∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

f (~q, ~p1, t) ,

where we can think of σ(Ω) as the cross-section corresponding to this particular collision from (~p, ~p1) into (~p2, ~p3).

The next step is to calculate the rate of particles entering d3qd3p, and we do this by looking at the reverse process

from (~p2, ~p3) into (~p, ~p1). Then the incident flux into our volume element of an atom of momentum ~p2 at location ~q

is

f (~q, ~p3, t)d
3p3
|~p2 − ~p3|

m
,

so the total rate of such collisions into the correct momentum for a single atom is

f (~q, ~p3, t)d
3p3
|~p2 − ~p3|

m
σ(~p2, ~p3 → ~p, ~p1)dΩ.

Thus the total rate requires us to integrate over all possibilities and also account for the density of atoms: since we’re

counting particles scattered in from all initial states, we integrate over p2 to find

d3q

∫
d3p2Rin = d3q

∫
d3p2 d

3p3 f (~q, ~p2, t)f (~q, ~p3, t)σ(~p2, ~p3 → ~p, ~p1)
|~p2 − ~p3|

m
dΩ .

But we also know that ~p+ ~p1 = ~p2 + ~p3 = ~P , and also that the final relative momentum ~prel, f only rotates from ~prel, i.

Therefore,

d3~p d3~prel, i = d3~p d3~prel, f =⇒ d3p d3p1 = d3p2 d
3p3.

And because all of the dynamics work in reverse as well, we know that σ(~p2, ~p3 → ~p, ~p1) = σ(~p, ~p1 → ~p2, ~p3).

Therefore, we can also write the above expressions as

d3q d3p Rin = d3qd3p

∫
d3p1 f (~q, ~p2, t)f (q, ~p3, t)σ(Ω)dΩ

|~p − ~p1|
m

,

and

d3q d3p Rout = d3qd3p

∫
d3p1 f (~q, ~p, t)f (q, ~p1, t)σ(Ω)dΩ

|~p − ~p1|
m

,

76



And putting this all together tells us that(
∂f

∂t

)
coll

=

∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

(f2f3 − f f1),

where f = f (~q, ~p, t) and fα = f (~q, ~pα, t). And now we have an equation that tells us how to calculate how a gas

behaves not at equilibrium:

Proposition 124 (Boltzmann transport equation)

We have
∂f

∂t
+
~p

m
·
∂f

∂~q
+ ~F ·

∂f

∂~p
=

∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

(f2f3 − f f1).

Let’s try to see what consequences this has for us by reconsidering our equilibrium state. If we assume our system

has no external forces, meaning that ~F = 0, then our equilibrium distribution feq should be independent of both ~q and

also t (all positions are equivalent if there’s no external potential), meaning the left side of this equation is 0 when

f = feq. So ∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

(f eq2 f eq3 − f
eqf eq1 ) = 0,

and one sufficient condition for this to hold is if the integrand is always zero, and we can write this as

f eq2 f eq3 = f eqf eq1 =⇒ ln f eq2 + ln f eq3 = ln f eq + ln f eq1 .

So at equilibrium, we have a system where ln f eq2 + ln f eq3 is collision invariant, but for our present model (a gas of

particles at short-range interactions), the only additive collision invariants are ~p and energy E. So this forces us to

write this additive invariant as a linear combination

ln f eq = A+ ~B · ~v + C
p2

2m
,

for some A, ~B,C, and if the entire gas is collectively at rest, we can set ~B = 0. And this leads us to (replacing eA

with A)

f eq = AeCp
2/2m,

which looks a lot like the answer that we know as long as we set C = −β . The constant A is then determined by

the density n = N
V and the temperature T , since

n =

∫
d3pf (~q, ~p, t) = A

∫
d3pe−βp

2/2m = A(2πmkBT )3/2.

We end up with the answer

feq =
n

(2πmkBT )3/2
e−βp

2/2m .

which is the Boltzmann distribution of an ideal gas.

Remark 125. Angular momentum is also conserved, but for a free collection of particles, conservation of momentum

implies conservation of angular momentum – we can’t have a rotating gas without external forces.

This calculation tells us that the Boltzmann distribution is consistent with the Boltzmann transport equation, but

in fact there is a stronger result:
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Theorem 126 (Boltzmann H-theorem)

From a function f (~q, ~p, t), construct a function H(t) =
∫
d3pd3qf ln f . If f satisfies the Boltzmann equation,

then dH
dt ≤ 0.

This should look like a second law of thermodynamics type result, because H is essentially an entropy.

Proof of a simple case. We’ll assume that there is no external force, and that f is independent of ~q. Then

dH

dt
= V

∫
d3p

∂f

∂t
(1 + ln f ),

and now if ∂f
∂t = 0, that implies that dH

dt = 0, and this is precisely the equilibrium condition. But in general, we use

the Boltzmann equation to find
∂f

∂t
=

∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

(f2f3 − f f1),

and we get that
1

V

dH

dt
=

∫
d3pd3p1dΩdσ(Ω)(f2f3 − f f1)(1 + ln f )

|~p − ~p1|
m

.

Interchanging the two dummy variables p, p1, we also have

1

V

dH

dt
=

∫
d3pd3p1dΩdσ(Ω)(f2f3 − f f1)(1 + ln f1)

|~p − ~p1|
m

.

So we can average the two equations together and find

=
1

2

∫
d3pd3p1dΩdσ(Ω)(f2f3 − f f1)(2 + ln f + ln f1)

|~p − ~p1|
m

.

Now changing our coordinates to p2 and p3 instead of p and p1, using that d3pd3p1 = d3p2d
p
3 and that the magnitudes

of the relative momenta are the same, we end up with

=
1

4

∫
d3pd3p1dΩσ(Ω)(f2f3 − f f1)(ln f + ln f1 − ln f2 − ln f3)

|~p − ~p1|
m

,

simplifying to

=
1

4

∫
d3pd3p1dΩσ(Ω)(f2f3 − f f1)(ln(f f1)− ln(f2f3))

|~p − ~p1|
m

.

But the point here is that

(f2f3 − f f1)(ln(f f1)− ln(f2f3)) ≤ 0

always (consider the cases where f2f3 > f f1 and vice versa), and the other parts of the integrand are all positive.

So this quantity is always nonnegative, as desired, with equality only when f2f3 − f f1 = 0, which is again our usual

equilibrium condition.

22 October 21, 2020
Last class, we derived the Boltzmann transport equation, and we checked that we get the correct Maxwell-Boltzmann

distribution if we additionally impose equilibrium. From there, we looked at Boltzmann’s H-theorem, which stated that

dH

dt
=
d

dt

(∫
d3pd3q f (q, p, t) ln f (q, p, t)

)
≤ 0,
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with equality if and only if f is the equilibrium distribution feq.

Fact 127

The form of this expression H looks a lot like the entropy of a probability distribution, and we can in fact show

that H and S look very similar at equilibrium.

If we assume that there are no external forces, we must have

feq = Ae−βp
2/2m

for some A (which we computed last time), and then integrating q out gives us

H = V

∫
d3p feq(p) ln feq(p) =⇒

H

V
=

∫
d3p Ae−βp

2/2m

[
lnA−

βp2

2m

]
.

Now a direct integration gives us

= n lnA− βA
∫
d3p

p2

2m
e−βp

2/2m,

where n is the density of the gas, and now we can evaluate this last integral with∫
d3p

p2

2m
e−βp

2/2m = −
∂

∂β

(∫
d3p e−βp

2/2m

)
= −

∂

∂β

( n
A

)
.

Since n is a constant independent of temperature (and thus independent of β), we find that

H = n lnA− βnA
∂

∂β

(
1

A

)
= n lnA+ nβ

∂(ln(1/A))

∂β
.

And now because we calculated last class that A = n
(2πmkBT )3/2 , our final answer ends up being

H = n ln

[
n

(2πmkBT )3/2

]
−

3

2
n,

which is in agreement with ideal gas entropy up to scaling:

S = −kBV H + (constant).

So this H is basically the same as our entropy, modulo an additive constant which is undetermined in classical mechanics.

But now dH
dt ≤ 0 means that there is an arrow of time – the time-evolution of our system is irreversible! Our next

point of interest is then where this comes from. Our proof of the H-theorem follows rigorously from the Boltzmann

equation, so there must be some irreversibility inherent in the Boltzmann equation too. (We used time-reversibility at

the microscopic scale during our argument, so it’s not about the equations of motion themselves.)

So to place what’s going on here, we need to examine the assumptions that we established at the beginning

of this derivation, namely the one about molecular chaos. Molecular chaos tells us that the distribution of pairs

of atoms at some spatial point is given by the product of the single-particle distributions. But let’s try some-

thing else: let’s denote the number of pairs of atoms at (~q1, ~p1) and (~q2, ~p2) within a region d3q1d
3p1d

3q2d
3p2,

by f2(~q1, ~p1, ~q2, ~p2, t)d
3q1d

3p1d
3q2d

3p2. A reasonable assumption to make is the “opposite” to the one we actually

made, which is that f2 factors in terms of the single-particle f :

f2(~q1, ~p1, ~q2, ~p2, t) = f (~q1, ~p1, t)f (~q2, ~p2, t)

when ~q1, ~q2 are very far away (rather than when they are very close to each other). And it makes sense to say that
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there is some distance or range of interaction d such that when |~q1 − ~q2| � d , the two particles strongly interact and

we shouldn’t expect a factorization. So our best hope is to be in a situation where most collisions do actually satisfy

|~q1 − ~q2| � d (meaning the factorization holds and our derivation is valid), but that our collisions between particles

also occur at the “same” ~q1 and ~q2, meaning that |~q1 − ~q2| is smaller than the length scale L at which our system is

being probed. In other words, our particles must be close enough to look like they coincide at the L scale, but not too

close to cause interactions at the d scale!

Fact 128

In summary, the Boltzmann equation is a coarse-grained description of the dynamics which are valid at length

scales � d and time scale � τc (the collision time). Because our resolution length scale L is much larger than

d , even when our particles have ~q1 ≈ ~q2, most of the time the distance between the two particles will still be at

least d .

This isn’t exactly where irreversibility has been explicitly introduced, though – the point where this happens comes

from another aspect of the molecular chaos assumption. If we look more carefully at our derivation, what we actually

assumed was that incoming particles (just before colliding) satisfy

f2(~q, ~p, ~q, ~p1, t)|before = f (~q, ~p, t)f (~q, ~p1, t),

which allows us to calculate the rates of leaving and entering the momentum ~p (by looking at the collision forward

and backward). But we know that when our particles evolve in the collision via

(~q, ~p, ~q, ~p1, t)→ (~q, ~p2, ~q, ~p3, t)

(we assume the collision is instantaneous at our time scale), we must have

f2(~q, ~p, ~q, ~p1, t)|before = f2(~q, ~p2, ~q, ~p3, t)|after

because of the Hamiltonian equations of motion that govern our underlying system. The point is that we can write

collision terms either in terms of f2|before and f2|after, so if we make the molecular chaos assumption for f2|after, that
means we replace f f1 − f2f3 from the collision term with f2f3 − f f1 (since the rate of leaving is governed by either the

“before” or “after” pair of particles). Then we’d end up getting the opposite sign in our H-theorem, which is physically

incorrect – thus, it makes sense to make this molecular chaos assumption only for the before-collision situation. This

can all be summed up in the following statement:

Proposition 129

Colliding introduces correlations between particles, and thus the joint distribution f2|after does not satisfy the

molecular chaos assumption.

What’s interesting about this is that if we reverse the exact microscopic equations that govern our system, and we

think about the above proposition, there must be some subtle correlations between the incoming particles. And the

details of this are hidden and still pretty unknown – it has to do with the coarse-graining inherent in the Boltzmann

equation. When we don’t examine the system at our very short length scales (like d) or short time scales (like τc),

we throw out those subtle correlations, and that gives us irreversibility.

Remark 130. We can read Kerson Huang’s Statistical Mechanics book for more details on this point.

80



To finish today’s lecture, we’ll start discussing the approach to equilibrium for a gas, now that we have the

Boltzmann equation to work with. It’s worth first thinking about what time and length scales play a role in the physics

of our system:

• The shortest relevant time scale is τc , the (typical) duration of a collision. The Boltzmann equation is only valid

at time scales much larger than τc and length scales larger than d .

• The next shortest time scale is the mean free time τ , which is the typical time an atom spends between

collisions with other atoms. This can be closely associated to the mean free path `, which is the distance

between successive collisions.

• We can assume that our gas is at local equilibrium after a few collisions, so it’s reasonable to assume local
equilibrium at time scales larger than τ and length scales greater than `, but still smaller than macroscopic

time and length scales. If we’re at this third time scale ( which is what we care about for macroscopic probes

and measurements), that means we have local but not necessarily global equilibrium. Thus, the one-particle

distribution f relaxes to its equilibrium form with possible slow ~q, t dependence (due to lack of global equilibrium).

Fact 131

Such states are specified by the local values of the quantities conserved during collisions, as well as local
values of entropy.

• The final time and length scale is the time required for relaxation to global equilibrium.

In order to analyze this last situation, we’ll need to make some more simplifications beyond the Boltzmann equation,

and we’ll discuss this next time.

23 October 23, 2020 (Recitation)
Today, we’ll give an example calculation for the grand canonical ensemble, and then we’ll focus on coarse-graining and

the arrow of time in the Boltzmann equation and physics in general.

First of all, a question about combining partition functions: when can we multiply or add partition functions of

subsystems together to figure out the partition function for the whole system? Remember that the definition of the

canonical partition function starts off as

Z =
∑
i

e−βEi ,

where we sum over all possible distinguishable states i (at some fixed volume V and number of particles N). Thermo-

dynamics tells us that we have a set of extensive variables like E, V, N,M, along with their intensive conjugate variables

T,−P, µ,B – what we’re saying in the canonical ensemble is that all of the extensive variables (conserved quantities)

get fixed except for energy E. In order to account for the varying energy, we need its intensive counterpart T to come

into the picture (and we can always think of these counterparts as derivatives with respect to their corresponding

extensive variable).

For example, if we have an ideal gas, computing this partition function is equivalent to

1

N!

∫ N∏
i=1

d3pid
3qi

h3
e−βE({p,q}),
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where the 1
N! comes from us not being able to distinguish between particles being permuted. But what we can notice

is that the energy can be written as a sum of the individual particles:

−βE({p, q}) = −β(E1 + · · ·+ EN),

where E1 only depends on particle 1’s coordinates, E2 only depends on particle 2’s coordinates, and so on. So then

we can factor the integral by writing the exponent as a product, turning this into

1

N!

N∏
i=1

∫
d3pd3q

h
e−βE(pi ,qi ).

And now each term of the product is the partition function for a single particle, and therefore this is a case where

we can multiply partition functions together. (On the other hand, we add partition functions together if we know

the system is one of two possible disjoint sets of states, but this doesn’t happen when combining particles’ partition

functions together.)

Example 132

Suppose we have N0 particles in a d-dimensional space of volume V , so that if n particles bind together, we have

an additional energy term −εn. (We’ll ignore rotational and vibrational energy here.) Our goal is to figure out

the behavior of this system (the pressure, the distribution of the clusters, and so on).

We’ll start with the canonical partition function to do a calculation, but we’ll soon see that the grand canonical

ensemble works better for this problem. Our first attempt will give us

Z =
∑

(N1,N2,··· ,NN)∑N
n=1 nNn=N0

N0∏
n=1

1

Nn!

(
V eβεn

λdn

)Nn

where we’re summing over how many clusters we have of size 1, 2, · · · , N respectively, and the fraction
(
V eβεn

λdn

)
is the

partition function for a single ideal-gas cluster, meaning that

λn =
h√

2πnmkBT

(since this cluster has n times the mass of a typical particle). Note that we have a product
∏N
i=1 in the expression for

Z, because the contributions to the partition function for each cluster size are independent of each other. But this is

a very annoying sum to calculate because of the weird constraint, so we’ll use the grand canonical ensemble instead.

It might seem like going to the grand canonical ensemble and computing Q, especially because we’re now allowing

N to vary a little bit. But what we’ll do is pick our chemical potential µ so that 〈N〉 =
∑

n n〈Nn〉 = N0, and the sharply

peaked nature of N means this is good enough – we’re describing basically the same system as if we had exactly N0

particles. (This is a matter of mathematical convenience!) So the partition function is now calculated by letting Nn
vary over all nonnegative integers for each n:

Q =

∞∑
N=0

eβµNZ(T, V, N) =

∞∏
n=1

∞∑
Nn=0

1

Nn!

(
V

λdn
eβµn+βεn

)Nn
.

What we’ve really done is eliminated the constraint
∑

n nNn = N0, as long as we include a factor of eβµN in our

partition function! And this basically lets us “switch the sum and product” in our earlier expression for Z, and now

computing this expression is a lot more reasonable to deal with than the previous one.

82



Fact 133

Notice a trick that we used in the equality above: inside of the sum we have an eβµnNn term, and taking the product

of those over all n gives us eβµ
∑

n Nn . So we’ve factored the eβµN term in Q into its individual n-components when

going from the left to the right side above.

To simplify the expression now, each term of the product looks like
∑∞

Nn=0
1
Nn!x

Nn for some complicated expression

x , but that’s exactly the formula for an exponential. So this simplifies to

Q =

∞∏
n=1

exp

[
V

λdn
eβµn+βεn

]
,

and now we have a grand partition function that factors in n, the cluster size! This tells us that the grand potential is

g = −kBT lnQ = −kBT
∞∑
n=1

V

λdn
eβµn+βεn =

∞∑
n=1

gn,

where gn is the grand potential for the n-cluster particles! This will make it easier for us to compare the distributions

of different types. So now using that

dg = −SdT − PdV − Ndµ = −SdT − PdV −
∞∑
n=1

nNndµ,

we find that the expected number of particles of cluster size n is (we take a derivative with respect to µn, because

there’s the extra n in the equation above – alternatively because the chemical potential µn has n times as much

influence on n particles, or because the reaction between nA1 and An is reversible)

〈Nn〉 = −
(
∂gn
∂(µn)

)
T,V

=
V

λdn
eβµn+βεn ,

and the expected number of total particles is

〈N〉 = −
(
∂g

∂µ

)
T,V

=

∞∑
n=1

n
V

λdn
eβµn+βεn .

Numerically, we can use this last equation to find a µ that gives us our desired average N0, which we then plug in to

the rest of our calculations.

Remark 134. For an analogy of this approximation of N0 particles, we can think of how we might budget our time

between different activities in real life. Instead of rearranging every hour of our time each time, we can use µ as a

measurement of how busy we are, and we can assign a priority (energy) to each task that we want to do. And this is

an easier way to adjust our schedule (by giving ourselves some slack rather than fixing every hour).

Let’s now look at some special cases of our setup:

Example 135

If εn = 0 for all n, then

〈N1〉 = −
(
∂g1

∂µ

)
T,V

=
V

λd1
eβµ.

The V
λd1

is the number of independent quantum states our system can be in, so we expect N1 � V
λd1

in the classical

limit. So eβµ needs to be very small, meaning that our chemical potential µ must be negative. And the same calculation
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yields

〈Nn〉 =
V

λdn
eβµn,

so we’ll have very few particles for large n because µ is negative. And this means that in the classical limit, we’ll only

have single particles – indeed, if there’s no binding energy, we don’t expect particles to stick together.

Notice that this behavior also occurs if εn = nε for any energy ε, because that means that

〈Nn〉 =
V

λdn
eβ(µ+ε)n.

So we’re just making a substitution in our system of µ → µ + ε (saying that all particles have an inherent energy of

−ε), without changing the physics of what’s going on.

Example 136

Now let’s consider the case where εn = ε(n − 1), which means that any two clusters that come together reduce

the energy by ε.

The formula now gives us

〈Nn〉 =
V

λdn
eβ(µ+ε)n−βε.

To understand the distribution of particles, we can calculate that

〈N1〉 =
V

λd1
eβµ, Nn = nd/2〈N1〉eβ(n−1)(µ+ε).

where nd/2 comes from the λs being differently for the different masses of clusters. So the exponential decay term

means that we will still expect many more small clusters than large clusters.

Example 137

Now suppose that ε2 = ε but εn = 0 for all other n (so only clusters of two particles are energetically favorable).

Then we find that the dimensionless quantities are

〈N2〉 = 2d/2〈N1〉eβµ+βε =⇒
〈N2〉
V/λd2

=

(
〈N1〉
V/λd1

)2

eβε.

And now notice that for something like hydrogen gas, ε is between 4 and 5 eV, which is on the order of 104 Kelvin.

That means that at room temperature, the eβε term is incredibly large, so even though the
(
〈N1〉
V/λd1

)2

term is very small

in the classical limit, we still expect to only ever see diatomic hydrogen gas (rather than monatomic hydrogen) at room

temperature.

Finally, if we want to calculate the equation of state for this grand canonical ensemble, we have

P = −
(
∂g

∂V

)
µ,T

,

which we can compute and then substitute in our value of µ. And we can also calculate the pressure due to a particle

type of cluster by setting

Pn = −
(
∂gn
∂V

)
µ,T

.

The whole point is that the different cluster types are interacting independently, and that’s what makes lots of our

calculations much easier throughout this problem.
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In the last part of this recitation, we’ll consider the arrow of time.

Example 138

At the beginning of a game of pool, we have a single (cue) ball moving at a momentum ~p0 toward a group of N

balls at rest. (We assume elastic collisions, and also assume that N is larger than it actually is.)

We can think of the interactions as a sequence of 2-particle collisions – as soon as the first collision occurs, we have

lots and lots of these happening in a short amount of time. Remember that in the Boltzmann equation derivation, we

assumed molecular chaos, which gives us uncorrelated momenta before each collision. Then the starting distribution

is

f1(~p) =
N − 1

N
δ(0) +

1

N
√

2πσ2
exp

(
−

(~p − ~p0)2

2σ2

)
,

since the starting momentum has some uncertainty. At the beginning, because (for large N) basically all of the particles

have zero momentum. So we actually start off satisfying the molecular chaos assumption because only one particle

has nonzero momentum. But what we’re further assuming is that after each collision but before the next, things are

more or less random. (We also need to make the assumption of random scattering cross-section.)
But now if we reverse time, we’ll apparently have N particles that come together elastically, correlated exactly

so that N − 1 of them end up at rest. So there must have been subtle correlations at the beginning – smudging

any momentum a little would have significantly changed the configuration – but remember that there’s still some

randomness from the initial condition we wrote down above. So even if we did the particle evolution exactly, we’d have

a weird randomness where all of the deviations correlate in a way that all of the variance goes into the one particle not

at rest. The fundamental thing happening differently backwards from forwards is that smudging makes a much larger
impact on the backward dynamics than the forward dynamics, because our initial condition is far from equilibrium.

24 October 26, 2020

Our (take-home) quiz is happening right now – if we have any questions, we should email all of the 8.333 staff (and

whoever sees it first can respond).

Last week, we started looking at the kinetic theory of gases and comparing different timescales of behavior. Today,

we’ll continue exploring the approach to equilibrium, looking at conservation laws.

Recall that the shortest timescale is τc , the duration of a collision. (At timescales shorter than τc , we need to use

the exact microscopic dynamics.) The next shortest timescale is the mean free time between collisions τ , followed by

the timescales for local and global equilibrium (which we’ll just denote τeq).

As a summary of the properties of these different quantities, the Boltzmann equation is valid at timescales t � τc ,

and we can assume that local equilibrium is established if t � τ . The point is that we don’t need the full power

of the Boltzmann equation once local equilibrium is reached, because the degrees of freedom are just (entropy and)

the conserved quantities that we use on the macroscopic scale, except that they’re allowed to vary. (And then when

t � τeq, global equilibrium is reached.) For example, local equilibrium means pressure is defined everywhere, meaning

we don’t need to look so fully at the dynamics. So we’ll focus on time scales t � τ and try to analyze what happens
to our conserved quantities.
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Definition 139

The (local time-dependent) density is given by integrating out the momentum:

n(~q, t) =

∫
d3~p f (~q, ~p, t).

This function n tells us the density at a particular point in space and in time, and now we can define the local
expectation value for a physical quantity O(~q, ~p, t) via

〈O(~q, t)〉 =
1

n(~q, t)

∫
d3p f (~q, ~p, t)O(~q, ~p, t).

As we just stated, the dynamics of our system for t � τ are determined by the evolution of our conserved quantities

and by the local value of the entropy. If we consider a quantity χ(~q, ~p) (associated with an atom at (~q, ~p) in phase

space), which is conserved by collisions (so examples would be momentum or energy), we’re stating that

χ(~q, ~p) + χ(~q1, ~p1) = χ(~q2, ~p2) + χ(~q3, ~p3).

Proposition 140

Suppose χ(~q, ~p) is conserved by collisions. Then

J =

∫
d3p χ(~q, ~p)

(
∂f

∂t

)
coll.

= 0.

Proof. Substituting in the expression for the collision term, we have that

J =

∫
d3pd3p1dΩσ(Ω)

|~p − ~p1|
m

(f (p2)f (p3)− f (p)f (p1))χ(~q, ~p).

The manipulations from here will look similar to the H-theorem. Changing ~p and ~p1 with each other only changes

χ(~q, ~p) and keeps everything else the same, so we also have (averaging the two such equations that we get)

J =
1

2

∫
d3pd3p1dΩσ(Ω)

|~p − ~p1|
m

(f (p2)f (p3)− f (p)f (p1))(χ(~q, ~p) + χ(~q1, ~p1)).

And now if we exchange ~p, ~p1 with ~p2, ~p3, this further simplifies to

=
1

4

∫
d3pd3p1dΩσ(Ω)

|~p − ~p1|
m

(f (p2)f (p3)− f (p)f (p1))(χ(~q, ~p) + χ(~q1, ~p1)− χ(~q2, ~p2)− χ(~q3, ~p3)),

and this is 0 by conservation of χ.

Substituting this back into the Boltmann equation gives us∫
d3p χ(~q~p)

(
∂

∂t
+
~p

m
·
∂

∂~q
+ ~F ·

∂

∂~p

)
f = 0.

We can rearrange this a little, taking integrals out and making appropriate corrections, to find that

∂

∂t

(∫
d3p χ(~q, ~p)f

)
+
∂

∂~q

(∫
d3p χ(~q, ~p)

~p

m
f

)
−
∫
d3p

∂χ

∂~q
·
~p

m
f − ~F ·

∫
d3p

∂~χ

∂~p
f = 0,

where the first term comes from the ∂
∂t , the second and third term come from the ~p

m ·
∂
∂~q and the product rule, and

the last term comes from integration by parts, assuming that ~F is some external force and is therefore momentum-
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independent. (The boundary term involves the value of χ · f at infinite momentum, and we require that f goes away

rapidly enough because we have a well-defined finite distribution.) And now we can rewrite this a little in terms of

averages:
∂

∂t
(n〈χ〉) +

∂

∂qα

(
n
〈pα
m
χ
〉)
− n

〈
pα
m

∂χ

∂qα

〉
− n~F ·

〈
∂χ

∂~p

〉
= 0 .

where we’re using repeated index notation (summing over all α). This is the equation that relates the dynamics of

our conserved quantities, and again, it’s most powerful when t � τ (since this is the timescale where evolution is

governed by conserved quantities)!

Example 141

If we’re looking at a monatomic gas, there are five conserved quantities: the particle number, the three components

of momentum, and the kinetic energy.

We’ll apply the formula we just derived for our conserved quantities

• Let’s first try setting χ = 1 (which is clearly conserved), corresponding to the particle number N. Then the last

two terms disappear, and we’re left with

∂n

∂t
+

∂

∂qα

(
n
〈pα
m

〉)
= 0.

This should make a lot of physical sense if we consider the local velocity of the fluid (that is, the gas)

uα =
〈pα〉
m

.

Then the equation above becomes
∂n

∂t
+

∂

∂qα
Jnα = 0,

where ~Jn = n~u is the particle current. And this is the familiar continuity equation – we could have written it

down from undergraduate physics, because density can only change locally if particles flow to or away from a

point.

• Next, we set χ = pα
m , which we define to be vα (for a given component α). This time, the third term disappears,

and let’s change the dummy index to β:

∂

∂t
(n〈vα〉) +

∂

∂qβ
(n 〈vβvα〉)−

nFα
m

= 0.

We’ll now relate the second term to the covariance between vα, vβ:

〈vαvβ〉 = 〈(vα − uα)(vβ − uβ)〉+ 〈vα〉uβ + 〈vβ〉uα − uαuβ,

where uα, uβ are defined to be the average values of vα, vβ, and thus this simplifies to

= 〈(vα − uα)(vβ − uβ)〉+ uαuβ + uβuα − uαuβ = 〈(vα − uα)(vβ − uβ)〉+ uαuβ.

Plugging this back in (and also making a few other substitutions) gives us

∂

∂t
(nuα) +

∂

∂qβ
(nuαuβ + n〈(vα − uα)(vβ − uβ)〉)−

nFα
m

= 0.

This motivates us to make the following definition:

87



Definition 142

The pressure tensor is defined as

Pαβ = mn〈(vα − uα)(vβ − uβ)〉.

At this stage, this is still a symbol, but we’ll see it relates to the actual pressure soon. This allows us to write

down
∂

∂t
(nuα) +

∂

∂qβ
(nuαuβ) =

nFα
m

= −
1

m
∂βPαβ.

Expanding out the derivatives gives us

n
∂uα
∂t

+ uα
∂n

∂t
+ uα

∂

∂qβ
(nuβ) + nuβ

∂

∂qβ
uα =

nFα
m
−

1

m
∂βPαβ,

but the second and third terms on the left-hand side cancel out by the continuity equation, so we end up with(
∂

∂t
+ ~u ·

∂

∂~q

)
~u =

~F

m
−

1

mn

∂

∂~q
P.

Since the operator on the left-hand side will appear frequently, we’ll define thematerial derivative (or Lagrangian
derivative)

Dt =
∂

∂t
+ ~u ·

∂

∂~q
,

so that our equation looks like

Dt~u =
~F

m
−

1

mn

∂

∂~q
P .

The idea is that a pressure gradient leads to a force, so indeed Pαβ has to do with the ordinary pressure here.

• Finally, let’s try setting χ = E = ~p2

2m = 1
2m~v

2 – it’s best to state the result in terms of the kinetic energy with

local flow subtracted:

ε =
1

2
m(~v − ~u)2.

Again, the third term disappears again when we substitute E into the original boxed equation:

∂

∂t
(n〈E〉) +

∂

∂qα

(
n
〈pα
m
E
〉)
− n~F ·

〈
∂E

∂~p

〉
= 0,

which simplifies to
∂

∂t
(n〈E〉) +

∂

∂qα
(n 〈vαE〉)− n~F · ~u = 0.

A quick notation rewrite turns this into

∂t(n〈E〉) + ∂α(n〈vα〈E〉) = n~F · ~u,

and then we can rewrite 〈vαE〉 = 〈(vα − uα)E〉+ uα〈E〉, so that

n∂t(〈E〉) + ∂α(n〈uα〈E〉+ n〈(vα − uα)E〉) = n~F · ~u.

Using the definition of the material derivative Dt above, we end up with

nDt〈E〉+ ∂α(n〈(vα − uα)E〉) = n~F · ~u.
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To make this cleaner, it’s time to put things in terms of ε: we can now write

E = ε+m~v · ~u −
1

2
m~u2,

meaning that

E = ε+m(~v − ~u) · ~u +
1

2
m~u2.

Thus 〈E〉 = 〈ε〉+ 1
2m~u

2, and we can also multiply through by (vα − uα) before taking an average to find

〈(vα − uα)E〉 = 〈(vα − uα)ε〉+
1

2
muβ〈(vα − uα)(vβ − uβ)〉.

If we now define the local heat flux
hα = n〈(vα − uα)ε〉

and the rate of strain tensor (for clarification, notice that the tensor has two indices, while the average velocity

u has one)

uαβ =
1

2
(∂αuβ + ∂βuα),

then our definitions plug back in to yield

〈(vα − uα)E〉 =
hα
m

+
uβPαβ
n

.

Plugging this back into our original equation, the left hand side becomes

= n(Dtε+m~u ·Dt~u) + ∂α(hα + uβPαβ),

so that the left-hand side of the energy equation gives us (after some tedious algebra)

= nDtε+ n~F · ~u − uβ∂αPαβ + ∂αhα + uαβPαβ + uβ∂αPαβ.

Meanwhile, the right-hand side is n~F · ~u, so cancelling finally gives us

Dtε = −
1

n
∂αhα −

1

n
Pαβuαβ.

Putting all of this together and making some more small manipulations, we have the equations

Dtn = −n∂αuα,

mDtuα = Fα −
1

n
∂βPαβ,

Dtε = −
1

n
(∂αhα + Pαβuαβ) .

Each of these describes the evolution of one of local flow velocity, energy density, and particle number. We still need

to know more about the right-hand sides of these equations, because we have these new objects Pαβ, uαβ, and hα.

Next time, we’ll discuss how to relate these quantities to properties of the flow, so that we can extract the dynamics!

25 October 28, 2020
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Fact 143

Because of the upcoming election, Alex will spend some time on Friday in recitation talking about applications of

statistical mechanics to polarization (of voting).

In today’s lecture, we’ll continue the study of the approach to equilibrium, looking at “0th order hydrodynamics.”

For reference, we’ll copy down all of the relevant equations from our derivation last class again: letting n(~q, t) be the

local particle density and ε = 1
2m(~v − ~u)2 be the energy independent of local flow, we have that

Dtn = −n∂αuα,

mDtuα = Fα −
1

n
∂βPαβ,

Dtε = −
1

n
(∂αhα + Pαβuαβ),

where uα =
〈
pα
m

〉
is the local flow velocity, Dt = ∂

∂t + ~u · ∂∂~q , Pαβ = mn〈(vα − uα)(vβ − uβ)〉 is the pressure tensor,

uαβ = 1
2 (∂αuβ + ∂βuα) is the rate of strain tensor, and hα = n〈(vα − uα)ε〉 is the local heat flux. The first equation

above is the continuity equation rewritten in terms of the material derivative Dt (measuring change when we move

along with the fluid), the second tells us about evolution of local flow velocity through a “force equation,” and the

third tells us about evolution of energy. And remember that all of these equations come from the Boltzmann
equation, but the point is that looking at times t � τ allows us to characterize our fluid with local equilibrium values

of conserved quantities and how the entropy depends on them.

To actually make use of the above equations, we need more information about Pαβ and hα, and these are determined

by the full particle distribution function f (~q, ~p, t). At equilibrium, we know the form of f , so at local equilibrium we

can make a zeroth order approximation

f (0)(~q, ~p, t) ≈
n(~q, t)

2πmkBT (~q, t)3/2
exp

(
−

(~p −m~u(~q, t)2

2mkBT (~q, t)

)
,

where we’re accounting for the fact that n, T, ~u can change over space and time (because we’re not at global equilibrium

yet), and also that the gas may be flowing (not just at rest). And now that we have the distribution, we can calculate

all of the average values that we need, because we have the Gaussian weight. For example,

〈(vα − uα)(vβ − uβ)〉 =
kBT

m
δαβ,

which is the usual result of velocity fluctuations from the Maxwell-Boltzmann distribution, so the pressure tensor is

P
(0)
αβ = nkBTδαβ.

And we know that for an ideal gas in complete equilibrium, this is indeed the pressure from the diagonal terms of the

tensor (we have the usual P = NkBT
V ). We can also find that

ε =
1

2
m〈(~v − ~u)2〉 =

3

2
kBT,

which also looks like our usual result. Next, for the heat flux hα, we notice that f (0) is even in vα − uα, so all odd

expectation values of vα − uα will vanish. So ~h(0) = 0 – there is no heat flux at this zeroth order. (In other words,
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this approximation gives us adiabatic behavior.) So putting everything back together, we have

Dtn = −n∂αuα,

mDtuα = Fα −
1

n
∂α(nkBT ),

DtT = −
2

3
T (∂αuα),

and combining the first and third equations gives us

1

n
Dtn = −∂αuα =

3

2T
DtT.

Therefore,

Dt(ln nT−3/2) = 0,

and thus this flow leaves nT−3/2 invariant. In fact, ln(nT−3/2) is (up to an additive constant) the negative entropy
per particle of our gas, so the local entropy does not change through evolution of our system to equilibrium, which

leads us to this adiabatic flow.

Fact 144

In other words, what we’ve learned is that global equilibrium will not be reached in this zeroth order approximation

(because entropy needs to be increased for us to get there)!

To understand the dynamics more clearly, we’ll consider a special case where ~F = 0 (there are no external forces),

and we have a small disturbance from equilibrium. Specifically, let (n, T ) be the density and temperature of an

equilibrium state when the gas is at rest – the density is uniform if there are no external forces – and consider a small

perturbation

n(~q, t) = n + ν(~q, t), T (~q, t) = T + θ(~q, t),

where ν, θ, ~u are all small (so the gas moves slowly, and also we only change the temperature and particle density by a

little bit). If we linearize our above equations and expand the conservation laws to first order, we can replace Dt with

∂t (because we have a ∂
∂t term that dominates the ~u · ∂∂~q term, and whatever we’re taking a derivative of is already

small, so we get “second-order smallness” there). So now our equations look like

∂tν = −n∂αuα,

m∂tuα = −kB∂αθ −
kBT

n
∂αν,

∂tθ = −
2

3
T∂αuα.

And these are (coupled) linear differential equations with constant coefficients, which are exactly solvable by

writing down the matrix eigenvalue problem (we have a 5 by 5 matrix, because u has three components, and we also

have ν and θ). We find that (using block matrices, so that the γ indices form row vectors and the α indices form

column vectors):

ω


ν(~k, ω)

uα(~k, ω)

θ(~k, ω)

 =


0 nkγ 0

kBT
nm kα 0 kB

m kα

0 2
3Tkγ 0



ν(~k, ω)

uγ(~k, ω)

θ(~k, ω)

 ,
and now we want to diagonalize the matrix. But there are two zero-frequency modes that correspond to transverse

velocities where ~k · ~u = 0 (we can do the multiplication on the right side to find that the first and last rows of the
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matrix go away), so that gives us two eigenvalues of 0, called shear modes. And related to our earlier discussion,

these do not relax to equilibrium in our zeroth order approximation, because there is no amplitude decay for this

eigenvalue 0.

The third zero-frequency mode that we can observe comes from the “decayless” flow of entropy that we were

studying earlier. This mode satisfies

ν

n
=
θ

T
, eigenvector


n

0

−T

 ,
and we can indeed plug this eigenvector in and directly check that there is zero frequency. And now we only have

two eigenvalues left, and these actually correspond to modes that we physically understand well (longitudinal sound

modes). The dispersion relation is

ω(~k) = ±v`|~k |, v` =

√
5

2

kBT

m
.

Putting all of this together, what the zeroth order approximation tells us is that we have no relaxation to equilibrium,

but we have shear and entropy modes which stay there forever (disturbance doesn’t evolve, because the frequency is

zero). Other than those, we also have two sound modes that are undamped in this approximation.

We can correct the issues with this result by using a better solution of the Boltzmann equation, specifically picking

a better distribution f than f (0) so that relaxation to equilibrium is actually captured. Notice that
(
∂f (0)

∂t

)
coll.

= 0, but

in general (
∂t +

~p

m
· ∂~q + ~F · ∂~p

)
f (0) 6= 0,

so we do not actually have a solution to the Boltzmann equation here. What we’ll do, then, is write

f (~q, ~p, t) = f (0)(~q, ~p, t) + g(~q, ~p, t)

and linearize the Boltzmann transport equation in g. The collision term(
∂f

∂t

)
coll.

=

∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

(f2f3 − f f1)

then linearizes to

≈
∫
d3p1dΩσ(Ω)

|~p − ~p1|
m

(g2f3 + f2g3 − f g1 − gf1)

at order g, and a typical term on the right hand side now kind of looks like (we can take g out of the integral because

we’re not integrating over p1)

−g
∫
d3p1 dΩσ(Ω)

|~p − ~p1|
m

f1 ≈ −
g

τ
,

where τ is the mean free time between collisions. Trying to actually work with the actual collision terms coming from

g can be very hard, so what we’re going to do is cheat and just use(
∂f

∂t

)
coll.

= −
g

τ
= −

(f − f (0))

τ
,

which is called the relaxation-time approximation. This allows us to solve for g, and what we’ll find next time is that

all of our modes that we computed above will acquire a damping factor depending on τ . So then we’ll finally have a

way to characterize the behavior of this system towards equilibrium!
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26 October 30, 2020 (Recitation)

We’ll spend this class on a high-level review of kinetic theory (the Boltzmann equation, hydrodynamics), and then we’ll

see how statistical physics can be applied to elections, particularly instability and negative political representation.

In the textbook, Kardar defines the operator L via

Lf =
df

dt
=

(
∂

∂t
+
~p

m

∂

∂~q
+ ~F ·

∂

∂~p

)
f (p, q, t),

which is 0 if we have no collisions by Liouville’s theorem. (Liouville’s theorem tells us that dρ
dt , where ρ is a distribution

of all particles in 6N-dimensional space, while f is a distribution in 6-dimensional space for particle density.) But

otherwise, we need to account for an extra collision time, and then we derived that

Lf =

(
∂f

∂t

)
coll.

=

∫
d3p1dΩσ(Ω)

|~p1 − ~p|
m

(f2(p2, p3, · · · )− f2(p, p1, · · · )) .

where f2(p2, p3, · · · ) tells us about the density of finding a pair of particles at momenta p2, p3, respectively. We’ll

define this as the collision expression Lf = C[f2].

Remark 145. In class, we then used the shorthand

f2 = f (p2), f3 = f (p3),

because we treated the momenta as uncorrelated, but we’ll ignore this notation for now – f2 is the two-particle density

throughout this recitation.

In order to derive the boxed expression above, we only had to make a few assumptions: we assumed there were

no 3-particle collisions, and we ignored the effect of the external force ~F on collisions too (because we derived the

expressions using Newtonian physics). Since we can treat walls as external forces, we’re also ignoring those boundary

conditions. (Basically, the timescale of a particle is very fast, so any external force mainly acts between collisions

rather than between collisions.) So no inaccuracies or “coarse-graining” has been done yet.

But then the next approximation is that we can factor f2 into one-particle densities, and we evaluate all f ’s in

the collision term at a single point ~q. Then we find that

Lf = C[f2] = C[f , f ] =

∫
d3p1dΩσ(Ω)

|~p1 − ~p|
m

(f (p2)f (p3)− f (p)f (p1))

(the Cs are just extra notation – something like C[f1, f2] doesn’t really make sense). Then we looked at the expression

H(t) =

∫
d3q d3p f ln f ,

which looks reasonably similar to a (negative) entropy (since f is a probability distribution), even though f doesn’t

actually describe microstates. (And remember that we could derive the canonical ensemble by maximizing the real

entropy – we’ll see something similar on our problem set this week.) And now if we use the Boltzmann equation, which

is exactly the statement L(f ) = C[f , f ], then the H-theorem tells us that dH
dt ≤ 0. If we write out this statement in

more detail, we write that

dH

dt
=

∫
d3p d3q

∂f

∂t
(ln f + 1) =

∫
d3p d3q

df

dt
(ln f + 1)

(in this case, it doesn’t matter whether we take a total or partial derivative, because phase space volume is conserved

93



under the evolution of the single-particle Hamiltonian). And then the +1 doesn’t contribute to total integral, because

total particle density is conserved, and thus we end up with

=

∫
d3p d3q (Lf ) ln f =

∫
d3p d3q C[f , f ] ln f .

And now we “symmetrize” over f (p), f (p1), f (p2), and f (p3) as we did in class: since the expression looks the same

with certain swaps of dummy variables, this is also just

1

4

∫
d3q d3p d3p1dΩσ(Ω)

|~p1 − ~p|
m

(f (p2)f (p3)− f (p)f (p1))(ln(f (p3)f (p2))− ln(f (p)f (p1)))

(the idea is that by integrating over both p and p1, we’re considering all pairs of particles coming at each other,

rather than just fixing one of the momenta). But now this integrand must always be nonpositive, because we have an

expression of the form (A− B)(lnB − lnA), and ln preserves ordering, and thus we’ve derived dH
dt ≤ 0.

The next thing we considered from there was that for a collision-conserved quantity χ, we have∫
d3p C[f , f ]χ(p, q, t) = 0.

(This was basically a symmetrization argument similar to the H-theorem from class.) We can then use the fact that

C[f , f ] = Lf again to find that

0 =

∫
d3p (Lf )χ =

∫
d3pL(f χ)− f L(χ),

since L is a differential operator. We then derived the hydrodynamic equations by plugging in various conserved

quantities χ = 1, χ = ~p, and χ = ~p2

2m (we assume monatomic gas because there can’t really be other degrees of

freedom in our derivation, though a slight modification works for polyatomic gases too). The results involve the

material derivative Dt , which is the total derivative with respect to flow lines for the average velocity, instead
of the flow lines along the velocity of a single particle:

Dtn = −n∂αuα,

mDtuα = Fα −
1

n
∂βPαβ,

Dtε = −
1

n
(∂αhα + Pαβuαβ),

We’ve explained these equations in lecture already, but if we define

cα =
pα
m
− uα,

that makes it easier to define the pressure tensor (created from deviations of velocity from the average)

Pαβ = mn〈cαcβ〉,

the local reference-frame energy

ε =
1

2
m〈c2〉,

the heat transfer term coming from asymmetric distributions in energy along different axes

hα = nm

〈
c2

2
cα

〉
,
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and the symmetrized derivative (all derivatives ∂α are in terms of the position coordinates)

uαβ =
1

2
(∂αuβ + ∂βuα).

(There might have been a bit of abuse of notation during class between the energy and average value of energy.) So

now we look at zeroth-order hydrodynamics: since L has units of inverse time, we should think of a certain timescale

L ∼ 1
τ as the time to global equilibrium. On the other hand, we have C[f , f ] ∼ 1

τx
, and the collision time τx is much

smaller than τ . So we can think of this as having an equation like

3x = 104(x2 − 4),

and since the right side is much larger than the left, we can basically set the left side to 0 at zeroth order in x . So

what we say is that we are ignoring collisions’ role as we approach equilibrium: our equation is

0 = C[f , f ].

So our hydrodynamics don’t account for collisions between flows, but we can still try to get some physics out of it.

To solve for the kinds of functions f that work for us here, note that

dH

dt
=

∫
d3q d3p C[f , f ] ln f ,

so our approximation implies that dH
dt = 0. One possible solution for H is

ln f (p, q) + ln f (p1, q)− ln f (p2, q)− ln f (p3, q) = 0,

and because dH
dt is integrating over a nonpositive thing everywhere, we indeed need this equality to be true at all points!

Thus, we know that

ln f (p, q) = α(q) + ~γ(q) · ~p − β(q)
~p2

2m
:

in other words, ln f should be a combination of the conserved quantities if it needs to be conserved by collisions. This

tells us that

f ∝ n(q, t)e−β(q,t) 1
2m

(~p−m~u(q,t))2

(so f looks like the global equilibrium distribution ne−βE , except that n, β, E can all change as a function of time and

also position). The key, though, is that

Pαβ ∝ δαβ, hα = 0

(pressure points outward instead of having weird shear, and the above distribution is symmetric around deviations of

velocity), and what we found next was that local values of entropy don’t change, so we don’t actually do any relaxation

to global equilibrium for this approximation.

So if we look at the first-order picture (which we’ll discuss more in the future), what we should assume is Lf ∼ O(ε)

(for some small ε) and write f = f (0) + ε(δf ), where δf is of the same order as the zeroth order f (0). Then we know

that

C[f (0), f (0)] = 0 =⇒ C[f , f ] = Aε(δf ) +O(ε2)

for some linear operator A that can depend on f (0), and also that

Lf = Lf (0) + εL(δf ) = Lf (0) +O(ε2).
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So the new equation is (to first order)

Lf (0) = Lf = Aε(δf ),

and now we make the huge approximation: because A has units of inverse time, we’re replacing A with 1
τ . (In other

words, we diagonalize and assume all of the eigenvalues are the same.) We’ll see how this plays out in more detail on

Monday.

The last 10 minutes of this class will be dedicated to elections:

Example 146

Suppose we have some political opinions x ∈ Rd (a vector representing a single person’s opinions), and we have

some distribution of opinions f (x). An election takes in a function f and outputs the opinions of a single candidate

y [f ] ∈ Rd . We’ll write everything in terms of 1-dimensional functions f (x).

Political representation can then be described by “how the outcome changes if the xs change by an infinitesimal

amount” using a functional derivative:

r(f , x) =
d

dx

δy

δf (x)
,

(The reason for the d
dx term is that we “move” an opinion from one spot x to a different spot x + δx .) Then we

define an unstable election if y [f ] is discontinuous, and we can have negative representation r(f , x) < 0: – perhaps

opinions x moving in one direction cause the outcome to move in the other direction. It turns out that if we assume

overall translational invariance, meaning that

y [f ] + c = y [f (x + c)]

(shifting everyone’s opinion by the same amount also shifts the election result by that amount), then necessarily

instability leads to negative representation. But unfortunately, elections in the US, especially in the past few

decades, have become increasingly unstable, so people aren’t being politically represented properly.

To tie this back to the statistical physics, we want to think about phase transitions between stable and unstable

configurations.

Example 147

Let’s use a toy model where the choice of winning candidate follows

y ∗ = argmaxy∈R

∫
dx f (x)u(y − x)

for some utility function u.

We often assume that the utility functions u are concave, but it makes sense that preferences become weaker as

people become farther from both election candidates, so the utility function could be Gaussian as a function of y − x .
And then we can calculate representation

r(f , x) ∝ −u′′(y − x).

So for the Gaussian, people who are sufficiently far away from the candidates (that is, |y ∗− x | is sufficiently large) are

negatively represented!

And this maximization problem can be replaced as choosing a function F (y) that minimize the free energy. As we

create a more polarized distribution, we should expect that F (y) follows a double-well potential: the minima occur

according to party preference, and with enough energy we can move between the two wells (which is what happens

from election to election).
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27 November 2, 2020
The election is coming up tomorrow, and it’s a stressful and uncertain time for everyone – we’ll hope that it isn’t too

chaotic and that things proceed like they do in previous elections. We should make sure to stay safe!

Our first quiz has been graded, and our score and comments have been released to us. One comment about one

of the problems: in problem 2, most of the class found that if we start with the high-pressure metal phase and heat it

at constant pressure, it will eventually transition into the insulating phase. This is the opposite of the usual behavior

we expect, since adding thermal energy usually causes electrons to move around! In this case, it is the entropy that

drives the transition to insulation, and this does happen in certain organic materials, as well as certain low-temperature

behavior of Helium. For example, heating a solid is usually supposed to give us a liquid, but sometimes we get lots of

degrees of freedom from the (barely interacting) spins in atoms’ nuclei, and that gives us a big boost in entropy that

is not present in the liquid. (We can search up the Pomeranchuk effect for other examples.)

We’ll continue thinking about the approach to equilibrium today, looking at first order hydrodynamics in the kinetic

theory of gases. Recall that we started with conditions of local equilibrium, using the zeroth order approximation (or

guess)

f (0) = f (0)
eq. (n(~q, t), T (~q, t), u(~q, t)).

Working with this a bit, we then found shear modes and sound waves that propagate without any damping, and in

particular we found that we don’t actually approach equilibrium at all. This is because(
∂t +

~p

m
· ∂~q + ~F · ∂~p

)
f (0) 6= 0,

even though the collision term on the right-hand side was assumed to be 0, so f (0) isn’t actually a solution of the

Boltzmann equation. So our next step was to linearize a deviation around this: we wrote f = f (0) + g, where all

functions here are of ~q, ~p, t. Then, we linearize as a function of g and make a relaxation-time approximation where

the collision term is replaced with

−
g

τ
= −

f − f (0)

τ
.

(A more precise argument would have given different timescales τ for each of the different modes we found in the

zeroth-order approximation, but we’ll work with this for now.) So now we have(
∂t +

~p

m
· ∂~q + ~F · ∂~p

)
(f (0) + g) = −

g

τ
.

Remark 148. If we look at a case where there is no ~q or ~p-dependence, and the fluid isn’t moving (for example,

because we’ve reached global equilibrium), we end up with an equation like ∂tg = − g
τ , which is an exponential decay

of the deviation term g. So indeed we expect some type of approach to equilibrium with this model now, and it’s why

the negative sign is important.

To arrive at a leading-order solution, we actually ignore the g on the left-hand side of this equation. This is because

the dominant term is the derivative of f (0): more precisely, if f (0) varies significantly on a length scale L, then vf (0)

L is

on the order of gτ , so ∣∣∣ g
f (0)

∣∣∣ ≈ vτ

L
≈
`

L
,

where ` is the mean free path. So we’re making the assumption that deviations from equilibrium occur on length
scales longer than the mean free path.
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With this new approximation, it is much easier to solve

g = −τ
(
∂t +

~p

m
∂̇~q + ~f · ∂~p

)
f (0).

Since we already have our previous guess for f (0) from last lecture, we can calculate the derivatives directly to find the

expression for g. But instead of calculating the derivatives of f (0), it turns out to be more convenient to calculate the

derivatives of ln f (0), since
g

f (0)
= −τ

(
∂t +

~p

m
· ∂~q + ~F · ∂~p

)
(ln f (0)).

Here, we recall that

ln f (0) = ln(nT−3/2)−
m~c2

2kBT
−

3

2
ln(2πmkB),

where ~c = ~v−~u is the velocity in the co-moving frame with the fluid. We will denote the operator
(
∂t + ~p

m · ∂~q + ~F · ∂~p
)

by L from here on, so that

L = ∂t + ~u · ∂~q + ~c · ∂~q + ~F · ∂~p = Dt + ~c · ∂~q + ~F · ∂~p = Dt + ~c · ∂~q +
~F

m
· ∂~c .

Now we’ve replaced references to ~p with references to ~c , and now the expression expands out to

L(ln f (0)) = Dt(ln(nT−3/2))+
mc2

2kBT 2
DtT−

m

kBT
cαDtcα+cα

(
∂αn

n
−

3

2

∂αT

T

)
+
m~c2

2kBT 2
cα∂αT−

m

kBT
cαcβ∂αcβ−

Fαcα
kBT

.

Using the fact that Dtcα = −Dtuα, ∂αcβ = −∂αuβ, and applying the zeroth order hydrodynamic equations (that f (0)

satisfies), we have

L(ln f (0)) = −
m~c2

3kBT
∂αuα +

cα
kBT

(Fα−
1

n
∂α(nkBT )) + cα

(
∂αn

n
−

3

2

∂αT

T

)
+

m~c2

2kBT 2
cα∂αT +

m

kBT
cαcβ∂αuβ −

Fαcα
kBT

.

And now we do some more simplification (algebra omitted, but worth going through ourselves) to find that

g = −τf (0)

(
m

kBT
(cαcβ −

c2

3
δαβ)uαβ +

(
mc2

2kBT
−

5

2

)
cα
T
∂αT

)
.

To check if this is legitimate, we can do a quick check:∫
d3p g = −τn

(
m

kBT

〈
cαcβ −

c2

3
δαβ

〉
0

uαβ +

〈(
mc2

2kBT
−

5

2

)
cα

〉
0

∂αT

T

)
where the 0 subscript refers to averages with respect to the Gaussian distribution f (0) for velocity. And we can easily

show that

〈cαcβ〉0 =

〈
c2

3

〉
0

δαβ,

and also that 〈(
mc2

2kBT
−

5

2

)
cα

〉
0

= 0

because everything is odd in c , which is symmetric. So indeed
∫
d3p g = 0, and this implies that

∫
d3p f =

∫
d3p f (0) =

n, so adding our deviation rearranges but does not add particles – in fact, it preserves the density of particles at

each ~q and t, and we only redistribute how the particles behave in momentum space.

And now calculating averages of various observables to first order in τ can be done as

〈O〉(1) =
1

n

∫
d3p O(f (0) + g) = 〈O〉(0) +

〈 g

f (0)
O
〉

0
.
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If O is a polynomial in the cαs, for example, the last term here requires calculations over averages of cαs with respect

to the Gaussian distribution f (0), but now we can make use of Wick’s theorem from recitation 1:

〈cα1cα2 · · · cα2n〉 =

(
kBT

m

)n
· (sum over all possible products of paired averages).

This lets us calculate all of the quantities: for example,〈pα
m

〉
= uα − τ

〈(
mc2

2kBT
−

5

2

)
cβcα

〉
∂βT

T
,

and then

P
(1)
αβ = nm〈cαcβ〉(1) = nm

[
〈cαcβ〉(0) −

τm

kBT

〈(
cµcν −

c2

3
δµν

)
cαcβ

〉
uµν

]
simplifies to

= nkBTδαβ − 2nkBTτ

(
uαβ −

δαβuγγ
3

)
.

(Recall that we’re still summing over repeated indices.) And now we can define the viscocity

µ = nkBTτ,

meaning that we’re claiming that

P
(1)
αβ = nkBTδαβ − 2µ

(
uαβ −

δαβuγγ
3

)
,

Example 149

Let’s think about the meaning of Pαβ and µ now, because we have some extra terms compared to the “usual”

pressure.

We know that if we have a conserved quantity χ that is associated with a single atom, then χn is the total value

of χ in a given region of space, divided by its volume. Since Jχ, the current density, is given by the rate at which χ

flows past a point, we know that

Jχα = nχvα,

and if we switch to the co-moving frame, we have

J̃χ,α = nχ(vα − uα).

Since the momentum is conserved, we can choose χ to be the βth component of the momentum in the co-moving

frame. Now we have

J̃pβ ,α = mn(vβ − uβ)(vα − uα),

so the average “current density of momentum” (transmitted by flow of the gas itself) is mn〈(vβ − uβ)(vα − uα)〉. But
this quantity is also measuring force per unit area, since the rate of change of momentum is force! So this indeed

makes sense as a “pressure” object, and this also explains why we should think about it as a tensor rather than a single

number.

So now let’s look at the off-diagonal elements of the pressure tensor: for example,

Pxy = current of px along the y -direction,
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and those off-diagonal terms are just (in these first-order hydrodynamics)

Pxy = −2µ(uxy ) = −µ(∂xuy + ∂yux).

So if we have a fluid flowing in the ~x-direction, we can write the velocity as ~u = (ux , 0, 0), where ux can be a function

of y . Then we can write down the relation

Pxy = −µ
dux
dy

,

telling us about the force per unit area in the xz-plane, and the role that µ plays here is exactly the standard definition

of viscocity!

Returning to our earlier work, we now need to calculate the heat flux, which was zero in zeroth-order hydrodynamics.

It turns out to be

h(1)
α = n

〈
cα
mc2

2

〉(1)

,

which requires us to calculate the average in

= −
nτ

T
∂βT

〈
mc2

2
cα

(
mc2

2kBT
−

5

2

)
cβ

〉
.

Using Wick’s theorem yields

h(1))
α =

(
−

5nτk2
BT

2m

)
∂αT = −k∂αT,

where k =
5nτk2

BT

2m is the heat conductivity. So at first order, a non-uniform temperature does produce a heat flow

that smooths it out, which is what we want. Similarly, if we have a shear flow, we’ll oppose that flow with a non-zero

viscosity, further getting us towards global equilibrium.

Fact 150

Notice that k is proportional to the mean free time τ , and similarly the viscosity also has a factor of τ . So if we

take the ratio k
µ , those two factors will cancel out, and we can indeed measure k

µ in a variety of gases to test the

relaxation approximation. It turns out that it is pretty well-satisfied in the dilute gas limit with weak interactions!

Next time, we’ll plug everything back into the conservation equations, and we’ll show that in linearized hydrody-

namics, we have finite damping rates for our different normal modes.

28 November 4, 2020

Fact 151

Class began with a discussion about everyone’s thoughts on the election and election process.

We’ll finish the discussion of first order hydrodynamics today, showing that the long-wavelength modes relax (damp)

to equilibrium, which will conclude our discussion of kinetic theory. Then we’ll move on to a completely different topic

– quantum ideal gases – but before that, we’ll take some time to ask questions about the course material in general.

Remark 152. These past few lectures have had a lot of algebra, and it’s easy for us to get lost in the calculations. But

if we look back at the notes after this section of the class, hopefully we can see the bigger picture and the strategies

we’ve been using. Our homework, due next Tuesday, should help us develop some more intuition too.
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We’ve been working to characterize the deviation g from equilibrium f (0) at linear order, and we can do this by

plugging in the heat flux and pressure tensor we derived last time into our conservation equations. (The goal is to

show that these will indeed lead to relaxation to global equilibrium). Recall that two of our linearized hydrodynamic

equations are

(for density:) ∂tν = −n∂αuα ,

where ν = n − n is the deviation of density, and

(for momentum:) m∂tuα = −
1

n
∂βPαβ,

where we found last time that

Pαβ = nkBTδαβ − 2µ
(
uαβ − δαβ

uγγ
3

)
,

with µ = nkBTτ the viscosity coefficient in the relaxation-time approximation. So if we plug in this pressure tensor

into the momentum equation, what we end up with is

m∂tuα = −kB∂αθ −
kBT

n
∂αν +

µ

n

(
∂α∂β

3
+ δαβ∂γ∂γ

)
uβ ,

where θ = T − T . (Remember that we’re specializing to a case where we’re perturbing about a state where the fluid

is at rest in global equilibrium, meaning there is a fixed density n and temperature T .)

Remark 153. If we instead plug in the pressure tensor into the non-linearized momentum equation, we end up with

the Navier-Stokes equation (the basic equation of fluid dynamics).

What we’ve written down is a linearized version of Navier-Stokes, and the first two terms on the right-hand side

already existed in the zeroth order hydrodynamic equation. If we do a similar substitution into the energy equation,

we find that

∂tθ = −
2

3

(
T∂αuα −

K

nkB
∂α∂αθ

)
,

where K = 5
2

nk2
BTτ

m is the thermal conductivity. As a sanity check, if uα = 0 (so the fluid is at rest), we have

∂tθ ∝ ∂α∂αθ,

which is the heat (or diffusion) equation! Since θ is the deviation in temperature, what we’re saying is that heat is
transported through diffusion in our gas. And the heat diffusion constant is the thermal conductivity, divided by the

heat capacity 3
2nkB of the gas, which is indeed what we expect.

So we want to take these three boxed equations, which are linear coupled differential equations with constant

coefficients, and we can solve them with a Fourier transform like we did before. For clarification, this means that we

want to look for solutions of the form

ν(~q, t) = e i(
~k·~q−ωt)ν̃(~k, ω),

uα(~q, t) = e i(
~k·~q−ωt)ũα(~k, ω),

θ(~q, t) = e i(
~k·~q−ωt)θ̃(~k, ω),

and the θ̃s are the Fourier coefficients. Plugging these in, each time-derivative multiplies the function by −iω, and each
space-derivative along α brings a factor of ikα. So derivatives just give us multiplication, and the original differential

equations will reduce to a set of coupled ordinary linear equations for the quantities ν̃, ũα, and θ̃, which is a linear
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algebra eigenvalue problem. What we end up with is (remembering that the parts of the matrix with indices are in

block form)

ω


ν̃

ũα

θ̃

 =


0 nkβ 0

kBT
mn δαβkβ

−iµ
mn

(
k2δαβ +

kαkβ
3

)
kB
m δαβkβ

0 2
3Tkβ

−2iKk2

3kBn



ν̃

ũα

θ̃

 ,
and now we look for the eigenvalues of this 5× 5 matrix, which tell us how the mode frequencies have been modified

now that we have a better solution to the Boltzmann equation. Recall that in our first attempt, the terms proportional

to K and µ did not exist, and we had three zero-frequency modes. But the viscosity should take away the two shear

modes that we found, and the last zero-frequency mode, the “entropy mode,” originally had density and temperature

vary in a way so that there was no pressure anywhere – that won’t happen anymore, either.

We could find values of ω by brute force, but let’s make our lives a bit easier: if we consider a transverse mode

with ~k · ~uT = 0, which were initially the shear modes with zero frequency, the middle part of the matrix is no longer

zero, and what we end up with is a frequency

ωT = −
iµ

mn
k2.

This is a pure imaginary eigenvalue, and if we plug that in to the e−iωt component of our solutions, we find that

uT (~q, t) ∝ e i(~k·~q)e−µk
2t/(mn).

So we end up with an exponential decay of this mode, meaning that its amplitude decays to zero: this mode is

damped over a characteristic time

τtransverse(k) ∼
mn

µk2
∼
mn

µ
λ2,

where λ is the wavelength of the mode. So any flow pattern with velocity modulated in a transverse direction must

decay to zero, and that’s indeed what we want if the system should relax back to equilibrium.

For the remaining modes, we have ~u parallel to ~k (since we’ve dealt with the transverse modes already), meaning

we can write ~u = k̂u`. We can now simplify our equation to (now we have a 3× 3 matrix, because we only consider a

single scalar ũ`)

ω


ν̃

ũ`

θ̃

 =


0 nk 0

kBTk
mn

−4iµk2

3mn
kBk
m

0 2
3Tk

−2iKk2

3kBn



ν̃

ũ`

θ̃

 ,
and because we’re working only to linear order in τ , we can simplify our life some more – we have three remaining

modes which had frequencies (0, v`k,−v`k) in the zeroth order equation, and we expect that they will all pick up a

negative imaginary component: (ω
(1)
e (k), v`k − iγ,−v`k − iγ). Note that the determinant of the matrix above is easy

to calculate – it’s 2i
3
KTk4

mn – and that also needs to be the product of the three eigenvalues. So

(ω(1)
e (k))(−v2

` k
2 − γ2) ≈ (ω(1)

e (k))(−v2
` k

2)

to linear order in τ , because each of the modifications γ and ω(1)
e are small. Therefore, we can solve to find

ω(1)
e (k) = −i

(
2Kk2

5kBn

)
,

and thus the (originally zero-frequency) entropy mode is getting damped as well. We can finish by noting that the

trace is the sum of the eigenvalues: thus

ω(1)
e (k) + v`k − iγ − v`k − iγ = −i

(
4µk2

3mn
+

2Kk2

3kBn

)
,
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and the v`k terms cancel on the left and we can plug in the ω(1)
e (k) value. This finally gives us

γ = k2

(
2µ

3mn
+

2K

15kBn

)
.

At the end of the day, what matters is that all of our modes get damped, and in fact the damping rate is proportional

to k2. Thus, long-wavelength disturbances of the medium take a long time to relax, but they will still eventually do

so. Indeed, τeq, the equilibration time, is then much larger than τ (as we mentioned several lectures ago)! So we’ve

described the approach to equilibrium in some detail, using these linearized hydrodynamic equations.

Fact 154

Effects like turbulence (in fluid dynamics) are not coming up in our analysis here, because everything’s being done

to first order. If we want to apply this to a liquid, we have to show that these equations are more general than

their original context, and that depends on the microscopic behavior.

And in general, there are different adequate approximations that come up for different timescales – the full micro-

scopic picture, the Boltzmann transport equation, hydrodynamics, and so on. It’s impossible to try to solve everything

exactly, but we can make appropriate assumptions to make the calculations feasible for us.

29 November 6, 2020 (Recitation)
We’ll have a general discussion of length and time scales in the context of first order hydrodynamics today, and then

we’ll think about Wick’s theorem some more if we have time.

As always, we’re starting with the Boltzmann equation

L[f ] =

(
∂t +

pα
m
∂α + Fα

∂

∂pα

)
f = C[f , f ],

where we calculated the collision term using the molecular chaos assumption. A quick recap of what we did with this:

this equation is still too hard to solve in its current state, so we wrote f = f (0) +g = f (0)(1+g̃), where C[f (0), f (0)] = 0

(basically f (0) is equilibrium) and g̃ = g
f (0) . Then we find that

L[f (0)]+L[g] =

∫
d3p1dΩσ(Ω)

|p − p1|
m

(
f (0)(p2)f (0)(p3)(1 + g̃(p2))(1 + g̃(p3))− f (0)(p)f (0)(p1)(1 + g̃(p))(1 + g̃(p1))

)
(writing in terms of g̃ is nice because that makes things factor out), and now we also know that f (0)(p2)f (0)(p3) =

f (0)(p)f (0)(p1), because C[f (0), f (0)] = 0 tells us that dH
dt = 0, and that forced us to have ln f (0)(p0) + ln f (0)(p1) =

ln f (0)(p2) + ln f (0)(p3). This enables us to rewrite

L[f (0)] + L[g] =

∫
d3p1dΩσ(Ω)

|p − p1|
m

f (0)(p)f (0)(p1) ((1 + g̃(p2))(1 + g̃(p3))− (1 + g̃(p))(1 + g̃(p1))) ,

and then expanding and writing this to first order in g̃ gives us

=

∫
d3p1dΩσ(Ω)

|p − p1|
m

f (0)(p)f (0)(p1) (g̃(p2) + g̃(p3)− g̃(p)− g̃(p1)) +O(g̃2),

which we define in terms of a new operator CL as

= f (0)(p)CL[g̃] +O(g̃2).
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Example 155

Let’s quickly shift gears and develop a helpful mathematical principle: if we have an equation like ax = B(x2− 4),

we can think of our solution as a perturbation x = x0 + ε, where B(x2
0 − 4) = 0 is the solution if we ignore the

left side of the equation.

Plugging this in gives us

a

B
x0 +

a

B
ε = 2x0ε+ ε2 =⇒ ε

(
2x0 −

a

B
+ ε
)

=
a

B
x0.

But if a
B is small, then ε should be small along with it, and it’s consistent for us to say that ε = 1

2
a
B +O

(
a
B

)2
.

So returning to our original question, we have a linear operator on the left side, L[f ] +L[g], which is “pretty small.”

So we want to know when it’s self-consistent to make the linear approximation

L[f (0)] = f (0)CL[g̃] ,

and this is true (the equivalent of checking whether a
B is small) if the following conditions hold:

• The magnitude of our external force must be much less than p
τx
, where τx is the characteristic time of our

operator. ( pτx is the typical amount of force that our particles are experiencing, because every mean collision

time, we’ll get our momentum changed on the order of p.)

• We need ∂αf
f �

1
vτx
∼ 1

`x
, where `x is the mean free path for the particles. (In other words, the differences in

f at different regions must be not noticeable by a traveling particle, compared to the influences of collisions it

experiences as it travels between those two regions.)

• Finally, we need ∂t f
f �

1
τx
, which is a similar idea as the one above.

The first and second conditions are true if we set up our initial conditions properly, and the variations in f can

be caused either by initial conditions or external forces. But if everything is small (and we have long-wavelength

fluctuations), waiting a bit will make the collision terms get rid of fast fluctuations. Combined with the fact that g is

small, and that means that C[f , f ] is small, we find that the solution form we’ve presented is self-consistent! Here’s

one way to think about this: a perturbation to our system that is very large or rapidly varying might cause the different

terms here to have large influences. But if our initial conditions aren’t large and our force does not have a huge impact,

our deviations will behave properly.

Example 156

For illustration, let’s think about our previous problem set and consider a force ~F = ~E0e
iωt+i~k·~q. Recall that

we approximate our collision term as − f−feqτ (this is the time for electrons bouncing off impurities, rather than

scattering off each other).

Now we have

L[feq] + L[g] = −
g

τ
,

because the equilibrium feq has collision term zero under our relaxation-time approximation. But notice that the

approximation

f (0)CL(g̃) = −f (0) g̃

τ
= −

g

τ

is essentially approximating the parenthetical (g̃(p2) + g̃(p3)− g̃(p)− g̃(p1)) term from earlier in our calculation as

only having the −g̃(p) term, and also making other assumptions about how the rest of the integrand’s p-dependence
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looks. There are plenty of corrections that are actually added for what’s going on at other momenta, and we’re

essentially treating the other terms on average as “not doing anything” because we integrate over them. (Basically,

“scattering is a pretty random process,” so effects from other pis don’t do anything to p.) And we’re also assuming

that all τs that show up in this equation are the same, which is physically unlikely when looking over different values

of ~p.

So returning to our example, it’s not important that L[g] itself is small relative to L[f ] – we just need to be

able to do a self-consistent order-by-order expansion with it, and that requires g̃ to be small relative to f and also

L[feq]� 1
τ (meaning the electric field is much smaller than p

τ , which will typically hold). Expanding gives us (to first

order, noting that g is the same order as Eα)

∂tg +
pα
m
∂αg + Eα

∂

∂pα
feq = −

g

τ
.

And now if ωτ � 1, and |k |vτ ∼ |k |` � 1 (meaning that the electron has gone through many collisions before the

electron reaches an electric field with a different spatial or temporal dependence), the first two terms here on the
left side will be negligible. (For something like a metal at room temperature, we have τ ≈ 10−14 s and ` ≈ 10 nm.)

And then we get a direct proportion relating g to the electric field, and the problem can be solved from there.

Looking further down the derivation, if we write down the hydrodynamic equations

Dtn = −n∂αuα,

mDtuα = Fα −
1

n
∂βPαβ

Dtε =
1

n
Pαβuαβ −

1

n
∂αhα,

we’re taking the equation L[f ] = C[f , f ] and integrating (averaging) over the local momenta. We then need to

learn what Pαβ and hα values are – as written, they can depend on a complicated distribution, but this is where we

“coarse-grain” over the small τx : we do an expansion so that we can write Pαβ and hα in terms of conserved-quantities.

And we do this with another order-by-order expansion: we can write Pαβ, hα, ε as functions of ~u, n, and T , which give

us five differential equations for five variables. And for the first order case, we use L[f (0)] = − g
τx
, and note that

there is no correction to ~u, n, ε in this first-order approximation, because we derived these equations from the equation

0 =
∫
d3pL[f ]χ(p) (the collision-conserved quantities can’t change along the flow lines). So we must have∫

d3pg(p)χ(p) = −τ
∫
d3pL[f (0)]χ(p) = 0,

with the last equality true because we’re writing L[f (0)] = C[f (0) + g, f (0) + g] and evaluating that to first order.

There’s a lot to keep track of, but what’s important to take away is the overall logic!

Finally, we’ll talk a bit about Wick’s theorem: suppose we need to compute an average value

〈cα1 · · · cα2n〉0,

where each cα is an iid centered Gaussian drawn from a fixed distribution, and the O indicates average over that

Gaussian. Then the only nonzero cumulants are the first and second order cumulants (the mean and variance), so if

the means are zero, we only care about contributions from the variance. Thus, we want to do a cumulant expansion,

which is the set of different ways to pair up the cis:

= 〈cα1cα2〉〈cα3cα4〉 · · ·+ (other permutations),

noting that 〈cαcβ〉 is isotropic (meaning it’ll be Aδαβ for some A, depending on the variance).
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For example, calculating

〈cαcβcγcδ〉0

will have two factors of A because we have two pairs, and then we just do all of the pairings:

= A2(δαβδγδ + δαγδβγ + δαδδβγ).

In our derivation of first-order hydrodynamics, this comes up because we often integrate an observable O and get an

equation the form ∫
dx
e−x

2/2

√
2π

(1 + g̃(x))Õ,

and we can integrate Õ (which can usually be written in terms of the cαs) with respect to the Gaussian:

= 〈Õ〉0 + 〈Õg̃〉0.

And since Õ often looks like c2cα or cαcβ, we can use Wick’s theorem directly in this way.

30 November 9, 2020
Because of Veterans Day, we won’t have class on Wednesday. And by popular demand, the due date for our problem

set this week is extended to Thursday at noon. (There are some special rules this year for Thanksgiving week, which

will affect future problem set logistics too – we’ll hear more information about that and our upcoming quiz soon.)

Today, we’ll start a new topic. Now that we’ve finished with kinetic theory (which essentially served to provide a

more useful description by approximating statistical mechanics at longer timescales), we’ll begin discussing quantum
ideal gases, starting with the ideal Bose gas.

Fact 157

Some of us may not have taken quantum mechanics before, and the most important thing is that (especially since

we’ve come this far in a graduate physics class) quantum physics is important for us to learn if we haven’t
done so already. The rest of the class can probably be followed without knowing quantum mechanics, but it’ll

be a lot easier to appreciate conclusions with the relevant background.

One of the fundamental reasons for this topic is that as the temperature of a gas decreases, Boltzmann statistics

becomes increasingly inapplicable, and we need to be more careful about indistinguishability of particles and its effect

on the structure of our Hilbert space. When we’re working in three dimensions, there are two general types of behavior

for identical particles under exchange:

• Bosons, for which the quantum wavefunction is symmetric under exchange, so for particles at positions x1, x2,

ψ(x1, x2) = ψ(x2, x1),

• Fermions, for which the quantum wavefunction is antisymmetric under exchange, meaning

ψ(x1, x2) = −ψ(x2, x1).

We’re always going to be interested in a large system of identical particles, and throughout this course, we’ll

only deal with systems where those particles are noninteracting. (Interactions between qantum mechanical particles
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are discussed in 8.513 and 8.514, which are the quantum many-body physics classes.) If we have such a set of

non-interacting identical quantum particles, we can let the single-particle eigenstates be denoted |r〉, and a many-

body eigenstate written as |r1, r2, · · · , rN〉. Naively, the wavefunction looks like a superposition of states of the form

ψr1ψr2 · · ·ψrN (which are products of the single-particle wavefunctions), but we can specialize in the case of bosons

and fermions. For bosons, we’re only able to consider the subspace of states which are symmetric under permutations,

and for fermions, we only consider the subspace which is antisymmetric under those permutations. And we can state

that in another way as follows:

Proposition 158

If we have a system of bosons, then any number of particles can occupy any given single-particle state. But if we

have a system of fermions, any single-particle state can only be occupied at most once.

Basically, if we antisymmetrize a wavefunction where two particles have the same single-particle wavefunction, then

the subsequent exchange will make everything cancel out, and we won’t have a valid wavefunction at all. And this is

exactly what we might hear in atomic physics as the Pauli exclusion principle.
Now, if we want to specify the eigenstates for our many-body system, we can index them as (n1, n2, · · · ), where

nr is the occupation number for the single-particle state |r〉. (For example, if there are 100 single-particle states,

and there are 10 particles, we can ask how many particles are in the state |1〉 and |2〉 and so on, up to |100〉.)
This is equivalent to providing the eigenstate of every individual particle, but it is easier to use the ni notation for

thermodynamic description later on. So we have the constraint∑
r

nr = N = total number of particles.

For bosons, the only additional constraint is that nr ≥ 0 for each r , but for fermions, we also need that nr ≤ 1 (each

state |r〉 can only have 0 or 1 particles). If we let εr be the energy of the single-particle state |r〉, then we can also

write down the canonical partition function

Z =
∑

{n1,n2,··· }

e−β
∑

r nr εr ,

with the constraint
∑

r nr = N over the big sum. It turns out that it’s often easier to calculate with the grand partition

function, fixing the chemical potential instead and then working with the grand free energy to get what we want.

Specifically, we just need to be able to handle the sum

ZG =
∑

{n1,n2,··· }

e−β
∑

r nr (εr−µ) ,

this time with no additional constraint on the big sum (except the nr ≤ 1 constraint in the fermion case), and now

our problem is completely well-defined – the difficulty now comes in the mathematics.

In the ideal Bose gas (meaning we have bosons), since each ni can be any nonnegative integer, we can do the

sums independently over each nr , so we can factor this sum as

ZG =
∏
r

( ∞∑
nr=0

e−βnr (εr−µ)

)
.

Each term here is an infinite geometric series

1 + e−β(εr−µ) + e−2β(εr−µ) + · · · =
1

1− e−β(εr−µ)
,
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and thus we have our answer in the Bose gas case:

ZG =
∏
r

1

1− e−β(εr−µ)
= e−βg,

where g is the grand free energy. Taking the log tells us that

g = kBT
∑
r

ln(1− e−β(εr−µ) ,

so if we can evaluate this sum over single-particle states, we’ll have our final answer for the grand free energy.

Example 159

Consider a gas of such bosons confined to a large box of volume V (and no external potential acting on the

system).

We know that each single-particle state here can be labeled by the momentum ~p, so

g = kBT
∑
~p

ln(1− e−β(~p2/(2m)−µ)).

More specifically, if the box is L× L× L, we know that

~p =
2π~
L

(mx , my , mz),

with mx , my , mz all integers. Since we’ll end up taking the thermodynamic limit L → ∞, keeping the ratio N
L3 fixed

as always, this is the real sum that we want to evaluate, and because the spacing 2π~
L goes to 0 in this limit, we can

proceed by turning this into an integral (this should sound familiar to us!). Then we find that

g = kBTV

∫
d3p

(2π~)3
ln
(

1− e−β(~p2/(2m)−µ)
)
,

and now thermodynamic quantities can come out of derivatives of this free energy.

Definition 160

From here on, d̄3p will denote d3p
(2π~)3 .

We can find the density of the gas

ρ =
〈N〉
V

= −
1

V

∂g

∂µ
,

which we can do by bringing the derivative into the integral, yielding

ρ =

∫
d̄3p

e−βp
2/2meβµ

1− e−βp2/2meβµ
.

This is some function of T and µ, as we expect, and in order to evaluate this integral, we’ll set z = eβµ and perform

the change of variables x2 = βp2

2m , leaving us with

ρ =
4π

(2π~)3
(2mkBT )3/2

∫ ∞
0

dx
x2ze−x

2

1− ze−x2 ,

where the 4π comes from the angular integrals when we switch to spherical coordinates (and now we’re left with the

radial integral, which is why the bounds have changed).
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Definition 161

The thermal de Broglie wavelength is defined through the equation

~2

2mλ2
T

= kBT =⇒ λ2
T =

~2

2mkBT
.

Physically, the motivation for this is that particles with a thermal energy kBT =
p2
typical
2m gives an uncertainty in

position given by ~
ptypical

. (Our definition might be off by a factor of π from other ones.) Then we find that

ρλ3
T =

1

2π2

∫ ∞
0

dx
x2ze−x

2

1− ze−x2 ,

and now we can’t evaluate this integral in terms of elementary functions, but we can do so with some special ones.

Expanding the denominator gives us

=
1

2π2

∫ ∞
0

dx x2ze−x
2

(1 + ze−x
2

+ z2e−2x2

+ · · · ),

which rewrites to

=
1

2π2

∫ ∞
0

dx x2
∞∑
n=1

zne−x
2n.

We now just have Gaussian integrals weighted by an x2 factor, and evaluating those one at a time gives us

=
1

8π3/2

∞∑
n=1

zn

n3/2
.

This can be written in terms of the function

ζ3/2(z) =

∞∑
n=1

zn

n3/2
,

and we get our answer for the particle density (remembering that z = eβµ)

ρλ3
T =

1

8π3/2
ζ3/2(z) .

Next time, we’ll use another series expansion to calculate the average energy, which will be a different zeta function.

We’ll then be able to take the resulting expressions to get some interesting physics!

31 November 13, 2020 (Recitation)
We’ll start by finishing the story of kinetic theory and hydrodynamics from last time, and then we’ll discuss separation

of scales and begin a review of density matrices.

Recall that for any collision-conserved quantity χ, we have∫
d3pC[f , f ]χ(p) = 0.

Furthermore, if f satisfies the Boltzmann equation L[f ] = C[f , f ], then we also have
∫
d3pL[f ]χ(p) = 0, and this is

what gives us the hydrodynamic equations. For example, setting χ = 1 gives us

Dtuα = −n∂tuα,
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setting χ = p gives us

mDtuα = Fα −
1

n
∂βPαβ,

and setting χ = p2

2m gives us

Dtε = −
1

n
Pαβuαβ −

1

n
∂αhα.

These are exact equations, but we can make a first-order approximation and assuming L[f (0)] = C[f (1), f (1)] (which

is only true to first order). Then we have
∫
d3pL[f (0)]χ(p) = 0, and this gives us zeroth order hydrodynamics

(because all of the equations are in terms of f (0)).

Next, we can say that L[f (1)] = C[f (2), f (2)] to second order, and thus
∫
d3pLf (1)]χ(p) = 0. This then gives us

first order hydrodynamics, and our perturbation from f (0) will be of order τx
τ2
u
, where τu is the timescale of L (the rate

of relaxation to global equilibrium), and τx is the mean collision time. (Alternatively, g
f (0) is of order τx

τu
.)

Remark 162. Here, f (0) satisfies the hydrodynamic equations to zeroth order, so C[f (0), f (0)] = 0. Then we define

f (1) = f (0) +g (when solved to first order), to get the next-order solution, through the equation L[f (0)] = C[f (1), f (1)]

(which holds to first order). The next-order correction is then defined through L[f (1)] = C[f (2), f (2)] (which holds to

second order), and so on – this iterative order-by-order calculation is basically how perturbation theory works.

Let’s now look at the Navier-Stokes equation, which comes from the first-order hydrodynamic equation with

relaxation time approximation: because f (1)) = f (0) − τL[f (0)], we basically take∫
d3pL[f (0) − τL[f (0)]]χ(p) = 0,

and we replace τ with certain effective parameters µ,K. (We don’t actually need the assumptions of the Boltzmann

equation – we can derive this with conservation laws directly, too.) And we might ask why the Navier-Stokes equation

is always considered close to exact – why do we never ask for the second-order expansion? It turns out τx
τu

is really

small – the order of the mean free path, versus the order of probing the system, gives us a huge gap, and we’re not

interested in the small-scale details.

Then the natural followup is why first order matters to us – why not stay at zeroth order? The answer here is

that we need to compare timescales to each other, and we know that all of our frequencies have zero imaginary part

in the zeroth order hydrodynamic equations. So our timescales for oscillation don’t have any decay timescales – no

modes decay to equilibrium – so even though τx
τ2
u
is small compared to other timescales, it’s still large compared to

0, and it still qualitatively changes the system. Remember that the damping rate is on the order of L[f (0)], which is

proportional to τxv2k2, where k is the wave number for our modes. This can then be rewritten as ρµk2, where µ is

the viscosity, and thus if our variations are long wavelength enough, our damping rate is very small.

And this kind of logic means, for example, that studies of material properties versus atomic physics versus quantum

field theory don’t need to be considered with each other, because they’re dealing with different time scales. This

separation of scales is part of what makes physics work!

Fact 163

In the kinetic theory of gases, if there’s no scale between τx and τu, we shouldn’t expect any behavior to happen

between those two scales, unless it happens at all scales. But this idea comes up in other situations too.

Similarly, if we look at the distribution of the sizes of cities, there is no particular scale – it follows a power law,

and no particular population is picked out. (The only scales here are the smallest number of people needed to fill a

settlement, and the maximum number of people on Earth.) This gives rise to a “fractal” behavior, which we can also

see in the shape of coastlines.
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The idea of turbulence in fluid physics also comes up in wealth distribution and education, because lots of

inefficiencies from the large to small scale gives us a dissipative system. (If financial flows came in at a small scale

at the service level, there would be less chance for turbulence to occur.) Returning back to kinetic theory, a large µ

gives us less turbulence, but µ = 0 also gives us no turbulence! So perturbations will break down completely – small

nonzero values of µ give us turbulent behavior, but µ = 0 gives us zeroth order hydrodynamics. Usually, averages in

thermodynamics will work, but turbulence will not give us a normal distribution where we can average out small-scale

behavior.

In the remaining time, we’ll start a discussion of density matrices:

Definition 164

A density matrix is given by a sum over quantum states

ρ(t) =
∑
α

pα |ψα〉 〈ψα| ,

where pα is the probability of being in the state α and the ψα states are normalized.

These objects come up if we have, for example, an entangled set of particles and we only look at part of that

system. (So for example, a particle might be in a spin-up state with probability 1
2 , or a spin-down state with probability

1
2 , and density matrices can encode this information.) We can think about how this changes over time, and we can

do this by first applying a product rule to

i~∂tρ =
∑
α

pα(i~∂t |ψα〉 〈ψα|+ |ψα〉 i~∂t 〈ψα| ,

and then this can be written as

=
∑
α

pα(H |ψα〉 〈ψα| − |ψα〉 〈ψα|H) = Hρ− ρH = [H, ρ]

because H is Hermitian on kets, so it is anti-Hermitian on bras. This might look similar to the classical ∂tρ = {H, ρ},
and it’s sometimes thought of as an analog of “Liouville’s theorem,” but there is no conservation of phase space in
quantum mechanics – in quantum mechanics, we just have a set of states, and momentum and position are useful

ways to describe a state, but they’re not the only way to do so.

We can then think about the expectation value of an operator relative to this density matrix, and this is just the

linear combination

〈Ô〉 =
∑
α

pα
〈
ψα
∣∣Ô∣∣ψα〉 = tr

[
Ô
∑
α

pα |ψα〉 〈ψα|

]
,

which can also be written as

= tr[Ôρ] = tr[ρÔ],

which is a sum over a complete orthonormal set of states

=
∑
n

〈
n
∣∣ρÔ∣∣n〉 .

(In contrast, the classical version would be

〈Ô〉 =

∫
d3Npd3Nq

h3N
ρÔ,

where ρ was the classical density of states in 6N-dimensional phase space.) If we think about the trace of just the
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density matrix, we find that

tr(ρ) =
∑
n,α

pα 〈n|ψα〉 〈ψα|n〉 =
∑
α

pα
∑
n

| 〈n|ψα〉 |2 =
∑
α

pα = 1.

This density matrix is also Hermitian (just by plugging into the definition) and positive semidefinite (no negative

eigenvalues). We’ll explore some more properties next time.

32 November 16, 2020

Our third quiz will be on Wednesday, with the same procedures (take-home, 24 hours to submit) as the first two,

covering the kinetic theory of gases. Also, our next problem set will be due the Wednesday after Thanksgiving, since

there are no classes during the break. Because no homework can be due beyond December 4 (since this class has a

final exam), this will likely be the last assignment that is officially due. A ninth problem set will be posted, covering

subject matter for the final exam, and it is recommended but not counted in our grade. (And our final exam isn’t

allowed to be take-home by MIT laws, meaning that it will be timed over a 3-hour period. For those of us in different

time zones, there will be an alternate accommodation.)

We’ll continue discussing the ideal Bose gas today, looking at Bose-Einstein condensation. Recall from last class

that we have the equation

ρλ3
T =

1

8π3/2
ζ3/2(z),

where ρ is the density of the gas, λT =
√

~
2mkBT

is a characteristic length, z = eβµ (where µ is the chemical potential),

and the ζ3/2 function is defined through the power series

ζ3/2(z) =

∞∑
n=1

zn

n3/2
.

Definition 165

The functions ζm(z) are defined via

ζm(z) =

∞∑
n=1

zn

nm
.

(These are also known in mathematics as the polylogarithm functions, denoted Lim(z).)

Our next step is to calculate the average energy of the system, which is given by

〈E〉 =
1

ZG

∑
{ni}

(∑
r

nrεr

)
e−β

∑
i ni (εi−µ) =

∂

∂β
(βg) + µ〈N〉.

Doing some calculations simplifies this to

= V

∫
d̄3p

p2

2m

1

eβ(p2/2m−µ) − 1
,

where d̄3p = d3p
(2π~)3 , and this should make physical sense because this fraction, known as the Bose factor, is the energy

associated with a particular momentum. We can further write this as

= V

∫
d̄3p

p2

2m

1

z−1eβp
2/2m − 1

=
4π

(2π~)3
V

∫ ∞
0

dp
p4

2m

1

z−1eβp
2/2m − 1

,
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where we’ve switched to spherical coordinates and done the angular integrals. Now if we make a change of variables

and let x2 = βp2

2m , we find that (this way we can factor out the temperature dependence as much as possible)

〈E〉 =
(kBT )(4πV )(2mkBT )3/2

(2π~)3

∫ ∞
0

dx
x4ze−x

2

1− ze−x2 .

(So now the only dependence of this integral on the temperature is in the z .) At this point, we can do the integral by

a power series:

=
V kBT

4π2λ3
T

∫ ∞
0

dxx4
∞∑
n=1

zne−nx
2

,

and now we can do each Gaussian integral weighted by an x4 to find

〈E〉 =
V

8π2λ3
T

(
3

2
kBT

)√
πζ5/2(z) .

Dividing this expression by the one for density ρ that we derived earlier, we find that

E

V
=

3

2
kBTρ

ζ5/2(z)

ζ3/2(z)
.

We can analyze this in some limiting cases:

• If ρλ3
T � 1, and λT is inversely proportional to

√
T , this means we’re looking at the high-temperature or low-

density limit. We expect that the statistics of the particles should not matter in this limit (we should get a

classical result). Notice that ζ3/2(z) � 1 in this limit, because we found earlier that ρ ∝ ζ3/2(z), and that

means that z � 1. Given this, we also learn that ζ3/2(z) ≈ ζ5/2(z) (the higher-order terms don’t contribute

much to either expression). Therefore we have

E

V
=

3

2
kBTρ,

which is the usual classical ideal gas result. (And notice also that this means eβµ � 1, so µ must be large and

negative. But that’s something we already knew this from studying the classical ideal gas.)

• Because ρλ3
T ∝ ζ3/2(z), which is a monotonically increasing function of z , we must have z increase as ρλ3

T

increases. So the value of z = eβµ is determined by solving the equation

ρλ3
T =

1

8π3/2
ζ3/2(z),

and in order to do that more explicitly (which we avoided having to do in the high-temperature limit), let’s

understand the structure of this ζ3/2 function. The function starts off linear for small z , but when we hit z > 1,

the series starts to diverge (and for z � 1 this series will diverge), and thus it is finite and increasing for 0 < z ≤ 1

but divergent for z > 1 (for example, by the ratio test on successive terms of the infinite series). Thus, we can

find a solution for z as long as

8π3/2ρλ3
T ≤ ζ3/2(1) ≈ 2.612.

In other words, there’s a critical temperature Tc , obtained by solving the equation above:

kBTc ≥

(
8π3/2

ζ3/2(1)

(
~2

2m

)3/2

ρ

)2/3

=
2π~2

m

(
ρ

ζ3/2(1)

)2/3

,

and everything we’re saying here only makes sense above this temperature T = Tc . But it’s natural to think

about what happens to the physics of the Bose gas as our temperature falls below this critical value – if we have
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this phase transition, where in our calculations did we go wrong?

• To get more insight into that, we can consider the other extreme temperature of T = 0. Then all of the bosons

occupy the single ground state with zero momentum, and we have macroscopic occupation of a single quantum

state. So if we raise the temperature by only a little bit, it makes sense that we’ll have a macroscopically large

occupation (that is, a finite fraction of our total N particles) in the ground state. Recall that in our derivation

of the grand free energy g, we replaced our sum over states in ZG with an integral, and the only place we could

have gone wrong is in converting that sum to an integral. Indeed, if there is this macroscopically large occupation

of the zero-momentum state, our sum-to-integral approximation cannot be valid.

So we’re going to go back to our discrete sum for the grand free energy

g =
1

β

∑
~p

ln
(

1− e−βp2/2meβµ
)

=
1

β

∑
r

ln
(

1− e−β(εr−µ)
)
,

where our labeling over r is a sum over particular single-particle quantum states (that is, particular momenta ~p). We

know that the average occupation of a quantum state r is

〈nr 〉 =
1

ZG

∑
{ni}

nre
−β

∑
i (εi−µ)ni ,

which we obtain by differentiating with respect to εr :

= −
1

βZG

∂ZG
∂εr

= −
1

β

∂

∂εr
lnZG =

∂g

∂εr
.

So if we use the above discrete sum expression for g, we find that

〈nr 〉 =
1

eβ(εr−µ) − 1
.

Since the left hand side is some nonnegative value, we must have εr − µ ≥ 0 for all r , but if we apply this on the

ground state, we find that

µ ≤ ε0 = 0

when our energy is ε = p2

2m – thus, the chemical potential of the ideal Bose gas is negative for free particles with
this dispersion. Notice, though, that if µ is very close to 0, we can expand in a power series to find that

〈n0〉 =
1

e−βµ−1
≈

1

1− βµ− 1
= −

kBT

µ
.

This tells us that

µ = −
kBT

〈n0〉
,

and if 〈n0〉 is macroscopic – proportional to V – we have µ ∝ 1
V , which goes to 0 as the system size grows. So the

situation where macroscopic occupation occurs is one where our chemical potential is sufficiently small (relative to the

system size).

We can now look at behavior for excited states, and to find the energy of the first excited state, we know that

energy is proportional to p2, and the momentum spacing is proportional to 1
L . So the energy spacing is of order

1
L2 = 1

V 2/3 – more specifically,

ε1 ∼
~2

2mL2
.
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Therefore,
ε1

|µ| ∝
1/V 2/3

1/V
= V 1/3,

which goes to infinity as our system size increases. That means that we can ignore the µ contribution in our occupation

number in the following expression:

〈n1〉 =
1

eβ(ε1−µ) − 1
≈

1

eβε1 − 1
,

and similarly for all other excited states nr . In other words, if we ask about the mean number of particles at any

particular non-ground state, it’s going to be a finite number – not on the order of the total particle number N, and

thus only the ground state is macroscopically occupied. A way to explain this is that our “excess density is dumped

into the ground state:” if we have any extra density beyond 8π3/2ρλ3
T = ζ3/2(1), then it all goes into the ground state,

and this is exactly the behavior of Bose-Einstein condensation occurring for temperatures T < Tc .

Fact 166

Even if this huge jump in occupation number from n1 to n0 seems surprising mathematically, Bose-Einstein con-

densation does happen physically – for example, there are labs in Building 26 at MIT that create this environment

on a daily basis!

With our new understanding, we can now understand how to calculate the number of particles N: since only the

ground state has a huge occupation,

〈N〉 =
∑
r

〈nr 〉 = 〈n0〉+ V

∫
d̄3p

1

eβ~p
2/2m − 1

,

where we’ve also incorporated the fact that we must have µ = 0 to see this condensation behavior. And we’ve already

calculated this integral, and evaluation gives us

ρ =
〈n0〉
V

+
1

8π3/2λ3
T

ζ3/2(1) ,

and this ground-state density term “soaks up” all of the extra particles we have beyond the critical temperature Tc .

Remark 167. If we replace our box with a harmonic potential and cool down the gas until it Bose condenses, releasing

the gas will give us a Gaussian wavefunction in momentum space from the macroscopic occupation of the ground

state. So the velocity distribution should be Gaussian, and releasing the potential means that we’ll see the particles

spread out in a velocity distribution like we expect! But the technological feats required to make this happen in a real

lab are incredible.

33 November 18, 2020
We talked about the low-temperature phase of the Bose gas last time, and we saw that there is a macroscopic

occupation of a single quantum state (the one at zero momentum). We then derived an expression for the density at
low temperature, which can be rearranged for writing things in terms of the occupation number:

ρ =
〈n0〉
V

+
1

8π3/2λ3
T

ζ3/2(1) =⇒ 〈n0〉 = (8π3/2ρλ3
T − ζ3/2(1))

V

8π3/2
(λ3
T ).
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Remembering that we defined the critical temperature Tc last time, and plugging in its value tells us that

〈n0〉 = V

(
ρ− ρ

(
T

Tc

)3/2
)

=⇒
〈n0〉
V

= ρ

(
1−

(
T

Tc

)3/2
)
.

So 〈n0〉 is indeed proportional to V as promised, and furthermore, once the temperature goes below the critical

temperature Tc , we start getting a nonnegative fraction of occupation of the ground state. And as T → 0 and

T → Tc , we do indeed get 〈n0〉 → ρV = N and 〈n0〉 → 0 respectively, which is also the behavior that we expect from

yesterday’s discussion. (Our Bose gas is not classical immediately once we cross T = Tc , though: as we discussed last

time, the condition is ρλ3
T � 1.)

Remember that the macroscopic occupation of the single-particle ground state here is called Bose-Einstein con-
densation, and we’ll do another calculation related to this phenomenon, calculating the total energy at T < Tc .

Because particles in the ground state all have zero energy, the only energy contribution comes from the occupation of

the excited states, and we already saw that the contribution from all nonzero momenta can be safely approximated as

an integral (we don’t have macroscopic occupation at any energy other than the ground state energy). The chemical

potential µ is 0 in a Bose-Einstein condensate, so z = 1 in our previous result tells us that

Eλ3
T

V
=

1

8π3/2

(
3

2
kBT

)
ζ5/2(1).

Therefore, the energy per particle is (again plugging in results from the previous lecture)

E

V
=

3

2
kBT

(
N − N0

V

)
ζ5/2(1)

ζ3/2(1)
.

(This is in contrast to the E
V =

(
3
2kBTρ

) ζ5/2(z)

ζ3/2(z) that we previously had for T > Tc : the changes are that we now set

z = 1, and the density ρ is replaced with the density of the uncondensed particles. Using the value of 〈n0〉 we derived

earlier on in class, which tells us that a fraction
(
T
Tc

)3/2

of the particles are uncondensed, we have

E

V
=

3

2
kBT

N

V

(
T

Tc

)3/2 ζ5/2(1)

ζ3/2(1)
.

This lets us compute the heat capacity, which scales as

CV =
∂E

∂T
∼ T 3/2

in the regime T < Tc , while for T � Tc , the heat capacity should be 3
2NkB, matching the classical case. So plotting

Cv
N will give us T 3/2 growth at first, but then we actually have a kink in the derivative at T = Tc . It turns out the

heat capacity actually increases above 3
2kB at low temperatures (for non-interacting particles), and then at the phase

transition T = Tc , CV is continuous but not differentiable, and then the value relaxes back down towards 3
2kB.

Fact 168

Phase transitions are often hard to understand, and 8.334 discusses a lot of the theoretical technology needed for

understanding them. In most settings where we have to worry about interactions between the different degrees

of freedom, we usually require sophisticated analysis to understand what happens.

So the ideal gas is amazing in that we can actually analyze the phase transition in an elementary way, and somehow

the identity of particles enforces long-range knowledge of particles on other particles because of the symmetry! We’ll

see how the Fermi gas exhibits even more spectacular behavior than the Bose gas after Thanksgiving break.
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Example 169

Variants of this phenomenon have been observed in a lab – for example, a weakly interacting Bose gas, for instance

Helium-4, does undergo a condensation.

Helium becomes a liquid when we cool it under constant pressure at 4 Kelvin, and at around 2 Kelvin, we get a

phase transition that is closely related to the Bose condensation. We find that as T → 0, we do have a macroscopic

occupation, but there is a depletion of the condensate due to repulsive interactions. (And at ambient pressure for

Helium-4, the fraction of particles that are condensed is only about 10 percent.)

On the other hand, when we cool Helium-3 below 2 Kelvin, it just stays a liquid. Helium-3 does undergo a transition

into a low-temperature phase when we cool it further, but it only happens at milliKelvin temperatures. And the fact

that Helium-3 and Helium-4 are fermions and bosons, respectively, means that the statistics of fermions and bosons

do lead to completely different physics! We’re encouraged to look up the physics of superfluids to learn more as well.

That’s all we’ll say about Bose-Einstein condensation for now, and now let’s talk about blackbody radiation
(which was one of the reasons statistical mechanics came up in the first place), which is the electromagnetic radiation

occurring in thermal equilibrium (that is, the equilibrium of a gas of photons).

Photons are essentially non-interacting, so a photon gas can be treated as an ideal gas. (If we include quantum

electrodynamics corrections, there are weak interactions between photons, but unless the electric fields are very high,

these nonlinear modifications can be ignored.) In addition, they are bosons, so a lot of the calculations we’ve been

doing will still apply.

Example 170

Consider electromagnetic radiation in a large cavity, where the radiation reaches equilibrium through absorption

and emission of photons by the atoms in the walls of the cavity.

A key point about this photon gas is that the number of total photons is not conserved because of this absorption

and emission – instead, N is determined by conditions of thermal equilibrium. Most textbooks make the following

statement:

Fact 171

If we have a fixed temperature T and volume V for the cavity, the thermal equilibrium state is the one with the

minimum free energy F . And we know that
(
∂F
∂N

)
T,V

= 0 at equilibrium, so µ = 0 for the photon gas.

What this means is that we can take our generic formulas for a Bose gas and just set µ = 0, but the main point

is really that N is not a fixed constant independent of the other thermodynamic quantities. Regardless, we know that

the occupation of a particular single-particle state with energy εk = ~c |~k | is

〈nk〉 =
1

eβεk−1
=

1

eβ~ck − 1
.

(Remember that we label states of a photon by their momentum – the wavenumber of the photon – and the polarization

of the photon. But for any fixed polarization and k vector, we get a single state, and the occupation is then given

by this standard formula.) We’re often instead interested in the total number of photons within some momentum

region, though, and then we need to include the polarization factor of 2, too.

So the number of photons in a range d3p = ~3d3k around some momentum ~p is

dNk = 2V
d3p

(2π~)3
nk ,
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where the V d3p
(2π~)3 is the standard phase space factor. Since nk only depends on the modulus of ~k , we can then switch

to spherical coordinates and do the angular integrals to find that∫
dΩdNk = 2V

4π

(2π)3
|~k |2d |~k |

1

eβ~c|~k| − 1
,

This can then be converted to a frequency distribution: in the frequency range [ω,ω + dω], the number of photons

satisfies

dNω = V
8π

8π3

dω

c3

ω2

eβ~ω − 1
=

V

π2c3
dω

ω2

eβ~ω − 1
,

and the energy stored in this frequency range is

dEω = ~ωdNω =
V ~
π2c3

ω3dω

eβ~ω − 1
.

This is the Planck blackbody law, and we’ve derived it from the ideal Bose gas! Plotting 1
V
dEω
dω as a function of ω,

we find that at low frequencies (meaning ~ω � kBT ), we can expand eβ~ω ≈ 1 + β~ω and find that

dEω ≈
V

π2c3
kBTω

2dω,

and this answer is actually known in classical electrodynamics – it’s known as the Rayleigh-Jeans formula, and notice

that the ~ doesn’t even appear here – the derivation of this result can be obtained from equipartition. But the other

limit is the interesting one: when ~ω � kBT , we find that the exponential in the denominator dominates the −1, and

thus

dEω ≈
(
V ~ω3

π2c3
dω

)
e−β~ω,

which means emission is strongly suppressed at high frequencies due to the exponential decay! The maximum of the

distribution can therefore found in the regime ~ω ∼ kBT , and this should sound similar to previous discussions we’ve

had with low and high-temperature limits and how quantum mechanics plays a role.

Finally, we can calculate the total energy

E =

∫
dω

dEω
dω

=
V ~
π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
.

We can obtain the temperature-dependence by scaling it out of this integral: if we set z = ~ω
kBT

, then we find that

E =

(
V ~
π2c3

)(
kBT

~

)4 ∫ ∞
0

dx
x3

ex − 1
.

The integral turns out to have the value π4

15 , so we end up with

E =
V π2

15

(kBT )4

(~c)3
,

and this T 4-dependence is characteristic of many three-dimensional systems. (Intuitively, the phase space volume has

three powers of the momentum, and momentum is proportional to energy for a massless particle. And then we get

another factor of kBT from the energy of the particles.)
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34 November 20, 2020 (Recitation)
We’ll continue our discussion of density matrices today, looking at entanglement. Recall that a density matrix is defined

as a sum over a set of quantum states

ρ =
∑
α

pα |ψα〉 〈ψα|

(which is an operator), and we can define the expectation values of some other operator relative to the density matrix

via 〈
Õ
∣∣=〉∑

α

pα
〈
ψα
∣∣Ô∣∣ψα〉 ,

and if we insert a complete set of states, this can be written as

=
∑
α,n

pα
〈
ψα
∣∣Ô∣∣n〉 〈n|ψα〉 =

∑
n

〈
n
∣∣ρÕ∣∣n〉 = tr[ρÕ].

We found also that

i~∂tρ = [H, ρ],

meaning that equilibrium occurs if and only if [H, ρ] = 0, and then the equilibrium density matrix can only be written

in terms of things that commute with H (including H itself).

• If we look at the microcanonical ensemble, our density matrix looks like

ρ(E) =
1

Ω(E)
δ(Ĥ − E).

To figure out what this means, it’s helpful to go to a specific basis, and we can do that by using an orthonormal

energy eigenbasis. (We can define the delta function of a Hermitian operator by defining it on energy eigenstates

δ(Ĥ) |m〉 = δ(Em) |m〉 ,

and then extending to the rest of the space from there.) So now we have

〈n|ρ|m〉 =
1

Ω

〈
n
∣∣δ(Ĥ − E)

∣∣m〉 =
1

Ω

〈
n
∣∣δ(Ĥ − E)

∣∣m〉 ,
and now we can evaluate the operator on the ket to write this as

=
1

Ω
〈n|δ(Em − E)|m〉 =

1

Ω
δ(Em − E)δmn.

Because trρ = 1, we must have

1 =
∑
n

〈n|ρ|n〉 =
∑
n

1

Ω
δ(En − E),

which means that

Ω =
∑
n

δ(En − E),

and we’ve found our definition for the normalization factor.

• In the canonical ensemble, we now know that the overall system (our system plus the bath) is defined by the

microcanonical ensemble ρ = 1
Ωδ(Ĥ−ET ) for the total energy ET . To get a description of just the system, we’ll
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want to look at operators of the (tensor product) form Ô = 1B ⊗ ÔS which do nothing to the bath, and then

tr[ρÕ] =
∑
nS ,nB

〈
nS, nB

∣∣ρ1B ⊗ ÔS
∣∣nS, nB〉 ,

where we have to label over both the system and the bath. But now we can separate out this sum because the

bath states have no interaction with the ÔS, and then do a sum (partial trace) over all bath states using the

function trB[A] =
∑

nB
〈nB|A|nB〉:

=
∑
nS

〈
nS
∣∣trB[ρ]ÕS

∣∣nS〉 = trS[trB[ρ]ÕS].

Thus, it makes sense to define the density matrix of the system via

ρS = trB[ρ]

so that expectations of operators behave as we want: tr[ρÔ] = tr[ρSÔS] for operators Ô of the separable form,

meaning that we can indeed disregard the bath’s effects. So now

ρS =
∑
nB

〈
nB

∣∣∣∣ 1

Ω
δ(Ĥ − ET )

∣∣∣∣nB〉 ,
which in the thermodynamic limit becomes

≈
∑
nB

〈
nB

∣∣∣∣ 1

Ω
δ(ĤS + ĤB − ET )

∣∣∣∣nB〉 .
(We know that it is not exactly true that ĤS + ĤB = Ĥ because there are interactions between the system and

the bath, but we assume those are weak.) So now we can write this as

1

Ω

∑
nB

δ(ÊB − (ET − ĤS)),

using that ĤB can be replaced with an energy eigenvalue because it’s acting on the energy eigenstate nB. And

notice that this is

=
1

Ω
ΩB(ET − ĤS),

and now by the same arguments that we made about sharply-peaked energy near the beginning of class, this can

be written as

=
1

Ω
eSB(ET−ĤS =

1

Z
e−βĤS

by linearly expanding the entropy term and putting the constant term in the normalization constant Z. And

again, if we take a trace over the system states, we should get 1 for this density matrix ρS, so

1 = trS

[
1

Z
e−βĤS

]
=⇒ Z = trSe−βĤS =

∑
nS

e−βES ,

which is what we expect. Notice that we ended up with a probability distribution which helps us write down the

density matrix:

〈nS|ρS|mS〉 =
1

Z
e−βEnS δmSnS =⇒ ρS =

∑
nS

pnS |nS〉 〈nS|

And even if there’s only a particular state overall with a given energy, the derivation here still goes through! Even

if the combined system is in a precise (pure) state, the tracing can still give us a probabilistic density matrix.
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Example 172

Suppose that our Hamiltonian is H1 = ~p2

2m , and our system is constrained to a box of volume V . Use eigenstates

H1

∣∣∣~k〉 =
~2k2

2m

∣∣∣~k〉 .
We have 〈

~x
∣∣∣~k〉 =

e−
~k·~x
√
V
,

so that the plane wave is equally likely to be at any point, and then the partition function is

Z1 = trρ =
∑
~k

e−β~
2k2/(2m) = V

∫
d̄3ke−β~

2k2/(2m) =
V

λ3
,

where λ is the de Broglie wavelength. To get a sense now of what the density matrix means, we can look at the

matrix units in the position basis by expanding the expression for ρ over ~k-states, and we find that because we have

an energy eigenbasis,

ρ =
1

Z1

∑
~k

∣∣∣~k〉〈~k∣∣∣ e−β~2k2/(2m),

which means 〈
~x ′
∣∣ρ∣∣~x〉 =

∑
~k

〈
~x ′
∣∣∣~k〉〈~k∣∣∣~x〉 1

Z1
e−β~

2k2/(2m).

We can then write this as an integral:

=
λ3

V
V

∫
d̄3k

e i
~k·(~x ′−~x)

V
e−β~

2k2/(2m),

which is a Gaussian integral in ~k , giving us a final answer of

=
1

V
exp

[
−
π(~x − ~x ′)2

λ2

]

In other words, if we look at the density matrix and the off-diagonal terms in position space, a small λ (which occurs

at high temperature) gives us a Gaussian width that is also localized as long as we don’t probe the system beyond that

length scale. So when we look at the quantum mechanical statistics, thermal noise actually makes the system classical

– the position basis almost diagonalizes the density matrix.

Remark 173. We could also similarly calculate the grand canonical ensemble, and that also gives us the same types

of expressions as classical statistical mechanics. But everything basically looks like what we might expect.

Example 174

We can now move on to density matrices’ role in entanglement: we know the corresponding density matrices for

spins in the +z,−z directions are

[
1 0

0 0

]
and

[
0 0

0 1

]
, which tells us that (for example)

ρ±x =
1

2

[
1 ±1

±1 1

]
.
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We can write down something like

ρmixed =
1

2
(ρz + ρ−z) =

1

2
(ρ+x + ρ−x) =

[
1/2 0

0 1/2

]
.

This is called a “fully mixed state.” Now if we have two entangled spins in a particular pure state, we should note that

1√
2

(|↑↑〉 ± |↓↓〉) 6=
1

2
(|↑〉+ |↓〉)⊗ (|↑〉+ |↓〉)

cannot be factored into two single-particle states. In fact, what we end up with is

ρ± =
1

2


1 0 0 ±1

0 0 0 0

0 0 0 0

±1 0 0 1

 ,
which can also be written as

=
1

2
(|↑↑〉 〈↑↑| ± |↑↑〉 〈↓↓| ± |↓↓〉 〈↑↑|+ |↓↓〉 〈↓↓|) .

And now if we trace over the second particle’s states (in other words, we only observe the first particle and try to

describe it as a state), we can divide our 4× 4 matrices into four 2× 2 submatrices, and we trace over the sum of the

diagonals of each of those. So

tr2[ρ2] =
1

2

[
1 0

0 1

]
(the second and third term in the boxed expression above don’t contribute to our tracing because they’re off-diagonal

terms). So as soon as we’ve cut off part of our system, we go from a pure state to something that looks random!

So now if we consider a third spin, suppose that we started off with one of the two states

|ψ±〉 =
1√
2

(|↑↑↑〉 ± |↓↓↓〉 .

Then if we do some calculations, we’ll find that

tr3[ρ±] =
1

2
(|↑↑〉 〈↑↑|) + |↓↓〉 〈↓↓|)

So what’s interesting is that complex phases go away when we add this third spin from our environment: the ±
doesn’t change the value of tr3[ρ±]. And very roughly, if the third spin is “us” looking at the particle, and the second

spin is the measurement device, our consciousness not being able to observe all of the quantum details means that we

have to “trace over” our observer’s uncertainty, and that creates the randomness.

35 November 30, 2020
We’ve now gotten our quizzes back – many of us did well overall, though there were many comments about the quiz

being too long. So we’ll make a few remarks here – the first problem was relatively basic material, but the second

problem was designed to have the basic physics and the main equations to write down given to us. So the idea was

to analyze the consequences of the equations using the methods we’ve learned in the past few weeks of the course

– many of us were able to make substantial progress, but what was required was an ability to put together different

aspects of physics, which comes from experience and “physics maturity.”

122



Our final is a 3-hour (cumulative, open book) timed exam, and the questions will be a lot shorter than the ones

on the quizzes, but they will cover a broader range of topics. The format of a take-home exam makes it so that many

people keep working on the quiz until everything is solved, within the allotted 24 hours, and a timed exam will be

different in that regard. (An announcement will be posted on Canvas, and policies for makeup exams because of time

zones will also be posted.) There will be a Zoom room open during the exam where we can ask questions as well.

As a final note, there will likely be a slight extension for this week’s problem set (announcement to be posted).

Today’s class will focus on an application of the statistical mechanics of bosons to the specific heat of solids.

Fact 175

The calculation that we’re doing today was first done in 1905 by Einstein (who did a lot of things in that year,

including the photoelectric effect, special relativity, and Brownian motion), and this particular idea was important

because it showed that quantum mechanics needed to be applied to the physics of a solid. Since then, this idea

has developed into a field of the quantum mechanical theory of solids!

Example 176

Suppose we have a crystalline solid, where the atoms are arranged into a lattice. We want to calculate the

contribution to the solid’s specific heat from small vibrational motion about the atom’s equilibrium position.

At any nonzero temperature, we know that atoms will vibrate about their mean positions, and that thermal motion

gives rise to some entropy and thus an associated heat capacity. Here, we’ll consider a simple treatment of the

dynamics, where we begin with the Hamiltonian

H =

N∑
i=1

~p2
i

2m
+ V ({~qi}),

where V is an inter-atomic interaction potential. We’ll assume that the equilibrium crystalline structure is found by

minimizing the potential energy term V ({~qi}), and the resulting periodic (three-dimensional) lattice points can be

labeled with three basis vectors â, b̂, ĉ , so that any point of the (equilibrium) lattice is an integer combination

~r = `â +mb̂ + nĉ,

with `,m, n ∈ Z. Then the position of the atom at the site ~r will be given by

~q(~r) = ~r + ~u(~r),

where ~u(~r) is the oscillation of this particular atom. If V ∗ is the minimum potential energy (at the equilibrium lattice

state), a Taylor expansion tells us that our new potential energy due to this oscillation is (summing over all indices α,

β)

V = V ∗ +
1

2

∑
~r ,~r ′,α,β

∂2V

∂q~rα∂q~r ′β
uα(~r)uβ(~r ′) +O(u3).

Here, each u represents a displacement from a given site ~r or ~r ′ – this approximation is good in the low-temperature

limit – and we’ll drop the V ∗ from here on because it is just a constant. We can ask for a more specific criterion for

when this approximation is valid, and the point is that we just want to ensure that the u’s are small (one way to say

this is that we need to be able to identify each particle with its corresponding lattice site). But it turns out that
the conclusions that we’ll end up reaching are still valid about the equilibrium state, though not necessarily the ground

state, as long as our temperature is below the melting point of the solid.
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Fact 177

We’re also assuming that the temperature is low enough for electronic degrees of freedom to be ignored, and this

is true if we have an insulator.

So now we have our Hamiltonian

H =
∑
~r

~p2
r

2m
+

1

2

∑
~r ,~r ′,α,β

∂2V

∂q~rα∂q~r ′β
uα(~r)uβ(~r ′),

which describes the oscillations around the sites (that’s why we sum over the sites r here). From here on, we’ll denote

Kαβ(~r , ~r ′) = ∂2V
∂q~rα∂q~r ′β

. Note that translational symmetry tells us that the interaction between atoms

Kαβ(~r , ~r ′) = Kαβ(~r − ~r ′)

only depends on the relative displacement vector between the atoms, not where in the crystal we’re looking. And this

is a system of coupled harmonic oscillators, which we typically solve using normal modes. But this problem can

first be simplified because we have a translational symmetry in our system, which will help us decouple the differential

equations and go to Fourier transformed variables. The idea is to have our Fourier transform over a discrete set: we

write

uα(~r) =
1√
N

∑
~k

e i
~k·~r ũα(~k),

where N is the total number of lattice points in our lattice.

Proposition 178

Here, the ~k vectors can only live in a finite range, called the Brillouin zone.

To explain what’s going on here, if we consider a cubic lattice with spacing a, meaning

~ra(`x̂ +mŷ + nẑ).

Notice that if we take kα → kα + 2π
a , then e

i~k·~r is unchanged (we add 2π to the exponent). So no new normal modes

are created outside of this 2π
a range in each component, and thus we restrict the kα values to the interval

[
−πa ,

π
a

]
.

(And something similar happens in a general lattice, too – the Brillouin zone is a unit cell of the reciprocal lattice, up

to constant factors.)

Returning now to the potential energy, we will see the different Fourier modes decouple explicitly:

V =
1

2n

∑
~r ,~r ′,α,β,~k,~k ′

Kαβ(~r − ~r ′)e i(~k·~r+~k ′·~r ′)ũα(~k)ũβ(~k ′).

If we change coordinates so we use relative and center-of-mass coordinates, meaning ~ρ = ~r − ~r ′ and ~R = ~r+~r ′

2 , then

our potential energy becomes

V =
1

2N

∑
α,β,~k,~k ′

∑
~R

e i(
~k+~k ′)·~R

∑
~ρ

Kαβ(~ρ)e i(
~k−~k ′)·~ρ/2

 ũα(~k)ũβ(~k ′).

So we’ve separated the sum over ~R and ~ρ, and this is good because ~k doesn’t depend on ~R by lattice translational
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symmetry! If we now sum over ~R, we find that∑
~R

e i(
~k+~k ′)·~R = Nδ~k+~k ′,0

by symmetry (these terms wind around the unit circle unless ~k + ~k ′ is just 0). So now our potential energy will simplify

to

V =
1

2

∑
α,β,~k

∑
~ρ

Kαβ(~ρ)e i
~k·~ρ

 ũα(~k)ũβ(−~k).

If we now define

K̃αβ(~k) =
∑
~ρ

Kαβ(~ρ)e i
~k·~ρ

to be the Fourier transform of K, then

V =
1

2

∑
α,β,~k

K̃αβ(~k)ũα(~k)ũβ(−~k)

and indeed the different Fourier modes have now almost decoupled. The only remaining simplification is that because

uα(~r) is real, we have the simple relation

ũα(−~k) = ũα(~k)∗

between the Fourier coefficients. So the essential idea that made this all possible was the sum over ~R giving us a delta

function condition, and this was only possible because Kαβ only depends on the relative position between the sites.

So now the structure of the 3 by 3 matrix K̃αβ at each point in the Brillouin zone determines our dynamics. If there

are symmetries (for example, rotational) in our crystal, that also gives us further restrictions on the matrix elements.

Example 179

For simplicity, we’ll assume here that

K̃αβ(~k) = δαβ ~K(~k)

is a multiple of the identity matrix. This is not completely correct, but it’s good enough that we can illustrate the

main points.

We can do a similar idea for the kinetic energy, writing

pα(~r) =
1√
N

∑
~k

e i
~k·~r p̃α(~k).

Since this energy is defined on each site, we find a simpler answer for this term, and plugging in everything we have

so far gives us

H =
∑
~k,α

[
1

2m
|p̃α(~k)|2 +

K̃(~k)

2
|ũα(~k)|2

]
.

This Hamiltonian then has 3N independent simple harmonic oscillators, indexed by wave number and component, with

frequencies

ωα(~k) =

√
K̃(~k)

m
.

Here, the K̃(~k term tells us the energy term for deforming the lattice, so it’s a type of stiffness (expected to be positive
for all but 3 of the 3N modes, and we’ll see what’s going on there later). Because of these harmonic oscillators, we
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expect classically (from equipartition) for there to be a heat capacity of 3NkB from the lattice vibrations.

But if we plot C
N as a function of T , we know from experiments that the actual measured value of C

N decreases at

low T to 0. So we need to treat the lattice vibrations quantum mechanically instead, just like with polyatomic molecules

– modes with an energy much larger than kBT are not excited, so they can be ignored at certain temperatures. We’ll

see the details of that next time!

36 December 2, 2020
As mentioned in the class announcement, we should let the course staff know if the 9am Eastern final exam time is

inconvenient.

We’ll continue with the discussion of the specific heat of solids today. Last time, we found that we could determine

the normal modes for vibrational motion of a crystalline solid in Fourier space, and we wrote down the Hamiltonian

accordingly:

H =
∑
~k,α

[
1

2m
|~pα(~k)|2 +

K̃(~k)

2
|ũα(~k)|2

]
,

where we’ve assumed the stiffness K̃(~k) comes from a diagonal matrix K̃αβ. So then we have 3N independent simple

harmonic oscillators with frequency ωα(~k) =

√
K̃(~k)
m , and classical statmech tells us then that the specific heat must

be 3NkB. But this answer is experimentally wrong, so we’re looking into the details more carefully today.

In quantum statmech, we expect that the contribution to heat capacity drops once T . ~ω
kB
, where ω is the

oscillation frequency. We know that the quantum eigenvalues for the harmonic oscillators are labeled by integers

{n~k,α}, and

E({n~k,α}) =
∑
~k,α

~ωα(~k)

(
n~k,α +

1

2

)
,

with each n~k,α a nonnegative integer. And now the quantum statmech of a single oscillator can be repeated for any

number of decoupled oscillators – the partition function is

Z =
∑
{nk}

e−βE({n~k,α}),

which can be factored in terms of the individual oscillators as

=
∏
~k,α

∑
n~k,α

e−β~ωα(~k)(n~k,α+ 1
2 ).

(Remember that the oscillators are distinguishable because they’re corresponding to different wavenumbers, so there’s

no Gibbs factor here.) This can further be simplified as

e−βE0

∏
n~k,α

∑
~k,α

e−β~ωα(~k)(n~k,α),

where E0 =
∑
~k,α =

~ω~k,α
2 is the ground state energy (that ends up being an overall constant for the purposes that we

care about right now). And now evaluating each geometric series gives us

Z = e−βE0

∏
~k,α

[
1

1− e−β~ωα(~k)

]
.
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If we define nk,α to be the occupation number of the mode ~k, α, we can find that

〈n~k,α〉 =

∑∞
n=0 ne

−βn~ωα(~k)∑∞
n=0 e

−βn~ωα(~k)
=

1

eβ~ωα(~k)−1
.

This expression looks very similar to the photon occupation formula for blackbody radiation, so we can consider the

quantized lattice vibrations to be particles, specifically bosons with dispersion ωα(~k) (So we have quanta of the sound

wave modes!) These particles are known as phonons, and what we’re obtaining is a description of the phonons and

their spectrum inside the solid.

Remark 180. Also, the chemical potential µ for this system of phonons is 0, because the particle number is not

conserved (due to defects or boundary conditions) and the energy −~ωα(~k) is not part of the chemical potential term.

So now our average energy for the whole system is

〈E〉 = E0 +
∑
~k,α

~ωα(~k)〈n~k,α〉 = E0 +
∑
~k,α

~ωα(~k)

eβ~ωα(~k)−1
,

but we need to turn this into something that’s more useful or explicit. So we’ll describe specific models for the

dispersion ω~k,α (this is just a different notation for ωα(~k)) from here to get some sense of what’s really going on.

Example 181

Suppose we have the Einstein model, where ω~k,α = ωE 6= 0 for all (~k, α).

Then directly plugging in gives us

E = E0 +
3N~ωE
eβ~ωE − 1

,

and the heat capacity can then be calculated as

C =
dE

dT
= (3NkB)

(
~ωE
kBT

)2
e−β~ωE

(1− e−β~ωE )2
.

In the high-temperature limit ~ωE � kBT , we indeed have C → NkB, because we can approximate e−β~ωE

(1−e−β~ωE )2 ≈ 1
(β~ωE)2

and most terms cancel out. But in the low-temperature limit, we have kBT � ~ωE and thus C → 0, and both of

these correctly reproduce experimental results. (So Einstein was willing to take quantum mechanics seriously as early

as 1905!)

But notice that in the low-temperature limit, we have C ∝ e−β~ωE , but in experiments we see that C ∼ T 3 in

basically every crystalline material! To resolve this discrepancy, note that the translation symmetry of the microscopic

Hamiltonian mean that some modes will have very low energy, so the Einstein model is overdoing the decay near

T = 0. So it must mean that the modes are not all the same frequency, and some modes have much lower ω (and

thus contribute a bigger heat capacity).

wW’ll therefore need to understand the translations a little bit better. It costs no energy to do a uniform translation

of the whole crystal – the potential energy term V ({~qi}) only cares about the separation between various ~qis – therefore,
a uniform displacement of the atoms uα(~r) = u

(0)
α of all atoms also costs no energy. A natural next conclusion is to

say that if uα(~r) varies very slowly on the scale of lattice spacing (more precisely, we want it to vary slowly across the

range of interaction), then the energy cost is also small. (In other words, if we plot the displacement u versus r , and

it varies as a long-wavelength sine wave, then on the scale of the lattice spacing, u will look constant and the energy

cost is low.)
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With the previous discussion in mind, consider K̃(~k) at small |~k |. We know that the ~k = 0 mode corresponds to a

uniform displacement, so K̃(0) = 0, and this was a detail that was missed in the Einstein model! We also know that

K̃(~k) = K̃(−~k) for our simple enough models, so we can Taylor expand

K̃(~k) = K̃(0) + λαβkαkβ +O(k4).

Example 182

Suppose we’re looking at a simple case with a cubic symmetry, meaning that

λαβ = λδαβ =⇒ K̃(~k) ∼ λ~k2 + (higher order).

Then the corresponding normal mode frequencies are

ω(~k) =

√
K̃(~k)

m
= v |~k |

for small ~k , where v =
√

λ
m , and thus we have a linear dispersion at low wavenumber! So these are ordinary sound

waves that can be described by elasticity theory. (Note that there are three polarizations for the sound wave, all with

the same velocity, because the displacement can be along the x-, y -, or z-direction of our cubic crystal.

Remark 183. It’s not realistic for this to be true in a real crystal – in particular, because sound waves have two

transverse and one longitudinal mode, But the transverse vibrations should be less stiff than the longitudinal ones, and

because the stiffness determines sound velocity, these modes will have a lower velocity than the longitudinal ones, and

that is indeed the generic situation.

So now the average occupation of a sound mode at (~k, α) can be approximated as

〈n~k,α〉 =
1

eβ~ωα(~k)−1
≈

1

eβ~v |~k|−1

for small |~k |. And if we want to find the average energy at low temperature, we can just keep the contribution from

sound modes with low |~k |, where the
∑′ means that we only sum over some values of |~k |:

〈E〉|low T ≈ const +

′∑
~k,α

~v |~k |
eβ~v |~k|−1

,

and if we then convert the sum to an integral and switch to spherical coordinates, we find (because we pull out three

factors of L
2π )

〈E〉|low T ≈ const +
(3V )(4π)

8π3

∫ k0

0

dk
k2~vk
eβ~vk−1

.

This expression now depends on k0, but the integrand dies off rapidly for β~vk � 1 (because of the denominator).

So we’re actually just going to replace the upper limit by ∞, and we find that

〈E〉|low T ≈ const +
(3V )(4π)

8π3

∫ ∞
0

dk
k2~vk
eβ~vk−1

= const
3~vV
2π2

(
kBT

~v

)4 ∫ ∞
0

dx x3

ex − 1
,

which simplifies to

〈E〉|low T ≈ const +
π2V

10(~v)3
(kBT )4 =⇒ lim

t→0
C(T ) =

2π2V

5(~v)3
kB(kBT )3.
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This is known as the Debye model, and it’s a good approximation to use below the critical Debye temperature where

(~v)
π

a
= kBTD

and a is the lattice spacing. (And when we’re much larger than that temperature, we should use the classical

equipartition result.)

Remark 184. We can say more about the modes of oscillation when the ground state doesn’t have the symmetry of

the microscopic Hamiltonian, too (this has to do with Goldstone’s theorem). Then we’ll find again that there will be

modes of low frequency at low wavelength.

In the last five minutes, we’ll get started on our final topic of the course, which is the ideal Fermi gas. In most

circumstances, we deal with bosons and fermions as the two types of particle statistics, and the idea with fermions is

that the many-particle wavefunction is antisymmetric under particle exchange. And there’s a deep result that relates

the statistics of a particle to its spin (half-integer spin versus integer spin), and nuclear matter is determined by the

behavior of the protons and neutrons (so Fermi statistics does play a role there because neutrons are fermions). Since

electrons are fermions as well, anything electronic also has to do with Fermi statistics. Overall, the key thing that we

should remember is that each single-particle state can be occupied by at most one particle, which is the Pauli

exclusion principle.

So each single-particle state r will have some energy εr , and if we consider particles with spin-1/2 but also assume

single-particle energies do not depend on spin (so we’ll just get lots of factors of 2), we’ll want to calculate the partition

function of our system. And the grand partition function

ZG =
∑
{nr,α}

e−β
∑

r,α nr,α(εr−µ),

where α is either ↑ or ↓, and nr,α is always either 0 or 1 by the Pauli exclusion principle. So this actually means we

have (factoring through states)

ZG =
∏
r,α

(
1 + e−β(εr−µ)

)
=
∏
r

(
1 + e−β(εr−µ)

)2

= e−βg.

And thus we’ve found our grand free energy already:

g = −2kBT
∑
r

ln(1 + e−β(εr−µ) .

We’ll continue to explore the implications of this in the next lecture!

37 December 4, 2020 (Recitation)
We’ll talk today about phase transitions, which will help us discuss the Bose-Einstein condensation more clearly.

Definition 185

A phase transition is a discontinuity in some derivative of a thermodynamic variable.

A derivative of a thermodynamic variable is technically itself a thermodynamic variable, but most of the thermo-

dynamic variables we’ve considered so far (and have explicitly named) are continuous. So the phase transitions often
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come up in other derivatives (for example, a discontinuity in the second derivative of energy) – what’s interesting here

is that thermodynamics itself looks very continuous, so it’s interesting when we get sharp behavior.

Example 186

Consider a system of n classical spins σ1, · · · , σN , where each spin is ±1 (but we cannot have superpositions).

Then the Hamiltonian is

H = −
J

N

∑
i<j

σiσj − h
∑
i

σi .

In other words, spins are favored to be aligned with each other, and we also have a magnetic field. We then have

−βFn = lnZn,

where the partition function

ZN =
∑
{σi}

e−βH.

This is a finite sum, so it’s an analytic function and thus the log of the partition function should also not have any

discontinuities (meaning FN is analytic). But if we take the limit as N → ∞, we claim that the resulting function

limN→∞ FN is not analytic, so we can’t vary the parameters β, h, J in the limit.

Remark 187. This issue with convergence in the limit can be seen if we look at the functions xn on [0, 1]: pointwise,

these functions converge to a discontinuous function as n →∞ (it’s 0 everywhere except 1 and 1 at 1), even though

each xn is analytic. And another example of this kind of behavior is limN→∞ tanh(Nx) = sgn(x).

So we’ll solve this model – first of all, every spin interacts with every other spin in the system, so the Hamiltonian

can be written in terms of quantities that are symmetric under permutations. And what really matters in this example

is how many spins are up and how many are down, so the Hamiltonian can be written in terms of the extensive quantity

M =
∑

i σi , and we’ll define m = M
N to be an intensive version of that. Then n+ = 1+m

2 and n− = 1−m
2 are the fraction

of spins that are up and down, respectively, and our Hamiltonian becomes

H = −
J

N
f rac12

∑
i ,j

σiσj − n

− h∑
i

σi = −
JM2

2N
−
J

2
− hM,

where the −n comes from the n copies of σ2
i that we introduce when we changed the sum indices. We don’t care

about constants in the Hamiltonian, so we can write

H = −M
(
J

2
m + h

)
= −Nm

(
J

2
m + h

)
.

The partition function can now be written as

lnZN
N

=
1

N
ln

N∑
M=−N

(
N

Nn+

)
eβNm( J

2
m+h) =

1

2
ln

N∑
M=−N

exp

[
N

(
βm

(
J

2
m + h

)
− n+ ln n+ − n− ln n− + · · ·

)]
by using Stirling’s formula and putting everything into a common exponent. So this partition function has a term

that encourages m to be large (N
(
βm

(
J
2m + h

))
), while the entropy (combinatorial) term wants to push us back

towards the middle, where n+ = n−. And this is still analytic for any finite N, but we want to see what happens in the

appropriate limit. If we consider large βJ, we expect the first term to dominate, which means we have

lim
N→∞

lim
h→0

m(h) = 0
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for the magnetization, because for any finite N, the system is completely symmetric as h → 0. But this is not always

equal to the swapped order of limits

lim
h→0

lim
N→∞

m(h),

and the key point is that phase transitions take N → ∞ first! For small β (large temperature), this double limit is

indeed 0, but once we get past 1
β = J, we get a bifurcation – the system will be in one state with positive magnetization

or another with negative magnetization m(h). So as h → 0, the answer depends on which of these two “branches”

we took. And physically, this is spontaneous magnetization: cooling a magnetic material down causes it to go from

being paramagnetic to ferromagnetic.

Fact 188

If we plot m as a function of h for various values of βJ, we find that for βJ < 1, we have a continuous function, for

βJ > 1, there is a jump in the value at h = 0, and for βJ = 1, it has infinite derivative (so is “barely” continuous).

We’ll now do a bit more math to justify this result. Defining a new intensive quantity fn, we find that

−βfn = −
βFN
N

=
1

N

N∑
M=−N

e−Nβf (m),

where

βf (m) = −βhm −
βJ

2
m2 − ln 2 +

m2

2
+
m4

12
+
m6

30
+ · · · ,

and this infinite Taylor series coming from the entropy terms is convergent for any m < 1. Plotting βf (m) against m

at h = 0 then tells us that whenever βJ < 1, we have a positive m2-coefficient, but whenever βJ > 1, the quadratic

term is negative while all other terms are positive. So that means we have two minima not at the origin whenever

βJ > 1, a stable minimum whenever βJ < 1, and a very “flat” shape at exactly βJ = 1. And the issue is that we do

the saddle-point approximation where we only consider the minimum value of βf (m) as N →∞, so we indeed get the

desired bifurcation once the temperature gets small enough.

To find the exact points for the minima, we set f ′(m) = 0, which means we want

0 = −βh − βJm + tanh−1(m).

So the equilibrium value of m is given by

m∗ = tanh(βJm∗ + h),

and indeed if h = 0 and βJ < 1, there is only the solution m∗ = 0, but otherwise we have multiple possible solutions.

And now let’s consider another solution: if we consider the Hamiltonian Hi for a single spin (here H is not the sum∑
i Hi because of double counting), we have

Hi = (−Jm − h)σi

(technically there’s a small factor which is not super important because of σ2
i ). We can define h′ = Jm + h here to

be the effective magnetic field from both the external field and the other spins, and this actually helps us find out m:

the magnetization should be equal to the average spin

m = 〈σi 〉 =
eβh

′ − e−βh′

eβh
′

+ e−βh
′

(because of the Boltzmann probabilities of being in states with energy 1 or −1), and this is exactly tanh(βh′) =

tanh(βJm + βh). So we’ve found the above equation in another way, but we’ve made the same kind of saddle-point
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approximation that the empirical average is exactly the statistical expectation. So it’s important to track our limits,

but this is a well-justified calculation.

Fact 189

If we’re in a lattice, people make this kind of approximation as well even if there aren’t interactions between all

pairs of spins, and that is well-justified in 4 or more dimensions (there are enough interactions) but not in 2 or 3.

But this is something that’s explored more in 8.334!

If we look at the case where N � 1, βJ > 1, and h � J, we’ll have m ≈ ±m∗, where m∗ is given by the positive

solution to m∗ = tanh(βJm∗). Then the expectation value is

〈m〉 = m∗
eNβhm

∗ − e−Nβhm∗

eNβhm
∗

+ e−Nβhm
∗ = m∗ tanh(Nβhm∗),

and thus we see that limN→∞〈m〉 = m∗sgn(h). So this is where the discontinuity comes in, and we’ve finally found a

rigorous justification. But if we take any finite N and consider the h → 0 limit, we still find the solution 〈m〉 = 0, so

that helps us describe the phase transition in the limit.

And there aren’t macroscopic materials that actually float between two states – once we choose one of them, it’s

“stuck” because the spins won’t all flip at once. In reality, we also need to consider kinetics beyond true equilibrium

too. But still, N is very large, so we do observe abrupt transitions.

So now we’ll turn to Bose-Einstein condensates: if we have a system of distinguishable particles, for example

because they’re pinned to a lattice, then the partition function is

Zn = (Z1)N =⇒ f =
FN
N

= f1 = −kBT lnZ1.

There aren’t any discontinuities here for any finite N. Similarly, remember that in a classical gas of indistinguishable
particles, we wrote down the function

Q =

∞∑
N=0

1

N!
(Z1)NeβµN = exp

[
Z1e

βµ
]
,

and thus we find that

N =
∂ lnQ
∂(βµ)

= Z1e
βµ.

But this calculation is actually wrong, because we’re taking into account that the particles are indistinguishable. So it

doesn’t account for the possibility of two particles being exactly in the same state, and thus we’re not quite counting

correctly. (In other words, if N particles are in all different states, there are N! ways to permute that, but if the

particles are in the same state we shouldn’t still divide by N!.)

So if we use bosons, we should look at the set of states α that the particles can be in, and we write

Q =
∏
α

∞∑
nα=0

eβ(µ−Eα)nα =
∏
α

1

1− eβ(µ−En)
.

In both of the cases, if µ � E0, both expressions here are approximately
∏
α(1 + eβ(µ−Eα)). So the probability of

being in any state more than once is very unlikely, which means our distinguishability concerns become less important.

And when we have fermions, every state is either occupied or not, and so we just directly have this answer

Q =
∏
α

(1 + eβ(µ−Eα)),
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which is the same as the approximate values for the classical gas and bosons at low µ. But we’ll see more examples

of this on Monday.

So now if we go back to bosons, we find that

βg =
∑
α

ln(1− e−β(Eα−µ).

But if µ = Eα for some α, we get a divergent term, and we can imagine something weird happening as µ gets very

close to E. If our system is finite, the density is

n =
N

V
=

1

V

∑
α

1

eβ(Eα−µ) − 1
=

∫ ∞
ε0

dE
g(E)

V

1

eβ(E−µ) − 1
,

where g(E) is the density of states (possibly allowing for delta functions because of condensation). In lecture, when

calculating density for a gas, we approximated the density of states g by transferring from a sum to an integral, and

it turns out that if we do this calculation in d dimensions, we have a density near the ground state of

g(E0)

V
∼

2mL2

~2Ld
.

To interpret this, note that when d ≥ 3, g goes to 0 even though we have delta-function occupations, since the

spacing between the allowed energy states is too large. And that’s why we have Bose-Einstein condensation in three

dimensions but not two – the approximation with the integral is insufficient!

Again, this returns to the issue of the “order of taking limits.” For any finite V , our chemical potential µ will get

arbitrarily close to 0 (but not hit it exactly), but when we take V → ∞, we get a sharp approach to 0, rather than

a smooth approach, for small T . So in the limit we do get a kink in the derivative of µ at Tc , and that’s where the

phase transition for BEC is coming from.

In the previous phase transition with the spins, the cause was the interaction (the desire for spins to be independent

was overwhelmed by the energy of interactions). But in this case, we’re getting a much bigger probability of everything

being in the same state, but relative to the independent case, there’s an “entropic force” pushing them together with

larger probability.

38 December 7, 2020
An announcement has been sent out about how the class will wrap up – our exam is next week, and Alex is offering

to teach an extra review session this Friday. Practice exams from two previous years (from Professor Kardar’s version

of the course) have also been posted, and their solutions will be posted tonight or tomorrow. But we should note that

topics like density matrices will not be included, and also the problems are fairly elaborate. So the intention for the

exam we’ll have is to be simpler than those.

We’ll continue the discussion of the ideal Fermi gas today: recall that if we have single-particle energy levels r with

energy εr , and we assume εr is independent of the spin α being ↑ or ↓, we have

ZG =
∑
nr,α

e−β
∑

r,α nr,α(εr−µ),

and nr,α is either 0 or 1 for each r, α because we’re working with fermions. That means that

ZG =
∏
r,α

(1 + e−β(εr−µ)) =
∏
r

(1 + e−β(εr−µ))2 = e−βg
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for the grand free energy g, which gets us to the final equation from last time,

g = −2kBT
∑
r

ln(1 + e−β(εr−µ).

Example 190

Suppose we work with standard nonrelativistic particles in a large cubic box with dispersion p2

2m .

As we’ve seen many times, the momentum spacing becomes small between allowed energy levels, and thus we

should try to replace the sum over momentum by an integral. We might worry now that we missed the Bose-

Einstein condensation phenomenon in the boson case, but that’s not an issue here because we can’t have macroscopic

occupation of any state – the occupation is always 0 or 1! So we’ll go ahead and approximate

g = −2kBTV

∫
d̄3p ln(1 + e−β(p2/2m−µ)),

and we can find the density using the grand free energy’s derivative, as usual:

ρ =
N

V
= −

1

V

∂g

∂µ
= 2

∫
d̄3p

1

eβ(p2/2m−µ) + 1
.

Notice that this looks very similar in form to the Bose case, but we have a +1 instead of a −1 in the denominator,

and this will completely change the physics. And the average occupation number of any single-particle state (r, α) is

〈nr,α〉 =
1

2

∂g

∂εr
=

1

eβ(εr−µ) + 1

(dividing by 2 because we only want the occupation of one of the two allowed αs). Introducing the usual fugacity

z = eβµ, we change variables with x2 = βp2

2m to find

ρ =
8π

(2π~)3
(2mkBT )3/2

∫
dx

x2ze−x
2

1 + ze−x
2 .

So we now have an extra factor of 2 from the spin degeneracy, and the sign in the denominator has changed. In terms

of the usual thermal de Broglie wavelength and then expanding as a power series,

ρλ3
T =

1

π2

∫ ∞
0

dx
x2ze−x

2

1 + ze−x
2 =

1

π2

∫ ∞
0

dx x2
∞∑
n=1

(−1)n+1zne−nx
2

,

and doing the Gaussian x2-weighted integrals gives us

=
1

4π3/2

∞∑
n=1

(−1)n+1 zn

n3/2
.

We’ll now define a function similar to the zeta function:

Definition 191

Define the functions fm(z) via

fm(z) =

∞∑
n=1

(−1)n+1 z
n

nm
.

(The integral form of this function, from before we evaluated the integral, is an alternate definition of the function

f , and that is defined outside the radius of convergence for this series.)
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Issues of convergence will be analyzed soon, but we’ll see that there aren’t going to be any problems. We have our

equation

4π3/2ρλ3
T = f3/2(z) .

So now the average energy can be calculated in the same way as for the Bose case, and we find that

〈E〉 = 2V

∫
d̄3p

p2

2m
·

1

eβ(p2/2m−µ) + 1

(we weight occupation numbers of states with their corresponding energies), which evaluates to

= (kBT )
8πV

(2π~)3
(2mkBT )5/2

∫ ∞
0

dx
x4ze−x

2

1 + ze−x
2

and then doing the same series expansion gives us

=
V kBT

2π2λ3
T

∫ ∞
0

x4
∞∑
n=1

(−1)n+1e−nx
2

zn =
V

4π3/2λ3
T

(
3

2
kBT

)
f5/2(z).

These expansions are really most useful in the high-temperature, low-density limit, meaning that our gas is almost

classical. So now ρλ3
T � 1, meaning that we expect z to be small, and thus

4π3/2ρλ3
T = f3/2(z) ≈ z −

z2

23/2
+

z3

33/2
≈ z.

Similarly,
〈E〉
V

=
3

2
kBTρ

f5/2(z)

f3/2(z)
≈

3

2
kBTρ,

which is what we expect for a classical Boltzmann gas.

But in the regime when ρλ3
T � 1, we’ll need to try something different, because quantum effects become

important. If we first study the T = 0 behavior, we know that every particle occupies the lowest energy level possible,

subject to the condition that no level is occupied by more than one particle. If we’re working in the grand canonical

ensemble, we see that as β →∞ (meaning T → 0),

〈nr,α〉 =
1

eβ(εr−µ) + 1

goes to 0 for εr > µ and 1 εr < µ, meaning that our chemical potential µ is the “cutoff” point for which energy levels

are allowed! And thus the grand canonical distribution is able to reach the conclusion that all energy levels with εr ≤ µ
are fully occupied, and the maximum energy of the occupied levels is called the Fermi energy EF – it’s an important

energy scale that characterizes a system of fermions. (And µ = EF at zero temperature, but we’ll ask about how µ

behaves for nonzero temperatures later on.)

To relate this back to the density, note that at temperature T = 0,

N =
∑
r,α

〈nr,α〉 = 2V

∫
d̄3pθ

(
µ−

p2

2m

)
(the step function θ tells us we only keep energies that are low enough), and this evaluates to

=
2V

(2π~)3
· (volume of a 3D sphere with radius pF =

√
2mµ =

2V

(2π~)3

4

3
πp3

F .

(Here, pF is called the Fermi momentum, and the spherical surface defined by p2
F

2m = µ is the Fermi surface.)
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Therefore, the density is

ρ =
1

3π2

(pF
~

)3

=
k3
F

3π2
,

meaning the Fermi wavenumber is (3π2ρ)1/3 and the Fermi energy is p2
F

2m = ~2

2m (3π2ρ)2/3. So a higher density for our

gas gives us a higher Fermi energy – indeed, having more particles means we need to occupy more and more levels to

accommodate all of them, and it goes up with an exponent of 2/3 with the given dispersion in three dimensions.

Our Fermi surface is therefore a separation in momentum space which distinguishes occupied and unoccupied

states, and we want to calculate the total ground state energy now by adding up the states of the occupied particles.

This is

E = 2V

∫
|~p|<pF

d̄3p
p2

2m
=

2V (4π)

(2π~)3

∫ pF

0

dp
p4

2m
,

so we have

E =
V

π2

~2

10m
k5
F =

V

π2

~2

10m
(3π2ρ)5/3.

Therefore, the energy also increases as the density increases (again making sense), and thus the average energy per

particle also increases:
E

N
=

1

ρ

E

V
=

(
1

π2

~2

10m
k5
F

)(
3π2

k3
F

)
=

3

10m
~2k2

F =
3

5
EF .

This is the kind of expression we expect: the Fermi energy is the main energy scale in this problem, and all the particles

have some energy between zero and EF , so the average should be somewhere in between. Then the total ground state

energy can also be rewritten to see the N and V dependence

E =
3

5
(3π2)2/3

(
~2

2m

)
N5/3V −2/3,

and we know that the pressure can be written as (because the free energy and internal energy are the same at T = 0

– we should usually take a derivative of F )

P = −
(
∂E

∂V

)
N,T

=
2

5
(3π2)2/3

(
~2

2m

)(
N

V

)5/3

=
2

5

NEf
V

=
2

3

E

V
.

Notice that this pressure is nonzero even at zero temperature – it’s known sometimes as a degeneracy pressure. (This
occurs because the Pauli exclusion principle pushes particles away from each other, and it’s a quantum mechanical

effect.) And this basic idea gives rise to many phenomena: for example, it’s why two atoms have a strong repulsion

when we try to push them together, and in fact in the absence of the Pauli exclusion principle, macroscopic matter

would not be stable at all!

Example 192

Electrons are fermions, and let’s try doing these calculations for electrons moving freely inside of a metal.

If we approximate the electrons as an ideal Fermi gas, the typical spacing between ions is on the order of an

angstrom (10−10 m), and thus that’s also the order of separation between electrons – ρ is of order 1030 per meter,

and thus kF is of order the interparticle spacing, 1010 per meter. Since the electron mass is half an MeV, we can then

estimate the Fermi energy EF , and it turns out to correspond to about 104 or 105 Kelvin. We know that such metals

usually melt long before we get to that temperature, so in most regimes that metals exist as solids, the temperature

we’re dealing with is much smaller than the Fermi temperature of the electrons. So we almost never get the behavior

where ρλ3
T � 1 – even at room temperature, quantum effects are extremely important, and electronic properties of a

metal can be studied only by accounting for Fermi statistics.
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We can then estimate the typical magnitude of the velocity of an electron by taking an electron sitting at the Fermi

surface: then
1

2
mv2

F = EF =⇒ vF ∼ 106m/s,

which is about two orders of magnitude away from the speed of light. So it’s not high enough that we need to worry

about relativity, but it’s not as small as we might expect in a classical gas (in which the typical velocity
√

kBT
m is much

smaller than vF at ordinary temperatures T ). So the Fermi velocity vF is something we should keep an eye on when

we study these kinds of systems!

So we know that the chemical potential is large in the T = 0 limit (it’s a positive number equal to the energy scale

EF ). But in the high-temperature limit, we know that µ must be large and negative. So things need to evolve between

these two limits in some way, and we’ll start looking at the nonzero temperature limits now. (Remember that µ starts

off small and negative but then sticks at 0 below T = Tc in the Bose gas, which is a different behavior.)

We now take T 6= 0 but still small, meaning that T � EF
kB
. (The temperature TF = EF

kB
is called the Fermi

temperature.) If we try to think about the plot of occupation number versus energy, we no longer have a step

function from 1 to 0 at EF : we know that

〈nr,α〉 =
1

eβ(εr−µ) + 1

will be a smooth function that approximates the step function (in fact, only in a window around EF of order kBT will

we be able to notice the transition from occupation 1 to occupation 0, and this is the only regime where there’s a

deviation from the ground state value). Then we can ask about the average energy, which will let us calculate the

heat capacity of the gas, and let’s do that calculation now. Our strategy in the grand canonical ensemble is always

the same: we have our two governing equations

ρ = 2

∫
d̄3p

1

eβ(p2/2m−µ) + 1
,

〈E〉 = 2

∫
d̄3p

p2/2m

eβ(p2/2m−µ) + 1
.

Changing the variable of integration by converting to spherical coordinates, doing the angular integrals, and letting

ε = p2

2m =⇒ dε = p dp
m , dp =

√
m
2εdε gives us the conversion of measure

2

∫
d̄3p

(2π~)3
=

8π

8π3~3

∫
dp p2 =

√
2

π2~3
m3/2

∫
dε

ε1/2

eβ(ε−µ) + 1
,

so that

ρ =
(8m)3/2

π2~3

∫ ∞
0

dε
ε1/2

eβ(ε−µ) + 1
, E =

(8m)3/2

π2~3

∫ ∞
0

ε3/2

eβ(ε−µ) + 1
.

We can now do these two integrals in the appropriate limit, where we extract the leading-order dependence by doing

a series of elementary steps and putting them together. If we set a = (8m)3/2

π2~3 , we need to calculate integrals of the

form
∫∞

0 dε g(ε)
eβ(ε−µ)+1

, where g = aε1/2 or aε3/2, respectively. So the quantity we’re interested in evaluating is

I =

∫ ∞
0

dε
g(ε)

eβ(ε−µ) + 1
,

and if we change variables with x = β(ε− µ), meaning dε = kBTdx , then

I = kBT

∫ ∞
−βµ

dx
g(µ+ kBTx)

ex + 1
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which we can split up into

= kBT

(∫ 0

−βµ
dx
g(µ+ kBTx)

ex + 1
+

∫ ∞
0

dx
g(µ+ kBTx)

ex + 1

)
,

and changing variables again on the first term gives us

= kBT

(∫ βµ

0

dx
g(µ− kBTx)

e−x + 1
+

∫ ∞
0

dx
g(µ+ kBTx)

ex + 1

)
.

This can then be rewritten as

= kBT

(∫ βµ

0

dxg(µ− kBTx)

(
1−

1

ex + 1

)
+

∫ ∞
0

dx
g(µ+ kBTx)

ex + 1

)
.

And now when we expand out the integral into its two parts, the first term here is kBT
∫ βµ

0 dxg(µ−kBTx) =
∫ µ

0 dεg(ε)

(the zero-temperature value of the quantity that we’re trying to calculate), and the other term is−kBT
∫ βµ

0 dx g(µ−kBTx)
ex+1 .

Thus, we can rearrange to

I =

∫ µ

0

dεg(ε)− kBT
(∫ βµ

0

dx
g(µ− kBTx)

ex + 1
−
∫ ∞

0

dx
g(µ+ kBTx)

ex + 1

)
.

The point of all of this calculation has let us isolate the zero-temperature value of our quantities ρ and E, and next

time we’ll see how to use the low-temperature approximation to complete the desired calculation for extracting out

physically relevant answers.

39 December 9, 2020
Today, we’ll understand the low-temperature thermodynamics of the ideal Fermi gas – we understood the zero-

temperature situation last class, and we’re going to evaluate the integrals from last class in this low-temperature

approximation. Recall that we tried to evaluate expressions like

I =

∫ ∞
0

dε
g(ε)

eβ(ε−µ) + 1
,

where g(ε) = aε1/2 for the density ρ, aε3/2 for the energy E, and a = (8m)3/2

π2~3 is a constant. We did this by massaging

the integral into another form

I =

∫ µ

0

dεg(ε)− kBT
[∫ βµ

0

dx
g(µ− kBTx)

ex + 1
−
∫ ∞

0

dx
g(µ+ kBTx)

ex + 1

]
,

and now the first term is the value of the integral I at zero temperature, while the remaining terms can be thought of

as a correction. We’ll see how this form lends itself to making a good approximation in the limit as β →∞ now. First

of all, notice that the integrand dies off rapidly whenever x & 1, because g is some power function but the denominator

is exponentially decaying. And also, βµ ∼ EF
kBT

= TF
T � 1 is large in the low-temperature limit, so x is much smaller

than βµ in the important contributions to the integral. And thus we’ll Taylor expand these functions as

g(µ+ kBTx) ≈ g(µ) + kBTxg
′(µ) + · · ·

so that the bracketed term can be written as

=

∫ βµ

0

dx
g(µ)− kBTxg′(µ) + · · ·

ex + 1
−
∫ ∞

0

dx
g(µ) + kBTxg

′(µ) + · · ·
ex = 1

.
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And because the weight of the integrand for x ≥ βµ is almost zero, it’s acceptable to replace the upper limit of the

first integral here with ∞ (and the error is of error eβµ, which is small) to get cancellations

= −2kBTg
′(µ)

∫ ∞
0

dx
x

ex + 1
+ (higher-order corrections).

We can calculate the value of the integral directly, and the bracketed term turns out to be −π2

6 kBTg
′(µ). This gives

us the following result when we plug things back in:

Proposition 193

At low temperature,

I ≈
∫ µ

0

dε g(ε) +
π2

6
(kBT )2g′(µ).

We can now specialize to the two functions for g(ε) that help us write down the density and energy of our ideal

Fermi gas. For ρ, we set g(ε) = aε1/2, and then we have that

ρ =
2a

3
µ3/2 +

π2

6
(kBT )2 a

2
√
µ

+ · · · .

So if we’re working in a Fermi gas at fixed density, this gives us µ as a function of T : it’s equal to the Fermi energy

at zero temperature, but now we can calculate it for low nonzero temperature as well. Plugging in T = 0, we find

that ρ = 2a
3 E

3/2
F , and thus if we plug that in and write µ = EF + δµ, we find that

2a

3
(EF + δµ)3/2 +

π2

6
(kBT )2 a

2
√
EF + δµ

=
2a

3
E

3/2
F .

Since the equation is valid for small T , δµ will be small (meaning that |δµ|EF
� 1), and thus we can Taylor expand to

linear order. This yields, after some algebra, that

δµ = −
π2

12

(kBT )2

EF
.

And we could have guessed most this by dimensional analysis: everything changes at order T 2, so the change in δµ must

be of order (kBT )2

EF
. And the sign of this change could maybe have been guessed as well, because in the high-temperature

limit of the classical gas, the chemical potential is negative. And thus we find that at low temperature,

µ ≈ EF

(
1−

π2

12

(
kBT

EF

)2
)
.

We can also calculate the energy by setting g(ε) = aε3/2, which yields

E

V
=

2a

5
µ5/2 +

π2

6
(kBT )2 3a

√
µ

2
,

and we’re looking for answers that are accurate to this order (T 2) of the low-temperature system. So we can rewrite

this as

≈
2a

5
(EF + δµ)5/2 =

π2

6
(kBT )2 3a

2

√
EF

(we don’t need to turn the
√
EF into a

√
EF + δµ, because we already have a (kBT )2 in front of it). Thus,

E

V
=
Eground

V
+ aE

3/2
F δµ+

π2

6
(kBT )2 3a

2

√
EF
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to order T 2, and plugging in the δµ we found above gives us

E

V
=
Eground

V
− a
√
EF
π2

12
(kBT )2 + π2(kBT )2 a

4

√
EF =

Eground

V
+
aπ2

6

√
EF (kBT )2,

and therefore
E

V
=
Eground

V
+

(8m)3/2

6~3

√
EF (kBT )2 .

What’s important is that the energy has changed by an amount proportional to T 2, and if we set γ = (8m)3/2

6~3

√
EF k

2
B,

we can calculate the heat capacity per unit volume

CV
V

=
1

V

dE

dT
= γT.

Notice that this heat capacity does go to 0 as T goes to 0, consistent with the third law of thermodynamics, but it’s

still linear in T (which is larger than the heat capacity of the Bose gas, which goes as T 3/2). To get some intuition

for this result, we can rewrite the correction term for the energy more transparently as

E

V
=
Eground

V
+
aπ2

6

√
EF (kBT )2 + · · · =

2a

5
E

5/2
F +

aπ2

6

√
EF (kB)T 2 + · · · ,

which we can then write as

=
2a

5
E

5/2
F

(
1 +

5

12
π2

(
kBT

EF

)2

+ · · ·

)
.

Since we know that the mean energy per particle is 3
5
N
V EF (from last class), we find that

E =
3

5
NEF

(
1 +

5

12
π2

(
kBT

EF

)2

+ · · ·

)
=

3

5
NEF + N

π2

4

(
kBT

EF

)2

+ · · · .

Thus, the correction term can be thought of as the thermal energy kBT for a fraction of the N particles in the system,

proportional to kBT
EF

. (Basically, most of the N particles are not thermally excited, but a small fraction are, and they

gain energy proportional to kBT each.) And if we remember that the graph of occupation 〈nr,α〉 deviates slightly from
the zero-temperature step function, indeed the window of deviation is proportional to kBT (around the Fermi energy

EF ). If we look at the Fermi sea (the set of all energy levels below EF ), then the average occupation is not changed

for most of the states. (Exciting the particles deep into the Fermi sea is often not possible because of Pauli exclusion,

and doing so for particles near the Fermi surface happens much more frequently.) So the low-temperature Fermi gas

will generally gain these extra factors of kBTEF , compared to any classical results.

And we’ll finish this class with a few applications of the theory of the ideal Fermi gas:

1. Much like a crystalline solid is explained by boson gas calculations, the ideal Fermi gas model provides a basis

for the theory of metals.

2. We also get a starting point for the theory of the liquid phase of Helium-3 (a fermion): it becomes a liquid at

low temperature and ambient pressure, as discussed a few lectures ago, with lots of weird properties.

3. Because nucleons are fermions, we are also able to study the structure of atomic nuclei and include an important

contribution to the energetics of the nucleus. If we take a heavy atomic nucleus, the protons repel electrostatically,

and the strong nuclear force binds them together, but there’s also a degeneracy pressure that keeps the nucleons

apart. So this is a sensible starting point for a full calculation of the binding energy!

4. Some stars (in particular white dwarfs) are composed of highly ionized Helium, instead of Hydrogen. And we

can model this star as a gas of ions and electrons, and the densities are high enough that the electron gas is
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highly degenerate. So the main physical effects that determine stability come from the competition between the

gravitational attraction and degeneracy pressure. And it turns out the Fermi momentum in this system is very

large, so we need to treat this as a relativistic Fermi gas. And as the mass increases, the degeneracy pressure

must increase, and thus the density increases as well. People recognized that beyond a certain critical mass

(about 1.4 times the solar mass), this is no longer possible, and that’s known as the Chandrasekhar limit. And
thus only small stars can form white dwarfs!
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